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Abstract

Language models are an amazingly complex technological development—many aspects of which researchers
and practitioners currently have very impoverished (mathematical and conceptual) understanding for. This
thesis surveys my research aiming to develop a methodology for theoretically reasoning about language
models. The methodology is based on mathematically modeling the data generative process by focusing on
a few key structures which are commonly present in language data, such as grammars and topics. These
structures motivate realistic assumptions on the data, at a level of abstraction which is useful for studying
the interaction between data, training, and inference.

Chapter 2 is about training: this chapter covers our works elucidating how Transformer-based models learn
simple linguistic structures under common training procedures. Chapter 3 is about inference: this chapter
covers our works on inference time scaling when a verifier is available to guide the autoregressive language
model generator. Finally, Chapter 4 is about co-designing training and inference procedures, in the context
of parallel-efficient language models.

These results connect theoretical analysis of modern neural network architectures to concrete empirical
phenomena, and validate our theory in experiments based on synthetic sandboxes and real language data.
Through these progresses, my research contributes to developing a mathematical foundation for reasoning
about the interactions between data, training, and inference in language modeling, and motivates principled
algorithmic design based on understanding and leveraging these interactions.
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Chapter 1

Introduction

Language models have achieved remarkable performance across many domains, and are important building
blocks of many user-facing applications such as chatbots and coding assistants. However, they still fail at
seemingly simple tasks, and moreover, they are brittle in many subtle ways that the research community do
not fully understand. In fact, these challenges are not new to language models — for many classic machine
learning problems, researchers have developed heuristic algorithms which work well in practice but lack
provable guarantee. In these cases, an effective approach to understand when these algorithms work and
improve them is to mathematically model the generative process of the data based on realistic assumptions
on the key structures. By modeling these structures, researchers can analyze existing heuristic algorithms
and design principled innovative algorithmic solutions (Moitra, 2018). Drawing inspirations from these
past advancements in the field, I believe an important step towards understanding and improving modern
language models is to deepen our understanding on what structural assumptions are reasonable for modeling
their training data.

While deep learning theory often assumes that the data is generated by simple generic distributions such
as Gaussian or boolean functions, I believe that an important next step for deep learning theory is to focus
on finer-grained structural assumptions which more closely track real data. Investigating these
more realistic structures enables further progress towards mathematically reasoning about practical deep
learning phenomena. For example, consider language structures — modern language models are typically
pretrained on massive language data. If we model the pretraining data using generic data distributions such
as Gaussian, we can derive generalization bounds on the loss. However, since the data distributional as-
sumptions abstract away language-specific structures, the result cannot answer the more practically-relevant
question of what values of the loss suffices for the model to learn certain grammatical rules of English, or
to generate text following a coherent topic. Theoretically answering questions of the latter type requires (1)
finding a mathematical model of the data distribution which faithfully reflects some aspects of the syntactic
or semantic structures underlying real language data, (2) studying how these structures are learned by neural
networks during training, and (3) designing inference algorithms for generating new samples consistent with
these structures. In this thesis, I present several progresses in my research towards these goals.

How do we model some structures of interest in typical training data?

The massive language model pretraining data can be modeled at different levels of abstractions, leading to
various trade-offs. The above paragraph discusses some trade-offs if we use generic distributions such as
Gaussian. On the other hand, if we avoid abstracting away any detail by viewing the data “as is”, i.e.
a fixed list of documents, without reasoning about their generative processes, then we can make concrete
observations based on a particular dataset, but may miss out on some systematic principles which are
transferrable across different datasets. Different from the above perspectives, my research focuses on a
middle ground: data distributions which reflect some key properties of language structures (such as syntax
and semantics) that are generally present across many language datasets: for example, in (Li & Risteski,

11



2021) we consider probabilistic context-free-grammars (PCFGs), in (Wen et al., 2023; Botta et al., 2025;
Rohatgi et al., 2025) we consider a special case of PCFGs called Dyck grammars (Schiitzenberger, 1963),
and in (Li et al., 2023), we consider topic models (Blei et al., 2003). Based on these data distributions, my
research studies how neural networks learn their key structures.

How does the model capture these structures after training?

Neural language models learn many language structures. Yet, these structures were not explicitly enforced
by the model as rule-based constraints; instead, we train the model by optimizing its weight parameters to
fit training samples, through self-supervised objectives. Thus, the following prerequisite question naturally
arises: for a language-structured data distribution mentioned above, is the model sufficiently expressive to
fit a generative process of the distribution?

My research shows that the answer depends subtly on the design choices about the model architecture.
For example, when the data distribution is a PCFG, we prove that a common type of autoregressive models
(even with a bounded lookahead window) are insufficiently expressive for accurately parsing PCFGs, and
by contrast, we provide explicit constructions based on bidirectional models that can represent the max-
likelihood parse of any given PCFG (Li & Risteski, 2021). The key intuition underlying this distinction
is that bidirectionality increases the expressivity by allowing the prediction at each position to be based
on the full sequence, rather than just a prefix. However, for some harder tasks, even bidirectionality does
not guarantee sufficient expressivity: we prove in (Li et al., 2024b) that bidirectional models based on
Transformers (Vaswani et al., 2017) do not have sufficient expressivity for representing parallel-decoding
Markov chain transitions (which are typical in discrete diffusion language models), and as a result, their
mixing times for sampling certain multi-modal distributions are large. ! By studying the expressivity of
common neural architectures for representing solutions that encode certain structures, we identify some
theoretical limitations of these architectures, and we hope they will inspire future works which improve
model architectures to address these limitations.

In fact, expressivity is not the only factor that determines what structures language models capture after
training. When the model is sufficiently expressive for representing some optima of the loss on certain data
distributions, does the training dynamics typically converge to these optima?

My research shows that for different types of structures in the data distribution, the “degree of freedom”
of the training dynamics can be quite different. For some data distributions (such as topic models (Blei et al.,
2003)), the training dynamics typically converges to some optima of the loss in a way that the trainable
parameters of the model learn to encode the key structure in the data in an intuitive way. To see this, in
(Li et al., 2023), we break down the training dynamics into two naturally-separated stages, and characterize
the optima in each stage. On the other hand, for some other data distributions (such as the Dyck grammar
(Schiitzenberger, 1963)), the space of optima learned by the model is very rich and does not “uniquely” or
“Intuitively” encode the structures that define the data distribution. More concretely, in (Wen et al., 2023),
we theoretically characterize the sufficient and necessary conditions for model parameters to represent the
(exact or approximate) optima of the loss on Dyck grammar distributions, and found that the set of optima
encompasses qualitatively diverse solutions. In both cases, experiments validate our theory.

Given the (sometimes large) space of solutions which the model may learn during training, how do
we guide the training dynamics towards learning more generalizable solutions which better capture the key
structures in the data?

Our theory suggests that even though different solutions may simultaneously correspond to the global
optima of the (in-distribution) training loss, different solutions may differently encode the structure in the
data, and generalize differently under natural out-of-distribution scenarios. Correspondingly, we propose
theory-inspired regularization techniques to guide the training towards learning features that better align
with the groundtruth structures in the data distribution. In the case when the data distribution is a
topic model (Blei et al., 2003), our regularization encourages the learned features to preserve symmetries
in the topic model. In the case when the data distribution is the Dyck grammar (Schiitzenberger, 1963),

IMore details are in Chapter 4.
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our regularization encourages the effects of matching brackets to correctly cancel out in the latent space
representations, which leads to higher length-generalization accuracy.

Chapter 2 covers more details of my research on the interaction between data and training, focusing on
understanding how the model learns to capture the key structures in the data during training.

What inference algorithms best leverage these learned structures?

After language models are trained, assuming they (possibly imperfectly) captured the language structures
studied above, what inference algorithms allow them to generate samples which align well with these learned
structures? My research makes progress towards improving the following two types of inference algorithms:

Incorporating a verifier to assist the language model generator Even for a language model which
approximately captured certain language structures, when it generates new sequences, it may still make
mistakes which violate these structural constraints. Researchers have developed inference-time algorithms by
incorporating a verifier which can score (complete or partial) generations of the language model (Cobbe et al.,
2021; Nakano et al., 2022). Though a flurry of recent papers consider “scaling laws” of natural verifier-aided
inference-time algorithms, the value of a verifier—and the relationship it needs to have to the generator is
still not well understood. My research (Botta et al., 2025) proves that the incorporation of process verifiers is
necessary for certain constrained generation tasks (both information-theoretically and computationally), and
shows empirically (on Dyck grammar and Python code generation tasks) that backtracking is a surprisingly
effective rejection sampling strategy when a process verifier is available. Moreover, in (Rohatgi et al., 2025) we
generalize a classic algorithm in the approximate counting and sampling community of theoretical computer
science, namely the Sinclair-Jerrum random walk (Sinclair & Jerrum, 1989), and apply it to process verifier-
guided generation. The inference algorithm we propose is theoretically principled: when the verifier is
imperfect (which is true in most practical cases), our algorithm provably mitigates error amplification as
the sequence length grows. Empirical observations based on synthetic data and real language tasks verify
our theory. Chapter 3 covers more details of my research on the interaction between data and inference,
focusing on establishing a theoretical framework for reasoning about verifier-assisted language generation,
and identifying backtracking to be a key component in verifier-assisted language generation algorithms.

Non-autoregressive parallel generation Besides autoregressive language models which fit the next-
token probabilities, a promising line of works (Ghazvininejad et al., 2019; Gu & Kong, 2021; Savinov et al.,
2022; Lou et al., 2024; Sahoo et al., 2024; Kim et al., 2025) develop non-autoregressive language models which
are trained to fit conditional probabilities for parts of the sequence (by applying a mask), conditioned on the
rest. These conditionals will be used as oracles for running a Markov Chain to generate samples. Note that
at inference time, with each forward pass through the decoder layers, these models predict not just one next
token, but multiple tokens in parallel. Such parallelism enabled them to generate texts much faster than
autoregressive models. However, note that the conditionals learned by these models do not necessarily form
a consistent joint distribution. Thus, it is not well-understood what structures in the data can be efficiently
learned and accurately sampled by these models. Towards elucidating these questions, my research (Li
et al., 2024b) proves that the sample-efficiency of training masked language models is closely connected to
the computational-efficiency of inference, and in particular, strong cross-position dependency in the data
distribution is a challenge for both training and inference. Moreover, we prove that masking more tokens
when training these conditionals is more sample-efficient. Finally, we theoretically identify a limitation
of Transformers for parallel decoding: they enforce conditional product distributions, which can prevent
fast mixing at inference time. Chapter 4 covers more details of my research on the interaction between
training and inference, focusing on revealing a deep connection between training efficiency and inference
efficiency. Moreover, the same quantity which governs both training and inference efficiency bounds is in
fact a property of the data distribution. These findings close the loop: we establish a theoretical framework
for mathematically reasoning about the data-training-inference interaction for this type of parallel-efficient
language modeling approaches.
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Chapter 2

How Transformers learn simple
linguistic structures

During training, modern language models parameterized by deep neural networks learn a large set of features,
i.e. real-valued vector representations of important signals in the input (LeCun et al., 2015; Goodfellow
et al., 2016). These features, automatically learned by optimizing the empirical risk minimization (ERM)
objective using gradient descent-based optimization algorithms on the neural network parameters, have been
shown to outperform handcrafted features in many downstream applications (Krizhevsky et al., 2012; Devlin
et al., 2019). However, some of these automatically learned features are spurious features harmful for the
downstream task performance (Tu et al., 2020). Can we understand what features are learned, and guide
the training process towards learning more robust features?

Existing theory on the training process of neural networks are mostly based on the neural tangent
kernel (NTK) (Jacot et al., 2018), but the NTK theory cannot explain the feature learning process (Li et al.,
2020). Recent theories have begun developing understanding of the training process that incorporates feature
learning (Allen-Zhu & Li, 2020), including our own work on understanding some common self-supervised
learning objectives (Pokle et al., 2022), but they consider very simple neural network model architectures
or data distributions. Since different model architectures possess different inductive biases which benefit
different data distributions (for example, Transformers robustly outperform prior architectures on natural
language tasks (Vaswani et al., 2017), whereas convolutional neural networks are still leading many image
benchmarks (Liu et al., 2022b)), we think it is important to develop the theoretical toolbox for understanding
the feature learning process while incorporating the interplay of model architectures and data distributions.
The key question we ask is: what properties of the data distribution are captured by which part of the neural
network model architecture?

In Section 2.1 (based on Li et al. (2023)), we develop mechanistic understanding of how a simple, 1-
layer Transformer learns topic structure. In Section 2.2 (based on Wen et al. (2023)), we prove that even on
simple (context-free) grammars, even for small (2-layer) Transformers, the solution space is very rich and does
not “uniquely and interpretably” encode grammatical structure. In both cases, our research covers theory
and experiments on the types of features that transformer-based language models learn through standard
pretraining, and propose theory-inspired regularization techniques to guide the Transformer towards learning
features that better align with the groundtruth structures in the data distribution.
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2.1 How Transformers learn topic structure: towards a mechanis-
tic understanding

While the successes of transformers across many domains are indisputable, accurate understanding of the
learning mechanics is still largely lacking. Their capabilities have been probed on benchmarks which in-
clude a variety of structured and reasoning tasks—but mathematical understanding is lagging substantially
behind. Recent lines of work have begun studying representational aspects of this question: that is, the
size/depth/complexity of attention-based networks to perform certain tasks. However, there is no guarantee
the learning dynamics will converge to the constructions proposed. In our paper, we provide fine-grained
mechanistic understanding of how transformers learn “semantic structure”, understood as capturing co-
occurrence structure of words. Precisely, we show, through a combination of mathematical analysis and
experiments on Wikipedia data and synthetic data modeled by Latent Dirichlet Allocation (LDA), that the
embedding layer and the self-attention layer encode the topical structure. In the former case, this manifests
as higher average inner product of embeddings between same-topic words. In the latter, it manifests as higher
average pairwise attention between same-topic words. The mathematical results involve several assumptions
to make the analysis tractable, which we verify on data, and might be of independent interest as well.

The transformer architecture (Vaswani et al., 2017) is a critical building block of many leading approaches
to natural language processing (Devlin et al., 2019; Brown et al., 2020), and other domains such as vision
(Dosovitskiy et al., 2021) and protein structure prediction (Jumper et al., 2021). While the NLP community
has produced a large body of work on probing and visualizing trained networks (Hewitt & Manning, 2019;
Clark et al., 2019; Tenney et al., 2019; Kovaleva et al., 2019), we still have little formal understanding of
the mechanisms by which transformers, trained with simple gradient-descent based algorithms, learn from
their training data. The challenge is that the training dynamics are non-trivial, even for relatively simple
structured data distributions, and even for simple (e.g. 1-layer) transformers.

In particular, we study semantic structure, as understood through the lens of co-occurrences of words, and
their topical structure. Precisely, if we fit topics to a real-life corpus like Wikipedia using a Latent Dirichlet
Allocation (LDA, Blei et al., 2003) model, we find a pretrained BERT model produces token embeddings
that are more similar (in terms of inner product or cosine similarity) if they belong to the same topic, and
more different if they belong to different topics (see e.g. Figure 2.3).

Inspired by these observations, we study LDA-generated data as a sandbox to understand—both through
experiments on such synthetic data, and theoretical results—the process by which the embeddings and
attention learn the topical structure. We find that the above observations from Wikipedia data are even
more pronounced on synthetic LDA data. Moreover, we mathematically prove why such structure arises by
analyzing a simplified two-stage training dynamics for a single-layer transformer trained under the masked
language modeling objective. We also verify the two-stage nature of training dynamics obtains for a wide
variety of optimizers and hyperparameter settings. '

2.1.1 Technical setup

Topic models For our theoretical analysis, in order to have a well-defined notion of a “ground truth”, we

will consider data distribution generated by a topic model consisting of T topics {1,--- ,T} and Tv words
{1,---,Tv}. We will in fact, consider a special case of an LDA (Latent Dirichlet Allocation) model (Blei
et al., 2003). Precisely, each document w is a sequence of words wy, -+ ,wy, and is generated by: °
1. Randomly choose 7 distinct topics t1,- - , ¢, from [T].
2. For n € [N]:
(a) Randomly choose a topic ¢ from {t1,--- ¢ }.

LCode is released at https://github.com/YuchenLiO1/transformer_topic_model_LDA

20ur theoretical results crucially depend on all topics being disjoint, i.e. they do not share common words. It is not crucial
that the words in the same topic all have the same probabilities. Allowing these probabilities to be different would lead to
results of similar flavor, but complicates the notation.

15


https://github.com/YuchenLi01/transformer_topic_model_LDA

(b) Randomly choose w,, from {(t — 1)v+1,--- ,tv}.

Note, under this data distribution, each word belongs to exactly one topic, and different topics do not
share common words.

Definition 2.1.1 (Topic-word indicator). A wordi belongs to topict (denoted asi € t)ifi € {(t — v +1,---

Correspondingly, topic(i) == [ L]

v

Let D,, denote the distribution of documents following the above generative process. Furthermore, for
each document w, let X € {0,1}(T*TUXN denote its one-hot encoding, in which X;; = 1 if w; = i, and 0
otherwise. Analogous to D,,, let Dx denote the distribution of document one-hot encodings.

To simplify our theoretical analysis, we consider the infinitely-long-document setting, such that within
each document, the empirical token distribution is equal to the groundtruth token distribution:

Assumption 2.1.1 (Infinitely-long documents). Each document w consists of exactly T topics {t1,--- ,t;}.
Moreover, for each word i € {1,--- ,Tv} in the vocabulary, its empirical probability in the document

Pw (Z) =

N .
Zn:l ]]-wn:i _ %7 ’Lf’L S U;-—thj
N 0, otherwise

In our synthetic data experiments, we use a finite N and generate data using an LDA model (Blei et al.,
2003) which allows for slightly more variability—and demonstrates that our results are robust to changes in
the setting. Detailed experimental setup is described in Section 2.1.5.

Training objective Given data following the distribution defined in Section 2.1.1, we train a transformer
network using the masked language modeling objective (Devlin et al., 2019). We first define the token
[MASK] = 0 in addition to the words {1, -- , Tw} of the topic model. Three constant probabilities p,,, pe, pr €
(0,1) specify the masking scheme:

1. For the original document w = w; - - -wy, first randomly choose a set of masked indices M (w) C [N]
such that Vi € [N], with probability p,,, ¢ € M(w).

2. Define the masked document @ = w; - - - Wy such that for each i € [N,
(a) If i ¢ M(w), then w; = w;.
w;, with probability p.
(b) If i € M(w), then @; = < random word in [Tw], with probability p,
[MASK] = 0, with probability 1 — p. — p,
Given a document w and its masked version w, the model fp (parameterized by ) observes w and is
trained to predict the original words at the masked positions M. More formally, given the one-hot encoding

of the masked document X, and the model prediction X = fe(X) e R(Tv+DXN otting X.; denote the j-th
column of matrix X, for some loss function (-, ) — R, the training objective is ming L(6) for

L(9) = IEX~7>XIEM|—;4| S U(fo(X).5, Xy) (2.1)
JEM

Motivated by the empirical success of applying weight decay to training transformers, we also consider a
regularized version of the above masked language modeling objective. For Lo-regularization  with parameter
A>0:

Lizreg(6) = L(0) + AI0]3 (2.2)

3When 6 is a vector, La-regularization penalizes ||0||2. When 6 is a matrix, the correct norm to regularize is ||6|| .
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Our theoretical analysis uses the squared loss: given a prediction vector & € R? and an one-hot label
vector y € {0,1}¢ in which y; = 1 and Vj # i,y; =0

(z,y) = lsq(a,y) = [lz — yl3 (2.3)
Our experiments additionally study the cross entropy loss:

(@.9) = ol y) = — log D)
(x,y) (x,y) ngzlexp(mj)

Remark 2.1.1. We give results for both types of loss functions because the cross-entropy loss, albeit prac-
tically more commonly used, is theoretically less convenient. Concretely, it involves the softmax operation
which is invariant under addition by the same constant in each dimension (implying that the optimal logits
are not necessarily unique); moreover, the optimal logits are often at infinity. By contrast, with squared loss,
the set of optima is more easily characterized using some finite-valued closed form expressions.

Empirically, we will show (in Section 2.1.5) that the conclusions in our theoretical analyses hold for both
the cross-entropy loss and the squared loss, as well as with variants of the training algorithm like SGD and
Adam.

(2.4)

Transformer network architecture To theoretically reason about the role played by the embedding
layer and the self-attention layer, we consider a one-layer, single-head transformer model (Vaswani et al.,
2017) with the simplification that the residual connection and normalization layers are removed. Precisely:

(WHz)"(Wez)
Vd,

Z € R4V is the input representation. d is the embedding dimension. WPed ¢ RV *4 and bP**d ¢ RV are
the prediction head weights and biases. V is the vocabulary size. In our masked language modeling setting
(Section 2.1.1), V = Tv+1. WV € R¥*9 is the value matrix weight. o : RN*N 1 (0, 1)V X is the column-

wise softmax operation, such that o(A);; = %. d, is the attention head size. WX ¢ R%a*4 is the
=1 ¥

key matrix. W@ € R%*9 is the query matrix. Let A(Z) denote the attention weights:

H(Z) = WP (WY Z)o( ) + bPred

(WEZ)T(W?Z)
Vi,

In our setting, the input Z is the embedding of the masked document, i.e. Z = WZEX for some
embedding weights W € R¥*(Tv+1) | Moreover, following empirical best practice (Press & Wolf, 2017) and
standard implementation in (Wolf et al., 2020), we weight-tie the prediction head weight WP™d and the
embedding weight W¥:

A(Z) =0 ( > € (0,1)NxN (2.5)

F(X)=WETWYWEXAWEX) + ppred (2.6)

In part of our theoretical analysis (in Section 2.1.4) and experiments (in Section 2.1.5), we freeze one-hot
word embeddings, to study the mechanism that self-attention represents the topic structures without the
aid of trained token embeddings. That is, set d = Tv 4+ 1 and W¥ =TI

F(X)=WVXAX) + bPred (2.7)

The positional encoding at the input is removed because the position information of a word in a document
is irrelevant to the topic model defined in Section 2.1.1.
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Figure 2.1: Embedding weight dot product of models trained on synthetic topic modeling data (Sec-
tion 2.1.5.1). The four plots correspond to different combinations of loss function and optimizer: (left to
right) cross-entropy with SGD, cross-entropy with Adam, squared loss with SGD, squared loss with Adam,
all using learning rate 0.01. The block-wise pattern verifies our theory in Section 2.1.3. The 10 blocks
correspond to the 10 topics in the data distribution in Section 2.1.1. In particular, a diagonal pattern is a
special case of the block-wise optima that we prove (see Theorem 2.1.1).

2.1.2 Overview of results

We focus on understanding the optimization dynamics of transformers in a simple sandbox: a single-layer
transformer trained on (synthetic) data following a topic model distribution—and validate that our results
robustly transfer to real data (Wikipedia WikimediaFoundation, 2023). We show that topic structure can
be encoded both in the embedding layer, and in the attention mechanism of the network. Moreover, even if
one of these components is not trained (i.e. handicapped), the other can “compensate” for it.

Theoretically, we characterize precisely how the topic structure is learned in the two extremal cases:
when the attention mechanism is frozen to be uniform, and the only model parameters that are trained are
the token embeddings; and when the token embeddings are frozen to be one-hot vectors, and the attention
parameters (the key, query, and value matrices) are trained. We empirically verify our characterization on
synthetic LDA-generated data, and also show that on real Wikipedia data, topic structure is learned both
in the embeddings, and the attention mechanism.

2.1.2.1 Topic structure is encoded in token embeddings

In the first extremal case, we analyze the optima when we solely train the embedding layer. Precisely, we
show that even when we freeze the attention scores to be uniform and all other elements of the transformer
are set to identity, the model can still achieve near optimal loss by “encoding” the topic structure in the
embedding weights:

Theorem (Optimal word embedding, informal). Suppose the training data follows a topic model data distri-
bution, and the transformer has trainable embedding layer, frozen (uniform) attention scores, and all other
components set to identity. Then, the optimal embedding layer of a single layer transformer is such that the
inner product of the embeddings of a pair of words is larger when the words belong to the same topic, and
smaller when they belong to different topics.

Intuitively, this result states that words of the same topic, after training, have more similar embeddings
than words of different topics. In this sense, the embedding layer captures the topic structure. We also
empirically show (Section 2.1.5 and Figure 2.1) that this phenomenon is robust to differences in loss function
and optimization method. See Section 2.1.3 for the formal theorem and Section 2.1.7.2 for the proof.

2.1.2.2 Topic structure is encoded in self-attention

In the second extreme, we study the behavior of the self-attention in a transformer trained on a topic
modeling distribution, without the aid of trained token embeddings — i.e. when we use hard-coded, one-hot
embeddings. The attention weight matrices WX, W®, and WV are initialized to near-zero matrices. To
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Figure 2.2: Convergence point of trained WV (with Ly-regularization) when freezing uniform attention
weights and one-hot word embedding. The four plots correspond to different combinations of loss function and
optimizer. (Left to right) cross-entropy with SGD, cross-entropy with Adam, squared loss with SGD, squared
loss with Adam, all using learning rate 0.01. The block-wise pattern verifies our theory in Section 2.1.4.2.
The 10 blocks correspond to the 10 topics in the data distribution. Results are qualitatively similar without
Ly-regularization, or if we train WX and W instead of freezing them (see Section 2.1.5.2).

make the analysis feasible, we break down the training process into two separate stages, and characterize the
optima in each stage. In the first stage, the attention is frozen to be uniform, and the matrix WV is trained.
In the second stage, the matrix WV is frozen to the optimal value from the first stage, and the optimal
attention weights is analyzed. Intuitively, such a two-stage approximation is reasonable, because in the
initial stages of training, the gradients for the value matrix are much larger than those for the key and query
matrices (see Section 2.1.6). While this is an approximation, this two-stage phenomenon can be observed
empirically for a variety of hyperparameter settings (see Section 2.1.4.1 and in particular Figure 2.4). We also
provide empirical evidence that the optima characterized in our analysis closely track the actual convergence
points of models.

In brief, the self-attention function is Attn(Z) := WV ZA(Z) in which A(Z) denotes the attention
weights, and WV is the value matrix weight. Intuitively, A(Z);; is the importance of the i-th word for
predicting the j-th word, and WV is aggregates the word embeddings in a sentence, weighted by the attention
weights A(Z). The formal definition of the model architecture is in Section 2.1.1.

Optimal WV in Stage 1 We characterize the optimal W in the initial stage of training: WV will learn
a block-wise structure (see Figure 2.2), in which each block corresponds to a topic:

Theorem (Optimal WV, informal). Suppose the training data follows a topic model data distribution, the
token embeddings are frozen to be one-hot vectors, and attention scores are frozen to be uniform. Then,
under mild Lo reqularization, the optimal WV for the masked language modeling objective has block-wise
structure, namely the (i,7)-th entry of WV is on average larger when the tokens i and j belong to the same
topic, and on average smaller when the tokens i and j belong to different topics.

For the formal theorem statement, see Section 2.1.4. The proof is deferred to Section 2.1.7.3. We also
empirically show (Section 2.1.5 and Figure 2.2) that this phenomenon is robust to differences in training loss
and optimization method.

Optimal attention weights in Stage 2 For the second stage of the training dynamics, we assume WV
is frozen to the optimal value in the first stage, and train the attention weights.

Theorem (Optimal attention weights, informal). Suppose a single layer transformer is trained on a topic
model data distribution, and WV is frozen to the block-wise first-stage optima. Then, the optimal attention
weight for the masked language modeling objective is such that on average: a convexr combination of same-
word attention and same-topic-different-words attention should be relatively large, compared to different-topic
attention.
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Figure 2.3: For a BERT model pre-trained on Wikipedia corpus, the cosine similarity of the word embeddings
encodes topical structures, i.e. it is larger if the two words belong to the same topic, and smaller if they
belong to different topics. This phenomenon is more pronounced for words that are very likely only under
a few topics. In this figure, the nine words fall into three topics: {frog, toad, lizard} are animals, {mozart,
beethoven, schubert} are musicians, and {algebra, arithmetic, calculus} are mathematical concepts.
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For the formal assumption and theorem statements, see Section 2.1.4. The proof is deferred to Sec-
tion 2.1.7.7.

We empirically show (in Section 2.1.5) that even when the all the self-attention weight matrices are
jointly trained (instead of trained with the two-stage process described), the behavior of attention weights
still follows the relations that the above theorem describes.

2.1.2.3 Empirical results

We provide empirical evidence that the main conclusions in our theoretical findings remain robust even under
settings that are more complex and realistic than our theoretical setup, and under variations of the training
algorithm and loss. For example, we also test on synthetic data using a Latent Dirichlet Allocation (LDA)
topic model (Blei et al., 2003) instead of our simplified topic modeling distribution; finally, we report results
for a model pre-trained on the Wikipedia textual corpus, and discuss the connections with our conclusions
derived in the synthetic setting. We describe detailed experimental setup and results in Section 2.1.5.
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Figure 2.4: Two-stage learning dynamics of a single-layer transformer trained on LDA data distribution.
All weight matrices are initialized to random matrices near zero, and simultaneously trained. The learning
dynamics naturally exhibits a two-stage phenomenon: in Stage 1 (steps 0-400), the norms of the key matrix
(WX top) and the query matrix (W?, middle) stay close to 0, while the norm of the value matrix (W,
bottom) increases significantly. In Stage 2 (steps 400-1000), the norms of WX and W start increasing
significantly, while the norm of WV stays relatively flat. Different curves in the figure correspond to different
settings of the hyperparameters as well as different runs in each setting. (See Section 2.1.6 for more details.)
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2.1.3 Topic Structure Can Be Encoded in Token Embeddings

The first result shows that, under the topic model data distribution, even if we freeze the self-attention to
be uniform, the embedding layer can encode the topic structure. Precisely:

Theorem 2.1.1 (Optimal token embedding). Suppose the data distribution follows the topic modeling as-
sumption in Section 2.1.1 and Assumption 2.1.1. Suppose we train a single layer transformer given by (2.6)
with WK =0, WQ = 0,WV =T and Vi,bfred = —%, under the masked language modeling
objective ((2.1)) with the squared loss ((2.3)). Then, there exist constants ug,--- ,ur, € R such that the
optimal word embedding weight W¥ and E = WE wWE satisfy:

1. The 0-th row of E satisfies:

(a) EOO - (pm(l_]bc_pr) a 1) " Yo
(b) vt € [T]v Zlet Ey = uov
2. The 0-th column of E satisfies Vi € {1,--- ,Tv}:

— 1 )
(a) EiO - - (m — 1) Uq

3. By (Vi,j €{1,---,Tv}) satisfy:
1

(@) X ictopictiy Bit = wiv + =555
(b) Vt € [T] such that topic(i) #t, > o, By = uwv

Remark 2.1.2. Point 3 is the important one among the list of conclusions. The way to read the theorem
is that, among the entries of an optimal E: for i and j corresponding to the indices of tokens of the same
topic, E;; is (on average) larger, meaning that the embeddings of same-topic tokens are more similar; for
i and j corresponding to different topics, E;; is (on average) smaller, meaning that the embeddings of
different-topic tokens are less similar. In particular, when the constants ug,--- ,ur, are all zero, then the
above larger-vs-smaller difference becomes a positive-vs-zero difference, which we roughly observe in practice.

Remark 2.1.3. Intuitively, the setting of the bias bP™% is used to “denoise” the masked sequence, i.e. to
subtract the probability caused by filling in random words in the masking process (described in Section 2.1.1).

The proof of this theorem is deferred to Section 2.1.7.2.
Proving comparable results under cross-entropy loss ((2.4)) is more challenging considering Remark 2.1.1.

However, we empirically show that, such blockwise pattern in E = W¥ TWE tends to exist in a trained
model under both the squared loss and the cross-entropy loss, and regardless of whether we (i) train all layers
or (ii) only train the embedding layer while freezing all other layers. Moreover, the loss achieved in case
(ii) is only slightly worse than in case (i). Finally, we also show (Figure 2.3) that on real data, words that
are unambiguous (e.g. “calculus”, “Mozart”) exhibit a similar pattern as Theorem 2.1.1 states: same-topic
words have more similar embeddings, and therefore larger embedding dot products, than different-topic
words. Quantitatively, if we only restrict ourselves to words that are unambigious (i.e. likely to be emitted
only under few topics), a similar phenomenon can be observed (see Table 2.4).

2.1.4 Topic Structure Can Be Encoded in Self-Attention

Whereas the previous section showed that the token embedding layer can in principle perform the heavy-
lifting in learning the topic-modeling distribution, we further show that self-attention also can encode the
topic structures, when we disallow training the embedding layer. That is, we freeze the token embeddings
to be one-hot.
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2.1.4.1 The two-stage optimization process of self-attention

While inspecting the training dynamics of this one-layer transformer on the topic modeling data distribution,
we observed a roughly two-stage process (illustrated by Figure 2.4): with certain initialization and learning
rate settings, in Stage 1, the key matrix (W) and the query matrix (W) stay close to 0, i.e. each position
pays a near-uniform attention to all positions in the document, while the norm of the value matrix (W)
increases significantly. In Stage 2, the norm of the the value matrix (W") already plateaus, and only after
that, do the key and query matrices (WX and W) start to move.

Thus, while reasoning about the training process of transformers in our data distribution, we take mo-
tivation from the above empirical observation of such two-stage process, and consider a corresponding sim-
plification: in Stage 1, the attention is frozen to be uniform, and only WV is trained; in Stage 2, WV is
frozen, while WX and W are trained. This simplification is a reasonable proxy for standard training, and
we furthermore validate that our theoretical characterizations are robust to standard training, both using
SGD and Adam. We provide more discussion on the two-stage optimization process in Section 2.1.6.

2.1.4.2 Optimal WV given uniform attention

The Stage 1 of optimization process is convex (but not strongly convex) in WV and we show that the set
of minima consist of exactly the set of WV that exhibits a block-wise pattern:

Theorem 2.1.2 (Optimal WV with mild Lo-regularization when freezing uniform attention). Suppose
the data distribution follows the topic modeling assumption in Section 2.1.1 and Assumption 2.1.1. Suppose
we train a single layer transformer given by (2.7) with WX =0, W@ = 0,bP™? = 0, under the La-reqularized
masked language modeling objective ((2.2)) with the squared loss ((2.3)). Then, lim_,o arg min Lg,e,( W) =
{WV*Y in which WV* € RITvEDX(TvH1) sqtisfies:

1. The 0-th row of WV*:
(a) Y5 €10, ,TU},WO‘g* =0
2. The 0-th column of WV*:
() Vi € {1,--- , T}, Wi = 2ozl

3. WY* (Vi,je{l,--- ,Tv}):

(a) VI ¢ topic(i), Wi = Wik, = — 425
(b) VZ € tOp'iC(i), Wz‘l/* = Ws‘gjine—topic = Wdzg‘-topic + %

in which the constants are:

— DPr
* & = g a=rrmrs € (0 1)
¢ 2= (17pcip7»)pm —1€(0,+00)
* &= =, € (1100)

Empirically, on our topic model data distribution, the loss achieved by freezing WX = W = 0 and
only training WV is only slightly greater than the loss achieved by training all of them jointly.

Intuitively, this block-wise WV shows that, while inferring about the words at the masked positions: the
model looks at unmasked positions in the document, each unmasked word only contributes to predicting
words of the same topic, each unmasked word does not contribute to predicting words of different topics,
and the model implicitly aggregates the topic distribution among the unmasked words, to infer the token
distribution in the original document prior to masking.
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The proof of this Theorem 2.1.2 is deferred to Section 2.1.7.3. Proving a comparable result under the
cross-entropy loss (2.4) is more challenging due to the same reasons outlined in Remark 2.1.1. However,
empirically such block-wise WV shows up for both the cross-entropy loss and the squared loss, as we show
in Section 2.1.5.

2.1.4.3 Optimal attention weights

In our analysis on the stage 2 optimization process, we freeze the WYV to be some representative optima
from stage 1 (Theorem 2.1.2), and characterize the optimal attention weights by comparing the following
three types of attention weights: among the same words at different positions, among different words of the
same topic, and among words of different topics.

We mainly consider the type of optimal WV characterized in Theorem 2.1.2: WV with uniform blocks
(see Figure 2.2). Empirically, the model often approximately converges to these type of pattern (Sec-
tion 2.1.5).

To formally reason about the behavior of average attention weights, we consider a simplified setting:

Assumption 2.1.2 (Atterltion pattern). Following the notation in (2.5), assume that for any masked doc-
ument w with embedding X,

C1, ’Lf 12)1 = ’LZ)]'
A(X)ij = { o, if Wi # b but topic(i;) = topic(i)
c3, if topic(w;) # topic(w;)
in which co = acz and ¢y = Pes.

We note that this family of attention weights is realizable, and by symmetricity (among different topics
and among the words in the same topic) and convexity (in A(X)), it is simple to prove that the attention
pattern outlined in Assumption 2.1.2 is among the optimal attention patterns.

We will characterize the setting of o and 5 that minimizes the loss, under the following assumptions:

Assumption 2.1.3. We consider these asymptotic settings:
o T — 00, i.e. the total number of topics grows to infinity.

e (Sparse documents): T — oco,7 = o(T), i.e. the number of topics in each document also grows to
infinity, but much smaller than the total number of topics. (This is a common parameter regime: we
typically think of each document as a sparse combination of topics.)

e (No sparsely supported topics): v > (ﬁ +1)2+1 (v is the number of tokens in each topic.
v > 10 suffices under Assumption 2.1.4. This is also a common regime, where we assume no topic consists
only of a small number of words.)

Assumption 2.1.4. In the training objective (Section 2.1.1), we consider the case p,, < %, pe = pr € (0, %)
4

Theorem 2.1.3 (Optimal attention weights). Suppose the data distribution follows the topic modeling as-
sumption in Section 2.1.1 and Assumption 2.1.1. Suppose we train a single layer transformer given by (2.7)
with bP% = 0 and WYV frozen to the optima in Theorem 2.1.2, under masked language modeling objective
((2.1)) with the squared loss ((2.3)), under Assumption 2.1.2, Assumption 2.1.3, and Assumption 2.1.4.

Then, the optimal («, B) satisfy
v—1

o+ %ﬂ S ()\1(7’ - 1),)\2T)

in which A\ == (17(17pcfgiﬁ’ﬁfgj;lim)pm) and Ay = 100(717(;;2?1’"‘ +1).

4This setting is consistent with the masking scheme proposed in Devlin et al. (2019).
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Remark 2.1.4. In particular, Theorem 2.1.3 implies that if we choose T, T such that the lower bound exceeds
1, we expect the attention between same-topic words to be on average larger than that between different-topic
words.

Remark 2.1.5. Note that when WV is block-diagonal with uniform blocks, it is impossible to meaningfully
bound o or B individually; instead, only their weighted average (%oz+%ﬂ) matters. In other words, different
(a0, B) will incur the same loss, as long as the above weighted average remains the same. Intuitively, this is
because such block-diagonal WV with uniform blocks sums up the attention on all words in each topic, and
make predictions solely based on the sums. The proof of Theorem 2.1.3 is deferred to Section 2.1.7.7.

Remark 2.1.6. When there is no Lo-reqularization, the first-stage optima of WV is not unique. We include
additional analysis for representative cases of WV in Section 2.1.7.8.

Remark 2.1.7. When T, 7 are finite, the loss expression turns out to be too complicated to characterize in
closed form (because all the o(1) terms need to be expanded). So we instead numerically compute the loss
landscape as a function of a and 8. See Section 2.1.5.5.

2.1.5 Experiments

We analyze properties of the training dynamics via extensive experimental analysis. We will describe both
the setup for synthetic (LDA-generated) data, and for Wikipedia data.

2.1.5.1 Results on synthetic LDA-generated data

Experimental setup In our experiments, we generate data following Section 2.1.1 with T"= 10,v = 10, N
uniformly randomly chosen from [100, 150], except that Step 1 is changed to sampling the topic distribution
according to the Dirichlet distribution (consistent with LDA, Blei et al., 2003) with o = 0.1. Most sentences
contain 2 to 4 topics. Our training objective follows Section 2.1.1 with p,, = 0.15,p. = 0.1,p, = 0.1
following Devlin et al. (2019). We use the model architecture following Section 2.1.1 but add back the bias
terms b%, 6@, bY, following standard implementation in Wolf et al. (2020).

Trained token embeddings In Figure 2.1, we show that for a model in which all components are trained,
the learned embedding weight W ¥ is such that W% Twe displays a block-wise pattern. In particular, a
diagonal pattern is a special case. These results show that our theory in Section 2.1.3 characterizes the
optima of embedding layer which can be found by using either cross-entropy or squared losses, either SGD
or Adam optimizers, and even when the other layers in the model are trained instead of frozen.

Learned value matrix WV We show that when the word embeddings are frozen to one-hot and the
attention weights are uniform (by setting W = 0, W@ = 0), the trained W" has a block-wise pattern,
corresponding to the topical structure (see Figure 2.2).

We show (in Figure 2.6 in Section 2.1.5.2) that even when the attention weights WX W@ are jointly
trained with WV, the model would still approximately converge to the type of block-wise WV described in
our analyses in Section 2.1.4.2.

Convergence point of trained attention weights We show that, our conclusion in Theorem 2.1.3 holds
not just when WV is frozen to a block-wise pattern, but also when it is trained and naturally converges to
such pattern. And we show (in Table 2.1 in Section 2.1.5.3) that on average, each word pays more attention
to words of the same topic than to words of different topics.
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2.1.5.2 Additional results on learned value matrix WV

In Theorem 2.1.2 and Figure 2.2 we have shown that when freezing uniform attention weights and one-
hot word embedding, under Ls-regularization, training a single layer transformer on our synthetic topic
modeling distribution (Section 2.1.1) would make its WV converge to a block-wise pattern that encodes the
topic structure.

In the following Figure 2.5, we additionally show empirical results without Lo-regularization, matching
our theory in Theorem 2.1.4.

Figure 2.5: Convergence point of trained WV (no Lo-regularization) when freezing uniform attention weights
and one-hot word embedding. The four plots correspond to different combinations of loss function and
optimizer. (Left to right) cross-entropy with SGD, cross-entropy with Adam, squared loss with SGD, squared
loss with Adam, all using learning rate 0.01. The block-wise pattern verifies our theory in Section 2.1.4.2.
The 10 blocks correspond to the 10 topics in the data distribution. In particular, in the third figure, the
blocks are very weak and not easily visible, but we checked that the mean of the 1000 entries corresponding
to the block positions is 0.00552563, which is over 10x the magnitude of the mean of a random subset of
1000 non-block entries (mean -0.00015675332, stdev 0.00060286524).

Complementing our experimental results in Section 2.1.5, Figure 2.6 shows that even when the attention
weights WX W are jointly trained with WV the model would still approximately converge to the type
of block-wise WV described in our analyses in Section 2.1.4.2.

Figure 2.6: Convergence point of trained W" when freezing one-hot word embedding but training attention
weights. (Left to right) cross-entropy with SGD, cross-entropy with Adam, squared loss with SGD, squared
loss with Adam, all using learning rate 0.01. The block-wise pattern shows that our analysis in Section 2.1.4.2
closely approximates the empirical training dynamics when WX, W@ WV are trained jointly. The 10 blocks
correspond to the 10 topics in the data distribution. In particular, in the third figure, the blocks are very
weak and not easily visible, but we checked that the mean of the 1000 entries corresponding to the block
positions is 0.006545205, which is over 10x the magnitude of the mean of a random subset of 1000 non-block
entries (mean -0.0006503917, stdev 0.0006370574).
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2.1.5.3 Additional results on learned attention weights

Complementing our experimental results in Section 2.1.5, Table 2.1 shows that when the trained WV is
closer to uniform within each block, i.e. on average, each word pays more attention to different words of
the same topic than to words of different topics.

Optimizer and | Avg Same-Word Avg Same-Topic- Avg Different-Topic
Learning Rate Attention -Different-Word Attention Attention
Adam 0.003 0.00759 + 0.00171 0.0108 &+ 0.000657 0.00689 + 0.000160
Adam 0.01 0.00811 £+ 0.000705 0.010 £ 0.000392 0.00707 £ 0.000178
Adam 0.03 0.00453 £ 0.000346 0.0116 4 0.000460 0.00665 = 0.000200
SGD 0.01 0.0105 0.0106 0.00673
SGD 0.03 0.0140 +0.00158 0.0103 4+ 0.000357 0.00641 + 0.0000239

Table 2.1: Average attention weights when the model (with one-hot word embeddings) is trained under the
cross-entropy loss and WV converges to a block-wise pattern with closer to uniform blocks. We report mean
=+ std. deviation over 3 runs. The row “SGD 0.01” only contains 1 run, and the row “SGD 0.003” is removed,
because these models had much higher final train and dev losses than others. For these failed runs, all three
types of attention weights have similar averages, a sign that WX and W did not learn meaningful topical
structures. Note that under most settings, same-word attention is larger than same-topic-different-word
attention, which is larger than different-topic attention, verifying our conclusion in Theorem 2.1.3. The
models trained using “Adam 0.03” has larger same-topic-different-word attention, which possibly made it
unnecessary to rely on same-word attention to achieve a low loss, though our theory suggests that increasing
same-word attention could further reduce the loss.

On the other hand, when the trained WV is closer to a diagonal pattern, the above ordering is
partially reversed, Table 2.2 shows that on average, each word pays the most attention to the same word in
the document, followed by words of different topics, and the least attention to different words of the same
topic.

Learning Rate | Avg Same-Word Avg Same-Topic- Avg Different-Topic
Attention -Different-Word Attention Attention
0.003 0.0916 £ 0.000901 0.00185 4+ 0.000170 0.00256 4+ 0.0000332
0.01 0.0918 + 0.00244 0.00182 4+ 0.000474 0.00256 4+ 0.000109

Table 2.2: Average attention weights when the model is trained under the cross-entropy loss with the Adam
optimizer and WV converges to a diagonal pattern. We report mean + std. deviation over 7 runs, selected
out of 10, by removing the runs in which the diagonal pattern in WV is not visible or weak. Note that
on average, same-word attention is larger than different-topic attention, which is larger than same-topic-
different-word attention, verifying our conclusion in Theorem 2.1.5.
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Model Ambiguity Avg embedding Avg embedding Avg attn weight
Threshold Cosine Similarity Dot Product (Same-topic
(Same-topic/Diff-topic) (Same-topic/Diff-topic) /Diff-topic)
Bert 0.0005 1.21 1.19 1.32
0.001 1.13 1.15 1.28
0.002 1.11 1.13 1.22
Albert 0.0005 5.64 6.29 1.33
0.001 4.18 3.74 1.28
0.002 3.24 2.93 1.22
Bart 0.0005 2.80 2.67 1.35
0.001 1.95 1.92 1.31
0.002 1.63 1.62 1.23
Electra 0.0005 5.98 5.37 2.14
0.001 7.70 7.35 2.09
0.002 7.46 8.08 1.95
Roberta 0.0005 6.44 6.81 1.40
0.001 5.73 6.31 1.31
0.002 5.24 5.30 1.22
Bert 0.0005 1.00080 1.00063 0.99943
(randomly 0.001 0.99974 1.00036 0.99996
initialized) 0.002 1.00016 1.00027 1.00007

Table 2.3: For models pretained on Wikipedia dataset, their token embeddings and attention weights encode
topic structure. The different columns are: (1) The “ambiguity threshold”, i.e. the number of words per
topic, divided by the vocabulary size; each word is only assigned one topic. (2) The average embedding
cosine similarity between different words of the same topic, divided by that between words of different topics.
(3) The average embedding dot product between different words of the same topic, divided by that between
words of different topics. (4) The average attention weight between different words of the same topic, divided
by that between words of different topics. (The attention weights are normalized for debiasing, see discussion
below for more details). Different rows represent different evaluation settings, controlled by “ambiguity
threshold”. Note that the avg same-topic embedding similarity and attention weight are consistently greater
than the avg diff-topic counterparts, verifying our conclusions in Theorem 2.1.1 and Theorem 2.1.3.

2.1.5.4 Results on natural language data

For a set of pre-trained transformer-based models (and their corresponding tokenizers) downloaded from
Huggingface (Wolf et al., 2020), we compare the embedding similarity and attention weights between same-
topic tokens and different-topic tokens. The topics are determined by fitting an LDA model with 100 topics
on a sample of Wikipedia corpus (WikimediaFoundation, 2023) tokenized by the above tokenizers. We filter
stop words. For each topic, we only keep a fraction of tokens that LDA assigns the highest likelihood in
this topic. Consistent with our theoretical setting, we restrict to keeping only one topic for each word.
In Table 2.3, we provide the results after such pre-processing. We provide additional details about the
experimental setup and additional results (including when the last restriction of “one topic per word” is
removed) in Table 2.4.

In particular, for fair comparison, we should focus on the embedding similarity and attention weights
between different words of the same topic and different words of different topics. (This is because those
metrics are less meaningful for a pair of two same words, since their embeddings dot product is expected to
be larger, which further biases the attention score comparisons. )
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Ambiguity filter We also note that, for each word, an LDA model assigns some probability distribution
of its topics. To determine whether two words are of the same topic, it is more meaningful if they share a
topic in which both words have high likelihood. (By contrast, if two words each has some rarely-used topic
that happens to overlap, we intuitively think of them as having different topics.)

To formalize such intuition, we filter out stop tokens, and other tokens that are not central to any topic
(determined by the LDA). That is, for each topic ¢, LDA assigns to it a likelihood p; for each word w; in the
vocabulary (of size n). We sort these (word, likelihood) pairs by decreasing likelihood:

(wlvpl)a ) (wnvpn)

then for a pre-defined threshold parameter 8 € (0,1) controlling the proportion of words to be assigned to
each topic, we only consider the topic ¢ to contain the following words

{w; 11 < On}

Debiasing average attention weight Moreover, we note that sentence length may cause a bias in
attention weights calculation: intuitively, the average attention weight is the inverse of sentence length, but
longer sentences usually contain more topics (and hence a larger proportion of different-topic word pairs).
Thus, we expect that the average attention weight between different-topic word pairs are smaller than that
between same-topic word pairs, even for a transformer with random parameters. (Empirically this bias
indeed exists robustly, both on synthetic data and on Wikipedia data.) Therefore, we debias the effect of
sentence length on attention weights: for each sentence, while computing the pairwise attention weights
among its words, we “normalize the sentence length to 100”, that is, we multiply the raw attention weights
by sentence length, and then divide the result by 100. In this way, the average attention weight in each
sentence is always ﬁ, regardless of the proportion of same-topic and different-topic word pairs. Indeed,
as Table 2.3 and Table 2.4 show, for a randomly initialized BERT model, after our debiasing, the average
same-topic and different-topic attention weights are roughly equal.

Results For a set of pre-trained transformer-based models downloaded from Huggingface (Wolf et al.,
2020), we compare the embedding similarity and attention weights between same-topic tokens and different-
topic tokens. The topics are determined by fitting an LDA model with 100 topics on a sample of tokenized
Wikipedia corpus. We apply the above-mentioned ambiguity filter and debiasing.

e When we further restrict to keeping only one topic for each word (to be consistent with the setting in
our theoretical analysis): see Table 2.3.

e Without the last restriction above: see the following Table 2.4.
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Model Ambiguity Avg embedding Avg embedding Avg attn weight
Threshold Cosine Similarity Dot Product (Same-topic
(Same-topic/Diff-topic) (Same-topic/Diff-topic) /Diff-topic)
Bert 0.0005 1.14 1.04 1.23
0.001 0.97 1.05 1.17
0.002 0.99 0.93 1.13
Albert 0.0005 4.15 3.06 1.23
0.001 3.09 3.04 1.17
0.002 1.54 1.44 1.11
Bart 0.0005 2.51 1.76 1.27
0.001 1.63 1.12 1.20
0.002 1.06 0.85 1.11
Electra 0.0005 5.28 3.99 1.70
0.001 5.56 5.57 1.58
0.002 6.39 5.61 1.48
Roberta 0.0005 4.39 5.01 1.19
0.001 5.20 4.25 1.15
0.002 4.71 4.15 1.12
Bert 0.0005 0.99814 0.99957 1.00009
(randomly 0.001 0.99820 1.00167 1.00013
initialized) 0.002 0.99964 0.99928 0.99978

Table 2.4: For models pretained on Wikipedia dataset, their token embeddings and attention weights encode
topic structure. The different columns are: (1) The “ambiguity threshold”, i.e. the number of words per
topic, divided by the vocabulary size; each word is only assigned one or more topic(s) (2) The average
embedding cosine similarity between different words of the same topic, divided by that between words of
different topics. (3) The average embedding dot product between different words of the same topic, divided
by that between words of different topics. (4) The average attention weight between different words of
the same topic, divided by that between words of different topics. (The attention weights are normalized
for debiasing). Different rows represent different evaluation settings, controlled by “ambiguity threshold”.
Note that the avg same-topic embedding similarity and attention weight are mostly greater than the avg
diff-topic counterparts (with some exceptions). Allowing multiple topics per word is different from our
theoretical setup, so our conclusions in Theorem 2.1.1 and Theorem 2.1.3 do not cover this setting, though
we conjecture that some variants of these theoretical results can be proven using similar approaches to ours.
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2.1.5.5 Loss landscape with respect to attention weights in the non-asymptotic setting

When T, 7 are finite, the loss expression turns out to be too complicated to characterize in closed form
(because all the o(1) terms need to be expanded). So we instead numerically compute the loss landscape as
a function of o and S.

We set T' = 100 following our experimental setup on Wikipedia dataset (in Section 2.1.5), and v = 300 (so
total vocabulary size Twv = 30000) following the pre-trained BERT tokenizer in Huggingface implementation
Wolf et al. (2020). We will vary 7 € {20, 40, 60, 80}.

Diagonal WV  First, when WV is fixed to a diagonal structure (Definition 2.1.2), Theorem 2.1.5 predicts
that the loss is lowest when § is within an interval (boundaries controlled by 7 and T'), and « is less than
a constant multiple of 3. Both constraints are visible in the non-asymptotic setting, as we show in the
following:

e
——
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Figure 2.7: Landscape of squared loss under diagonal WV (Definition 2.1.2), T = 100,v = 300. (left-to-
right) 7 = 20, 7 = 40, 7 = 60, 7 = 80. In each plot, we perform a grid search over o, 3 € [107%,107] (both
axes use log-scale). Darker color represents lower loss. Across a wide range of 7 (compared to T'), the loss is
lowest when £ is within an interval (lower bound growing with 7), and the optimal « is less than a constant
multiple of 3.

WYV with uniform blocks On the other hand, when WV is fixed to a block-wise structure with uniform
blocks (i.e. optima in Theorem 2.1.2), Theorem 2.1.3 predicts that the loss is lowest when a convex combi-
nation of o and § is within an interval (boundaries controlled by 7 and T'). As we show in the following, a
variant of this constraint visibly holds in the non-asymptotic setting.

Figure 2.8: Landscape of squared loss for block-wise WV with uniform blocks (i.e. optima in Theorem 2.1.2),
T = 100,v = 300. (left-to-right) 7 = 20, 7 = 40, 7 = 60, 7 = 80. In each plot, we perform a grid search
over a, 3 € [1074,107] (both axes use log-scale). Darker color represents lower loss. Across a wide range of
7 (compared to T'), the loss is lowest when (a, 8) is in some corner-shaped region (both o and g are within
some intervals whose lower bounds grow with 7).
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2.1.6 Discussion
2.1.6.1 The two-stage optimization process

This two-stage optimization process (Section 2.1.4.1 and Figure 2.4) can be thought of as one iteration of
the alternating optimization procedure. That is, we first train WV while freezing (WX W), and then
freeze WV while training (WX, WQ), and repeat this process.

In practice, WX W WV in transformers are typically trained jointly instead of alternatingly. However,
our empirical results show that, the conclusions drawn from the two-stage optimization analysis carry over
even when they are trained jointly. Moreover, we don’t find any qualitative aspects of normal training that
are not captured by this two-stage approximation.

Intuitively, such two-stage phenomena occurs because if W5, W? WV are initialized to random matrices
near zero, and simultaneously trained, then in the initial steps, Vy x L contains the term W@ (see (2.5)),
which is close to 0. By contrast, Vv L contains the softmax-normalized attention weights A(X) (see (2.7)).
Comparing these two, we shall see that Vv L tends to be of larger in magnitude than Vy,x L, because
each column of W sums up to approximately 0, whereas each column of A(X ) sums up to exactly 1.

Therefore, in the initial steps (i.e. Stage 1), WV intuitively grows much faster than W For the same
reason (note the symmetry between WX and W<, see (2.5)), WV intuitively grows much faster than W<,
too.

In Stage 2, it is less intuitively clear why |[WV||r tends to plateau. Note that empirically, even when
WV || plateaus, the WV matrix itself still fluctuates with non-vanishing step-by-step changes. (That is, in
each step, WV “locally rotates” around the origin with an approximately constant norm.) Hence we refer to
our Stage 2 analysis (which freezes WV itself) as a simplification. However, the final empirical convergence
point of WV matches our theoretical analysis.

We show in Figure 2.9 that an approximate version of this multi-stage phenomenon can be observed on
multi-layer transformers trained on Wikipedia as well.

Finally, this two-stage phenomenon is sensitive to hyperparameters like initialization and learning rate.
In Figure 2.4, the The training process is not usually visibly two-stage using the common default hyperpa-
rameters. We leave it as an interesting future work to theoretically analyze the training dynamics when the
two-stage phenomenon is not present.
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Figure 2.9: Two-stage learning dynamics of a 4-layer, 4-head-per-layer transformer trained on Wikipedia
data. All weight matrices (key WX, query W, value WV in each layer) are initialized to random matrices
near zero, and simultaneously trained. Each column corresponds to one layer. The top 3 rows plot the
trajectories of the Frobenius norms of WX, W®, and WV (weights from all heads in the same layer are
concatenated together) after each gradient step. The bottom row measures the rotation of WV, i.e. the
cosine distance between WV in step ¢t and WV in step (¢ — 10). Cosine distance is defined as 1;& € [0,1],
in which cs is the classic cosine similarity.

The initial 400 steps of the learning dynamics naturally exhibit an approximately two-stage phenomenon: in
Stage 1 (roughly steps 0-100), for all 4 layers, the norms of W and W stay close to 0, while the norm of
WV increases significantly and the orientation of WV changes rapidly. In Stage 2 (roughly steps 100-400),
the norms of W’s and W®’s start increasing significantly, much later than WV matrices do. Different
curves in the figure correspond to different settings of the hyperparameters as well as different runs in each
setting.
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2.1.6.2 Do topic-wise behaviors perfectly correlate with co-occurrence counts?

Additionally, we note that fitting a topic model is closely related to word co-occurrence statistics, which
raises the following question: should those empirical phenomenon (i.e. higher same-topic attention and more
similar same-topic embeddings, shown in Table 2.4) be more fundamentally attributed to larger co-occurrence
counts?

In the following, we also compare them with some preliminary empirical results on the behavior of
embedding and attention, from both topic modeling and co-occurrence perspectives. Specifically, we compare
the average attention weights and average embedding dot products, between same-topic word pairs and the
N pairs of words that co-occur the most frequently in a sample of the Wikipedia corpus. The cutoff N is
determined so that the number of "top co-occurring word pairs” is the same as the number of word pairs in
each topic (controlled by the ambiguity threshold). The results are summarized in Table 2.5.

Based on those results, we conjecture that the topic-wise behavior of token embeddings and attention
weights cannot be fully explained by simple co-occurrence counts.

Reasoning about their connections more formally would require analyzing some data distributions that
better decouple these factors. We think that would be an interesting direction of future work.

# Word Pairs | Avg Attn Weight Avg Attn Weight Avg Embedding Avg Embedding
(Same-Topic) (Top Co-occur.) Cosine Similarity Cosine Similarity
(Same-Topic) (Top Co-occur.)

105 0.00659 0.00751 0.468 0.316

435 0.00621 0.00695 0.461 0.311

1711 0.00597 0.00677 0.425 0.323

Table 2.5: For a BERT model pretained on Wikipedia dataset, the topic-wise behavior of its token embed-
dings and attention weights (shown in Table 2.3) cannot be fully explained by co-occurrence. The different
columuns are: (1) The number of pairs of tokens that have the highest co-occurrence counts (with stop tokens
removed). The cutoffs are selected so that each row contains the same number of words pairs as one topic,
corresponding to the rows in Table 2.3; (2) The average attention weights between same-topic words; (3)
The average attention weights between tokens that co-occur the most; (4) The average embedding cosine
similarity between different words of the same topic. (5) The average embedding cosine similarity between
between tokens that co-occur the most. Note that for all “# word pairs” cutoffs considered, same-topic
tokens have smaller average attention weight, but larger average embedding cosine similarity.

34



2.1.7 Proofs

2.1.7.1 Lemma 2.1.1 on the optimal linear transform when freezing uniform attention

Under our setting, we first prove the following useful Lemma 2.1.1. Intuitively, it states that, when freezing
uniform attention, the output of self-attention weights essentially counts the unmasked tokens in the docu-
ment (as a result of the masking process described in Section 2.1.1). Given those counts, the best way to
predict a token at the masked positions in the original document (i.e. prior to the masking process) is to:

1. First, aggregate the counts of the unmasked words within each topic, to infer the topic distribution in
the observed document. In this, we further have the restriction that:
e Each unmasked word only contributes to predicting words of the same topic
e Each unmasked word does not contribute to predicting words of different topics
e Never predict the mask token ([MASK]), because the original document does not contain any

[MASK]

2. Second, we “denoise” the topic distribution, i.e. we subtract the probability caused by filling in random
words in the masking process (described in Section 2.1.1).

In line with our single layer transformer architecture (Section 2.1.1, (2.7)), we consider a special case in

which the attention is uniform, ie. Vi,j € {1,--- N}, A(X);; = %, denoted by A(X) = [#], y- (This
can be achieved by setting WX =0, W@ = 0.)
~ _T1
f(X)=WX {] (2.8)
NxN
which applies self-attention ((2.5)) on the one-hot representation of the masked document X € {0,1}(Tv+DxN,

Lemma 2.1.1 (optimal linear transform when freezing uniform attention). Consider the simplified trans-
former architecture given by (2.8) with , as well as the masked language modeling objective ((2.1)) with
squared loss ((2.3)). Then the set of minimizers argmin L(W) consists of all W € RTv+HUX(TvH) ypqt
satisfy: there exist constants ug, -+ ,ur, € R such that

1. The 0-th row of W' :

_ 1
(a) Woo = — (pm(l_pc_pr) - 1) “ U
(b) Vit € [TLZlet Wo = ugv
2. The 0-th column of W :

(a) Vi e {1,-" ,TU},Wio =

Dr 1 .
- (1_pc_pr)(1_(1_pc)Pm)TU - ((1_pc_17r)17m - 1) Ui
3. Wi]‘ NZ,] S {1, cee ,TU}).‘

() ictopsctiy Wit = =gy + WiV

(b) Vt € [T] such that topic(i) #t, >, Wi = uv
Remark 2.1.8. At the first glance, it might seem that the objective has a unique optima because it involves
a squared loss, which is strongly convex. However, such uniqueness is undermined by the uniform attention
condition: W is multiplied with a rank-1 matriz A(X) = [%]NxN, This A(X) will appear as a matriz
multiplier in the Hessian of the objective with respect to W, and so the Hessian is of rank 1, and therefore
cannot have a positive minimum eigenvalue, implying that the objective is in fact not strongly convex.

In fact, this optimization objective becomes strongly convexr with an Lo reqularization for some A > 0.

arg min LMLM(WV) + )\||WVHF
WV
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Proof. For document w and the corresponding (masked) one-hot embedding X :

{XA(X)}

ij

N
=~ Z (i.e. independent of j)
N
=~ Z .—1 (since X is one-hot)

( ) ifi=0

Thus, the model prediction W X A(X) satisfies

(WXAX))i; = Waopun (1 = pe = p) + Y- Wa (Pu(D1 = (1= po)pa) + P20 )

v
=1
Tv p p
= zOPm(lfpcfpr) (17 (17]90 pm ZWZZP - Zmz
=1
= 20pm(]- — Pc — p'r) + (]— - (1 - pc)pm) : Z WZl‘P Z WZIP + pmpr Z W’Ll
l€topic(i) létoplc( )

(2.9)

and the last step follows since VI € topic(i), Py (l) = Py, (%) under our setting in Section 2.1.1.
Recall that the loss is

LW) = ]EX~DXEM‘M| D IWXAX)),; — X3
JjEM

We will show that the average taken over j € M is the same as the average taken over all positions
J € [N], by Assumption 2.1.1 and because M is uniformly randomly sampled from [/N]. Moreover, note that
AX) = (%] NN SO (WX A(X)).; is independent of j. The above observations imply that the loss can be
simplified to
1 & o
LW) = Expx - D [(WXAK) — X3
j=1

and so L(W) is minimized when VX,
. 1 X
(WXAX), =52 X

which requires Vi € {0,--- ,Tv + 1},

(WXA(X))o; =0

o (2.10)
(WXA(X))i; = Pu(i), Vie{l,- Tv}
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From (2.9) and (2.10) we get:

Tv Tv
0= Woopm (1l = pe — pr) + (1= (1 = pe)pm) - > WarPu(l) + ngfr W
=1 =1

Tv
Pw(Z) = Wiopm(l — Pe —pr) + (1 — (1 — pc)pm) . Z VVZIP Z VV”P + p;n;zr . Z Wi
lE€topic(z) l¢topic(z) =
(2.11)

Note that under the topic modeling distribution in Section 2.1.1, for any topic t € [T,
Pu(t—1Dv+1)=Pu((t—1v+2) =" Py,(tv)
Hence we simplify (2.11) by considering the proportions of the “representative” tokens for each topic:
{Pw(tv) : t € [T}

We obtain: for all sets of {Py(i) : ¢ € [Tw]} satisfying our distribution in Section 2.1.1

0= Woopm (1l = pe — pr) + (1 = (1 = pe)pm) ZZ Wo Py (tv) pmpr Z Z Wo (2.12)

t=1 let t=1 let

and Vi € {1,--- ,Tv}

Tv

Poy(i) = Wigpm (1=pe—pr)+(1 = (1 = pe)pm)- ( Y WuPu(i)+ > Y WiyPy(tv )ﬁ;”ﬁ’“.z Wi
letopic(i) t;ﬁtoplc( ) let =1

(2.13)

Claim 2.1.1. Vi € {1, ,Tv},Ju; € R such that Vt # topic(i), Y ,c, Wu = wv. When i = 0,3up € R
such that vt € [T, ., Wo[ = ugu.

Proof. Vi € {1,--- ,Tv},Ju; € R, suppose towards contradiction that J¢1,t2 # topic(i) such that Zlet W, >

EletZ - We Wlll show that (2.13) cannot hold for all sets of { Py (i) : ¢ € [Tw]} satisfying our distribution

in Section 2.1.1.
Specifically, fix Py, (i) =

-+ and consider the following settings of {Py,(j) : j ¢ topic(i)}:
) =

e P,(j) = 5 if topic(y

» t; and 0 otherwise. Then (2.13) becomes

%_ 50Pm (1 — pe — pr) + (1—(1—pcpm-( Z sz +ZW11 > pmpr ZWzl

l€topic(i) lety

e Py(j) = 5 if topic(j) = t2 and 0 otherwise. Then (2.13) becomes

%7 50Pm (1 — pe — D) + (1(1pppm-( Z Wu +ZW11 > pmpr ZWzl

lE€topic(7) lets

Clearly the above two equations cannot both hold, because > _;,, Wi > >, W,
Hence we proved by contradiction that Vtq,ts # topic(i), Zletl it = D yer, Wi Likewise, when i = 0,
th,tgm[ ] Zletl Wy = Zletg Wo.
O
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By Claim 2.1.1, (2.12) becomes

pmpr
0= Wyopm(l —pe —pr) + (1 = (1 = pe)pm) ZuOUP tv) Zuov

t=1
= Woopm (1 —pe —pr) + (1 = (1 = pe)pm) - uo + % - Tugv

= Woopm (L —pe —pr) + (1 = (1 = pe)pm) - Uo + PmPrio
= VVOOpm(1 — Pe — pr) + (1 - (1 — Pec — pr)pm) + U

Therefore a-a o) )
— 1 = Pc = Pr)Pm) - Uo
Woo = — =—< —1>'U0
Pm(l = pe —pr) Pm(l = pe — pr)
By Claim 2.1.1, (2.13) becomes
Puy(i) = Wigpm(1=pe —=pr) + (1= (L=pe)pm) - | Y WirPul( > wivPy(t)
l€topic(i) t;étopic(i)

pmpr . Z W’Ll + - 1)uzv)

l€topic(i)

- zOpm(]- — Pc — pr) + (1 - (1 pc pm : < Z WZZP + uz(]- - va@)))
l€topic(7)

pmpr . Z W’Ll + —_ 1)uzv)

l€topic(i)
= (1 - ( pc pm Z Wzl ( ) + WzOpm( — Pe _pr) + (1 - (1 - pc)pm) Uq
le€topic(t)
pmpr . Z Wzl + — 1)Ui'U)
l€topic(7)

Since this has to hold for all Py (i) € [0, 1], the coefficients must match, i.e.

(1_(1_pc pm Z W'Ll_uz =1

letopic(i)
Wiopm (1 —pe —pr) + (1 = (1 — pe)pm) ui + pmpr : Z Wi+ (T = Duv) =0
l€topic(z)
By (2.14),
1
Wi=uwv+ ——-—
Z 1= (1=pc)pm

l€topic(i)
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Plugging into (2.15),
(1= (1= pe)pm) wi + B - (w0 + ==, + (T = Duiv)
pm<]— — Pc — pr)
(== po)pm) i+ Pope - (i, + Tuiv)
pm(l — Pc — pr)
(1= (1 = pe)pm) ui + W + PmPru;
pm(l — Pc — pr)
= Dr (1_(1_p0_pr)pm)u

Wi = —

(1 =pe = pr)vT(1 = (1 = pc)pm) Pm(1—pec —pr)

%

_ Pr _ 1 1w
B (1 — Pc — pr)(l - (]- 7pc)pm)T'U <pm(1 — Pec 7pr) 1) ‘

2.1.7.2 Proof of Theorem 2.1.1: Optimal Token Embedding

Theorem (optimal token embedding, Theorem 2.1.1 restated). Consider training a transformer given by
(2.6) with WK =0,W®R =0,WV =1 and Vi € {1,--- ,Tv}, b’ = — oSy on data coming from
the topic model described in Section 2.1.1, with the masked language modeling objective ((2.1)) with squared
loss ((2.3)).

Then, the optimal word embeddings W are such that E == W Twe satisfies: there exist constants
Ug, -+, UTy € R such that

1. The 0-th row of E:

— 1
(@) Boo = — (i — 1) -0
(b) Vt € [TLZlet Eqy = ugv
2. The 0-th column of E:
. _ 1 )
(a/) Vi S {1, ,T’U},EZ‘O = — (m — 1) Ujg
3. Eij (VZ,] € {17~-~ ,T’U}).‘

() Yictopscti) Bit = Tapypr + wiv
(b) Vt € [T] such that topic(i) #t, > ,c, By = uv

Proof. Under this setting, the model output is
F(X)=WETWEXAWPEX) + ppred
— EX%leN + ppred (2.16)
= E/X%vav

in which 1 refers to the all-one matrix, and E’ € R(Tv+)x(Tv+1) i5 defined such that

El _ EU —_ (1—p,,~—pc)(lzir(l—pc)pm)T’U’ lf Z E {1’ “e 7711)},.7. = O
Y E;;, otherwise
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and the last step is because by (2.17),

and Vi € {1,--- ,Tv},

% 1 Dr
= (EX=1 — “Pm(l —pe — pr
( N NXN)@‘ (1—pr—pc)(1—(1—pc)pm)TU P P r)
-1 PmPr
=|EX—=1 —
( N N”L (1= (T = pe)pm) T
-1
= (EX]-NXN> +b?r6d
N i

Let E’* denote any matrix in

. 1 ~ 1
argEI/mnEXNDXEMM Z ||(EIXN1N><N>:j — XJHS

jeEM
then by Lemma 2.1.1, there exist constants ug, -+ ,ur, € R such that
1. The 0-th row of E’*:
() By =~ (G — 1) -0
(b) Vt € [T],3 ¢, Eg = uov
2. The 0-th column of E’*:
. . Ik __ Pr _ 1 _ .
(a) Vie{l,- T} Bl = —qop =i e a=pmm)To <<1—pc—p,.)pm 1) Ui

3. Ejf (Vi,j €{l,---,Tv}):
(a) Yicropictiy Bl = Toampop + wiv
(b) Vt € [T] such that topic(i) #t, Y ,c, Eif = wv

Therefore, by (2.16), let E* denote any matrix in

. 1 - 1 red
arg;unEXNDxEMMj;/[H(EXNLVXN)U+bp —X:j“%

then there exist constants ug, - ,ur, € R such that
1. The 0-th row of E*:
*x 1
(a) EOO - (Pm(l—Pc—Pr) o 1) ’ uO
(b) Vt € [T],> e, Eg = uov
2. The 0-th column of E*:

(a) \vlle{:l, ,TU},E;}):—<(1_+_1)U¢

—Pr)Pm
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3. Ef (Vi,je{l,--,Tv}):

(a) Zletopic(i) Ez*l = m + uv
(b) Vt € [T] such that topic(i) #t, >, Ej; = uv

Finally, note that a subset of this family of optima is realizable, in the sense that there exists such E*

and ug, - -+, ur, € R s.t. there exists WE e RIx(Tv+l) gt B* = WE WE. The simplest example is
UQ, * -+, UTw =0
d=Tv+1
1
EFr=———1
1- (1 _pc>pm
1
wWE = I
1- (1 - pc)pm

2.1.7.3 Optimal WV when freezing uniform attention without regularization

Theorem 2.1.4 (optimal WV when freezing uniform attention). On the topic modeling data distribution
described in Section 2.1.1, with the topic relation defined in Definition 2.1.1, under Assumption 2.1.1, with a
single layer transformer given by (2.7) whose WX =0, W® = 0,bP™*? = 0, under masked language modeling
objective ((2.1)) with the squared loss ((2.3)), argmin L(W') consists of all WV € RIVFUXTvH1) ¢pq¢
satisfy: there exist constants ug, -+ ,ur, € R such that

1. The O-th row of WV :
() Wi =~ (o7 — 1) -0
(b) Vt € [T],> e, Wy, = uov

2. The 0-th column of WV :

(a) Vi€ {1, -, Tv}, Wy = —

Pr _ 1 _ .
(1=pe—pr)(1—(1—pc)pm)Tv ((Ppcfpr)pm 1)”’

3. WY (vi,je{l,--- ,Tv}):

vV _ 1
(a’) Zle topic(i) Wil T 1-(1-p)pm T uiv

(b) Vt € [T] such that topic(i) #t, Y 1c, Wi = uiv

K2

Proof. Note that this is exactly the statement of Lemma 2.1.1 (proved in Section 2.1.7.1) in the case of
W =wV. O
2.1.7.4 Proof of Theorem 2.1.2: case when adding L, regularization

Theorem (optimal WV with mild Ly-regularization when freezing uniform attention, restated). On the
topic modeling data distribution described in Section 2.1.1, with the topic relation defined in Definition 2.1.1,
under Assumption 2.1.1, with a single layer transformer given by (2.7) whose WX =0, W = 0, bP"? = 0,
under the Lo-reqularized masked language modeling objective (2.2) with the squared loss (2.3),

lim arg min ngreg(WV) = {w"*}
A—0

in which WV* € RITvDX(Tv+l) sotisfies:
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1. The 0-th row of WV*:
(a) Vj €{0,--- , To}, Wy* =0
2. The 0-th column of WV*:

(a) Vie{l,--- ,Tv}, Wii* = szglifcfluﬂj

3. WY (Yi,je{1,--- ,Tv}):

(a) VI ¢ topic(i), Wi = Wi 10 = — U5

i~ Vs __ 1% — Vx
(b) Vi e tOp%C(Z), Wil - Wsa;kne—topic T Wdiﬁ—topic + %
in which the constants

_ pr
® = O p—p)(0—(—pa)pm)Tv € (0,1)

¢ 2= (1*pcip'r')p'm. —1€(0,+00)

° 5= € (1,+00)

Proof. We proceed in the following two steps.

Step 1: the optima converges to one outlined in Lemma 2.1.1

Let S denote the set of optima outlined in Lemma 2.1.1. Suppose towards contradiction that IWV* ¢ S
such that WV* € limy_,q arg min ngreg(WV).

In comparison, YW € S, by Lemma 2.1.1, since W"V* ¢ S,

L(W) < L(WV¥)
Moreover, note that since |W || is finite,
lim A|[W||% =0 < lim A\|W"*|3
v, W l% = | 17
Combining the above two observations gives
3 _ : 2 Vx . V2 _ 1 Vx
1in Ligyeg(W) = L(W) + Jim X[W [} < LOWY*) + lim AJWY* 3 = lim Ligeg (W)
which contradicts WV* € limy_,¢ arg min ngmg(WV).
Therefore, we have proved by contradiction that
YWYV e )l\irr%) arg min Lmeg(WV)7 wVes
—
Step 2: solve for the coefficients that minimize the L, penalty
By Step 1,

)l\ig%) arg min Lygyes (W) = ;grb a‘f‘/gvnelgn Ligreg(WV)
= lim argmin L(WY) + \|WV|%
A=0 wves
= lim arg minmin L(WV) + \[|[W V|2
A—0 wVves

= lim argmin \|WV||%
A=0 wves

in which the last step is because VWV € S, L(WV) = min L(W"'), which is a constant independent of
wV.
Then it suffices to find the constants ug, - - - ,ur, € R that minimizes |[WV || .
O

42



2.1.7.5 Helping lemmas on masking probabilities

In this section, we will calculate a few expressions for the masking probabilities, which will be useful for the
proofs later on. We will also introduce a few constants for brevity of notation.
A straightforward calculation shows that the probabilities after the masking process satisfy:

Proposition 2.1.1 (Probabilities after masking). After the masking process as in Section 2.1.1 is applied
to a document w, the distribution for the new document w satisfies

%(17 (17pc)pm)+p:77€ra Zf tOP’iC(i) S {t1,~~' )tT}

Py (i) = { pm(1l = pe = pr), if i = [MASK] == 0 (2.17)
Pmlr otherwise

For convenience, we will introduce the notation

1 pmpr
= (1= (1= pa)pm 2.18
pri= — (1= (1 =pe)pm) + = (2.18)
pmpr
= 2.1
D2 oT ( 9)

Another straightforward calculation can be used to express the relationship between the constant ¢z in
Assumption 2.1.2 and the «, 5. Namely, we have:

Proposition 2.1.2 (Expressing c3 in terms of «, 8). The constant c3 in Assumption 2.1.2 satisfies:

1 po~
c3 = {(ﬁp1+ap1<v1>+p1v<71>+p2v<TT>>N7 if w; € {tikierr)
1 . ~
(Bpatapz(v—T)Fpror+pao(T—7—1))N * if w; € [T\{ti}iepr

Again, for notational convenience, we will introduce z1, 22, s.t.
z1 1= Bp1 +api(v — 1) + pro(r — 1) + poo(T — 7)
zp 1= fp2 + ap2(v — 1) + pro7 + pov(T — 7 — 1)

Proof of Proposition 2.1.2. We will get these equalities by considering the marginalization constraints, de-
pending on the topic of w;. Consider first a j, such that w; € {t;}ic[r:

e Note, for every position ¢, with probability p;, we have w; = w;, so A(X)ij = ffcz by Assumption 2.1.2.

e Note also, for every position ¢, with probabilitiy p; (v—1), we have Ww; # @; but topic(w;) = topic(w,),
and so A(X);; = acs.

e Finally, note that for every position 4, with probability (p1v(7 — 1) 4+ p2v(T — 7)) we have topic(iw;) #
topic(w;), so A(X)i; = cs.

. N s _ . _ 1
Since »;_; A(X)i; =1, we obtain 3 = (50— s TN
Consider next a j, s.t. w; € [T|\{ti};c[;). By similar considerations as before,

e With probability ps, a position ¢ in w satisfies w; = w;, so A(X)ij = Bes.
e With probability pa(v—1), a position i satisfies ; # w@; but topic(w;) = topic(i;), so A(X )i = acs.

e Finally, with probability pjvr + pov(T — 7 — 1), a position 7 in satisfies topic(w;) # topic(w;), so
A(X)” = C3.

. N il . ..
Since Y ;" A(X);; =1, we obtain ¢3 = (ﬁp2+o¢p2(v71)+p11'u7'+p2v(T77'71))N' The proposition thus follows.

O
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2.1.7.6 Implication of topic-wise attention assumption on model output

In this section we calculate the part X A(X) using the results of Section 2.1.7.5:

Proposition 2.1.3. Using the calculation and notations of z1 and zo in Section 2.1.7.5:

S

1
% 1M

= n
Q

SRR
® - -

Sg‘
o

S
N

=
— P2

227

XuA(X); =Y 1g AX),; = P(Xy =

=1

1) N-AX)y

if i = j, topic(j) € {t1, - ,t.} (Same token)
if i # j, topic(i) = topic(j) € {t1, -+ ,tr } (Different token, same topic)

if topic(i) # topic(j), topic(i) € {t1,-
if topic(i) # topic(j), topic(i) ¢ {ti1,

ZfZ =7, top'ic(j) ¢ {tlv"' 7tT}

! 7t7'}a tOp’I,C(]) € {tla' o
+s b} topic(f) € {ty, -+

if i # j, topic(i) = topic(j) & {tr,-- .t}

if topic(i) # topic(j), topic(i) € {t1,--
if topic(i) # topic(j), topic(i) ¢ {t1, -
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) ’tT}’ topic(j) ¢ {tla"'
’ 7tT}7 topic(j) ¢ {tlv"'

’tT}
st}

st}
(b}

(2.20)



2.1.7.7 Proof of Theorem 2.1.3 (optimal attention when freezing W" to uniform blocks)

Theorem (optimal attention weights when freezing block-wise WV, Theorem 2.1.3 restated). Suppose the
data distribution follows the topic modeling assumption in Section 2.1.1 and Assumption 2.1.1. Suppose we
train a single layer transformer given by (2.7) with bP™* = 0 and WV frozen to the optima in Theorem 2.1.2,
under masked language modeling objective ((2.1)) with the squared loss ((2.3)), under Assumption 2.1.2,
Assumption 2.1.3, and Assumption 2.1.4. Then, the optimal (o, §) satisfy

v—1

a+ %ﬁ € (M(r—1),2T)

(A=(1=pe)Pm+pmpr) A+ A =pe)pm) 007 Ay = 100(1—(1—pc)pm +1).

in which the constants A\ = 0= (epp) .

Proof. Define v = %a + %,6.
Recall the architecture under consideration, i.e.

X =WV XAX)

The squared loss ((2.3)) is

1 .
Ex~pxEm ] Z 1(f(X)5, X:5)

jeEM .
1 - -
= Ex~px By Yo WXy X+ Y Wf(X)y,Xy)
Pm | ;= [MASK] JEM 1 ; # [MASK]
1 - -
= Ex~px By Yo IWYXAX)) - Xll5+ Y [(WYXAX)), - Xyl
Pm | ;= [MASK] JE€M 1 ; # [MASK]
1 . -
= Ex~px By Yo IWYXAX),; - Xyli+ Y IWYXAX), - X3
Pm | ;= [MASK] JE€M 10 ; # [MASK]

Note that when @; = [MASK], A(X).; is the attention from [MASK] to other tokens, and therefore is
independent of the setting of o and 8 in Assumption 2.1.2. Thus, in the following, we only consider the case
in which j € M,w; # [MASK], namely, w; is masked, but @; is chosen to be either the correct token or the
random token. Hence define:

1 . -
L(v) = —<Ex~pxEm > WY XA(X),; — X5ll3 (2.21)

pmN JEM b # [MASK]
Note that Vy € RTv+1

0 i=0
WVy)i={ " ,
q(% Eletopic(i) yl)7 (S {17 7T’U+1}

in which
1 PmDPr

q(x) - 1- (1 - Pc)me (1 - (1 - pc)pm)TU

In our context, we will consider y = X A(X).; in L(7) above.
For a document w which contains topics t1,--- ,¢, € [T], there are the following cases:
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Case 1: topic(w;) = topic(w;) When w; after masking belongs to the same topic as the correct token
wj. (This happens with probability p. + %)

By (2.20),
) % % + Zletopic(i),l#% %) = % (P15+(2;1)P1a> = B2, if topic(i) = topic(wy)
- Z [XA(X)]Z = 1 Zletopic(i) Br) =1L, if topic(i) # topic(w;), topic(i) € {t1, -+ ,t-}
v - J
o L (Cictopicc 2) = B2, if topic(i) # topic(iy), topic(i) ¢ {t1,-+ ;)
(2.22)
Recall that the label is
1, = w;
Xj - . /
{0, 1e€{0,--- , Tvof\w;
Hence the contribution to the loss from token w; is
p P17y 2 P17y p p
1 1 1 2
ot B0(1-a (22)) +aZ2P 0= 1)+ a2 ot~ 1 (2ol = )
21 21 21 21
Dr P17y 2
= (pe + )L —¢
( T)[( (plfyv + pro(T — 1)—|—p2v(T—7’)))
b1y 2 b1 2
v—1)+ v(r—1
q(pwv + pro(t — 1) +p2v(T—7')) ( ) q(plfyv + pro(r — 1) +p2U(T—T)) ( )
P2 2
+4q (T -7
ot potr = D rp@—n) L7
Plugging in the asymptotics from Assumption 2.1.3, the above becomes
P17y 2 2% 2 1
Pel(1—q +4q v—1)]+0(=) (2.23
( (pl'yv-l-pw(T— 1) —|—p2v(T—7))) (pwv +pro(r —1) +p2U(T—T)) ( ) (T) (2.23)
Case 2: topic(w;) € {t1, - ,t-}\{topic(w;)} When @, after masking belongs to a different topic from
that of the correct token w;, but still a topic existing in w. (This happens with probability %ﬁl))
{XA(X)} _is the same as (2.22).
j
Hence the loss is
T-1 P1 P17y P1 P2
P (= () +a(F ) vt () (v(r = 1) = 1) +9(5)* - o(T = 7))
21 Z1 21 21
T—1 P1 2 P17y 2
=pr—1(1- + v
Pr—p I q(plfyv—i-plv(T— 1)—|—p2’U(T—T)) q(pwv +p1o(r — 1) +p2U(T—7))
y2! 2
+4q v(r—1)—1
(pwv +pro(T = 1) + poo(T — T)) (v )~ 1)
P2 2
+ (T —71
Q(pwv +p1v(r — 1) + pav(T — T)) ( )
Plugging in the asymptotics from Assumption 2.1.3, the above terms vanish.
Case 3: topic(w;) € [T)\{t1, - ,t-} When @; after masking belongs to a topic that does not exist in w.

(This happens with probability p,(1 — %))
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By (2.20),

BB if i =
saxy] = B=, if ¢ # w;, topic(i) = topic(w;) 9.94
(X)| =9, (2.24)
i b, if topic(i) # topic(w;), topic(i) € {t1,--- ,tr}
L, if topic(i) # topic(w;),topic(i) & {t1,--- ,t;}

1 (B8 LS oo p;;) =1 (LBHQLM) =22 if topic(i) = topic(i;)
s (XA = 4 Tianitn ) = B i Sopicl) 4 Sopic(i) topic(i) € -1
v J
letopic(t . .
Etopic(i) % Zletopic(i) Z %’ if topic(i) # topic(w;), topic(s) & {t1,--- ,tr}
(2.25)
Hence the loss is
T p1 P1 D272 P2
pr(l = 7)1 —a( )?+a(=)* - (vr = 1) +q(==)? v +q(7)* (T -7 - 1)]
<2 22 22 22
T P1 2 P1 2
= Pr 1—- = 1-— + v — 1
P T)[( q(pﬂv + pror +pov(T — 7 — 1))) Q(pgfyv +pro7 + pov(T — 7 — 1)) ( )
b2y 2 P2 2
(T —17-1
q(p27v+p1v7 +pou(T — 7 — 1)) q(p27v+p1v7 +pou(T — 71— 1)) ( )
Plugging in the asymptotics from Assumption 2.1.3, the above becomes
P27
pr(1+q( )?) (2.26)

poyv + proT + pou(T — 7 — 1)

Combining the above cases Adding (2.23) and (2.26), we can see in the asymptotic regime of interest,
we have:

_ _ b1y 2 b1y 2(y —
Lo =p{ Q(pwv +p1v(r = 1) + poo(T — 7) )+ q(pwv +p1v(r — 1) + poo(T — T)) (v=1)
P2y 1
+po(l+ q(plfyv +pror +po(T — 7 — 1) )+ O(T)
B B cap1y 2 Cap17y 20y —
B e o e s LT TE T o Y o LA

capay 2 1
+ 4 pr +0(5
p p(pg'yv+p1m'+pgv(T—T—1)) (T)

in which the constant ¢4 is defined as

* = T, € (12)

Plugging in the definition of py,ps in (2.18), (2.19)

1 1
o7 | 2 o7 | 2
L(v) = pel(1 — =1 )”+ (=5 = ) (v —=1)]
CTTV‘*‘CTT(T—U‘FMP'(T—T) CTTV‘FCTT(T—U‘FMW(T—T)
i

+Pr+pr +0(%
Prtp (pmp7,y + L _|_pmpy (T—T—l)) (T) 0o

Cq7Y 2 Cq7Y 2
= 1— + v—1
Pe |( vy+o(r—1)+ c4pmprv7) (v’y +o(r—1)+ C4pmpr’l)7') ( )
CAPmPr?Y
Pmpr YV + (5 + pupr )T

00l 7 +0(7)
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We will again consider several possible cases for «y in (2.27).
Case 1: When v < (teapmpr)(2—ca) (r—1).

2cy

Let ¢5 denote the constant:
(14 capmpr)(2 — c4)

Cy =

264
then focusing on this term in the loss (2.27):
Cqy
vy + (1T — 1) + capmproT
Cq7Y
vy + U% + C4pmprv%
Ca

1 1
v+ Ve + CaPmPrv
Cq
v(l + 1+Ct{7m,pr)

and so
2
C4
L(v) > pe (1 - "W%) +pr£o(1) (2.28)
%"!‘pm,pr
Case 2: When vy > 100WT.

then since 7 = o(T') by Assumption 2.1.3:

c c c
o =97 4 o) = S 4 o(1)
vy + U(T - 1) + C4PmDPrvT vy v
c c c
o = MYy = B 4 o)
vy +0(T — 1) + caPmproT vy v
CaPmPrY > CaPmPrY _ 100¢4

PPV + (& 4 pmpe 0T~ pmpryv + gPmprvy 1010

and therefore plugging into (2.27):
10064

Cq 2 C4 2 2
L > pef(1—— o1 — +o0(1 -1 N ” + o(1
(9) 2 pel(1 = 2 4 0(1)* + (2 £ 0(1)*(0 = 1)] + by + pr( 52 & 0(1)
2c c? c? 100¢
=pe[l = =+ 2+ L= 1) +pr+pe(5—)? £ 0(1)
v v v 101v (2.29)
2¢y ci 100c4 o '
= 01_7 - r r +o(1
pell = ==+ 1+ pr 055 )" £ ol)
- _ C4(2 — C4) 10004 2
=pe[l = ————+pr+pr(57,) " o)

l4capmpr)(2—c %"!‘pm,pr
Case 3: When W(T —1) <7 <100=5——T.

Note that this case is the complement of Case 1 and Case 2 above, and so we have considered all possibil-
ities. We will show that there exists 7 in this case such that L(v) is smaller (by an Q(1) constant difference)
than the lower bound of L(y) proven in Case 1 and Case 2 above, based on which we know argmin L(v)
cannot lie in Case 1 or Case 2, and thus conclude that arg min L(+y) is within this case. Specifically, let:

vy =V7T
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then similar to Case 2, since 7 = o(T) by Assumption 2.1.3:

Cq7y Cqa7y C4
= —+4o(l) = —+o(1
vy + (1T — 1) 4+ capmproT vy (1) v (1)
Cqa7Y Cqa7yY Cyq
==7 1)=— 1
v o — 1) + capmpror vy ot) =5 oll)
CaPmPr?Y

=o(1)

PmPryv + (i + pmpr)vT

and therefore plugging into (2.27):

L(y) = pe[(1 — —] +o(1))2 + <—] +0(1))%(v — 1)] + pr £ 0(1)

= pel(1 =7 £ 0(1))* + (T £ 0(1) (v~ 1)+ pr £ 0(1)

2 2
24 ¢ ¢

= pc[l Ty + 02 + ﬁ(v - 1)] +pr £ o(1) (2'3())
=pe[l — 2—24 + %] +pr £0(1)
el - SEZ) o)

Comparing the above cases
Note that L(v) in Case 3 is strictly smaller than L(v) in Case 1 and Case 2, because:
e Comparing (2.28) and (2.30): (1 — —2——)2 > 1— @ because ¢s € (0, LEeapmpr)@=ca))

U(1+ 1+C4C1;mpr) [N

e Comparing (2.29) and (2.30): in the former, the term pr(ll(z)ol";‘)2 > 0 is the extra constant (of scale

Q(1), i.e. non-vanishing even under our asymptotic assumptions Assumption 2.1.3) compared with the
latter.

Therefore we conclude that

arg min L

1
(1+C4pmpr)(2—64) = + PmPr
C —-1),1002———T
() ¢ (el C o) (g oo “Pnl

O

Remark 2.1.9. In Theorem 2.1.3, we specify some necessary conditions that the optimal v must satisfy.
It is challenging to precisely characterize the optima (to within o(1) error), because doing so may require
explicitly writing those smaller scale terms hidden (in £o(1)) by our asymptotic setting (Assumption 2.1.3).
Those smaller scale terms, however, do not affect our analysis, because these +o(1) terms cannot reverse the
Q(1) constant separation between the loss in the above different cases.
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2.1.7.8 Optimal attention weights (when freezing diagonal W)

Our Stage-2 analysis on the optimal attention weights ((2.5)) is based on freezing WV to be the Stage-1
optima characterized in Theorem 2.1.2. Notably, in Theorem 2.1.2; the uniqueness of the optima (i.e. a
clean block-wise pattern) crucially depends on the Ly regularization. Indeed, as we prove in Theorem 2.1.4,
without the regularization, there is a family of optima (depending on a series of free constants) all of which
can encode the topic structure.

Among these alternative optima, we are particularly interested in a special case — one that has a diagonal
pattern. This type of diagonally structured WV often occurs when we train the single-layered transformer
model without Ly regularization.

layer0_value

Figure 2.10: Without Lo regularization, the trained WV sometimes shows a diagonal pattern, which is a
special case of the family of optima characterized in Theorem 2.1.4.

Motivated by this empirical observation, we formally define the particular optima from Theorem 2.1.4
that is a diagonal pattern.

Definition 2.1.2 (diagonal WV). The diagonal optima of WV, denoted as DV, is the only matriz in
RTvHOX(TvH1) that satisfies both DV € argmin L(WY) (in Theorem 2.1.}) and

Vi,j € {l,--- ,To}, WY =0ifi#j

Corresponding to this case, we provide an analysis on the Stage-2 optimal attention weights, which shows
a very interesting different behavior from the result in Theorem 2.1.3 (for block-wise WV').
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Theorem 2.1.5 (optimal attention weights when freezing diagonal WV'). Suppose the data distribution
follows the topic modeling assumption in Section 2.1.1 and Assumption 2.1.1. Suppose we train a single
layer transformer given by (2.7) with bP™ = 0 and WV frozen to DV in Definition 2.1.2, under masked
language modeling objective ((2.1)) with the squared loss ((2.3)), under Assumption 2.1.2, Assumption 2.1.3,
and Assumption 2.1.4. Then, the optimal (o, B) satisfy:
AT <B < MT
a < Asp

in which the constants

_ 1- (1 _pc)pm + PmDr v

A
N 100
)\4,: 1_(1_pc)pm .1_(1_pc_pr)pm.v
Vo—1=241—p:)pm DPmPr
1
A5 ==
T =D 1= ppm)
Proof. Following the same steps leading to (2.21), define:
1 Vv < 2
L(a, B) = 7N]EXNDX]EM Z D" XA(X),; — X3 (2.31)
Pm JEM 1 # [MASK]
Note that Yy € RTv+!
0, 1=0
(DYy); = :
q(ys), ie{l,--- , Tv+1}
M 3 — 1 myr
in which ¢(2) = —5=55,-% — (1*(1€pf));gm)Tv~
In our context, we will consider y = X A(X).; in L(«, B) above.
For a document w which contains topics t1,--- ,t, € [T], there are the following cases:

Case 1: w; = w; When w; after masking is the correct token w;. (This happens with probability p. + £%)
By (2.20),

Bl i =i
b1 e ~ . N . ~
XAX)| - o i ii;”cj(’isoiltco(;)ic(;jiizizzjc)(i) €t (2.52)
oy if topic(i) # topic(w;), topic(i) ¢ {t1, - ,t-}
1 1= w;

Recall that the label is X.; = ¢ _
0, ie{0, Tolu

Hence the contribution to the loss from token w; is

2
ot 2= (220)) # o222 o= 1 a2 ol - 1) o2 (- )

vT 21 21 21
. Pr _ p1p 2
= et N e = D per - Dt po@ = 7))
P11 20,
* q(ﬁpl +api(v —1) + pro(r — 1) + p2v(T — 7')) =1
P1 2 _
+q(ﬁp1 +api(v—1)+po(r—1) —|—p2v(T—T)) v(r —1)
+ L J2o(T = 7))

Bp1 +api(v —1) + pro(t — 1) + po(T —7)
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Plugging in the asymptotics from Assumption 2.1.3, the above becomes

1S )
pc[(l - Q(ﬂpl + apl('u — 1) —|—plv(7— _ 1) +p2v(T — 7_))) (2 33)
p1 9 B l .
+q(ﬂp1+ap1(1}*1)+p11}(7f1)+p2v(T77_)) (U 1):|:O(T)]

Case 2: W; # wj, topic(w;) = topic(w;) When w; after masking is not the correct token but belongs to
the same topic as the correct token w;. (This happens with probability 2=(1 — 1))

[X’A(X)} y is the same as (2.32).

Hence the loss is

B 1= DI = 27 + a0 4 B2 (0= 2+ a(B2 vl = 1) + o) (T - )

1 21 21 21
O pia :
=70 e D F sl = D+ pT = 7))
+q( P )?
Bp1 +api(v —1) +p1o(r — 1) + pav(T — 7)
et 2/
+ Q(,Bpl +api(v—1)+pv(r —1) 4+ pav(T — 7')) (v=2)
D1 2 _
* q(5P1 +api(v—1) +prv(r = 1) + pav(T — T)) vir =1
+q( L )2u(T 7))

Bp1+api(v—1) +prv(r — 1) + pov(T — 7)
Plugging in the asymptotics from Assumption 2.1.3, the above terms vanish.
Case 3: topic(w;) € {t1, - ,t-}\{topic(w;)} When @, after masking belongs to a different topic from
that of the correct token w;, but still a topic existing in w. (This happens with probability w)
{XA(X)} _is the same as (2.32).
'J

Hence the loss is

prT; - q(%DQ + Q(%DZ + Q(%)Q (v —=1)+ q(%)2 Sw(r—1)—1)+ q(i—?)Q (T = 7))
:pTTT_l[(l ~ U ap o) +p]1911)(7' " F pao(T = 7))2
MR TR +§11vﬂ(7 — 1) +poo(T — ) y
e D +1§11:(T — 1)+ po(T — T))Q(“ -1
NS +pz1?11)(7' 1) + poo(T — T))Q(”(T -1)-1
ol - 2(T — 7]

Bpr + api(v = 1) +pro(T — 1) + pov(T = 7)

Plugging in the asymptotics from Assumption 2.1.3, the above terms vanish.

Case 4: topic(w;) € [T]\{t1,---,t-} When w; after masking belongs to a topic that does not exist in w.

(This happens with probability p,(1 — %))
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By (2.20),

BB if i =
y1e if 4 e i ) = i 05
Ran)] | 7 sepield) = vopic(iy @30
ij a, if topic(i) # topic(w;), topic(i) € {t1, - ,t,}
p2 if topic(i) # topic(w;), topic(i) & {t1,- - ,tr}

2z

Hence the loss is

et — D)1 — g2 + g2y - (o — 1)+ 022 1 (222 (0 1) 4 (202 (T~ — 1))

T 2o 29 29 2 %
= p(1- D)~ (oo =T) +§11W ey Nk
M q(ﬁm + aps(v—1) +£11117' +pou(T — 7 — 1))2(UT -1
" q(sz +ap2(v —1) +Z;721€JT +pov(T — 7 — 1))2 q(ﬁpz +ape(v—1) +pp216:)7 Tpou(T — 7 — 1))2(0 -1

D2 9 o
+q(ﬂp2+ap2(vf1)+p1m_+p20(T7771)) o(T —1—1)]

Plugging in the asymptotics from Assumption 2.1.3, the above becomes

p2f3 2
prl(1+ f1(5]92 + apa(v —1) + proT + pov(T — 7 — 1)) ) (2.35)
+ 4 pe2 (v = 1) o(1)

Bp2 + apz(v — 1) + pro7 + pov(T — 7 — 1)

Combining the above cases Adding (2.33) and (2.35), we can see in the asymptotic regime of interest:

P13 5
L Oé,ﬁ =D 1- q
) =l = e = D prvir — D+ paeT - 7))
P 9
+ v—1
Wip T amo - Dt potr =D+ pue@ =)
p26 2
+pr(1+¢g
I (5192+ap2(v—1)+p1v7'+p2v(T—T—1)) )
P2y 9
— 1) £o(1
+q(5p2+oépz(v—1)+p1vT+p2v(T—T—1)) (v=1)]+0(1)
L/B 2 LOé 9
= pc[(l - 1 Ui); 1 ) + ( 1 vf{ 1 ) (U - 1)]
Boor Tomr + o T Pmpe B Halnn o+ Py
C4 PmpT/B ca pmpra
ol e i T (s Vv =1 +o(1)
B nlr + o T -I-a-i-pmpr Jé; mbr 4 L —l—a—i—pmpr

in which the constant ¢4 is defined as

® cyi= m € (1,2) by Assumption 2.1.4.
L(a, 8) = pel(1 - oo 2+ ( cua 20— 1)
, c B+ (v—1a+ (1+ capmpr)vT B+ (v—1Da+ (1+ capmpr)vT (2.36)
caf3 9 ca0 20 )
el (5 +w—Da+ (o + 1)vT> )+ (ﬁ +w—Da+ (o + 1)UT) (v=1]£o)

We will again consider several possible cases for «, 8 in (2.36).
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1+caPmPr .y, . caf3 cafB
e Case 1, 5 < “To0er " VT: then o o 1)a+(1+c4pmpr)w < FT10068 < 100, and hence

1
L(a, B) > pe(1 — m)Q + pr £ 0o(1)

e Case 2, 8> Hfgié’c’zprvr we have the following subcases:

_ _Ca_ cafB cafB caf3 opn

It o 2 520, then Fiio= Dot (iremmp)or < Fr(o-Ta = Bred < Tre; and hence by (2.36)
L(a, B) > Pc(l — 15)? +pr +o(1).

—4_ 3, then cab cafl

+(U 1)a+(c4p7npr +1)UT /B+C4B+(C4P7HPT +1)1}T
— 1 cafB
x If 5> 07(c oop. TDuT (for some constant c7 := q@/ﬁ—i—l))’ then Z—— 1)(’+(F4pmm+1)“T >

caf caf3 c
/3+c4ﬂ+(47+1)vT 2 5+c4/§+ B 1+c 4+ r, and hence L(e;, §) > p[1 + (1+ at o= ) J£o(1)

C4P7YLPT‘

* If B < cr(= oo T 1)vT: note that this case is the complement of all cases (and subcases)
above, and so we have considered all possibilities. We will show that there exists (a, 8) in
this case such that L(a, ) is smaller (by an (1) constant difference) than the lower bound
of L(a, ) proven in all cases above, based on which we know argmin L(«, ) cannot lie in
any of the above cases, and thus conclude that arg min L(a, 8) is within this case.
Specifically: let @ = v/7T and 8 = 2=t = 2=L/7T, then

o1
B+ (w-1a fﬁ +epmpr)vr | 2L f(;l_ gy Foll) =1£o(l)
BT T+ (L apmp)or = Tomn 0= PR
B+ (v—1)a fiw T o1)
B+ @w-1a Jcr4(ac4p T = o)
Plugging into (2.36):
L(e, ) = pel(1 = (1 £0(1)))* + (C;__ll +0(1))2(v — 1)] + p[(1 + (0(1))?) + (0(1))* (v — 1)] £ o(1)
= pc[(cf}_%ly] +pr £ o(1)

1
<pey—g torEo(l)

Note that this is smaller than all previous cases, because

% —Lo < (1—155)? since v is a large finite constant (see Assumption 2.1.3 and Assumption 2.1.4).
* vil < (
tion 2.1.4).

1
* o1 (1+c Tz

I +C4)2 since v is a large finite constant (see Assumption 2.1.3 and Assump-

) by the definition of ¢; above.

Therefore, we conclude that all a, § > 0 that minimize L(«, ) must satisfy

1+ capmpr
10004

T <B < er
Cq
v—1

+ 1)oT

CaPmPr

B

a <
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Remark 2.1.10. Remark 2.1.9 applies to this proof too.

2.1.8 Related Works

One line of prior works explain the success of transformers by empirically showing that the components
(e.g. attention heads) of a trained model (e.g. BERT Devlin et al., 2019), contain abundant information
for solving a wide range of “probing” tasks, across syntax and semantics (Hewitt & Manning, 2019; Clark
et al., 2019; Tenney et al., 2019; Hewitt & Liang, 2019; Kovaleva et al., 2019; Belinkov, 2022), or through
other approaches involving the attention weights (Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasovié,
2021). Our result also formalizes some relevant intuitions given in Elhage et al. (2021), such as embedding
layer capturing some bigram statistics. In topic modeling distribution, such “bigram statistics” translates
to co-occurrence in a document.

Recent works start to combine theoretical constructions and controlled experiments to justify the expres-
sive power of transformers through the lens of Turing completeness (Bhattamishra et al., 2020b), function
approximation (Yun et al., 2020), representing formal languages (Bhattamishra et al., 2020a; Ebrahimi et al.,
2020; Yao et al., 2021; Liu et al., 2023a), learning abstract algebraic operations (Zhang et al., 2022a), statis-
tical sample complexity (Wei et al., 2021; Edelman et al., 2022), and learning optimal latent representation
(Zhang et al., 2023c). Methodologically, we join a long line of works that characterize the capacity of neural
network models by assessing their abilities in learning some simple models of the data (Siegelmann & Sontag,
1992; Gers & Schmidhuber, 2001; Weiss et al., 2018; Suzgun et al., 2019; Merrill, 2019; Hewitt et al., 2020;
Li & Risteski, 2021; Yao et al., 2021; Zhang et al., 2022a; Liu et al., 2023a). Our work extends this line of
works, and in particular, our results indicate that there may be multiple reasonable representational optima,
which calls for formally analyzing the training dynamics to gain deeper understanding of what the model
actually learns from such data distributions.

On the optimization side, Nguyen & Salazar (2019); Xiong et al. (2020); Liu et al. (2020); Zhang et al.
(2020); Li & Gong (2021) propose algorithmic improvements (often with theoretical motivations) to help sta-
bilize the training process of transformers. Towards explaining the training process of attention-based neural
networks, Sun & Lu (2020) analyzes the trends of two quantities that are relevant to model performance
and interpretability in text classification setting.

Also relevant to our work, Snell et al. (2021) consider cross-attention in LSTM Seq2Seq models trained
on machine-translation settings®. By contrast, we focus on self-attention in transformers, and we consider a
data distribution inspired by topic models. Notably, they also propose an intuitive simplifying assumption
of a two-stage learning process of the attention heads similar to ours (but without theoretical or empirical
validation). Our work uses a similar assumption ° (Section 2.1.4.1). In our work, we validate our version
of the two-stage assumption by providing a particular way to initialize the attention weight matrices, along
with theoretical intuitions (Section 2.1.6) and empirical validation on synthetic data (Figure 2.4) as well as
real data (Figure 2.9), showing that this two-stage process can be a reasonable approximation to the early
steps of the real training dynamics of attention-based models under the settings that we analyze.

Recent works started investigating the theory of Transformers training dynamics. Lu et al. (2021) con-
siders a simple text classification task and proves that the dynamics of training a simple attention-based
classification model converges to attending to discriminative words through embedding and the inner prod-
uct of its key and the query. Recent work by Jelassi et al. (2022) theoretically shows how transformers
learn the spatial structure of image-type datasets through gradient-descent-based optimization algorithms.
In particular, their attention weights depend on the positional encodings only. Different from their works,
our result (motivated by studying the semantics in language) focuses on topic modeling distribution that
actually ignores the position information, so the attention weights only depend on the “bag of words” (i.e.

5Specifically, they consider a data model related to the IBM machine translation model.

6We independently proposed the two-stage training of attention heads, and later discovered (Snell et al., 2021) used a similar
assumption. Comparison with (Snell et al., 2021) was added during an update of our paper. Moreover, while Snell et al. (2021)
is the earliest paper we are aware of that explicitly assumes a two-stage training process specifically for attention heads, we
note that similar approaches (more generally, alternating optimization) commonly appear in the optimization literature in a
broad variety of settings.
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the contents). In that sense, Jelassi et al. (2022) and our work complement each other, since real-world
data distribution usually involves a combination of position-dependent and position-independent factors.
An interesting future work would be studying how these factors interact during the training process.
Regarding the type of data distribution that we consider, we join a series of works that theoretically
reason about the ability of learning under topic-modeling-based distributions (Sontag & Roy, 2011; Awasthi
& Risteski, 2015; Arora et al., 2016; Tosh et al., 2021; Luo et al., 2022). In particular, Luo et al. (2022) shows
that if a model can achieve low loss on contrastive or mask-prediction objectives, then it can recover topic
posterior. However, these prior works do not theoretically analyze the optimization process of the transformer
architecture. In fact, model architecture can indeed critically influence the resulting model obtained by
masked-prediction-type tasks (see Liu et al. (2022a) who highlight the subtlety of the interaction between
the particular form of the task and the model specification). Hence, our analysis extends beyond the scope
of these prior works by incorporating the theoretical analysis on the optimization process of transformers
trained on topic modeling data distribution. Empirically, Sia et al. (2020); Thompson & Mimno (2020);
Meng et al. (2022); Zhang et al. (2022b); Talebpour et al. (2023) analyze topic discovery via clustering the
contextualized representations produced by pretrained language models. Different from these works, our
theory and experiments on token embeddings focus on the convergence of embedding layer parameters.

2.1.9 Conclusion

We initiated the study of understanding training dynamics of transformers in the presence of semantic
structure captured by a topic model. Interesting directions of future work includes extending the analysis
to data distributions that captures “syntactic” structure, e.g. through simple sandboxes like PCFGs. When
both the model and the data distributions are complex, it remains a daunting challenge to “disentangle”
how the many different aspects of the data (e.g. semantic and syntactic elements) are learned through the
different parts of model architecture (e.g. attention, positional encodings, and embeddings).
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2.2 How Transformers learn context-free grammar: qualitatively
different optima and pitfalls of myopic interpretability heuris-
tics

Section 2.1 theoretically and empirically characterizes the features learned by a simple Transformer when
the data distribution is a topic model. In particular, the learned features, such as the embedding, attention
value matrix, and the attention scores, intuitively correspond to the topics in the data distribution. Can we
expect such straightforward mapping between learned features and key structures in the data to generally
hold for other data distributions?

In this section (based on Wen et al. (2023)), we study a different data distribution, namely a simple
context-free grammars known as the Dyck grammar (Section 2.2.1). It turned out that, under this distribu-
tion, the learned features in Transformers encode the key structures in the data in a much less intuitive way.
In particular, even for small (2-layer) Transformers, the solution space is very rich and does not “uniquely
and interpretably” encode the grammatical structure in Dyck.

This result has profound implications on the reliability of some common interpretability methods. Inter-
pretability methods aim to understand the algorithm implemented by a trained model (e.g., a Transofmer)
by examining various aspects of the model, such as the weight matrices or the attention patterns. Based on
a combination of theoretical results and carefully controlled experiments on synthetic data, we take a critical
view of methods that exclusively focus on individual parts of the model, rather than consider the network
as a whole. Theoretically, we show that the set of models that (exactly or approximately) solve this task
satisfy a structural characterization derived from ideas in formal languages (the pumping lemma). We use
this characterization to show that the set of optima is qualitatively rich; in particular, the attention pattern
of a single layer can be “nearly randomized”, while preserving the functionality of the network. We also show
via extensive experiments that these constructions are not merely a theoretical artifact: even after severely
constraining the architecture of the model, vastly different solutions can be reached via standard training.
Thus, interpretability claims based on inspecting individual heads or weight matrices in the Transformer can
be misleading. Our results contribute some theoretical clarity to the debate in the literature (Jain & Wallace,
2019; Serrano & Smith, 2019; Rogers et al., 2020; Grimsley et al., 2020; Brunner et al., 2020; Meister et al.,
2021) about the (un)reliability of certain interpretability methods.

More concretely, we argue that “myopic” interpretability methods, i.e. methods based on examining
individual components only, can be provably misleading despite being highly intuitive. We adopt a par-
ticular toy setup in which Transformers are trained to generate Dyck grammars, a classic type of formal
language grammar consisting of balanced parentheses of multiple types. Dyck is a useful sandbox, as it
captures properties like long-range dependency and hierarchical tree-like structure that commonly appear in
natural and programming language syntax, and has been an object of interest in many theoretical studies of
Transofmers (Hahn, 2020; Yao et al., 2021; Liu et al., 2023¢;a). Dyck is canonically parsed using a stack-like
data structure. Such stack-like patterns (Figure 2.11) have been observed in the attention heads (Ebrahimi
et al., 2020), which was later bolstered by mathematical analysis in Yao et al. (2021).

From a representational perspective and via explicit constructions of Transformer weights, recent work
(Liu et al., 2023a; Li et al., 2023) show that Transformers are sufficiently expressive to admit very different
solutions that perform equally well on the training distribution. Thus, the following questions naturally
arise:

1) Do Transformer solutions found empirically match the theoretical constructions given in these repre-
y g
sentational results (Figure 2.11)7 In particular, are interpretable stack-like pattern in Ebrahimi et al.
(2020) the norm or the exception in practice?

(Q2) More broadly, can we understand in a principled manner the fundamental obstructions to reliably
“reverse engineering” the algorithm implemented by a Transformer by looking at individual attention
patterns?

(Q3) Among models that perform (near-)optimally on the training distribution, even if we cannot fully reverse
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Figure 2.11: Second-layer attention patterns of two-layer Transformers on Dyck: typical attention
patterns do nmot exactly match the intuitively interpretable stack-like pattern prescribed in Ebrahimi et al.
(2020); Yao et al. (2021). The blue boxes indicate the locations of the last unmatched open brackets, as they
would appear in a stack-like pattern. All models reach > 97% accuracy (defined in Section 2.2.3.2). In the
heatmap, darker color indicates larger value.

engineer the algorithm implemented by the learned solutions, can we identify properties that characterize
performance beyond the training distribution?

Our contributions. We first prove several theoretical results to provide evidence for why individual
components (e.g. attention patterns or weights) of a Transformer should not be expected to be interpretable.
In particular, we prove:

e A perfect balance condition (Theorem 2.2.1) on the attention pattern that is sufficient and necessary
for 2-layer Transformers with a minimal first layer (Assumption 2.2.1) to predict optimally on Dyck of
any length. We then show that this condition permits abundant non-stack-like attention patterns that do
not necessarily reflect any structure of the task, including uniform attentions (Corollary 2.2.1).

e An approximate balance condition (Theorem 2.2.2), the near-optimal counterpart of the condition
above, for predicting on bounded-length Dyck. Likewise, non-stack-like attention patterns exist.

e Indistinguishability from a single component (Theorem 2.2.3), proved via a Lottery Ticket Hypoth-
esis style argument that any Transformer can be approximated by pruning a larger random Transformer,
implying that interpretations based exclusively on local components may be unreliable.

We further accompany these theoretical findings with an extensive set of empirical investigations. *

Is standard training biased towards interpretable solutions? While both stack-like and non-stack like
patterns can process Dyck theoretically, the inductive biases of the architecture or the optimization process
may prefer one solution over the other in practice. In Section 2.2.3.2, based on a wide range of Dyck
distributions and model architecture ablations, we find that Transformers that generalize near-perfectly in-
distribution (and reasonably well out-of-distribution) do not typically produce stack-like attention patterns,
showing that the results reported in prior work (Ebrahimi et al., 2020) should not be expected from standard
training.

Do non-interpretable solutions perform well in practice? Our theory predicts that balanced (or even
uniform) attentions suffice for good in- and out-of-distribution generalization. In Section 2.2.3.3, we empiri-
cally verify that with standard training, the extent to which attentions are balanced is positively correlated
with generalization performance. Moreover, we can guide Transformers to learn more balanced attention by
regularizing for the balance condition, leading to better length generalization.

7Code is released at https://openreview.net/attachment?id=0itmaxSAUu&name=supplementary_material
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2.2.1 Technical setup

Dyck languages A Dyck language (Schiitzenberger, 1963) is generated by a context-free grammar, where
the valid strings consist of balanced brackets of different types (for example, “[()]” is valid but “([)]” is
not). Dyck,, denote the Dyck language defined on k types of brackets. The alphabet of Dyck, is denoted as
[2k] ={1,2,--- ,2k}, where for each type t € [k], tokens 2t — 1 and 2t are a pair of corresponding open and
closed brackets. Dyck languages can be recognized by a push-down automaton — by pushing open brackets
onto a stack and and popping open brackets when it encounters matching closed brackets. For a string w and
i < j € Z4, we use w;:; to denote the substring of w between position ¢ and position j (both ends included).
For a valid prefix wy.;, the grammar depth of wi.; is defined as the depth of the stack after processing wi.;:

d(w1.;) = #O0pen Brackets in wy.; — #Closed Brackets in wy.;.

We overload d(w1.;) to also denote the grammar depth of the bracket at position i. For example, in each
pair of matching brackets, the closing bracket is one depth smaller than the open bracket. We will use 7; 4
to denote a token of type i € [2k] placed at grammar depth d € N.

We cousider bounded-depth Dyck languages following Yao et al. (2021). Specifically, Dycky, p is a subset
of Dyck;, such that the depth of any prefix of a word is bounded by D,

Dyck;, p := {w1.n, € Dyck,, | m‘fm]( d(wy.;) < D}. (2.37)
’ i€[n

While a bounded grammar depth might seem restrictive, it suffices to capture many practical settings. For
example, the level of recursion occurring in natural languages is typically bounded by a small constant (Karls-
son, 2007; Jin et al., 2018). We further define the length-N prefiz set of Dyck,, p, as

Dycky p.ny = {w1.n | In > N, wn 10 € [2k]" N st wy, € Dycky p }- (2.38)

Our theoretical setup uses the following data distribution Dpyck:

Definition 2.2.1 (Dyck distribution). The distribution Dpyc, specified by g € (0,1), is defined over
Dycky, p n such that Vwi.n € Dycky p v,

P(wlzN) o((l/k_)#{i\wi is open, d(wy.)=1} | (q/k‘)#{ilwi is open, d(w1.;)>1} (239)
. (1 o q)#{i\wi is closed, d(wl;i)<D71}.

That is, ¢ € (0,1) denote the probability of seeing an open bracket at the next position, except for two
corner cases: 1) the next bracket has to be open if the current grammar depth is 0 (1 after seeing the open
bracket); 2) the next bracket has to be closed if the current grammar depth is D. Note that at any position,
there is at most one valid closing bracket.

Training Objectives. Given a model fy parameterized by 6, we train with a next-token prediction lan-
guage modeling objective on a given Dpyck. Precisely, given a loss function I(-,-) — R, fg is trained to
minimize the loss function ming £(0; Dpyek) with

N
1
‘C(97 DDka) = EwlzNNDDyck N Zl l(fe(wlii*1)7 Z(wl)) (240)

in which z(w;) € {0,1}2* denotes the one-hot embedding of token w;. We will omit the distribution Dpyck

when it is clear from the context. We will also consider a fa-regularized version £°8(0) = L(0) + )\% with
parameter A > 0.
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For our theory, we will consider the mean squared error as the loss function: °

L= lgg(x,2) = ||lz — 23 (2.41)
In our experiments, we apply the cross entropy loss following common practice.
Transformer Architecture. We consider a general formulation of Transformer in this work: the [-th

layer is parameterized by %) := {Wg)7Wl((l),W‘(,l),param(g(l))} € O, where Wl((l)7Wé2l) € R™aX™ " and

W‘(,Z) € R™*™ are the key, query, and value matrices of the attention module; param(g()) are parameters
of a feed-forward network g, consisting of fully connected layers, (optionally) LayerNorms and residual
links. Given X € R™*¥N | the matrix of m-dimensional features on a length-N sequence, the I-th layer of a
Transformer computes the function

fix:00) =@ (IN(WPX o (c+ WP X)T WS X)) ) + ), (2.42)

attention pattern

exp(Ai,;)
Sl exp(Ak,j)’
matrix defined as C;; = —inf-1[i > j] where inf denotes infinity. We call o (C + (WI((Z)X)T(WS)XD the
Attention Pattern of the Transformer layer [. LN represents column-wise LayerNorm operation, whose j,
output column is defined as:

where o is the column-wise softmax operation defined as o(A);; = C is the causal mask

PLA., 1

LNo(A). ; = & =7, — —11". 2.4
c(A): max{||PLA.; Q,C'}’PL m (2.43)

Here P, denotes the projection orthogonal to the 11T subspace ? and C' is called the normalizing constant
for LayerNorm.
We will further define the attention output at the I-th layer as

ar(X;00) =W$>Xa(c + (WQX)T(WCF;)X)). (2.44)
When C = 0, we will also consider the unnormalized attention output as
a(X;00) :W‘(/I)X5(C + (W}QX)T(WCF;)X)). (2.45)

where G(A); j = exp(A4; ;) and it holds by definition that LN (a;(X;60®)) = LNg(a;(X;0W)).

An L-layer Transformer 77, consists of a composition of L of the above layers, along with a word embedding
matrix Wr € R™*?* and a linear decoding head with weight Wieaq € R2**®. When inputting a sequence of
tokens into Transformer, we will append a starting token ts that is distinct from any token in the language
at the beginning of the sequence. Let Z € RZ**(N+1) denote the one-hot embedding of a length-N sequence,
then 77, computes for Z as

T(2) = Witeaa[fuCo- (WD) (2.46)

8The challenge of applying our theory to cross-entropy loss is that for some prefixes, their grammatical immediate continu-
ations strictly exclude certain tokens in the vocabulary (e.g. “|” cannot immediately follow “{”), so the optimal cross-entropy
loss can only be attained if some parameters are set to infinity. However, when label smoothing is added, the optima is finite
again, and analysis similar to ours could plausibly apply.

9this is just a compact way to write the standard mean subtraction operation
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2.2.2 Theory: optimal attention

Many prior works have looked for intuitive interpretations of Transformer solutions by studying the at-
tention patterns of particular heads or some individual components of a Transformer (Clark et al., 2019;
Vig & Belinkov, 2019; Dar et al., 2022). However, we show in this section why this methodology can be
insufficient even for the simple setting of Dyck. Namely, for Transformers that generalize well on Dyck
(both in-distribution and out-of-distribution), neither attention patterns nor individual local components
are guaranteed to encode structures specific for parsing Dyck. We further argue that the converse is also
insufficient: when a Transformer does produce interpretable attention patterns (suitably formalized), there
could be limitations of such interpretation as well, as discussed in Appendix 2.2.4. Together, our results
provide theoretical evidence that careful analyses (beyond heuristics) are required when interpreting the
components of a learned Transformer.

We focus on Transformers with 2 layers, which are representationally sufficient for processing Dyck (Yao
et al., 2021). We will show that even under this simplified setting, attention patterns alone are not sufficient
for interpretation. In fact, we will further restrict the set of 2-layer Transformers by requiring the first-layer
outputs to only depend on information necessary for processing Dyck:

Assumption 2.2.1 (Minimal First Layer). We consider 2-layer Transformers with a minimal first layer f;.
That is, if Z € R**(N+1) denotes the one-hot embeddings of an input sequence ts,t1,...,tx € [2k], then
we assume the (j + 1), column of the output fi(WEZ) only depends on the type and depth of tj, Vj € [N].

Assumption 2.2.1 requires the first layer output to depend only on the bracket type and depth, disre-
garding any other information such as positions; an example of such a layer is given by Yao et al. (2021).
The construction of a minimal first layer can vary, hence we directly parameterize its output instead:

Definition 2.2.2 (Minimal first layer embeddings). Given a minimal first layer, e(1,q) € R™ denotes its
output embedding of 1,4 for t € [2k], d € [D]. e(ts) € R™ is the embedding of the starting token.

It is important to note that while the minimal first layer is a strong condition, it does not weaken our
results: We will show that the function class allows for a rich set of solutions, none of which are necessarily
interpretable. Relaxing to more complex classes will only expand the solution set, and hence our conclusion
will remain valid. See Section 2.2.5.2 for more technical details.

2.2.2.1 Perfect Balance Condition: Ideal Generalization of Unbounded Length

Some prior works have tried to understand the model by inspecting the attention patterns (Ebrahimi et al.,
2020; Clark et al., 2019; Vig & Belinkov, 2019). However, we will show that the attention patterns alone
are too flexible to be helpful, even for the restricted class of a 2-layer Transformer with a minimal first layer
(Assumption 2.2.1) and even on a language as simple as Dyck. In particular, the Transformer only needs to
satisfy what we call the balanced condition:

Definition 2.2.3 (Balance condition). A 2-layer Transformer (Equation (2.46)) with a minimal first layer
(Assumption 2.2.1 and Definition 2.2.2) is said to satisfy the balance condition, if for any i, j1,j2 € [k] and
d',dy,ds € D],

(e(rai—rar) = e(raia—1)) (W) TWE (€e(r),.4,) — €(Tajs.an)) = 0. (2.47)

The following result shows that under minor conditions the balance condition is both necessary and
sufficient:

Theorem 2.2.1 (Perfect Balance). Consider a two-layer Transformer T (Equation (2.46)) with a minimal
first layer (Assumption 2.2.1) and C =0 (Equation (2.43)). Let O denote the optimal prediction scenario,
that is, when the first layer embeddings {€(7;.a) }ac[pic2k) (Definition 2.2.2) and second layer parameters
03 satisfy

0 := {e(ri,a)}acip) icpon, 0P} = arg méin L(6; Doyer), VN,

where the objective L is defined in Equation (2.40). Then,
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e Fquation (2.47) is a necessary condition of O, if W‘(,Q) satisfies PJ_W‘(})B(Tt’d) #0,Vt € [k],d € [D].

e Equation (2.47) is a sufficient condition of O, for a construction in which the set of 2k + 1 encodings
{e(m2i—1,a), €(T2i,a) }icpr) U {e(ts)} are linearly independent for any d € [D] and the projection function
g® is a 6-layer MLP '° with O(k?>D?) width.

Remark: Recall from Equation (2.43) that PP, projects to the subspace orthogonal to 11 7. The assump-
tion in the “necessary condition” part of the theorem can be intuitively understood as requiring all tokens
to have nonzero contributions to the prediction after the LayerNorm.

Recall that e(72;,—1,4/), €(T2;,a'—1) denote the first-layer outputs for a matching pair of brackets. Intu-
itively, Equation (2.47) says that since matching brackets should not affect future predictions, their embed-
dings should balance out each other. The balance condition Equation (2.47) is “perfect” in the sense that
for the theorem, the model is required to minimize the loss for any length N; we will see an approximate
version which relaxes this in Theorem 2.2.2.

Proof of the necessity of the balance condition. The key idea is reminiscent of the pumping lemma for regular
languages. For any prefix p ending with a closed bracket 755 4 for d > 1 and containing brackets of all depths
in [D], let pg be the prefix obtained by inserting S pairs of {7o;—1,4/,T2i,a'—1} for arbitrary i € [k] and
d' € [D]. Denote the projection of the unnormalized attention output by

W(Tty,dy s Tto,ds) = PL €Xp (e(nhdl)T(WI(?))TWg)e(th,dz)) W‘(/Q)e(rthdl). (2.48)

We ignored the normalization in softmax above, since the attention output will be normalized directly by
LayerNorm according to Equation (2.42).
By Equation (2.42), for any X € R™*(V+1) we have that

N1
a2(X;0?) = Z P exp (Xle,i(WI((Z))TWégz)Xlzm,(N+1)) W\(/Q)Xlzm,(N+1)-
i=1

Choosing X as the output of the first layer when the input is pg, it holds that there exists a vector
v € R™ such that for any g € N, the next-token logits given by Transformer T are

v+ B (u(T2j,d; T2i,a7—1) + (725, T2i—1,d))
llv + B (w(T24,d, T2i,ar—1) + u(T25,d, T2i—1,d/))]l5

T(ps) = Witeaag® < + e(TQj,d)) . (2.49)

The proof proceeds by showing a contradiction. Suppose w(7j a4, T2i,a'—1) + w(72;,d, T2i—1,4) 7 0. Based
on the continuity of the projection function and the LayerNorm Layer, we can show that limg .. 7 (pg)
depend only on the depths d,d’ and types 27,27 — 1,2i. However, these are not sufficient to determine the
next-token probability from pg, since the latter depends on the type of the last unmatched open bracket in
p. This contradicts the assumption that the model can minimize the loss for any length N. Hence we must
have

w(T2j,d, Toi,a —1) + u(T25,d, T2i—1,a/) = 0. (2.50)

)

Finally, as we assumed that P J_W‘(/Z e (1,4) # 0, we conclude that

PiLWyve (Toa—
(e (m2i-1,a/) — e(Tzi,dul))T (W;?))ng)e(ﬁjﬂ,d) =1In ( Wye (rare ) ”2> )

|PLWve (rei1,a) |2

where the right hand side is independent of j, d, concluding the proof for necessity. The proof of sufficiency
are given in Appendix 2.2.5.1. O

10Tn the construction, we first use 4 layers to convert the input of the projection function to a triplet indicating the type
and depth of the last token and the type of the last unmatched bracket when the last token is a closed bracket. We then use
another 2 layers to predict the next token probability based on the triplet. This construction is likely improvable.
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Note that the perfect balance condition is an orthogonal consideration to interpretability. For example,
even the uniform attention satisfies the condition and can solve Dyck: '!

Corollary 2.2.1. There exists a 2-layer Transformer with uniform attention and no positional embedding
(but with causal mask and a starting token *? ) that generates the Dyck language of arbitrary length.

Since uniform attention patterns are hardly reflective of any structure of Dyck, Corollary 2.2.1 proves
that attention patterns can be oblivious about the underlying task, violating the “faithfulness” criteria for
an interpretation (Jain & Wallace, 2019). We will further show in Section 2.2.4.1 that empirically, seemingly
structured attention patterns may not accurately represent the natural structure of the task.

2.2.2.2 Approximate Balance Condition For Finite Length Training Data

Theorem 2.2.1 assumes the model reaches the optimal loss for Dyck prefixes of any length. However, in
practice, due to finite samples and various sources of randomness, training often does not end exactly at
a population optima. In this case, the condition in Theorem 2.2.1 is not precisely met. However, even
for models that approzimately meet those conditions, we will prove that when the second-layer projection
function g(? is Lipschitz, a similar condition as in Equation (2.50) is still necessary.

We will show this by bounding the amount of deviations from the perfect balance. The idea is that
for two long prefixes that differ in only the last open bracket, correct next token prediction requires the
Transformer outputs on these prefixes to be sufficiently different, hence the part irrelevant to the prediction
(i.e. matched brackets) should not have a large contribution.

To formalize this intuition, we define two quantities: 1) Sy 4/, ; which measures the effect from one
matching pair, and 2) P, ; which measures the effect on the last position from all tokens in a prefix.

Let u be defined as in Equation (2.48). Sg 4 ; is defined as

Saarif[0P] = u(roja, Taiar—1) + u(Tojd Toi1.ar), (2.51)

which measures how much a matching pair of brackets (72; 4—1,T2i—1,4/) changes the input to the Layer-
Norm upon seeing the last token 795 4. Note that under the perfect balance condition, Sq.qr,; [0(2)] =0 by
Equation (2.50).

The second quantity Py ;[0(?)] is defined via an intermediate quantity Q(24,d,t): for any i € [k],d € [D]
and a length-(d — 1) prefix t € [2k]™1, Q(i,d, t) is defined as

Q(i,d,t) == u(r2i,a-1,ts) + Z U(Tzi,dbegd,’d/) (2.52)
1<d'<d

+ u(T25,d-1, T2i-1,d) + W(T2i,d—1, T2i,d—1),
where ty denotes the dj, entry of t. Intuitively, Q(i,d, f) denotes the unnormalized second-layer attention
output at the last position, given the input sequence & @® 79;_1,472i.d—1, 13
For results in this subsection, it suffices to consider prefixes consisting only of open brackets. Let ¢t :=
argming o, qya-1 |Q(27,d,t)||2, and let ¢’ denote the prefix that minimizes |Q(24,d,t)||2 subject to the
i€[k]

constraint that ¢ differs from ¢ at the last (i.e. (d —1),,) position, i.e.

t' =arg min Q(24,d, f’)
Fef2i-1}{C 4t Fta

HThis is verified empirically: the uniform-attention models have attention weights fix to 0 and are to fit the distribution
almost perfectly (> 99% accuracy).

12Here the starting token is necessary because otherwise, the Transformer with uniform attention will have the same outputs
for prefix p and prefix p ® p, in which @ denotes concatenation, i.e. p ® p means the same string p repeated twice.

13We use s @t to denote the concatenation of two strings s, ¢, same as in Equation (2.55)-(2.56), and use 7;7; to denote the
concatenation of two tokens 7;, 7;.
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Such choices of ¢,t' guarantees that the two prefixes differ at the last open bracket and hence must have
different next-word distributions. Finally, define

Py;[0%] = Q(2), d, t')]|2. (2.53)

In the following theorem, Py ; will be used as a quantity that will denote an upper bound on Sy 4/ ; ; (0],
meaning that the model should not be sensitive to the insertion of a matching pair of brackets.

Theorem 2.2.2 (Approximate Balance). Consider a 2-layer Transformer T (Equation (2.46)) with a min-
imal first layer (Assumption 2.2.1) and a vy-Lipschitz g for v > 0, trained on sequences of length N with
the mean squared loss (Equation (2.41)).

Suppose the loss is approximately optimal, precisely, the set of second-layer weights éj(\%) satisfies

(2 q(1 —q)
L(TIBR): Doy < (F5—)Ne
for every positive integer N > 8D and sufficiently small € > 0. Then, there exists a constant C, . p, such
that V0 < d' < D,1 <d < D,i,j € [k], it holds that

_ C D _
S O8N < =552 P 103 (2.54)

Intuitively, Theorem 2.2.2 states that when the loss £(0) is sufficiently small, Sy 4 ; ;[0®)] must be small

relative to Py ; [953)]. Inequality 2.54 can be interpreted as a relaxation of Equation (2.50), which is equivalent
to Sa,d i, [9(2)] = 0. The proof of Theorem 2.2.2 shares a similar intuition as Theorem 2.2.1 and is given
in Section 2.2.5.4.

A direct corollary of Theorem 2.2.2 additionally considers weight decay as well, in which case approximate
balance condition still holds, as the regularization strength goes to 0:

Corollary 2.2.2. Consider the setting where a Transformer with a fixed minimal first layer is trained
2

to minimize £\ = Lg(x) + )\%, which is the squared loss with \ weight decay. Suppose g of the

Transformer is a 2-layer fully connected network and g of the Transformer is a 6-layer fully connected

network. Then, there exists constant C > 0, such that if a set of parameters 0y n minimizes L3, then it
holds V0 < d' < D,1<d < D,i,j € [k] that,

C
YN, 3y, such that YA € [0,An], Sa.ari i [05N] < di,i[ofgv].

The proof relies on the continuity of £3® w.r.t. A, whose detail is at the end of Section 2.2.5.4.

2.2.2.3 Theory: indistinguishability from a single weight matrix

Another line of interpretability works involves inspecting the weight matrices of the model (Li et al., 2016; Dar
et al., 2022; Eldan & Li, 2023). Some of the investigations are done locally, neglecting the interplay between
different parts of the model. Our result in this section shows that from a representational perspective,
isolating single weights can also be misleading for interpretability. For this section only, we will assume
the linear head Wyeaq is identity for simplicity. To consider the effect of pruning, we will also extend the
parameterization of LayerNorm module (Equation (2.43)) as

PLA.
LNg[b](A).; =D iy 1-0b)A.;
C[ K )-J max{||’PJ_A:J 2,6} +( ) YA

which corresponds to a weighted residual branch; note that the original LayerNorm corresponds to LN¢[1].
4 Let 6 denote the set of parameters of this extended parameterization.
We define the nonstructural pruning '° as:

14This residue link is added for the ease of proof because it is hard to “undo” a LayerNorm. We also note that in standard
architecture like GPT-2, there is typically a residual link after LayerNorm similar to here.
15This is as opposed to structural pruning, which prunes entire rows/columns of weight matrices.
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Definition 2.2.4 (Nonstructural pruning). Under the extended parameterization, a nonstructural pruning
of a Transformer with parameters 0 is a Transformer with the same architecture and parameters 0, so that
for any weight matriz W in 0, the corresponding matriz W' in 0" satisfies W/ ; € {W; ;,0}, Vi, j.

To measure the quality of the pruning, define the e-approximation:

Definition 2.2.5 (e-approximation). Given two metric spaces A, B with the same metric || - ||, a function
f: A — B is an e-approzimation of function g with respect to that metric, if and only if,

Ve e A |[f(z) —g(@)| < ellz].
The metric, unless otherwise specified, will be the 2-norm for vectors and the 1,2-norm for matrices:
Definition 2.2.6. The 1,2-norm of a matriz A is the max row norm, i.e. [|All12 = max;cia) [|A. 2.
With these definitions, we are ready to state the main result of this section:

Theorem 2.2.3 (Indistinguishability From a Single Component). Consider any L-layer Transformer T
(Equation (2.46)) with embedding dimension m, attention dimension mg, and projection function g® as
2-layer ReLU MLP with width w, for | € [L]. ' For any § € (0,1) and N € NT, consider a 4L-
layer random Transformer Tigrge with embedding dimension miage = O(mlog(Lm/d)), attention dimension
Miarge,a = O(mgLlog %), and projection function glarge as 4-layer ReLU MLP with width wiarge =
O(max{m, w}Llog w2t

Assume that ||W |2 < 1 for every weight matric W in T, and suppose the weights are randomly sampled
as Wi j ~ U(=1,1) for every W € Tigrge. Then, with probability 1 — § over the randomness of Tigrge, there
exists a nonstructural pruning (Definition 2.2.4) of Tiarge, denoted as ﬁarge, which e-approximates T with
respect to || - ||1.2 for any input X € R™*N satisfying || X |12 < 1. 17

Proof sketch: connection to Lottery Tickets. Theorem 2.2.3 can be interpreted as a lottery ticket
hypothesis (Frankle & Carbin, 2018; Malach et al., 2020) for randomly initialized Transformers, which can be
of independent interest. The proof repeatedly uses an extension of Theorem 1 of Pensia et al. (2020), where
it 1) first prunes the (21 — 1)-th and 2i-th layers of Tjage to approximate 7! for each [ € [L] (Lemma 2.2.6),
and 2) then prunes the remaining 2L 4 1 to 4L-th layers of Tjage to approximate the identity function. The
full proof is deferred to Section 2.2.5.5.

Noting that the layers used to approximate the identity can appear at arbitrary depth in Tjaree, a direct
corollary of Theorem 2.2.3 is that one cannot distinguish between two functionally different Transformers
by inspecting any single weight matrix only:

Corollary 2.2.3. Let 71,72 and Tigrge follow the same definition and assumptions as T and Tigrge in
Theorem 2.2.3. Pick any weight matric W in Tigrge, then with probability 1 — 6 over the randomness of
Tiarge, there exist two Transformers Trarge,1; TLarge,2 PTUned from Tigrge, such that Trarge,i €-approzimate T;,
Vi € {1,2}, and Trarge,1, Trarge,2 coincide on the pruned versions of W.

Hence, one should be cautious when using methods based solely on individual components to interpret
the overall function of a Transformer.

2.2.3 Experiments

Our theory in Section 2.2.2 proves the existence of abundant non-stack-like attention patterns, all of which
suffice for (near-)optimal generalization on Dyck. However, could it be that stack-like solutions are more
frequently discovered empirically, due to potential implicit biases in the architecture and the training proce-
dure? In this section, we show there is no evidence for such implicit bias in standard training (Section 2.2.3.2).
Additionally, we propose a regularization term based on the balance condition (Theorem 2.2.1), which leads
to better length generalization (Section 2.2.3.3).

16For notational convenience, we assume all layers share the same dimensions and projection functions. The proof can be
trivially extended to cases where the dimensions and projection functions are different.

17Here the input and output dimension of 'ﬁarge is actually mjarge Which is larger than m; additional dimensions are padded
with zeroes. The norm constraint can be easily extended to an arbitrary constant.
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Figure 2.12: Second-layer attention patterns of two-layer Transformers with a minimal first
layer: (a), (b) are based on embedding 2.55 with different learning rates, where the attention patterns
show much variance as Theorem 2.2.1 predicts. (c), (d) are based on embedding 2.57 and 2.56. Different
embedding functions lead to diverse attention patterns, most of which are not stack-like.

2.2.3.1 Training Details

For Figure 2.11, we train 2-layer standard GPT on Dyck, , with sequence length no longer than 28. For
(a), we train with hidden dimension and network width 200 and learning rate 3e-4. For (b), (c), (d), we train
with hidden dimension and FFN width 50 and learning rate 3e-3.

For Figure 2.12, for (a), we train 1-layer transformer without residual link, FFN and the final LayerNorm
before the linear head. The hidden dimensions and FFN widths are fixed as 500. For (a), we train the
network with learning rate le-2 and for (b), (c), (d) we train the network with learning rate 3e-3.

2.2.3.2 Different Attention Patterns Can Be Learned To Generate Dyck

We empirically verify our theoretical findings that Dyck solutions can give rise to a variety of attention
patterns, by evaluating the accuracy of predicting the last bracket of a prefix (Equation 2.38) given the
rest of the prefix. We only consider prefixes ending with a closing bracket, so that there exists a unique
correct closing bracket which a correct parser should be able to determine. The experiments in this section
are based on Transformers with 2 layers and 1 head, hidden dimension 50 and embedding dimension 50,
trained using Adam. Additional results for three-layer Transformers are provided in Section 2.2.3.5. The
training data consists of valid Dyck, 4 sequences of length less than 28 generated with ¢ = 0.5. When tested
in-distribution, all models are able to achieve > 97% accuracy.

Variation in attention patterns First, as a response to (Q1), we observe that attention patterns of
Transformers trained on Dyck are not always stack-like (Figure 2.11). In fact, the attention patterns differ
even across different random initialization. Moreover, while Theorem 2.2.1 implies that position encoding
is not necessary for a Transformer to generate Dyck, '® adding the position encoding '® does affect the
attention patterns (Figures 2.11c and 2.11d).

Specifically, for 2-layer Transformers with a minimal first layer, we experiment with three different types
of embeddings e: let 0; denote the one-hot embedding where o.[t] = 1,

e(Tt,4) = 0(t—1)D4d € R**P, (2.55)
e(7,a) = 0y B og € RP*HP, (2.56)
e(Tt,d) = 0, @ [cos (0g) ,sin (04)] € R***+2 0, = arctan (d/(D + 2 — d)), (2.57)

where @& denotes vector concatenation. Equation (2.55) is the standard one-hot embedding for 7 q; Equa-
tion (2.56) is the concatenation of one-hot embedding of types and depths. Finally, Equation (2.57) is the

18This is verified empirically, as Transformers with no positional encoding achieve > 97% accuracy.
19We use the linear positional encoding following Yao et al. (2021): for the i, position, the encoding is defined to be
ep(t) := i/Tmax for some Tiax-.
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embedding constructed in Yao et al. (2021). As shown in Figure 2.12, the attention patterns learned by
Transformers exhibit large variance between different choices of architectures and learning rates, and most
learned attention patterns are not stack-like.

Quantifying the variation We now quantify the variation in attention by comparing across multi-
ple random initializations. We define the attention variation between two attention patterns A, A as
Variation(Ay, As) = ||A; — As||%, for A1, Ay € RN*N over an length-N input sequence. We report the
average attention variation of each architecture based on 40 random initializations.

On the prefix [[[[J]]](((()))) ?°, we observe that for standard two layer training, the average attention
variation is 2.20 with linear position embedding, and is 2.27 without position embedding. Both numbers
are close to the random baseline value of 2.85 2!, showing that the attention head learned by different
initializations indeed tend to be very different. We also experiment with Transformer with a minimal first
layer and the embedding in Equation (2.55), where the average variation is reduced to 0.24. We hypothesize
that the structural constraints in this setting provide sufficiently strong inductive bias that limit the variation.

2.2.3.3 Guiding The Transformer To Learn Balanced Attention

In our experiments, we observe that although models learned via standard training that can generalize well in
distribution, the length generalization performance is far from optimal. This implies that the models do not
correctly identify the parsing algorithm for Dyck when learning from finite samples. A natural question is:
can we guide Transformers towards correct algorithms, as evidenced by improved generalization performance
on longer Dyck sequences?

In the following, we measure length generalization performance by the model accuracy on valid Dyck
prefixes with length randomly sampled from 400 to 500, which corresponds to around 16 times the length of
the training sequences. Inspired by results in Section 2.2.2, we propose a regularization term to encourage
more balanced attentions, which leads to better length generalization.

Regularizing for balance violation improves length generalization accuracy We denote the bal-
ance violation of a Transformer as 8 := Eq 4/ ; j [Sa,a,5,j/Pa ;] for S, P defined in Equations (2.51) and (2.53).
Theorem 2.2.1 predicts that for models with a minimal first layer, perfect length generalization requires 8
to be zero. Inspired by this observation, we design a contrastive training objective to reduce the balance
violation, which ideally would lead to improved length generalization. Specifically, let p, denote a prefix
of r nested pairs of brackets of for r ~ U([D]), and let T (s | p, © s) denote the logits for s when T takes
as input the concatenation of p,. and s. We define the contrastive regularization term Rcontrastive(s) as the

20This prefix contains brackets of all types and depths. Results with different prefixes are provided in Section 2.2.3.5.
21The random baseline is calculated by generating purely random attention patterns (from the simplex, i.e. random square
matrices s.t. each row sums up to 1) and calculate the average attention variation between them.
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mean squared error between the logits of T(s) and T (s | p- @ s), taking expectation over r and p,.:

Ernv(n))p, IT(s | e ®5) = T(s)|%] - (2.58)

Following the same intuition as in the proof of Theorem 2.2.1, if the model can perfectly length-generalize,
then the contrastive loss will be zero. Models trained with contrastive loss show reduced balance violation
as well as improved length generalization performance, as shown in Figure 2.13.

2.2.3.4 Results on Dyck prefixes

In the above experimental results, we perform experiments on complete Dyck sequences. In this section, we
present additional experiments on Dyck prefizes Dyck, 4 o5. Note that emphcomplete Dyck is a special case
of Dyck prefizes.

Attention Patterns We first perform experiments on attention patterns. The qualitative results are
shown in Figures 2.14 and 2.16. We can observe that the attention patterns are still diverse and do not
commonly show stack-like patterns. We also calculate the attention variation 22, and find that the attention
variation is 0.34, based on 30 models with a minimal first layer and different random seeds. In contrast, for
models with a standard first layer and without position encodings, the attention variation is surprisingly high,
reaching 14.51. The high value is caused by the large distance between attention patterns like Figure 2.14
(c) and (d); that is, between patterns that attend more to the current positions, and patterns that attend
more heavily to the initial position. The difference is even increased when we consider longer sequence
(Figure 2.15). Similarly, the variation is also high for models with linear position embedding, reaching 11.92.
This shows that the attention patterns are still diverse and do not commonly show stack-like patterns.
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Embedding Embedding Embedding Embedding

Figure 2.14: Second-layer attention patterns of two-layer Transformers on Dyck Prefix: Models
for (a),(b) are under the same setup but different random seeds; similarly for (c),(d). All models reach
> 97% accuracy (defined in Section 2.2.3.2). In the heatmap, darker color indicates larger value. As we can
observe, the attention patterns still show much variance.

Balanced Violations We also test the relationship with the balance violation with length generalization
on Dyck prefixes, similar to Figure 2.13. We observe that although the negative correlation is not presented
as in the case of Dyck sequences, contrastive regularization still helps reduce the balance violation and
significantly improve the length generalization performance. This shows that for Dyck prefixes, while the
balance violation may not be predictive of the length generalization performance, it is still possible to
reduce the balance violation and improve the length generalization performance. The results are shown
in Figure 2.17.

22Recall from Section 2.2.3.2 that the attention variation between two attention patterns A, Ay € RNXN ig defined as
Variation(A1, A2) = || A1 — Az||%.
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Figure 2.15: Second-layer attention patterns of two-layer Transformers on Longer Dyck Prefix:
Models for (a),(b) are under the same setup but different random seeds. All models reach > 97% accuracy
(defined in Section 2.2.3.2). In the heatmap, darker color indicates larger value.
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Figure 2.16: Second-layer attention patterns of two-layer Transformers with a minimal first
layer: (a), (b) are based on embedding 2.55 with different random seeds. (c), (d) are based on embedding
2.57 and 2.56. Different embedding functions lead to diverse attention patterns, most of which are not
stack-like.
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2.2.3.5 Additional variants of Dyck languages and architectures

We include more experiments on the attention variation of different Dyck languages and architectures. The
results are summarized in Table 2.6.

#types k | Grammar depth m | #Layers [ | Layer 1 Layer 2 Layer 3

2 4 2 0.0470.006) | 7-721(0.908)

2 4 3 0.070(()‘013) 5-072(0.645) 24-063(1.166)
2 8 2 0.087(0.012) | 7-583(0.961)

2 8 3 0.059(0.011) | 5-560(0.714) | 23.590(0.829)
3 4 2 0.182(0.024) | 9-313(0.815)

3 8 2 0.178(0.028) | 7-000(0.884)

3 8 3 0154(0036) 6.280(0'711) 25'451(0.871)

Table 2.6: Extended attention variation. “Layer i” shows the mean (and standard deviation) of the
attention variation on layer ¢, calculated on 40 sentences. The embedding width and FFN width are fixed
as 50 in the experiments. We train using sentences from Dyck, ,, of length less than 28 and test the
variation on 40 randomly sampled sentences with length 19 (the sampled sentence is fixed across different
architectures). The random attention variation baseline here is 3.33. The numbers in this table are different
from previous discussion, since the results here are from a slightly different architecture than the standard
GPT-2 architecture: a residue link is appended after the LayerNorm to match our theory better. The models
are trained to convergence and have in-distribution accuracy higher than 97%.

Attention pattern visualization for three-layer experiments. The first-layer attention is close to
uniform, while the higher-layer attention shows no clear patterns.

(a) seed =0 (b) seed =1 (c) seed =2 (d) seed =3

Figure 2.18: Third-layer attention. The test sentence is fixed and the attention patterns learned by
different 3-layer models with the same architectures on the same dataset show large variation visually.
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2.2.4 Discussion: are interpretable attention patterns useful?

Our results Section 2.2.2 and Section 2.2.3.2 demonstrate that Transformers are sufficiently expressive that
a (near-)optimal loss on Dyck languages can be achieved by a variety of attention patterns, many of which
may not be interpretable.

However, multiple prior works have shown that for multi-layer multi-head Transformers trained on nat-
ural language datasets, it is often possible to locate attention heads that produce interpretable attention
patterns (Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasovié¢, 2021). Hence, it is also illustrative to
consider the “converse question” of (Q1): when some attention heads do learn to produce attention patterns
that suggest intuitive interpretations, what benefits can they bring?

We discuss this through two perspectives:

e Reliability of interpretation: Is the Transformer necessarily implementing a solution consistent with
such interpretation based on the attention patterns? (Section 2.2.4.1)

e Usefulness for task performance: Are those interpretable attention heads more important for the task
than other uninterpretable attention heads? (Section 2.2.4.2)

We present preliminary analysis on these questions, and motivate future works on the interpretability of
attention patterns using rigorous theoretical analysis and carefully designed experiments.

2.2.4.1 Can interpretable attention patterns be misleading?

We show through a simple argument that interpretations based on attention patterns can sometimes be
misleading, as we formalize in the following proposition:

Proposition 2.2.1. Consider an L-layer Transformer T (Equation (2.46)). For any Wi((l), W( ) € Rmaxm (le
[L]), there exist Wiead € R?**Y and bgeaq € R?* such that T(Z) = 0,VZ.

While its proof is trivial (simply setting Wyeada = 0 and byeaqa = 0 suffices), Proposition 2.2.1 implies
that the solution represented by the Transformer could possibly be independent of the attention patterns in
all the layers (1 through [). Hence, it could be misleading to interpret Transformer solutions solely based on
these attention patterns.

Empirically, Transformers trained on Dyck indeed sometimes produce misleading attention patterns.

We present one representative example in Figure 2.19, and Figure 2.20, in which all interpretable attention
patterns are misleading.

We also present additional results in Figure 2.21, in which some interpretable attention patterns are
misleading, and some are not.

2=

Figure 2.19: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should be exactly
the same as the input, the attention patterns in some layers seem interpretable: (layer 2) attending to bracket
type a) or (b; (layer 3) attending to closing bracketss; (layer 4) neve attending to bracket type a); However,
none of them are informative of the copying task. This is possible because Transformers can use the residual
connections (or weights MLPs or the value matrices) to solve copying, bypassing the need of using attention.
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Similar message has been conveyed in prior works Bolukbasi et al. (2021), and future works may aim to
achieve the faithfulness, completeness, and minimality conditions in Wang et al. (2023).
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Figure 2.20: Even interpretable attention patterns can be misleading: For a 1-layer Transformer
trained on Dyck with the copying task (with > 90% validation accuracy), i.e. the output should be exactly
the same as the input, the attention pattern seems to be attending to closing brackets only, but that is not
informative of the copying task.
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Figure 2.21: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should be exactly
the same as the input, both types of attention patterns are common: (a) attending to closing bracketss,
which is uninformative of the copying task; (b) attending to the current position, which solves the copying
task.
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2.2.4.2 Are attention heads with interpretable patterns more important?

Kovaleva et al. (2019) observes that, when the “importance” of an attention head is defined as the perfor-
mance drop the model suffers when the head is disabled, then for most tasks they test, the most important
attention head in each layer does not tend to be interpretable.

However, experiments by Voita et al. (2019) led to a seemingly contradictory observation: when attention
heads are systematically pruned by finetuning the Transformer with a relaxation of Ly-penalty (i.e. encour-
aging the number of remaining attention heads to be small), most remaining attention heads that survive
the pruning can be associated with certain functionalities such as positional, syntactic, or attending to rare
tokens.

These works seem to bring mixed conclusions to our question: are interpretable attention heads more
important for a task than uninterpretable ones? We interpret these results by conjecturing that the definition
of “importance” (reflected in their experimental design) plays a crucial role:

e When the importance of an attention head is defined treating all other attention heads as fized, motivating
experiments that prune/disable certain heads while keeping other heads unchanged (Michel et al., 2019;
Kovaleva et al., 2019), the conclusion may be mostly pessimistic: mostly no strong connection between
interpretability and importance.

e On the other hand, when the importance of an attention head is defined allowing all other attention heads
to adapt to its change, motivating experiments that jointly optimize all attention heads while penalizing
the number of heads (Voita et al., 2019), the conclusion may be more optimistic: the heads obtained as a
result of this optimization tend to be interpretable.

We think the following trade-offs apply:

e On one hand, the latter setting is more practical, since Transformers are typically not trained to explicitly
ensure that the model performs well when a single attention head is individually disabled; rather, it would
be more intuitive to think of a group of attention heads as jointly representing some transformation, so
when one head is disabled, other heads should be fine-tuned to adapt to the change.

e On the other hand, when all other heads change too much during such fine-tuning, the resulting set of
attention heads no longer admit an unambiguous one-to-one map with the original set of (unpruned)
attention heads. As a result, the interpretability and importance obtained from the set of pruned heads
do not necessarily imply those properties of the original heads.

A comprehensive study of this question involves multi-head extensions of our theoretical results (Sec-
tion 2.2.2), and carefully-designed experiments that take the above-mentioned trade-offs into consideration.
We think these directions are interesting future work.

2.2.5 Omitted Proofs in Section 2.2.2
2.2.5.1 Proof of Theorem 2.2.1

The key step was outlined in Section 2.2.2. We will restate the proof rigorously here.

Theorem 2.2.1 (Perfect Balance). Consider a two-layer Transformer T (Equation (2.46)) with a minimal
first layer (Assumption 2.2.1) and C =0 (Equation (2.43)). Let O denote the optimal prediction scenario,
that is, when the first layer embeddings {e(7; ) }ac[p)ic2k) (Definition 2.2.2) and second layer parameters
03 satisfy

0 := {e(7i.0)}aeiplicpn), 07} = arg méin L(6; Doyer), VN,

where the objective L is defined in Equation (2.40). Then,
e Equation (2.47) is a necessary condition of O, if W‘(f) satisfies PLW‘(/?)G(TW) #0,Vt € [k],d € [D].
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e Fquation (2.47) is a sufficient condition of O, for a construction in which the set of 2k + 1 encodings
{e(m2i—1,a), €(T2i,a) yicr) U {e(ts)} are linearly independent for any d € [D] and the projection function
g® is a 6-layer MLP % with O(k*D?) width.

Proof. We prove the sufficiency of the balanced condition below; the proof for the necessity has been
given in Section 2.2.2.

We will denote the dimension of e(r; 4) as m.

For any ¢ € [k],d’ € [D], by Equation (2.47), we can assume that there exists a; ¢ € R such that for all
j € |k], d € [D], it holds that,

g 2 (e (risra) —e(raia—1) (W)W e (1254). (2.59)

We will first define the possible index sets of 7,4 as T = {(2t,d) |t € [k],0 <d <D -1} U{(2t—1,4d) |
t € [k],1 <d < D}, and we will define the rank of (¢,d) as

r(t,d) = #{(t1,d1) | t1 <torty =t,dy <d,(t1,dy) € T} (2.60)

Then it is clear that r(¢,d) is a one-to-one mapping from Z to [2kD]. We will then define the collection of
all e(¢,q) as E, satisfying that E. .« ) = €(74,4), E. okpy1 = €(ts)-

Because e(7,4) are linearly independent, for any (i,d) # (4,d") € Z, it holds that e(r; 4) — e(7; 4) # 0.
Then based on Lemma 2.2.16, there exists a set of orthonormal vectors {b;};cim—2], such that for any
(i,d), (j,d') € Z, it holds that

m—2
> bib (e(ria) — e(rjar)) # (e(ria) — e(rj.a) (2.61)
i—1
b/ 1™ =0 (2.62)
We will further construct the matrix O as 2*

O..2t,d-1) = —exp(as,a)biptd,
O.r2t-1,d) = btD+a- (2.63)
O.2kp+1 =0.

for ¢t € [k],d € [D].
We can then choose W‘(,Z) € R™*™ such that

WPE=0 (2.64)

Such W‘(/z) is guaranteed to exist, because F is of full column rank by the linear independence assumption.
Now based on this construction, we will show that the last column of unnormalized attention output
(Equation (2.45)) depends only on the sequence of unmatched brackets when the last token is a closed
bracket with depth d greater than or equal to 1. 2°
For any valid Dyck prefix p of length n ending with a closed bracket 7; 4 satisfying d > 1, suppose the
list of unmatched open brackets in p is [7'23'171,17 T2ja—1,25- - 7T2jd*1,d]’ Then, the remaining tokens in p are

23In the construction, we first use 4 layers to convert the input of the projection function to a triplet indicating the type
and depth of the last token and the type of the last unmatched bracket when the last token is a closed bracket. We then use
another 2 layers to predict the next token probability based on the triplet. This construction is likely improvable.

24Recall the definition of r in Equation (2.60). Comparing 0., (2t,d—1) and O, ;(2;_1,q): the idea is that a pair of matched
brackets are represented by the same direction (i.e. the direction along b;p44), just with different norms.

25When depth d = 0, all brackets are matched, the groundtruth next-token distribution is the prior distribution over the
open brackets. Because in Equation (2.47) di,d2 > 1, we handle the depth d = 0 case separately in Case 2 “t is even, d = 0”
towards the end of this proof. In the following, we focus on cases with depth d > 1.
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pairs of matching brackets. Denote them by 7o, 1.4, , T2t,.d,—1 for k € [K]. Then the input of the second
layer of Transformer X, up to a permutation is

XP= [6(72t1711d1)7 6(72t17d171)7 ) e(TQtK*LdK)v e(T2tK,dK*1)7 8(7—2j1*171)7 s e(TQJ'd*Ld% e(ts)].
We will focus on the last column of the unnormalized attention output

@(X:0%), 0 = PL WX 5 (C- WX WS D))

.o )

s,n+1
n+1
2 2 2
=3 PP o ((WETORX) )
s=1 o
n+1
=Y PP X) s exp (W X)W X))
s=1
K d
=Y (WTaty 15 T2j.a) T (T2t 1dys T2g.a)) + Y U(T25, 16, T25.a) (2.65)
k=1 s=1

in which the last line is by definition of u(-,-) in Equation (2.48).
For any indices s, js, j, d, we can simplify the expression for u(7o;, 1., T2j,4) by observing that

u(T2j,-1,5: T2j,4) = P1 exp (6(721'5—1@)T(W;?))TWS)@(T%@)) WiPe(ra,-1.5) by Bq 2.48
=P, exp (e(ngS_LS)T(W}?))TWéQ)e(ng,d)) O.,(2j.-1,5y by Eq2.64
=P exp (e(szS,LS)T(Wl(?))TWé;)e(ng,d)) bj.p+s by Equation (2.63)
— exp (e(TQjS_LS)T(W}f))TWg)e(rzj,d)) bi.pss by Equation (2.62). (2.66)

Likewise by Equation (2.48), Equation (2.64), Equation (2.63), Equation (2.62)

(T2, 5—1,T2j,d) = — €XP (6(7-2.]‘5’571)1—(WI(?))TWCF;)E(TQJ‘,d)) exp(a;,,s)bj. D+s (2.67)
By Equation (2.66) and Equation (2.67),
u(Taty dy—15 T25,d) + W(T2t, —1,ds > T25.d)
o (1) V)W)
— exp (6(Tth,dk—1)T(W;(2))TW¢(92)6(T2]‘,¢1)) exp(ae,,dy, )bty D+
= [exp (e(ra-1.0) W) W e(r250))

.
— exp (e(Tth,dk—l) (WI((Z))TWéQ)e(TQj,d) + atk,dk) bt Dty
_ 0 (2.68)

in which the last line is because the terms inside [ : ] cancel each other, because by Equation (2.59)

T

e(thkadk) (W;(f))TWéf)e(sz,d) = €(T2tk,dkf1)T(Wg))TWé;)e(Dj,d) + Gy, dy
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Plugging Equation (2.68) and Equation (2.66) into Equation (2.65),

d
a2(X;0@)). py1 = ZU(Tstfl,svTQj,d)
s=1
¢ T
=Y exp (elrs1.0) W) WS e(r50) ) Do (2.69)
s=1

Therefore, Gz (X;60?). 41 lies in the span of {b;, pys}se(q- We will from now on assume
<LN(6‘2 (X7 9(2)>:,n>7 bj5D+s> > M

for all possible choices of p ending with a closed bracket with grammar depth at least 1 for some constant
M € (0,1). Here M exists because

exp (e(Tza‘s—Ls)T(Wz(?))TWg)e(szyd))
\/ZZ'—1 exp (26 (ngg_l,s)T(W[(f))TWéf)e(ng,d))

for all possible combination of j, k € [d] and s, and there are only finite number of such combinations.

(LN(a2(X;6®),0), bj, ps) = >0,

Constructing the projection function g(? We will finally show there exists a 6-layer MLP g(®) with
width O(D?k?), such that for any dyck prefix ¢ with n being the length of ¢, X being the input of the
second layer given ¢ and P(p) being the groundtruth next-token probability vector given ¢ 2%, it holds that,
g® (LN(az(X;0®). ni1) + Xeny1) = P(q).

We will assume the last token of ¢ is 74 4. Suppose that b,,_1, b, is an orthonormal basis of the normal
space of span{by, .., b,,_2}, then we can first observe that for U = b,,,b} + b,,_1b} | it holds that

U(LN(ag(X;0®). 1) + Xeni1) = Ue(rr.a)-

is unique for every t,d. Then based on Lemma 2.2.15, there exists a 2-layer MLP with width 4kD that maps
U(LN(az(X;0®). i1)+X. ny1) to (t,d). This implies that there exists a 2-layer MLP with width 4kD that
maps LN((ax(X;0®). ) + X.., to (¢, d).

Further, let matrix U’ = ijl o;b] where o is the Dk dimension one-hot vector with the j—th entries

being 1. Then when ¢ is an even number and d > 1, based on Equation (2.69) and the definition of M,

=0, Top_1.4 is not an unmatched open brackets in p.
U'(LN(a2(X;0®). ni1) + Xong1)eprar b P . P
> M, Top_1,q is an unmatched open brackets in p.

Then based on Lemma 2.2.18, there exists 2-layer MLP with width kD that operates on

(U/(LN(@(X; 02). y1) + X:m-i—l)t’D—i—d’)t/e[k]
for a fixed d’ and output the nonzero index in it, if such index exists. Hence, we can choose the weight of
the first and second layer of g(2), such that the output of the second layer is (t,d) ® x, where 224 — 1 is the
type of the unmatched open brackets with grammar depth d’ if ¢ is an even number, d > d’ > 1.

Now based on Lemma 2.2.17, we can choose the third and fourth layer of g(® to perform indexing and
let the output of the fourth layer be (¢,d,y), where y = 24 when d > 1. 2" Notice that this triplet contains
all the necessary information to infer P(g) because it uniquely determines the type of last unmatched open
bracket,

26That is P(q): = P(The next token of q has type t)
2"When d = 0, y does not matter since there is no unmatched open brackets.
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1. If t is odd (i.e. the last bracket is open), and then the type of last unmatched open bracket is ¢.
2. If t is even and d = 0, then all the brackets is matched.
3. If t is even and d > 1, then the type of last unmatched bracket is y.

One may finally construct a 2-layer MLP f that maps (¢,d,y) to the corresponding probability vector. As
the input of g has bounded norm,

JEN(@2(X50 ). 1) + X ll2 < 1+ maxera)]l

the output of the constructed 4 layers also has a bounded norm. Hence, we can assume there exists constant
M’ > 1, such that y < M’. Now we will discuss by the value of ¢,

1. tis odd, then one can neglect the third dimension and the correct probability is determined by d and can
be represented by a width-2D network based on Lemma 2.2.15.

2. t is even. When d = 0, one can construct a width-1 network mapping any y to the correct probability
distribution as it is unique. When d > 1, one can construct a width-2K network mapping z4 € [K] to
the correct probability distribution based on Lemma 2.2.15. Then by Lemma 2.2.19, one can construct a
width-4K D network that maps (d,y) to the corresponding probability distribution.

Putting together and using Lemma 2.2.19 again, one can construct a width-8 K2 D network that maps (¢, d, y)
to the correct next token probability prediction. The proof is then completed.
O

2.2.5.2 Implication of our results to larger models

Recall that the main conclusion of our paper is that interpretability based on a single Transformer component
(e.g. an attention pattern or an MLP block) can be unreliable, since the set of optimal solutions can give
rise to a large set of attention patterns and pruned MLP weights. Section 2.2.2 has demonstrated this with
simple two-layer Transformers. The simplicity of this architecture choice is intentional, since our theory on
two-layer Transformers directly implies similar conclusions for larger models, as we discuss in this section.

Intuitively, when moving to more complex architectures, the set of solutions can only grow and complicate
interpretability further, hence our main conclusion still stands. For example, even though Theorem 2.2.1 and
Theorem 2.2.2 are stated for 2-layer Transformers only, the constructed solutions can be trivially extended to
multiple layers by e.g. letting the higher layers perform the identity function, or removing Assumption 2.2.1
and allowing the model to flexibly use or ignore positional information. More precisely:

e For Transformers with greater width, our Theorem 2.2.1 applies directly, since the construction does not
depend on the width.

e For Transformers with greater depth, it suffices to show that additional layers can perform the identity
function. To this end, one can utilize the residue link in the Transformer layer and choose the value
matrix to be zero and the FFN (with or without residue connection) to be identity. This construction is
implicitly assuming LayerNorm will map zero vector to zero vector, which is true for the common PyTorch
implementation and for our paper. Also, it is worth noting that this holds for both the architecture we
considered in the paper and the standard GPT-2 architecture.

2.2.5.3 Proof of Corollary 2.2.1

Corollary 2.2.1. There exists a 2-layer Transformer with uniform attention and no positional embedding
(but with causal mask and a starting token °° ) that generates the Dyck language of arbitrary length.

28Here the starting token is necessary because otherwise, the Transformer with uniform attention will have the same outputs
for prefix p and prefix p @ p, in which @ denotes concatenation, i.e. p @ p means the same string p repeated twice.
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Proof. We will first construct a uniform attention first layer that can generate the embedding in Equa-
tion (2.55). Suppose Z is the one-hot embeddings of a prefix p of length n, where each token of type ¢ for
t € [2k] is encoded as o; and the starting token is encoded as 0254+1. Then it holds that

2%
[ZU (C : (WE)Z)T(WS)Z»)] = Z #{token of type ¢ in p}o; + O2+1. (2.70)
LN+ X
=1
Then we can choose W‘(/l) such that for z € R2F+1,

k
(W‘(/l)l')l = Z T2i—1 — T24,
i=1
(Wx(/l)I)Q =T2k+1,
(W), =0,vi > 3.
Hence it holds That
|:W‘(/1)ZO'(C . (WE)Z)T(WS)Z)))] = #{depth of p,}o; + 0s.

Ln

It is then easy to check LN (|:W‘(/1)ZO'<C -( I((I)Z)T(WS)Z)))]
by the type and depth of p, without repetition. Then by Lemma 2.2.15, there exists a 2-layer ReLU
MLP with width O(k2D?) that can map LN ({W‘S”Za(c : (W}Q)Z)T(WS)Z)))LH) 4 Z.ps1 to the

) + Z. n+1 is uniquely determined
1+1

0

embedding in Equation (2.55). It is then easy to see that the condition in Theorem 2.2.1 is satisfied as

WI(? ) = Wé;) = 0. Hence the second layer can be constructed to let the Transformer to output the correct
next token probability. O

2.2.5.4 Proof of Theorem 2.2.2

Theorem 2.2.2 (Approximate Balance). Consider a 2-layer Transformer T (Equation (2.46)) with a min-
imal first layer (Assumption 2.2.1) and a vy-Lipschitz g for v > 0, trained on sequences of length N with
the mean squared loss (Equation (2.41)).

Suppose the loss is approximately optimal, precisely, the set of second-layer weights éj(\?) satisfies

72 q(1 —q)
L(TIBR). Poye) < (Fg—)Ne
for every positive integer N > 8D and sufficiently small e > 0. Then, there exists a constant C ¢ p, such
that V0 < d' < D,1 <d < D,i,j € [k], it holds that

_ C e.D _
S O8N < =552 P[0 (2.54)

Proof. The key idea is similar to the proof of necessity in Theorem 2.2.1. That is, we will construct two
input sequences with different next-word distributions, and show that the approximate balance condition
must hold so that inserting (a bounded number of) pairs of matching brackets does not collapse the two
predicted distributions given by the Transformer.

Constructing the input sequences.

Let t := arg minfe[kld—l |Q(24,d,t)||2, and let ¥ denote the prefix that minimizes ||Q(24,d,t)||2 subject
to the constraint that ¢ must differ from ¢ in the last (i.e. (d —1),,) position, i.e.

t =arg min Q(27,d, f’)
t'elk]d=1t),_ F#tg
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The motivation for such choices of &,t is that since they differ at least by the last position which is an open
bracket, they must lead to different next-word distributions. Note also that Py ;[0®] = ||Q(24,d,t)].

With the above definition of ¢,¢', consider two valid Dyck prefixes p; and ps with length no longer than
N, defined as follows: for any d,d’ € [D],i,j € [k], consider a common prefix

P=T2i—1---T2i—1 T2;—172; - - - T2i—1724 T2 - -T2

—
d’ open brackets (| ¥ |—d’—d—1) pairs d’ closed brackets
where 7; denotes a token with type ¢ whose depth is implicit from the context. Set pi,ps as

pP1=pDtD 12 1725,
p2=pD t ) T2;—1T2;5-

That is, p1, pe differ in the last unmatched open bracket. In the following, we will show that the approximate
balance condition must hold for the predictions on p1,ps to be sufficiently different.
Bounding the difference in Transformer outputs. For a Transformer 7 with second layer param-

eters éﬁ), with Pext(p) indicating the next token probability given a prefix p, by triangle inequality, its
outputs on p1, po satisfy

110 1(p1) = T16R)(p2) 2
> ”Pncxt(pl) - Pncxt(p2)||2 - (||T[9_J(3)](p1) - Pncxt(p1)||2 + ||T[§J(3)](p2) - Pncxt(pZ)”Z) (2~71)

Bounding each term separately:
1 1
||Pnext(p1) - 7)rxe})(t(pQ)||2 Z Enpnext(pl) - Pnext(pQ)”l = ETV(pIaZE)

where TV(p1,p2) denotes the TV distance in the next-word distributions from p; and ps, and

T2 (1) — Prext(p1)]|2 < Ve

because E(’T[ég\?)], Dpyek) < q(;q) )N e and the probability of sampling any prefix p is greater than (q(;q) W,
implying that the per sample next-token squared loss on prefix p is no greater than e. Likewise
ITIOD)(P2) — Paest (p2)ll2 < Ve
Plugging into Equation (2.71),
5(2) 5(2) 1
IT1081(p1) = TN 1(p2)ll2 = ETV(m,pz) —2Ve (2.72)

Define by A, the contribution of p to the attention output (before LayerNorm) of the last position of
p1,p2:

Ay = Z (w(24,d—1, Toi,ar—1) + w(T25,d—1, T2i—1,a7))
1<d <d’

N —2d' —2d
+ ==

5 | (u(24,d0—1, T2i,0r) + u(T2j,d—1, T2i—1,d/+1)) - (2.73)

The attention outputs (before LayerNorm) of pq, pe, denoted by A(p;) and A(ps), satisfy that

PLA(p1) = PL(Ap + Q(24,d,t)),
PLA(p2) = PL(A, +Q(24,d,t)). (2.74)

81



Note that for any prefix p’,

TIOV)() = g (LNc(PLAW))) + e(r2i.a) (2.75)
g ( PLAW) e(Toi a
== ([pagny) * o) (270

where g is y-Lipschitz. Hence by Equation (2.76) and Equation (2.72), we have

H = PLA (p1) P A(p2) H TV( pl,p2) 2\/e

— Q1 2.77
A~ TPLAG) o e (2.77)

Here the TV distance is lower bounded by a constant due to the construction of p1, ps, where t,t" differ at
the last open bracket.

We will then show that A, should not be too much larger in norm than Q(27,d,t) or Q(2j,d,t’). First,
let’s state a helper lemma about the contrapositive:

Lemma 2.2.1. For any € > 0, there exists a constant R, such that for any a,b € R and any r € R? such
that ||r]|2 > R. - max{|al|2, ||b]|2}, it holds that

H a-+r b+r H
la+rlla [o+7[2ll2 ™

Proof. Denote 1 := max{||al|2, ||b||2}. Then R, := 47% + 1 suffices:

H r+a  r+b H Il ‘ llall lll
lr+allz r+bl211 I+ aH ||7’ +o[[1 - r+all  r+ 0l
1 1 279
S )+
el =ro el +ro/ [l =70
_ 20 ( Itdl +1) < 4ry < 4ry <e
7l =70 Nirll 4+ 7o 7l =70 = Re =0
O
Consider Equation (2.77), Equation (2.74), and Lemma 2.2.1 in which
a=7PLQ(2j,d,t)
b="P1Q(2j,d,t)
r= 'PLAP
By Lemma 2.2.1, there exists R. € R such that
IPLAp]l2 < Re - max{[|PLQ(2,d, t)l2, [[PLQ(2],d, ) ||2}
in order for Equation (2.77) to hold. Note that by definition in Equation (2.53),
1Q(4,d.6)]l2 < Q2. d.")l2 = Payl6}]
Hence
IPLAll2 < Re - [PLQ(24,d, )2
Re-[PLll2 - 1Q(24,d, )2
= R. - Py;[0)] (2.78)

82



As Equation (2.78) holds for p with any d, d’, if one choose d’ = 1, this shows

AR Py,[0%]

lw(T25,d—1, T2i1) + w(T25,d—1, T2i—1,2) |2 < N (2.79)
Further, it holds that for any 1 <d' <d —1,
I Z (w(m24,d—1, Toi,ar—1) + w(T25,d—1, T2i—1,a))
1<d’<d’
N —2d" —2d
+ LfJ (u(T2j,d—1, T2i,07) + u(T25,d—1, T2i—1,a'+1)) |2
< R.P;,[0], and
I Z (w(T2j,d—1, T2i,d7—1) + W(T2j,d—1, T2i—1,a”))
1<d”’<d'+1
N —-2d —2d -2
[ 9 J (U(T2j,d—1, TQz‘,d/+1) + U(sz,d—l,Tzi—l,d’+2)) Hz
~(2
< RePyyl03)).
Then by triangle inequality,
N —=2d" —2d -2
I 5 I (u(72j,d-15 T2i,ar+1) + w(T2),d—15 T2i—1,a'+2))
— (u(T25,d—1, T25,ar) + u(T2j,d-1, T2i—1,0'+1)) |l2 < 2R Py [9_5\?)]
Because N > 8D, we have that L%j > &, hence it holds that
| (w(m2j,d-1, T2i,ar+1) + w(T2),d—1, T2i—1,4'+2))
16R Py ;[0
— (w(T25,d—1, T25,0r) + w(T25,a-1, T2i—1,041)) ll2 < %
Combined with Equation (2.79), one can conclude that,
16DR. -
Sa.av,ig = [wlreja-1, Toiar—1) + wrzga-1, -1 -1 < ——Fay 0. (2-80)
The proof is then completed. O

Proof of Corollary 2.2.2. This proof is in fact a direct combination of Theorems 2.2.1 and 2.2.2. By The-
orem 2.2.1 we know there exists a weight 6(2* that can reach zero loss for arbitrarily length N. Then it
holds that ||6x n|l2 < [|0®®*|| as 5y minimizes the regularized loss. Noticing that bounded weight implies
bounded Lipschitzness of g, the rest follows as Theorem 2.2.2. O

2.2.5.5 Proof of Theorem 2.2.3

We now show the limitation of interpretability from a single component, using a Lottery-Ticket-style argu-
ment by pruning from large random Transformers.

Theorem 2.2.3 (Indistinguishability From a Single Component). Consider any L-layer Transformer T
(Equation (2.46)) with embedding dimension m, attention dimension m,, and projection function g as
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2-layer ReLU MLP with width w, for | € [L]. * For any § € (0,1) and N € NT, consider a 4L-
layer random Transformer Tigrge with embedding dimension miage = O(mlog(Lm/d)), attention dimension
Miarge,a = O(mgLlog %), and projection function glarge as 4-layer ReLU MLP with width wiarge =
O(max{m, w}Llog “EN),

Assume that ||W |2 < 1 for every weight matriz W in T, and suppose the weights are randomly sampled
as Wi j ~ U(—=1,1) for every W € Tigrge. Then, with probability 1 — § over the randomness of Tiarge, there
exists a nonstructural pruning (Definition 2.2.4) of Tiarge, denoted as ﬂarge, which e-approximates T with
respect to || - ||1.2 for any input X € R™*N satisfying || X |12 <1. *°

Proof. We will first introduce some notation. For vector z € R® and y € R?, we will use 2 ®y to denote their
concatenation. We will use 0% to denote the all-zero vector with dimension a. We will also assume without
loss of generality that w > 2m. 3!

We will use X to denote [ X

O(mlarge—m/)xN for X € Rm/XN with m/ < Miarge-

In the following, a random network refers to a network whose weights have entries sampled from a uniform
distribution, i.e. W; ; ~ U(—1,1) for every weight W in the random network.

We will first recall Lemma 2.2.2 from Pensia et al. (2020) which shows that a pruned 2-layer random
network can approximate a linear function.

Lemma 2.2.2 (Approximating a linear function; Theorem 1 of Pensia et al. (2020) restated). Let W €
R™ xm W2 = O(1), then for o € {ReLU,Z}, where T represents the identity operator, for a random
network g(z) = Waoo(Wiz) with Wy € R™ *h Wy € R"™™ for hidden dimension h = O(mlog(#”z;g})),
with probability 1 — J, there exists boolean masking matrices My, My, such that for any x € RY,

[(Mz © Wa)o (My @ Wh)z) — Wa| < efz]|2,

where @ denotes the Hadamard product.
We then derive two approximation results Lemmas 2.2.3 and 2.2.4 based on Lemma 2.2.2.

Lemma 2.2.3. Under the setting of Theorem 2.2.3, with probability 1 — 26/3, for any l € [L],lI' € [AL — 1],
let TO be the I-th layer of T, there exists a pruning of the (I' — 1)-th and the (I')-th layer ﬂ(alrg_el),ﬂgrge,
named 7'(1/_1),’7:” such that when defined on domain || X |12 < 2L, X € R™*N|

large large

1. 7~;ng_€1) is independent of the last Miarge — m TOWS of the input.

s e-approzimation of TW(X) with respect to 1,2-norm.

1 ~(U'=1) (% c
2. Tiarge © Tiarge * (X) i an (g55522)
Lemma 2.2.4. Under the setting of Theorem 2.2.3, for any matriz W € RA™>*4m W ||y < 1, with probability
1—46/4, for any ! € [AL], there exists a pruning of the l-th layer ’Tl(l ) named TL) | such that when defined

arge’ large’
: mxXN
on domain X € R ,

1. 773@36 is independent of the last Miarge — 4M rTows of the input.

2. a(x) = 7 (X) is an (W)M e-approzimation of §(X) = WX with respect to 1,2-norm.

large

29For notational convenience, we assume all layers share the same dimensions and projection functions. The proof can be
trivially extended to cases where the dimensions and projection functions are different.

30Here the input and output dimension of ﬁarge is actually mjarge Which is larger than m; additional dimensions are padded
with zeroes. The norm constraint can be easily extended to an arbitrary constant.

31'We can always pad dimensions if w is too small.

84



The proof of Lemmas 2.2.3 and 2.2.4 is deferred to Section 2.2.5.6 We can now prove the theorem.

We will first show with induction that if we 1) prune the (2/—1)-th and 2I-th layers of Tjarge to approximate
T® for each | € [L], and 2) prune the 2L + 1 to 4L-th layers of Tiarge tO approximate identity, then the
pruned large transformer will be an e-approximation of 7 for any input || X |12 < 1.

We will perform induction on I: Let 7(3) define the composition of layer 1 to I, i.e. T (X) :=
TWoTU=Do...0oTW(X), and define ¢ := (W)“‘_B—l €. Suppose that 7};;61) is an ¢-approximation
of 7D, Note that |7 (X)|l12 < (I+1), since each attention output has a bounded norm of 1 and
every weight matrix in projection function g has spectral norm smaller than 1, hence the norm will at most
increment 1 (due to residual connection) after each layer. We have that

arge —

Hﬂ(m” (%) H <4l <4L.
1,2

Then according to Lemma 2.2.13, TU+1 is (1 4 200L2/C)-Lipschitz on the set of intermediate outputs
{(71(1:20()2)) | | X|l12 < 1}. We also have that 7(:)(X) is (1 4+ 200L2/C)!-Lipschitz. Now we can

large 1: —
) 7.(1:21+2)

/ : 1:0+1 :
large can € -approximate TEHD) with

apply Lemma 2.2.5 to show that

C 4L-3 C 4L—-3
EIIEl(1+2OOL2/C)+€<]W) (1+200L2/0)l+€l < ) €

1000L?
C 4L—4—1
<\ =55 €=€41-
(1000L2> *

The induction is then completed and we have the composition of T2  for i € [2L] er-approximates the

large
3L—3 . . . .
(to52) €. We will then perform another induction showing that the
composition of 7’

trge for i € [2L + 1] ey p-approximates T with e = (ﬁ)%%#
statement holds for L —1 > 1> 0.

The induction step is similar, because we have 7 is (1 +200L?/C)¥ Lipschitz, by Lemma 2.2.5, it holds
that the composition of for i € [2L + 1 + 1] €’-approximates T with,

composition of 7 with ¢ =

€. Suppose the

i
large
c \* C
= — 2 ) (14200L2/C)" _c
¢ €I+L+6(1000L2> (1+200L7/C) +61+L€(1000L2>

C 3L—4-1
<e (1000[12) € = €L+I+1-

This concludes the induction and prove the first claim of the theorem. For the second claim, notice that
through similar induction steps, we can prune arbitrary layer of Tiarge to approximate identity function and
obtain the same approximation rate, this concludes the proof for the second claim. O

4L

2.2.5.6 Helper lemmas for Theorem 2.2.3

Error Analysis Our first lemma shows that the composition of e-approximation can approximate the
composition of the original function.

Lemma 2.2.4. Under the setting of Theorem 2.2.3, for any matriz W € R*¥™>*4m ||W ||y < 1, with probability
1—46/4, for any ' € [AL], there exists a pruning of the l-th layer 7;[(126, named ﬁfllr;e, such that when defined
on domain X € R™*N

1. ﬁg;g)e is independent of the last miarge — 4m rows of the input.

2. a(x) = 7 (X) is an (W)“‘ e-approzimation of §(X) = WX with respect to 1,2-norm.

large

85



Proof. One can prune the value matrix on layer I’ to zero and the rest is a direct consequence of Lemmas 2.2.2
and 2.2.20. 0

Lemma 2.2.5. Given three metric spaces A, B,C equipped with same metric || -||. Suppose f1: A — B, fa:

B — C are €1, ea-approximations of g1, g with respect to || - ||, where g1 is a Lipschitz function with constant

A1 with respect to || - || and ||g2(2)|| < A2z, then it holds that, fi o fa is an €' -approximation of g1 o ga, with
= ()\2 + 61)()\1 + 62) — )\1)\2

Proof. For any x € R% | it holds that,

[f1(z) = g1(2)]| < exff]].

This then suggests that,

1f2(f1(x)) — g2(g1(2))l
<|[fa(fi(z)) — g2(fr(@)| + llg2(f1(2)) — g2(g1 ()]l
<eslfi(z )||+/\2Hf1(ir) g1(2)]|
<ellgi(2)]] + (A2 + €2) [ f1(z) — gr ()]
<(e2M1 + €1h2 + €1€2) || 7|

O

Approximating ReLU MLP We will first show an extension of Lemma 2.2.2, illustrating that a pruned
wide 4-layer ReLU MLP can approximate any 2-layer ReLU MLP.

Lemma 2.2.6. Consider any 2-layer ReLU MLP g : R*™ — R*™ parameterized by W, € R¥™>v 1}, ¢
RWX4m Wy |2, [[Wall2 < 2v/2, for any d,¢ € (0,1), consider a random 4-layer ReLU MLP f with input and

wm

output dimension 4m and width w' = O(w log(mm{E 5})) parameterized by Wiarge,i, with probability 1 — 6

over the randomness of weight of f, there exists a nonstructural pruning of f named f, such that f s an
e—approximation of f with respect to 2—norm.

Proof. Choose ¢y = €/8. We only need to show there exists boolean matrices My, My, M3, My, such that,

H (M4 © Wlarge,4ReLU((M3 © Wlarge,S)ReLU((MQ © Wlarge,2)ReLU((M1 © I/Vlarge,l)x))))
— WReLU (W1 X) H2 <e
By Lemma 2.2.2, there exists boolean matrices M; € R% *4m and M € R¥*%’ such that for any
xr € RY™,

M, Wiz
| <|:0(w/—w2)><w/:| © VVlargeﬂ) ReLU((M1 © Wlarge,l)x) - {Ow/l_w] ll2 < eollz]|2-

M/
O(w/_wz)Xw/} and have fi(z) = ReLU((Mz © Wiarge,2)ReLU (M1 © Wiarge,1)2))
ReLU(Wla?)]

O’LU w

Hence we can choose My = [

is €g-approximation of g1 (x) = {

Again by Lemma 2.2.2, there exists boolean matrices M} € R® > and M, € R**%" such that for any
y € RY,

|| (M4 ® VVlargeA) ReLLU <[Mé’ Ow/x(w/fw)] [Owy_w:|) S €0||y||2
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Hence we can choose Mz = [Mé,O“’/X(“’/_“’)L and have fa(xz) = ReLU((M4 ® Wlarge,4)ReLU((M3 O]
VV]arge’g)(E)) is €g-approximation of go(x) = Waz.

It is also easy to check g; and g, are both 2v/2-lipschitz and g1(0) = 0. By Lemma 2.2.5, we conclude
that f = f1 ® fa is €’-approximation of g = g1 ® ga, with € = 4v/2¢y + €2 < ¢. O

This lemma then yields the following corollaries.
Corollary 2.2.1. Under the setting of Theorem 2.2.3, with probability 1 — /4, for any l € [L],I' € [4L],
(@ 4

large’

named g(l/) such that

there exists a pruning of the projection function g large”

1. gl(i;)ge is independent of the last Miage — m dimension of the input.

I T . 4L . . . O (z .
2. a(z) = gl(drge < |:Omlarge_m:| > 18 an (W) e-approzimation of g(x) = [Oﬁlarg(e_)m] with respect to
2—norm.
Proof. One can construct such pruning by pruning the last mlarge m rows of the weight of the last layer and

the last myarge —m columns of the weight of the first layer of gmge to zero and then apply Lemma 2.2.6. O

Approximating Attention Patterns We will now show that the attention pattern can be approximated
by pruning random Transformer layers.

Lemma 2.2.7. For any 0,¢ € (0,1), for any W € R™,|W ||y < 1, for two random matriz Wy, Wy € R™ *™
where m' = O(mlog(ﬁ)), suppose X € R™ N then there exists nonstructural pruning of Wi, Wa,

named Wl, Wg, such that

IXTW, WX — XTW Xl < €| X2,

Here we adopt ||||o in vector sense, meaning the entry with largest absolute value.

Proof. Suppose without loss of generality, | X||.; < 1. According to Lemma 2.2.2, there exists nonstructural
pruning of Wy, Wy, named Wi, W, such that for any x € R™, ||z||2 < 1,

~ T ~
HWI WQQE — WJUHQ S €.
This then suggests that,
ly™ (W Wz — Wa)llz < ellyll2 < e.
This concludes the proof. O

The next lemma shows how error propogates through the softmax operators.

Lemma 2.2.8. For any dimension d, suppose x,y € R? satisfies ||z — yl|loo < €, then it holds that,

Z‘zeiifé )Z"e}ipe%;( | < o9 1

Proof. One can observe that,

exp(—e) exp(z;) < exp(y;) < exp(e) exp(x;)
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This then suggests,

exp(x;) exp(yl) exp(z;)

= exp(—2¢) < < exp(2€) =

Zi:l exp(z;) ZZ 1 exp(yi) Z¢:1 exp(z;)
Hence,

exp(z;) exp(y:)
- == < max{exp(2¢) — 1,1 — exp(—2¢)} = exp(2¢) — 1.
j£j| S S | < ma{exp(20) (~26)} = exp(2¢)

This concludes the proof. O

Approximating Attention Module We will need the following lemma showing there exists a pruning
of the value matrix in Tiarge such that it has eigenvalues with magnitude ©(1).

Lemma 2.2.9. For a matric W € R™MarseXMaree - qith probability at least 1 — 10%, there exists a pruning
of W, named W', such that all the nonzero entries is contained in a d X d submatriz of W' that satisfies
that (1) all its eigenvalues are within (%7 1), (2) the index of row specifying the submatriz and the index of
column specifying the submatriz are disjoint.

Proof. As wiarge = Q(m log(%)), hence we can split Wiy, /2], [miarge /2] +1imuarge 1160 (112X (m blocks, each
with width at least O(log(%")) 32 Within each block, with probability 1 — ﬁmge7

one entry that has value at least % We can then choose d disjoint entries in W that are all at least %
indexed with {(a;,b;)}ic[q) where a; < a; and b; < b; for i < j. We can then prune all other entries to zero.
Consider the submatrix defined by entries (a,b) for a € {a;}iem and b € {b;}icm- Then, this submatrix will
be diagonal and contains eigenvalues within (%, 1). Further {a;}iem and {b;};cm must be disjoint because
a; < [Miarge/2] < b;. The proof is then completed. O

there exists at least

We will also prove that LayerNorm with nonzero normalization constant is Lipschitz.

Lemma 2.2.10. For LayerNorm function defined as LN(z) =
it holds that,

P
WM,CE S Rm, fOT’ any x,y € Rm,

LN @) - LN, < 2w - yla/c

Proof. We will proceed by a case analysis:

L1 [Plls, [Puylla < C, then ||LN() — LN(y)||| = LPeegPesle < Ll -yl
2 1 [Pralz, [Piylle > C, then |[LN(2) - LN(y)|| = [P42=Pavle o |1 — [Zatle| < 20—y
. LZ|2, [[FLYll2 ) Y ) Izl Pl =C Yll2-

&Hme<cmMWMM>ammﬁmm4N@h*Wﬁjﬁmﬂﬁwfﬁﬂms%wﬁm

The cases exhaust all possibilities, thus the proof is completed. O

Finally, we will need a lemma showing how error accumulates when we consider both attention patterns
and the value matrices.

320(-) hides absolute constants arising from the change of basis in the logarithm.
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Lemma 2.2.11. For any dimension d and positive number N, for P,Q € R4 satisfying that || P||2, |Q|l2 <
1, for any x € RN if matriz A € RNXN B € RN satisfy that,
A= o(aT Q)11 < e
HB — P:L'HLQ S €9.
Vik € [N] Y Aji=1,A, > 0.

JE[N]

Then it holds that,

||BA — P‘TU(.TTQZE)HLQ S (61||PX 1,2 + 62).
|LN¢(BA) — LN¢(Pzo(z ' Qx))|12 < 2(e1||PX |12 + €2)/C.

Proof. For any i € N, we will have

H (BA).; — (Pzo(z" Qx))

00

2

:H Z A]JB,] — (J(ITQI'))]-J- (PX)JHQ

JE[N]
<Y Aj(PX)s = (0(aTQx)),, (PX)., , i > A (PX=B) ;2

JE[N] JE[N]
<IPX|h2 Y A - (0(z"Qx)), , + |1PX — Bl

JE[N]

<|PX|12lA —o(2"Qx)|l11 + |PX — Blli2 < e1|PX |12 + €.

The rest follows from Lemma 2.2.10
O

A LayerNorm of larger dimension can be made to be functionally equivalent to a LayerNorm of a smaller
dimension. Precisely:

Lemma 2.2.12. Given any dimension d < d’, it holds that for any x € R,
’Pl.’t LNC xZ
-7
Proof. The proof follows directly from definition. O

We will now formally define attention module.

Definition 2.2.7 (Attention Module). We will define attention module a(X | Wy, Wi, Wg) as
a(X)=LNec (Wy Xo(X TWiWX)).

Lemma 2.2.13. Attention module is lipschitz with respect to 1,2-norm for bounded input. Precisely, con-
sider attention module (Definition 2.2.7)parameterized by |Wy |2, |Wkll2, [Woll2 < 1 with input domain
| X112 < 4L, a(X) is 200L%/C-lipschitz with respect to 1,2—norm.

Proof. We have that

a(X) =LN¢g (Wy Xo(X TWLWoX)).
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Choose € to be a sufficiently small constant, such that, exp(32Le¢) —1 < 64Le. Consider X and X satisfying
that | X — X |12 <eand || X|1,2 <A4L, || X |12 < 4L, we will have

‘ (XTWEWQX - (X)TW;WQ(X))i)j ‘

:‘(X:.Z— X ) TWIWoX . + (X)) TWEW(X,, — X,

.

j) + (Xz - X:’i)TWI—(FWQ(X' Jj X:,j)

s

<8Le+ € < 16Le.
By Lemma 2.2.8, this implies,
(X TWEWoX) — o((X) T WEWG(X))|l11 < exp(32Le) — 1 < 64Le.

We also have

Wy (X = X) 2 <e

Wy X2 <4L
Lemma 2.2.11 then implies that
la(X) = a(X) 1.2 < 200L2/C.

This then concludes the proof. O

We can now prove that a large Transformer Layer and an attention module of the larger Transformer
can be pruned to approximate the attention module of a smaller Transformer Layer module.

Lemma 2.2.14. Under the setting of Theorem 2.2.3, with probability 1 — /2, for any l € [L],I" € [4L — 1],

let V) be the attention module on the l-th layer of T, there exists a pruning of the (I' — 1)-th layer 7;2[;9;1),
7(U'~1)
named Ty,

and the attention module on l'-th layer a{;rge named ai;ge, such that when defined on domain
1 X[12 < 2L,

1. ’ﬁgrg_el) is independent of the last Miarge — m TOWS of the input.

2. (a’{;rge ° 71121;;@1) ([O(mlar;m)xN})> is an (5S2)"" " e-approzimation of a® (x) with respect to
1:m

1,2-norm.
3. <~l((ll;£;1) <|:0(mlarg:v_m)><N:|>) 5 an (ﬁ)u e-approzimation of X with respect to 1,2-norm.
1:m

Proof. We will use the shorthand ¢y = ( e and prune in the following order. It holds that for e <1,

To907)

exp(8L%¢y) — 1 < 16L2%¢.

1. We will prune W‘l,argc’(l,) according to Lemma 2.2.9 and name the pruned matrix W‘l/argc’(l/). By Lemma 2.2.9,
all the nonzero entries is contained in a d x d submatrix of W’ that satisfies that all its eigenvalues are
within (%, 1). We will assume WLOG the submatrix is the one specified by row 1...d and column
d+1...2d and name the submatrix as W.

2. We will then prune ﬂ;lrlgj) according to Lemma 2.2.4 to output ey-approximation of

b'e
X eR™N o \lw-ip, Wil x

O(mlarge_Qm) XN
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As W is defined as the submatrix pruned by W‘(,t H), it holds that

5 X
W‘l/arge,(l’) W_LPLW‘(})X = |:O(

O(ml’“ge —m)xXN

PLW‘(/Z)X :|

Miarge—m) X N

W;?rge,(l )7 Wclgarge,(l )

3. Finally we will prune according to Lemma 2.2.7 to approximate (WI((Z))TWS) up to

€p €ITOT.
we can now calculate the approximation error. For any X € R™*¥ || X||; 2 < 2L, suppose

3 X + 6
T(l/_l)(X) — W_l'PJ_W‘(/l)X + 65

O(mlarge_2m) XN

Then by our constrution, it holds that Vi € {1, 2}, ||0:]l1,2 < €ol| X |]1,2-
We would then have

W7 (x) =

0(Miarge—m) XN

PWYX + Wy rge’(”)ézl (2.81)

By our construction, it holds that ||W‘l/mge’(l/)52||172 < 2||82]l1,2 < 2€0|| X |1 ,2-
Further, by the construction of W}?rge’(l,), Wé;rge’(l/), it holds that,
. T -
| (W}?rge’“”ﬂl'w(w) (Wgrge’(l/)ﬂ””(xg
l l l !
- (WI(()X—FWI(()&)T(WCS)X—FWé?)&)HOO < e (2.82)

As for any 4,j € [N]

‘ (WX +wQo)T WX + wha) - WP X)TWPx)

4,J
< | WX T W 01).4| + |WRS LW X0, | + W) LW o).
<X o(260 + ) < 4 X2 560

combined with Equation (2.82),

- ~ T -
H <W11?rge,(l’)T(l/1)(X)) (Wgrge,(l )T(l/1)(X)> _ (WI((Z)X)TWC(;)XH < eo(1+ 4||X||%72) (2.83)
By Lemma 2.2.8, this implies
- T -
e )
1 l
g ((W}QX)TW(yx) H1 <deo(1+4]X]7 ). (2.84)
By Lemma 2.2.11, Equations (2.81) and (2.84) imply,

- - T -
HW‘lfrge’(l/)T(l’—l)(X)a ((W}?rge’(l/)T(l'_l)(XO (Wgrge,(l’)T(l'_l)(X))>

12 < 80L%.

(miarge—m)x N

0 0 ) Ty 0
B [PLWV Xo (W X)W X)] I <80+ 41XIE X
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Now according to Lemmas 2.2.10 and 2.2.12, it holds that

r ~('—1 T 1
o 0 T ([gm x| ) = aO@lha < 10022/
1:m
This concludes the proof. O
Approximating Transformer Layers We will finally show that two random Transformer layers can be
pruned to approximate a given Transformer layer.

Lemma 2.2.3. Under the setting of Theorem 2.2.3, with probability 1 — 26/3, for any 1 € [L],I' € [AL — 1],
let T® be the I-th layer of T, there exists a pruning of the (I' — 1)-th and the (I')-th layer 7;&9;1),7'157«96,
named 7~—(l/71),7~—l/ such that when defined on domain || X |12 < 2L, X € R™*N|

large large

1. ﬁfllrlgj) is independent of the last Miage — M rows of the input.

~ 1

7:([/_1) (X) is an (ﬁ)uis e-approzimation of TW(X) with respect to 1,2-norm.

o
large large

2.

Proof. We will prune the (I’—1)-th layer and the attention module of the ’-th layer according to Lemma 2.2.14
to approximate a() and the projection function of the I’-th layer according to Corollary 2.2.1. Notice that

Ha(l)(X) + XH1 ) < (2 4+ 1)[|X||1,2 and gV is 1-lipschitz, according to Lemma 2.2.5,

=1 = (I'—1 x
(ﬂérge © ﬂ;rge : ( [O(mlargc_m)XN:| ))
1:m

is an €’-approximation of 7®)(z), with

2 C 4L C 4L—2 C 8L—2 C 4L-3
"<(=+1) | — — — < —— )
=g+ )<1000L2) ot <1000L2) ot (1000L2> = <1000L2) ‘

This concludes the proof. O

2.2.5.7 Additional lemmas

Lemma 2.2.15. Given any dimension d and number of samples n, for any size-n dataset {(i,y:)}icm
with ; € R? and y; € R, there exists a width-2n two-layer MLP f : R — R with ReLU activation such
that, f(x;) =y; for any i € [n].

Proof. We will first choose direction w € R%, |lw||z = 1 and margin v > 0 such that for any i # j in [n], it
holds that,

‘(w,wi —x;)| > 2.

We will assume WLOG w ' «; is increasing in 1.
Then we will construct an auxilliary series z; for ¢ € [n] such that,

Z1 :yl/W

i—1
n=yi/v—2Y z,i€{2,...n}

Jj=1
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Finally consider the following two-layer MLP with ReLU activation,
n
flx) = ZziReLU (w, —x;) +v) — zReLU ((w, ® — x;) — ),
i=1

we will show that f(x;) = y; for any i € [n]. Notice that

0, J >t
zjReLU ((w, i — x;) +7) — zjReLU ((w, @i —x;) =) = { vz, J =1,
2vz;, J<i.

Thus it holds,

flz;) = szReLU ((w,z; — ;) +7) — z;ReLU ((w, ®; — x;) — )
j=1
i—1
= 22’)/2:]‘ + YZi = Yi-
j=1

O

Lemma 2.2.16. Given any sets {x;};cm satisfying that x; € R™ and z; # 0, there exists a set of orthonormal
vectors {u;}jem—2) of R™ such that (1) u;-'—ln =0 for any j € [n—2] and (2) 3¢9 u;'—xiuj # x; for any
i € [m].

Proof. There exists a vector v € R™ such that v'z; # 0 for any i € [m]. We can then construct an

orthonormal basis {u;};e[,—2) of R™ as the basis of the normal space of span(v,1"). Then the lemma
holds. O

Lemma 2.2.17. Given any dimension n and constant M, there exists a 2-layer width-2n ReLU network
f:R" = R such that for any x € [0, M]",y € [n], f(z ®y) = x,.
Proof. The construction is as followed, we will choose f as

n n

fle®y)=> ReLU(x; + M(y—i)) — Y ReLU(z; + M(y —i— 1)) — M(y — 1).
i=1 =1

Then as we have

ReLU(x; + M(y —i)) — Y ReLU(z; + M(y —i—1)) = @, i=y;
=1 0, i>y+1
The proof is completed. O

Lemma 2.2.18. Given any dimension n and constant M > 0, there exists a 2-layer width-2n ReL U network
[ R™ = R such that for any x € R™ satisfying there exists i € [n], x; > M and Vj # i,2; = 0, it holds that
f(a) = .
Proof. The construction is as followed, we will choose f as
fx) = i(ReLU(z;) — ReLU(x; — M) + M) /M.
i=1

The proof is completed. O
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Lemma 2.2.19. Given any dimension n and natural numbers K, m, M, if there exists K different 2-layer
width-m ReL U networks fi, : R™ — R, then there exists a 2-layer width-2Km ReLU network f : R"t! = R,

such that f( {I;]) = fi(x) when z € [0, M]™.

Proof. Suppose that

fe(x) = ar ReLU(w] ;@ + by.;) + by
i=1
Then we can construct

K m
f( m ) => > agiReLU(wy @ + bei + M(y — k) — ap iReLU(w] a + by i + M(y — k — 1))
k=11:1=1
+ b — ¢, ReLU(y + 1 — k),

where ¢y, ; satisfies

K’ K —1

Vi, k') oK +1—k) =M Y a,.
k=1 k=1

The proof is then completed. O

Lemma 2.2.20. Given any dimension n and W € R"*" ||W||2 < 2, there exists a 2-layer width-2n ReLU
network f : R™ — R such that for any x € R™, it holds that f(x) = Wz and both weight matrices parame-
terizing f has spectral norm less than 2v/2.

Proof. The construction is straightforward, one can choose

f(x) = I, —I,] "ReLU ([—MV/[ZD .

O
2.2.5.8 Discussion on architecture choices
The reader may notice that Equation (2.42) is not the same as the standard GPT architecture,
F(X;00) =g® (LN(W‘(})XU (c + (W}é’X)T(Wg)X)) + X)) (2.85)

We will shortly discuss the impact of considering Equation (2.85) here.

With similar arguments to Theorem 2.2.2 and the necessity part of Theorem 2.2.1, one can prove that
similar balance conditions should also hold for a transformer with a layer specified by Equation (2.85) and
a minimal first layer that can nearly perfectly generate bounded Dyck languages.

However, the sufficiency part of Theorem 2.2.1 no longer holds, when the balance condition holds, the

last column of the term W‘(,Q)X o (C + (VV]((2 ) x )T(W((;)X )) will converge to zero when input length converges

to infinity. Hence, if not all e(r;,4) where 7 4 is a closed bracket aligns with 1", then it is impossible for
the model to perfectly generate Dyck for arbitrary length. Although it remains possible to refine a sharper
condition for standard GPT architecture to perfectly generate Dyck Language, we find considering Equa-
tion (2.42) more elegant in theory. We also verify with experiments that our architecture with standard
training can learn bounded Dyck language to more than 97% accuracy. Also, the learned attention patterns
are also similarly not interpretable as standard architectures.
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2.2.6 Related Work

There has been a flourishing line of work on interpretability in natural language processing. Multiple
“probing” tasks have been designed to extract syntactic or semantic information from the learned repre-
sentations (Raganato & Tiedemann, 2018; Liu et al., 2019; Hewitt & Manning, 2019; Clark et al., 2019).
However, the effectiveness of probing often intricately depend on the architecture choices and task design,
and sometimes may even result in misleading conclusions (Jain & Wallace, 2019; Serrano & Smith, 2019;
Rogers et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al., 2021). While these challenges
do not completely invalidate existing approaches (Wiegreffe & Pinter, 2019), it does highlight the need for
more rigorous understanding of interpretability.

Towards this, we choose to focus on the synthetic setup of Dyck whose solution space is easier to character-
ize than natural languages, allowing us to identify a set of feasible solutions. While similar representational
results have been studied in prior work (Yao et al., 2021; Liu et al., 2023a; Zhao et al., 2023), our work
emphasizes that theoretical constructions do not resemble the solutions found in practice. Moreover, the
multiplicity of valid constructions suggest that understanding Transformer solutions require analyzing the
optimization process, which a number of prior work has made progress on (Lu et al., 2021; Jelassi et al.,
2022; Li et al., 2023).

Finally, it is worth noting that the challenges highlighted in our work do not contradict the line of prior
work that aim to improve mechanistic interpretability into a trained model or the training process (Elhage
et al., 2021; Olsson et al., 2022; Nanda et al., 2023; Chughtai et al., 2023; Li et al., 2023), which aim to
develop circuit-level understanding of a particular model or the training process.

Interpreting Transformer solutions Prior empirical works show that Transformers trained on natural
language data can produce representations that contain rich syntactic and semantic information, by designing
a wide range of “probing” tasks (Raganato & Tiedemann, 2018; Liu et al., 2019; Hewitt & Manning, 2019;
Clark et al., 2019; Tenney et al., 2019; Hewitt & Liang, 2019; Kovaleva et al., 2019; Lin et al., 2019;
Wu et al., 2020; Belinkov, 2022; Liu & Neubig, 2022) (or other approaches using the attention weights or
parameters in neurons directly Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasovié¢, 2021; Eldan &
Li, 2023). However, there is no canonical way to probe the model, partially due to the huge design space of
probing tasks, and even a slight change in the setup may lead to very different (sometimes even seemingly
contradictory) interpretations of the result (Hewitt & Liang, 2019). In this work, we tackle such ambiguity
through a different perspective—by developing formal (theoretical) understanding of solutions learned by
Transformers. Our results imply that it may be challenging to try to interpret Transformer solutions based
on individual parameters (Li et al., 2016; Dar et al., 2022), or based on constructive proofs (unless the
Transformer is specially trained to be aligned with a certain algorithm, as in Weiss et al., 2021).

Interpreting attention patterns Prior works (Jain & Wallace, 2019; Serrano & Smith, 2019; Rogers
et al.; 2020; Grimsley et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al., 2021; Bolukbasi
et al., 2021; Haab et al., 2023, inter alia) present negative results on deriving explanations from attention
weights using approaches by Vig & Belinkov (2019); Kobayashi et al. (2020, inter alia). However, Wiegreffe
& Pinter (2019) argues to the contrary by pointing out flaws in the experimental design and arguments of
some of the prior works; they also call for theoretical analysis on the issue. Hence, a takeaway from these
prior works is that expositions on explainability based on attention requires clearly defining the notion of
explainability adopted (often task-specific). In our work, we restrict our main theoretical analysis to the fully
defined data distribution of Dyck language (Definition 2.2.1), and define “interpretable attention pattern” as
the stack-like pattern proposed in prior theoretical (Yao et al., 2021) and empirical (Ebrahimi et al., 2020)
works. These concrete settings and definitions allow us to mathematically state our results and provide
theoretical reasons.

Theoretical understanding of representability Methodologically, our work joins a long line of prior
works that characterize the solution of neural networks via the lens of simple synthetic data, from class results
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on RNN representability (Siegelmann & Sontag, 1992; Gers & Schmidhuber, 2001; Weiss et al., 2018; Suzgun
et al., 2019; Merrill, 2019; Hewitt et al., 2020), to the more recent Transformer results on parity (Hahn, 2020),
Dyck (Yao et al., 2021), topic model (Li et al., 2023), and formal grammars in general (Bhattamishra et al.,
2020a; Li & Risteski, 2021; Zhang et al., 2022a; Liu et al., 2023a; Zhao et al., 2023). Our work complements
prior works by showing that although representational results can be obtained via intuitive “constructive
proofs” that assign values to the weight matrices, the model does not typically converge to those intuitive
solutions in practice. Similar messages are conveyed in Liu et al. (2023a), which presents different types
of constructions using different numbers of layers. In contrast, we show that there exist multiple different
constructions even when the number of layers is kept the same.

There are also theoretical results on Transformers in terms of Turing completeness (Bhattamishra et al.,
2020b; Perez et al., 2021), universal approximatability (Yun et al., 2020), and statistical sample complexity
(Wei et al., 2021; Edelman et al., 2022), which are orthogonal to our work.

Transformer optimization Given multiple global optima, understanding Transformer solutions requires
analyzing the training dynamics. Recent works theoretically analyze the learning process of Transformers on
simple data distributions, e.g. when the attention weights only depend on the position information (Jelassi
et al., 2022), or only depend on the content (Li et al., 2023). Our work studies a syntax-motivated setting in
which both content and position are critical. We also highlight that Transformer solutions are very sensitive
to detailed changes, such as positional encoding, layer norm, sharpness regularization (Foret et al., 2021),
or pre-training task (Liu et al., 2022a). On a related topic but towards different goals, a series of prior
works aim to improve the training process of Transformers with algorithmic insights (Nguyen & Salazar,
2019; Xiong et al., 2020; Liu et al., 2020; Zhang et al., 2020; Li & Gong, 2021, inter alia). An end-to-end
theoretical characterization of the training dynamics remains an open problem; recent works that propose
useful techniques towards this goal include Gao et al., 2023; Deng et al., 2023.

Mechanistic interpretability It is worth noting that the challenges highlighted in our work do not
contradict the line of prior works that aim to improve mechanistic interpretability into a trained model
or the training process (Cammarata et al., 2020; Elhage et al., 2021; Olsson et al., 2022; Nanda et al.,
2023; Chughtai et al., 2023; Li et al., 2023; Wang et al., 2023; Zhong et al., 2023): although we prove that
components (e.g. attention scores) of trained Transformers do not generally admit intuitive interpretations
based on the data distribution, it is still possible to develop circuit-level understanding about a particular
model, or measures that closely track the training process, following these prior works.

Interpretable machine learning In even broader contexts of Interpretable Machine Learning in gen-
eral, Lipton (2017) outlined common pitfalls of interpretability claims, Chen et al. (2022b) recommended
reasonable paths forward, and Bilodeau et al. (2022) proved impossibility results on applying some common
classes of simple feature attribution methods on rich model classes.

2.2.7 Conclusion

Why interpreting individual components sometimes leads to misconceptions? Through a case study of the
Dyck grammar, we provide theoretical and empirical evidence that even in this simple and well-understood
setup, Transformers can implement a rich set of “myopically” non-interpretable solutions. This is reflected
both by diverse attention patterns and by the absence of task-specific structures in local components. Our
results directly imply similar conclusions for more complex Transformer models; see Section 2.2.5.2 for
technical details. Together, this work provides definite proof that myopic interpretability, i.e. methods
based on examining individual components only, are not sufficient for understanding the functionality of a
trained Transformer.

Our results do not preclude that interpretable attention patterns can emerge; however, they do suggest
that interpretable patterns can be infrequent. We discuss the implications for multi-head, overparameterized
Transformers trained on more complex data distributions in Section 2.2.4. Moreover, our current results
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pertain to the existence of solutions; an interesting next step is to study how “inductive biases” given by the
synergy of the optimization algorithm and the architecture affect the solutions found.
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Chapter 3

Improving language model inference
scaling through verifier-guided
backtracking

Recently, a plethora of works have proposed inference-time algorithms (e.g. best-of-n), which incorporate
verifiers to assist the generation process. Their quality-efficiency trade-offs have been empirically bench-
marked on a variety of constrained generation tasks, but the algorithmic design landscape is still largely
poorly understood. In this chapter, we develop a mathematical framework for reasoning about constrained
generation using a pre-trained language model generator oracle and a process verifier—which can decide
whether a prefix can be extended to a string which satisfies the constraints of choice. We show that even
in very simple settings, access to a verifier can render an intractable problem (information-theoretically or
computationally) to a tractable one. In fact, we show even simple algorithms, like tokenwise rejection sam-
pling, can enjoy significant benefits from access to a verifier. Extending beyond this simple algorithm, we
propose a new process-guided test-time sampling algorithm, VGB, which uses theoretically grounded back-
tracking to achieve provably better robustness to verifier errors. VGB interprets autoregressive generation as a
random walk on a tree of partial generations, with transition probabilities guided by the process verifier and
base model; crucially, backtracking occurs probabilistically. This process generalizes the seminal Sinclair-
Jerrum random walk (Sinclair & Jerrum, 1989) from the literature on approximate counting and sampling
in theoretical computer science, and a conceptual contribution of our work is to highlight parallels with this
literature.

Empirically, we demonstrate on both synthetic and real language modeling tasks that a natural modifi-
cation of tokenwise rejection sampling, in which the sampler is allowed to “backtrack” (i.e., erase the final
few generated tokens) has robust and substantive benefits over natural baselines (e.g. (blockwise) rejection
sampling, nucleus sampling)—both in terms of computational efficiency, accuracy and diversity. ! Moreo-
ever, the theoretically provable algorithm, VGB, can better mitigate error amplification during the course of
generation.

In Section 3.1 (based on Botta et al. (2025)), we introduce query complezity, our mathematical framework
for reasoning about the efficiency of verifier-assisted language generation. In Section 3.2 (based on Botta
et al. (2025)), we introduce a simple heuristic algorithm, Tokenwise rejection sampling with backtracking
, motivated by our theoretical analysis. In Section 3.3 (based on Rohatgi et al. (2025)), we introduce
a stochastic backtracking-based sampling algorithm with theoretical guaranty. Our results suggest that
backtracking is a useful component in the algorithmic design space of verifier-assisted language generation,
and develop a foundation for theoretically reasoning about these algorithms and improving their theoretical
guaranty.

LOur codes are released at https://github.com/YuchenLi01/LM_Query_Complexity
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3.1 Theoretical framework: query complexity of verifier-assisted
language generation

The fast-evolving area of inference-time algorithms concerns itself with leveraging the already-impressive
capabilities of language models (Raffel et al., 2020; Brown et al., 2020; Touvron et al., 2023), together with
a verifier which can score generations of the language model. In the simplest form, called best-of-N, the
language model generates N candidate responses, which are then scored by the verifier, and the highest-
scored candidate response is chosen as the output of the inference process (Cobbe et al., 2021; Nakano
et al., 2022). If the verifier can score partial generations (sometimes called process reward), the space for
inference-time algorithms gets much richer: e.g., the final answer can be generated incrementally, using the
verifier to guide the process (e.g., by incremental (blockwise) best-of-N, or more complicated strategies like
Monte-Carlo-Tree-Search (Browne et al., 2012; Hao et al., 2023)). Importantly, though a flurry of recent
papers consider “scaling laws” of natural strategies, the algorithm design space of verifier-aided inference-
time algorithms is still opaque. In particular, the value of a verifier—and the relationship it needs to have
to the generator is not well understood.

In this section (based on Botta et al. (2025)), we show that a good verifier can substantially (both in
theory and in practice) decrease the computational cost of natural generation tasks, using a pre-trained
language model as an oracle. In particular, we show that:

e Even simple constrained generation tasks—where we are trying to generate a string in the support of
a language oracle, subject to some structural constraint (e.g. describable as a simple formal language,
like a regular language)—can be computationally intractable in the absence of a verifier.

e Conversely, access to a good process verifier, one that can decide whether a prefix can be completed to
a constraint-satisfying string, can remove these intractabilities. Moreover, even simple algorithms like
tokenwise rejection sampling—wherein we generate the string one token at a time, using the process
verifier as a means to accept or reject—can have substantive computational benefits over the baseline
of rejection sampling.

e Finally, on natural constrained generation tasks—mnamely, generating test cases for Python functions
with a pretrained CodeLlama (Roziere et al., 2023)—a werifier can be trained, such that a simple, but
natural generalization of tokenwise rejection sampling which is allowed to “backtrack” the last few
generated tokens, achieves substantial benefits in computational efficiency, accuracy, and diversity of
the generations.

3.1.1 Technical setup

Throughout, we let ¥ be a nonempty finite set, denoting the vocabulary. We denote as X' the set of strings
of length i and by ¥* = U;enY? the set of all finite strings on ¥. Given a string s € 3* , we denote as s;
its i-th element and as s;.; the substring of s starting at its i-element and ending at its j-element, included.
We use |s| to denote the length of string s and € to denote the empty string. Finally, we let x oy denote the
concatenation of string x followed by string y.

Definition 3.1.1 (Autoregressive oracle). An autoregressive oracle O takes as input a string s € ¥* and
returns a sample from a next-token distribution O(s) : & — RT.

We will denote the corresponding joint distribution over strings s € X* as po : ¥* — RT. Correspond-
ingly, Vs € 3%, let po(- | s) denote the distribution over completions of s predicted by O.

Definition 3.1.2 (Constrained generation). Constrained generation with respect to an oracle O, a con-
straint set A, and vocabulary X is the task of producing an element s € A C ¥* such that po(s) > 0. If no
such s exists, the algorithm needs to output FAIL.

When not clear from context, we will specify instances of this task by the triple (¥, 4, O). Under suitable
choices of the vocabulary ¥ and the target domain A, one recovers several language modeling tasks of
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theoretical and practical relevance as special cases of constrained generation. Specifically, our experiments
consider the tasks of generating (i) valid strings under the Dyck grammar (Section 3.2.1) and (ii) valid test
cases for a given Python functions (Section 3.2.2), where the oracles return samples from an appropriately
pretrained language model. We recover these tasks from Definition 3.1.2 by setting:

e (i) X as the set of open and close parentheses, and A as the set of valid sequences of given length.

e (ii) ¥ as a set of characters from the Unicode standard (possibly after tokenization) and A as the set
of strings that are valid test cases for an input function in the Python programming language.

Note that this task is easier than the task of sampling according to the restricted distribution p(s) o< 1(s €
A)po(s), which asks that the relative weights of the strings s € A that are generated match the probabilities
assigned by pn. However, in many settings—e.g., generating a proof of a mathematical problem, or code
that performs some intended functionality—we merely care about producing one good sample.

We will be considering “process verifiers” that take as input a prefix s, and output whether or not such
a prefix can be completed to a string s o s’ € A. This is a natural formalization of a “process reward”, as
it assigns a belief to a partial generation. In the theoretical results (Section 3.1.2 and 3.1.3), we’ll assume
access to such an idealized verifier. In the empirical results (Section 3.2), such a verifier will be trained and
will output a value between 0 and 1, which can be naturally interpreted as a probability that the prefix s is
completable to a string so s’ € A.

Definition 3.1.3 (Process verifier). Given a constraint set A, a verifier is a function V : ¥* — {0,1} such
that Vs € 3*, V(s) = 1 if and only if 3s' € ¥* such that so s’ € A.

Designing algorithms given access to oracles which perform certain tasks, is a classical tool in computer
science (this is the basis of Turing reductions in computational complexity), as well as optimization (e.g.,
zero-order optimization assumes a value oracle for a function, first-order optimization a gradient oracle, etc.)
In the context of generative modeling, analyses based on oracle complexity have been carried out in the
settings of diffusion models, where sampling algorithms rely on score oracles Chen et al. (2022a).

We will consider several natural algorithms that use an autoregressive oracle and a (process) verifier:

Definition 3.1.4 (Rejection sampling). Rejection sampling works by repeatedly generaling a string s ac-
cording to po, then running a verifier V. on the complete string—and accepting when the verifier outputs
V(s)=1.

Note, this algorithm only needs a verifier that decides the membership in A, rather than a process verifier.
On the other hand, because the entire string needs to be generated first before being verified—the number
of generations until the verifier accepts is likely very large.

Definition 3.1.5 (Tokenwise rejection sampling). Tokenwise rejection sampling works by generating a string
one token at a time. To generate the next token t, given a prefiz s, we sample t ~ O(s), and run the process
verifier on V(sot). We repeat this, until V(sot) =1, then proceed to the next token.

This algorithm requires a process verifier. However, since a partial string is accepted only if the process
verifier accepts, the number of generations needed is likely to be smaller. In fact, we provide a very simple
example in Section 3.1.3.

When arguing about lower bounds, a natural lower bound on the complexity of an algorithm is the number
of oracle calls needed?, particularly so when this dominates the cost of the algorithm, as is frequently the
case for language models:

Definition 3.1.6 (Oracle complexity). Given a (possibly randomized) algorithm A that solves the constrained
generation instance (X, A, O), the oracle complexity of A is defined as the expected number of calls to the
oracle made by A to solve (X, A, O), namely:

C(A) = E[#calls to O made by running Al,

2In our case, the number of calls is a randomized quantity, so a natural quantity to consider is the expected number of oracle
calls. It is of course reasonable to consider finer-grained notions like tail bounds on the number of calls.
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where the expectation is taken over the randomness of the oracle O and the randomness of the algorithm A.

Finally, we recall the classical knapsack problem, which will be used in a reduction to prove computational
intractability results for the constrained generation task:

Definition 3.1.7 (Knapsack problem). Given a set of weights {X; € Z>¢ | i € [D]} and ¢ € Z>q, the
knapsack problem seeks an assignment of the variables (a;)2,, with a; € {0,1} Vi € [D] such that ¢ =

ZiD:l (ZZ'Xi .

The problem is (weakly) NP-hard, even for some very special choices of ¢, X;.

3.1.2 Constrained generation is hard without a verifier

First, we show that the constrained generation task (Definition 3.1.2), without access to a process verifier
can be intractable—even if the constraint set A is extremely simple (e.g. the parity of a binary string).

The source of intractability can be information-theoretic: namely, if the oracle does not have a succinct
description, the algorithm may need to query it prohibitively many times to identify what oracle it’s inter-
acting with. We view this as a plausible obstruction in practice as well: language models frequently behave
unpredictably “in-the-tails”, which becomes increasingly more likely when generating long strings. Thus, to
inspect the behavior of the model on long strings, many queries are needed.

The source of the intractability can also be computational: namely, even if the oracle is very simple (e.g.,
a uniform distribution), generating a member of A can be NP-hard, even if checking membership in A can
be done efficiently. Perhaps this should not come as a surprise: after all, easy verification of membership,
but hard generation, is the hallmark of NP-hard problems.

Proceeding to the first result, we show the following;:

Theorem 3.1.1. There ezists a constrained generation task (3, A, O) for which ¥ = {0,1}, A C ¥P, and
O is an (unknown) member of a set of 2P~ possible oracles, such that any (possibly randomized) algorithm
A has an (expected) oracle complexity of at least 2P~1.

Intuitively, the lower bound is shown by engineering a scenario such that the behavior of the oracle
on long strings is unknown to the algorithm—but success of the generation task relies on “guessing” this
behavior correctly.

Proof. Consider the constrained generation task (¥, 4, 0;), such that ¥ := {0,1}, A := {s € ¥ : Z?:l 8;

mod 2 = 0} for some fixed D € Z,. Moreover, the oracle O; is indexed by an (unknown to the algorithm)
5§ € ¥P~71 and it specifies the autoregressive distribution defined s.t. Vs € ¥*,|s| < D — 1, we have
po.(1]s) = po.(0|s) = 1/2; while for s € £*,|s| = D — 1, it satisfies:

Vs # 5 € XP~1 sp € {0,1}, we have:

. D-—
pou(spls) =4 " (Z5 s+ sp) mod2=1 (3.1)
’ 0, otherwise
For s = §,sp € {0,1}, we have:
. D-1
po.(5p | 5) = 1, if (Ej:l 55+ SD) mod 2 =10 (3.2)
: 0, otherwise

Suppose first that the algorithm is deterministic, and we choose the prefix § uniformly at random. Let
us denote by 1,22, 23,...,x,; € X* the queries to O generated by the algorithm. The claim is that expected
number of queries ¢ needed to ensure at least one x;,i € [q] is in A is 271, Indeed, the x; s.t. |z;] < D —1
reveal no information about §: the output of O is a uniform Bernoulli random variable regardless of the
value of 5. On the other hand, if at some point the algorithm has queried a set S of x; of length D — 1, the
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probability over § is uniform over ¥P~1\ S. Hence, the expected number of queries ¢ (expectation being
over the choice of §) a deterministic algorithm needs is lower bounded by 2"~ !.

By Yao’s minimax lemma (Yao, 1977), this means that for any (even possibly randomized) algorithm A,
there exists § on which the algorithm makes at least 2" ! queries in expectation. 3 O

Proceeding to the computational lower bound, the theorem we show is as follows:

Theorem 3.1.2. There exists a constrained generation task (X, A, Q) for which ¥ = {0,1}, membership in
A CXP can be checked in time polynomial in D, and O is such that ¥s € {0,1}P,po(s) > 0, the generation
task is NP-hard.

Proof. We construct a reduction from the knapsack problem (Definition 3.1.7). Let the set {X1,...,Xp}
and the integer ¢ specify an arbitrary instance of the knapsack problem. Consider the constrained generation
task specified by ¥ := {0,1}, A := {s € £P : Vi € [D],s; € {0,1}; Zle $;X; = c¢}. Membership in this A
can be clearly verified in polynomial time. Suppose we have a poly-time algorithm that generates a solution
5to (3, 4,0). Since Vs € P po(s) > 0, & provides a solution to the knapsack problem, as we needed. [

3.1.3 Constrained generation with process verifier gets easier

While pessimistic, the message of Section 3.1.2 agrees with recent developments in inference-time scaling:
namely, many natural tasks of interest seem to require a verifier to be solved.

First, we show that the simplest “natural” algorithm with a process verifier, tokenwise rejection sampling
(Definition 3.1.5), can be much more efficient (exponentially so) in terms of oracle complexity compared to
the trivial baseline of rejection sampling (Definition 3.1.4).

Proposition 3.1.1. Consider the constrained generation task (3, A,0), s.t. ¥ ={0,1}, A = {0P} and O
is uniform over . Then:

1. The expected oracle complexity of rejection sampling (Definition 3.1.4) is 2P D.

2. The expected oracle complezity of tokenwise rejection sampling (Definition 3.1.5) with a perfect process
verifier is 2D.

Proof. Both claims are straightforward. (1) follows as generating one guess for the string s takes D oracle
calls. Moreover, the probability of the full string matching the only string in A (i.e., 0P) is 1/2P. As the
number of calls to generate 07 is a geometric random variable, the expected number of full string generations
is 20,

For (2), since O is uniform, at each token, the probability of drawing 0 is 1/2. Hence, the expected
number of calls per coordinate needed is 2 — making the total number of expected calls for the entire string
2D. O

This proposition underscores the power of a process verifier — even in extremely simple settings, and
even when used in conjunction with a very simple algorithm.

In fact, one can easily see that with a perfect process verifier, one can easily solve the constrained gener-
ation task with |X|D calls: at each position, one queries the process verifier for each possible continuation of
the string, and accepts only if the process verifier accepts. Of course, in practice, the verifier is not perfect,
and its accuracy likely depends on how “out-of-distribution” the prefix it’s queried on is (See Section 3.2.1.5
and Section 3.2.2.9)

We finally remark that a process verifier, as we defined it, is clearly useful to solve the generation task. If
we instead wanted to sample from the restricted distribution p(s) o< 1(s € A)po(s), it’s not clear how useful
the process verifier is. For instance, if we use the simple tokenwise rejection sampling (Definition 3.1.5), it’s
easy to see that the distribution we produce samples from is not the restricted distribution:

3We discuss additional intuitions for understanding our proof in Remark 3.5.1 in Section 3.5.2.
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Proposition 3.1.2. Consider the constrained generation task (X, A,O), s.t. ¥ = {0,1}, A= {s € ¥ :
3i € [D],s; = 0} and O is uniform over XP. Then, tokenwise rejection sampling does not produce samples

from p(s) x 1(s € A)po(s).

Proof. By Definition 3.1.5, until the last token is being generated, the process verifier will always accept
(as there exists a string with at least one 0 coordinate in the coordinates that haven’t yet been sampled).
Now, for the prefix 1°~1, the only completion that is in A is 1P~ 00. This means that 1°~1 00 is assigned
probability mass QD%I under the tokenwise rejection sampling schema. All other strings in ¥ are assigned
a probability 5. On the other hand, p(s) & 1(s € A)po(s) assigns uniform mass on all strings in A —
proving the claim of the proposition. O

3.2 Heuristic algorithm: tokenwise rejection sampling with back-
tracking

Our theory (Section 3.1) proves that in some cases, tokenwise rejection sampling algorithm (Definition 3.1.5)
with access to a process verifier can be exponentially faster than only verifying at the end (Definition 3.1.4).
In this section, we build on the tokenwise rejection sampling algorithm (Definition 3.1.5), and additionally
consider a “backtracking” strategy, in which the model is allowed to erase some of its generations. The
reasons to consider such a strategy is to allow the model to get “unstuck”: if the process verifier decides the
current prefix cannot be completed to a valid string in A, it is possible that erasing the last few tokens will
make it easier for the model to correct its mistake, compared to erasing just the last token. More formally,
the framework of our algorithm is given by Algorithm 1 below. *

Algorithm 1 Tokenwise rejection sampling with backtracking

1: Input: Prompt z, generator O, verifier V, length D € N, backtrack quota @ € N, backtrack stride
B e Ny

2: S« €

3: while |s| < D and s|, # <eos> do

4:  Sample § ~ O(z 0 3)

5. §4-508§

6: if @ >0and V(zos)=0 then
7 § < S1:|s|-B

8: Q+—Q-1

9: foriinl---Bdo

10: Choose § € argmax O(x o s)
11: 54-505

12: end for

13:  end if

14: end while

The flexibility of the tokenwise rejection sampling with backtracking (Algorithm 1) makes it a very natural
strategy to use in conjunction with trained verifiers. We perform a thorough empirical investigation into
the applicability of Tokenwise rejection sampling with backtracking in constrained language generation, and
benchmark it against common baselines, including rejection sampling (Definition 3.1.4), nucleus sampling

4The algorithm is a bit more involved, so we will describe it in pseudocode rather than text. Besides the notations in
Section 3.1.1, Algorithm 1 uses the following additional common conventions: <eos> denotes the end-of-sequence token; s|5 #
<eos> is understood as True when s = ¢; for any starting index i and ending index j, if ¢ > j, then s;.; = €. In line 10, why
redoing the erased positions using argmax: our results in Section 3.2.1.1 suggests that out-of-distribution prefix is a cause of
generator mistakes. As a remedy, redoing the erased positions using argmax is intended to increase the generator-predicted
probability of the currently sampled prefix. We include an ablation study in Section 3.2.3 verifying that this improves the
accuracy.
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(Holtzman et al., 2020), temperature scaling, and “block best-of-N” (Section 3.2.2.6) sampling, on both
synthetic data (Section 3.2.1) and more realistic data (Section 3.2.2). We observe that across various settings,
Tokenwise rejection sampling with backtracking reduces query complexity, improves accuracy, and does not
hurt diversity.

3.2.1 Language models trained on synthetic data
3.2.1.1 Dyck grammar as a sandbox

Real-world LLM pretraining data (Li et al., 2024a) typically involves many diverse structures, so when an
LLM algorithm outperforms baselines on a benchmark, it is generally challenging to precisely identify which
component of the algorithm improved the handling of which structures of the data.

To have a quantitative control over the structure in the pretraining data distribution, and to derive fine-
grained observations about the effects of Tokenwise rejection sampling with backtracking , we synthetically
generate the pretraining data based on the Dyck grammar (Schiitzenberger, 1963), a classic formal language
(context-free grammar) consisting of balanced parentheses of multiple types (for example, “[()]” is valid but
“(D]” is not). Dyck serves as a useful sandbox, as it typifies features such as long-range dependencies and
a hierarchical, tree-like structure—characteristics often found in both natural and programming language
syntax—and has been a subject of interest in numerous theoretical studies on Transformers (Yao et al., 2021;
Liu et al., 2023c;a; Wen et al., 2023). More formally:

Definition 3.2.1 (Dyck distribution). Dyck, denotes the Dyck language ° of length D defined over the
vocabulary ¥ = {[, 1, (,)}, whose length-N prefix set is denoted as Dycky,VN € [D]. For a wvalid prefix
wi.N € Dycky, the depth of wi.n is

d(wy.§) = #Open Brackets in wy.y
— #Close Brackets in wy. .

The distribution Dpyck over Dycky, (parameterized by p,q € (0,1)) is defined such that Vwi.ny € Dycky,

P(wy.n) o p\{i|wi:[7d(w1:i):1}\ (11— p)|{i|wi:(,d(w1:i):1}| (3.3)
(pg)ltilwi=Ld(wi)>1} (1 — p)g)Hilws=Cd(wii)>1}]
(1-— q)|{iIwie{],)}vd(wl:i)SD—iH_

Remark 3.2.1. Fquation (3.3) defines an intuitive autoregressive generative process for Dyckp: if the
current depth is 0, then sample the next token from [ and ( with probability p and 1 — p respectively; else
if the current depth is D — i+ 1, implying that all the remaining positions have to be closing brackets, then
deterministically close the last unmatched open bracket ©; else, sample the next token from open or close
brackets with probability q and 1 — q respectively. In other words, p controls the proportion of square vs.
round brackets, while q controls the tendency to predict an open bracket when possible (a large ¢ may result
in a large depth at some position).

In our experiments, we pretrain autoregressive Transformer (Vaswani et al., 2017) Language models (6
layers, 8 heads per layer, hidden dimension 512) from scratch on data sampled from Dpyek with D =32,p =
0.2,g = 0.5. We use batch size 32, weight decay 0.1, learning rate 3e-4 with 100 warmup steps, and follow
Block et al. (2024) to use exponential moving average to stabilize training. We reached 100% training and
(in-distribution) validation accuracy.

To search for stronger signals in benchmarking the accuracy of the trained model, we will prompt it using
the following type of out-of-distribution prompts. Note that since p < 0.5, the training data contains less
square brackets than round brackets, so long prefixes with many square brackets will be out-of-distribution

5We follow a simplified version of Wen et al. (2023) in defining a probability distribution over strings in a Dyck language.
6 At any position, there is at most one valid closing bracket.
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prompts for the trained model. We generated a set of such out-of-distribution prompts Dyckyop from
Dycky with p = 0.8 where the prefix length IV is uniformly randomly sampled from 25 < N < 31. We let
the trained language model complete these prompts and check whether the completed string is in Dyckp,.
Quantitatively:

Definition 3.2.2 (Prompt completion accuracy). Given an autoregressive oracle O (Definition 5.1.1) and
a set of prefix prompts X, the accuracy of O in completing X is:

ACC(O,X) = ﬁ Z 1xoy€DyckD
z€X,y~po(-|z)

We construct the autoregressive oracle Opyclens Which predicts the next-token distribution based on
our trained model with nucleus sampling (Holtzman et al., 2020) top_p set to 0.9. We observed that
Acc(Onucteus, Dyckpop) = 94.23%. We will show that Oyerifier backtracking based on Algorithm 1 can sig-
nificantly reduce the remaining error rate.

3.2.1.2 Training the verifier

We collect a set of 441 prompts in Dyckyop in which the trained model (denoted as LM) made mistakes
when completing them. We implement a rule-based error parser according to the grammars of Dyck, which
identifies the first position of error in each model completion. Applying this parser to the model mistakes,
we obtain a set of model-generated strings X or C X* which contain errors. By contrast, we sample another
set of 441 strings Xcorreet ~ Dyckpop such that Xepor and Xeopreet have the same length distribution. We
train a lightweight neural network verifier to distinguish Xepror from Xcorrect-

Concretely, to maximally exploit the representations learned by LM, we train a 1-linear-layer verifier V
whose features are the last-layer-last-position representations by LM of strings in Xepror U Xcorrect, and labels
are 0 for strings in Xeor and 1 for strings in Xcomrect. Consequently, the trainable parameters of V are a
single matrix of dimensionality 512 by 2. Among the 882 strings in Xerror U Xcorrect, we use 792 samples for
training, and 90 samples for validation. Despite being slightly over-parameterized, this minimal verifier V
achieved on average 93% (with standard error 3.9%) validation accuracy across 10 repetitions. Figure 3.1 in
Section 3.2.1.6 illustrates the intuition of why a lightweight verifier may be surprisingly effective with a small
number of labeled samples. We next verify that forcing a backtracking at prefixes where the model made
mistakes can effectively improve the completion accuracy (Section 3.2.1.3), and that the trained verifier in
this section can mostly catch those mistakes and thus mostly retaining the accuracy gain (Section 3.2.1.4).

3.2.1.3 Backtracking effectively reduces errors

The trained language model LM made a mistake at the last position of each string € Xepror. We therefore
use “error-inducing prefixes” Xerror-inducing t0 denote {2q.j3/—1 | £ € Xerror b Table 3.1 shows that at prefixes
in Xerror-inducing, if we backtrack only once for a small backtrack stride B, and continue the autoregressive
sampling process, the error rate can be significantly reduced.

3.2.1.4 Verifier effectively reduces errors

In Section 3.2.1.3, the sampling process forced a backtracking at error-inducing prefixes Xeiror-inducing. Can
the error reduction effect be retained by a trained lightweight single-layer verifier V in Section 3.2.1.27
Table 3.2 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) using the trained verifier
is remarkably effective. Moreover, in Section 3.2.1.7, we verify that the predicted backtracks were necessary.

3.2.1.5 Tokenwise rejection sampling with backtracking reduces completion errors on unseen
OOD prefixes

Table 3.2 in Section 3.2.1.4 reported a significant improvement of accuracy by Tokenwise rejection sampling
with backtracking (Algorithm 1) when the prompts are Xerror-inducing, for which the language model LM
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generation configuration accuracy
baseline: nucleus sampling top_p = 0.9 0.331
baseline: greedy argmax sampling 0.334
B =1, then nucleus sampling top_p = 0.9 0.366
B = 2, then nucleus sampling top_p = 0.9 0.438
B = 4, then nucleus sampling top_-p = 0.9 0.591
B = 8, then nucleus sampling top_p = 0.9 0.790

Table 3.1: At error-inducing prefixes, a larger backtrack stride B significantly improves completion accuracy
(Definition 3.2.2).

Q B accuracy
1 2 0.421
4 0.500
6 0.604
2 2 0.457
4 0.634
6 0.762
4 2 0.518
4 0.762
6 0.921
baseline: nucleus sampling top_-p = 0.9 0.331
baseline: greedy argmax sampling 0.334

Table 3.2: When the prompts are error-inducing prefixes, a single-layer trained verifier significantly improves
completion accuracy using Tokenwise rejection sampling with backtracking (Algorithm 1). A larger backtrack
quota @ and a larger backtrack stride B are both helpful.

made mistakes during completion. Is the verifier V overfitted to these type of error-inducing prompts? Can
the accuracy improvement generalize to (average-case) out-of-distribution (OOD) prefixes, i.e. independently
sampled strings of the same distribution as Dyckpop (Section 3.2.1.1)7?

We independently sampled 10000 such out-of-distribution prompts Dyckgep ', and benchmark the ac-
curacy of Tokenwise rejection sampling with backtracking (Algorithm 1) against the baselines of nucleus
sampling top_p = 0.9 (Holtzman et al., 2020) and standard autoregressive sampling (equivalent to top_p
= 1.0). Table 3.3 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) significantly
reduces completion errors. Crucially, the improvement does not diminish on top of the commonly used base-
line of truncating the tail probabilities during sequence sampling. This verifies the desirable property that
Tokenwise rejection sampling with backtracking can be applied in combination with such baselines to further
improve accuracy. We also verify that the accuracy improvement does not hurt diversity (Section 3.2.1.9).

Finally, provided with the verifier, why does the model still make mistakes? We include additional error
analysis in Section 3.2.1.8.

3.2.1.6 Visualizing the language model representations of correct vs. incorrect sequences
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nucleus sampling top_p

#errors + std err

0.9

240.0 &£ 5.177

179.4 + 1.020

1.0

B
0
4
0
4

461.8 £ 8.304

200.0 & 3.225

Table 3.3: Tokenwise rejection sampling with backtracking (Algorithm 1) reduces completion errors on unseen
out-of-distribution (OOD) prefixes. Crucially, the improvement does not diminish on top of commonly used
baselines, including nucleus sampling top_p = 0.9. For each setting of top_p, we compare Tokenwise rejection
sampling with backtracking (Algorithm 1) (using backtrack quota @ = 4 and backtrack stride B = 4) with
the baseline (using backtrack quota @ = 0 and backtrack stride B = 0). We report the number of completion
errors that occur when completing an unseen set of 10000 independently sampled out-of-distribution prompts
Dyck$on ™. The experiment was repeated 5 times, and we report the standard errors.
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Figure 3.1: TSNE plot for the LM last-layer-last-position representations of strings in Xeror U Xcorrect- Red
dots correspond to the representations of incorrect strings, whereas gray dots correspond to the representa-
tions of correct strings of comparable lengths. We can see that the representations of incorrect strings form
just a few clusters. This intuitively justifies using a lightweight verifier on top of these LM representations.
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3.2.1.7 The predicted backtracks were necessary

During the experiment in Section 3.2.1.4, the trained verifier V predicted backtracks at many positions.
Were they really necessary? For each setting of backtrack quota ) and backtrack stride B, we collect
the set of prefixes Xpredicted backtracks Where V predicted backtracks. Then, we let the language model LM
complete each string in Xjredicted backtracks Without any backtracks, using common decoding techniques such
as nucleus sampling top_p = 0.9 (Holtzman et al., 2020) and argmax greedy decoding. Table 3.4 shows
that without backtracking, the completion accuracy is much lower than the accuracy reported in Table 3.2.
This implies that Xpredicted backtracks Were indeed challenging prefixes for the LM, which verifies that the
backtracks predicted by verifier V were necessary.

Q B #backtracks accuracy without backtrack
nucleus sampling top_p = 0.9 argmax
1 2 163 0.313 0.344
4 163 0.337 0.319
6 163 0.331 0.288
2 2 311 0.347 0.328
4 297 0.357 0.349
6 286 0.374 0.373
4 2 600 0.371 0.353
4 532 0.419 0.404
6 489 0.509 0.523

Table 3.4: Predicted backtracks were necessary. For each setting of backtrack quota ) and backtrack
stride B, we report the number of times that Tokenwise rejection sampling with backtracking (Algorithm 1)
backtracked. Moreover, we report the completion accuracy of letting the language model LM complete these
backtracked prefixes without any backtrack. For each setting, the completion accuracy is much lower than
the accuracy reported in Table 3.2. This implies that these backtracked prefixes were indeed challenging
prefixes for the LM.
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3.2.1.8 Error analysis on the remaining mistakes

Given the improvement of accuracy (Section 3.2.1.5) as a result of our algorithm Tokenwise rejection sampling
with backtracking (Algorithm 1), why did the model still make mistakes?

We conducted an error analysis which parses all mistakes into error types, and examine the generated
token, the LM predicted most probable token, their predicted probabilities, and a few intermediate variables
during the course of our algorithm Tokenwise rejection sampling with backtracking (Algorithm 1).

In summary, the findings are:

1. Among 225 generated mistakes, 222 correspond to predicting an incorrect closing bracket, and 3 cor-
respond to pre-maturely predicting the end-of-sequence <eos> token.

2. In all 225 cases, the final state of the algorithm has used up all the backtrack quota @ allocated to it, so
even if the error predictor was perfect, the algorithm would not have been had a chance to correct these
mistakes. This suggests that suitably increasing backtrack quota Q might be an effective approach in
improving the accuracy (though there are trade-offs with query efficiency).

A snapshot of our error analysis result is included in Figure 3.2. We have released our experimental
codes, 7 which include more error analyses.

error prefix generated_token generated_token_prob most_probable_token most_probable_token_prob backtrack_quota
0 INCORRECT_CLOSING_BRACKET  B(((L((L@ONIONMO0) 0.998425 0.998425 0
1 INCORRECT_CLOSING_BRACKET  B(OI((((O)(O00NON0 0.901743 0.901743 0
2 INCORRECT_CLOSING_BRACKET  B(()((OI(O)O(0)0)(0)() 0.684750 0.684750 0
3 INCORRECT_CLOSING_BRACKET  B(((0))(O)(O()0(00)) 0.699475 0.699475 0
4 INCORRECT_CLOSING_BRACKET  B(([I(MOONION(00)0) 0.994803 0.994803 0
5 INCORRECT_CLOSING_BRACKET B(()((0(O(OO00)OMNO 0.987031 0.987031 0
6 INCORRECT_CLOSING_BRACKET  B((L((O((OON0)DI(0)) 0.869623 0.869623 0
7 INCORRECT_CLOSING_BRACKET  B(()(()((0000)O)NIO0) 0.782469 0.782469 0
8 INCORRECT_CLOSING_BRACKET  BI((((@ODOOMNONO 0.802167 0.802167 0
9 INCORRECT_CLOSING_BRACKET  B((((O@ON)00)O(@I0) 0.941579 0.941579 0
10 INCORRECT_CLOSING_BRACKET  B(()(O((O@@MMNOO0) 0.997442 0.997442 0
11 INCORRECT_CLOSING_BRACKET B(((())000()(((0)))0)) 0.965299 0.965299 0
12 INCORRECT_CLOSING_BRACKET  B(I((0))(O((0)O)O)IDI0) 0.523672 0.523672 0
13 INCORRECT_CLOSING_BRACKET  B(()((I0000IO0)(0) 0.638692 0.638692 0
14 INCORRECT_CLOSING_BRACKET B(()((0)(((0))ON(0)0)(0) 0.995885 0.995885 0
15 INCORRECT_CLOSING_BRACKET  B(I)((((0)(0))000IN)(0) 0.928873 0.928873 0
16 INCORRECT_CLOSING_BRACKET B(((0))(((CCOOONM) 0.802617 0.802617 0
17 INCORRECT_CLOSING_BRACKET  B((0)(0)(O)TOOD(O0)) 0.864548 0.864548 0
18 INCORRECT_CLOSING_BRACKET  B((()0)@M((OOMOO) 0.722893 0.722893 0
19 INCORRECT_CLOSING_BRACKET B(()(()O(ON(O(00)(O))) 0.963540 0.963540 0
20 INCORRECT_CLOSING_BRACKET  B((())O((MMO0)ONO 0.932594 0.932594 0
21 END_INCORRECT  B(()((00)(OON(ONON(0) 0.975265 0.975265 0
22 INCORRECT_CLOSING_BRACKET  B(((OLO)(O(0)0N0O0) 0.975087 0.975087 0

Figure 3.2: Error analysis table for mistakes of language model trained on Dyck grammar and sampled
using Tokenwise rejection sampling with backtracking (Algorithm 1). The last column records the remaining
backtrack quota @ at the time of generating the incorrect token.

"https://github.com/YuchenLi01/LM_Query_Complexity
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3.2.1.9 Tokenwise rejection sampling with backtracking maintains diversity

In this section, we show that the significant accuracy improvement is not at the cost of reducing diversity.
Our experiment freshly samples 100 prompts following the same distribution as Dyckgop (Section 3.2.1.1).
For each prompt, we let the trained LM independently sample 10 completions, using Tokenwise rejection
sampling with backtracking (Algorithm 1) or the baseline algorithm, and will compare how many (out of
10) samples were different, and report the mean and standard error across the 100 prompts.
Table 3.5 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) generates similarly
diverse samples as the baselines of nucleus sampling with top_p = 0.9 or 1.0.

@ B top-p diversity + std err (out of 10)
4 4 1.0 5.52 + 3.28
0 0 0.9 5.47 £+ 3.06
0 0 1.0 5.84 £+ 3.29

Table 3.5: Under the experiment setup described in Section 3.2.1.9, Tokenwise rejection sampling with
backtracking (Algorithm 1) is similarly diverse as the baselines of nucleus sampling with top_p = 0.9 or 1.0.
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3.2.2 Generating test cases with pretrained CodeLlama

Motivated by our findings in Section 3.2.1, we apply essentially the same recipe of Tokenwise rejection
sampling with backtracking (Algorithm 1) to a real-data use case, and show that Algorithm 1 clearly improves
the quality vs. query complexity trade-off on top of commonly used baselines, such as nucleus sampling
(Holtzman et al., 2020), temperature scaling, best-of-n rejection sampling, and block best-of-n with process
reward model.

3.2.2.1 Task setup

A natural practical constrained generation task that requires both accuracy and diversity is generating test
cases for a target function specified by the prompt. To have an unambiguous notion of groundtruth regarding
accuracy and diversity, we control the target function to be a simple implementation of the append function
for Python lists. Under this setting, we wrote an evaluator script which analyzes model generated comple-
tions, measuring the accuracy by checking whether a test case correctly tests list append, and measuring the
diversity by checking how many distinct test cases are generated. ®

We write a program to systematically generate task prompts, randomizing over function names and
demonstration examples. Each prompt includes 1 demonstration example specifying the intended output
format, followed by a target function (implementing append), and finally requests 8 test cases be gener-
ated. Two examples of the prompt are provided in Table 3.7, and correspondingly, two examples of model
completions of these prompts are provided in Table 3.8 in Section 3.2.2.4.

Evaluation metrics The test prompts include 10 different target function names that are unseen during
training. Each target function name is independently tested 10 times. Since each prompt requests 8 test
cases, the total number of test cases requested for each run of a decoding algorithm is 8 x 10 x 10 = 800.
We will measure the following metrics:

1. Ndistinet correct: the number of distinct correct test cases generated. This metric naturally incorpo-
rates both accuracy and diversity.

2. ACCdistinct ‘= Ndistinct correct/800-

3. C: the query complexity (analogous to Definition 3.1.6). We measure the total number of queries made
to the generator LM when it completes the prompts. Each completion allows at most 384 tokens to be
generated, so the max C is 384 x 10 x 10 = 38400 unless “block best-of-n” (Section 3.2.2.6) is used.

We use a pretrained Codellama (Roziere et al., 2023) as the generator language model LM, which we
freeze during our experiments. We discuss common baselines in Section 3.2.2.5. We follow almost the same
approach as Section 3.2.1.2 to train our verifier on this coding task. We next present technical details and
ablation experiments regarding design choices of verifier training in Section 3.2.2.6.

3.2.2.2 Tokenwise rejection sampling with backtracking improves accuracy

In this section, we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves higher
Accgistinet than all the baselines described in Section 3.2.2.5. Similar to our observations based on the
synthetic Dyck grammar data (Section 3.2.1.5), the improvement does not diminish on top of commonly
used baselines. This verifies the desirable property that Tokenwise rejection sampling with backtracking
(Algorithm 1) can be applied in combination with commonly used baselines to further improve accuracy.
The primary comparisons are reported in Table 3.6, and additional results are in Table 3.13 in Section 3.2.2.7.
Moreover, in Section 3.2.2.9, we show that analogous to our observations on the synthetic Dyck grammar
(Section 3.2.1.5), Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to out-
of-distribution prompts than baselines.

8Two test cases are different if and only if they test different lists or different appended items.

111



Q@ B topp T Dblock BoN Accgistinct £ std err
4 4 0.95 1.0 0.714 £ 0.011
0 0.95 1.0 2 0.684 £+ 0.038
0 0.95 1.0 0.660 £ 0.042
0 0.95 1.0 4 0.623 £+ 0.036
0 0.95 1.0 8 0.559 + 0.038
4 4 1.0 1.0 0.639 £+ 0.061
4 10 1.0 1.0 0.622 + 0.046
0 1.0 1.0 0.504 £ 0.025
4 4 1.0 1.2 0.440 + 0.026
0 1.0 1.2 0.269 £ 0.025
0 0.0 1.0 0.013 £ 0.000

Table 3.6: Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and outperforms
nucleus sampling top_p, temperature scaling T, and block best-of-n (BoN) (Section 3.2.2.6). In this table,
we divide the rows into groups, separated by double horizontal lines, such that each group uses the same
top_p and temperature. The backtrack quota @) = 0 means a baseline algorithm that does not use the
verifier. Q > 0 means Tokenwise rejection sampling with backtracking with the corresponding @ and B.
block BoN specifies the number of candidates generated for each block; empty block BoN means not using
block best-of-n. In all groups, Tokenwise rejection sampling with backtracking leads to higher Accgistinct
than all other methods. The last group corresponds to argmax greedy decoding, which has low Accgistinct
due to low diversity. The experiment was repeated 5 times, and we report the standard errors. The complete
set of experiments are reported in a larger Table 3.13 in Section 3.2.2.7.

3.2.2.3 Tokenwise rejection sampling with backtracking is query efficient

In this section, we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves a better
tradeoff between Accqistinet and query efficiency C than all the baselines described in Section 3.2.2.5. The
primary comparisons are visualized in Figure 3.3 and Figure 3.4 (in Section 3.2.2.8). Numerical values of C
are reported in Table 3.13 in Section 3.2.2.7.
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3.2.2.4 Examples of prompts and model completions

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert (5, 5) == 10

assert f(1, 5) == 6
assert f(27 8) == 10
assert (6, 2) =

assert (6, 9) == 15
assert £(4, 5) == 9
assert (9, 6) == 15
assert (6, 1) =

def knk(l, item):
assert type(l) is list
l.append (item)
return |

List 8 test cases of the above function knk, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert (5, 8) == 13

assert f(1, 5) == 6
assert f(8, 4) == 12
assert (6, 2) == 8
assert (3, 9) == 12
assert f(1, 7) =

assert (5, 9) == 14
assert f(1, 7) =

def ovs(l, item):
assert type(l) is list
l.append(item)
return 1

List 8 test cases of the above function ovs, one in each line:

Table 3.7: Two example prompts for generating test cases for a simple implementation of the append function
for Python lists. In these examples, the following components are randomly generated and will be different
for different prompts: (1) the numbers in the demonstrations (e.g. assert £(5, 8) == 13) as long as they
are correct for addition; (2) the name of the target function (e.g. knk, ovs).
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assert knk([], 2) == [2]
assert knk([1], 2) == [1, 2]
assert knk([1, 3], 2) == [1, 3, 2]
assert knk([1, 3, 5], 2) == [1, 3, 5, 2]
assert knk([1, 3, 5, 7], 2) == [1, 3, 5, 7, 2]
assert knk([1, 3,5,7,9],2) ==[1,3,5,7,9, 2]
assert knk([1, 3, 5, 7, 9, 11], 2) ==[1, 3, 5, 7, 9, 11, 2]
def sum_list(1):
return sum(l)
List 8 test cases of the above function sum_list, one in each line:
assert sum_list([]) == 0
assert sum_list([1]) == 1
assert sum_list([1, 3]) == 4
assert sum_list([1, 3
assert sum_list([1, 3,
assert sum_list([1, 3
assert sum_list([1, 3
def sublist(1, sub):
assert type

assert ovs([], 1) == [1]

1) ==11,2]
1,2],1) ==[1, 1, 2]
1,2],3) == [1, 2, 3]
1,2],0) == [0, 1, 2]
1,2,3],4) == [1, 2, 3, 4]

2
0) == [0

Table 3.8: Two example generations by CodeLlama corresponding to the prompts in Table 3.7. Note
that both generations are flawed: (1) the model only generated 7 test cases instead of 8, even though the
prompt requested 8. Then, it generated irrelevant contents, starting from def sum_1ist(1): (2) more than
one generated test cases were wrong (e.g. in assert ovs([2], 1) == [1, 2], the correct right-hand-side
should be [2, 11). More generally, we implemented a rule-based parser to analyze model generations and
identify the error type (if any), and locate the first position of error.
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3.2.2.5 Baselines

We extensively tuned the hyperparameters in common baseline decoding algorithms, including
e nucleus sampling (Holtzman et al., 2020): we grid-searched top_p € [0.0,0.7,0.8,0.9,0.95,1.0].
e argmax greedy decoding: equivalent to top_p = 0.0.
e standard autoregressive sampling: equivalent to top_p = 1.0.

e temperature scaling (Ackley et al., 1985): we grid-searched temperature € [0.0,0.2,0.4,0.6,0.8,1.0,1.2]
(for each top_p).

Through the above grid search, we found that the best combination was top_p = 0.95, temperature = 1.0.
Besides, we consider baselines based on the block-best-of-n rejection sampling approach to incorporate
process rewards. More details about this baseline are provided in the “Block verifier” part of Section 3.2.2.6.

e block-best-of-n: we grid-searched n € [2,4, 8], fixing the best combination of top_p and temperature
found by the grid search above.

We will show that Tokenwise rejection sampling with backtracking (Algorithm 1) clearly outperforms all
these baselines in terms of the quality vs. query complexity trade-off.
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layer index Accaistinct = std err

27 0.714 4+ 0.011
28 0.711 + 0.016
26 0.708 £+ 0.018
30 0.706 + 0.036
24 0.701 &+ 0.033
31 0.688 £ 0.028
29 0.676 4+ 0.021
25 0.672 4+ 0.030
23 0.709 £+ 0.017
3 0.700 £+ 0.028
15 0.700 £+ 0.028
19 0.692 £ 0.028
7 0.691 4+ 0.031
11 0.650 4+ 0.041
ablation: random verifier 0.663 £+ 0.027
baseline: nucleus sampling + temperature scaling 0.660 £ 0.042

Table 3.9: Ablation: layer 27 representations of CodeLlama outperform layer 31 (the last layer) in terms of
the quality of the error predictor trained based on these features. We control all other setting to be the same
as the top-performing settings of the baseline (nucleus sampling top-p = 0.95 (Holtzman et al., 2020) and
temperature 1.0), whose performance is also included in the table. The other rows in this table (layer 27 and
layer 31) refer to applying Tokenwise rejection sampling with backtracking (Algorithm 1) using backtrack
quota @ = 4, backtrack stride B = 4, and verifiers trained on layers 24, ..., 31 of the generator (CodeLlama),
respectively. The row ablation: random verifier refers to a verifier that returns Uniform|0, 1], and uses the
same (), B as the above. The experiment was repeated 5 times, and we report the standard errors. The
rows are sorted by mean Accgistinet (Section 3.2.2.1).

3.2.2.6 Training the verifier

We follow almost the same training approach as Section 3.2.1.2. The differences are described below. The
generator language model LM is a pretrained CodeLlama (Roziere et al., 2023) (7B parameters), which we
freeze during our experiments.

An intermediate layer provides more informative representations for verifier training than
the last layer. Instead of training the verifier V on top of the last layer (i.e. layer 31) representations
of LM, we instead treat the layer index as a hyperparameter, and conducted a grid search over layer index
€ {3,7,11,15,19,23,27,31}. Among these candidates, layer 27 representations resulted in the best accuracy.
We therefore exclusively used layer 27 representations in subsequent experiments, and finally conducted an
ablation study on the top-performing setting of the baseline to back-test the impact of using other layers.
Table 3.9 shows that layer 27 outperforms layer 31. We conjecture that the layer 31 representations may
be too specific for the next-token prediction task, which is not necessarily the optimal for discriminating
correct prefixes vs. incorrect ones.  We also include results for a few other layers near the final layer. Note
that even with a sub-optimally chosen layer, the accuracy of Tokenwise rejection sampling with backtracking
(Algorithm 1) still outperforms the top-performing settings of the baseline found through grid search. '°

With limited backtrack quota, it is better to be conservative in its usage. The verifier V is
trained with binary labels (1 if correct, 0 if wrong). Although there are a roughly equal number of training

9This is in line with some prior works that also observed that the final layers of language models tend to be more task-specific
than the intermediate layers (Liu et al., 2019; Kovaleva et al., 2019; Rogers et al., 2021).
10See Section 3.2.2.5 for details about baselines.
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Q@ B top_p temperature error prediction threshold Accgistinct = std err
4 4 0.95 1.0 0.1 0.714 £+ 0.011
4 4 0.95 1.0 0.5 0.676 + 0.019
4 4 1.0 1.0 0.1 0.639 £+ 0.061
4 4 1.0 1.0 0.5 0.604 £ 0.047
4 4 1.0 1.2 0.1 0.440 + 0.026
4 4 1.0 1.2 0.5 0.334 £ 0.013
4 10 1.0 1.0 0.1 0.622 4+ 0.046
4 10 1.0 1.0 0.1 0.604 £ 0.030

Table 3.10: Ablation: 0.1 is a better error prediction threshold than the default 0.5 in all settings we tried,
including various nucleus sampling (Holtzman et al., 2020) top-p, temperature scaling, and backtrack stride
B. In this table, we divide the rows into groups of 2, separated by double horizontal lines, such that within
each group, the only difference is the error prediction threshold. In all groups, 0.1 leads to higher Accqistinct
than 0.5. The experiment was repeated 5 times, and we report the standard errors.

samples whose labels are 0 or are 1, using 0.5 as the error prediction threshold turned out to be suboptimal.
Since our Tokenwise rejection sampling with backtracking (Algorithm 1) only allows a small backtrack quota
@ = 4, it makes sense to only use backtrack quota when the error predictor is very confident that the current
intermediate generation is wrong. Moreover, compared with our synthetic Dyck grammar setting (target
length = 32) (Section 3.2.1), our code generation setting allows much longer generations (up to 384), which
further justifies conservatively spending the small backtrack quota ). Consequently, we consider decreasing
the error prediction threshold to 0.1. Table 3.10 shows that 0.1 is a better error prediction threshold than
the default 0.5 in all settings we tried.

Block verifier. Our verifier applies to the token level, i.e. predicting an accept/reject action after the
generator LM generates each token. In many practical settings (including ours), it is natural to divide
the generated output into blocks (each block may contain multiple tokens), e.g. in writing math proofs,
each block may correspond to one reasoning step; in writing codes, each block may correspond to one line
of codes. Recent works achieved strong empirical performance by generating multiple candidates for each
block of intermediate model generations, train process reward models that evaluate each candidate, and
select the best-scoring candidate (see e.g. Wu et al. (2024) and references therein). We refer to this as the
“block-best-of-n” approach. To compare with such “block-best-of-n” baselines, we train “block verifiers”
Vilock Which scores prefixes that are full lines of model output for our task. We will show that this “block
best-of-n” approach is helpful, but is outperformed by our Tokenwise rejection sampling with backtracking
(Algorithm 1) in terms of accuracy-efficiency trade-off.

Does a deeper verifier perform better? The above experiments follow Section 3.2.1.2 in training a
single-linear-layer verifier. In this section, we test the effects of scaling up the verifier depth. Specifically, we
test verifiers based on Multi-Layer Perceptrons (Rosenblatt, 1958) of depths 2, 4, 8, with ReLU activations
(Nair & Hinton, 2010) between adjacent parameterized layers. Table 3.11 shows that more MLP layers
did not outperform the 1-linear-layer verifier even though they can be trained to similar error-predicting
accuracies, measured by their accuracy in predicting whether a prefix is correct or incorrect on a held-old
validation set of prompts for our task (Section 3.2.2.1) followed by partial generations by CodeLlama. In
other sections of this paper, unless otherwise noted, we always use a single-linear-layer verifier for Tokenwise
rejection sampling with backtracking (Algorithm 1) (and of course, no verifier for baselines (Section 3.2.2.5)

).
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verifier # MLP layers verifier validation accuracy Accgistinctt std err

1 0.96 0.714 £+ 0.011
4 0.97 0.699 + 0.038
2 0.97 0.687 + 0.035
8 0.97 0.684 4+ 0.015
ablation: random verifier 0.50 0.663 £+ 0.027
baseline: nucleus sampling + temperature scaling N/A 0.660 £ 0.042

Table 3.11: Ablation: Deeper verifiers do not outperform the 1-linear-layer verifier even though they can
be trained to similar error-predicting accuracies on held-old validation set. We control all other setting
to be the same as the top-performing settings of the baseline (nucleus sampling top_p = 0.95 (Holtzman
et al., 2020) and temperature 1.0), whose performance is also included in the table. The other rows in
this table refer to applying Tokenwise rejection sampling with backtracking (Algorithm 1) using backtrack
quota @ = 4, backtrack stride B = 4, and verifiers with 1, 2, 4, 8 layers, respectively. The row ablation:
random verifier refers to a verifier that returns Uniform|0, 1], and uses the same @, B as the above. The
experiment was repeated 5 times, and we report the standard errors. The rows are sorted by mean Accqjstinct
(Section 3.2.2.1).

Where are the potentials for further improving Accgistinct? How optimal are our verifiers, and
what are some ways to further improve them? To probe these potentials, we wrote a rule-based groundtruth
verifier for our task (Section 3.2.2.1) and used it as a drop-in replacement of our trained verifier. Table 3.12
shows that the Accqistinet €nabled by our trained verifier almost reached the Accgistinct €enabled by the
groundtruth verifier, showing that improving verifier training may not be the most fruitful direction for
further improvement. Interestingly, using a much larger @ or B (increasing from 4 to 10) does not necessarily
improve the accuracy (sometimes even decreasing the accuracy). We conjecture that in these experiments,
the (imperfect) generator oracle (CodeLlama), not the verifier, was the bottleneck for Accgistinct- As a result,
unnecessarily backtracking and forcing the model to re-generate more tokens may increase the chance that
the model makes mistakes.

verifier type Q B Accgistinct = std err
groundtruth 4 4 0.719 £ 0.022
groundtruth 10 4 0.717 £ 0.015
trained 4 4 0.714 £ 0.011
trained 10 4 0.692 £ 0.025
ablation: random verifier 4 4 0.663 + 0.027
baseline: nucleus sampling + temperature scaling 0 0 0.660 £ 0.042
trained 4 10 0.622 4+ 0.046

Table 3.12: Ablation: Our trained verifier approaches the accuracy of the groundtruth verifier, evaluated
by their ability to assist CodeLlama in completing our test case generation task (Section 3.2.2.1) using
Tokenwise rejection sampling with backtracking (Algorithm 1). In these experiments, we control the nucleus
sampling (Holtzman et al., 2020) top_p = 0.95 and temperature scaling = 1.0 which are the optimal setting
for baseline, found by grid search (Section 3.2.2.5). The rows are sorted by Accgistinct- The row ablation:
random verifier refers to a verifier that returns Uniform[0, 1]. Interestingly, using a much larger @ or B
does not necessarily improve the accuracy (sometimes even decreasing the accuracy). We conjecture that
the generator model, CodeLlama, is imperfect, so unnecessarily backtracking and forcing the model to re-
generate more tokens may increase the chance that the model makes mistakes. The experiment was repeated
5 times, and we report the standard errors.
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3.2.2.7 Full results of CodeLlama experiments in Section 3.2.2

Caption for Table 3.13 (on the next page). Tokenwise rejection sampling with backtracking (Algo-
rithm 1) improves accuracy and outperforms commonly used baselines, including nucleus sampling top_p,
temperature scaling (temp), and block best-of-n (BBoN) (Section 3.2.2.6). Baselines are extensively hyper-
parameter tuned (Section 3.2.2.5). Backtrack quota ) = 0 means a baseline without verifier. When @ > 0,
the row denotes Algorithm 1 with the corresponding @ and B. The column layer idx denotes which layer of
CodeLlama provided the representations for training the verifier, and err threshold denotes the cutoff below
which the verifier output is interpreted as a rejection (both were experimented in Section 3.2.2.6). When
BBoN is specified, the row denotes the number of candidates generated for each block; otherwise, the row
does not use block best-of-n. The rows are sorted by Accgistinet- Controlling top_p and temperature, Algo-
rithm 1 leads to better tradeoff between Accgistinet and query complexity C (both defined in Section 3.2.2.1)
than all other methods. The experiment was repeated 5 times, and we report the standard errors.
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QQ B layer idx err threshold top.p temp BBoN Accgistinct = std err C

4 4 27 0.1 0.95 1.0 0.714 £ 0.011 39443 + 235

4 4 31 0.5 0.95 1.0 0.688 £ 0.028 39629 + 135

0 27 0.95 1.0 2 0.684 £+ 0.038 39364 + 1252

4 4 31 0.1 0.95 1.0 0.677 £ 0.033 39546 + 98

4 4 27 0.5 0.95 1.0 0.676 £+ 0.019 38555 + 140

0 0.95 1.0 0.660 £ 0.042 38231 + 165

4 4 27 0.1 1.0 1.0 0.639 £ 0.061 31274 + 1559

0 0.9 1.0 0.634 £+ 0.023 38393 + 14

0 0.9 1.2 0.630 £ 0.028 38005 + 232

0 0.8 1.2 0.627 £ 0.015 38343 + 90

0 27 0.95 1.0 4 0.623 £ 0.036 65496 + 7638

4 10 27 0.1 1.0 1.0 0.622 £+ 0.046 32923 + 1772

4 4 27 0.5 1.0 1.0 0.604 £ 0.047 31091 + 968

4 10 27 0.5 1.0 1.0 0.604 £ 0.030 27287 4+ 7580

0 0.95 1.2 0.584 £+ 0.027 36601 + 535

0 1.0 0.8 0.562 £ 0.021 36610 + 669

0 27 0.95 1.0 8 0.559 £ 0.038 122933 + 3832

0 0.7 1.2 0.531 £+ 0.035 38400 £ 0

0 0.95 0.8 0.523 £+ 0.029 38386 + 28

0 0.8 1.0 0.511 £ 0.028 38400 £ 0

0 1.0 1.0 0.504 £+ 0.025 30754 4+ 1272

0 0.9 0.8 0.466 £+ 0.032 38400 £ 0

4 4 27 0.1 1.0 1.2 0.440 £ 0.026 24916 £+ 954

0 1.0 0.6 0.399 £+ 0.070 38320 4+ 73

0 0.7 1.0 0.353 £ 0.021 38400 £ 0

0 0.8 0.8 0.351 £ 0.039 38400 £ 0

0 0.95 0.6 0.337 £ 0.053 38400 £ 0

4 4 27 0.5 1.0 1.2 0.334 £ 0.013 24217 + 1214

0 0.9 0.6 0.284 £ 0.044 38400 £ 0

0 1.0 1.2 0.269 £ 0.025 21906 4+ 1780

0 0.7 0.8 0.239 £ 0.019 38400 £ 0

0 0.8 0.6 0.212 £ 0.011 38400 £ 0

0 1.0 0.4 0.207 £ 0.029 38400 £ 0

0 0.95 0.4 0.176 £ 0.013 38400 £ 0

0 0.9 0.4 0.147 £+ 0.013 38400 £ 0

0 0.7 0.6 0.101 £ 0.028 38400 £ 0

0 1.0 0.2 0.080 £ 0.020 38400 £ 0

0 0.8 0.4 0.074 £ 0.027 38400 £ 0

0 0.95 0.2 0.057 £ 0.018 38400 £ 0

0 0.9 0.2 0.029 £+ 0.015 38400 £ 0

0 0.7 0.4 0.025 £ 0.016 38400 £ 0

0 0.8 0.2 0.021 £ 0.014 38400 £ 0

0 0.7 0.2 0.018 £ 0.011 38400 £ 0

0 0.0 1.0 0.013 £ 0.000 38400 £ 0
Table 3.13: Tokenwise rejection sampling with backtracking (Algorithm improves ac-
curacy and outperforms commonly used baselines, including nucleus sampling top_p,
temperature  scaling (temp), and block best-ofn (BBoN) (Section 3.2.2.6). Due
to space constraints, more detailed captions are in the beginning this  section.

To help readers parse these results, we included smaller tables, each analyzing a single aspect:

please refer to Table 3.6 in Section 3.2.2.2, Table 3.10 in Section 3.2.2.6, Table 3.9 in Section 3.2.2.6, and

Figure 3.3 in Section 3.2.2.3.
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3.2.2.8 Visualizing the query efficiency of Tokenwise rejection sampling with backtracking

This section complements the query efficiency visualization discussed in Section 3.2.2.3. !

Verifier-Assisted Sampling with Backtrack is Query-Efficient

exp: Q=4, B=4, top_p=0.95, temperature=1.0

=== baseline: top_p=0.95, temperature=1.0, best of 2
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Figure 3.3: Tokenwise rejection sampling with backtracking (Algorithm 1) is query-efficient. The horizontal
axis denotes query complexity C, and the vertical axis denotes the number of distinct correct test cases
generated Nyistinct correct, POoth defined in Section 3.2.2.1. Blue dashed lines correspond to the baselines
(described in Section 3.2.2.5), whereas orange solid lines correspond to Tokenwise rejection sampling with
backtracking with various @ and B, both defined in Algorithm 1. Since the slopes of the orange curves
are visibly greater than the slopes of the blue curves, we conclude that Tokenwise rejection sampling with
backtracking is more query-efficient than baselines. The experiment was repeated 5 times, and each dot is
the average metric of these 5 runs. The specific numbers and standard errors are reported in Table 3.13. A
more zoomed-in version of this plot is in Figure 3.4.

' This visualization here in Figure 3.3 slightly favors the “block best-of-n sampling” baseline, because its implementation
stops the decoding process once the requested number of test cases are generated, whereas when running our algorithm or
non-best-of-n baselines, the model is allowed to (and in fact does indeed) generate irrelevant tokens afterwards, which hurts
query complexity. Even under this disadvantage, Tokenwise rejection sampling with backtracking still outperforms the “block
best-of-n sampling” baselines.
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Verifier-Assisted Sampling with Backtrack is Query-Efficient exp: Q=4, B=4, top_p=0.95, temperature=1.0
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Figure 3.4: Similar to Figure 3.3, just more zoomed-in, excluding block best-of-n baselines (Section 3.2.2.6).
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3.2.2.9 Tokenwise rejection sampling with backtracking generalizes better to out-of-distribution
prompts

In this section, we show that Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes
better to out-of-distribution prompts than the best nucleus sampling and temperature scaling baseline in
Section 3.2.2.5. Unlike the synthetic Dyck grammar setting, on real-world LLMs we do not have a precise
quantitative control over how “out-of-distribution” a prompt is for the LLM. We therefore assume that
a sufficient condition for a prompt in our setup to be out-of-distribution is that the name of the target
function denotes some meaning which is different from the actual implemented functionality (i.e. list append)
(recall the task setup in Section 3.2.2.1). Two examples of such out-of-distribution prompt are provided in
Table 3.14. We validate this assumption by observing that the accuracy indeed degrades on such “out-
of-distribution” prompts, suggesting that the model is indeed confused by the inconsistency between the
function names and the function implementations. However, analogous to our observations on the synthetic
Dyck grammar (Section 3.2.1.5), Tokenwise rejection sampling with backtracking (Algorithm 1) again suffers
much less reduction in accuracy on these “out-of-distribution” prompts. The detailed comparisons are
reported in Table 3.15.

123



def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert (6, 5) == 11

assert (3, 2) == 5
assert f(57 4)==9
assert (1, 5) =

assert (5, 4) =

assert (3, 5) == 8
assert (5, 6) == 11
assert (2, 6) =

def add(l, item):
assert type(l) is list
l.append (item)
return 1

List 8 test cases of the above function add, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert (8, 7) == 15

assert £(8, 1) == 9

assert f(4, 7) ==11
assert (8, 4) == 12
assert £(7, 4) == 11
assert f(8, 4) == 12
assert f(1, 1) == 2

assert (5, 5) == 10

def exp(l, item):
assert type(l) is list
l.append(item)
return 1

List 8 test cases of the above function exp, one in each line:

Table 3.14: Two example out-of-distribution prompts for generating test cases for a simple implementation
of the append function for Python lists. Different from the prompts in Table 3.7, here the function names
denote a clear meaning (e.g. add or exp), which, however, is different from what the function implements
(i.e. append).
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@@ B err threshold in-distribution Accgistinct £ std err OOD Accagistinet = std err
4 4 0.1 0.714 £ 0.011 0.710 £ 0.029
4 4 0.5 0.676 &+ 0.019 0.687 &+ 0.024
0 0.660 £ 0.042 0.606 £+ 0.034

Table 3.15: Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to out-of-
distribution prompts than the best nucleus sampling and temperature scaling baseline in Section 3.2.2.5,
which we identified by grid search (Table 3.13) to be top_p = 0.95, and temperature = 1.0. We manually
pick 10 target function names according to Section 3.2.2.9 which were unseen when training the verifier
(Section 3.2.2.6). When backtrack quota @ = 0, the row denotes a baseline algorithm that does not use the
verifier (and consequently the backtrack stride B will not matter). The column err threshold denotes the
cutoff below which the error predictor output is interpreted as a rejection (Section 3.2.2.6). When @ > 0,
the row denotes Tokenwise rejection sampling with backtracking (Algorithm 1) with the corresponding @
and B. Tokenwise rejection sampling with backtracking (Algorithm 1) suffered minor or no drop between
in-distribution and OOD Accgistinct, whereas the baseline suffered a drop by more than one standard error.
The experiment was repeated 5 times, and we report the standard errors.
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3.2.3 Additional ablation experiments on the Tokenwise rejection sampling
with backtracking algorithm (Algorithm 1)

Besides the ablation experiments in Section 3.2.2.6 which probe various aspects of verifier training, in this
section, we focus on one algorithmic component.

Concretely, line 10 of Tokenwise rejection sampling with backtracking (Algorithm 1) re-generates the
erased positions using argmax. This was motivated by our results in Section 3.2.1.1 which suggest that
out-of-distribution prefix is a cause of generator mistakes. As a remedy, redoing the erased positions using
argmax is intended to increase the generator-predicted probability of the partially sampled generation, which
(concatenated with the prompt) will be the prefix for subsequent generation steps. We include an ablation
study verifying that this improves the accuracy, significantly under the synthetic data setting (Table 3.16),
and only slightly (without hurting diversity) under the real data setting (Table 3.17).

sampling algorithm #errors + std err
Algorithm 1 179.4 + 1.020
ablation: no argmax 245.8 + 8.658

Table 3.16: Re-generating the erased positions using argmax in Tokenwise rejection sampling with backtrack-

ing (Algorithm 1) reduces completion errors on unseen out-of-distribution (OOD) prefixes in Dyck grammar.

We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.9, backtrack quota @ = 4, and backtrack stride

B = 4 (the best settings in Table 3.3). The row “ablation: no argmax” refers to removing lines 9-12 in

Algorithm 1. We report the number of completion errors that occur when completing an unseen set of 10000
unseen

independently sampled out-of-distribution prompts Dycksop *. The experiment was repeated 5 times, and
we report the standard errors.

sampling algorithm err threshold Accgistinet £ std err

Algorithm 1 0.1 0.714 + 0.011
ablation: no argmax 0.1 0.711 £ 0.032
Algorithm 1 0.5 0.676 + 0.019
ablation: no argmax 0.5 0.663 4+ 0.023

Table 3.17: Re-generating the erased positions using argmax in Tokenwise rejection sampling with back-
tracking (Algorithm 1) slightly improves the accuracy-diversity tradeoff (Section 3.2.2.1) in our test case
generation task. We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.95, backtrack quota @ = 4,
and backtrack stride B = 4 (the best settings in Table 3.13). The row “ablation: no argmax” refers to
removing lines 9-12 in Algorithm 1. The column err threshold denotes the cutoff below which the error
predictor output is interpreted as a rejection (Section 3.2.2.6). The experiment was repeated 5 times, and
we report the standard errors.
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3.3 Theoretically provable algorithm: value-guided sampling with
stochastic backtracking

Section 3.2 introduced a natural heuristic algorithm based on backtracking (Botta et al., 2025; Yang et al.,
2025; von Riitte et al., 2025)—i.e. occasionally “erasing” generated tokens. Despite showing promising
empirical results, it has not been implemented in a mathematically justified manner, and its benefits have
not been rigorously quantified. The theory in Section 3.1 highlights the benefits (both information-theoretical
and computational) of process verifiers, but does not provide theoretical guaranty when the process verifier
is imperfect.

In this section (based on Rohatgi et al. (2025)), we introduce a concrete model for imperfect process
verifiers, in which we show error amplification can be algorithmically mitigated. To do so, we connect verifier-
assisted language generation with the classical algorithmic toolkit for sampling—specifically, a Markov chain
Monte Carlo (MCMC) technique from theoretical computer science that leverages approzimate counting
oracles to do approximate sampling (Sinclair & Jerrum, 1989). This machinery lets us implement the
empirical heuristic of backtracking in a mathematically justified manner, and to establish rigorous guarantees
for guiding generation with an imperfect process verifier. Broadly, we believe that perspectives from classical
theory on design and analysis of Markov chains may bear additional fruits for language model reasoning |,
and we hope our paper will stimulate further work to connect these areas.

More concretely, the algorithm which we develop, VGB, is based on a principled stochastic backtracking
strategy that generalizes the seminal Sinclair-Jerrum random walk (Sinclair & Jerrum, 1989).

3.3.1 VGB: the Value-Guided Sampling with Stochastic Backtracking algorithm

Algorithm 2 VGB: Value-Guided Sampling with Stochastic Backtracking

1: Input: Base model mf; appx. value function 177 prompt x € X, horizon H € N, step count T' € N.
2: If outcome-level reward/tilt is available, set V(z,y1.1) := 7(z, y1.1)-
3: Initialize y(© := ().
4: for 0 <t < T do
5 Set h:=|y®|, and define p*) as the distribution over neighborhood N (yﬁl) of ygt% where
% &)y
()¢, .(t) ~ V(Q?, yl:h) if h > 0,

P ) {0 if h =0,

6: and for each yp41 € A,

{ﬂ-ref(yh+1 | x,yit%)f}(‘x’ yg;pthrl) if h < Ha

if h=~H.

p(t) (y%, Yht1) X

7. With probability 1/2, set y*+1) := 3 else sample y*+1) ~ p(®).
8: end for
9: return y7) or y@ for i ~ Unif([T)).

Our main algorithm, VGB, is displayed in algorithm 2 and illustrated in fig. 3.5. To explain the algorithm,
we view guided sampling algorithms as implicitly traversing the exponentially-large tree 7 with node set
Uf:o A" where 1., is the parent of y;.;, (for any y; € A). Let N(y1.;,) denote the neighborhood of y.1,
in 7, which contains its parent y1.,—1 and all its children {y1.441}y,, -

VGB proceeds as follows. At each step ¢, given the current node yﬁl, we first define a probability distribu-

tion p® over the neighborhood N (yiti) The probability of selecting a child node (y?;l, Yp+1) 18 proportional
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Neighborhood N (y1:1)

—~~

X V(x, yl:h)

At each step ¢, for y(t) = y;.p:

1. With prob. 1/2, stay: y(t+1) 4,
1/2 2. With prob. 1/2, move to a neighbor in
: N (y1.n) with weights shown on the
arrows

Figure 3.5: Hlustration of execution of VGB at each step t.

t0 Trer (Ynt1 | , ygtz)f/(% yitZL, Yh+1), while the probability of selecting the parent yig_l is proportional to
V(x,yﬁ) ). The random walk proceeds by sampling a new node y*1) from p(*) with probability 1/2, and
staying at the current node otherwise (setting y‘t1) « y(0).12 After T steps, in the version of VGB that
we analyze first, it returns the final node of the random walk. In experiments, we return the first leaf node
the algorithm reaches (for efficiency), but the version of the algorithm with theoretical guaranty depends on
returning a uniformly chosen node from the random walk’s path. '3

VGB as a generalization of the Sinclair-Jerrum walk VGB can be interpreted as a generalization of
the Sinclair-Jerrum walk (Sinclair & Jerrum, 1989), which corresponds to the special case where 7pes is
uniform and 7 is binary-valued.'* This walk was originally used to show that approximate sampling reduces
to approximate counting in self-reducible problems such as SAT, without incurring the error amplification
of prior reductions (Jerrum et al., 1986). Value functions are precisely the generalization of counting oracles
to our setting.

Theoretically, under some assumptions, VGB enjoys provable guarantees on its sampling quality and
efficiency. More concretely, VGB inherits three key properties from the Sinclair-Jerrum walk: (1) the walk
rapidly mixes to a stationary distribution 7; (2) 7 puts £2(1/H) mass on the leaves of T; and (3) as long as
exact outcome-level rewards are used (i.e. V(z,y1.z) = 7(x, y1.21)), 7 is proportional to 7* at the leaves.

Empirically, VGB achieves favorable quality-efficiency trade-off on various synthetic and real constrained
generation tasks, including but not limited to Dyck grammar and Python code generation, which we intro-
duced in Section 3.2.

12This technique (staying at the current node with probability 1/2) is called laziness, and is needed to ensure that the random
walk has a stationary distribution. See e.g. Levin et al. (2009) for background on Markov chains.

13The chosen node may not be a leaf, in which case we re-run the algorithm; this can occur at most O~(H ) times.

14See Bakshi et al. (2024) for a related generalization, applied to quantum Gibbs state preparation.
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For more details on the theoretical guarantees and the empirical results, please refer to our paper (Rohatgi
et al., 2025).

3.4 Discussions

3.4.1 Is query efficiency a reasonable notion of efficiency?

There are many reasonable efficiency metrics, and they do not always positively correlate with each other
(Dehghani et al., 2021).

Our paper focuses on query complezity (measured by the number of tokens generated by the language
model to satisfactorily complete the task '° ), and we do not claim that the same conclusions apply when
we switch out query complexity for other metrics of efficiency, such as wall-clock time.

We think query complexity is one (but not necessarily the only, or the most) important aspect of efficiency
due to the following considerations:

e Many existing large language model (LLM) providers charge service fees to the users according to the
number of tokens generated by the language model for the user, i.e. query complexity.

e In the single sequence generation setting, controlling all other conditions to be held the same, query
complexity positively correlates with the size of computation (the number of decoder forward passes)
and wall-clock time.

e In the batched generation setting, admittedly, the wall-clock time does not necessarily scale linearly
with query complexity '° , meaning that the naive best-of-n rejection sampling is not as slow as query
complexity would indicate (if the LLM has sufficient bandwidth for it). However, in many realistic
LLM inference settings, the LLM receives a large number of query requests per second, so there is no
additional idle availability '” for duplicating each sequence generation request by n.

Although, as mentioned above, query complexity is partially indicative of a few practically important
efficiency metrics (e.g. monetary cost or wall-clock time), there are aspects of these metrics that are not
tracked by query complexity. For example, different types of hardware and cache may have different efficiency
best practices. In particular, on GPUs and TPUs, algorithms that better exploit parallelization or tensorized
computation tend to be more efficient. Therefore, an important direction for future work is to design and
analyze hardware-aware algorithms that incorporate these important aspects of the inference setup.

15This definition is natural since generating one token involves one forward pass of the (decoder-only autoregressive) language
model, i.e. one query.

16For example, the wall-clock time of generating n candidate responses (with batch size n) might be less than n multiplying
the wall-clock time of generating 1 candidate response.

17Unless more GPUs/TPUs are allocated to serve this LLM.
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3.5 Proof intuitions

3.5.1 On the hardness of the knapsack problem

The hardness of the knapsack problem has been the subject of extensive study. Specifically, the decision
version of this problem has found applications in the context of secure cryptosystems Odlyzko (1998). Under
no assumptions on the input structure, the best known algorithm is based on dynamic programming Kellerer
et al. (2004) and runs in pseudo-polynomial time. This algorithm is also used to obtain an FPTAS and
its runtime is effectively polynomial if one further assumes that the weights are polynomially bounded in
D. More exact or approximate algorithms achieve polynomial runtime, under specific input structures.
Specifically, when the weights form a superincreasing sequence, that is,

i—1
X;>> X; Vie[2,DInZ,

j=1

a greedy algorithm solves the knapsack decision problem Odlyzko (1998) in linear time. On the other hand,
when the density of the knapsack

D
log, (max; { X; }&_,)

is small enough, knapsack is approximately solved in polynomial time by lattice reduction algorithms Plan-
tard et al. (2013). Our argument considers the most general setting, in which no assumptions are made on
the structure of the inputs {X;}!_,, ¢ and the decision problem is NP-complete Karp (1972).

3.5.2 Proof intuition for Theorem 3.1.1

Remark 3.5.1. To help readers parse our proof above, we provide its informal intuition. The oracle Oy
can be thought of as hiding a secret message § which is a binary sequence of length D — 1. Because of our
construction in Equation (3.1), by querying the oracle with any string s # §, the output of the oracle will
not reveal any information about §. Therefore, to know anything about §, the query s needs to exactly match
5. For any deterministic order of searching for § over {0,1}P~1, the worst case is always that § is the last
item in the search order, causing runtime 2P~

Moreover, Theorem 3.1.1 gemerally applies to any algorithm A. In particular, A is even allowed to
never query the gemerator oracle at all. Intuitively, one candidate counter-example of our theory would be
a simple algorithm A which always outputs 0 at all positions (as this will obviously satisfy the counstraint
A={seXP: Zil s; mod 2 = 0}). However, recall that Definition 3.1.2 requires that the output must
have nonzero probability under the generator oracle Og. Note that s; = 0 Vi € [D] will not have nonzero
probability under O, thus violating the constraints (unless §; = 0 Vi € [D — 1] ). The intuitive reason why
the above counter-example does not work is that, it is necessary to use the oracle Oz to know the § that it
hides. Therefore, any algorithm A is governed by the above-mentioned lower bound of searching for § by
querying Os.

3.6 Related work

Inference-time scaling for language models Practical language generation tasks typically impose
various task-specific constraints in addition to the general grammatical rules of language. One effective way
to improve the chance of satisfying such constraints is to increase the inference-time compute through search
and/or rejection sampling. There has been a long history of prior works that employ inference-time scaling
in the language generation context, dating as far back as beam search (Lowerre & Reddy, 1976; Hayes-Roth
et al., 1976; Ow & Morton, 1988; Jurafsky & Martin, 2000; Graves, 2012). Much more recently, as researchers
develop the techniques for language models to follow instructions (see the survey by Zhang et al. (2023a) and
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references therein), more creative designs for inference-time scaling algorithms have become viable (Wang
et al., 2022; Yao et al., 2023; Zhang et al., 2023b; Zhou et al., 2023; Choi et al., 2023; Liu et al., 2024;
Xie et al., 2024; Snell et al., 2024; Zhao et al., 2024), and see Wu et al. (2024) for a recent survey on cost-
performance tradeoffs of these approaches. Compared to these approaches in the literature, our Tokenwise
rejection sampling with backtracking (Algorithm 1) shares some features with lookahead search (Snell et al.,
2024) (specifically, the rejection decision at the current position is based on the verifier decision at some
future position). However, two main differences are: (1) Tokenwise rejection sampling with backtracking
(Algorithm 1) does not use a beam (i.e. does not need to generate multiple candidates, thus reducing query
complexity), and (2) Algorithm 1 uses a different sampling approach (namely argmax) for the backtracked
positions (we verify in Section 3.2.3 that in some settings this significantly improves the accuracy). It is a
natural future research direction to design inference algorithms that combine the advantages of the two.

Incorporating a process reward model to assist language generation Among the vast design space
for inference-time scaling, process reward modeling has been proven to be an important component common
to many LLM systems (Polu & Sutskever, 2020; Uesato et al., 2022; Ma et al., 2023; Lightman et al., 2023;
Wang et al., 2024; Setlur et al., 2024). The process verifier which we study (Definition 3.1.3) is a special case
of such process reward model if we restrict the output to be binary. However, there are still challenging open
problems around process reward modeling, such as how to properly define the “blocks” (Guo et al., 2025)
(see also our definitions in the “Block verifier” part of Section 3.2.2.6). Towards bringing more clarity to
these open questions, our work develops a theoretical framework for reasoning about the query complexity
of process verifiers. Moreover, our experiments suggest the potentials of a lightweight process verifier in
improving the query complexity, accuracy, and diversity of constrained generation. In particular, our theory
and experiments suggest (1) the “blocks” do not necessarily have to be carefully designed — setting each
token as a block might potentially suffice, at least in some more structured domains such as codes; (2)
backtracking (Algorithm 1, Section 3.2) is a robustly effective strategy that should be applied in combination
with process verifiers. A possible extension of the type of verifier we study (Definition 3.1.3) is: instead
of outputting binary acceptance / rejection decisions, the verifier could return a probability of accepting
each prefix Yang & Klein (2021). However, some tasks may require that the output distribution should
match some target distribution, and it may be challenging to ensure that the acceptance probability is
well-calibrated in order to satisfy this requirement. Relevant to this goal, Foster et al. (2025) proves some
theoretical guarantee for the end-to-end learning of process verifiers in some specialized settings.

Controlled synthetic data distribution as a sandbox for studying language models Our Dyck
grammar distribution most closely follows Wen et al. (2023) (though we switched to a fixed-sequence-length
setting, and used unbalanced bracket type probability, instead of length extrapolation, to define the criteria
for a prompt to be out-of-distribution). Dyck grammar was also used in other prior works (Hewitt et al.,
2020; Ebrahimi et al., 2020; Yao et al., 2021; Liu et al., 2023c;a) to study language models. Dyck grammar
can be seen as a special case of the task (specifically context-free grammar) considered in SynCode (Ugare
et al., 2024). Other synthetic data distributions have been used to study various aspects of language models
in prior works, including representational capability (Bhattamishra et al., 2020a; Li & Risteski, 2021; Zhang
et al., 2022a; Zhao et al., 2023), statistical sample complexity (Edelman et al., 2022), optimization process
(Lu et al., 2021; Jelassi et al., 2022; Li et al., 2023; Bietti et al., 2023), sampling (Li et al., 2024b), and
architectural limitations (Liu et al., 2023b), and see references cited therein.

Other related works include Huang et al. (2025a;b), who provide algorithms and theoretical guarantees
for imperfect outcome-level verifiers, and Balcan et al. (2025), who study the sample complexity of learning
outcome-level verifiers for chain-of-thought reasoning.

3.7 Conclusion

We introduce a new theoretical framework for elucidating the design space of verifiers and correspondingly a
simple family of rejection-sampling-based inference algorithms. In particular, our theory proves the computa-
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tional benefits of incorporating a process verifier, measured by the query complexity of calling the generator.
On the other hand, our theory also reveals the subtleties: straightforwardly applying a process verifier in a
Tokenwise rejection sampling algorithm may unintentionally re-weigh the distribution among sequences that
satisfy the constraints, which could be undesirable for settings that require a strong notion of distributional
calibration. Towards that goal, our theoretically principled algorithm, value-guided sampling with stochastic
backtracking, incorporates classic results from the approximate counting and sampling literature and enjoys
provable guarantees on the distributional calibration and computational efficiency.

Empirically, through fine-grained experiments on both synthetic and realistic data, we show that the
Tokenwise rejection sampling algorithm, when combined with backtracking, is a robustly effective recipe for
reducing query complexity, improving accuracy, and maintaining diversity. Moreover, value-guided sampling
with stochastic backtracking mitigates error amplification as sequence length grows.

For future works, we hope the theoretical framework and empirical observations can inspire systematic
characterization of the strengths and weaknesses of the diverse set of rejection-sampling-based inference-time
algorithms. Concrete open problems at the intersection of theory and experiments include (1) improving the
efficiency of backtracking-based inference-time algorithms (e.g. improving parallelization), and (2) improving
the robustness of verifier-assisted language generation algorithms which require weaker assumptions on the
verifier.
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Chapter 4

Co-designing inference and training
procedures for parallel-efficient
language models

Chapter 2 and Chapter 3 considered training dynamics and inference algorithms, respectively. In both cases,
our analysis is based on identifying key structures in the data distribution (such as topic or grammar), and
studying how they are learned by the neural network (during training) or leveraged (during inference). These
results intuitively suggest that the structural properties of the data distribution are the centerpiece which
connects some aspects of training and inference. In this chapter (based on Li et al. (2024b)), we verify
this intuition, by explicitly proving such connection. Specifically, we prove that the statistical efficiency of
training can be bounded by the computational efficiency of inference. Moreover, these notions of efficiency
are governed by a property of the data distribution. These results suggest that data, training, and inference
are fundamentally connected, and studying their interactions is an important direction of research.

Autoregressive language models are the currently dominant paradigm for text generation, but they have
some fundamental limitations that cannot be remedied by scale—for example inherently sequential and uni-
directional generation. While alternate classes of models have been explored, we have limited mathematical
understanding of their fundamental power and limitations. In this paper we focus on Generative Masked
Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional
probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain
to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each
step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical
framework for analyzing and improving such models which sheds light on questions of sample complexity and
inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding,
achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregres-
sive models. We run careful ablation experiments to give recommendations on key design choices, and make
fine-grained observations on the common error modes in connection with our theory. Our mathematical
analyses and empirical observations characterize both potentials and limitations of this approach, and can
be applied to future works on improving understanding and performance of GMLMs. !

The current dominant approach to language modeling is autoregressive (AR): to generate a sequence of
tokens, the language model starts by predicting the leftmost token, and then proceeds from left to right,
each step predicting the next token based on everything on its left (Raffel et al., 2020; Brown et al., 2020;
Touvron et al., 2023). AR models are not without limitations:

1. Lack of parallelism: To generate a sequence of N tokens, AR language models need N sequential
decoding steps. Each step consists of a forward pass of the decoder component. When N is large, N

LOur codes are released at https://github.com/google-research/google-research/tree/master/padir
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sequential decoding steps incur high latency.

2. Quality: When predicting each token, the model cannot access its right hand side context, and has
no natural way to revise earlier predictions on the left. This intuitive limitation was more formally
explored in prior theoretical works (Li & Risteski, 2021; Lin et al., 2021; Bachmann & Nagarajan,
2024).

One promising alternative is based on Generative Masked Language Models (GMLMs). They are trained
to fit conditional probabilities for parts of the sequence (by applying a mask), conditioned on the rest. To
produce samples, these conditionals are used as oracles for running Markov Chain, e.g. a Gibbs sampler
(Wang & Cho, 2019; Goyal et al., 2022). Alternatively, we can think of these steps as an iterative refinement
process, typically starting with pure noise (i.e. all tokens are masked or randomized). One can even fit
conditional probabilities for noised versions of the input distribution, and use them as inputs to a denoiser
to get certain types of discrete diffusion models (Austin et al., 2021). In GMLMs, typically one step of
the Markov Chain is operationalized by a Transformer that generates the sequence in parallel (i.e. parallel
decoding (Ghazvininejad et al., 2019; Gu & Kong, 2021; Savinov et al., 2022) ). Hence, if the total number
of steps is small, the latency is low.

However, none of these approaches robustly surpass autoregressive models in both speed and quality
for a wider range of language generation tasks beyond machine translation. Thus, the following questions
naturally arise:

(Ql) GMLMs are trained to learn conditional probabilities. When does it also imply learning the joint
probability?

(Q2) What properties of the data distribution and training/inference algorithm govern the quality of the
learned model and its generated samples?

(Q3) What are the best practices for training GMLMs, and can we use theory to elucidate the design space
of losses, training and inference procedures?

Our contributions. Towards answering the questions above, we introduce a theoretical framework to
characterize the potentials and limitations of GMLMs, for both training and inference. Precisely,

e The asymptotic sample complexity for estimating the parameters of a distribution via a broad
class of masked-prediction losses can be related to the mixing time of a corresponding Markov Chain
that can be used to sample from the distribution (Section 4.1.2). In particular, we prove that training
with larger masks always improves statistical efficiency (Theorem 4.1.1).

e We show finite-sample bounds that relate how well the conditional distributions of the data distri-
bution are learned, to how well the joint distribution is learned (Section 4.1.3) if we have some capacity
control over the distribution class being learned (e.g. covering number bounds).

e Transformers are only able to represent decoding steps that factorize over the coordinates—preventing
them from efficiently sampling even simple distributions with strong correlations between the coor-
dinates (Section 4.1.4).

We accompany these theoretical findings with an extensive set of empirical investigations detailing im-

portant components and common error modes. Precisely:

e Our experiments (Section 4.2) suggest the empirically critical components include large masking
ratio (c.f. theory in Section 4.1.2), custom vocabulary, distillation from AR models, and architecture
improvements like positional attention. 2

2The benefit of distillation was verified in Kim & Rush (2016); Gu et al. (2018); Zhou et al. (2020); Gu & Kong (2021).
Positional attention was tested in Gu et al. (2018); Kreutzer et al. (2020).
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e GMLMs with parallel-decoding work well on machine translation: in fact, even one single forward
pass can often produce reasonable translations. This aligns with our theoretical framework, as machine
translation tasks typically involve lower-entropy and less multi-modal outputs, compared to other
language generation tasks.

e Common error modes (“stuttering”) suggest limitations for parallel-decoding GMLMs for modeling
strong dependencies (c.f. theory in Section 4.1.4), which we empirically quantify (Section 4.2.4).

Jointly, our theoretical and empirical findings suggest synergistically designing better Markov Chains
that mix fast in the presence of strong correlations in the target, and corresponding losses that inherit good
statistical behavior.

4.1 Theoretical framework

We develop a mathematical framework for reasoning about the core ingredients for successfully training and
using GMLMs: the statistical complexity to learn the model, and the speed of inference. We show that
these two are surprisingly closely related: namely, we understand both the asymptotic and finite-sample
statistical complexity through functional inequalities (e.g. Poincaré, approximate tensorization of entropy)
corresponding to the Markov Chains we would use at inference time—which in turn characterize the mixing
time of these chains. This picture closely mirrors an emerging picture in the continuous case for score-
based (diffusion) models (Koehler et al., 2023; Qin & Risteski, 2023)—though with somewhat different proof
techniques.

4.1.1 Setup and notation

The most classical way of fitting distributions from data is maximum likelihood: that is, finding the choice of
parameters that maximize the likelihood of the training data. There are well-understood statistical reasons
to do so: in the asymptotic sense (as the number of sample grows), maximum likelihood is the most sample-
efficient way to estimate the distribution (Hajek, 1972). However, many families of distributions are such
that optimizing maximum likelihood is computationally challenging. Thus, many alternate strategies and
losses to fit the parameters have been developed.

For continuous distributions, a common choice of loss is the score matching loss, where instead of fitting
the likelihood, we fit the gradient with respect to the input of the log-pdf, namely V, logpg(z). In certain
cases, this can provable computational benefits over maximum likelihood (Pabbaraju et al., 2023). For
discrete distributions, we cannot take gradients with respect to the input: though a closely related strategy
is available — trying to match the conditionals of subsets of variables. (This can be thought of as “flipping”
the coordinates in the subsets, while keeping the remaining coordinates fixed.) Operationalizing this as a
loss gives us the pseudolikelihood loss (Besag, 1975).

Variants of this strategy have been used in classical results for learning Ising models (Ravikumar et al.,
2010; Vuffray et al., 2016). More recently, this strategy has been used in conjuction with neural models to
both learn useful features in the guise of masked language modeling (MLM) (Devlin et al., 2019), which
can be also used to produce a generative model (Wang & Cho, 2019; Goyal et al., 2022). The latter is
done by using the learned conditionals inside a Gibbs sampler. However, when the conditionals are not
consistent, i.e. there is not a joint distribution that satisfies these conditionals, Gibbs sampler may amplify
errors. In general, mathematical understanding about sampling from masked language models is still lagging
substantially behind.

Setup and notation: Let Q be a finite discrete set. Let py denote a distribution over a sequence of N
variables X = (X1, Xo, -+, Xy) € OV = X. ? Furthermore, for K C [N], let X denote the subsequence
(X;]i € K), and X_g denote the subsequence (X; |i ¢ K).

3In language models, © is the set of tokens in the vocabulary.
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We consider learning parameters 6 parametrizing some distribution pg over X, for § € ©. The classical
way of fitting 0 is to maximize the likelihood of the training data:

Definition 4.1.1 (MLE, Van der Vaart (2000)). Given i.i.d. samples x1,...,x, ~ pg=, the mazimum
likelihood estimator is 0 y1 p = arg maxgce E [log pg(X)], where E denotes the expectation over the samples.

As mn — oo and under suitable reqularity conditions, we have \/ﬁ(éMLE—H*) — N(0,TprE), where
Cavpe i=Z71 , T :=Covxrp,. (Vopo(X))j9=o- is the Fisher information matriz.

A classical result due to Hajek-Le Cam (for modern exposition see Van der Vaart (2000)) is that maximum
likelihood is the asymptotically most sample-efficient estimator among all “sufficiently regular” estimators
(Section 8.5 in Van der Vaart (2000)) — so we will treat it as the “gold standard” against which we will
compare other estimators. The class of estimators we will be focusing most is the a broad generalization of
the pseudo-likelihood estimator (Besag, 1975).

Definition 4.1.2 (Weighted pseudolikelihood). Consider a partition of [N], namely a collection of sets
K={Ky,...,K} such that | J; K; = [N], and a distribution px : K — R*.
Given n i.i.d samples of sequences and masks: {(X(i),K(i)) X ~ pr, KO ~ DK }ie[m], the weighted

P

maximum pseudolikelihood estimator (MPLE) is fpy, := argmin, S —logpe(X @ Tk

K@)

). The popu-
lation loss is * Lpr(0) = Expr kmpe [—logpo(X k| X_k)].

As a special case, if K contains all subsets of a certain size k and pyx is uniform over K, we get the classical
k-pseudolikelihood estimator:

Definition 4.1.3 (k-pseudolikelihood (Huang & Ogata, 2002)). Same as Definition 4.1.2 except that K =
{K C[N]| K] =k}, pc = Unif(K).

Remark 4.1.1. The distribution of X and K in the above loss is independent. In Section j.1.2.3 we will
show that our results readily generalize to losses in which the distribution of the masks K can depend on the
current X. We present the independent case first for ease of presentation.

Informally, we predict the variables in positions K € I, conditioned on the remaining variables. The
benefit is that parametrizing conditionals over smaller subsets K is often computationally cheaper. For
instance, if pg(z) is an undirected graphical model, i.e. ps(z) o< exp(d - ¢c,6(xc)), where the sum is over all
maximal cliques C of the graph describing the distribution, the conditional distribution of K only depends
on its Markov blanket, which can be very small for sparse graphs and small sets K. Thus, computing the
partition function corresponding to p(xk|x_ k) takes time exponential in this Markov blanket. By contrast,
computing the likelihood requires calculating the partition function of pg(x), which takes time exponential
in the dimension of X. In fact, for Ising models, the corresponding loss is even convezr °. A similar tradeoff
exists for masked language models: fitting the conditionals for larger masks would likely require a larger
model, thus would be computationally more expensive.

4.1.2 Asymptotic sample efficiency via functional inequalities

In this section, we will provide a framework for bounding the asymptotic sample complexity of learning
the parameters 6 of a discrete probability distribution by minimizing a loss in a broad family of “masked
prediction” objectives. We will measure the quality of an estimator in terms of parameter recovery. To make
this formal, we first recall that under mild technical conditions, the estimator will be asymptotically normal:

Lemma 4.1.1 (Asymptotic normality (Van der Vaart, 2000)). Consider the weighted MPLE objective in
Definition 4.1.2, and let 6* € argming Lpr(0). Under mild regularity conditions (Lemma 4.3.9 in Sec-

tion 4.5.10), as n — oo, \/ﬁ(épL —6%) i) N(O, (VgLPL(9*))_1COV(VQZPL(9*))(V§LPL(0*))_1)

4This is equivalent to minimizing the KL divergence of the ground-truth conditional distribution p(Xx|X_g) from the
predicted conditional distribution pg(Xx|X_K): Exepy,K~pe [PkL (0(1X-K),po (| X - K))]
5This fact is well known, but for completeness included in Section 4.3.11

136



If we know /n(fpr, — 6*) 4 N(0,Tpr), we can extract bounds on the expected ¢2 distance between 6,
and 0*. Namely, from Markov’s inequality, (see e.g., Remark 4 in Koehler et al. (2023)), for sufficiently large

n, with probability at least 0.99 it holds that [|6p; — 6*[|3 < TCre).

4.1.2.1 Masking more is (statistically) better

As a first application of our framework, we prove that increasing the number of variables k we predict in
k-pseudolikelihood (Definition 4.1.3) strictly improves the statistical efficiency of the resulting estimator.
Note, for larger k, we expect the computational cost to optimize the corresponding loss to be larger, and
when k = N we just get max likelihood. Thus, this naturally formalizes a computational/statistical tradeoff
in choosing k.

Assumption 4.1.1 (Finite gradient and Hessian). V0 € ©,Vz € X, K C [N], the norms of the gradient
Vo log po(zk|z_k)||2 and the Hessian |V logpe(zk|r—K)|F exist and are finite .

Assumption 4.1.2 (Realizability). The data distribution py satisfies: 30* € © such that pg» = px.

Theorem 4.1.1 (Masking more is (statistically) better). Let Assumption 4.1.1 and Assumption 4.1.2 be
satisfied, and let F’I%L denote the asymptotic variance of the k-MPLE estimator (Definition 4.1.3). Then, we
have:S F]f;zl =< F’;L.

Remark 4.1.2. By monotonicity of trace, Thm /.1.1 implies Tr(T%TY) < Te(T%, ). By the remarks after

Lemma 4.1.1, larger k implies a better asymptotic lo bound for learning 6 since Ex,. K., [Hé’{;L - 9||§} —
Tr(Cp L)

n

The main lemma needed for Theorem 4.1.1 is that the two matrices in the asymptotic covariance of
MPLE, V3Lpp(6*) and Covxpr, k~pe (—Volog po(X x| X -k ))jo=e~ are actually equal. For MLE (namely,
when k = N) this is well-known and called the information matriz equality. Proofs of Lemma 4.1.2 and
Theorem 4.1.1 are in Section 4.3.1 and Section 4.3.2. We empirically verify Theorem 4.1.1 in Section 4.2.1.

Lemma 4.1.2 (Generalized information matrix equality). Under Assumption 4.1.1 and Assumption 4.1.2,
the weighted pseudolikelihood loss (Definition 4.1.2) verifies: VaLpr(0*) = Covxpx, Krpx (—Va log pg (Xk|X_K))jo=0%-

4.1.2.2 Statistical efficiency bounds via mixing time bounds

We could in general conceive of masking strategies where certain subsets of variables get masked with
different probabilities. For instance, in language, nearby words will tend to be more correlated; grammatical
constraints will dictate the parts-of-speech that can occur in different positions. We would then like to have
theoretical guidance on what choices of masking distributions are better. Remarkably, it turns out that we
can relate the statistical efficiency — in the sense of E||§ — 6*||? for the resulting estimator § — and the
mixing time of an appropriately chosen Markov Chain. In fact, this is the Markov Chain that would be
typically chosen at inference time. Towards making this formal, we will need several preliminary concepts
and results for Markov chains. Recall, a Markov chain on a state space 2 is described by a (row-stochastic)
transition matrix P. Moreover, we can assign a natural bilinear form called the Dirichlet form:

Definition 4.1.4 (Dirichlet form). Let M be an ergodic, reversible Markov chain with transition matriz P
on state space (). Let p be its unique stationary distribution. Vf, g : Q — R the associated Dirichlet form is
defined as:

Ep(f,9) = (F, (T = Pl = 55w yecanl@)Ple,5) (@) ~ F5)(9(x) — o(y))

Mixing time of the Markov chain can be bounded in the x? sense by the gap between the 1st and 2nd
eigenvalue of the Laplacian matrix I — P, expressed as Poincaré inequality:

6The notation A < B means B — A is positive semidefinite.

137



Definition 4.1.5 (Poincaré inequality). We say that a Markov chain satisfies a Poincaré inequality with
constant C if for all f: Q — R, we have Ep(f, f) > &Var,(f).

The Poincaré inequality implies exponential ergodicity of the Markov chain in y2-divergence, precisely
2 (pe, 1) < e 2/Cx%(po, ), where p is the stationary distribution of the chain and p; is the distribution
after running the Markov process for time ¢, starting at py. We will be particularly interested in several
generalizations of Gibbs sampling:

Definition 4.1.6 (Weighted block dynamics). Let K = {K1,..., K|k} be a collection of sets (or blocks)
such that |J, K; = [N]. A block dynamics with blocks IC is a Markov chain that picks a block K in each
step according to some distribution px : K — RT 7 and then updates the coordinates in K according to the
conditional distribution px(Xg|X_k).

The stationary distribution for the above Markov Chain is px. Caputo & Parisi (2021) also derived the
Dirichlet form (Definition 4.1.4) corresponding to this Markov chain:

E(f,9) =ExmpcEx_, [Covx,ix_(f.9)].

The crucial result we show is that the statistical efficiency of the weighted MPLE (Definition 4.1.2) as
captured by the asymptotic variance can be related to the Poincaré constant of the corresponding weighted
block dynamics (Definition 4.1.6). Proof of Theorem 4.1.2 is in Section 4.3.3.4.

Theorem 4.1.2 (Asymptotic variance under a Poincaré Inequality). Suppose the distribution pg- satis-
fies a Poincaré inequality with constant C with respect to the weighted block dynamics. Then under As-
sumption 4.1.1 and Assumption 4.1.2 the asymptotic variance of the weighted MPLE can be bounded as:
I'pr < CZ~Y where T is the Fisher Information matriz (Definition 4.1.1).

4.1.2.3 Adaptive masking: masked positions depend on the sequence

The machinery we developed in Section 4.1.2.2 is in fact substantially more general — it applies to even
“adaptive” masking losses in which the conditional distribution of the mask can depend on the current X
(that is, for each X, there is a different conditional distribution pi (K |X) which can be manually designed
and is known to the model during training).

Definition 4.1.7 (Adaptively weighted pseudolikelihood). Given n i.i.d samples of sequences and masks:
{(XD,KO) XD ~ pr, KO ~ pe(-|X D) }igpn, the weighted maximum pseudolikelihood estimator (MPLE)
is Opp, == argming > -, —log pg(Xk|X_k, K), where

_ po(X)px (K|X)
Zxk Po (X}OX—K)p/C(K' (X}{’X—K))

po(Xk|X_k,K): (4.1)

The population loss is correspondingly:
LPL(Q) = EXNPXEKNPK(-|X) [— logpg(XK|X_K, K)} .

Remark 4.1.3. Note, the distribution pi(-|X) doesn’t depend on 6, so KW can be generated readily by
drawing samples from this distribution. Note also, the term po(Xk|X_k,K) is expressible in terms of
the joint distribution pe(X) and px(-|X) and the expression in (4.1) can be interpreted as a conditional
distribution in the joint distribution pg (X, K) := pe(X)px(K|X). Finally, note that conditioning on the
set K is subtle, but important — see Lemma 4.3.1 in Section /.53.3.1.

We can analogously generalize the sampling process to the following Markov chain in which K is sampled
dependent on X:

"This is analogous to the training objective setting in Definition 4.1.2.
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Definition 4.1.8 (Adaptive weighted block dynamics). Let K = {Ki,..., K|k} be a collection of sets (or
blocks) such that | J; K; = [N]. A block dynamics with blocks IC is a Markov chain that picks a block K in
each step according to some distribution ® px(- | X), and then updates the coordinates in K according to the
conditional distribution px(Xx|X_x,K).”

If we understand the domain of this Markov chain to be {(X,K) | X € X,K € K}, its stationary
distribution is

pak(X, K) = px(X)pc (K | X).
The Dirichlet form can also be explicitly written down (note, f and g are functions of both X and K):

Proposition 4.1.1 (Dirichlet form for adaptive weighted block dynamics). The Dirichlet form corresponding
to the weighted block dynamics (Definition 4.1.8) is:

Ef,9) = Ex_ . k)i [COVX (X i, 1) (f59)]

The proof of Proposition 4.1.1 is in Section 4.3.3.3.

Analogous to Theorem 4.1.2, we again show that the statistical efficiency of the adaptively-weighted
MPLE (Definition 4.1.7), captured by the asymptotic variance, can be related to the Poincaré constant of
the corresponding adaptively-weighted Block dynamics (Definition 4.1.8):

Theorem 4.1.3 (Asymptotic variance of adaptively-weighted MPLE under a Poincaré Inequality, gener-
alization of Theorem 4.1.2). Suppose the distribution pe« satisfies a Poincaré inequality with constant C
with respect to the adaptively-weighted block dynamics. Then under Assumption J.1.1 and Assumption 4.1.2
where po(zi|x_K) is replaced by po(zi|x_K, K), the asymptotic variance of the adaptively-weighted MPLE
can be bounded as: T'p;, < CZ~1 where T is the Fisher Information matriz (Definition /.1.1).

The proof of Theorem 4.1.3 is in Section 4.3.3.4.

4.1.3 Finite sample bounds and distributional distance

The framework in Section 4.1.2 was asymptotic in nature, and used parameter closeness as a notion of
“quality” of the estimator. In this section, we remove both requirements, at the cost of the bounds depending
on a notion of “complexity” of the parametric class we are fitting. It turns out that we can prove very
similar results, with the notion of “mixing” — as captured by the Poincaré constant — being replaced by a
different constant called the “approximate tensorization constant”. These results mirror results in Section
5.1 in Koehler et al. (2023), who focus on 1-MPLE and use a differrent notion of “complexity” based on
Rademacher complexity. We first introduce several preliminary concepts.

Definition 4.1.9 (Block approximate tensorization of entropy (Caputo & Parisi, 2021)). Under fized dis-
tribution pic(- | X) over binary masks K conditioned on X, we say the distribution gx over X satisfies
block-generalized approximate tensorization of entropy with constant Car(qx) if for any distribution rx
over X,

DxL(rx,qx) < Car(qx) - Exerx [Exope (1) [Pxr (ra (- | X—k, K), qx (- | X_k, K))]]

This inequality is closely related to the mixing time of weighted-block dynamics (Definition 4.1.6).
Namely, the inequality is weaker than the standard discrete version of the log-Sobolev inequality (Di-
aconis & Saloff-Coste, 1996) and stronger than the Modified Log-Sobolev Inequality (Bobkov & Tetali,
2006), which implies exponential ergodicity of the weighted block-dynamics in KL divergence'”, that is:
KL(ps,q) < e/ a7 @OKL(py, g).

To bound the distance between the population and empirical losses, as well as relate it to the distance
between the estimated parameters and the ground truth, we first introduce a few useful pieces of notation.

8This is analogous to the training objective setting in Definition 4.1.7.
9Defined analogously as in Definition 4.1.
10This in turns, also implies a Poincaré inequality and exponential ergodicity in x2 divergence.
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Notation: For each sample X() i € [n], we assume we observe m masks { K ](-i) | 7 € [m]} sampled iid from
prc(- | X(i)). We denote the corresponding empirical loss by

m

Lpr(0 % Z Z log pa( X(z

=1 j5=1

S K.

Furthermore, we will denote by px the uniform distribution over {X) i € [n]}, and denote
Lpp(0) =Ex sy kmpr(-1x) [~ 10g po(X k| Xk, K)] (4.2)

This is an intermediate quantity: it averages in the population sense over the masks, but it assumes a finite
number of samples from py. It will be a useful intermediate quantity for several concentration bounds.

We will also need a few mild assumptions on the distribution we are fitting. First, we assume that the
learned conditional probabilities are uniformly lower-bounded by a constant:

Assumption 4.1.3 (Support margin). Exists constant f € (0,1) s.t. VX € X,VK C [N], V0 € O, if
px(Xk|X_k,K) >0, then po(Xk|X_k,K) > 5.

We also assume that the log-probabilities (and hence the losses Lpr and Lp 1) are Lipschitz with respect
to 6, and © has a finite covering bound. Namely:

Assumption 4.1.4 (Covering bound and Lipschitzness). Ve > 0, there exists a finite partition Par.(©) =
{©1,-,0Opare)} of ©, such that Vi,V01,0, € O;, and V(X,K) € X x K:

|10gp01 (XK|X—K7K) - 10gp92 (XK|X—K3 K)‘ <

l\’)\m

Moreover, C.(©) denote the smallest possible cardinality among such partitions Par.(©).

With this setup, we can prove the following finite-sample bound on the closeness of the learned distribu-
tion, provided the weighted pseudolikelihood loss (Definition 4.1.2) is small:

Theorem 4.1.4 (Generalization bound for learning the joint distribution). Let  := argminy Lpy(6).
Under Assumption 4.1.3 and Assumption 4.1.4, Ye > 0, V6 € (0,1), with probability at least 1 — § we

_ . N 8Cc(©)
have Dy (pé,p;() < \/éCAT(pé) (LPL(H) + B- ln% + 6) + C where B = /zleﬂn\:(sCe(@) + /In 52 and

_ . J1epPr
C= 8n °

Proof of Theorem 4.1.4 is in Section 4.3.4. We can compare the statement to Theorem 4.1.3: (1) On
the LHS, rather than parameter distance, we have total variation distance between the learned distribution
and p. (2) On the RHS, rather than a Poincaré inequality, we have the Car(p;) constant. (3) On the RHS,
instead of the Fisher information matrix, we have quantities capturing the generalization error, through a
notion of complexity of the class (C.(0)).

4.1.4 Inference-time limitations due to parallelism

In this section, we focus on limitations in the representational and computational efficiency that arise when
using a parallel decoding approach to implement a step of the inference-time sampling algorithm. Precisely,
at inference-time, using weighted block-dynamics with bigger blocks enables larger sets of coordinates to be
re-randomized, facilitating a faster mixing time. A canonical example of this are k-Gibbs samplers:

Definition 4.1.10 (k-Gibbs sampler). The k-Gibbs sampler is a special case of the block dynamics (Defini-
tion 4.1.6) when K .= {K C [N] | |K| =k}, and px = Unif(K).

XD Ly ( | XY}() XD — x0) (4.3)
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Samplers with larger k are well-known to mix faster (e.g., Lee (2023) shows the Poincaré inequality
improves by a factor of at least k). However, taking a step of this Markov Chain requires being able to
re-randomize the k coordinates according to their conditional distribution — which is intuitively harder for
larger k if we are trying to re-randomize the coordinates in parallel.

In Section 4.1.4.1, we show that the canonical GMLM-type parallel decoding language models can only
implement Markov chains whose transitions are product distributions over the sequence positions. !' We also
consider a natural Markov Chain whose transitions are product distributions, and show it can be substantially
slower to reach the modes of the distribution compared to k-Gibbs for a large k (i.e. a Markov Chain with
transitions that are far from a product distribution). Precisely, we consider:

Definition 4.1.11 (Independent parallel sampler). The independent parallel sampler performs coordinate-
wise updates for all i in parallel 2, namely:
vie [N, XY ~p (11 X1,) (4.4)
In Section 4.1.4.2, we show that even if we do not care about mixing—just reaching the modes of the
distribution—the independent parallel sampler can be much slower compared to k-Gibbs, for a large k.

4.1.4.1 Which Markov Chains are implementable via parallel decoding?

In this section, we characterize the power and restrictions of Transformers at inference time when they are
restricted to decoding the tokens of the sequence in parallel. The inference algorithms for a model that
has access to approximate conditional probabilities typically look like (potentially multiple) steps of block
dynamics (Definition 4.1.6). We focus on understanding what kinds of transitions are implementable with a
standard Transformer architecture.

Note that while there are well-known prior results about the expressive power of Transformers as sequence-
to-sequence modelers (Yun et al., 2020), representing steps of a Markov Chain with parallel decoding is
more subtle, due to the fact that a step of a Markov Chain requires randomness. First, we state a result
characterizing the power of Transformers to approximate “deterministic” Markov Chains: that is, Markov
Chains whose transition distributions are delta functions. Unsurprisingly, standard universal approximation
results can be adapted easily to this case. Namely:

Proposition 4.1.2 (informal). Transformers (with sufficient depth and width) can implement any number
of transitions of any deterministic Markov Chain over sequences in Q.

On the other hand, Transformers using parallel decoding cannot implement general Markov chains over
QY. In fact, they can only implement Markov Chains for which the transition probabilities are product
distributions:

Proposition 4.1.3 (informal). The class of Markov chains over sequences in QY implementable by (suffi-
ciently wide and deep) Transformers is those whose next-state transition probability distributions are product
distributions over the positions, conditioned on the current state.

Background information on the Transformer architecture, as well as proofs of formalized versions of
Proposition 4.1.2 and Proposition 4.1.3 are relegated to Section 4.3.9. Note that this does not mean one can
only simulate Markov Chains whose stationary distribution is a product distribution. In fact, the standard
1-Gibbs sampler, by virtue of the fact that it only updates one coordinate at a time, encodes a product
distribution for each transition. On the other hand, under fairly mild conditions on a joint p, the 1-Gibbs
sampler corresponding to p is ergodic and has p as a stationary distribution. On the other hand, a step of
a k-Gibbs sampler for £ > 1 is in general not a product distribution, and will not be implementable by a
Transformer with parallel decoding.

1Remark 4.3.4 in Section 4.3.9 connects our results to technical details of model architectures in prior works.
12The stationary distribution of this chain is unclear: in fact, it is not even clear the chain is ergodic.
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4.1.4.2 Markov Chains with dependent transitions can be (much) faster

In this section, we show that the k-Gibbs (Definition 4.1.10)—the prototypical example of a Markov Chain
with dependent transitions—can reach modes of the distribution much faster than the independent parallel
sampler (Definition 4.1.11)—the prototypical example of a Markov Chain with independent transitions.
Intuitively, in cases where there is a strong dependence between subsets of variables, jointly updating them
will bring us much faster to their modes.

The toy probabilistic family in which we will illustrate this phenomenon is Ising models, a canonical
example of an undirected model in which “dependence” between the variables can be easily modulated.
Precisely:

Definition 4.1.12 (Ising models). An Ising model is a distribution p : {£1}N — R*, defined by a graph
G = (V,E) with |V| = N and parameters {J; j; : {i,j} € E} and h € RN such that:

p(X =) x exp Z h;z; + Z Juprirs |, (4.5)
1E€[N] {i,j}€E

For the results in this section, we will consider a graph G that consists of a union of a clique C¢ (in which
|Cq| > 2, and the pairwise interactions among the variables are strong) and a set of N — |C¢| independent
vertices. More formally, we consider:

pa(X = z) xexp Z h;xz; + Z Jxix; (4.6)

i€[N] i#7,1,j€Cq

such that ZieCc h; > 0and J > 0. This is a ferromagnetic Ising model (i.e. the pairwise interactions prefer
the variables to have the same value). Moreover, when J >> ||h||1, the distribution pe has two “modes”, in
which all variables in Cg have the same value:

Ry = {:U c {—17 1}N|5Ei =1Vie CG} (4'7)
Ry ={xec{-1,1}N|z; = -1Vi € Cg}

The above distribution can be seen as a toy model of language tasks in which grammatical rules or
semantic constraints create “clusters” of positions in which changing isolated words leads to very unlikely
sentences. Next, we formalize the concentration around the “modes”:

Assumption 4.1.5 (Strongly ferromagnetic Ising model). There exist constants hg > 0,Jy > 0 such that
hG = ZiECG hi > Zi&CG |hz|, J — ||h||1 Z Jo.

Informally, under Assumption 4.1.5, sequences in Ry are much more likely under the groundtruth distri-
bution than those in R_;, which are further much more likely than all other sequences. The formal statement
and proof are in Section 4.3.5. As a result, we can think of sampling from R; as analogous to sampling a
high-quality sentence, and moreover, not reaching R, implies the Markov chain sampling process has not
mixed to the groundtruth distribution yet. Continuing the analogy to language tasks, in tasks like machine
translation, for each source sentence, sampling one high-quality target sentence is potentially good enough.
In some other tasks like creative writing, producing well-calibrated samples might be desirable—so mixing
would be needed.

First, we show that running the k-Gibbs sampler requires a small number of steps to reach R;. This
implies that if a model can efficiently approximate one step of k-Gibbs sampler, then it is fast to sample
a high-probability sequence by iteratively applying the model. Proof is in Section 4.3.6.
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Proposition 4.1.4 (k-Gibbs sampler can reach the mode fast). Consider the Ising model in Fquation (4.6)
(llf“gg") e2(Jot+ha)

(’Z) e2(Jo+ha) 4270 42/Cc1 o
Then, for any initial X(©) and § € (0,1), with probability at least 1 — 6, after T = [logcn1 5—‘ steps of
k-Gibbs sampler (Definition /.1.10) with k > |Cg|, we have {X®|t € [T]} N Ry # 0.

satisfying Assumption 4.1.5. Let us denote (0,1) 3 cg, =1 —

By contrast, we show that for nontrivial probability over the randomness in the initial sequence, running
independent parallel requires a large number of steps to reach the largest mode Ry of the distribution,
which implies that the sampling process may not quickly reach a high-probability sequence.

Proposition 4.1.5 (Independent parallel sampling stuck in bad samples). Consider the Ising model in

2( -1+ 1520 19l )2
. - . . . exp (—
Equation (4.6) satisfying Assumption 4.1.5. Let us denote Cgpycr = \CGT

For an initial X© such that Y icCo Xi(o) < =2, for any ¢ € (0,1), with probability at least 1 — ¢, after
T := L%exp (Cstuck) | steps of independent parallel (Definition 4.1.11), we have Vt € (T, > icce Xi(t) <

The proof is in Section 4.3.7. Combining Proposition 4.1.4 and Proposition 4.1.5 leads to a separation
result between k-Gibbs sampler and independent parallel, in particular when the clique size in G is
large and dependency is strong within the clique: with high probability, while the former reaches R, in 1
step, the latter cannot do so in arbitrarily large number of steps:

Assumption 4.1.6 (Strong interactions in Ising model). On Ising model G in Equation (4.6), for parameters
0€(0,1) and M € N4,

4M

2(4 — §)
5

|Cg|1n2

hg > =In

— N

JOZ§

Assumption 4.1.7 (Large coordinate set per update). When running the k-Gibbs sampler (Definition 4.1.10)
on Ising model G in Equation (4.6), we assume k is large wrt parameter 6 € (0,1):

N+1

> N—§g— "2
k > max{|C¢|, 5(4—5)|C¢;|+(5

}

Remark 4.1.4. Assumption 4.1.7 requires k to be not much smaller than N. When N is small and § =~ 0,
Assumption 4.1.7 essentially requires k = N. When N > |Cq|, Assumption 4.1.7 allows a larger gap N — k.

Corollary 4.1.1 (Separation between N-Gibbs sampler and independent parallel sampling). On Ising model
G in Equation (4.6) under Assumption 4.1.5, V6 € (0,1), VM € N, If G additionally satisfies Assump-

tion 4.1.6 and Assumption /.1.7 and the initial X© is such that ZieCG Xi(o) < —2, then with probability
at least 1 — 6,

1. Running the k-Gibbs sampler: X,g})Gibbs € R4, and
2. Running independent parallel: {Xi(fl)depﬁ EMINRL=0

Proof is in Section 4.3.8. We empirically verify our theory in Section 4.2.1.2.
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4.2 Experiments

4.2.1 Synthetic experiments on Ising model

To empirically validate Theorem 4.1.1 (Masking more is (statistically) better), we run controlled experi-
ments with synthetic data generated by a ground-truth Ising model. We train an Ising model using k-
pseudolikelihood, and measure the squared error of parameter estimation. The results verify that with the
same training data size, larger k leads to lower error. We plot the results in Figure 4.1, with several related
experiments, in Section 4.2.1.1 and Section 4.2.1.2. '3

4.2.1.1 Masking more is statistically better for learning synthetic Ising models

We show our observations in Section 4.2.1 and Figure 4.1 are robust to the shape of the groundtruth Ising
model distribution: under a much more peaky groundtruth distribution (with 2 modes), it still holds that
with the same training data size, larger k leads to lower error. We plot the results in Figure 4.2.

squared error (avg +- 0.5 * std) vs. data size for k-pseudo-likelihood

squared error

1077

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
data size

Figure 4.1: Average squared error in parameter estimation for fitting an Ising model on data generated by
a groundtruth Ising model (N = |Cg| = 4,J = 0.05, h; = 0 in Equation (4.6)) using the k-pseudolikelihood
objective optimized by gradient descent. Error bars denote 4 0.5 * stdev for 10 repetitions of the experiment.

13Related simulations were also reported in Huang & Ogata (2002).
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squared error (avg +- 0.5 * std) vs. data size for k-pseudo-likelihood
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Figure 4.2: Average squared error in parameter estimation for fitting an Ising model on data generated by

a groundtruth Ising model (N = |Cg| = 4,J = 0.3, h; = 0 in Equation (4.6)) using the k-pseudolikelihood
objective optimized by gradient descent. Error bars denote &+ 0.5 * stdev for 10 repetitions of the experiment.
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4.2.1.2 Markov Chains with dependent transitions can be (much) faster in sampling Ising
models

To verify our theory in Section 4.1.4.2, we run controlled experiments benchmarking various sampling algo-
rithms for Ising models: k-Gibbs sampler (Definition 4.1.10), and the independent parallel sampler (Defini-
tion 4.1.11).

The Ising model distribution that we sample from contains two modes, one larger and the other smaller,
corresponding to Ry and R_; defined in Equation (4.7) and Equation (4.8), respectively.

We show in Figure 4.3 that if we initialize the sample in the smaller mode R_;, running the k-Gibbs
sampler (Definition 4.1.10) can often reach the larger mode R; within a relatively small number of steps
(though more peaky distributions i.e. those with larger J, are slower to sample). Moreover, larger k is faster
than smaller k. By contrast, running the independent parallel sampler (Definition 4.1.11) cannot reach R
within the compute budget we set. The results verify our theory in Section 4.1.4.2 that Markov Chains
with dependent transitions can be (much) faster in sampling Ising models (compared with the independent
parallel sampler).

efficiency of sampling (avg +- 0.5 * std) vs. k for k-pseudo-likelihood
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Figure 4.3: Number of steps for the k-Gibbs sampler (Definition 4.1.10) to reach the larger mode R4
(Equation (4.7)) of Ising models, starting from the smaller mode R_; (Equation (4.8)). The parameters of
our Ising models are: N = 10,|Cqg| = 4,h; = 5.0 in Equation (4.6). We vary the parameter J (a larger
J corresponds to a more peaky distribution). Error bars denote + 0.5 * stdev for 10 repetitions of the
experiment. The compute budget is 1000 steps. Thus, a point with vertical coordinate 102 means that the
sampler did not reach Ry within compute budget. The k-Gibbs sampler can often reach the Ry (larger k
is faster). For context, the independent parallel sampler (not on the plot) can never reach R; within the
compute budget for any of the J’s we tried.
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4.2.2 Parallel Decoding by Iterative Refinement (PaDIR) on real language data

We consider an encoder-decoder architecture, in which the decoder is modified to be non-autoregressive:
instead of iteratively predicting the next token, each of our decoder forward pass predicts an update to all
target positions in parallel. The encoder extracts features from the source sequence, and based on these
features, each decoder forward pass refines its current hypothesis of the target sequence. The initial decoder
hypothesis is a purely random sequence, and more decoder forward passes correspond to more steps of
refinement. '* Note that we are not the first in the literature to propose this language modeling paradigm.
15 Qur focus in this paper is to provide theoretical and empirical analyses to characterize its potentials,
limitations and document useful training practices.

4.2.2.1 Inference approach for PaDIR

enc

An input sequence X*°"“ first goes through the encoder fg’ (parameterized by 6,.) to produce the hidden
representation h:

h — fg:lc(Xsource)
A length predictor féfn (parameterized by 6;) takes h and predicts B; most likely target lengths, where
B; € Ny (beam size for length prediction) is an inference-time hyperparameter.
For each predicted length N, an initial hypothesis target sequence X(©) = X{O) - ~X](\(,J) in which each
Xfo) can be a [MASK] token, or chosen uniformly randomly from the vocabulary of tokens.
For each decoder step t € 1---T, the decoder gfc (parameterized by 64) takes two inputs: h and X l(t) N

and refines the hypothesis target sequence to X 1(t+1i,), using one forward pass:
t+1 t
XY = flee(x) \h) (4.9)

where T' € N1 (number of refinement steps) is an inference-time hyperparameter, and we can stop early if
X+1) — x ()

4.2.2.2 Training approach for PaDIR

One-stage training Given source sequence X5°%® and target sequence X '#'8° in the supervised training
data Dirain, We use a preprocessing rule to create the initial hypothesis target sequence X (9). 'S The training
objective is

L= (X, fgre(xee)) (4.10)

X source 7Xtarget eDtrain

where [ is the cross-entropy loss applied to each position.

Multi-stage training One limitation of the one-stage training is that the inference situation is out-of-
distribution: when decoder step t > 1, the model needs to refine its own predictions in step ¢ — 1, which is
not reflected in the training objective. Therefore, we use the multi-stage training objective (Ghazvininejad
et al., 2020; Savinov et al., 2022): L) = %256[5] L) where S is the number of training stages, and

L) =37 cource xrarserepy,y, LGS (X 7Y, fene(Xsouree))

14In principle, following a similar paradigm, a non-autoregressive decoder-only architecture is also possible. In this work we
use encoder-decoder for two reasons: (1) Efficiency: in the iterative refinement process of the hypothesis target sequence, each
forward pass only involves the decoder, but not the encoder. (2) Benchmarking: the encoder-decoder design is closer to a series
of prior works, allowing for more informative comparison on benchmarks.

15Representative prior works: Ghazvininejad et al. (2020); Savinov et al. (2022), inter alia. See Section 4.4.

16Each position in X(®) may contain a [MASK] token, a random token, or the correct token in X5°"'<¢ dependning on the
preprocessing rule.
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4.2.3 Dataset and evaluation

We train models on machine translation datasets, provide practical recommendations based on our empirical
observations, and discuss their connections to our theory.

Model training We use Transformer encoder-decoder with size similar to Transformer-Base (Vaswani
et al., 2017) and T5-Small-1.0 (Raffel et al., 2020): 6 encoder and decoder layers, 8 attention heads, 512
embedding dimensions and 2048 FFN hidden dim. We add a positional attention mechanism (Gu et al.,
2018; Kreutzer et al., 2020) in each Transformer layer and use learnt positional embeddings. The total
number of parameters is 67M. We initialize model parameters randomly and train using a batch size of 2048
for 500k iterations, with a 10% dropout rate, 15% unmasking rate '” and 2 training stages. The optimizer is
AdaFactor (Shazeer & Stern, 2018), with default T5X hyperparameters (Roberts et al., 2022). The learning
rate peaks at 0.003 with a linear rampup for 10k steps followed by cosine decay, from and to a minimum
value of le — 5. Unlike most prior work, we do not use a remasking schedule; '* we simply remask token-
level stutter (i.e., consecutive repeated tokens) across iterations and drop repeated tokens after the final
iteration. As commonly done, we distill our models by training on the output of an autoregressive model.
For simplicity, we use the Google Cloud Translation API to generate this distillation data.

Datasets We evaluate our models on machine translation benchmarks commonly used in the non-autoregressive
modeling literature. We conduct experiments on both directions of three WMT datasets: WMT14 DE+EN
(4.5M examples) (Bojar et al., 2014), WMT16 RO+EN (610k examples) (Bojar et al., 2016) and WMT17
ZH+EN (20M examples) (Bojar et al., 2017). We load the data from the tensorflow datasets library
and do not apply any preprocessing other than sentence piece tokenization (Kudo & Richardson (2018)).
Bilingual vocabularies of 32k tokens are created using the training sets of each language pair.

Benchmarking PaDIR models and AR models reach similar BLEU (Papineni et al., 2002) and BLEURT
(Sellam et al., 2020; Pu et al., 2021) scores. Quantitative experimental results and common baselines are
shown in Table 4.1, Table 4.2, and Table 4.3. We first present these quantitative metrics, and then discuss
several considerations that we put into selecting those evaluation metrics.

While bridging the gap between autoregressive and non-autoregressive model has so far focused on achiev-
ing parity in terms of BLEU scores, we believe this is insufficient. Since BLEU relies on n-gram overlaps
between groundtruths and model predictions, it does not capture readability very well. Yet readability is
paramount for most practical applications, and it is indisputably something that current autoregressive LMs
excel at. To provide additional perspectives, we introduce a word-level stutter metric, computing how often
consecutive words are repeated in the model output but not in the reference. For all datasets, we found that
word-level stutter is 2 or more times more frequent for non-autoregressive models.

Discussion on metrics We measure BLEU (Papineni et al., 2002) using the SacreBLEU implementation
(Post, 2018) with language appropriate tokenizers . For the same model, SacreBLEU on average reports a
lower score than BLEU (e.g. see Savinov et al. (2022)). Unfortunately, this does not allow a direct comparison
with most of the existing literature. This is a deliberate choice since it has been shown that subtle differences
in preprocessing can significantly impact metrics (Schmidt et al., 2022), making comparisons error prone,
and SacreBLEU is the recommended metric in Post (2018). Furthermore, common preprocessing steps
(lowercasing, separating punctuation, stripping diacritics, etc.) may artificially inflate scores while not being
fully reversible, as such preventing real-world uses for such models.

17This means, in Equation (4.10), 15% of the tokens in X (9 are the correct tokens in Xt4'8¢t and the remaining 85% are
random tokens in the vocabulary.

18We experimented with various remasking schedules but the results were not visibly affected.

YFor public reproducibility: SacreBLEU signatures: BLEU-c.mixed+#.1+s.exp+tok.zh+v.1.3.0 for Chinese and
BLEU+c.mixed+#.14s.exp+tok.13a+v.1.3.0 for other languages.
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Table 4.1: Test SacreBLEU scores on three WMT datasets. We report scores without any preprocessing.
Our AR baselines are trained on the distilled dataset for a fair comparison. The ‘Steps’ column indicates the
number of decoding iterations. The ‘# Hyp.” column denotes the number of hypotheses decoded in parallel
(beam size for AR models and top_k predicted lengths for NAR models).

WMT14 WMT16 WMT17
Model # Hyp. Steps DE—EN EN—DE RO—EN EN—RO ZH—EN EN—ZH
AR Baselines 5 N 33.50 29.54 34.89 29.75 27.59 33.94
PaDIR 5 4 33.49 28.61 33.98 28.98 26.47 32.59
5 10 33.63 28.58 33.99 28.97 26.54 32.68

Table 4.2: Test BLEU scores on three WMT datasets for baselines. Note that they use different BLEU
implementations and sometimes additional preprocessing than the results reported for our approach. We
include results for our PaDIR under the T5X default BLEU score (SacreBLEU tok_intl). As we remarked in
the “Discussion on metrics” part of Section 4.2.3, these different BLEU implementations may not be directly
comparable.

WMT14 WMT16 WMT17
Model # Hyp. Steps DE—EN EN—DE RO—EN EN—RO ZH—EN EN—ZH
DisCo AR Baselines 5 N 31.71 28.60 34.46 34.16 24.65 35.01
CMLM 5 4 30.75 26.73 33.02 33.67 22.57 33.58
5 10 31.24 27.39 33.67 33.33 23.76 34.24
DisCo Easy-First 5 3-6 31.31 27.34 33.25 33.22 23.83 34.63
. 16 4 32.10 27.94 - - - -
SUNDAE Stochastic 16 10 39.99 98.33 ] ] ] ]
PaDIR 5 4 34.17 29.49 34.55 29.57 27.18 32.59
5 10 34.33 29.48 34.57 29.56 27.25 32.60
Table 4.3: Test BLEURT scores on three WMT datasets for our models.
WMT14 WMT16 WMT17
Model # Hyp. Steps DE—EN EN—DE RO—EN EN—RO ZH—EN EN—ZH
AR Baselines 5 N 73.55 74.97 67.23 71.76 68.14 65.71
PaDIR 5 4 71.26 72.08 65.90 70.23 65.16 63.95
5 10 71.82 73.28 66.09 70.49 66.19 64.30
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Speed The average target length in all datasets ranges between 28 and 33 tokens, including the EOS token.
As such a non-autogressive model using 4 decoding steps does 7 to 8 times fewer decoder passes. In practice
we see an end-to-end speedup greater than >2x for the median and >5x for the 99th percentile latency on
TPU v3 (with 4 decoding steps and batch size 1). The gap between expected and observed speedup is due to
fixed costs (input tokenization, encoding, etc.) as well as a better optimization of AR decoding (e.g. through
caching of intermediate results). For longer sequences, the constant number of decoding passes in GMLM is
advantageous. For completeness, it is worth noting that the number of decoder passes necessary to achieve
good quality (and thus model speed) is application dependent, with some tasks like non-autoregressive text
in-painting remaining slower than their autoregressive counterparts, as shown in Savinov et al. (2022).

4.2.4 Connecting to theory: quantifying dependency via attention scores

Our theory suggests that stronger dependency between target positions leads to worse generalization guar-
antee and sampling efficiency. However, it is unclear how to measure such dependency for Transformer-based
language models trained on natural language data. In this section, we empirically investigate: how to pre-
dict what target positions have strong dependency which may be challenging for Transformers? We test
the following two hypotheses: (1) Strongly dependent target positions have larger decoder self-attention
between each other. (2) Strongly dependent target positions have similar cross-attention distribution to
source tokens.

For a pair of target positions, to measure how well their dependency is modeled in the generated output,
we focus on adjacent repetitive tokens, a.k.a. stutter. Stuttering is a common error mode among parallel
decoding models, and we use it as one reasonable proxy for measuring failures in modeling target-side
dependency. 2° We show:

e Hypothesis 1 is unlikely to hold: even on average, stuttering positions do not have larger decoder
self-attention between each other, compared with non-stuttering adjacent positions. 2!

e By contrary, Hypothesis 2 is potentially promising: with various of distribution distance measures,
stuttering positions in the generated output have more similar cross-attention distributions to source
tokens, compared with non-stuttering adjacent positions.

Details are in Table 4.4 and Table 4.5. There are other error modes connected to the challenge of
modeling target-side dependency, but they are more ambiguous for measuring and exactly locating. We do
not aim to develop decoding algorithms tailored to just reducing stuttering rate. (After all, stuttering can
be easily removed by rule-based postprocessing.) Instead, the above are general-purpose hypotheses which
are potentially also predictive of other (more complex) failure modes related to target-side dependency.

20There are other error modes connected to the challenge of modeling target-side dependency, but they are more ambiguous
for measuring and exactly locating. We do not aim to develop decoding algorithms tailored to just reducing stuttering rate.
(After all, stuttering can be easily removed by rule-based postprocessing.) Instead, the above are general-purpose hypotheses
which are potentially also predictive of other (more complex) failure modes related to target-side dependency.

21Gince all stuttering positions are by definition adjacent, we think a fair comparison should only consider adjacent positions
for non-stuttering position pairs.

150



Table 4.4: Stuttering positions have comparable average last-layer self-attentions compared with non-
stuttering adjacent positions. For each pair of adjacent positions in the generated sequence: (1) the ‘self-
attention scores’ include both directions ; (2) The column ‘min’ denotes only including the minimum among
such score over all attention heads, and likewise for ‘avg’ and ‘max’; (3) the entries are mean + standard de-
viation; (4) P {top-k overlap} denotes the chances that the self-attention distribution at one position includes
the other position among its top-k “most attended to” positions.

self-attention scores P {top-k overlap}
stutter min avg max k=1 k=2
yes 0.0004 £ 0.0007 0.032 £ 0.023 0.16 £ 0.11  0.20 0.39
no 0.0005 £ 0.0007 0.033 £ 0.025 0.17 £0.12  0.17 0.37

Table 4.5: Stuttering positions on average have more similar last-layer cross-attentions than non-stuttering
adjacent positions. For each pair of adjacent positions in the generated sequence: (1) the ‘total variation
distance’ and ‘cosine distance’ (both have range [0, 1]) are taken for the two corresponding cross-attention dis-
tributions; (2) The column ‘min’ denotes only including the minimum among such distance over all attention
heads, and likewise for ‘avg’ and ‘max’; (3) the entries are mean + standard deviation; (4) P {top-k overlap}
denotes the chances that the two cross-attention distributions overlap in terms of their top-k£ “most attended
to” source positions.

total variation distance cosine distance P {top-k overlap}
stutter min avg max min avg max k=1 k=2
yes 0.06 £0.05 0.134+0.09 0.23+£0.15 0.01+0.01 0.10+£0.06 0.25+0.11 0.57 0.89
no 0.11 £0.10 0.23 +£0.14 0.35+0.18 0.04 £0.08 0.20+0.11 0.38 £0.12 0.40 0.81
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4.3 Proofs

4.3.1 Proof of Lemma 4.1.2: Generalized information matrix equality
For convenience, we restate the generalized information matrix equality we are going to show:

Lemma 4.1.2 (Generalized information matrix equality). Under Assumption 4.1.1 and Assumption 4.1.2,
the weighted pseudolikelihood loss (Definition J.1.2) verifies: VaLpr(0%) = Covxmpr K~pe (—Valogpy (XK|X_K))jo=0~-

Proof. All the expectations in the proof will be taken with respect to (X, K) ~ px X px. To decrease the
notational load, we will not explicitly write pxy X px. The proof proceeds by first exchanging the order of
expectations and derivatives, and using that to show the appropriate terms in the expression for VgL pL(0%)
vanish.

Step 1: Changing the order of expectations and derivatives

We will show that the following two equalities hold:

VoEx,x)logpe(rk|r k) = E(x,x) Vo log po(rr|r_K) (4.11)
ViE(x. k) logpo(¢xc |- ) = E(x k) Vi log po (|2 1) (412)

Since , [N], and K C [N] are both discrete finite, the conditions for the Dominated Convergence
Theorem holds under Assumption 4.1.1: namely, there exists a function f : © x Q x I — R such that V0 € O,
IE(X,K) [f(@, X, K)] < o0, ”v@ 1ng9(mK|x—K)”2 < f(@, X, K)7 and ”vg 10gp9(xK|x—K)”F < f(97 X, K)

Denoting by e; the i-th standard basis vector, we have:

1
Ex,x) logpo(xk|z_K)] = lim 7 (E(X,K) [logpg+ejh(xK|x,K)] —Ex,Kx) [logpg(x;dx,;{)}) (4.13)

% h—0

1 e _k)—1 _
lim E(X,K) Og Do+ Jh($K|$ k) —logpy(rk|r_K) (4.14)
h—0 h

By the Mean Value Theorem, there exists {(h) € (0, h) such that

log pote;n(Tr|r—rK) —logpe(rr|z_K)

=8 10g Pote;en) (Ti|T—K)

h J
So
0
90, Boxm) [log po(zx |7 —K)]
J
. 0
= ;133% (E(X,K) {%J 10gp9+ejg(h)(9€K|xK)D

0
=Ex,x) [}llin%) (3 108 Pote,e(n) (:EK|xK))] (Dominated Convergence Thm and Assumption 4.1.1)

0
=Ex k) [89 1ng9(xK|$—K):|

J

This implies that
VoE(x k) logpe(zr|r k) = Ex k) Ve log pe(rx|r_K)

which proves (4.13). The proof of (4.14) follows analogously.
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Step 2: Rewrite VZLp.(6*%)
ViLpr(0) = —V3E(x,x)log po(z k|2 K )j9=0-

_]E(XJ()Vg 10gp9($K|5C7K)‘9:9*

1) 16

_ Vipo(rkle—k)

E(x.x) Ve log pe(wr|r_ ) Ve log pe(Tr|T— 1) fg—p-
(X,K) ( | ) ‘ |6=6 p9($K|$_K) lo—o*

[[CD)

Ex,x)Vologpo(zx|r_K)Ve logpe(xK\x,K)[g:e* (4.15)

where (1) follows by exchanging the order of expectation and Hessian (S € Sy, and 2 € Q are finite), and

this is valid by Step 1 above , @ by an application of chain rule. The last equality @ follows by a similar
calculation as the proof of the classical information matrix equality:

Vipo(rk|z_K)

E
R pp(wkcle k) |0=0+

Vipo(zr|r_K)
=ExE, .E JOPUANTR TR
g T |r_ K po(:cK‘fE_K) o=~

V2pe- _
:EKEQE,K oPo (‘TK|$ K)

‘px(Tk|r_K)dTK
po-(erla—g) P OKlT=K)

=ExE,_, /Vgpg*(a:Km_K)de , since pg~ = px by Assumption 4.1.2)

= EKEm_sz /pg* (zx|r_k)dxg , by exchanging the order of expectation and Hessian
=0

where the last equality follows since [ pg«(zx|r_k)dzx =1 (so doesn’t depend on ). Similarly, we have:

Ex,x)Vologpg(vx|r_5)j0=0+

Vope(rr|T_ 1)
=ExE; . Ep oo o,————————=
K K Klz-K p0($K|$—K) 9=0°

:]EKEE_K/VGPG(xK|z—K)de‘0:9*

= EKEz_KVG/p&(kaEfK)de‘H:G*
—0

where the last equality follows since [ pg(zx|z_x)dxgx =1 (so doesn’t depend on ). Plugging this into the
definition of covariance, we have:

Cov(Vy —log pe(X k| X-K))j9=0-
=E(x,x)Vologpe(zx|z_x)Velogpe(zk|r_r)"
—Ex,x)Velogpe(rx|z_K) - Ex k) Ve logpe ($K|x—K)|T0:6*
= E(x,x)Vologpo(wx |z k) Velogpe(wx |z k) hp- (4.16)

The proof of the lemma thus follows because the RHS of Equation (4.16) matches that of Equation (4.15).
O
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4.3.2 Proof of Theorem 4.1.1: Masking more is (statistically) better

In this Section, we provide the proof for Theorem 4.1.1.

Proof of Theorem /.1.1. All the expectations in the proof will be taken with respect to (X, K) ~ px X px.
To decrease the notational load, we will not explicitly write px X px. By Lemma 4.1.2, we have:
ViLp(0°) = E(x. k) Vo log po(zk|r— k) Volog po(v |7 k) fgg- (4.17)
Let S, denote the set {K C [N]| |K| = k}. For every T € Sk41 and a € T we have:
log p(zr|z_7) =logp(rs, za|T_{suqy) Where S := T\{a}

=log (p(zalr_{sUa}) - P(Ts|Z_{SUa}> Ta))
= log p(wa|r_{sUa}) +logp(zs|z_s)

Using this identity, we can write:
VLB (0*) =E E Vo log pg(xr|z_1)Velogpe(zr|_7T)/,
0~PL TNSk+1 T, T_T 4 gp@ TT|T—T 0 ng0 TT|T—T |0:0*
= Esns, BagsEag za,o_ 500y Vo logpe(rr|r—1)Velog pe ($T|$—T)\T9=9*
= ]ESNSkEa€SEws,Ia,$—{su@} (V@ 10gpg($a|$,{SUa}) + Vg 10gp0($5|$75))
T
- (Vo log po(wal|z_{suat) + Vlogpe(xs|$—s))|9:9* (4.18)
Let us denote:
A = Egns,EagsEa Vo log po(zs]z_s) - Vo log ps(zs|z—s) -

B = Es~s,EagsE: Vo log po(za|r_{sua)) - Ve 10gp9($s|33—s)|79:a*
C = Eg~s,EagsE: Vg log pg(zalr_suay) - Vo Ingt‘)(xalx—{SUa})\—g:O*

By expanding the previous expression, we have
Vil 0 )=A+B+B' +C (4.19)

Consider A first. Note that for a fixed S € Sy, E,Vglogpg(rs|r_g) - Vglogpe(zs|r_s) T is independent
of a ¢ S and therefore:

A=FEg.5,E:Vologpo(zs|z_g) Vg logpg(;vs|x,s)‘—(5:9*
= V2L%,(0*) (by Equation (4.17))
Proceeding to B, for a given S € S, x_g, we have
Eoslo_s [Vologpe(zslz_s) '] 9—6"
Z/Ve logpo(zslz_s)" - plzsle_s)drs|o—p-
Vopo(zs|z_s) '
Do~ (IS|I—S)

Z/Vepe(fﬂs@fs)was\e:e*

‘plrglr_g)drs|o=o-

=Vy /pg (zs|z_g) " drglg—g- (valid under Assumption 4.1.1, see Step 1 in the proof of Lemma 4.1.2)

=Vyl=0 (4.20)
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Therefore:

B =Eg5,EagsBas.a,o_sua Vo l0gPo(zalT_(suay) - Vologpo(zslz_s) " oo
= Es~5,EagsEa, 2 g0, Vo108 Do (Talz_s0a}) - Bas [Vologpe(zslz—s) "] lo=o-
(valid under Assumption 4.1.1, see Step 1 in the proof of Lemma 4.1.2)
= Esus, BagsBano_ 500y V01080 (2ol (sUa})|0=0- -0 (by Equation (4.20))
=0

Finally, each term Vg log pe(7a|2_{sua}) - Vo logpg(xa|x_{SUa})T > 0 therefore C = 0.
Plugging this back in (4.19), we have:

VELE (07) = V3L, (0%) + C = VL. (67)
Consequently, by monotonicity of the matrix inverse, we have

1

oy —1 o —
Thtl = (VRLELN(6%) < (V3LEL(6%) =Tk,

as we need.
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4.3.3 Generalizations for adaptive masking

In this section, we provide proofs for several of the claims in Section 4.1.2.3.

4.3.3.1 Conditioning on K

First, we clarify a slightly subtle (and counterintuitive) point stressed in Remark 4.1.3: in general, py (xx|z_k, K) #
px(Tx|r_K).

Lemma 4.3.1. Consider X = {(0,0), (0,1), (1,0), (1,1)}. There exists a distribution px x such that px(zk|r_K, K) #
px(zr|r_K) for somex € X, K € K.

Proof. To define py k, it suffices to define px and pi(-|x), Vo € X.

(0,0), with probability 1
0,1), with probability 1
(1,0), with probability &
(0,0), with probability 0
and let
0}, with probability 1
pei | X = (0,0)) = 105 it probabllity 5
{1}, with probability 5
0},  with probability %
pe(i | X = (0,1)) = 100 it probabllity 4
{1}, with probability £
0},  with probability 1
pre(K | X = (1,0)) = { 100 withprobability 4
{1}, with probability §
By multiplying px (X) and px(K | X), we have
1 1
1 2
1 1
p((1.0),40)) = 57 p((1,0). (1)) = 1
Finally, we will see that px(z1 = 0|z¢g = 0,{0}) # px(x1 = 0|zg = 0):
p((0,0),{0}) 9
px(z1 =0lzo = 0,{0}) = =
p((0,0),{0}) +p((0,1),{0}) 13
xr1 = 0 o = 0 = —
palen =000 =00 = 16,00 + pa (0. D) 5
O
Instead, by correctly marginalizing, the following equality obtains:
Lemma 4.3.2. For any distribution px x, we have:
Ve e X, VK € K:7 p;((QCK|3;‘,K) = IEK/NPK:(.‘:E_K) [p)(’}g(l‘KkC,K,Kl)] (4.21)
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Proof. The proof proceeds by a sequence of straightforward rewrites:

px(Tr,x_
T

px(r-K)
-y px (@K, 2K, K')
o px(r-Kk)
-y prc(K 2 k) pxx(@x 2-x, K')
= px(r_k) pax(r-K, K')
=Y (K |2 g)prx(rxlr_x, K')
K/

= EK/NPIC('II—S) [px,)c(JL‘KkC_K, K/)]

4.3.3.2 Information matrix equality for adaptive masking

We prove a more general version of Lemma 4.1.2 when pi is allowed to depend on X, which is needed for
Theorem 4.1.3. Recall from Section 4.1.2.3 that the distribution px x is defined such that:

pak(X, K) = px(X)px(K[X)

Lemma 4.3.3 (Generalized information matrix equality, adaptive masking). Under Assumption /.1.1 and
Assumption 4.1.2, the weighted pseudolikelihood loss (Definition 4.1.7) verifies:

VoLpr(0%) = Cov(x,kympr . (—Volog po(X k| X -k, K))|g—o--

Proof. All the expectations in the proof will be taken with respect to (X, K) ~ px x. To decrease the nota-
tional load, we will not explicitly write px x. Same as Lemma 4.1.2, the proof proceeds by first exchanging
the order of expectations and derivatives, and using that to show the appropriate terms in the expression
for V2Lpy,(6*) vanish.

In fact, it’s readily seen that the proof of Step 1 in Lemma 4.1.2 (Section 4.3.1) doesn’t depend on px x
being a product distribution, and the same proof applies to our setting, namely we have:

VoE(x k) logpe(zr|z K, K) = E(x,x)Volog po(vx|r_K, K) (4.22)
ViE (x,x)log po(vxc|o_xc, K) = E(x k) Vi log po (v |21, K) (4.23)

We can also rewrite the expression for V3L pr,(6*) almost the same way we did in Step 2 in Lemma 4.1.2:

ViLpr(0) = —V3E (x k) 10g po(vx |r_ K, K) oo

—E(x,x) V3 log po (v k| _ 1, K ) g—o-

I 12

Vng(:cK|m,K K)
E Vo lo rr|r_K,K)Vglo ik, K) b _pe — —2 :
(X,K) Vo gpo(rr|r_r, K)Vologpe(rk|r_K )\9_9 pe(me_K’K) o—o-

&)

Ex,x)Velogpe(rx|z_k, K)Vglogpe(zi|z_rK, K)\B:e* (4.24)

where (1) follows by exchanging the order of expectation and Hessian (S € Sy, and z € Q are finite), and
this is valid by Step 1 above , @ by an application of chain rule. The last equality @ follows by a similar
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calculation as the proof of the classical information matrix equality (and again, analogously to the calculation
in Lemma 4.1.2):

Vipe(vx|r_x, K)
po(vkl|r—r, K) |6=6~

Ex,k)

Vipo(vx|r_k, K)
po(zk|r—K, K) |g_p-

= ]EKEx,K\KE:EKW,K,K

Vipe (k|z_rk, K)
po- (zr|T_K, K)

=ExE, .k prx(zr|r_K, K)drk

= EKEm_K‘K/Vng*(‘rK|x7K7 K)dzyk , since pp» = px by Assumption 4.1.2 and Definition (4.1)
= IEKEI_K‘Kvg /pg* (zx|z_Kk, K)dzgx , by exchanging the order of expectation and Hessian
=0
where the last equality follows since [ pg«(zx|z_x, K)dzx =1 (so doesn’t depend on #). Similarly, we have:

E(x,x)Vologpe(vx|T- K, K)|g=p-
Vopo(zr|r—rK, K)
po(zk|r—K, K) |6=6~

=]EKEI,K\K/Vepe(xK\x—mK)dele:e*

= IEKEI,K\KE;EKM,K,K

=]EKELK\KVG/pe(xK\x_K,K)dl‘KM:e*
=0

where the last equality follows since [ pgp(zx|z_k, K)drg =1 (so doesn’t depend on ). Plugging this into
the definition of covariance, we have:

COV(VQZPL(Q*))
= Cov(Vy — log pg(X k| X K, K))|9—6-
=E(x,x)Vologps(rk|r_x, K)Vologps(zk|r i, K)j_g- (4.25)
which finishes the proof of the Lemma. O

4.3.3.3 Proof of Proposition 4.1.1: Dirichlet form for adaptive block dynamics

Proposition 4.1.1 (Dirichlet form for adaptive weighted block dynamics). The Dirichlet form corresponding
to the weighted block dynamics (Definition 4.1.8) is:

E(f; g) = E(X,K,K)NpX,K [COUXK\(X,K,K)(JC’ 9)}

Proof. Let us denote by = := X x K, and note that = is the domain for both f and g. According definition
of block dynamics in Definition 4.1.6, for each pair of states (X, K1), (Y, K3) € Z, the transition matrix P is:

P((X, K1), (Y, K2)) = L, =i, Lx e, =v_ 1, P(YE, | X—kys K1) (4.26)

The rest of the proof is straightforward calculation, expanding the expression in the definition of the Dirichlet
form (Definition 4.1.4). Namely, we have:
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SP(fv g)

% Y. X KNP (XK, (Y, K2)) (F(X, K) = f(Y K2)) (9(X, Kr) = g(Y, K2))
(X,K1),(Y,K2)€E

=2 Y XK (XK — RV ) (0(X, ) — gV K))
(X,K1),(Y,K2)€E
L= Ix e, =y, P(VE | X iy, X1)
= X O Y K 1X) Y 0| Xk K) (PO K) — SV K))(9(X,K) — g(¥, K))
Xex Kek YEXY_ x=X_x
= SEXEixEy, x (X K) = £V, K))(9(X K) - g(¥, K))

1
=5 (2-ExEx xBxpix ok f(X,K)g(X,K) =2 -ExEx \kEx,1x i [[(X, K)] Ex,x_px[9(X,K)])

(we can merge terms because the roles of X and Y are symmetric)
=Exmp [Bo_ jompoxl6) By mpar o s.ix) L 0 Ky, K)] = By mp(ar o sk L (45 K]
By mp(ercle x,K) [9(y, K)] H
= Ex_ s, K)mpc [COVxI(X_ic,) (F59)] (4.27)

which completes the proof. O

4.3.3.4 Proof of Theorem 4.1.3: Asymptotic sample complexity for adaptively-weighted MPLE

Note that Theorem 4.1.3 generalizes Theorem 4.1.2. To reduce proof duplication, we only write the proof
for the more general Theorem 4.1.3 here. Notational definition for py(zx|z_k, K) and other background
info are in Section 4.1.2.3.

Theorem 4.1.3 (Asymptotic variance of adaptively-weighted MPLE under a Poincaré Inequality, gener-
alization of Theorem 4.1.2). Suppose the distribution pe- satisfies a Poincaré inequality with constant C
with respect to the adaptively-weighted block dynamics. Then under Assumption 4.1.1 and Assumption /.1.2
where po(xi|x_K) is replaced by po(rx|r—_K, K), the asymptotic variance of the adaptively-weighted MPLE
can be bounded as: Tpy, < CZ~' where T is the Fisher Information matriz (Definition 4.1.1).

Proof. By Lemma 4.3.3 and Lemma 4.3.9, for n training samples as n — 0o, we have:

\/’E(épL - 0*) — N (0, (COV(X,K)~pX,;<(_v0 1nga(XK‘X_K, K))“gze*)il) (4.28)

Now we relate the RHS of (4.28) to Z. Let do denote the dimensionality of 6, i.e. § € R%. Then, for
any test vector v € R% we have:

vTE(XK)Vg log po(x|z_5, K)Velogpg(zx|r_s, K)TU|9:9*

= E(x,x)(Vologpo(wx|z—x, K) )7

= EKEz7K|KvarzK‘w7K,K(V9 logpe(xK\x_K, K)T’U)‘g:g* —+ (E$K|$7K,KV9 10gp9($K\x_K, K)T’U)‘Za:@*
(4.29)

Denote f(X,K) = Vglogpg(zx|r_x, K) v Consider the two parts in Equation (4.29) separately: the
first term is simply ExE, . xVarygs_ . . (f(X, K)), which, by Proposition 4.1.1, is equal to Ep(f, f).
Moreover, by Poincaré inequality (Definition 4.1.5), this is > & Var,(f).
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The second term simplifies to

ExEs ik (Boglo .k [Vologpo(wklo_k, K)TUDT@:Q*

- 2
(Vepe(ﬂﬁﬂx—K,K))
v
po(rr|z_K, K) 6=t

= EKEQ:,K\K (EmK:pK,K

2

r T
\% Ti|r—K, K
=ExE, .k / ( opo(exlex )> v-prk(Tk|lr_k, K)drg
I po(rx|r_r, K) I8—g*
- 2
=ExE; .k /(Vgpg(m;(\x,K, K))T vde} , since pg« = px by Assumption 4.1.2 and Definition (4.1)
L |o=6~
r T
=ExE. .k | Vo (/pg(a:K|x_K, K) de) v] (since py is differentiable wrt 6 by Assumption 4.1.1)
L |0=6~

=0
1
Therefore, we have Cov(x, k)~px . (—Veologpe(Xk|X K, K))jg—g- = 5[

Plugging into Equation (4.28), and using the monotonicity of the matrix inverse (Toda, 2011), we obtain
the upper bound on the asymptotic variance of our estimator we want:

Ipp, < CI*
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4.3.4 Proof of Theorem 4.1.4: Generalization bound for learning the joint dis-
tribution

We first state our overall structure of the proof of Theorem 4.1.4, and then state and prove the key lemmas
mentioned therein.

Theorem 4.1.4 (Generalization bound for learning the joint distribution). Let  := argminy Lpy(6).
Under Assumption 4.1.3 and Assumption 4.1.4, Ye > 0, V6 € (0,1), with probability at least 1 — § we

8C(®)
35

have Drv (pg,px) < \/éC_'AT(pé) (f)pL(é) +B- ln% —|—6) + C where B = \/23Nlﬂn‘j(5a(@) n \/ln =

C o IQ‘SN

8on -

Proof. We first introduce a few pieces of notation. We will denote the data samples as Sy == {X@|X®) ~
p(X)}, |Sx| = n, and for each X we sample m masks Sk = {K", ... K{} in which KJ@ is sampled
iid from K according to probabilities px(- | X). > Theorem 4.1.4 follows by combining the following steps:

Step 1: relating closeness of the conditional distributions (i.e. the loss) to closeness of the joint
distribution. The connection is established through the definition of the block-generalized approximate
tensorization of entropy in Definition 4.1.9, by which we get?*:

D, (pxspg) < Car(pg)Lpr(0)

The details are in Proposition 4.3.1. By Pinsker’s inequality, this implies

. 1 _ 1_- - .
Drv (px,ps) < \/QDKL (P, pg) < \/QCAT(pé)LPL(G) (4.30)
Step 2: generalization bound for learning the conditional distributions. We show that Assump-

tion 4.1.3 and Assumption 4.1.4 imply a generalization guarantee for learning the conditional distributions
s

from a finite sample of sequences and masked positions. We show that with probability at least 1 — 5, we
have
o 23N |V C.(0) [In 3% 1
Lpr(0) — LpL(0 - g ‘In— 4.31
pr(0) — Lpr(0)| < \/ — + o ngte (4.31)

Proof details of this step are in Corollary 4.3.2.

Step 3: empirical joint distribution converges to population joint distribution. With probability
at least 1 — g, we have:

‘Q|3N

5 (4.32)

Drv (Px,px) <

The proof of this is standard and details are in Lemma 4.3.6.

22Note that the {-} notation does not mean sets: duplicate entries are allowed in the training data Sy and Sic @,
23Recall, Lpy, is defined in (4.2)
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Step 4: union bound and triangle inequality By union bound, with probability at least 1 — §, both
Equation (4.31) and Equation (4.32) hold. Therefore, putting together the previous steps, we get:

Drv (pg,px) < Drv (Pa,ps) + Drv (B, px)  (by triangle inequality)

T — [1QI3N
< \/2CAT(pé)LPL(0) + % (by Equation (4.30) and Equation (4.32))

1 . A 2N 10N C(O) \/ln 8c.(9) 1 QPN
-C )| Lpr(0 € 9 n =
< 5 AT(pe) rr(0) + \/ o + on n 3 +e| + Son
(by Equation (4.31))
This completes the proof of the Theorem. O

We proceed to Step 1 first. We show:
Proposition 4.3.1. Dxy, (px,pe) < Car(pe)Lpr(8) and Dxr, (Px,pe) < Car(pe)Lpr(6)

Proof. By definition of block-generalized approximate tensorization of entropy in Definition 4.1.9

DkL(px:po) < Car(po) - Exepy [Exopeix) [PxL (px (- | Xk, K),po(- | X_x, K)]]

= Car(po) - LpL(0)

Likewise the latter holds when we replace p with p.

O
We will need the following simple observation in several concentration bounds we prove:
Proposition 4.3.2 (Bound on KL). Under Assumption /.1.3,
- 1
Dxr, (px (1 Xk, K),po(-| Xk, K)) € O,IHB
Proof. By definition of Dy,
_ i v (X| X s, K
0 < Dir, (G C1X 0o Koo C1X i K) = S (Xl X_ge, K)o XK1 K
po(Xk|X_k, K)
XK eIkl
1
< Z px(Xg|X_g,K)In
XgeQlX Po(Xic| X s, K)
- 1 .
< Z Px(Xk|X_g,K)In— (by Assumption 4.1.3)
< g
K EQIKI
1
=In-—
B
O
we also recall a standard version of Hoeffding’s inequality we’ll use repeatedly:
Lemma 4.3.4 (Hoeffding’s inequality). Let Y1,---,Y, be independent random variables such thata <Y; <b

almost surely. Consider the sum of these random variables, S, = Y1 + -+ +Y,, whose expectation is E [S,].

242
Then, Vt > 0, with probability at least 1 — 2e -7 | we have |S, — E [S,]| < t.

162



Most of the generalization bounds we need for Step 2 (in particular, Corollary 4.3.2) will be derived from
the following Lemma:

Lemma 4.3.5 (Point-wise generalization bound for learning conditional distributions). Fiz a 6 € © satis-

22
— - 2
fying Assumption 4.1.53. Ve, t > 0, with probability at least 1 — % —2¢ (%) , we have
. ~ 1 t
LPL(G) — LPL(H) < 2N6 . lnB + E

Proof. For notational convenience, let us denote by Sy the training data points {X (i)}ie[n], and let us denote
by Si(X) the set of masks corresponding to the training data point X.

Step 1: concentration over masked configurations

We first prove that Lpy () (Definition 4.1.2) concentrates to the expectation over masked positions K
as m increases. **

Denote

F(X) = Exepex) [PxL (a1 X -k, K), po(-| Xk, K))] (4.33)

Then the expectation of Lpr (0) over the randomness of Sk is:

. 1 1 i
E{sc)1emn [LPL(")} ;Z —Escw) Y Dru(B(1X-x, K),po(-|X_x, K))

XESx KeSk(X)
1 -
= > Exepre () Dk (b (1 Xk, K), po (-1 Xk, K)]
XeSx
1
== > HX) (4.34)
XeSx

Moreover, for each K, the (observed) empirical probability ps(K | X) converges to the true proba-
bility px(K | X) as m increases, because the count, ps(K | X) - m, follows the binomial distribution
Binomial(m, px(K | X)). More specifically, by Chebyshev’s inequality, Ve > 0, and a fixed X we have:

P{lps(K | X) = px(K | X)| > €} =P{[ps(K | X)m — pc(K | X)m| > em}
Var (ps(K | X)m)

(Chebyshev’s inequality)

- €2m?2
= mpc (K| X)e(21m_2 pe(K | X)) (since ps(K)m ~ Binomial(m,p(K)))
il | X)(1— pr(K | X))
X e2m
<
= 4e2m

Applying union bound over K € {0,1}", X € &,

M 2Vt

_ N >1-
P{lps(K | X) —pc(K | X)| <¢e, VK € {0,1}¥ VX € Sx} > 1 T =

(4.35)

24Note that the terms Dy, (Px (:|X_x, K),ps(-| X _k, K)) are (generally) not independent for different K. Besides, the terms
Y resy Pxu (Bx (| X-k, K),po(| Xk, K)) are (generally) not independent for different Sk.

163



Plugging into Equation (4.33) and Equation (4.34), we get with probability at least 1 — w

?

Lpn6) —~ 3 F(X)

XeSy

1 1 -
= |5X§ WK > Dxw(x(1X -k, K),po(-| Xk, K))
X €Sk (X)

— S B D (G X e, K),pol1X s, K))]|
XeSx

1 . . . .
< - Z Z Ips(K | X) —pic(K | X)|- Dxr Px(-|X—k, K),po(-|X_k, K)) (triangle inequality)
XeSx Ke{0,1}NV

1 - . .
<= > Y e D (pa(|X-k, K),po(-|X_k,K))  (by Equation (4.35))
XeSx Ke{0,1}V

1 1

= E E -In — iti 3.

. e-ln 5 (by Proposition 4.3.2)
XeSx Ke{0,1}V

IN

1 1 1
it Ej 2WNe.ln= =2V¢.In= 4.36
n 153 B8 ( )

Step 2: concentration over sequences X in training data.
Recall f(X) defined in Equation (4.33). We have:

E[f(X)] = Ex~pr [Exmpe(1x) [PxL (B(1X_x, K),po(-| X &, K))]]
= LpL()

Note that f(X) € [0,1n %] by Proposition 4.3.2. Thus, applying Hoeflding’s inequality (Lemma 4.3.4),
2¢2

- 2
Vvt > 0, with probability at least 1 — 2e n(n %) , we have

LY X R[] <+ (4.37)

n
XeSxy

Step 3: combining results: concentration over both masks K and sequences X.
By union bound, with probability at least

N-—2 N _2e?
1_&_26 n(n %)
e2m

both Equation (4.36) and Equation (4.37) hold, giving us:

Lpn(6) - iPL(e)‘

IN

_|_

L) =+ 3 F(X)

1 -
= Z f(X)—Lpp(A)| (triangle inequality)
X€eSx "

XeSxy

1 ¢t
<2Ne.ln= 4+ =
n

B
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Remark 4.3.1. The two terms in the bound given by Lemma 4.5.5, i.e. 2Ve-In % and %, can be controlled
by setting appropriate € and t based on m and n, respectively. These two terms can reduce by increasing
m and n, respectively, as we will show in the subsequent corollary. This is intuitive: we expect a smaller
generalization gap when the model is trained on more mask configurations for each sequence, and when more
sequences are included in the data. The first term grows with N — this is also intuitive: when the sequences
are longer, it is natural to require observing more mask configurations.

Corollary 4.3.1 (Point-wise generalization bound for learning conditional distributions, special case). Fiz
a 0 € © satisfying Assumption 4.1.3. with probability at least 1 — 9§, we have

N - 23N-1 QN In 4
LPL(H)—LPL(Q)’< \/m(5|+\/2rf -In

| =

Proof. Apply Lemma 4.3.5 with € and ¢ satisfying
gN-1 |Q|N
E=\——
m-0

we have that with probability at least 1 — 4, it holds:

Lpn(6) - EPL(a)‘

1 t
<2N€1DB+E

23N-1 QN In 1
= N kol Y S N P
m-0 2n B

Corollary 4.3.2 (Uniform convergence generalization bound for learning conditional distributions). Under
Assumption 4.1.3 and Assumption 4.1.4, ¥§ € (0,1), Ve > 0, with probability at least 1 — §, we have

" . 23N-110|N ¢ (0) \/m 4C.(9) 1
fpp(0)— L 9‘ i S I M
pr(0) — Lpr(0)] < \/ —; + o nﬁJre

O

Proof. By Assumption 4.1.4, let C.(©) denote the complexity of parameter space ©, with the corresponding
partition Par.(©) = {01,--- ,0¢_(e)}. Asa corollary of Assumption 4.1.4, Vi, V01,0, € O, f/pL(Hl) — f/pL(Hg) <
5 ‘f/PL(91) - f/PL(QQ)‘ <s3.

Moreover, for each i € [C(0)], arbitrarily select any point 8 € ©; (as a “representative” of that region of

the parameter space). Let the set of “representative points” be ©* = {0 |i € [C.(©)]}. By Corollary 4.3.1,
fixing any 6 € © satisfying Assumption 4.1.3, then with probability at least 1 — %, we have

ln —

23N-110|" C.(9) . \/ In 2%(©)

j;pL(Q) —EPL(H)‘ < \/ om

m- 6
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Applying union bound over 6 € ©*, since |©*| = C(©), with probability at least 1 — 4,

23N-110|" C.(9) \/ In 2%(©) 1
< \/ p— + o -In 3 (4.38)

Vi € [C(©)], |Lpw(6) — Lpw(6)

Finally, by Assumption 4.1.4, V8 € O, there exists i € [C.(0)] such that § € ©; (i.e. 6 falls into that
partition), and

<

‘iPL(@ — LpL(0)

Lpr(0) — Lpr(67)

< (4.39)

NN

Combining Equation (4.38) and Equation (4.39) gives

)ﬁpL(a) — EPL(e)‘

< |Los(6) - Lon(®))

+ |Lpn(8) — Len(6))

+ ‘EPL(GI) - ipL(G)‘ (by triangle inequality)

238110V ¢, (0 In 29<(©) 1
< g + \/ ln| 5 ©) + \/ z 2116 -lnB + % (by Equation (4.38) and Equation (4.39))

23N-1 |V In 2€(©) 1
= \/ il CE(@)—&—\/H 3 ‘In—+e€

m-0 2n I}

Finally, we complete Step 3 (proving Equation (4.32)):
Lemma 4.3.6 (Empirical PMF converges to population PMF). For any 6 > 0, with probability at least
1— 6, we have:
| Q|3N
166n

Drv (Px,px) <

Proof. ¥X € QV, the number of times that X appears in the training data Sy follows the binomial distri-
bution
Px (X)n ~ Binomial(n, px (X))

with mean npy(X) and variance npy(X)(1 — px(X)). Hence, by Chebyshev’s inequality, Ve > 0

P{px(X) = pax(X)[ = €} = P{px(X)n — px(X)n > en}

D (X
< %ﬂgw (Chebyshev’s inequality)
€
X)(1 - X
_ npx( )(2 QPX( ) (since px(X)n ~ Binomial(n, px(X)))
€E“n
_ px(X)(1 - pa(X))
e2n
< 1
~ 4eé2m
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Applying union bound over X € QV,

Qv
]P’{\ﬁX(X)—pX(X)|<e, VXEQN} >1- LEL’I’L (4.40)
Hence, we get with probability at least 1 — liz‘z:,
Drv (papr) = 5 3 Iow(X) —pe(X)| < 2 3 e= (o) (4.41)
TV (Px,Px) = B Px bx 2 €= B € .
XeQN XeQnN
Solving for § = |4(e2‘2: gives € = %. Therefore, by Equation (4.40), with probability at least 1 — 4, we
have
. 1N / P
D — Q =
v (Pas px) < 2| e 160m
O
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4.3.5 Proof of Proposition 4.3.3: Modes of the strongly ferromagnetic Ising
model

This section provides formal proofs for the discussion under Assumption 4.1.5 in Section 4.1.4.2.

Proposition 4.3.3 (Modes of the strongly ferromagnetic Ising model). On Ising model G in Equation (4.6)
under Assumption 4.1.5, the regions Ry and R_1 defined in Equation (4.7) and Equation (4.8) satisfy:

1. Ve € Rq, Vy eER_1,Vz € {—1, I}N\ (R1 UR_l).' p(;(m) > pg(y) > €2J°pg(z)
2. There exists a bijection f : Ry + R_1 such that Yx € Ry, pa(z) = e®"¢pg(f(x))

Proof. Consider ¢ € R1,y € R_1. We have:

pa(x) P (Zie[N hix; + Ei;éjeCGc[N] JXin)

yqe (y) exp

i€[N] zyz + Zz#]GCcC[N] JYzyj)

(=

exp ( — xz)
(=
(>

(since x;x; = y;y; =1, V& € Ry, Vy € R_1)
i€Cq hi iXi + ZzQCG h; X‘)
€xp (ZiGCG iYi + Zigcc hiy;)
== (Cicce b+ 2igCq haxi) (since x € R,y € R_1)
exp (— Yicce i+ Xigcs hiy:)
exp (Xico, bi = Xigey, [hil)
exp (= iecg hi + > i¢Ce |hil)

= exp 22h1—22|h2|

1€Cq iQCG

exp

v

(since x;,y; € 1)

> exp (0) (by Assumption 4.1.5)
=1

On the other hand, if we consider y € R_1,2z € {—1,1}¥\ (R1 UR_1), we have:
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pa(y) &P (Zie[N] hiyi + 2 izjccacin JYWJ‘)

pg(z) exp (Z’LE[N] h;z; + Zi?ﬁjECGC[N] JZZ‘Z])
exp (X ieny hivi + Xisjecocv J)
= ( €] #i€Ca ] (since y;y; =1, Vy € R_1)
exp (Zie[N] hizi + X izjecaciny Z"Zf)
€xp (Zie[N] hiyi + Ei;éjeCGC[N] J)
exp (Sieqn) hiti + Xigjecacim /= 21Cal = 1)7)

the above is because, since z € {—1,1}V\ (R; UR_;), obviously the denominator

Yoo Jzzp< Y J=2(Cel-1)J

i#j€CqC[N] i#jeCqC[N]

exp (Zie[N] hz‘yi) , =P (Zie[N] hiYi) - _exp(=lh[h)
exp (Zie[N] hiz; — 2(|Cc| — I)J) exp (Zie[N] hiz; — 2J> — exp([lhll —2J)
=exp (2(J — ||h|l1)) > exp (2Jy) (by Assumption 4.1.5)

v

Proceeding to Part 2, let’s define f: Ry — R_; as:

-1, if 1 € Cg
Vx € Ry, i =
zER, =) {:c ifi¢Cq
Let w := f(x). Then,

pa(T) exp (Zie[N] hiXi + X izjecqcln JXin>

pG’(’U}) exp ZE[N]h WZ—’_Zl#]ECGC[N] JWZW]>

exp( i€[N] h; xl)
exp ( i€[N] hlwl>
exp (Yiec hixi + Xigc,, hixi)
€xXp (ZieCG h;yw; + ZingG hiwi)
€X 1 hz + . hixi
_ p (ZZECG ZWECG ) (Since TER,we R_l)
exp <_ Zz‘ecg h; + Zigcc hiwi)
exp (Yiec, hi)

= (since w; = x;, Vi ¢ Cg)
exp <_ ZiECc hl)

exp (2 Z hi>
i€Cq

= exp (2hg) (by Assumption 4.1.5)

(since x;x; = w;w; =1, Ve € Ry, Vw € R_1)
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4.3.6 Proof of Proposition 4.1.4: k-Gibbs sampler can reach the mode fast
Proposition 4.1.4 (k-Gibbs sampler can reach the mode fast). Consider the Ising model in Equation (4.6)

N—|Cqgl
(k—\cG\) e2(Jot+ha)

(W) e2Cotha)ye2do42lCl 2"

satisfying Assumption 4.1.5. Let us denote (0,1) D ¢g, =1 —
Then, for any initial X©) and § € (0,1), with probability at least 1 — 6, after T = {logcn1 6—‘ steps of
k-Gibbs sampler (Definition /.1.10) with k > |Cql, we have {XD|t € [T]} "Ry # 0.

Proof. At any step, let K (with |K| = k) denote the set of coordinates to re-sample. We first consider the
probability of Cg C K, which allows the whole Cs to be updated jointly: The total number of ways to
select K is (7). Now count the number of K’s which satisfy C; C K. This is the same as selecting the
remaining k — |Cg| coordinates from the other N — |C¢| coordinates which are not in Cg. So there are

(]IZ—_I‘CC:GGI‘) distinct K’s which satisfy Cq C K.

(oeeh

N
(%)

Vvt € N,VX® € {~1,1}¥, and K € [N] such that |K| = k and C¢ C K, consider X;H) ~ pe(- | X(_t}()
There are three cases (whhich exhaust all possibilities):

P{CscC K} = (4.42)

1. Xt e R,
2. X+ e R
3. X e {1, 1}V\(R1UR_)

We will use Proposition 4.3.3 to show that Case 1 occurs with probability at least a constant. We have:

P {X<t+1> c Rl} — hap {X<f+1> e R,l}

P{X(t+1) S R 1} 2JO |R71| o €2JO
P{X+D) e {-1,1}N\ (R UR_ } - H-1,1}M\ (RiUR_y)| 2I%I -2

Since the probabilities of the three cases sum up to 1,

62(J0+h6')

(t+1)
[P’{X € R1} Z (o the) + e2Jo 4-21Ccl — 2

Combining with Equation (4.42), we have Vt € N and VX € {—1,1}" it holds that:

N—|Cg]|
(k—lccl) o2(Jo+ha)

(t+1) (t+1)
]P{X 6R1}2P{CGCK7X ERl}Z (]k\:[) 62(']0+hG)+62J0+2‘CG‘72

=1 — CR,

From this it follows that
P{{X"|te [T)}NR: =0} < ck,

Therefore, when T > logCR1 4,
P {{X<t>|t e [T NRy = @} <6
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4.3.7 Proof of Proposition 4.1.5 independent parallel sampling stuck in bad
samples

Proposition 4.1.5 (Independent parallel sampling stuck in bad samples). Consider the Ising model in

1—exp (~2Jg) [Cq| 2
2 _1+exp(72J0)+1 2

Equation (4.6) satisfying Assumption /.1.5. Let us denote Cspyer, =

ICcl
For an initial X© such that ZiGCG Xi(o) < =2, for any ¢ € (0,1), with probability at least 1 — §, after

T = L%exp (csmck)J steps of independent parallel (Definition J.1.11), we have Vt € [T, ;. Xi(t) <
—2.
Proof. Suppose at step t, X () is such that Y icCe Xi(t) < —2 (satisfied at ¢t = 0), then

VieCe, Y X<-1 (4.43)

1€CG,i#£]

Hence its next-step distribution X](.H'l) ~p(- | th%j}) satisfies

P X(_t+1) =1 exp ZZ hlxl""zz o JXiX; ‘x':1
{ (Z+1) } = ( S IECaciN] J) ’ (by definition in Equation (4.6))

P {Xﬂ’ - ’1} eXp (ZiE[N] hixi + 3 izjecacin inxj) lj=—1
exp (hj + XicCo it JXi)

exp (—hj — ZZ-GCGJ.#J— in)

(canceling the same terms)

exp | 2h; +2J Z X;
i€Cq,i#]

<exp(2h; —2J) (by Equation (4.43))
<exp(—2Jy) (by Assumption 4.1.5)
Therefore (C20)
X(t+1) _ {17 Wlth prob S expr()—QJo)O-‘rl (4 44)
. 1 N
7 _17 with prOb Z W
Denote
X 1
Y, = % (4.45)
Note that {Y;|j € [N]} are independent Bernoulli random variables.
_2r?
By Lemma 4.3.4, Vr > 0, with probability at least 1 — 2e [°al,
1 r . . .
— Z Y; <Ejecy [Y;] + —=— (by Hoeffding’s inequality Lemma 4.3.4)
|Cal . |Cal
j€Caq
exp (—2Jo) r . - . . ,
+ (by Equation (4.44) and definition of Y; in Equation (4.45))

T exp(—2Jo)+1  |Cgl

_ 2r?
implying that with probability at least 1 — 2e [l

1 (t+1) 1 ( exp (—2Jp) T >
N x-Sy 1< n —1
ICq| jEZCG ’ ICc| jEZCG ! exp(—2Jo) +1  [Cqg|
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i.e.
—2Jy) —1
3 Xt < oxp(=2Jo) =10 1o,
P exp (—2Jp) + 1

Setting RHS to -2 solves to
1 —exp(—2Jy) |Cql

e exp(—2Jp)+1 2
Hence )
(s e
with probability at least 1 — 2e ICa] , Z X;Hl) <=2 (4.46)
je€Cc
By union bound, VI € N,
2
o[ igeaEa e
with probability at least 1 — 2Te 22 ,ovtelr], Y x< -2 (4.47)
jeCa

()
NF)te that .wh.en djece Xj < -2, X('t) ¢ R
Finally, aligning the probabilities: setting

2
of —14 1mexp (=2J9) fefell
exp (—2J0)+1 2

2Te el =4

solves to

2
_ . l=exp(=2J9) |G|
5 2( b (—279)+1 2

T:— ‘CG‘
26
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4.3.8 Proof of Corollary 4.1.1: Separation between N-Gibbs sampler and inde-
pendent parallel sampling

This section provides additional information for the discussion at the end of Section 4.1.4.2.

Corollary 4.1.1 (Separation between N-Gibbs sampler and independent parallel sampling). On Ising model
G in Equation (4.6) under Assumption 4.1.5, V5 € (0,1), VM € N, If G additionally satisfies Assump-
tion 4.1.6 and Assumption J.1.7 and the initial X©) is such that ZieCG Xi(o) < —2, then with probability
at least 1 — 46,

1. Running the k-Gibbs sampler: X,S)Gibbs € R4, and

2. Running independent parallel: {th) te[M]}NR1=0

indep

Proof. Under the given conditions, with k-Gibbs sampler, by Proposition 4.1.4,

) )
with probability at least 1 — 2 {Xlg)(;ibbs“ € [[logCR1 3 —‘ TNRL#0 (4.48)
in which the constant
() 2(Jo+h)
e () e2lothe) 4 e2Jo 21l — 2 (4.49)
Applying Assumption 4.1.6 to bound parts of the RHS of Equation (4.49):
e2h —
e2(Jo+ha)
2lCal _ 9 9lCcl 2lCe| 921Cc| oh
— — p G
62(J0+hg) - 62(J0+hg) - eng|1n2+2hG - 2|CG|e2hG -
Taking the sum:
e?lo 4 2%l 9 —ohe
ST S %€
Adding 1 to both sides:
e2(Jotha) 4 2Jo 4 9lCc| _ 9 _on
e2(Jo+ha) S 14+2e77
Taking the inverse:
e2(Jothe) - 1 - 1 - 1 1 4= (4.50)
2othe) +e2o 421061 =2 = 14 2e72he = 3 | g2y 350 T 14200 1445 4

Similarly, applying Assumption 4.1.7 to bound the other parts of the RHS of Equation (4.49):

N-|Cq| (N—|Cc))! (N—|Cc])!
(h-icsl) _ telcaivmr _ Goicehr _ (k+1—|Cgl)-+- (N — |Ca)
N - N1 - N1 -
(%) JaTecEmo r (k+1)---N
k+1—|Ce\" Y Ca| \ N
> (e =(1-—%
k+1 k+1
Cc| . |0
>1—-(N—-k 1
> 1= (N = k)8 (since =01 € (0,1))
4—26 . . .
> (by Assumption 4.1.7 and straightforward calculation)

4—-90
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Plugging in the above and Equation (4.50) to Equation (4.49):
4-20 4-6 6

<1- 29
CRi=2T T 1 T 2

Plugging into Equation (4.48):
)
with probability at least 1 — 2 {Xé%ibbsﬁ € 1]} NRy #0, namely Xé}éibbs eRy
On the other hand, with independent parallel, by Proposition 4.1.5,
ith probability at least 1 — 2, {X©, lte[|® NRy =0
with probability at least 1 — {Xinaeplt €1 Zexp(csmck) 1} 1=

in which the constant

2
1—exp (—2Jp) |Cg|
2 (_1 + expe(EQJo)fl 2G )

[&e]
Applying Assumption 4.1.6 to bound parts of the RHS:

Cstuck ‘=

>

1 —exp(=2Jy) _ 1
172

exp (—QJ()) +
Plugging into Equation (4.53):
2

1 |Cq|

2 (‘1 + §TG>
[&e]
2

2(1—@+—‘C§‘ )

[&fe]

|Cc|
+ 8

4M
-1+ <1 +1In 5) (by Assumption 4.1.6)

Cstuck =

v

-1

Y

4M
=In—

]
Plugging into Equation (4.52):

1)
with prob > 1 — 5 {Xi(rtl)dep

4 4

By union bound, with probability at least 1 — §, both Equation (4.51) and Equation (4.54) hold.
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(4.52)

(4.53)

It e [V : 4MJ] = [M]}NRy =0, namely X\, ¢ RiVte [M] (4.54)
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4.3.9 Background and proofs of Proposition 4.1.2 and Proposition 4.1.3: on the
expressive power of Transformers for implementing sequence-to-sequence
Markov chains in parallel

4.3.9.1 Technical setup and proofs

Background: Transformer network architecture. The transformer architecture (Vaswani et al., 2017)
is a critical building block of many leading approaches to language modeling (Devlin et al., 2019; Brown
et al., 2020). We refer the readers to these works for more details on the empirical promise that Transformer-
based models have demonstrated. For theoretical understanding of Transformers, we refer the readers to
prior works on their representational power (Yun et al., 2020; Yao et al., 2021; Liu et al., 2023a; Zhao et al.,
2023), statistical sample complexity (Wei et al., 2021; Edelman et al., 2022), optimization process (Lu et al.,
2021; Jelassi et al., 2022; Li et al., 2023), and interpretability (Wen et al., 2023), and references cited therein.

Mathematical setup. In the following we adapt and use the mathematical notations for the Transformer
network architecture in Yun et al. (2020) and Li et al. (2023).

For each position of an input sequence (N tokens) 7 - - - 7, use a d-dimensional positional embedding to
represent that position, and use a d-dimensional token embedding for the content at that position. Hence, for
the input sequence, both the token embeddings E and the positional embeddings P are matrices in R4*V.
Following empirical convention, the encoder function gepe : QY — RV is

X = gene(m1-- ) = E+ P (4.55)

which form the input to the Transformer blocks:
A Transformer block t"™" (with h heads, head size m, and feed-forward hidden layer size r) is defined

as
thmr(X) = Attn(X) + Wa - ReLU(W; - Attn(X) + b117) + bo17 (4.56)

where

h . . . .
Attn(X) = X + Zi:l WLWEX - o[(Wi X)W X] (4.57)

where the weight parameters W), € R¥™ W(,,W}OWZ) € R™*4 W, € RX", W, € R™? by € R4 by €
R", and
o RNNz (0 1) Nix N2

is the column-wise softmax operation, such that
__ exp(Ay)
T N
211 exp (Ayy)

An L-layer Transformer is a composition of Transformer blocks:

o(A),g (4.58)

T = {gtransformer : RIXN _y RIXN | Gtransformer = t1 © - - - o tywhere ¢; is a Transformer block} (4.59)

In the class of parallel decoding Transformers (denoted as Tpp), for any Transformer giranstormer € 7T s
its output geransformer(X) € R¥ N goes through a final affine transform and softmax (Equation (4.58)) to
predict a distribution over tokens, for all positions

Jpred (X) =0 (medgtransformer(X) + bpmd) S (0, 1)‘Q|><N (460)

where Wrred ¢ RI?Ixd and pPred ¢ RICI are the prediction head weights and biases. 2 is the vocabulary of
tokens.
For each position j, the predicted token 7; is sampled from the predicted distribution gprea(X). ; inde-
pendently with other positions
7j ~ sample(gprea(X).;) J € [V] (4.61)
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where sample can be the standard sampling algorithm for multinomial distributions, or truncating the
low-probability tail (Holtzman et al., 2020), or more conservatively, argmax sampling.

In the following definition, the sampling step can be denoted as a postprocessing function s : (0, 1)'9‘ —
[0, 1]/ applied to each column of gprea(X). For example, argmax sampling S,remax can be written as 2°:

1, if 4+ = min arg max; p;

Vp € (O, 1)|Q‘7 Sargmax(p)i = { (462)

0, otherwise

Thus, combining Equation (4.55) and Equation (4.60), a parallel decoding Transformer (denoted as Tpp)
and a sampling function s together define a Markov chain over sequences in QV:

Tep = {9 = 5 0¢ gpred © Genc : oy - [0, 1]|Q‘XN}. (4.63)

where, again, s is understood as applying to each column of its input matrix separately. Specifically, in this
Markov chain, Vg € Tpp the transition probabilities are

]P){Tl"'TN;T{"'T]/V} = H g(Tl"'TN)TJ,.,j (464)
JE[N]

where the last g(7y - - - TN)T]{ _j denotes the Tj{-th row, j-th column of the matrix g(my -+ - 7n).
Yun et al. (2020) proved the following result on the expressivity of the Transformer network architecture:

Lemma 4.3.7 (Universal approximation by Transformers, informal (Yun et al., 2020)). Let 1 < p < 0o and
€ > 0, then for any compact set D C R¥™, for any given function f : D — R¥*" there exists a Transformer
network g € T>%* of O(N (%)dN) layers such that

» 1/p
([ 17x) - g(x)pax) " <e
in which § is the smallest real number such that VX, Y € R if | X —Y ||oo < 9, then || f(X) — fY), <e.
Moreover, the bound on the size of the constructed Transformer is asymptotically tight.

Lemma 4.3.8 (Transformers can simulate parallel solution to automata, Theorem 1 in (Liu et al., 2023a)).
Transformers can simulate the length-T output of all semiautomata with states Q, input alphabet 3, and
transition function § : @ X ¥ — Q. Moreover, the size of the simulating Transformer has depth O(logT),
embedding dimension O(|Q|), attention width O(|Q|), and MLP width O(|Q|*).

Remark 4.3.2. Lemma 4.5.8 gives a more compact construction than a direct implication of more general
universal approximation results Lemma 4.5.7 for Transformers.

A direct corollary is Proposition 4.1.2:

Proposition 4.3.4 (Proposition 4.1.2 formalized). For any function f : QN + QN 26 for any T € N, there
exists a parallel decoding Transformer g € Tpp (Equation (4.63)) whose sampling function is s = Sargmas
(Equation (4.62)), such that

Vv € OV Ve [T), g9 (m - 7n) = fO (- 7w)

where the f*) denotes composing the function f fort times.

25Tn Equation (4.62), the “min” stipulates that when multiple coordinates of p are tied for being argmax, i.e. |arg max; p;| > 1,
then sargmax would choose the smallest index in Sargmax. Other reasonable tie-breaking behaviors also work.

26This is equivalent to Markov chains over sequences in QF whose transition probabilities are delta distributions
P {71 TN, T T]’\,} € {0,1}. The correspondence is: for any Markov chain state 71 ---7n, f(71---7n) specifies the unique
deterministic next state.
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Proof. When each transition of a Markov chain is deterministic, i.e. if the next state distribution from any
state is always a delta function, then the Markov chain reduces to a deterministic finite state automata, with
states QV, length N.

Applying Lemma 4.3.8, we get Transformers can simulate length-T' output of this automata with depth
O(log T), embedding dimension O(||"), attention width O(|Q2|™), and MLP width O(|Q2]*™). O

Proposition 4.3.5 (Proposition 4.1.3 formalized). Let Prod denote the set of Markov chains over sequences
in QN whose transition probabilities are product distributions over the positions, conditioned on the current
state, i.e. P{r - 7n, 7] - 7h} = [I0ey P{7} | 71---7~}. Then, Tpp = Prod.

Proof. The statement involves both a positive result and a negative result on the expressivity of parallel
decoding Transformers.

Positive: if the transition probability distribution is a product distribution conditioned on the current
state, then the task of representing a Markov chain can be reduced to universally approximating a continuous
function which maps all sequences to the correct logits WP*dT(X) + bP™d in Equation (4.60), such that
after softmax (Equation (4.58)) these logits produce the correct marginal distribution at each position. This
is achievable by the construction in Lemma 4.3.7.

Negative: if the transition probability distribution is not a product distribution conditioned on the
current state, then note that the sampling operations (Equation (4.61)) at positions j; and j, are independent,
so Transformers cannot implement such Markov chains. O

Remark 4.3.3. Proposition 4.1.3 implies that parallel decoding Transformers cannot exactly represent non-
product distributions. However, it does not prevent parallel decoding Transformers from approximating some
of non-product distributions. This is because certain non-product distributions can be approrimated by product
distributions.

4.3.9.2 Connection to prior works in GMLM

Among existing language generation approaches via iterative refinement, Wang & Cho (2019) uses 1-Gibbs
sampler. The approaches in Ghazvininejad et al. (2019); Savinov et al. (2022) and our experiments do not
closely fall into either of independent parallel (Equation (4.4)) or the k-Gibbs sampler (Equation (4.3)) in
Section 4.1.4. See Remark 4.3.4 for technical details.

Moreover, these approaches train models to learn the parameterized conditional distributions, which
empirically may not admit a consistent joint distribution (Young & You, 2022; Torroba Hennigen & Kim,
2023).

To formally reason about the iterative refinement process in GMLMs, in Section 4.1.4 we relax some of
these limitations to focus on several underlying theoretical obstacles that these methods face.

Remark 4.3.4 (Technical details in theoretically formalizing GMLM architectures). By Proposition 4.1.3,
the sampling process in Ghazvininejad et al. (2019); Savinov et al. (2022) and our experiments are different
from N-Gibbs sampler. Moreover, the sampling process is also different from independent parallel (Gibbs

sampler 4.1.11): note that independent parallel strictly freezes all X(_t%i} when sampling

t+1 t
XM ~p( [ X))
whereas in Savinov et al. (2022) and our experiments, the model is trained to update all positions in parallel,
which implies a different groundtruth next-iteration token distribution compared with p(- | Xgi}). In other
words, although the updates are conditionally independent given the current state, the update probabilities
are not trained to model p(- | th%i}).

Mechanistically, Savinov et al. (2022) and our models in principle can take certain inter-position de-
pendency into consideration (which independent parallel cannot): for example, in layer L, position i can
attend to *7 other positions e.g. j in the layer-(L — 1) representations. This enables the layer-L computation

27yia Transformer attention Equation (4.57)
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at position 1 to be conditioned upon the intermediate representations at position j, which are not independent

from the final prediction at position j.

Ghazvininejad et al. (2019) can be understood as predicting the subset of masked indices K in each
update. The extent to which each update incorporates dependency between masked positions depends on
implementation details: for example, whether attention masks are added to prevent any masked position

from receiving attention.
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4.3.10 Regularity conditions for asymptotic behavior of M-estimators

In the limite of infinite samples, M-estimators (in particular, maximum likelihood and the estimators in
Definitions 4.1.2 and 4.1.7) converge in distribution to a normal distribution, under mild regularity conditions:

Lemma 4.3.9 (Van der Vaart (2000), Theorem 5.23; statement adapted from Qin & Risteski (2023)).
Consider a loss L : © — R, such that L(0) = E,[ls(x)] for lg : X — R. Let ©* be the set of global minima
of L, that is
* — * . L * — : L
©" = {6": L(6") = min L(0)}
Suppose the following conditions are met:

e (Gradient bounds on lg) The map 0 — lg(x) is measurable and differentiable at every 0* € ©* for
p-almost every x. Furthermore, there exists a function B(x), s.t. E [B(x)2] < 0o and for every 61,02
near 0%, we have:

llo, (x) — lg, ()] < B()[|0r — 02|z

o (Twice-differentiability of L) L(0) is twice-differentiable at every * € ©*
with Hessian V2L(0*), and furthermore V4L(60*) = 0.

o (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

sup |E[lg(z)] — L(O)| B0
0co

o (Realizability) The data distribution p satisfies: 30* € © such that pg = p.

Then, for every 8% € ©F, and every sufficiently small neighborhood S of 6%, there exists a sufficiently large
n, such that there is a unique minimizer 6,, of E[lg(x)] in S. Furthermore, 0,, satisfies:

V(ln = 0%) 5 N (0, (V3L(0")) " Cou(Vol(6%: 7)) (VL(6%)) ")
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4.3.11 Convexity of pseudolikelihood for Ising models

Here, we expand on a comment in Section 4.1. We show that for a classic parameteric class of distributions
(namely, Ising models — which appear also in Section 4.1.4) the k-MPLE loss is in fact convez. This is a
known fact which has been used to design (provably) efficient algorithms for learning bounded-degree Ising
models (Ravikumar et al., 2010; Vuffray et al., 2016), and is just included for completeness. Recall the
definition of Ising models from Equation (4.5) in Definition 4.1.12. Let Z be the partition function.

Proposition 4.3.6 (Fitting an Ising model over the conditional distributions is convex). When py is an
Ising model (Equation (4.5)), i.e. @ = (J,h), the weighted pseudolikelihood objective (Definition 4.1.2) is
conver.

Proof. When py is an Ising model (Equation (4.5)), we have:

exp (Zie[N] hix; + Zi;éje[N] Jijxix;)
Z(X,K)

—lnpy(xg|x_k)=—In

= — Z h;x; + Z Jinin —‘rlHZ(X,K)
i€[N] i#j€[N]

in which the denominator

Z(x_g)= Z exp(ZhiXK—F Z hix;

Xke{—1,1}KI €K 1€[N]\K
+ Z J”XZXJ + Z Jinin + Z Jinin)
i#jE[K] €K, jE[N\K i#JE[N\K

Note that _(Zie[N] hixi + 37 2ien Jijxixj> is linear in (h,J) and In Z(x_k) is convex in (h,J), so

—lnpy( Xk = x| X_k = x_k) is convex in (h,J), which completes the last piece of the proof.
O

4.4 Related works

Our theory is inspired by recent progress in sampling: the connections between pseudolikelihood and approx-
imate tensorization of entropy are discussed in Marton (2013; 2015); Caputo et al. (2015); Caputo & Parisi
(2021); Koehler et al. (2023). Benefits of k-Gibbs sampler are discussed in Lee (2023). Our experiments
follow the framework that trains generative masked language models and generates samples using parallel
decoding by iterative refinement: (Lee et al., 2018; Ghazvininejad et al., 2019; 2020; Kasai et al., 2020;
Savinov et al., 2022), which tend to be at least twice faster than autoregressive approaches with a small drop
in quality for tasks like machine translation. The inference process, which converts complete noise to full
samples, might resemble diffusion models (Hoogeboom et al., 2021; Austin et al., 2021; Li et al., 2022; Gong
et al., 2023; Zheng et al., 2023; Lou et al., 2024), but a key conceptual difference is that diffusion models are
trained to revert a small amount of noise at each step, whereas the family of models that we study in this
work are more similar to masked autoencoders: the training objective encourages reconstructing the whole
target sequence in each step of decoding.

Non-autoregressive text generation Previous works applied various generative models to text, such
as VAEs (Bowman et al., 2016; Bosc & Vincent, 2020), GANs (Che et al., 2017; Yu et al., 2017; Lin et al.,
2017; Guo et al., 2018), and normalizing flows (Ziegler & Rush, 2019; Ma et al., 2019; Hoogeboom et al.,
2021), but without a strong autoregressive component, the quality of generated text is often suboptimal.
Later works achieve high-quality text generation through diffusion models (Hoogeboom et al., 2021; Austin
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et al., 2021; Li et al., 2022; Gong et al., 2023; Zheng et al., 2023) and energy-based models (Deng et al., 2020;
Goyal et al., 2022; Qin et al., 2022), but their generation speeds tend to be much slower than autoregressive
language models. Inference latency can be mitigated by approaches like Lee et al. (2020). Unlike the above
paradigms that adapt continuous-domain generative models to text, our approach is closer to the following
line of works that iteratively refine the generation process through parallel updates in the space of discrete
token sequences, which tend to be at least twice faster than autoregressive approaches with a small drop
in quality (Lee et al., 2018; Ghazvininejad et al., 2019; Stern et al., 2019; Guo et al., 2020; Ghazvininejad
et al., 2020; Kasai et al., 2020; Savinov et al., 2022) (though autoregressive models also have the potential
for speedup by using a shallower decoder for certain tasks (Kasai et al., 2021)). The generation quality
of non-autoregressive models can be further improved by incorporating some autoregressive components
(Kong et al., 2020; Reid et al., 2022) or input-output alignment (Chan et al., 2020; Saharia et al., 2020), or
adaptive training curriculum (Qian et al., 2021). Insights such as the multimodality problem and components
such as sequence-level knowledge distillation and input token fertility prediction were also proposed in (Gu
et al., 2018). The benefit of distillation was verified in Kim & Rush (2016); Gu et al. (2018); Zhou et al.
(2020); Gu & Kong (2021). Positional attention was tested in Gu et al. (2018); Kreutzer et al. (2020).
Relevant to our experiments in Section 4.2.4, Ren et al. (2020) measure the target-side dependency as the
proportion of attention paid to target tokens as opposed to the source tokens, in some modified attention
architecture. Related to generation from MLMs, Wang & Cho (2019) use the learned conditionals inside
a Gibbs sampler, but when the conditionals are not consistent, i.e. there is not a joint distribution that
satisfies these conditionals, Gibbs sampler may amplify errors. In general, mathematical understanding
about sampling from masked language models is still lagging substantially behind. Additionally, related
to MLMs, Meng et al. (2023) analyzes some representational limitations, and Liu et al. (2022a) analyzes
subtleties from a parameter identifiability view. Related to parallel decoding, recent work (Cai et al., 2024)
parallelizes the inference with multiple heads by finetuning autoregressive LLM backbones.

Theory about parallel sampling Koehler et al. (2023) proved a generalization bound for pseudolikeli-
hood estimator via the classic (k = 1) approximate tensorization of entropy, in the “proper learning” setting.
Our generalization bound (Theorem 4.1.4) uses the generalized notion of the approximate tensorization of
entropy (Definition 4.1.9), also apply to “improper learning” settings, and the proof involves quite different
techniques. The classic approximate tensorization of entropy are discussed in Marton (2013; 2015); Caputo
et al. (2015), which was more recently generalized to the “a-weighted block” version (Definition 4.1.9) in
Caputo & Parisi (2021). Lee (2023) proves that k-Gibbs sampler mixes at least k times faster than 1-Gibbs
sampler. For future works, recent algorithmic advances in parallel sampling could potentially be incorpo-
rated into our framework to achieve finer-grained theoretical analysis or better empirical quality-efficiency
trade-off (Anari et al., 2023).

4.5 Conclusion

We introduce a new theoretical framework for understanding the power and limitations of generative masked
language models (GMLM). In particular, our theory offers some guidance on the design spaces of learning and
inference algorithms, through the perspectives of asymptotic sample complexity for parameter learning, finite-
sample generalization bound for distribution learning, and the efficiency of Gibbs-like sampling algorithms.
Empirically we adapt T5 to parallel decoding by iterative refinement (an non-autoregressive GMLM-based
language generation strategy which showed strong speed-quality trade-off in the literature for tasks like
machine translation). We recommend some rules of thumb for key design choices, and discuss the connection
between the the empirical findings and our theory. For future works, we hope the theoretical framework
and empirical observations can inspire new training objectives, inference algorithms, and neural network
architectures better-suited for parallel decoding.
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Chapter 5

Conclusion and future directions

In this thesis, I survey my research towards developing a methodology for theoretically reasoning about the
data-training-inference interaction in language modeling: how specific structural properties of the data (such
as semantic topics or syntactic recursion) are captured by the model during training, and how those learned
features subsequently constrain or enable efficient inference algorithms.

By isolating key data structures—for example topic models (Blei et al., 2003) and context-free grammars
(Dyck) (Schiitzenberger, 1963)—as theoretical sandboxes, we have moved beyond generalization bounds
based on generic data distributions to provide mechanistic insights into how Transformers capture some
simple linguistic structures. We then show that explicitly modeling certain structural properties of the
data distribution also motivates useful settings for studying verifier-assisted language generation algorithms,
and reveals fundamental connection between training and inference efficiencies in parallel non-autoregressive
language models.

5.1 Summary of contributions

5.1.1 The mechanics of feature learning in Transformers (Chapter 2)

We investigated how Transformers learn simple linguistic structures. Moreover, we found that the flavor of
the results depends sensitively on the type of structure we study.

In Section 2.1, we proved that for semantic structures modeled by topic models (Blei et al., 2003), the
training dynamics are benign: simple one-layer Transformers naturally converge to interpretable solutions
where token embeddings and attention patterns encode topic coherence.

However, Section 2.2 revealed a sharp contrast when the data structure shifts to context-free grammars
(Dyck) (Schiitzenberger, 1963). We proved that in this case, the solution space is sufficient rich, and more-
over, contrary to popular intuition, Transformers can achieve near-optimal generalization without learning
interpretable, stack-like attention patterns. This effectively challenged “myopic” interpretability methods,
showing that indistinguishable functional performance can arise from qualitatively different (and often un-
interpretable) internal mechanisms.

5.1.2 Verifier-guided inference algorithms with backtracking (Chapter 3)

Since training does not always yield models that perfectly capture the structural constraints (as seen in the
Dyck experiments in Section 2.2), we turned to study what inference algorithms better leverage the learned
structures to generate samples that satisfy these structural constraints. We established a theoretical frame-
work for query complexity in constrained generation, proving that access to a process verifier can render
intractable generation tasks tractable (Section 3.1). Empirically, we demonstrated that a simple heuristic—
Tokenwise Rejection Sampling with Backtracking (which allows the model to “erase” and regenerate tokens
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upon detecting a violation)—achieves favorable trade-off between accuracy, efficiency, and diversity (Sec-
tion 3.2). Moreover, we propose a theoretically principled algorithm, value-guided sampling with stochastic
backtracking, which provably mitigates error amplification as sequence length grows (Section 3.3).

5.1.3 Co-designing inference and training algorithms (Chapter 4)

Finally, we analyze Generative Masked Language Models (GMLMSs), a parallel-efficient, non-autoregressive
approach to language modeling. We established a fundamental link between the statistical efficiency of
training and the computational efficiency of inference: both are governed by a quantity that measures
the strength of cross-positional dependencies in the data distribution. We also applied our theoretical
framework to prove that Transformers (commonly adopted in parallel decoding) cannot efficiently sample
from distributions with strong cross-positional dependencies.

5.2 Outlook on future research

For many tasks that involve data-driven learning and inference, algorithmic advancements are typically
demonstrated through evaluation metrics on various benchmarks. These benchmarks typically consist of
many representative use cases of an algorithm, and estimate several aspects of the performance of the algo-
rithm on these tasks. As researchers and practitioners develop more algorithms and test them on increasingly
diverse benchmarks, they collectively expand the community’s knowledge of these evaluation metrics at a
rapid speed, and become more experienced in applying their knowledge to predict what modifications of their
currently-investigated algorithm would improve these evaluation metrics. However, in many cases, it remains
challenging to distill these vast and rapidly growing knowledge and experience into systematic understanding
which satisfactorily compresses past observations and accurately informs future algorithmic design.

In this thesis, supported by my research, I argue that a promising methodology towards developing such
systematic understanding is to focus on how the training and inference algorithms interact with a
few key structures underlying the task data.

First, identify and model relevant key structures of interest in the task data. Useful ways to identify these
structures include investigating the predictions and error modes of the current algorithm, and improving our
understanding of the task by thinking through all the steps by which data is generated. During these
investigation, look for signals which suggest the current algorithm may systematically perform poorly in a
certain type of cases, or overlooks a certain aspect of the task. Based on these signals, form more abstract
hypotheses on what structures of the task data may be challenging for the current algorithm, and model a
generative process of these structures.

Next, study how the training algorithm captures these structures, or how the inference algorithm leverages
these structures. To make progress towards answering these questions, a conjectured generative process of
these structures (which we modeled in the previous step and may refine later as we gather more evidence)
may be helpful, because it allows us to reason about not just a few isolated occurrences of the structure of
interest, but a distribution of cases to which this structure is relevant. In some cases, it may be illustrative to
generate synthetic data based on our conjectured generative process of these structures, and run experiments
which highlight how the algorithm interacts with this particular structure (while possibly ablating away some
other structures in real data).

Finally, form and test concrete hypotheses about the data-training-inference interaction. These hypothe-
ses may be about whether one type of algorithms is generally better than another type of algorithms in
interacting with (e.g. capturing or leveraging) certain structures of the data, or proposing algorithmic
improvements designed for better interacting with certain structures.

The goal of this line of research is to break down the task performance (measured by a large number of
evaluation metrics on benchmarks) into capabilities defined by capturing or leveraging (a relatively small
number of) key structures underlying the task data. Each key structure identified in this process provides a
useful abstraction for studying the interaction between data and algorithms, enhances the researchers’ and
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practitioners’ understanding of the task data, and motivates the synergistic design of training and inference
algorithms that better learn and leverage this structure.
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