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Abstract

Large language models (LLMs) can now attain near-perfect accuracy on
grade-school math benchmarks, yet their ability to perform genuine, structure-
guided reasoning remains unclear. We study this question in a controlled setting
by introducing PureIntersectionPoint, a corpus of 8 million pure intersection-
point geometry theorems equipped with a graph language, four core tactics
(merge-by-cr, merge-by-def, cr-equal and cr-equiv), and machine-checkable
proofs. Each problem is a directed proof search over a state graph, making it
possible to ask: can an LLM learn to form and use “intuition”—i.e., subgraph-
level heuristics that guide tactic choice?

Training GPT-2-style models on PureIntersectionPoint reveals six core find-
ings: (1) fully random index orders cripple learning; (2) presenting theorems in
construction order makes them much easier; (3) an “active exploration” proof
format boosts performance further; (4) clear signs of intuition emerge over
training, as models shift from trivial to structure-driven subgoals; (5) models
generalise beyond rote recall, producing unseen subgoals at test time; and (6)
they even solve theorems our brute-force searcher cannot.

Together, these results show that data ordering and proof format act like
curricula, that intuition is measurable and learnable, and that LLMs can dis-
cover proofs beyond exhaustive search.
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Chapter 1
Introduction

Recent advances in generative artificial intelligence (AI), and in large language models
(LLMs) in particular, have convincingly demonstrated that these systems can

1. produce fluent, high-quality natural language,

2. comprehend and generate source code, and

3. tackle a broad range of complex tasks.

Despite these successes, the extent to which LLMs possess genuine human-level reasoning
and planning abilities remains an open question.1 In this thesis, we investigate these
capabilities through the lens of mathematical problem solving.

Over the past few years, increasingly sophisticated large-language models—e.g., GPT-4,
Gemini-Ultra, Claude 3 Opus, and DeepSeek-R1—have achieved near-perfect accuracy on
grade-school mathematics benchmarks such as GSM8K, and have dramatically narrowed
the gap to human-expert performance on more demanding collections like the MATH
dataset [Ope24; Gem25; Ant24; Guo+25; Cob+21; Hen+21].

Most strikingly, in July 2025 both Google DeepMind and OpenAI reported gold-medal-
level performance on the International Mathematical Olympiad (IMO): DeepMind’s Gem-
ini Deep Think was officially graded by the IMO as solving five of the six problems within
the 4.5-hour limit (35/42 points), while OpenAI announced an experimental model that
achieved the same score under independent grading.2 While top human contestants still
outscored these systems, this milestone significantly updates the state of play and motivates
a sharper inquiry:

Which hard mathematical problems can LLMs solve—and why?

Recent analyses of GSM-level tasks suggest that LLMs often succeed by performing
structured reasoning : constructing internal dependency graphs, retrieving relevant facts,

1See, for example, [Bro+20; Cho+22; Ope+24] for empirical evidence and [Bub+23] for a critical
discussion.

2DeepMind’s official announcement (with confirmation from the IMO president): DeepMind Blog, July
21, 2025; see also Nature news report, July 2025 and Reuters, July 21, 2025. For OpenAI’s result as
publicly reported and analyzed, see Simon Willison’s summary, July 19, 2025 and Business Insider, July
2025.

1

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://www.nature.com/articles/d41586-025-02343-x
https://www.reuters.com/world/asia-pacific/google-clinches-milestone-gold-global-math-competition-while-openai-also-claims-2025-07-21/
https://simonwillison.net/2025/Jul/19/openai-gold-medal-math-olympiad/
https://www.businessinsider.com/openai-gold-iom-math-competition-2025-7
https://www.businessinsider.com/openai-gold-iom-math-competition-2025-7


and executing back-tracking search over intermediate steps [Ye+24a; Ye+24b]. To under-
stand why IMO-level challenges remain elusive, consider the following illustrative warm-up
problem:

Problem. Let G = (V,E) be a tournament3 on n = |V | ≥ 1 vertices. Assume
that every vertex has at least one outgoing edge, i.e.

∀u ∈ V ∃ v ∈ V \ {u} : (u, v) ∈ E.

Prove that there exist three distinct vertices a, b, c ∈ V that form a directed
triangle:

(a, b), (b, c), (c, a) ∈ E.

Unlike grade-school arithmetic exercises, this combinatorial challenge does not yield
to the dependency-graph heuristics or simple back-tracking search that have proved so
effective on GSM-level tasks. Instead, a key structural insight is required.

Proof. Choose a vertex a ∈ V with maximum in-degree. Because every vertex
has at least one successor, there exists some b ∈ V \ {a} with (a, b) ∈ E. Let

P := {x ∈ V : (x, a) ∈ E } (the predecessors of a).

By maximality of a’s in-degree, we have P 6= ∅.

1. Case 1: ∃ c ∈ P such that (b, c) ∈ E. Then the edges (a, b), (b, c), (c, a)
form the desired directed triangle.

2. Case 2: ∀x ∈ P we have (x, b) ∈ E. In this case every predecessor of a also
points to b, so

deg−(b) ≥ deg−(a) + 1,

contradicting the choice of a as a vertex of maximum in-degree.

Both cases cannot be avoided, so a directed triangle must exist in G.

The preceding argument hinges on choosing the vertex a of maximum in-degree. A naive
brute-force search over all vertices—and, worse, over all candidate sub-structures—quickly
becomes intractable. What the human mathematician supplies almost instantly is a piece
of intuition: a partially formed mental model that singles out a promising construction and
filters away a vast space of irrelevant but logically admissible paths. Without that flash of
insight, an LLM typically produces a profusion of correct yet inconsequential intermediate
deductions, only to stall at a dead end.

Pushing this line of thought one step further, we ask:

Can large-language models learn to construct the
right intuition ?

3A tournament is a directed graph in which, for every pair of distinct vertices u, v ∈ V , exactly one of
(u, v) or (v, u) belongs to E.
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1.1 Contributions

To probe this question empirically, we introduce the PureIntersectionPoint dataset: a cor-
pus of eight million challenging Euclidean-geometry problems, each paired with a machine-
checkable proof. Using this benchmark, we look at how different training and prompting
choices affect an LLM’s ability to spot the key ideas that lead to a correct solution. Our
contributions are:

1. PureIntersectionPoint: a controlled reasoning testbed. We design a minimal
graph language with four core tactics and release 8M theorem-proof pairs without iso-
morphic duplicates.

2. Ordering as curriculum. We show that random index/theorem order weakens learn-
ing, whereas construction order dramatically boosts accuracy.

3. Active exploration format. A “goal-after-evidence” proof format (version 2) further
improves performance, letting models explore before committing to a subgoal.

4. Tracking intuition as it forms. By collapsing each first-line subgoal to a maximally
reduced form, we observe the model move from rarely proposing any meaningful in-
termediate goal to consistently selecting correct, non-trivial ones. This shift provides
a simple, intrinsic signal that the model is learning the structural features needed to
guide its own reasoning.

5. Generalisation beyond rote. Under a subgoal-based split, models still produce un-
seen subgoals with high probability and maintain strong accuracy, indicating abstraction
rather than memorisation.

6. Beyond brute-force search. The model solves a subset of theorems that a symbolic
searcher cannot, demonstrating reasoning strategies that transcend exhaustive search.

3
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Chapter 2
Preliminaries

To turn the idea of “building intuition” into something we can measure, we adopt a
lightweight graph language inspired by LEAN. A problem state is a labelled directed
graph G = (V , E):
• Each vertex v ∈ V stands for an object (e.g. an integer or a set).

• Each edge (u, v) ∈ E records a relation between two objects (e.g. “u ∈ v” or “gcd(u, v) =
1”).

• The object type and the edge relation type are stored as labels on the vertices and edges,
respectively.

2.1 Tactics as Graph Rewrites

Similar to LEAN, we prove the problem by tactics. A tactic is itself a small labelled graph
T = (VT , ET ) together with a list of rewrite actions (adding new vertices or edges). To
apply a tactic we

1. find a sub-graph G ′ ⊆ G that matches T ; and

2. perform the associated actions, producing an updated problem state G ′′.
The entire proof is a sequence of such rewrites. A problem is solved once the target

configuration (for example, a particular edge or sub-graph) appears in the current state.

2.2 Running Example

Recall the warm-up problem from Chapter 1:

Problem. Let G = (V,E) be a tournament1 on n = |V | ≥ 1 vertices. Assume
each vertex has at least one outgoing edge,

∀u ∈ V ∃ v ∈ V \ {u} : (u, v) ∈ E,
1A tournament is a directed graph where, for every pair of distinct vertices u, v ∈ V , exactly one of

(u, v) or (v, u) is in E.

5



and prove that there are three distinct vertices a, b, c ∈ V forming a directed
triangle:

(a, b), (b, c), (c, a) ∈ E.

We will translate the natural-language proof into a sequence of tactics.

Background graph and basic tactics

Background graph G. Since G is a graph with at least one vertex, we can start with
the following background graph G:

v V
∈

(2.1)

Tournament property. Because G is a tournament, every unordered pair {a, b} ⊆ V
is joined by exactly one directed edge. The corresponding tactics are

a b

V

∈

6=

∈
⇒

a b

V

∈

edge

∈
or

a b

V

∈

edge

∈

(2.2)

c

a b

V

edge

∈

∈

edge

∈

⇒

c

a b

V

edge

∈

6=

∈

edge

∈

(2.3)

where the edge label edge represents the relationship between vertex a and its successor b.

Out-degree ≥ 1. Each vertex has at least one outgoing edge.

a V
∈ ⇒

a V

b

edge

∈

∈
(2.4)
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Target configuration

We seek a directed triangle in G, which is equivalent to finding the following subgraph in
G:

a V

b c

edge

∈

∈

edge

∈ edge
(2.5)

Basic tactics in set theory

We also rely on general “ground-truth” tactics. For instance, for a map MapA,B : A→ B,
we have:

MapA,B

A B

a

dom img

∈

⇒

MapA,B

A B

a MapA,B(a)

dom img

map

∈ ∈

MapA,B

(2.6)

Proof in tactics

Now we can combine the tactics to prove the problem.
First we need to define the predecessor set of a vertex a in the tournament graph G.

For any a ∈ V let Pa := {x ∈ V : (x, a) ∈ E}2. The defining property of Pa can be
encoded as the tactic

a V

b Pa

6=

∈

∈ P
⇒

a V

b Pa

edge

∈

subset∈

/∈

P
or

a V

b Pa

edge

∈

subset∈

∈

P
(2.7)

Here the label P records the link between a and its predecessor set Pa.
Because V is finite and non-empty, there exists at least one vertex with maximal in-

degree; denote such a vertex by m(V )3. The maximality condition is captured by the tactic

2The existence of Pa required by (2.7) follows directly from the tournament tactic in (2.2). That tactic
produces a Boolean-valued verifier on V , and the truth set of this verifier is Pa. We suppress the underlying
set-theoretic details, but every step ultimately reduces to the basic tactics available in ZF set theory.

3A vertex of maximum in-degree exists since V is finite. A standard induction or well-ordering argument
yields m(V ). The routine details are omitted.

7



m(V ) V

a

m

∈ ⇒

Pm(V ) m(V ) V

InjPa,Pm(V )
Pa a

P m

img

dom P

∈ (2.8)

The object InjPa,Pm(V )
represents an injective map from Pa into Pm(V ), reflecting the fact

that m(V ) has in-degree at least as large as that of a.

It is a good practice to prove that Pm(V ) is non-empty. In fact, by applying tactic (2.4)
to the background graph (2.1), we obtained the updated graph:

n0 V

n1

edge

∈

∈
(2.9)

By the existence of m(V ) and applying tactic (2.8) to the subgraph n1 V
∈

,

we can futher update the graph to

Pm(V ) m(V ) V

InjPn1 ,Pm(V )
Pn1 n1

n0

P m

img

dom P

∈

∈

edge

(2.10)

Further applying the tactic (2.7) yields

Pm(V ) m(V ) V

InjPn1 ,Pm(V )
Pn1 n1

n0

P m

img

dom P

∈

∈

edge
∈

(2.11)
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Finally, because InjPn1 ,Pm(V )
is also a map, we can apply the tactic (2.6) to obtain

Pm(V ) m(V ) V

InjPn1 ,Pm(V )
Pn1 n1

InjPn1 ,Pm(V )
(n0) n0

P m

img

dom P

∈

InjPn1 ,Pm(V )

map

∈
∈

edge
∈

(2.12)

This shows that Pm(V ) is non-empty, as required.
All remaining steps follow exactly the sequence of deductions in the informal argument:

we apply each tactic in the same order, thereby transforming the background graph until
the triangle (2.5) appears. The full, step-by-step derivation is recorded in Appendix A.1.

2.3 What We Mean by “Intuition”

In our framework, a proof is a deterministic sequence of tactic applications, each obtained
by matching a pattern graph against the current state. As the state grows, the number
of possible matches explodes, and the order in which tactics are applied becomes decisive.
Humans cope with this combinatorial blow-up by relying on something we loosely call
intuition. At a minimum, such intuition draws on two complementary sources:

1. Prior experience. Familiarity with similar problems guides our attention toward
useful sub-structures. In the warm-up example, anyone who has met the notion of a
tournament without directed 3-cycles will instantly recall that the resulting graph must
be totally ordered, so the presence of a sink vertex contradicts the “out-degree ≥ 1”
premise.

2. Active exploration. When experience runs out, we try multiple avenues and monitor
“signals” that hint at progress. One may begin by

(a) analysing small values of |V |, or

(b) fixing an arbitrary edge a→ b and following its consequences.

Both lines of attack quickly reveal an ever-increasing in-degree sequence, and—if one
knows the method of infinite descent—a contradiction is at hand, leading naturally to
the proof sketched in Chapter 1.

In both settings above, an intuition is any sub-graph of the current state that guides
the next move. It need not be a fully fledged lemma; rather, it can be any structural pat-
tern whose appearance raises the likelihood of a successful proof by a non-trivial amount.
Throughout this thesis we therefore use intuition to denote any heuristic—learned or dis-
covered—that nudges an LLM toward experience-based shortcuts or otherwise promising

9



lines of attack. The next chapters refine this idea and show how it can be quantified on
the PureIntersectionPoint dataset.

10



Chapter 3
The PureIntersectionPoint Dataset

Following the evaluation protocol of [Ye+24a; Ye+24b], we design a corpus that isolates
an LLM’s ability to acquire and exploit intuition. Two principles drive the construction:

1. Minimal tactic set. The language is limited to four primitive tactics, ensuring that
success hinges on strategic planning rather than memorising a large rule book.

2. High combinatorial difficulty. Each instance is deliberately chaotic; brute-force
search and shallow pattern matching break down long before a solution emerges.

3.1 Basic concepts

Problem family. Every item in the PureIntersectionPoint dataset is a pure intersection-
point theorem. Starting from a small collection of free points or lines, we repeatedly

(a) connect two points to create a new line, or

(b) intersect two lines to create a new point.

The goal is always the same: prove that either three points are collinear or three lines are
concurrent.

A classic example is Pappus’s theorem:

Given two distinct lines `1 and `2 with points A,B,C ∈ `1 and D,E, F ∈ `2,
prove that the three intersection points X := AE ∩BD, Y := BF ∩CE, and
Z := CD ∩ AF are collinear.

The shortest proof found online multiplies three carefully chosen applications of Menelaus’s
theorem; crucially, which triangle and where to apply the theorem matter. Despite the tiny
tactic vocabulary, problems of this kind defeat naive enumeration and rote memorisation,
making the PureIntersectionPoint dataset a clean test bed for investigating how large lan-
guage models acquire geometric intuition.

11



Figure 3.1: Illustration of Pappus’s theorem: the points X := AE ∩BD, Y := BF ∩ CE,
and Z := CD ∩ AF lie on one line.

Proof technique.

All proofs in the PureIntersectionPoint dataset rely on a single numerical invariant, the
cross-ratio. Given four distinct, collinear points or four distinct, concurrent lines, their
cross-ratio is a real number that stays unchanged under projective transformations. In our
formal language we do not manipulate this number directly; instead, we treat a cross-ratio
as an equivalence class of ordered quadruples. To keep terminology clear we write

• cross-ratio tuple for the ordered quadruple (A,B,C,D) of points (or lines) on which the
invariant is taken, and

• cross-ratio value for the equivalence class of all tuples that have the same numerical
cross-ratio.

A full definition appears in Appendix A.2.1; here we state only the two properties that
power every tactic in PureIntersectionPoint:

1. Point-line duality. If (A,B,C,D) is a cross-ratio tuple of collinear points and (`1, `2, `3, `4)
is a tuple of concurrent lines with A ∈ `1, B ∈ `2, C ∈ `3, and D ∈ `4, then the two
tuples share the same cross-ratio value.

2. Uniqueness of the fourth element. Suppose (A,B,C,D) and (A,B,C,D′) have
identical cross-ratio values. Then the last elements must coincide: D = D′.

Illustration: Pappus’s theorem. Below is a terse cross-ratio proof of the classical
Pappus configuration; the detailed geometric set-up is shown in Figure 3.1. Using only

12



property 1, cross-ratios transform as follows:

cr(ZF,ZC,ZE,ZY ) = cr(ZF ∩ CE, C, E, Y )

= cr(FA, FC, FE, FY )

= cr(A, C, AC ∩DF, B)

= cr(DA,DC,DF,DB)

= cr(A, DC ∩ AE, E, X)

= cr(ZA,ZD,ZE,ZX).

(3.1)

Because ZF = ZA and ZC = ZD by collinearity, and ZE = ZE trivially, equality of the
two cross-ratios forces ZY = ZX by property 2. Hence the three points X, Y , and Z are
collinear, which completes the proof.

Vertices and edges.

For every PureIntersectionPoint instance we maintain a state graph G = (V , E) with

V = P ∪ L ∪ CP ∪ CL, (3.2)

where P is the set of points created so far, L is the set of lines, CP is the set of cross-ratio
tuples of points, and CL is the set of cross-ratio tuples of lines.

Edges are

Between points and lines. When a point A lies on a line `, we add the edge

A `coincide (3.3)

Between cross-ratio tuples and points/lines. When a cross-ratio tuple (A,B,C,D)
is formed, we add the edge

(A,B,C,D)

A B C D

cr1
cr2 cr3 cr4 (3.4)

Between cross-ratio tuples. When two cross-ratio tuples share the same value, we add
the edge

(A,B,C,D) (W,X, Y, Z)≡ (3.5)

13



Tactics.

Equality of cross-ratio values (cr-equal). The duality of the cross ratio is captured
by the tactic

(A,B,C,D)

A B C D (W,X, Y, Z)

W X Y Z

cr1 cr2 cr3 cr4

coincide
cr1

coincide
cr2

coincide
cr3

coincide
cr4

⇒

(A,B,C,D)

A B C D (W,X, Y, Z)

W X Y Z

cr1 cr2 cr3 cr4 ≡

coincide
cr1

coincide
cr2

coincide
cr3

coincide
cr4

(3.6)

Transitivity of equal cross-ratios (cr-equiv). If two tuples each equal a third one,
they equal each other:

(A,B,C,D)

(W,X, Y, Z) (P,Q,R, S)

≡ ≡ ⇒

(A,B,C,D)

(W,X, Y, Z) (P,Q,R, S)

≡

≡

≡

(3.7)

14



Merge by Cross-ratio (merge-by-cr). The uniqueness of the fourth element in a cross-
ratio tuple can be expressed as a tactic

D (A,B,C,D)

A B C

D′ (A,B,C,D′)

cr4

≡

cr1

cr1

cr2

cr2

cr3

cr3

cr4

⇒

(A,B,C,D)(= (A,B,C,D′))

A B C D(= D′)

cr1 cr2 cr3 cr4

(3.8)

Merge by Definition (merge-by-def). If two distinct lines `1 and `2 meet a point
twice, the points coincide:

A

`1 `2

B

coincide coincide

⇒ `1 A(= B) `2
coincide coincide (3.9)

Remark. Whenever we create a cross-ratio tuple (cf. (3.4)) or apply the merge-by-
definition tactic (3.9), we must first numerically verify that the points or lines involved
are distinct. Because these checks are performed outside the symbolic graph language, a
derivation that passes the graph-level rules may still be invalid. This deliberate imper-
fection makes PureIntersectionPoint harder: a model that merely “knows the tactics” can
still go wrong. To succeed, an LLM must develop enough intuition to avoid such pitfalls.

3.2 Dataset construction

Definition 1 (PureIntersectionPoint theorem statement). A PureIntersectionPoint theo-
rem statement is a finite ordered list of constructions together with a single goal. Each
construction is exactly one of:

1. Create a free object: introduce a new free point or a new free line.

15



2. Incidence choice: create a new free point on an existing line, or draw a new free line
through an existing point.

3. Derived object:

(a) intersect two distinct lines to create a new point; or

(b) connect two distinct points to create a new line (by point-line duality we also say the
points “intersect”).

The goal always has the form “point P lies on line L” or equivalently “line L passes through
point P” (i.e. P ∈ L).

Example (Pappus). Below is one admissible PureIntersectionPoint encoding of Pap-
pus’s theorem. Object names (shown here as p∗ for points and l∗ for lines) are arbitrary
strings; renaming does not change the theorem. By point-line duality we reuse the verb
“intersect” both for two lines meeting in a point and two points determining a line. The
only forbidden operation is “intersect a point with a line”—ruling this out ensures the
theorem graph (Definition 3) remains bipartite.

Sample PureIntersectionPoint Statement: Pappus

Create l0
Create l1
From l0 draw p2
From l0 draw p3
From l0 draw p4
From l1 draw p5
From l1 draw p6
From l1 draw p7
p2 and p6 intersect at l8
p3 and p7 intersect at l9
p4 and p5 intersect at l10
p3 and p5 intersect at l11
p4 and p6 intersect at l12
p2 and p7 intersect at l13
l8 and l11 intersect at p14
l9 and l12 intersect at p15
l10 and l13 intersect at p16
p14 and p16 intersect at l17
Goal: p15 is on l17

Definition 2 (Valid PureIntersectionPoint theorem (informal)). A PureIntersectionPoint
theorem statement is valid if, for almost all geometric realisations of its free points and
lines, the goal relation (point P lies on line L) holds after carrying out the stated construc-
tions.1

1See Definition 12 for the formal definition of “almost all”.
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Definition 3 (Theorem graph). A theorem graph is a connected undirected bipartite graph.
Given a pure intersection-point theorem, its theorem graph is G = (V,E), where V is the
set of all points and lines appearing in the statement and E is the set of point-line incidence
edges defined in (3.3).

The goal edge itself is not added unless the constructions already included it; in that
trivial case the theorem is considered proved and is excluded from this thesis.

The bipartition of G naturally labels vertices as “points” or “lines”2. Thus a theorem
graph records only coincidence relations, independent of the order or manner in which the
objects were created.

Definition 4 (Equivalent theorems). Let each pure intersection-point theorem T be given
by its theorem graph G = (V,E) together with a designated goal pair (u, v): this encodes
either “point u lies on line v” (if u is a point, v a line) or, by duality, “point v lies on line
u” (if v is a point, u a line). The goal edge itself is not in E. Two theorems

T1 = (G1 = (V1, E1), (u1, v1)) and T2 = (G2 = (V2, E2), (u2, v2))

are equivalent, written T1 ∼= T2, if there exists a bijection φ : V1 → V2 such that:

1. φ({u1, v1}) = {u2, v2} (the unordered goal pair is preserved; φ may swap the two ele-
ments), and

2. for every u, v ∈ V1,
(u, v) ∈ E1 ⇐⇒

(
φ(u), φ(v)

)
∈ E2.

Points need not map to points under φ; consequently, every theorem is equivalent to
its dual obtained by swapping points and lines.

Remark. Equivalence does not preserve validity in general (Appendix A.2.2). However, if
the theorem graph is non-degenerate (Definition 5), then either every statement with that
graph is valid or none is.

Definition 5 (Non-degenerate theorem graph). A theorem graph G = (V,E) is non-
degenerate if it admits at least one geometric realisation in which any two distinct vertices
in the same part correspond to distinct points (resp. distinct lines).

Throughout this thesis we consider only non-degenerate theorem graphs.

Definition 6 (Constructive theorem graph). A theorem graph is constructive if it can be
reduced to the empty graph by repeatedly deleting any vertex whose degree is < 3 together
with all of its incident edges.

An ordering (v1, v2, . . . , vn) of V is called a constructive order if deleting the vertices
in the reverse order vn, vn−1, . . . , v1 is a valid deletion sequence; that is, for each k ∈ [n]
the vertex vk has degree < 3 in the (sub)graph induced by {v1, . . . , vk}.

At the first glance, this definition seems to depend on the order in which vertices are
deleted. However, we can show that the notion of a constructive theorem graph is well
defined, and that it does not depend on the order in which vertices are deleted.

Theorem 1. The notion of a constructive theorem graph is well defined; that is, it does
not depend on the order in which vertices are deleted.

2Which side is taken as points is irrelevant up to duality.
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Proof of Theorem 1. Assume, for contradiction, that a constructive theorem graph G =
(V,E) admits two deletion sequences whose results differ. Let c1, . . . , cn delete G com-
pletely, and let d1, . . . , dn′ stop at a non-empty sub-graph G′ in which every vertex has
degree ≥ 3. Let i be the smallest index such that ci /∈ {d1, . . . , dn′}. Because c1, . . . , ci−1
have already been removed, ci has degree < 3 in G′, contradicting the definition of G′.

Theorem 2. (i) Every pure intersection-point theorem yields a constructive theorem graph.
(ii) ( Order-realisation) Let G = (V,E) be a constructive theorem graph and let σ =

(v1, v2, . . . , vn) be any constructive order of G. Then there exists a PureIntersectionPoint
theorem statement whose objects are introduced exactly in the order σ and whose theorem
graph is G (up to isomorphism preserving vertex types).

Proof of Theorem 2. (i) Given a valid PureIntersectionPoint statement list the introduced
objects in creation order v1, . . . , vn. Each object is formed using at most two earlier objects
(free: 0; incidence choice: 1; derived: 2). Hence, when deleting in reverse, vk has degree
< 3 in the then-current subgraph. Iterating deletes all vertices, so the resulting theorem
graph is constructive.

(ii) Fix a constructive order σ = (v1, . . . , vn) of a constructive graph G. We synthesize
a theorem statement whose k-th construction introduces vk.

Because G is bipartite we fix once and for all its partition into points and lines.
Inductively for k = 1 to n let Gk be the subgraph induced by {v1, . . . , vk}. Because σ

is constructive, vk has degree < 3 in Gk. Introduce vk according to this degree:

• Degree 0: Declare vk a new free object of its predetermined type (point or line).

• Degree 1: Its unique neighbour w is already introduced. If w is a line, create a point
on w; if w is a point, create a line through w.

• Degree 2: Its two neighbours are of the same type (bipartite). If vk is a point, introduce
it as the intersection of those two lines; if vk is a line, introduce it as the line through
those two points.

This realises G (up to renaming) because every edge incident to vk in Gk is created
exactly when vk is introduced; no extra edges are added. Thus the statement’s construction
order is precisely σ.

Therefore every constructive order of G is realisable as a valid PureIntersectionPoint
construction sequence, establishing (ii).

Corollary 1. Up to the equivalence in Definition 4, PureIntersectionPoint theorem state-
ments are in bijection with constructive theorem graphs together with their goal pairs.

Some constraints in G can be removed without affecting the theorem’s validity, yet the
resulting theorem is no longer equivalent to the original. To keep the dataset compact, we
retain only the maximally constrained form of each theorem.

Definition 7 (Theorem reduction). Let a PureIntersectionPoint theorem statement be
T =

(
G = (V,E), (u, v)

)
, where G is non-degenerate and (u, v) is the (unordered) goal

pair. Form the augmented graph Ĝ by adding the temporary goal edge between u and v.
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Repeatedly delete any vertex w of degree < 3 in the current graph together with its incident
edges until no such vertex remains.3 By the argument used in the proof of Theorem 2, the
resulting graph does not depend on the order of deletions. Denote the final graph by Ĝcore.
Remove the temporary goal edge (if still present) to obtain G′, and define the reduction of
T to be T ′ =

(
G′, (u, v)

)
.

Theorem 3. If a PureIntersectionPoint theorem statement T is valid, then its reduction
T ′ is also valid.

Proof. Let T =
(
G = (V,E), (u, v)

)
and T ′ =

(
G′ = (V ′, E ′), (u, v)

)
be as in the reduction

definition, with V ′ = V \ {vn′+1, . . . , vn} the vertices that survive the deletion process.
Write

σ = (v1, . . . , vn′) and (vn′+1, . . . , vn)

for the construction order of G′ and the list of deleted vertices, respectively.

Step 1: extending a realisation. Take an arbitrary realisation R′ of T ′. Re-insert
the deleted vertices in reverse deletion order vn, vn−1, . . . , vn′+1, choosing their geometric
positions as follows:

• Whenever vk had degree 0 at deletion, place it as a new free point (or line, according to
its type) in general position.

• If vk had degree 1, attach it generically to its unique neighbour (point on a given line or
line through a given point).

• If vk had degree 2, it is a point incident with two distinct lines or vice-versa.

Because every vk had degree < 3 at the moment of deletion, one of the three cases
always applies. The result is a realisation R of the full statement T that extends R′.
Step 2: invoking validity of T . Since T is valid, the goal relation P ∈ L (with the
correct interpretation of the unordered pair (u, v)) holds in almost all realisations (R) of
T . In particular, it holds in almost all realisations R′ as step 1 only adds new objects
without changing the existing ones4.

Step 3: conclusion. We have shown that almost all realisations of T ′ satisfies the goal.
Therefore T ′ is valid.

Base-theorem generation

A custom Python script performs a random search that starts with a small set of free
points and lines and iteratively

1. intersects two lines to create a new point, or

2. joins two points to create a new line.

3The goal vertices u and v may be deleted during this process. If either is removed, the reduced object
no longer represents a valid PureIntersectionPoint theorem with the original goal pair.

4If one of u or v were deleted in the reduction process, then Ĝ would be constructive, contradicting the
validity of T .
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The search halts when either

• the newly created point numerically lies on a line that does not share an edge with, or

• the newly created line numerically passes through a point that does not share an edge
with, or

• a preset step limit is reached.

After each halt we discard superfluous constructions, reduce the theorem graph, and
keep the resulting theorem. This yields approximately 10,000 distinct base theorems.

Theorem augmentation

To enlarge the corpus we apply three augmentation rules to every base theorem:

1. Add redundant coincidences. For example, if points A, B, and C seem unrelated,
we postulate A,B,C are collinear and check whether the theorem still holds5.

2. Swap condition and goal. If the original statement assumes A ∈ `, we instead assume
the original goal and set A /∈ ` as the new goal.

3. Merge two theorems. Given T1 and T2, we replace a hypothesis of T2 with the
conclusion of T1, forcing any proof of T2 to establish T1 first.

We filter out invalid augmented theorems, apply theorem reduction, and finally obtain
more than 8 million distinct pure intersection-point theorems.

Proof generation

To serve as training data, every theorem in the corpus must be accompanied by a machine-
checkable proof. Our strategy is to run an exhaustive—but carefully pruned—search on
each candidate theorem; theorems for which no proof is found within a time limit are
discarded.

Overall proof schema. Starting from the initial theorem graph, we repeatedly

1. apply merge-by-cr (3.8) to merge exactly two vertices, and

2. immediately apply merge-by-def (3.9) exhaustively, collapsing every point-point or
line-line pair that now coincides by definition.

After each merge cycle we check whether the goal edge is present; if so, the current
sequence of tactic applications constitutes a valid proof and the search terminates success-
fully.

Finding a merge-by-cr opportunity. The main bottleneck is locating a pair of cross-
ratio tuples to which merge-by-cr can be applied. In practice this requires first generating
a large supply of equivalent cross-ratios via

5Concretely, introduce a new vertex l and add the edges (A, l), (B, l), and (C, l). If the resulting
theorem graph, together with the original goal pair, is still valid, the augmented theorem is kept.
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• cr-equal (3.6), which equates two tuples when their corresponding points or lines coin-
cide, and

• cr-equiv (3.7), which propagates equality transitively.

Search routine. Our proof-search pipeline proceeds as follows:

1. Augment. Add auxiliary points and lines by repeatedly intersecting existing lines or
joining existing points.

2. Saturate. Apply cr-equal and cr-equiv exhaustively, enlarging the equality graph
of cross-ratios.

3. Select a merge. If at least one instance of merge-by-cr is now enabled, choose one6

and perform the merge; then execute the automatic merge-by-def-phase.

4. Check goal. If the goal incidence appears, record the entire tactic sequence as a proof
and stop; otherwise, return to Step 1. Abort if a global step or time limit is exceeded.

The dilemma of construction depth. Let V be the initial vertex set (level 0). Define
recursively

Vk :=
k−1⋃
i=0

Vi × Vk−1−i,

V ′ × V ′′ := { v′ ∧ v′′ | v′ ∈ V ′, v′′ ∈ V ′′, v′, v′′ have the same type and are distinct},
(3.10)

where v′ ∧ v′′ denotes the line through two points or the intersection of two lines. The
union

⋃
k≥0 Vk contains all constructible objects, but |Vk| grows exponentially in k.

Dilemma. Choosing a small depth k (e.g. 1 or 2) keeps the search space small but
may omit the constructions needed for some proofs. Choosing a large k (≥ 3) explodes
the search space and floods the routine with merges that lead into infinite “dead-end”
construction paths.

Harmonic cross-ratios to the rescue.

Definition 8 (Harmonic cross-ratio). A cross-ratio tuple cr = (A,B,C,D) is harmonic if
it is equivalent to a tuple obtained by swapping exactly two elements (e.g. (A,D,C,B)).

Theorem 4. Any two harmonic cross-ratio tuples are equivalent under a suitable permu-
tation.

(The proof is technical; see Appendix A.2.1.)

With this tool, we extend Step 2:

2. Saturate with harmonic cross-ratios. Apply cr-equal, cr-equiv, and the har-
monic rule from Theorem 4 exhaustively, greatly enlarging the pool of equivalent tuples.

Three mechanisms now certify that two cross-ratios are equivalent:

6Implemented via a heuristic width-bounded BFS to minimise the search space.
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1. Chain transitivity. A path of cr-equal links, closed by cr-equiv.

2. Cycle transitivity. If a tuple can be returned to itself by swapping exactly two of its
elements—and the same holds for a second tuple—then both tuples are harmonic, and
Theorem 4 gives their equality under the corresponding permutation.

3. Mixed transitivity. A chain leading to a permutation of the target tuple, followed by
harmonic equivalence, closes the loop.

Outcome. Applying this procedure to the > 8 million augmented theorems, we discarded
those without a proof within the budget. The survivors yield a corpus of roughly eight
million valid PureIntersectionPoint theorems, each paired with at least one machine-
checkable proof.

3.3 Dataset Encoding Schemes

Every theorem in the dataset is represented as a pair T = (G = (V,E), (u, v)), and every
proof is a sequence of tactics that grows a sub-graph of the working graph G until the goal
edge appears. Because both theorems and proofs are graphs or graph transformations,
there are many plausible tokenisations. For example, one could emit a token stream that
lists each tactic followed by the vertices to which it is applied. In practice, however, that
“flat” format makes it hard for a model to learn why a tactic is chosen—intuitive sub-goals
(such as “merge these two vertices”) are posponded to the future therefore invisible now.

To study how models acquire intuition, we experiment with the following configurations.

Vertex labelling. All points are labelled p∗ and all lines l∗, where ∗ ∈ {0, . . . , 499}.7
We consider two schemes:

• Random labelling. Every time a new vertex appears—whether in the statement or in
the proof—we randomly assign it an unused label.

• Ascending labelling. We first choose two random starting indices, one for points and
one for lines. Subsequent vertices of each type receive the next unused label in ascending
order, taken modulo 500.8

Problem order. A theorem statement can be serialized in either of two ways:

1. Random order. We randomly shuffle the edges of the theorem graph G and list them
as

(u1, v1), (u2, v2), . . . , (un, vn), goal: (u, v), (3.11)

where (ui, vi) is the i-th edge in the shuffled sequence.

7Our corpus never exceeds 500 points or 500 lines per theorem.
8Using a fixed start such as p0/l0 would cap the largest index ever seen during training; labels beyond

that cap would remain untrained, hindering generalisation to larger theorems. Randomising the start
avoids this issue.
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2. Construction order. We use the same format (3.11), but the edges now appear exactly
in the order in which they are produced during the proof.

Concretely, in construction order we add an edge to the statement when:

• a vertex v is introduced by an incidence choice; we list the single edge (u, v), where u is
the pre-existing point or line on/through which v is created;

• a vertex v is introduced as a derived object ; we list both edges (u1, v) and (u2, v), where
u1, u2 are the two objects used to create v.

Creations of free points or lines need not be included, because each such object even-
tually participates in a subsequent construction that records its first incidence.

A token stream written in construction order can be translated back into a constructive
theorem statement in a unique way, because the ordered, oriented edge list fully specifies
the topological order for construction.

Proof format. A naive way to serialize a proof is to list the tactics strictly in the order
they are applied, each written as tactic-name(subgraph). While concise, such a stream
is nearly unreadable: when you encounter a tactic you have no clue why it was invoked
or how its result will be used. In practice a proof is easier to follow when every tactic is
preceded by the intuition—a mini-goal—that motivates it.

In our setting the structure is naturally two-tiered:

• Outer tier: merge-by-cr. We first state which two vertices we intend to merge with
merge-by-cr, then supply the subgraph required by the rule.

• Inner tier: cross-ratio equality. To enable merge-by-cr we must show that two
cross-ratio tuples are equal. Section 3.2 gives three ways to prove such an equality. Here
we have two ordering options:

i) Version 1 (goal-first). State the conjectured equality of the two tuples, then present
a proof using any of the three methods.

ii) Version 2 (evidence-first). Provide a chain of equalities using the three methods,
and only afterwards declare the tuple equality as a consequence.

Unless stated otherwise, “format version 1” and “format version 2” refer to these two
choices for the inner hierarchy.

Example. The next block shows a single theorem and its proof serialized with the options
{index order: ascending, thm order: construction, proof order: version 1}.
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Sample PureIntersectionPoint Theorem and Proof

begin of statement
( p106 l413 ) ( p106 l414 ) ( l414 p107 ) ( l415 p107 ) ( p107 l416 ) ( p108 l416 )
( l415 p109 ) ( l413 p109 ) ( p106 l417 ) ( p108 l417 ) ( l414 p110 ) ( l417 p111 )
( l415 p111 ) ( p109 l418 ) ( p108 l418 ) ( p110 l419 ) ( p108 l420 ) ( p110 l420 )
( l419 p112 ) ( l418 p112 ) ( l413 p113 ) ( l420 p113 ) ( l419 p114 ) ( l416 p114 )
( p112 l421 ) ( p113 l421 ) ( l421 p115 ) ( l417 p115 ) ( p111 l422 ) ( p110 l422 )
( p115 l423 ) ( p114 l423 ) ( l422 p116 ) ( l423 p116 ) ( p116 l424 ) ( p113 l424 )
( p110 l425 ) ( p115 l425 ) ( l417 p117 ) ( l424 p117 ) ( l423 p118 ) ( l415 p118 )
( p117 l426 ) ( p118 l426 ) ( p111 l427 ) ( p112 l427 ) ( l427 p119 ) ( l425 p119 )
( p119 l428 ) ( p116 l428 ) ( l426 p120 ) ( l427 p120 ) ( l425 p121 ) ( l424 p121 )
( p120 l429 ) ( p121 l429 ) ( l426 p122 ) ( l428 p122 ) ( p122 l430 ) ( p121 l430 )
( l427 p123 ) ( l430 p123 ) ( l428 p124 ) ( l429 p124 ) ( p124 l431 ) ( p123 l431 )
( l431 p125 ) ( l426 p125 )
thm goal p125 l422

Answer:
merge by cr [ p122 [ l415 l424 ] p126 ] l432 l430
– p122 ( l426 l428 [ p113 p122 ] l433 l432 ) !!= p122 ( l426 l428 l433 l430 )
– these two crs are equal p122 ( l426 l428 l433 l432 ) ?= p122 ( l426 l428 l433 l430 )
— p122 ( l426 l428 l433 l432 ) = l424 ( p117 p116 p113 p126 )
— l424 ( p117 p116 p113 p126 ) = p111 ( l417 l422 [ p111 p113 ] l434 l415 )
— p111 ( l417 l422 l434 l415 ) = l420 ( p108 p110 p113 [ l415 l420 ] p127 )
— l420 ( p108 p110 p113 p127 ) = p109 ( l418 [ p110 p109 ] l435 l413 l415 )
— p109 ( l418 l435 l413 l415 ) = l414 ( [ l414 l418 ] p128 p110 p106 p107 )
— l414 ( p128 p110 p106 p107 ) = p108 ( l418 l420 l417 l416 )
— p108 ( l418 l420 l417 l416 ) = l419 ( p112 p110 [ l417 l419 ] p129 p114 )
— l419 ( p112 p110 p129 p114 ) = p115 ( l421 l425 l417 l423 )
— p115 ( l421 l425 l417 l423 ) = l424 ( p113 p121 p117 p116 )
— l424 ( p113 p121 p117 p116 ) = p122 ( l433 l430 l426 l428 )
— p122 ( l433 l430 l426 l428 ) = p122 ( l426 l428 l433 l430 )
merge by def p126 p121
– they share those two neighbours l424 l432
merge by cr [ l429 [ p119 [ l426 l422 ] p130 ] l436 ] p131 [ l429 [ p119 p125 ] l437 ] p132
– l429 ( p124 p126 p131 p120 ) !!= l429 ( p124 p126 p132 p120 )
– this cr is harmonic l429 ( p124 p126 p131 p120 )
— l429 ( p124 p126 p131 p120 ) = p119 ( l428 l425 l436 l427 )
— p119 ( l428 l425 l436 l427 ) = l422 ( p116 p110 p130 p111 )
— l422 ( p116 p110 p130 p111 ) = p117 ( l424 [ p110 p117 ] l438 l426 l417 )
— p117 ( l424 l438 l426 l417 ) = l425 ( p126 p110 [ l425 l426 ] p133 p115 )
— l425 ( p126 p110 p133 p115 ) = p118 ( l415 [ p118 p110 ] l439 l426 l423 )
— p118 ( l415 l439 l426 l423 ) = l422 ( p111 p110 p130 p116 )
– this cr is harmonic l429 ( p124 p126 p132 p120 )
— l429 ( p124 p126 p132 p120 ) = p119 ( l428 l425 l437 l427 )
— p119 ( l428 l425 l437 l427 ) = l432 ( p122 p126 [ l437 l432 ] p134 p123 )
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— l432 ( p122 p126 p134 p123 ) = p125 ( l426 [ p126 p125 ] l440 l437 l431 )
— p125 ( l426 l440 l437 l431 ) = l429 ( p120 p126 p132 p124 )
merge by def l436 l437
– they share those two neighbours p119 p131
merge by def p130 p125
– they share those two neighbours l426 l436
end of statement
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Chapter 4
Baseline Results under Default Pre-training

4.1 Experimental Setup

The 8-million-theorem PureIntersectionPoint corpus contains no isomorphic duplicates, so
a straightforward train-test split suffices. We sort the theorems by the number of vertices
in their statements and assign even-indexed items to the training set and odd-indexed
items to the test set, resulting in 4 M theorems for each split.

Models. We evaluate two GPT-2 backbones—small (12 layers, 12 heads, 768 hidden
units) and medium (20 layers, 16 heads, 1 024 hidden units)—each augmented with
Canon layers [All25].

Training. All models are trained from scratch for 200 k steps with mini-batches of 128
sequences, each 1 024 tokens long. We use the AdamW optimiser and grid-search the
learning rate in {2 × 10−3, 10−3, 5 × 10−4} and the weight decay in {0.0125, 0.025, 0.05};
the configuration that maximises test accuracy is reported.

Purpose. These baselines allow us to isolate the effect of alternative data formats and
to analyse how models acquire geometric-reasoning skills during pre-training.

4.2 Result 1: Random Index Order Is Hard to Learn

When the model is trained under the fully shuffled configuration {index order: random,
thm order: random, proof order: version 1}, its test accuracy stays below 1 % for both
the small and medium backbones. In other words, the model fails to learn the task at all.

Failure mode. Inspection shows that the decoder frequently assigns duplicate labels to
fresh vertices; the proof stream then violates the no-collision constraint and is rejected
immediately.
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Model Random theorem order Construction theorem order
GPT-2 small 17.2% 50.8%
GPT-2 medium 31.3% 70.3%

Table 4.1: Test accuracy on the PureIntersectionPoint dataset under different theorem
orders.

Why duplicates are inevitable. Large language models struggle to generate long se-
quences of non-repeating tokens—even when explicitly trained to do so:

• Sampling 100 unique labels from a pool of 500: in more than 99 % of trials the first
duplicate appears within the first six tokens.

• Sampling 100 unique ordered pairs (a, b) with a, b ∈ {1, . . . , 32}: again, a duplicate
pair is emitted in the first six outputs with probability above 99 %.

Take-away. The poor performance is therefore not due to insufficient data or model
capacity; it is an inherent consequence of presenting the underlying graph in a completely
random index order. Subsequent sections show that accuracy improves dramatically once
the model can rely on a deterministic—or at least partially ordered—labeling scheme.

Therefore, in the rest of this section, we focus on the ascending index order config-
uration, which is the default setting for the PureIntersectionPoint dataset.

4.3 Result 2: Ordered Theorems Are Easier to Learn

We compare two configurations:
• random theorem order: {index order: ascending, thm order: random, proof order:

version 1}
• construction theorem order: {index order: ascending, thm order: construction,
proof order: version 1}

Results. A key difference from Section 4.2 is that the model no longer assigns duplicate
labels to fresh vertices. This frees it to focus on learning the underlying reasoning instead
of merely satisfying the no-collision constraint.

Table 4.1 shows non-trivial accuracy in both cases, but the construction-order setting
is markedly easier: the small backbone reaches 50.8% accuracy, and the medium backbone
reaches 70.3%.

A thorough analysis of why construction order helps appears in Section 4.5.

4.4 Result 3: Active Exploration Improves Learning

Does presenting edges in construction order already push accuracy to its ceiling? Not
quite. We can further boost performance by changing the proof order.
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Model Format version 1 Format version 2
GPT-2 small 50.8% 61.2%
GPT-2 medium 70.3% 74.0%

Table 4.2: Test accuracy on the PureIntersectionPoint dataset under different proof orders.

Observed failure mode. Even with construction order, the model often posits a plau-
sible inner-tier subgoal but fails to prove it. For example, it may assert that “cross-
ratio1 = cross-ratio2”, then wander through an ever-longer chain of equalities before de-
volving into nonsense tokens.

Active exploration (format version 2). To address this, we adopt format version
2, which we call active exploration: while extending a chain of cross-ratio equali-
ties, the model actively chooses which mini-goal to aim for. It can change course mid-
chain—spotting a promising pattern and steering the next step so that the chain eventually
lands on a valid subgoal.

Setups compared. We therefore compare:

• Format version 1 (goal-first):
{index order: ascending, thm order: construction, proof order: version 1}

• Format version 2 (active exploration):
{index order: ascending, thm order: construction, proof order: version 2}

Results. Table 4.2 shows a clear gain from active exploration, especially for the small
backbone (50.8% → 61.2%). The medium backbone also improves (70.3% → 74.0%).

Here is an example generated by GPT-2 medium showing how the model explores the
proof space without losing sight of the goal :
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Active exploration example

begin of statement
( p422 l97 ) ( p422 l98 ) ( p423 l98 ) ( p423 l99 ) ( l99 p424 ) ( l97 p424 )
( l97 p425 ) ( l99 p426 ) ( p426 l100 ) ( p425 l100 ) ( p422 l101 ) ( p426 l101 )
( p423 l102 ) ( p425 l102 ) ( l102 p427 ) ( l101 p427 ) ( l98 p428 ) ( l100 p428 )
( p428 l103 ) ( p427 l103 ) ( p424 l104 ) ( p428 l104 ) ( l103 p429 ) ( l97 p429 )
( l104 p430 ) ( l101 p430 ) ( p429 l105 ) ( p430 l105 ) ( l105 p431 ) ( l99 p431 )
( p431 l106 ) ( p425 l106 ) ( l100 p432 ) ( l105 p432 ) ( l103 p433 ) ( l99 p433 )
( l106 p434 ) ( l98 p434 ) ( p432 l107 ) ( p427 l107 ) ( l107 p435 ) ( l106 p435 )
( p433 l108 ) ( p435 l108 ) ( l97 p436 ) ( l108 p436 ) ( p436 l109 ) ( p434 l109 )
thm goal p430 l109

Answer:
merge by cr [ [ p434 p430 ] l110 l97 ] p437 p436
– l97 ( p429 p425 p424 p437 ) !!= l97 ( p429 p425 p424 p436 )
— l97 ( p429 p425 p424 p437 ) = p430 ( l105 [ p425 p430 ] l111 l104 l110 )
— p430 ( l105 l111 l104 l110 ) = l106 ( p431 p425 [ l104 l106 ] p438 p434 )
— l106 ( p431 p425 p438 p434 ) = p428 ( [ p431 p428 ] l112 l100 l104 l98 )
— p428 ( l112 l100 l104 l98 ) = l99 ( p431 p426 p424 p423 )
— l99 ( p431 p426 p424 p423 ) = p430 ( l105 l101 l104 [ p423 p430 ] l113 )
— p430 ( l105 l101 l104 l113 ) = l98 ( [ l105 l98 ] p439 p422 p428 p423 )
— l98 ( p439 p422 p428 p423 ) = p429 ( l105 l97 l103 [ p429 p423 ] l114 )
— p429 ( l105 l97 l103 l114 ) = l102 ( [ l102 l105 ] p440 p425 p427 p423 )
— l102 ( p440 p425 p427 p423 ) = p431 ( l105 l106 [ p427 p431 ] l115 l99 )
— p431 ( l105 l106 l115 l99 ) = l107 ( p432 p435 p427 [ l107 l99 ] p441 )
— l107 ( p432 p435 p427 p441 ) = p433 ( [ p433 p432 ] l116 l108 l103 l99 )
— p433 ( l116 l108 l103 l99 ) = l105 ( p432 [ l105 l108 ] p442 p429 p431 )
— l105 ( p432 p442 p429 p431 ) = p435 ( l107 l108 [ p429 p435 ] l117 l106 )
— p435 ( l107 l108 l117 l106 ) = l97 ( [ l107 l97 ] p443 p436 p429 p425 )
— l97 ( p443 p436 p429 p425 ) = p427 ( l107 [ p427 p436 ] l118 l103 l102 )
— p427 ( l107 l118 l103 l102 ) = l108 ( p435 p436 p433 [ l102 l108 ] p444 )
— l108 ( p435 p436 p433 p444 ) = p425 ( l106 l97 [ p425 p433 ] l119 l102 )
— p425 ( l106 l97 l119 l102 ) = l99 ( p431 p424 p433 p423 )
— l99 ( p431 p424 p433 p423 ) = p429 ( l105 l97 l103 l114 )
— p429 ( l105 l97 l103 l114 ) = l98 ( p439 p422 p428 p423 )
— l98 ( p439 p422 p428 p423 ) = p430 ( l105 l101 l104 l113 )
— p430 ( l105 l101 l104 l113 ) = l99 ( p431 p426 p424 p423 )
— l99 ( p431 p426 p424 p423 ) = p425 ( l106 l100 l97 l102 )
— p425 ( l106 l100 l97 l102 ) = l105 ( p431 p432 p429 p440 )
— l105 ( p431 p432 p429 p440 ) = p427 ( l115 l107 l103 l102 )
— p427 ( l115 l107 l103 l102 ) = l106 ( p431 p435 [ l106 l103 ] p445 p425 )
— l106 ( p431 p435 p445 p425 ) = p433 ( l99 l108 l103 l119 )
— p433 ( l99 l108 l103 l119 ) = l97 ( p424 p436 p429 p425 )
— l97 ( p424 p436 p429 p425 ) = l97 ( p429 p425 p424 p436 )
– these two crs are equal l97 ( p429 p425 p424 p437 ) ?= l97 ( p429 p425 p424 p436 )
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merge by def l110 l109
– they share those two neighbours p434 p437
end of statement

Active exploration example

begin of statement
( l53 p339 ) ( l53 p340 ) ( l53 p341 ) ( l54 p342 ) ( l54 p343 ) ( l54 p344 )
( p339 l55 ) ( p343 l55 ) ( p340 l56 ) ( p344 l56 ) ( p341 l57 ) ( p342 l57 )
( p340 l58 ) ( p342 l58 ) ( p341 l59 ) ( p343 l59 ) ( p339 l60 ) ( p344 l60 )
( l55 p345 ) ( l58 p345 ) ( l56 p346 ) ( l59 p346 ) ( l57 p347 ) ( l60 p347 )
( p345 l61 ) ( p347 l61 )
thm goal p346 l61
Answer:
merge by cr [ p346 p345 ] l62 [ p346 p347 ] l63
– p346 ( [ p342 p346 ] l64 l62 l59 l56 ) !!= p346 ( l64 l63 l59 l56 )
– these two crs are equal p346 ( l64 l62 l59 l56 ) ?= p346 ( l64 l63 l59 l56 )
— p346 ( l64 l62 l59 l56 ) = l58 ( p342 p345 [ l59 l58 ] p348 p340 )
— l58 ( p342 p345 p348 p340 ) = p343 ( l54 l55 l59 [ p343 p340 ] l65 )
— p343 ( l54 l55 l59 l65 ) = l53 ( [ l54 l53 ] p349 p339 p341 p340 )
— l53 ( p349 p339 p341 p340 ) = p344 ( l54 l60 [ p344 p341 ] l66 l56 )
— p344 ( l54 l60 l66 l56 ) = l57 ( p342 p347 p341 [ l56 l57 ] p350 )
— l57 ( p342 p347 p341 p350 ) = p346 ( l64 l63 l59 l56 )
merge by def l61 l62
– they share those two neighbours p345 p347
end of statement

In this run the model builds a chain of length 29—substantially longer than any chain
seen during training. A closer look reveals that it revisits the cross-ratio p429 ( l105

l97 l103 l114 ) twice. Such deliberate re-use of a previously established cross-ratio
never appears in the training data.

These behaviours suggest that the model (1) learns from earlier failed attempts and
adjusts its strategy on the fly, and (2) abstracts the “chain/circle” pattern from train-
ing and applies it to unseen cases—evidence of genuine generalisation rather than rote
memorisation.

4.5 Result 4: Intuitions Emerge During Training

Returning to the configuration {index order: ascending, thm order: construction, proof
order: version 1}, one might ask: why can the model often predict which two vertices to
merge but fail to predict what is required by the merge-by-cr tactic? More concretely, if
the model reliably identifies a merge pair, it must “know” the corresponding subgraph of
the theorem graph. If it really knows that subgraph, it should have seen similar instances
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Partitions Evaluated segment 10k 50k 100k 150k 200k
Trivial First line 60.2% 39.8% 37.5% 35.9% 36.7%
Non-trivial First line 12.5% 41.4% 52.3% 57.8% 59.4%
Trivial Whole step 7.0% 13.2% 16.4% 19.5% 21.1%
Non-trivial Whole step 7.0% 31.25% 43.8% 56.3% 56.3%

Table 4.3: The proportion of trivial and non-trivial first-line theorems in the solutions
generated by the model at different training steps.

during training—including how to carry out merge-by-cr.
We consider two explanations:

• The model learns features that hint a subgoal is likely, but do not guarantee it. Thus,
even without capturing the entire subgraph, it can still guess a merge pair with non-
trivial probability. This vague intuition prevents it from always applying merge-by-cr

perfectly.

• The model is genuinely familiar with some subgraphs, but elsewhere relies on “tricks”
to guess the merge pair. When it uses a known subgraph it succeeds at merge-by-cr

with high probability; when it relies on the trick, it typically fails.

We cannot directly rule out the first explanation, but we do find evidence supporting
the second.

Definition 9 (First-line theorem). Given a theorem T together with its (not necessarily
correct) proof, the first line of the proof is always the goal of a merge-by-cr tactic in our
setting. Replace the original goal of T by this first-line (sub)goal to obtain a new theorem
T ′. We call T ′ a first-line theorem of the proof.

Definition 10 (First-line trivial theorem). A first-line theorem is trivial if it can be
derived by repeatedly applying merge-by-def once we additionally assume the original
goal holds.

“Trivial” here does not mean the theorem is easy to prove; it means that the subgoal
is easy to predict given the original goal. For language models, proposing trivial subgoals
can be seen as a “trick” for guessing which two vertices to merge.

Therefore, we can split the set of solutions generated by the model into three partitions:
(1) the one whose first-line theorem is not valid, (2) the one with trivial first-line theorem,
and (3) the one with non-trivial trivial first-line theorem.

Table 4.3 shows:

• Trivial subgoals are easy to pick up early. At 10k steps the model proposes trivial
first-line theorems in 60.2% of cases, indicating that this “shortcut” is quickly learned.

• Non-trivial subgoals are learned gradually. Their share rises from 12.5% at 10k to
59.4% at 200k steps.

• Non-trivial subgoals are executed more reliably. At 200k, the success rate of
completing the entire first step is 56.3%/59.4% ≈ 94.8% for non-trivial subgoals versus
21.1%/36.7% ≈ 57.5% for trivial ones, suggesting the model’s predictions are more
faithful when it relies on genuine structure rather than a trivial trick.
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Partitions Evaluated segment 10k 50k 100k 150k 200k
Trivial First line 74.2% 63.3% 60.9% 53.9% 54.7%
Non-trivial First line 3.1% 7.0% 18.8% 24.2% 32.0%
Trivial Whole step 4.7% 7.0% 14.0% 17.2% 17.2%
Non-trivial Whole step 0.8% 2.3% 7.8% 14.8% 21.0%

Table 4.4: The proportion of trivial and non-trivial first-line theorems in the solutions
generated by the model at different training steps (random theorem order setting).

This pattern also helps explain the weak performance in the random theorem order
setting. Table 4.4 reports the same breakdown: We see that the model rarely proposes
non-trivial subgoals here: only 32.0% at 200k steps, versus 59.4% under construction order.
A plausible explanation is that subgraph isomorphism is NP-hard in general, but geometric
theorems expressed in construction order expose structural cues (e.g., incremental incidence
patterns) that make the matching problem far easier for the model to learn.

Take-away. The model learns to propose subgoals progressively : it first picks easy (triv-
ial) ones, then shifts toward harder, structure-driven (non-trivial) ones. This supports
the second explanation above: early on, the model leans on cheap tricks; later, it actu-
ally recognises and exploits meaningful subgraphs. Once a non-trivial subgoal is chosen,
the follow-up tactics succeed almost always, showing that the “right intuition” largely
determines success.

What this implies.
• Intuition emerges during training. The rise of non-trivial first-line theorems is a direct

signal that useful heuristics are being formed.

• Order matters. Presenting edges in construction order acts like a curriculum: it lowers
the search burden for the matching subgraph and lets intuition form earlier.

• Measureable signal. The fraction of non-trivial first-line theorems (and their completion
rate) is a simple, task-intrinsic proxy for “how much intuition” the model has learned.

These observations motivate the next chapter, where we will intervene on which sub-
graphs the model masters, test whether it can develop unseen skills, and explore how to
boost performance on the PureIntersectionPoint dataset.
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Chapter 5
How LM Master Intuition-A Deeper Analysis

Last chapter we observed three key phenomena: (1) ordering the input (indices and theorem
edges) dramatically eases learning; (2) allowing active exploration (format version 2) further
boosts accuracy; and (3) the fraction of non-trivial first-line subgoals rises steadily during
training, suggesting that “intuition” is something the model acquires, not something it has
at initialization. In this chapter we ask: What intuitions does the model exactly
learn, and how?

To answer this, we need to introduce some new notations.

5.1 Maximally-Reduced First-Line Theorem

A raw first-line theorem T (Definition 9) produced by the model can be quite messy:

• It may “reconstruct” an object that already exists. For example, if l1 ∩ l2 = p1 and
l1 ∩ l3 = p2, the model might connect p1 and p2 to form a “new” line that is in fact
identical to l2, yielding a degenerate situation (Definition 5).

• It may introduce an object that is geometrically identical to an existing one in a way that
is trivial given the original theorem goal. For example, suppose the original goal is p1 ∈ l1
and, in the original theorem, l1 was defined as the line through p2 and p3. A frequent
first-line subgoal is to “prove” that the line through p1 and p3 (call it l2) coincides with
l1. Once p1 ∈ l1 is assumed (or once merge-by-def applies), this coincidence follows
immediately and is therefore trivial. Such patterns can generate arbitrarily many trivial
first-line theorems at negligible cost.

Counting all such variants separately would let the model inflate its “diversity” of
subgoals almost for free—making “intuition” cheap. We therefore collapse each raw first-
line theorem to a canonical core.

Definition 11 (Compactly reduced theorem). Let a first-line theorem be given as an
ordered statement with construction order σ = (v1, . . . , vm), where v1, . . . , vn come from
the original theorem statement and vn+1, . . . , vm are introduced by the model.

Process the sequence once, in order i = 1 to m:
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• If vi is syntactically identical to an earlier vertex v′i ∈ {v1, . . . , vi−1}, ignore vi and
replace every future occurrence of vi by v′i.

• If vi is geometrically identical to an earlier vertex v′i, stop and set the new goal to “vi
coincides with v′i”.

The statement obtained at termination is the compactly reduced version of the first-line
theorem.

Because the original theorem is non-degenerate, the outcome of this reduction does not
depend on the internal order of constructions that belonged to the original statement; only
the model’s additions affect the result.

For a first-line theorem T , we can compactly reduce it to a compactly reduced first-line
theorem T ′, which is a non-degenerate theorem without any extra coincidence.

Because T ′ is non-degenerate, we can further reduce T ′ by the theorem reduction tech-
nique (Definition 7) to obtain a further reduced theorem T ′′. According to Theorem 3, T ′′

valid if T ′ is.

Can we reduce T ′′ further? The answer is yes.

Algorithm 1 Maximally reduced theorem

1: Input: A non-degenerate, valid theorem T = (G = (V,E), (u, v)).
2: Output: A maxiamlly reduced theorem T .
3: while True do
4: reduced ← False
5: for e ∈ E do
6: G′ ← (V,E \ {e})
7: reduced theorem T̂ ← reduce theorem (G′, (u, v))
8: if T̂ is valid then
9: T ← T̂

10: reduced ← True
11: break
12: end if
13: end for
14: if not reduced then
15: break
16: end if
17: end while
18: return T

Different from theorem reduction in Definition 7, the maximally reduce theorem algo-
rithm may result in different maximally reduced theorems. Such “ambiguise theorem” is
about 5% among all theorems in PureIntersectionPoint. To be rigorous, we consider the
union of all possible maximally reduced theorems as the maximally reduced theorems of
T .
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Model Random index split Subgoal-based split
GPT-2 small 50.8% 49.2%
GPT-2 medium 70.3% 50.8%

Table 5.1: Test accuracy on PureIntersectionPoint under the ordinary (index) split versus
the subgoal-based split described above.

5.2 Result 5: Model never learn by rote

To probe whether the model’s “intuition” is simply rote recall, we performed a targeted
split based on the maximally reduced first-line theorems (Algorithm 1).

Dataset construction. We extracted every maximally reduced first-line theorem in the
full PureIntersectionPoint corpus—about 800 000 in total—and ranked them by frequency.
Even-ranked items were labelled training, odd-ranked items testing. A theorem then falls
into one of three buckets:

• Training set: all of its standard solution’s first-line theorems are in the training half.

• Testing set: all belong to the testing half.

• Mixed set: it contains both training and testing items.

Protocol. We pre-trained models solely on the training set and evaluated on the testing
set. If success depended on memorising specific subgoals, accuracy should collapse on this
split.

Results. Although accuracy drops on the subgoal split (Table 5.1), the models still
achieve respectable performance—e.g. 50.8 % for the medium backbone—despite never
seeing those subgoals during training.

Even more striking: among solutions whose first line is correct and non-trivial,
• on the training split, > 96 % of generated subgoals belong to the training half;

• on the testing split, > 62 % belong to the unseen testing half.

Thus the model produces unfamiliar subgoals with high probability—a strong sign it has
learned abstract structural cues rather than memorising concrete instances.

Take-away. The model’s intuition generalises: it recognises and re-creates patterns it
never encountered in training, indicating genuine reasoning rather than rote recall.

5.3 Result 6: The Model Solves Theorems the Search

Machine Cannot

The previous section showed that the model’s intuition is not mere rote recall. Can it also
solve problems that our theorem-search machine cannot? To test this, we collected 16 hard
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PureIntersectionPoint theorems that the search machine fails to prove (Section 3.2). For
each theorem we gave the model 16 chances: in each trial we randomly fixed a constructive
order and asked it to produce a proof.1

Astonishingly, the model solved 4 out of 16 theorems—a 25% success rate—despite (i)
the search machine failing on all of them and (ii) the model never seeing these theorems
during training.

Example. Below is one such theorem (and its proof) that the model solves but the search
machine does not:

Sample PureIntersectionPoint Theorem and Proof

begin of statement
( l384 p457 ) ( l384 p458 ) ( p459 l385 ) ( l385 p460 ) ( p458 l386 ) ( l384 p461 )
( l385 p461 ) ( p459 l387 ) ( p458 l387 ) ( p462 l388 ) ( p460 l389 ) ( p457 l389 )
( p462 l390 ) ( p461 l390 ) ( p460 l391 ) ( p462 l391 ) ( l391 p463 ) ( l387 p463 )
( p457 l392 ) ( p463 l392 ) ( l390 p464 ) ( l387 p464 ) ( l389 p465 ) ( l386 p465 )
( p459 l393 ) ( p465 l393 ) ( l388 p466 ) ( l386 p466 ) ( l390 p467 ) ( l392 p467 )
( p466 l394 ) ( p464 l394 ) ( l388 p468 ) ( l389 p468 ) ( p468 l395 ) ( p467 l395 )
( l393 p469 ) ( l394 p469 )
thm goal l395 p469

Answer:
merge by cr [ l395 l394 ] p470 p469
– l394 ( p464 p466 p470 [ l389 l394 ] p471 ) !!= l394 ( p464 p466 p469 p471 )
– these two crs are equal l394 ( p464 p466 p470 p471 ) ?= l394 ( p464 p466 p469 p471 )
— l394 ( p464 p466 p470 p471 ) = p468 ( [ p464 p468 ] l396 l388 l395 l389 )
— p468 ( l396 l388 l395 l389 ) = l390 ( p464 p462 p467 [ l389 l390 ] p472 )
— l390 ( p464 p462 p467 p472 ) = p457 ( [ p464 p457 ] l397 [ p462 p457 ] l398 l392 l389 )
— p457 ( l397 l398 l392 l389 ) = l391 ( [ l391 l397 ] p473 p462 p463 p460 )
— l391 ( p473 p462 p463 p460 ) = p464 ( l397 l390 l387 [ p460 p464 ] l399 )
— p464 ( l397 l390 l387 l399 ) = l385 ( [ l397 l385 ] p474 p461 p459 p460 )
— l385 ( p474 p461 p459 p460 ) = p457 ( l397 l384 [ p459 p457 ] l400 l389 )
— p457 ( l397 l384 l400 l389 ) = l387 ( p464 p458 p459 [ l387 l389 ] p475 )
— l387 ( p464 p458 p459 p475 ) = p465 ( [ p464 p465 ] l401 l386 l393 l389 )
— p465 ( l401 l386 l393 l389 ) = l394 ( p464 p466 p469 p471 )
end of statement

Why the machine fails but the model succeeds. The search machine faces the
dilemma from Section 3.2: restricting auxiliary constructions to depth ≤ 2 misses solutions,
whereas allowing depth ≥ 3 explodes the search space and floods it with merges that lead
to infinite dead-end branches. The language model, by contrast, actively explores and
prunes on the fly, steering itself toward a productive chain of equalities and a successful
merge-by-cr.

1The statement order does not affect the search machine.
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Chapter 6
Conclusions and Future Directions

This thesis investigated how large language models acquire intuition—simple yet powerful
heuristics that guide long-horizon reasoning—within a strictly defined geometric proof
domain. The main contributions are:

1. PureIntersectionPoint dataset. An 8-million-theorem corpus with a minimal tactic
set, machine-checkable proofs, and flexible ordering schemes.

2. Ordering matters. Construction order acts as a curriculum, lifting accuracy from
near-zero (random order) to over 70 %.

3. Active exploration. A proof format that lets the model “think about” subgoals
delivers an additional double-digit improvement.

4. Measuring intuition. The notion of maximally reduced first-line theorems provides a
simple, intrinsic proxy for how much structure the model has internalised.

5. Generalisation beyond rote. Even when test subgoals never occur in training, the
model attains competitive accuracy and solves theorems that defeat a brute-force search
engine.

Limitations
• Domain specificity. All experiments are confined to intersection-point geometry; it is

unclear how readily the findings transfer to richer theorem spaces or other reasoning
tasks.

• Model scale. Only GPT-2 small/medium backbones were tested. Larger models might
exhibit qualitatively different behaviour.

• Search baseline. Our symbolic prover uses simple width-bounded search; stronger engines
could close the gap highlighted in Result 6.

Future directions

1. Self improving RL. Fine tune the model with reinforcement learning from generated
proofs, aiming for higher accuracy and harder theorems.
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2. Pattern probing via LoRA. Pick classical patterns—e.g. Pappus, Desargues—and
apply low rank adaptation [Hu+22] to test whether the pretrained model has already
internalised these patterns.

3. Cross domain transfer. Build analogous corpora for number theory, algebra, and
combinatorics to see whether the same intuition formation signals emerge, and whether
skills learned in PureIntersectionPoint transfer.

4. Incremental tactic sets. Develop methods for injecting new tactics efficiently— e.g.
via curriculum design or contrastive fine tuning—without catastrophic forgetting of
earlier skills.

Closing Remarks The experiments show that with the right curriculum and represen-
tation, even small-sized LLMs develop non-trivial geometric intuition and can outperform
brute-force search. These insights suggest a path toward hybrid systems where symbolic
structure and neural flexibility reinforce one another—pushing automated reasoning closer
to human-level ingenuity.
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Appendix A
Appendix

A.1 Proof of the Warm-Up Problem

Let’s turn back to the proof of the warm-up problem. We can now apply tactics (2.4) and

(2.7) to the subgraph m(V ) V
∈

, which yields

Pm(V ) m(V )

InjPa,Pm(V )
V

Pa a

P

m

edge

img

dom

P

∈

(A.1)

Next, we synthesize a custom tactic, starting from the following subgraph:

Pm(V ) m(V )

InjPa,Pm(V )
b V

Pa a

P

m

edge

img

dom

∈

P

∈

(A.2)
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By tactic 2.7, this derives the following subgraph:
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(A.3)

Applying tactic 2.3, we obtain:
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(A.4)

By tactic 2.2, this splits into the two cases:
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or
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44



In subgraph (A.5), we already find a subgraph isomorphic to the goal graph (2.5), so only
case (A.6) remains.

Again applying tactic 2.7, we derive:

Pm(V ) m(V )

InjPa,Pm(V )
b V

Pa a

P

m

edge

img

dom

∈

∈

edge

edge

∈

P

∈

(A.7)

In summary, we have established the following tactic:

Pm(V ) m(V )

InjPa,Pm(V )
b V

Pa a

P

m

edge

img

dom

∈

P

∈

⇒

Pm(V ) m(V )

InjPa,Pm(V )
b V

Pa a

P

m

edge

img

dom

∈

∈

P

∈

(A.8)

which can be summarized as the following status graph via the basic set-theoretic tactic:

Pm(V ) m(V )

InjPa,Pm(V )
V

Pa a

P

⊆

m

edge

img

dom

P

∈

(A.9)
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Applying the set-theoretic tactic once more, we obtain the status graph:

Pm(V ) m(V )

V

Pa a

P

=

m

edge

P

∈

(A.10)

However, by tactic 2.7, we can further derive the following status graph:

Pm(V ) m(V )

V

Pa a

P

=

m

edge∈

P

∈

(A.11)

and then

Pm(V ) m(V )

V

Pa a

P

=

m

edge∈

∈

P

∈

(A.12)

Again, by tactic 2.7, we have the following status graph:

Pm(V ) m(V )

V

Pa a

P

=

m

edge∈

∈

edge

P

∈

(A.13)
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By tactic 2.3, this yields the status graph:

Pm(V ) m(V )

V

Pa a

P

=

m

edge∈

∈

6=

P

∈

(A.14)

which is a contradiction, since a vertex cannot be unequal to itself. Therefore, every valid
branch must contain the goal graph (2.5) as a subgraph, and the proof is complete.

A.2 Introduction to PureIntersectionPoint Dataset

A.2.1 Introduction to the Cross-Ratio

The real projective plane and point–line duality

The real projective plane RP2 is the space of lines through the origin in R3. A point
v ∈ RP2 is represented by any nonzero vector v ∈ R3 up to nonzero scaling; we write
v = [v]. A line ` ⊂ RP2 is represented by a two-dimensional linear subspace (a plane
through the origin) in R3; equivalently, by a nonzero covector λ ∈ (R3)∗ up to scale, with
` = {[x] : λ(x) = 0}.

Fix once and for all a Euclidean inner product 〈·, ·〉 on R3 and use it to identify (R3)∗ ∼=
R3. Under this identification we may represent lines also by nonzero vectors ` ∈ R3 up to
scale, and the incidence pairing

〈v, `〉 := 〈v, `〉
is well defined up to a common nonzero scalar: 〈v, `〉 = 0 iff the point v lies on the line `.

For a,b, c ∈ R3, we will use the scalar triple product

[a,b, c] := det(a,b, c) = 〈a, b× c〉.

It is multilinear, alternating, and scales homogeneously with each argument.

Joins and meets. If v = [v] and w = [w] are two distinct points, their join (the unique
line through them) is represented by the vector

`vw = v ×w.

Dually, if ` = [`] and m = [m] are two distinct lines, their meet (the unique intersection
point) is represented by

p`m = `×m.

With our fixed identification, these are just the usual cross products in R3.

47



Cross-ratio on collinear points and concurrent lines

Let v1, v2, v3, v4 be four distinct collinear points in RP2, represented by nonzero vectors
vi ∈ R3. Define their cross-ratio by

(v1, v2; v3, v4) :=

〈
v1 × v2 , v3 × v4

〉〈
v2 × v3 , v4 × v1

〉 . (A.15)

The numerator and denominator are homogeneous of the same degree in each vi, so the
ratio is independent of the particular representatives chosen in R3 and depends only on
the projective points vi.

Dually, if `1, `2, `3, `4 are four distinct concurrent lines (all passing through a common
point) represented by nonzero vectors `i ∈ R3, define

(`1, `2; `3, `4) :=

〈
`1 × `2 , `3 × `4

〉〈
`2 × `3 , `4 × `1

〉 . (A.16)

Again the ratio is representation-invariant.

Proposition 1 (An equivalent bracket formula). If v1, v2, v3, v4 are collinear and p ∈ R3

represents any point p /∈ v1v2, then

(v1, v2; v3, v4) =
[v1,v2,p] [v3,v4,p]

[v2,v3,p] [v4,v1,p]
. (A.17)

Similarly, if `1, `2, `3, `4 are concurrent and q ∈ R3 represents any line `1 ∩ `2 /∈ q, then

(`1, `2; `3, `4) =
[`1, `2,q] [`3, `4,q]

[`2, `3,q] [`4, `1,q]
. (A.18)

Proof of Proposition 1. Let L be the common line of vi, and pick a nonzero normal n to
the plane representing L so that vi×vj = tij n for scalars tij. For any p not on L we have

[vi,vj,p] = 〈vi, vj × p〉 = 〈p, vi × vj〉 = tij 〈p,n〉.

Hence 〈
vi × vj, vk × v`

〉
= tijtk` 〈n,n〉 =

[vi,vj,p] [vk,v`,p]

〈p,n〉2
〈n,n〉.

The common factor cancels in the ratio (A.15), giving (A.17).
For concurrent lines, (A.18) follows by the same argument.

Two basic facts

We now establish the two statements requested in the introduction.

Proposition 2 (Point–line dual invariance of cross-ratio). Let v1, v2, v3, v4 be four distinct
collinear points and `1, `2, `3, `4 four distinct concurrent lines such that 〈vi, `i〉 = 0 for
i = 1, 2, 3, 4 (i.e. vi ∈ `i). Then

(v1, v2; v3, v4) = (`1, `2; `3, `4).
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Proof. Let p be their common concurrency point and choose a representative p ∈ R3. By
incidence and concurrency, each `i is exactly the line through vi and p, hence `i = λi(vi×p)
for some nonzero scalars λi. By Prop 1 we have

(v1, v2; v3, v4) =
[v1,v2,p] [v3,v4,p]

[v2,v3,p] [v4,v1,p]
.

Using the fact that (a× p)× (b× p) = [a,b,p] p, we compute

〈`i × `j, `k × ``〉 = λiλjλkλ` [vi,vj,p] [vk,v`,p] 〈p,p〉,

so all λ’s and 〈p,p〉 cancel in the ratio (A.16), yielding the same bracket expression as
above. Hence the two cross-ratios are equal.

Proposition 3 (Uniqueness of the fourth point). Let v1, v2, v3, v4, v
′
4 be five collinear points

in RP2 with v1, v2, v3 distinct. If

(v1, v2; v3, v4) = (v1, v2; v3, v
′
4),

then v4 = v′4.

Proof. Let L ⊂ RP2 be the projective line containing v1, v2, v3. Choose nonzero represen-
tatives v1,v2,v3 ∈ R3 that span the 2-dimensional subspace U ⊂ R3 projecting to L. For
any nonzero v ∈ U representing v = [v] ∈ L, set

N(v) :=
〈
v1 × v2 , v3 × v

〉
, D(v) :=

〈
v2 × v3 , v × v1

〉
.

Define

f : L→ RP1, f([v]) := [N(v) : D(v) ]. (A.19)

Step 1: f is well-defined and projective-linear. First, N and D are linear in v.
Indeed, using the standard identity

(a× b) · (c× v) = (a · c)(b · v)− (a · v)(b · c) =
〈
(a · c) b− (b · c) a, v

〉
, (A.20)

we get

N(v) =
〈
(v1 ·v3) v2 − (v2 ·v3) v1, v

〉
, D(v) =

〈
(v3 ·v1) v2 − (v2 ·v1) v3, v

〉
,

hence both are linear functionals on U . Consequently, for any λ 6= 0, N(λv) = λN(v) and
D(λv) = λD(v), so the homogeneous pair [N(v) : D(v)] depends only on [v] ∈ L, not on
the choice of representative.

Next, f does not depend on the particular homogeneous representatives of v1, v2, v3:
if we replace (v1,v2,v3) by (αv1, βv2, γv3) with α, β, γ 6= 0, then N and D both get
multiplied by the common nonzero factor αβγ (by bilinearity of × and 〈·, ·〉), hence [N : D]
is unchanged.
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Finally, the linear map

T : U −→ R2, v 7−→
(
N(v), D(v)

)
has rank 2. Indeed,

T (v1) =
(
N(v1), D(v1)

)
=
(
〈v1 × v2, v3 × v1〉, 0

)
,

and the first component is nonzero because v1,v2,v3 are distinct and collinear, so v1× v2

and v3 × v1 are nonzero parallel vectors in U⊥. Similarly,

T (v3) =
(
0, 〈v2 × v3, v3 × v1〉

)
with the second component nonzero for the same reason. Thus T (v1) and T (v3) are linearly
independent in R2, so rankT = 2. In particular, T (v) 6= (0, 0) for every nonzero v ∈ U .

Since T is invertible, it induces a projective-linear isomorphism

P(T ) : P(U)
∼=−−→ P(R2) ∼= RP1,

and (A.19) is exactly this map. Hence f is bijective (in particular, injective).

Step 2: Relating f to the cross-ratio. By definition of the cross-ratio used in this
section,

(v1, v2; v3, v) =
N(v)

D(v)

whenever D(v) 6= 0. If D(v) = 0 (which happens precisely at v = v1), we interpret
(v1, v2; v3, v) =∞, which corresponds to f(v) = [1 : 0]. Thus, the statement

(v1, v2; v3, v4) = (v1, v2; v3, v
′
4)

is equivalent to
[N(v4) : D(v4) ] = [N(v′4) : D(v′4) ],

i.e., f(v4) = f(v′4) in RP1 (covering both the finite and the ∞ case uniformly).

Step 3: Conclusion. Since f is injective, f(v4) = f(v′4) implies v4 = v′4, as desired.

Summary

We defined the cross-ratio on RP2 using homogeneous coordinates and the fixed inner-
product identification between points and lines. We proved:

(i) Under the natural incidence correspondence, the cross-ratio of four collinear points
equals the cross-ratio of the four concurrent lines through a fixed point (Prop. 2).

(ii) Given three fixed distinct collinear points, the cross-ratio determines the fourth point
uniquely (Prop. 3).

Both results are standard manifestations of the projective invariance and the duality be-
tween points and lines in RP2.
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A.2.2 Validity of The PureIntersectionPoint Theorem

The PureIntersectionPoint theorem

Recall from Definition 1 that a PureIntersectionPoint theorem is specified by a finite se-
quence of elementary constructions, each producing either a point or a line in RP2:

1. Free object: introduce a new free point or a new free line.

2. Incidence choice: choose a point on a previously constructed line, or choose a line
through a previously constructed point.

3. Derived object:

(a) intersect two distinct lines to create a new point; or

(b) join two distinct points to create a new line (by point–line duality, we may also say
the points “intersect”).

Parametric viewpoint. A convenient way to formalize a PureIntersectionPoint state-
ment is to regard it as a parametrized construction.
• A free object is specified by a parameter in the projective plane:

“free point/line” ⇐⇒ RP2 → RP2, u 7→ u,

i.e., by the identity map on RP2.

• An incidence choice is specified by a parameter on a projective line, which is canonically
isomorphic to RP1:

“point on a given line” ⇐⇒ RP1 → RP2,

and similarly for “line through a given point”.1

Thus, if a statement uses n2 free choices in RP2 and n1 incidence choices in RP1, its
parameter space is the product

P = (RP2)n2 × (RP1)n1 .

Derived objects via cross products. We work in homogeneous coordinates: represent
points and lines by nonzero vectors in R3 modulo scaling, using a fixed identification of
the dual so that incidence is captured by the Euclidean pairing 〈·, ·〉. For nonzero vectors
a,b ∈ R3:

join/meet = a× b.

Concretely, if v = [v] and w = [w] are distinct points, then the line vw is [v × w]; if
` = [`] and m = [m] are distinct lines, then `∩m = [`×m]. The cross product is bilinear
and alternating in the chosen representatives, hence each derived construction is given by

1Fix any two distinct points on the line (or two distinct lines through the point) to obtain homogeneous
coordinates [s : t] ∈ RP1. In any affine chart this is a linear—hence polynomial—parameterization.
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homogeneous polynomial expressions in the parameters of previously constructed objects
(polynomial on any affine chart, homogeneous polynomial in projective coordinates).

To make every construction step a total map (defined for all parameter values), we
adjoin a cemetery element for degeneracies. Set

RP 2
:= RP2 t {NaN},

where NaN is a formal symbol corresponding to the zero vector [0 : 0 : 0] (not a valid
projective point/line). Extend the cross product by

u× u = NaN, u× NaN = NaN = NaN× u, ∀u ∈ RP 2
.

Thus, coincident arguments (e.g., “intersecting” a line with itself or “joining” a point
to itself) produce NaN and propagate forward, while for nondegenerate inputs the usual
projective cross product is recovered.

The global construction map. List the m objects produced by the statement in con-
struction order. By composing the elementary maps step by step (free choices, incidence
choices, and cross products), we obtain a well-defined total map

F : P −→ (RP 2
)m,

whose j-th component records the j-th constructed point or line (with value NaN on de-
generate parameter tuples). In homogeneous coordinates the components of F are given
by homogeneous polynomial expressions in the parameters; in any affine chart they are
polynomial maps. Consequently, a PureIntersectionPoint theorem may be viewed as a
polynomially parametrized projective construction with a canonical totalization at degen-
erate loci.

Validity of the PureIntersectionPoint theorem

Since RP2 and RP1 carry their standard Hausdorff, second-countable topologies, the pa-
rameter space P = (RP2)n2 × (RP1)n1 (cf. §A.2.2) is endowed with the product topology.

Definition 12 (PureIntersectionPoint theorem validity). A PureIntersectionPoint theorem
is valid if there exists a dense open set U ⊂ P such that for every u ∈ U the m-tuple F (u)

has no NaN components and the two designated goal objects u?, v? ∈ RP 2
constructed by F

are incident, i.e. 〈u?, v?〉 = 0.

We show that, for a fixed non-degenerate, constructive theorem graph, validity does
not depend on the chosen constructive realization. The proof explicitly avoids appeal to
the Fundamental Theorem of Projective Geometry.

Theorem 5. If a theorem graph (Definition 3) is non-degenerate (Definition 5) and con-
structive (Definition 6), then validity is invariant across constructive realizations: if one
constructive realization is valid, then every constructive realization is valid.

Proof. Let o1, o2 be two constructive realizations of the same non-degenerate theorem

graph. Write Pi = (RP2)n
(i)
2 × (RP1)n

(i)
1 for their parameter spaces, and Fi : Pi → (RP 2

)m

for the corresponding total construction maps (§A.2.2). Assume o1 is valid.
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The realization space. Let A ⊂ (RP 2
)m be the open locus where all m objects are

genuine (projective) points/lines and pairwise distinct within their type (no NaN, no coin-
cidence/parallelism). Let S ⊂ A be the set of m-tuples that satisfy all primitive relations
of the theorem graph: each “incidence choice” object lies on its parent line (or passes
through its parent point), and each “derived” object equals the appropriate cross product
of its parents in homogeneous coordinates. In affine charts these are polynomial equation-
s/inequalities; hence S is a (semi-)algebraic subset of A.

Set
Snd := S (non-degenerate realization space).

By Definition 5, Snd 6= ∅.

Step 1: Non-emptiness and surjectivity onto Snd. For each realization oi and for
each s ∈ Snd, there exists ui ∈ Pi with Fi(ui) = s. Indeed, fix s and build ui along
the construction order of oi: free objects get their parameters equal to the corresponding
entries of s; for an incidence choice (point on a known line, or line through a known
point), read off its homogeneous RP1 coordinate from s (uniquely well-defined since s is
non-degenerate); derived objects introduce no parameters. Thus the assignment produces
ui with Fi(ui) = s. Consequently the non-degenerate parameter locus

Pnd
i := F−1i

(
Snd
)

is nonempty for each i, and Fi

(
Pnd

i

)
= Snd.

Moreover, degeneracy conditions (“NaN”, coincidences, parallels) are given by polyno-
mial equalities in the parameters (determinants or minors vanishing); hence Pnd

i is open
and dense in Pi.

Step 2: Local diffeomorphism (open mapping). Fix u ∈ Pnd
i and write s = Fi(u) ∈

Snd. Work in affine charts for RP2 and RP1 that contain the relevant objects. In those
charts Fi is polynomial. Order the parameters according to the construction sequence and
order the outputs likewise. The Jacobian of Fi at u has a block lower-triangular structure
whose diagonal blocks are:

• for each free object: a 2× 2 identity block (the created object equals its parameter);
• for each incidence choice: a 2 × 1 block given by a nonzero linear map R → R2 (the

local homogeneous coordinate on the carrier line/pencil);
• for each derived object: no new parameter column.

Non-degeneracy ensures these diagonal blocks are full rank and occur at distinct output
positions. Therefore rankD(Fi)(u) = k := 2V − E (the degree of freedom of the graph;
cf. §A.2.2), and by the inverse function theorem there exist neighborhoods Vu ⊂ Pnd

i and
Ws ⊂ Snd such that

Fi

∣∣
Vu

: Vu
∼=−→ Ws

is a diffeomorphism. In particular, Fi is an open map at every non-degenerate point, and
the family {Ws : s ∈ Snd} forms an open cover of Snd by coordinate charts coming from
every realization oi.
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Step 3: From one valid realization to an open goal locus in Snd. Let U1 ⊂ P1 be
a dense open set given by the validity of o1 (Definition 12). Intersect with the open dense
non-degenerate locus to get U ′1 := U1∩Pnd

1 , which is open and dense in P1. Fix any u ∈ U ′1
and let s := F1(u) ∈ Snd. By Step 2 there is a chart Vu

∼=→ Ws with u ∈ Vu. Since U ′1 is
open, U ′1 ∩ Vu is a nonempty open subset of Vu, and its image F1(U

′
1 ∩ Vu) is a nonempty

open subset of Ws.

Define the goal-incidence function G : Snd → R by G(x) := 〈u?(x), v?(x)〉, where
u?(x), v?(x) are the two designated goal objects read off from the tuple x. In affine charts
G is a polynomial (hence real-analytic) function of x. By validity of o1, G vanishes on
F1(U

′
1), and in particular on the open set F1(U

′
1 ∩ Vu) ⊂ Ws. Since zeros of a nontrivial

real-analytic function have empty interior, it follows that

G ≡ 0 on Ws.

Because the charts Ws with s ∈ Snd cover Snd (Step 2), we conclude

G ≡ 0 on the entire Snd. (A.21)

Step 4: Transporting validity to any realization. For realization o2, set

U2 := Pnd
2 = F−12 (Snd).

As noted in Step 1, U2 is open and dense in P2; moreover F2(U2) = Snd. Combining this
with (A.21) gives that for every u2 ∈ U2, the tuple F2(u2) has no NaN, is non-degenerate,
and satisfies the goal incidence G

(
F2(u2)

)
= 0. Thus o2 is valid.

This proves that validity is invariant across constructive realizations.

Failure of validity invariance without non-degeneracy

The hypothesis of Theorem 5 is necessary: the following pair of PureIntersectionPoint
statements share the same theorem graph, yet only the first is valid while the second is
not.

The key point is that, given a point p0, if we draw two distinct lines l1, l2 through it,
then their intersection p3 = l1 ∩ l2 is necessarily p0 (the only degenerate case is l1 = l2).
By contrast, if we change the construction order—first choose p3 freely, then draw l1 and
l2 as the lines through p0 and p3—the construction remains legal, but there is no longer
any constraint forcing p3 = p0.
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Counterexample — Realization 1 (valid)

Create p52
Create p58
From p52 draw l264
Create p55
Create p54
p58 and p55 intersect at l260
l260 and l264 intersect at p56
p55 and p54 intersect at l258
p52 and p55 intersect at l259
p54 and p56 intersect at l257
Create l265
p52 and p54 intersect at l256
From p58 draw l261
l265 and l256 intersect at p51
l261 and l259 intersect at p57
p57 and p51 intersect at l253
l264 and l265 intersect at p63
l253 and l258 intersect at p50
l261 and l257 intersect at p62
l265 and l260 intersect at p64
p50 and p58 intersect at l254
p63 and p62 intersect at l263
l257 and l254 intersect at p53
l254 and l263 intersect at p61
p51 and p53 intersect at l255
l255 and l261 intersect at p60
p60 and p61 intersect at l262
l264 and l261 intersect at p65
p65 and p64 intersect at l267
l264 and l262 intersect at p66
Goal: l267 is on p66
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Counterexample — Realization 2 (invalid)

Create p54
From p54 draw l256
Create p57
From p57 draw l259
From l256 draw p51
From l259 draw p55
Create p56
p54 and p55 intersect at l258
l259 and l256 intersect at p52
p55 and p56 intersect at l260
p56 and p54 intersect at l257
From l257 draw p53
p51 and p57 intersect at l253
l253 and l258 intersect at p50
p53 and p50 intersect at l254
l254 and l260 intersect at p58
p52 and p56 intersect at l264
p53 and p51 intersect at l255
From l264 draw p66
p57 and p58 intersect at l261
l255 and l261 intersect at p60
p60 and p66 intersect at l262
l254 and l262 intersect at p61
l257 and l261 intersect at p62
p61 and p62 intersect at l263
l263 and l264 intersect at p63
p51 and p63 intersect at l265
l265 and l260 intersect at p64
l261 and l264 intersect at p65
p64 and p65 intersect at l267
Goal: l267 is on p66

A.2.3 Equivalence between Harmonic Cross-Ratios

In this section, we use Propositions 2 and 3 to show that any two harmonic cross-ratios
are equivalent.

We start with the following lemma.

Lemma 6. Suppose p0, p1, p2, p3 are four distinct collinear points and p0, p4, p5, p6 are
four distinct collinear points. Assume they lie on lines l0 and l1, respectively. If the cross-
ratio (p0, p1, p2, p3) is equivalent to (p0, p3, p2, p1) and the cross-ratio (p0, p4, p5, p6) is
equivalent to (p0, p6, p5, p4), then (p0, p1, p2, p3) is equivalent to (p0, p4, p5, p6).

The proof is provided in our tokenized format.

56



Equivalence Proof

Answer:
merge by cr p2 [ l0 [ [ [ p1 p4 ] l2 [ p3 p6 ] l3 ] p7 [ l1 [ p2 [ [ p1 p6 ] l4 [ p3 p4 ] l5 ] p8
] l6 ] p9 ] l7 ] p10
– l0 ( p0 p1 p2 p3 ) !!= l0 ( p0 p1 p10 p3 )
– these two crs are equal l0 ( p0 p1 p2 p3 ) ?= l0 ( p0 p1 p10 p3 )
— l0 ( p0 p1 p2 p3 ) = l0 ( p0 p3 p2 p1 )
— l0 ( p0 p3 p2 p1 ) = p8 ( [ p0 p8 ] l8 l5 l6 l4 )
— p8 ( l8 l5 l6 l4) = l1 ( p0 p4 p9 p6 )
— l1 ( p0 p4 p9 p6 ) = p7 ( [ p0 p7 ] l9 l2 l7 l3 )
— p7 ( l9 l2 l7 l3 ) = l0 ( p0 p1 p10 p3 )
merge by def l6 l7
– they share those two neighbours p2 p9
merge by cr p5 [ l1 [ p7 [ l0 [ p5 p8 ] l10 ] p11 ] l11 ] p12
– l1 ( p0 p4 p5 p6 ) !!= l1 ( p0 p4 p12 p6 )
– these two crs are equal l1 ( p0 p4 p5 p6 ) ?= l1 ( p0 p4 p12 p6 )
— l1 ( p0 p4 p5 p6 ) = l1 ( p0 p6 p5 p4 )
— l1 ( p0 p6 p5 p4 ) = p8 ( l8 l4 l10 l5 )
— p8 ( l8 l4 l10 l5 ) = l0 ( p0 p1 p11 p3 )
— l0 ( p0 p1 p11 p3 ) = p7 ( l9 l2 l11 l3 )
— p7 ( l9 l2 l11 l3 ) = l1 ( p0 p4 p12 p6 )
merge by def l10 l11
– they share those two neighbours p5 p11
merge by def l6 l10
– they share those two neighbours p7 p8

# Finally we can prove the equivalence
– l0 ( p0 p1 p2 p3 ) !!= l1 ( p0 p4 p5 p6 )
– these two crs are equal l0 ( p0 p1 p2 p3 ) ?= l1 ( p0 p4 p5 p6 )
— l0 ( p0 p1 p2 p3 ) = p7 ( l9 l2 l6 l3 )
— p7 ( l9 l2 l6 l3 ) = l1 ( p0 p4 p5 p6 )

With this lemma, one can prove the equivalence of any two harmonic cross-ratios by
introducing a third cross-ratio that shares one object with each of the two cross-ratios,
and then applying the lemma twice; the proof follows.
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