
Machine Learning for Our
Multi-agentic World

Tom Yan

December 2025
CMU-ML-25-121

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Zachary Lipton, Carnegie Mellon University (Chair)

Ariel Procaccia, Harvard University (Co-Chair)
Andrej Risteski, Carnegie Mellon University

Kun Zhang, Carnegie Mellon University
Avrim Blum, Toyota Technological Institute at Chicago

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Tom Yan

This research was sponsored by National Science Foundation awards DGE1745016, DGE2140739, IIS1714140 and
CCF1733556, United States Army award W911NF1320045 and grants from Highmark and PricewaterhouseCoopers.

Keywords: Multi-agent Learning, Game Theory, Reinforcement Learning Theory, Computational
Economics, Strategic Learning, AI Safety

To my family

iv

Abstract

Our world is multi-agentic, and increasingly our use of machine learning is
mirroring this. Over the past decade, machine learning models have improved by
leaps and bounds. As models grow in capability, they become more widely adopted
and used to solve more complex problems. Both such trends result in increasingly
numerous and sophisticated multi-agent interactions.

This thesis studies several fundamental challenges when designing machine
learning models to handle and harness multi-agent interactions, developing new
guarantees, algorithms and frameworks to this end.

The first part of this thesis focuses on advancing machine learning from applica-
tion in static, single-player settings to agentic, two-player games. How can we adapt
machine learning models to account for the presence of other agents affected by their
output? Towards this goal, we study machine learning in three important classes of
games: strategic data collection, prediction and auditing. All three types of games are
motivated by the use of machine learning in consequential, societal applications such
as training data collection, automated loan approval and industry AI regulation.

Beyond accounting for multi-agent considerations, we may wish to leverage
multiple agents to solve complex problems. The second part of this thesis focuses
on machine learning for and of multi-agent systems. How can we use learning to
allow multiple agents to be better together? Towards this aim, in the decentralized
multi-agent setting, we study how learning can facilitate multi-agent coordination,
examining agent attribution and payment design as two possible coordination mecha-
nisms. In the centralized multi-agent setting, we investigate how learning can realize
the advantage of multiple agents, exploring diversity and specialization as two natural
avenues for unlocking their utility.

Altogether, this thesis seeks to consolidate our understanding of several funda-
mental problems in multi-agent learning, a topic that I believe will become steadily
more relevant in the years to come.

v

vi

Acknowledgments

I had a great time in grad school working on the research I was excited about, and
a huge part of this was the people who I was fortunate to be around and learn from! I
thank each and every one of them. Below is a chronological account of people who I
was lucky enough to interact with during this journey.

Starting out, I was fortunate to have been mentored by Ariel. True to his email
handle, he is a “pro” researcher and I was lucky to be able to learn from one of the
best researchers in EC. Besides being very sharp and meticulous, Ariel is also very
hard-working. He is patient (which I am sure I thoroughly tested). And importantly, I
think he finds great joy in the work he does. I think he has achieved something very
rare, which is to have built and now lead a very impactful community, demonstrating
time and time again the wonderful use and great impact of theory. I really admire him
for this and find it very inspiring! All in all, it was a privilege for a rookie like me to
learn from a pro like him. I am grateful to have had this experience, and hope he is
doing really well at Harvard.

Following Ariel, I was also fortunate to have been mentored by Zack. I remember
Zack as a very gritty researcher. He is very resourceful, and just seems to have some
kind of je ne sais quoi to get things done, one way or another. Like Ariel, he also
seems to have boundless energy. I distinctly remember that he would tell me to “go
up strong” and be more decisive in the things I do and say. I appreciate that he always
kept it real with me in terms of constructive criticism, and that he has provided timely
advice to me, all of which turned out to be very useful. For example, he told me that
there are multiple facets to being a researcher. It is not only about publishing papers,
but also fostering a community and mentoring junior students. All of this was very
important to know and helped complement what I learned from Ariel. So I thank
him for sharing this with me! Finally, and above all else, I thank Zack for giving me
the freedom to do the research I want to do and thus allowing me to produce this
(somewhat) coherent body of work. This is not something to be taken for granted!
And I am grateful to him for this, and hope he is doing really well at his startup.

Next, I would like to thank the rest of my thesis committee: Avrim, Kun and
Andrej. In particular, I thank Avrim for his sharp and incisive questions. I thought
it was impressive he got to the heart of the matter with just one question (about my
problem formulation) during my proposal. Thinking more about his question gave
me a clearer sense for how to better position my paper.

I had fun collaborations during my PhD, and I only wish that I had collaborated
more! I am grateful for the collaborations and conversations with the following
people: Ariel Procaccia, Ritesh Noothigattu, Christian Kroer, Alex Peysakhovich,
Ellen Vitercik, Shantanu Gupta, Rachel Childers, Zack Lipton, Neil Xu and Chicheng
Zhang. Having great collaborators is not something to be taken for granted, and I am
grateful to each and every one of them for working with me!

In particular, I would like to thank Neil, who was the first junior student I worked

vii

with. This was an important step for me to take. I learned that besides the research
itself, it is important to keep everyone’s spirits up and maintain faith that the project
will work out (which I am glad it did). I am thankful for his trust in me to drive the
project, for working with me even during his internships and for teaching me a lot
about anytime approaches. I hope he is doing very well in NYC.

I would be remiss if I did not give a big shout out to my long-time collaborator,
Chicheng. Above all else, I feel a high level of comfort when working with Chicheng,
and this really allowed creative research ideas to flow. And even though he thinks
of me as a peer, I really think of Chicheng as a mentor. He has taught me a lot
about theory and I am thankful that I was able to learn from one of the best theory
researchers in the business (especially in active learning and IRL). In sum, I have
always had a fun time collaborating and hope that he and I will collaborate again!
Also, I hope he is doing very well in Arizona with his family.

Navigating through logistics during one’s PhD is no joke, and I am grateful for
the MLD staff who make it so easy. Thanks to Laura and Suzanne for helping me out.
And of course, special thanks to the wonderful Diane, who truly helped to keep MLD
together. I hope she has a great retirement and lots of fun trips!

On a more personal note, I am tremendously grateful for the magical compan-
ionship of my friends (and ex-girlfriends), from my undergrad, the wonderful MLD
community and the broader CMU SCS community! It is always uplifting and fun
to chat about all kinds of topics ranging from AI to current affairs to the NFL. I am
grateful to have all of you around, brimming with curiosity to discuss every random
thing under the sun or just to talk some smack and laugh over memes (no shortage of
these nowadays...). Miss you all dearly!

Lastly, and above all else, I want to deeply thank my family. They have always
shown me endless support through the toughest of times. I am grateful to them
for letting me be myself and for affording me all these opportunities through their
sacrifices. Truly, I am able to go further only because you have come so very far.
Love you Mom and Dad!

viii

Contents

1 Overview 3
1.1 Adapting ML for Multi-Agent settings . 3
1.2 ML for and of Multi-agent Systems . 4

1.2.1 Coordination in Decentralized Multi-agent Systems 4
1.2.2 Training in Centralized Multi-agent Systems 4

I Adapting Machine Learning for Multi-Agent settings 7

2 Strategic Data Collection 9
2.1 Introduction . 9

2.1.1 Active learning with a simple twist . 10
2.2 The Minimax Learning Game . 11

2.2.1 Representation of the learning game state 11
2.2.2 The minimax learning game . 13

2.3 E-VS Bisection Algorithm Analysis . 14
2.3.1 Accessing the E-VS . 14
2.3.2 Comparing with the VS bisection algorithm 15

2.4 Extensions to Other Learning Settings . 16
2.4.1 Approximate Identifiability . 16
2.4.2 Noised labeling . 17
2.4.3 Arbitrary labeling . 17

2.5 Multi-Task learning from a Strategic Labeler . 18
2.5.1 Upper Bound . 18
2.5.2 Lower Bound . 19

2.6 Related Works . 19
2.7 Proofs for Section 2.1 . 20

2.7.1 Technical Results . 20
2.8 Proofs for Section 2.2 . 21

2.8.1 The Minimax Learning Game . 21
2.8.2 Preliminaries . 21
2.8.3 Technical Results . 23

2.9 Proofs for Section 2.3 . 27
2.9.1 Example-dependent Cost Setting: Definitions 27

ix

2.9.2 Main Results . 32
2.10 Proofs for Subsections 2.3.1 and 2.3.2 . 37

2.10.1 Comparing VS versus E-VS . 37
2.10.2 E-VS Membership Check . 38
2.10.3 Contrasting E-VS bisection Algorithm with VS bisection 39
2.10.4 Comparison with EPI-CAL . 44

2.11 Additional Material on Section 2.4 . 46
2.11.1 Relaxed Learning Goal . 46
2.11.2 Noised labeling . 49
2.11.3 Myopic labeling . 49

2.12 Proofs for Section 2.5 . 50
2.12.1 Lemmas used . 50
2.12.2 Upper Bound . 53
2.12.3 Lower Bound . 57
2.12.4 Multi-task Active Learning without Abstention 61

2.13 Miscellaneous . 68
2.13.1 Data-based Game Representation . 68

2.14 Discussions on Additional Related Works and Formulation 70
2.14.1 Additional Related Works . 70

2.15 Experiments . 71

3 Strategic Prediction 75
3.1 Introduction . 75
3.2 Related Works . 76
3.3 Problem Formulation . 77
3.4 Homogeneous Linear Models . 79
3.5 General Models . 81
3.6 Experiments . 82

3.6.1 Linear Models . 82
3.6.2 Neural Network Models . 84
3.6.3 Fair accessibility to explanations . 86

3.7 Proofs . 86
3.7.1 Deferred Proofs from Section 3.4 . 86
3.7.2 Deferred Proofs from Section 3.5 . 99

3.8 Additional Experiments . 104
3.8.1 Fair accessibility to explanations . 104
3.8.2 MMD Explanations . 104
3.8.3 Effects of Larger Models . 105
3.8.4 Monotonicity Tables . 105

3.9 Additional Modeling Discussion . 105
3.10 Additional Related Works . 109

x

4 Causal Strategic Modeling 111
4.1 Introduction . 111

4.1.1 The general problem of Reward Design 112
4.2 Preliminaries . 113

4.2.1 World Model . 113
4.2.2 Reward Model . 113
4.2.3 Agent Optimization of Reward Model f 114

4.3 Reward Hacking . 114
4.3.1 Analytical Examples of Reward Model Optimization in Linear Graphs . . 115

4.4 Related Works . 115
4.5 Characterization of Reward Hacking in Learned Reward Models 116

4.5.1 Causal Invariant Predictor . 116
4.5.2 A Closer Look at Proxy Rewards . 119

4.6 Leveraging Reward Hacking for Causal Discovery 120
4.7 Discussion . 122
4.8 All Deferred Proofs . 123
4.9 Additional Related Works . 128

5 Finite-Sample Causal Discovery 129
5.1 Introduction . 129
5.2 Problem Setup . 131
5.3 Anytime-valid testing via e-processes . 132

5.3.1 A general approach for constructing anytime-valid partially oriented graphs132
5.3.2 Construction of per-edge base e-processes 133
5.3.3 Growth rate of e-processes . 134
5.3.4 Robust Testing . 135

5.4 Combining edge e-processes according to propagation rules 135
5.4.1 Enumeration of implications of an edge orientation 136
5.4.2 Conversion of expanded hypothesis into an e-process 137
5.4.3 Additional power in combined test statistics 138

5.5 Experiments on fixed-time versus anytime methods 138
5.6 Optimizing test statistic for causal verification 140

5.6.1 Construction of test statistic for causal verification 140
5.6.2 Reduction to multi-constraint bandit optimization 141

5.7 More Related Works . 142
5.8 Deferred Proofs from Section 5.3 . 143

5.8.1 Deferred Proofs from Section 5.3.1 . 144
5.8.2 Deferred Results from Section 5.3.2 . 144
5.8.3 Deferred Results from Section 5.3.3 . 146

5.9 Deferred Proofs from Section 5.4 . 148
5.9.1 Deferred Results from Section 5.4.1 . 148
5.9.2 Deferred Proofs from Section 5.4.2 . 150
5.9.3 Time complexity analysis of algorithms 154

5.10 Experiments . 155

xi

5.10.1 Fixed-time test statistic construction . 155
5.10.2 Comparing fixed-time vs anytime test statistics 156
5.10.3 Understanding the effectiveness of combining test statistics 157
5.10.4 Evaluating Derived Upper Bounds on Stopping Time useful for Robust

Testing . 169
5.11 Multi-constraint Bandit Optimization . 171

5.11.1 Problem Statement . 171
5.11.2 Reducing causal verification to multi-constraint bandits 171
5.11.3 Algorithm Guarantee: . 172
5.11.4 Algorithm Analysis under Known Arm Means 174

5.12 Worked through Examples . 177

6 Strategic Auditing 179
6.1 Introduction . 179

6.1.1 Additional Notations . 182
6.2 Related Work . 183
6.3 Manipulation-Proof Algorithms . 183

6.3.1 Optimal Deterministic Algorithm . 183
6.3.2 Efficient Randomized Algorithm with Competitive Guarantees 186

6.4 Statistical Limits of Estimation . 189
6.4.1 Separation between Estimation with and without Manipulation-proofness 189
6.4.2 Randomized Algorithms for Direct Estimation 189
6.4.3 Case Study: Non-homogeneous Linear Classifiers under Gaussian Popu-

lations . 190
6.4.4 General Distribution-Free Lower Bounds 192

6.5 Additional Related Works . 192
6.6 A General Lemma on Deterministic Query Learning 193
6.7 Deferred Materials from Section 6.1 . 194
6.8 Deferred Materials from Section 6.3 . 195

6.8.1 Proof of Theorems 26 and 27 . 195
6.8.2 Proof Sketch of Proposition 35 . 197
6.8.3 Proof of Proposition 36 . 197
6.8.4 Proof of Proposition 37 . 198
6.8.5 Deferred Materials for Section 6.3.2 . 202

6.9 Deferred Materials from Section 6.4 . 206
6.9.1 Distribution-free Query Complexity Lower Bounds for Auditing with VC

classes . 206
6.9.2 Query Complexity for Auditing Non-homogeneous Halfspaces under

Gaussian Subpopulations . 209
6.9.3 Auxiliary Lemmas for Query Learning Lower Bounds 217

xii

II Machine Learning for and of Multi-Agent Systems 221

7 Multi-agent Attribution via the Shapley Value 223
7.1 Introduction . 223
7.2 Related Work . 224
7.3 Cooperative Game Theory Preliminaries . 225
7.4 Cooperative Game Abstractions . 226

7.4.1 Motivation . 226
7.4.2 Learning a CGA . 226

7.5 Approximate Shapley Values . 227
7.6 Experiments . 229

7.6.1 Virtual Teams . 229
7.6.2 Real World Sports Teams . 230

7.7 Conclusion . 233
7.8 Appendix . 233

7.8.1 Identification Theorem Proofs . 233
7.8.2 PAC Analysis . 237
7.8.3 Shapley Noise Bound Theorem Proofs 240
7.8.4 Discussion about CGA-Specific Errors: 249
7.8.5 For Practitioners: How to choose the order of the CGA Model 250
7.8.6 Proofs of Facts . 251
7.8.7 Relationship to the Core . 252
7.8.8 Experiments Hyper Parameter Search 254

7.9 Additional Related Works in Cooperative Game Theory 254

8 Multi-agent Attribution via the Core 257
8.1 Introduction . 257

8.1.1 Our Results . 258
8.1.2 Related Work . 258

8.2 Preliminaries . 259
8.3 Theoretical Results . 260

8.3.1 Computing the Least Core . 260
8.3.2 Computing the Nucleolus . 261

8.4 Interlude: A Comparison of the Core and the Shapley Value 262
8.5 Empirical Results . 264

8.5.1 Feature Valuation . 264
8.5.2 Data Valuation . 264

8.6 Discussion . 269
8.7 Proof of Theorem 45 . 269
8.8 Proof of Theorem 46 . 270
8.9 Proof of Theorem 47 . 273
8.10 Approximate Least Core Implementation . 277
8.11 Additional Experimental Results . 277

8.11.1 Feature Valuation . 277

xiii

8.11.2 Data Valuation . 279

9 Decentralized Coordination via Outcome-based Payment 283
9.1 Introduction . 283
9.2 Formulation . 284

9.2.1 Stackelberg Markov Game . 284
9.2.2 Payment Settings . 285

9.3 Related Works . 286
9.4 Planning in General-sum Games . 287

9.4.1 Hardness Results . 288
9.4.2 Positive Results . 289

9.5 Learning in Cooperative Games without Payment 290
9.6 Learning in Cooperative Games with Payment 291

9.6.1 Regret Guarantees in Cooperative Games 291
9.6.2 Contrasting Trajectory Payment with Upfront Payment 292

9.7 Discussion . 294
9.8 Proofs for Planning Results in General-sum Games 295

9.8.1 Hardness Results . 295
9.8.2 Positive Results . 301

9.9 Proofs for Learning Results in Cooperative Games without Payment 306
9.10 Proofs for Learning Results in Cooperative Games with Payment 313

9.10.1 General regret guarantees . 313
9.10.2 Contrasting Trajectory Payment with Upfront Payment 318

9.11 Experiments . 324
9.12 Additional Related Works . 325
9.13 Incentive Effects when Follower Reward is Unobservable 326

10 Multi-agent Policy Aggregation via IRL 329
10.1 Introduction . 329
10.2 MDP Terminology . 331
10.3 Approximating the Uniform Mixture . 331
10.4 How Good is the Uniform Mixture? . 333

10.4.1 The Uniform Mixture Approximates the Optimal Policy 333
10.4.2 It is Impossible to Outperform the Uniform Mixture in the Worst Case . . 334

10.5 The Inverse Multi-Armed Bandit Problem . 335
10.5.1 Identifying the Optimal Arm . 336
10.5.2 Experiments . 337

10.6 Discussion . 339
10.7 IRL Algorithms . 340

10.7.1 Apprenticeship Learning . 340
10.7.2 Max Entropy . 341

10.8 Proof of Theorem 60 . 341
10.9 Proof of Theorem 61 . 343
10.10Example for the Tightness of Theorem 61 . 347

xiv

10.11Empirical Results for the MDP setting . 347
10.11.1 Methodology . 347
10.11.2 Results . 348

10.12Proof of Lemma 77 . 349
10.12.1 Simpler Example . 349
10.12.2 Completing the Proof . 351

10.13Proof of Theorem 62 . 352
10.14Proof of Theorem 63 . 353
10.15Gradient Calculation . 354
10.16Additional Empirical Results for Inverse Bandits 355

10.16.1 Varying parameter δ . 355
10.16.2 Varying noise parameter σ . 356

10.17Relationship to Social Choice/Welfare . 358

11 Learning Multi-agent Hierarchical Systems 359
11.1 Introduction . 359

11.1.1 Preliminaries . 360
11.1.2 Takeaways . 362

11.2 Related Works . 363
11.3 Learning from Cardinal Feedback . 363

11.3.1 Sub-MDP reward design for Hier-UCB-VI 363
11.3.2 Regret Analysis of Hier-UCB-VI . 364

11.4 Learning from Preference Feedback . 366
11.4.1 Labeler Feedback and Consequences for Reward Modeling 366
11.4.2 Hierarchical Preference Learning . 368
11.4.3 Hier-REGIME Analysis . 368

11.5 Discussion . 370
11.6 More Related Works . 371
11.7 Concrete Hierarchical MDP Example . 371
11.8 Proofs for Section 11.3 . 372

11.8.1 Sub-MDP Bonus Construction . 372
11.8.2 Optimism Lemma . 374
11.8.3 Supporting results needed for regret analysis 375

11.9 Proofs for Section 11.4 . 381
11.9.1 Low-level Feedback is insufficient for learning 381
11.9.2 Hierarchical Experiment Design via REGIME [317] 382

11.10Statistical Efficiency of HRL . 394

12 Discussion and Future Directions 397

13 Bibliography 401

xv

xvi

List of Figures

2.1 The setup behind Proposition 1 is that of learning an one-to-one threshold-interval
hypothesis classH =

{
(hi, h

′
i)
}
i∈[n]. The learner seeks to identify (hi∗ , h

′
i∗). The

labeler can abstain on X1, and prevent the learner from learning through this
sample-efficient part of the instance space. This forces the learner to learn the
interval h′∗

i (instead of threshold h∗i) through X2, and incur much larger sample
complexity. 20

2.2 Geometric view of the linear hypothesis class in dual space (as in Tong and Koller
[278]), with examples as hyperplanes and hypotheses as cells, illustrates: (i)
Abstention on example x1 (hyperplane in black) renders hypotheses wi1 and wi2
(cells of the same color) indistinguishable from each other. In this way, abstentions
can carve up the VS (single polytope) into multiple polytopes, as in Proposition 3.
(ii) In the approximate identifiability game (Subsection 2.4.1), if x1 is not in pool
Xm, then it induces clusters of merged {wi1, wi2} for i ∈ [4]. The goal then is to
only identify up to clusters (e.g. the blue cluster of {w21, w22}), instead of the
exact hypothesis (e.g. cell w21). 39

2.3 The average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set
of plots, the labeling oracle is random (and may not ensure identifiability), with
varying probability of abstention p. In the plots, the lower the average, the better
the algorithm (needing fewer samples). 72

2.4 The average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set
of plots, the labeling oracle is identifiable, with varying probability of abstention
p. In the plots, the lower the average, the better the algorithm (needing fewer
samples). 73

3.1 Visualization of HC in a toy example where the amount of explanations (blue
points) is varied (80, 50, 20 percent of all explanations is kept). In red is one
randomly chosen boundary pair. 100 lines (green and black) are randomly sampled
from HC ; in black are lines that predict the pair like h∗ (opposite labels), and
green the same. 78

3.2 Visualization of the notation: HC in green, boundary region in red and true model
w∗ in yellow. 80

xvii

3.3 Plots of the max(x,x′)∈Mr(X) π(x, x
′) (left), average of top 5 percent of all π(x, x′)

(middle) and average of all π(x, x′) (right) under k-medoid explanations for linear
models. 83

3.4 MLP results: k-medoid explanations (top), k-medoid explanations + random
draws from small balls around the explanations (middle), full {x | x ∈ X ,Λα(x) =
1} (bottom). The three metrics are in column: max π(x, x′) (left), top 5 percent
of all π(x, x′)’s (middle), average π(x, x′) (right). 85

3.5 Boundary point label agreement within HC (left), and boundary point label
agreement of HC with respect to h∗ (right). This is estimated by sampling
h from version space using random initializations of parameters (green) and
hyperparameters (yellow), respectively. 85

3.6 Plots of the max(x,x′)∈Mr(X) π(x, x
′) (left), average of top 5 percent of all π(x, x′)’s

(middle) and average of all π(x, x′) (right) for the MLP case with random initial-
ization only under k-medoid explanations. 86

3.7 An illustration of Prhw∼U(HC)(⟨w, x′⟩ ≥ 0) in the proof of Theorem 11. Suppose
x (red dot) has angle π

2
− θ with w∗, and we project U(HC) to the 2-dimensional

plane spanned by w∗ and x; U(HC) (after projection) is supported on the green
circle segment (the union of the dark and light green regions), whereas the subset{
hw ∈ HC : ⟨w, x′⟩ ≥ 0

}
corresponds to the dark green region. 90

3.8 An illustration ofHα1 andHα2 in the proof of Proposition 1. 99
3.9 In the proof of Proposition 2, a projection of U onto the 2-dimensional plane

spanned by w∗, x and x′; it is uniform when restricted to Hα2 (the dark green
region), and is concentrated in {hw ∈ Hα1\Hα2

: −1 = sign(w · x) ̸= sign(w ·
x′) = +1} (the light green region) when restricted toHα1 \ Hα2 101

3.10 The construction in Proposition 3. In blue are the explanations, in green are the
decision boundaries of models in the version space, in red is the margin region
and in yellow is w∗. 102

3.11 Racial composition of margin points under LR (left) and SVM (right). 105
3.12 MLPs results with MMD-Critic explanations: max (left), top 5 percentile average

(middle), average π(x, x′) (right). We observe similar trends as in the k-medoid
case with one difference being that the drop off rate is slower in the MMD-Critic
case. 108

3.13 Two layer MLP results: under k-medoid explanations (top), under MMD expla-
nations (bottom). The three metrics are in column: max (left), top 5 percentile
average (middle), average π(x, x′) (right). 109

5.1 (Left) Number of samples vs Miscoverage rate (Middle) Number of samples vs
Number of oriented edges (Right) Edge signal size k vs Miscoverage rate. 139

5.2 The four meek rules for propagating oriented edges. 148
5.3 Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with

α = 0.2, p = 0.3. First Row: (n, p) = (10, 0.3); Second Row: (n, p) = (20, 0.3);
Third Row: (n, p) = (30, 0.3). 158

xviii

5.4 Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.2, p = 0.5. First Row: (n, p) = (10, 0.5); Second Row: (n, p) = (20, 0.5);
Third Row: (n, p) = (30, 0.5). 159

5.5 Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.1, p = 0.3. First Row: (n, p) = (10, 0.3); Second Row: (n, p) = (20, 0.3);
Third Row: (n, p) = (30, 0.3). 160

5.6 Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.1, p = 0.5. First Row: (n, p) = (10, 0.5); Second Row: (n, p) = (20, 0.5);
Third Row: (n, p) = (30, 0.5). 161

5.7 Plotting miscoverage rate and number of orientations in tree graphs with α =
0.2, n ∈ {10, 20}. First Row: n = 10; Second Row: n = 20. 162

5.8 Plotting miscoverage rate and number of orientations in tree graphs with α =
0.2, n ∈ {50, 100}. First Row: n = 50; Second Row: n = 100. 163

5.9 Plotting miscoverage rate and number of orientations in tree graphs with α =
0.1, n ∈ {10, 20}. First Row: n = 10; Second Row: n = 20. 164

5.10 Plotting miscoverage rate and number of orientations in tree graphs with α =
0.1, n ∈ {50, 100}. First Row: n = 50; Second Row: n = 100. 165

5.11 Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with
α = 0.2, p = 0.3. First Row: n = 10 (left) and n = 20 (right); Second Row:
n = 30. 166

5.12 Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with
α = 0.2, p = 0.5. First Row: n = 10 (left) and n = 20 (right); Second Row:
n = 30. 167

5.13 Comparing number of orientations of combined e-values vs those of base e-values
in chain graphs with α = 0.2. First Row: n = 10 (left) and n = 20 (right);
Second Row: n = 30 (left) and n = 50 (right). 168

5.14 (Left Column) the fraction of 100 trials where the needed number of samples to
conclude the test is below that of the derived upper bound (Right Column) the
fraction of 100 trials where the needed number of sample complexity is below
that of the derived upper bound, when there is no edge between the two nodes (i.e.
µj(i) = 0). 170

5.15 Consider testing X1 → X2 in the n-node chain graph X1 −X2 − ...−Xn. This
is a graph, where the propagation of edge orientation is crucial for minimiz-
ing interventional complexity. We have that X1 → X2 ⇒ Xi → Xi+1, with
which we can derive T 1→2 and E1→2

t explicitly. We note that, asymptotically
(ignoring log factors in t), E1→2

t has much higher power than the e-process of
exp(logE1→2

t (1) + logE1→2
t (2)) (from Section 5.3), under non-expanded tree

(1→ 2). E1→2
t leverages evidence from for example hypothesis X2 → X3 (blue). 178

xix

7.1 Left: Interaction matrix from second order CGA model. Players are clustered
by original training team ({0, 1, 2} trained together as did {3, 4, 5}, etc...). We
see complex patterns of complementarity and substitutability as well as a clear
replication of the well known fact that agents that train together can coordinate
much better than agents which are trained separately - this can be seen in the
figure by the strong complementarity in the diagonal blocks of size 3 compared to
other 3× 3 off-diagonal blocks. Right: Histograms of ratios of the score attained
by the completed team chosen by the model normalized by the score of the actual
best team containing a given initial agent. 229

7.2 Left Panel: The second order CGA predicts that All Star Teams are far above the
99th percentile of random teams. Replacing each All Star with their team-level
replacement gives much worse teams. These results show that the predictive per-
formance of the CGA in win rate prediction comes from player-level assessment,
and not just memorization of certain teams usually winning or losing. Right Panel:
Marginal contributions of individual NBA players, as measured by the Shapley
Value from the second order CGA, correlate well with measures of player-level
value add used by NBA analysts (VORP, Win-Share) as well as market-level
value-add (salary). 232

8.1 Top Panel: Least core accuracy (satisfaction of the core constraint) over coalitions.
Bottom Panel: Nucleolus accuracy (satisfaction of the core constraint) over
coalitions (ϵ = 0.01). 265

8.2 Curves of logistic regression test performance when the best and worst data points
ranked according to the solution concepts are removed. In (a)–(d) the best data
points are removed: the steeper the drop, the better. In (e)–(h) the worst data
points are removed: the sharper the rise, the better. 267

8.3 Plotting noise level against percentage of total utility assigned to clean data. . . . 268
8.4 Test performance as we correct more and more training data guided by the least

core vs. random selection. 268
8.5 Relative difference between different solution concepts’ largest deficits and the

least core’s largest deficit . 278
8.6 Standard deviation of solution concepts . 278
8.7 Curves of synthetic dataset (under a logistic regression model) test performance

when the best and worst data points ranked according to the solution concepts
are removed. For the left column, the steeper the drop, the better. For the right
column, the sharper the rise, the better. 280

8.8 Curves of synthetic dataset (under a feedforward neural network model) test
performance when the best and worst data points ranked according to the solution
concepts are removed. For the left column, the steeper the drop, the better. For
the right column, the sharper the rise, the better. 281

8.9 Curves of natural, dog-vs-fish dataset (under a logistic regression model) test
performance when the best and worst data points ranked according to the solution
concepts are removed. For the left column, the steeper the drop, the better. For
the right column, the sharper the rise, the better. 282

xx

9.1 . 295
9.2 Same deterministic MDP with payment . 297
9.3 Right branch requires getting the right set of H binary actions at states s1, ..., sH

to exceed the return in the left branch. 313
9.4 Right branch requires getting the right set of H binary actions at states s1, ..., sH

to exceed the return in the left branch. 324
9.5 Regret plot from episodes 1000 to 40000 . 325

10.1 Regions of each optimal policy for different values of δ. Blue depicts the region
where πa is optimal, orange is where πb is optimal, and green is where πc is optimal.335

10.2 Performance as δ is varied. 338
10.3 Performance as σ is varied. 338
10.4 Performance on the Sailing MDP. Error bars show 95% confidence intervals. . . . 349
10.5 Performance on the Grab a Milk MDP. Error bars show 95% confidence intervals. 349
10.6 Performance as δ is varied, when σ is fixed to 0.5 and 2. 356
10.7 Performance as δ is varied, when the number of agents is 250 and 1000. 356
10.8 Performance as σ is varied, when δ is fixed to 0.5 and 2. 357
10.9 Performance as σ is varied, when the number of agents is 250 and 1000. 357

xxi

xxii

List of Tables

2.1 Consider an example hypothesis class H = {h1, h2, h3, h4, h5} and instance
space X = {x1, x2, x3}. The interaction history is S =

{
(x1,⊥)

}
, and therefore

SX = {x1}. Under S, we have that the VS (Definition 1), V = H[S] =
{h1, h2, h3, h4, h5}. We observe that h1 and h2 make identical predictions on
X \ SX = {x2, x3}. Likewise, h3 and h4 make identical predictions on X \ SX .
Therefore, effective version space is actually E(V, SX) = {h5}. If the game
reaches this stage, the learner can already identify that the target h∗ must be h5. . 12

2.2 Table of commonly used notation. 20

3.1 A table of notations that appears in Section 3.4. 79
3.2 Difference table with the max metric and at r = 0.1 105
3.3 Difference table with the max metric and at r = 0.2 106
3.4 Difference table with the max metric and at r = 0.3 106
3.5 Difference table with the top 5 percentile average and at r = 0.1 106
3.6 Difference table with the top 5 percentile average and at r = 0.2 107
3.7 Difference table with the top 5 percentile average and at r = 0.3 107
3.8 Difference table with the average and at r = 0.1 107
3.9 Difference table with the average and at r = 0.2 108
3.10 Difference table with the average and at r = 0.3 108

7.1 Results of hyper-parameter sweep for the second order CGA in the OpenAI
particle world experiment. MSE is shown, lower is better. 254

7.2 Results of hyper-parameter sweep for the second order CGA in the NBA data.
Model accuracy is shown, higher is better. 254

9.1 Planning & learning settings where computationally and statistically efficient
algorithms exist. 284

11.1 Table of notation used in this section. 372

1

2

Chapter 1

Overview

Our world is inherently multi-agentic, and increasingly our use of machine learning reflects
this. As ML models grow in capability, they become more widely adopted and used to solve
progressively complex problems. Wider adoption results in increasingly numerous agent-on-agent
interactions. Solving increasingly complex problems will require accounting for multi-agent
considerations, if not training multi-agent solutions. This thesis studies several fundamental
challenges that arise when designing machine learning models to handle and harness multi-agent
interactions.

1.1 Adapting ML for Multi-Agent settings

In the first half of this thesis, we study how to adapt machine learning models to account for multi-
agent considerations, wherein ML is used in the presence of another agent affected by its output.
We focus on three classes of games that model strategic training data collection for automation,
strategic prediction on individuals and strategic auditing of black-box industry models.

Strategic Data Collection: Automation is one of the primary uses of ML. When companies
are training ML models to automate jobs, labelers are needed to label the training data. However,
this in turn introduces a natural conflict of interest. The labelers would be helping to train a model
that will go on to render their expertise and jobs redundant. Towards formalizing this conflict of
interest, in Chapter 2, we study the data labeling game that results when data labelers have agency
and strategize knowing their eventual replacement by the trained model [307].

Strategic Prediction: Machine learning models are now also used by institutions to automate
consequential decision making, which includes predictions on individuals e.g. in loan approvals.
This constitutes a multi-agent interaction as the individuals will adjust to the ML model, so as to
induce their desired prediction in consequential settings. Thus, during prediction, the machine
learning model has to account for an agentic data distribution that shifts according to the model
itself. Causality is a principled framework for assessing distribution shift (especially in social
applications). This thesis devotes three chapters to consolidating our understanding of the causal
strategic foundation of ML.

In Chapter 3, we study how to minimally reveal the ML model in order to disincentivize any
shift and subsequent causal effect [309]. Next, in Chapter 4, we study which ML models are

3

also good causal incentives (reward models) that can leverage the agency of the data distribution
to induce distribution shifts with desirable causal effects [313]. Finally, in Chapter 5, we close
the loop and study how to perform finite-sample causal discovery so that we can discover the
underlying causal structure, which can then be used for ML model design [311].

Strategic Auditing: As ML models become widely adopted in industries for automation,
there is a growing need to audit such models to ensure they are properly regulated. Besides the
challenge of statistical estimation, the auditor also needs to account for post-audit manipulation
on the part of the strategic auditee. In Chapter 6, we study black-box auditing of machine learning
models while accounting for strategic effects [308]. We formalize the task of auditing and the
notion of manipulation-proofness, and study various algorithms for statistically efficient audits
that cannot be circumvented by post-audit manipulation.

1.2 ML for and of Multi-agent Systems

In the second half of this thesis, we study how machine learning can allow multiple agents to be
better together, in both decentralized and centralized settings.

1.2.1 Coordination in Decentralized Multi-agent Systems
In decentralized multi-agent systems, the agents have not been jointly trained. This makes coordi-
nation a central challenge. Thus, we investigate how learning can be used to learn mechanisms
that facilitate coordination among agents.

Evaluating and Rewarding Agents in MAS: A key challenge in multi-agent systems is that
of agent evaluation, useful for equitable credit assignment that ensures cohesion among the agents.
What is a principled and “fair” method for attributing and assigning rewards, after multiple agents
have collaborated to perform a task? Fortunately, there are solution concepts from Cooperative
Game Theory for this purpose. Two such solution concepts with provable guarantees are the
Shapley Value and the Core, providing principled ways to attribute marginal and coalitional impact
respectively. In Chapter 7 and Chapter 8, we study how ML can be used as a scalable means to
operationalize these solution concepts for attribution in multi-agent systems [306, 312].

Outcome-based Payment for Decentralized Coordination in MAS: As more businesses
adopt agents to carry out tasks on their behalf, their agents will inevitably interact (much in the
same way businesses interact in our present commercial world). All of these agents will thus
form a decentralized multi-agent system. In anticipation of this, we seek to understand how an
agent can coordinate with other agents that may have differing (business) interests. In present-day
commerce, payment is a standard means that different business parties use to better align their
business interests. In Chapter 9, we study how one could learn analogous outcome-based payment
schemes for helping agents coordinate in the decentralized multi-agent setting [310].

1.2.2 Training in Centralized Multi-agent Systems
Turning to the centralized setting, we investigate how learning can realize the advantages of multi-
agent systems over single-agent systems, and produce a system that supersedes the capability of

4

any one agent. Indeed, in the future, we hope to use ML to solve increasingly complex problems.
To do so, we may wish to train multiple agents that work together, much in the same way we
humans collaborate to solve problems beyond any of our individual means.

Benefits of Diversity in MAS: One key advantage of multi-agent systems is diversity. It
is intuitive that combining multiple, diverse agents should yield a stronger agent. A natural
method for policy aggregation is Inverse Reinforcement Learning, which can be used to learn
from all agents through their trajectories. In Chapter 10, we investigate the effectiveness of
policy aggregation in the context of multi-agent Inverse Reinforcement Learning, where we
study a canonical multi-agent setup with the population of agents having similar but not identical
rewards [216].

Benefits of Specialization in MAS: Another major advantage of multi-agent systems is that of
specialization. If the task structure allows for apt task division, an agent can be trained to focus on
each smaller sub-task. This in turn realizes a key benefit of multi-agent systems over monolithic,
single-agent systems. Each smaller and specialized agent can be more readily supervised, thus
enabling scalable oversight. In Chapter 11, we study these benefits of hierarchical multi-agent
systems in the context of Hierarchical Reinforcement Learning, developing learning algorithms
that leverage this structure for scalable oversight and improved sample efficiency [304].

5

6

Part I

Adapting Machine Learning for
Multi-Agent settings

7

Chapter 2

Strategic Data Collection

2.1 Introduction

Over the past few years, the rapid growth of Machine Learning (ML) capabilities has raised the
possibility of wide-ranging automation, and consequent worker replacement. Taking a step back
from when these ML models are phased in, we ask a basic question on how they first come about:

Where will the training data for these ML models come from?
In many industries, domain-specific knowledge is required to perform the job. Much of this
expertise is proprietary (e.g. trade secrets), and not made publicly available (e.g. on the internet).
Thus, in these industries, the answer to our question is paradoxically that: the training data can
only come from the workers themselves. At this point, we arrive at a clear conflict of interest.

On the one hand, corporations wish to automate tasks through ML models. On the other hand,
the data needed to train these models can only come from the domain experts — the workers in
this case, who know full well that these models, when trained, will go on to replace them at their
jobs. Thus, this raises the possibility that we may see workers actually aim to slow down learning,
in order to delay replacement and be compensated for as many labels as possible before then.

We note that the idea of AI job displacement is no longer a rarefied topic, entertained only
in academia. The possibility of AI displacement has been written about in recent articles [42],
and even surfaced in labor union negotiations. In May 2023, Hollywood screenwriters went on
strike to negotiate a better deal. One part of their demands is for there to be limits on companies
being able to train ML models on the scripts produced by the writers themselves [292]. Indeed,
without this protection, companies can train AI models to emulate and write as well as the writers,
eventually replacing them with the trained models. In sum, we believe it is now high time to
develop our understanding of the replacement aspect of learning, which is what we set out to do
in this chapter.

Remark: Before moving on, we point out that the conflict of interest described above is fairly
general, and arises whenever the labeler wishes to maximize payment from labeling. Consider
more broadly the interaction between any data provider (e.g. a data labeling company) and learner
(e.g. company needing ML models). The more informative the data labeled by the provider, the
faster the learner learns, the fewer the examples the learner needs to query the provider and the
lower the provider’s subsequent payment. The AI automation setting we describe is one of many

9

such instances where the labeler’s objective is at odds with that of the learner: the labelers have
the incentive to slow down learning, to maximize their compensation from labeling before the
models are fully trained and render their labeling expertise redundant.

In this chapter, we study the learning game that arises when the labeler and learner’s objective
are at odds. The learner wants to learn quickly, but the labeler wants the learning to progress
slowly. Notably, this requires departing from the standard assumption in learning theory that the
labeler readily labels any example queried (including the informative examples). We term this
game the Human-AI Substitution game, since typically the labeler is human and the more the
model is trained, the less the learner needs the labeler (to label). To study the rate of learning, we
turn to theory to analyze how the labeler can slow down learning.

Our Contributions: In Section 2.2, we formalize the learning game and game value, develop-
ing a novel representation of the game state — effective version space (henceforth abbreviated as
E-VS). In Section 2.3, we then develop a natural, efficient learning Algorithm 2, which we prove
achieves near-optimal minimax query complexity. We also show that other AL algorithms may
be inefficient. In Section 2.4, we examine more general settings involving noisy or non-strategic
labelers, showing that our algorithm can nevertheless achieve good query complexity. Finally, in
Section 2.5, we consider the multi-task setting and analyze when strategic labeling can further
enlarge the learner’s query complexity beyond the sum of the individual tasks’ query complexities.

2.1.1 Active learning with a simple twist

We begin our investigation by adopting the standard active learning setup [135], with the only
twist that the labeler aims to maximize the learner’s query cost. We focus on perhaps the most
fundamental setting: exact learning through membership queries [13, 138]. As we will see, this
setup is fairly general, and one may use standard reductions to reduce the PAC and noisy setting
to this setting.

Setup of the Learning Game:
• The learner is interested in learning a hypothesis h∗ in hypothesis class H ⊂ (X →
{+1,−1}) over a finite pool of unlabeled data X , collected by the learner.

• The labeler knows h∗ and responds using labeling strategy T with response T (x) ∈{
h∗(x),⊥

}
, where ⊥ denotes abstention. 1

• The learner repeatedly interacts with the labeler adaptively, and makes label queries on
unqueried example x, and incurs cost 1(T (x) ̸=⊥) for each such query.2

In this chapter, we model the labeler as being able to strategically abstain on queried data, to
slow down learning. Being the domain expert with specialized expertise, the labeler is assumed to
be able to use this leverage to selectively decide which data points to label. As noted in Section 2.1,
some data points are particularly informative, and naturally the labeler would wish to decline
labeling these so that more data would need to be labeled. We also add that this strategy of

1In Section 2.2.2 and Appendix 2.8 we also study a variant of the game (Protocol 4) where the labeler can choose
to reveal binary labels or abstain adaptively.

2Note that we define the cost for all non-abstention label feedback to be 1 for all x. However, as we show in
Appendix 2.9, our algorithm can generalize to handle varying data prices (price for non-abstention label feedback
c(x) can be dependent on feature x).

10

slowing down the transfer of expertise is not a novel conception. It has been well-documented
that in apprenticeships, for instance, teachers (master) strategically slow down the training of their
apprentices [111].

The interaction finishes when the termination condition is met, or the learner’s querying
strategy halts. Based on the learner’s desired learning outcome, the termination condition is
defined as when h∗ ∈ H is identified, which we formalize in the following section. If the
termination condition is met, the labeler gets a payoff of 1 for every labeled data provided. If the
termination condition is not met, the labeler gets a payoff of 0. In this game, the learner aims
to minimize the total payoff needed to learn h∗, while the labeler aims for the opposite and to
maximize the total payoff.

Guaranteeing Learning Outcome: Before proceeding, we note that the labeler can always
satisfy the learner’s objective — by using the non-strategic labeling strategy T (x) = h∗(x) as in
the standard active learning setup. Since the labeler can realize the learning outcome, we assume
that the learner has this guarantee (of the learning outcome) written into the contract; no payment
is awarded otherwise. Indeed, if the labeler cannot guarantee the learning outcome, it seems
unlikely that the learner would have chosen to contract the labeler in the first place.

Prolonging Learning through Abstention: The key tension in this interaction is that the
labeler has to label in order to be paid, but any labeling results in less data that subsequently
need to be labeled. With the labeler only allowed to abstain besides labeling, it is natural to
ask: can abstention significantly enlarge the query complexity? Our investigation is motivated
by the affirmative answer below, where we find that abstention can exponentially enlarge query
complexity in some settings.
Proposition 1 (Abstention induces exponentially higher query complexity). There exists a hy-
pothesis classH, instance domain X such that: the query complexity is O(log |X |) if the labeler
is unable to abstain, and Ω(|X |) for any learning algorithm if the labeler is allowed to abstain.

2.2 The Minimax Learning Game

2.2.1 Representation of the learning game state
To study this learning game, we first develop a useful, succinct representation of the game state,
which is a key contribution of our paper and allows us to formalize the termination condition
and the protocol. We start by defining the canonical state representation used in conventional AL
without abstention, the version space (VS) [207].
Definition 1. Given a queried dataset S and a set of hypotheses V , define version space V [S] ={
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of hypotheses in V consistent with S.

In our setting of learning with strategic abstention, some queried examples in S will not have
their binary labels available to the learner, due to the labeler’s abstention. And so, we observe that
certain hypotheses may be consistent, but indistinguishable from other hypotheses, even if all the
remaining unqueried data is labeled. This motivates defining a new notion of identifiability of a
hypothesis under queried dataset S. Let the set of all queried examples be SX =

{
x : (x, y) ∈ S

}
.

Definition 2. Given the set of queried examples and their label responses S, and the queried
examples SX , hypothesis h ∈ H is said to be identifiable with respect to S if:

11

Protocol 1 Human-AI Substitution game inter-
action protocol
Require: Instance domain X , hypothesis

class H, queried examples SX , queried
dataset S

1: V ← H, SX ← ∅, S ← ∅
2:
3: Nature chooses some h∗ ∈ H given to the

labeler ▷ Throughout, labeler maintains
that h∗ is identifiable: h∗ ∈ E(V, SX).

4: while |E(V, SX)| ≥ 2 do
5: Learner adaptively queries example
x ∈ X \ SX using learning algorithm A

6: Labeler adaptively gives label feed-
back y ∈

{
h∗(x),⊥

}
using labeling oracle

T
7: Learner updates the VS: V ←
V [(x, y)] ▷ Recall Definition 1

8: SX ← SX ∪ {x}, S ← S ∪
{
(x, y)

}
9: if |E(V, SX)| = 1 then

10: Learner makes total payment to the la-
beler:

∑
(xi,yi)∈S 1 {yi ̸=⊥}

H
X x1 x2 x3

h1 +1 −1 +1
h2 −1 −1 +1
h3 +1 +1 −1
h4 −1 +1 −1
h5 +1 +1 +1

Table 2.1: Consider an example hypothesis
class H = {h1, h2, h3, h4, h5} and instance
space X = {x1, x2, x3}. The interaction his-
tory is S =

{
(x1,⊥)

}
, and therefore SX =

{x1}. Under S, we have that the VS (Defini-
tion 1), V = H[S] = {h1, h2, h3, h4, h5}.
We observe that h1 and h2 make identical pre-
dictions on X \ SX = {x2, x3}. Likewise, h3
and h4 make identical predictions on X \ SX .
Therefore, effective version space is actually
E(V, SX) = {h5}. If the game reaches this
stage, the learner can already identify that the
target h∗ must be h5.

• h is consistent with S, h ∈ H[S].
• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for

brevity we denote h1(U) = h2(U) ⇐⇒ ∀x ∈ U � h1(x) = h2(x).

In other words, h is identifiable with respect to S if over the remaining examples X \ SX ,
some labeling strategy (specifically, one that reveals h(x) on every x ∈ X \ SX) allows h to be
distinguished from all other hypotheses inH[S]. With this, we may develop a new representation
of the state of the game, effective version space (E-VS). The E-VS is a refinement of VS, and
comprises of only identifiable hypotheses given the examples queried. Please see Table 2.1 for an
illustration.

Remark: The key insight here is that abstention can in fact reveal information. This is despite
that abstention is used by the labeler to prevent releasing information about h∗. The reason
why one can glean information from labeler’s abstention is that hypotheses could be rendered
unidentifiable by abstention on a data point, and thus be ruled out without needing further queries.
We operationalize this insight to develop the effective version space representation, which we
formalize below.
Definition 3. Given a set of classifiers V and a set of examples SX , define

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
12

as the effective version space with respect to V and SX .
Definition 4. h∗ ∈ H is identified by queried dataset S if the E-VS, E(H[S], SX) = {h∗}.

With the identification criterion defined, we now formalize the interaction in Protocol 1. Here,
the termination states are defined as either |E(V, SX)| = 1 (a hypothesis is identified and the
learning outcome is met), or E(V, SX) = ∅ (no hypothesis can be identified).

2.2.2 The minimax learning game
In this paper, we analyze the minimax query complexity — that of the worst-case h∗ ∈ H to learn
under Protocol 1. Towards this, we formulate a related minimax learning game (see Protocol 4 in
Appendix 2.8), where both the learner queries and the labeler labels adaptively, depending on the
interaction in previous rounds, with the game’s optimal value function defined as follows:

Cost(V, SX) =


−∞ E(V, SX) = ∅
0 |E(V, SX)| = 1

minx∈X\SX maxy∈Y 1(y ̸=⊥) + Cost(V [(x, y)], SX ∪ {x}) |E(V, SX)| ≥ 2

(2.1)
Compared to the original Protocol 1, Protocol 4 can be viewed as giving the labeler more

freedom: the labeler does not need to commit to provide binary labels using a given h∗; it just
needs to maintain the invariant that there is some h∗ identifiable and consistent with all examples
seen. As we will see shortly, the optimal value function Cost of Protocol 4 serves as a useful tool
in analyzing the optimal query complexity of Protocol 1.

In the case of non-identifiability, we use a base-case payoff of −∞ to encode that the labeler
must ensure identification. As noted in Section 2.1, any optimal labeler will never end up in such a
state, because a positive payoff can always be achieved – the strategy T = h∗ results in a positive
payoff. We now turn to formalizing what an identifiable strategy is.
Definition 5. Given h ∈ H, define the set of labeling oracles consistent with h, as:

Th = {T : X → {+1,−1,⊥} |∀x ∈ X s.t T (x) ̸=⊥, T (x) = h(x)}.

For subset SX ⊆ X , let T (SX) =
{
(x, T (x)) : x ∈ SX

}
be the labeled (binary or abstention)

examples provided by labeling oracle T on the examples SX .
Definition 6. A labeling strategy T ∈ Th is an identifiable oracle if the VS,H[T (X)] = {h}.

In the learning game, the labeler’s strategy is some labeling oracle, while the learner’s
strategy corresponds to some deterministic querying algorithm: A : (X × Y)∗ → X , where
Y = {+1,−1,⊥}. Define CostA,T (V, SX) to be value of the learning game under querying
strategy A and labeling strategy T . The key result of this subsection is that the game value
Cost(H, ∅) can serve as a useful measure of minimax query complexity. Cost(H, ∅) lower
bounds the worst-case query complexity of any deterministic learning algorithm in Protocol 1.
Proposition 2. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ Cost(H, ∅)
This means that for every exact learning algorithm A, there is some worst-case labeling oracle

Th that induces at least Cost(H, ∅) cost. Please see Appendix 2.8 for all proofs in this section.

13

2.3 E-VS Bisection Algorithm Analysis

In this section, we design a natural and efficient algorithm based on E-VS bisection, Algorithm 2,
which we prove achieves query complexity O(Cost(H, ∅) ln |H|). Proving this guarantee allows
us to use the lower bound result, Proposition 2, from the previous section to conclude that
Algorithm 2’s minimax query complexity is optimal up to log factors. Towards analyzing the
algorithm performance (and inspired by a related measure in Hanneke [131] for the conventional
non-abstention setting), we first introduce a new complexity measure named global identification
cost (GIC), that will allow us to bridge Algorithm 2’s performance to Cost.
Definition 7. GivenH,X , define the global identification cost of V ⊂ H, instance set SX as:

GIC(V, SX) = min{t ∈ N : ∀T : X \ SX → {+1,−1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

1(T (x) ̸=⊥) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Intuitively, GIC represents the worst-case sample complexity of a clairvoyant querying
algorithm that knows ahead of time the labeling oracle that is used by the labeler.

The key lemma behind the analysis of Algorithm 2 is that there always exists a point that
significantly bisects the current E-VS, resulting a size reduction of at least a constant 1− 1

GIC(V,SX)

factor. This justifies greedily querying the point that maximally bisects the E-VS.
Lemma 1. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:

max
y∈{−1,+1}

(|E(V [(x, y)], SX ∪ {x}))| − 1) ≤ (|E(V, SX)| − 1)(1− 1

GIC(V, SX)
).

To analyze the algorithm’s query complexity, we lower bound Cost(V, SX) by GIC(V, SX).
Lemma 2. For any V ⊂ H and SX ⊂ X : GIC(V, SX) ≤ Cost(V, SX).

With this, we can prove that Algorithm 2: a) has query complexity of O(Cost(H, ∅) ln |H|);
b) identifies h∗ when the labeler’s labeling strategy is identifiable. Please see Appendix 2.9 for all
the proofs.
Theorem 1 (Algorithm 2’s query complexity guarantee). If Algorithm 2 interacts with a labeling
oracle T , then it incurs total query cost at most GIC(H, ∅) ln |H|+ 1 ≤ Cost(H, ∅) ln |H|+ 1.
Furthermore, if Algorithm 2 interacts with an identifiable oracle T consistent with some h∗ ∈ H,
then it identifies h∗.

2.3.1 Accessing the E-VS
Algorithm 2 may be viewed as the E-VS variant of the well-known, VS bisection algorithm [278],
an “aggressive” active learning algorithm that greedily queries the informative point that maximally
bisects the VS. The canonical approach for accessing the VS is via sampling, by assuming access
to a sampling oracle O. For example, ifH is linear, the VS is a single polytope and one can use a
polytope sampler to evaluate and search for the point x that maximally bisects the VS.

E-VS Structure: Maximal E-VS bisection point search is less straightforward by contrast.
The following structural lemma shows that there exists a setting of linear hypothesis classes in Rd

14

Algorithm 2 E-VS Bisection Algorithm
Require: Data pool X , hypothesis classH

1: V ← H, S ← ∅ ▷ VS, queried dataset
2: while

∣∣E(V, SX)∣∣ ≥ 2 and SX ̸= X do
3: Query: ▷ Maximal E-VS bisection

point

x = argmin
x∈X\SX

max
y∈{−1,+1}

∣∣E(V, SX)[(x, y)]∣∣
4: Labeler T provides label response: y ∈
{−1,+1,⊥}

5: S ← S ∪
{
(x, y)

}
6: if y ̸=⊥ then
7: V ← V [(x, y)]

return h, the unique element in E(V, SX)

Algorithm 3 Bisection Point Search Sub-
routine
Require: Unqueried examples U = X \ SX ,

abstained examples S⊥, Version Space V ,
sampling oracle O

1: for sample h ∼ O(V) do
2: Construct Z1 ={

(x,−h(x)) : x ∈ S⊥
}

, Z2 ={
(x, h(x)) : x ∈ X \ S⊥

}
3: Run C-ERM to obtain: ĥ ∈

argmin
{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

4: if ĥ ̸= h then continue
5: else ▷ h ∈ E(V, SX) in this case
6: r−x ← r−x + 1 if h(x) = −1 else
r+x ← r+x + 1 for x ∈ U , n← n+ 1
return x∗ = argminx∈U |r+x /n− r−x /n|

with X and S such that the E-VS comprises of an exponential number of disjoint polytopes. This
means that it is computationally intractable to access the E-VS as polytopes, if one is to use the
sampling approach as in VS-bisection.
Proposition 3. There exists an instance space X ⊂ Rd, a linear hypothesis classH, and query
response S such that the resultant E-VS comprises of an exponential in d number of disjoint
polytopes.

Towards tractable maximal E-VS bisection point search: To overcome this issue, we
develop a novel, oracle-efficient method for accessing the E-VS. We observe that a structural
property of the E-VS can be used to check membership given access to a constrained empirical
risk minimization (C-ERM) oracle [84]. This allows us to design an oracle-efficient subroutine,
Algorithm 3 for any general hypothesis classH, which we prove is sound.
Definition 8. A constrained-ERM oracle for hypothesis classH, C-ERM, takes as input labeled
datasets Z1 and Z2, and outputs a classifier: ĥ ∈ argminh′∈H

{
err(h′, Z1) : err(h

′, Z2) = 0
}

,
where for dataset Z, err(h′, Z) =

∑
(x,y)∈Z 1(h

′(x) ̸= y).
Proposition 4. Given some h ∈ V and access to a C-ERM oracle, lines 2to 4 in Algorithm 3
verifies whether h ∈ E(V, SX), with one call to the oracle.

2.3.2 Comparing with the VS bisection algorithm
Labeling without identifiability: An advantage of the E-VS algorithm is its robustness to
strategic labeling. Theorem 1 states that the E-VS algorithm has provable guarantees, even when
the labeler does not guarantee identification. By contrast, VS-bisection is not robust this way.
To concretely compare the two, we construct a learning setup without identification, wherein
Algorithm 2 incurs a much smaller number of samples.

15

Theorem 2. There exists a H and X such that the number of labeled examples queried by the
E-VS bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |) labels.

Remark: The key observation here is that, by optimistically assuming identifiability (even
when this is not guaranteed), Algorithm 2 can ensure a small query cost. It does so by using the
E-VS cardinality to detect when the labeling strategy is non-identifiable and halt the interaction.

Please refer to Appendix 2.10 for all proofs in these subsections and a comparison with
EPI-CAL [146], a natural ‘mellow” active learning algorithm that can handle labeler abstentions.
Additionally, please see Appendix 2.15 for some toy experiments based on synthetic data.

2.4 Extensions to Other Learning Settings

The prior sections have assumed that the labeler (e.g. data labeling company) is resourcefully
providing non-noisy, labeled data that exactly identifies h∗. In this section, we examine a few
ways in which the labeler (e.g. a human worker) may be imperfect in labeling, and extend our
guarantees to show how the learner may learn in such settings. Indeed, it is possible for the labeler
to abstain non-strategically simply due to uncertainty (or lack of knowledge) about the label.
As we will see, Algorithm 2 will also allow for efficient learning with non-strategic, abstaining
labelers.

2.4.1 Approximate Identifiability

A relaxation of the goal of exact learning is PAC learning: learning some ĥ such that its error
Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ on distribution D supported on X , with probability (w.p.) greater
than 1 − δ. This learning goal can arise when the learner wishes to relax the learning out-
come/termination criterion, or wishes to weaken the assumption that the labeler identifies h∗, to
only knowing a fairly accurate hypothesis ĥ ∈ H.

Reduction: To study the PAC setting, one may use the standard PAC to exact learning
reduction [283]. It is well known that PAC learning can be reduced to to exact learning on a
sub-sampled set, Xm ⊆ X , of m = O(VC(H)

ϵ
(ln 1

ϵ
+ ln 1

δ
)) i.i.d points from D (VC(H) denotes

the VC dimension ofH).
Then, Xm partitionsH into clusters of equivalent hypotheses. Let the projection ofH on Xm

beH|Xm =
{
h(Xm) : h ∈ H

}
. For y ∈ H|Xm , a cluster C(y) of equivalent hypotheses may then

be defined as C(y) =
{
h ∈ H : h(Xm) = y

}
. The reduction guarantees that, w.p. over 1 − δ

over the samples Xm, identifying h∗’s cluster C(h∗(Xm)) suffices for finding ĥ with error ≤ ϵ.
Approximate Identification: Using this reduction, we may analyze the query complexity of

approximate identification in the resulting learning game. In this game, the learner sets the data
pool to be Xm (can be much smaller than X) and aims to only learn the cluster h∗ belongs to,
C(h∗(Xm)).

We demonstrate how our E-VS representation can be adapted to apply Algorithm 2 in this
approximate identification game. We first note that the original E-VS, defined over H and Xm

will no longer suffice as state representation. Consider some h ∈ H such that |C(h(Xm))| ≥ 2

16

with {h′, h} ⊆ C(h(Xm)). Then, h(Xm) = h′(Xm)⇒ h′(Xm \ ∅) = h(Xm \ ∅), which results
in the premature elimination of the entire C(h(Xm)) cluster at the very start.

To address this, we define a refinement of E-VS, Xm-E-VS. This fix follows from observing
that in this game, we should only consider non-identifiability with respect to hypotheses from
other clusters.

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
With this, we note that the Xm-E-VS bisection algorithm attains analogous near-optimal

guarantees.
Corollary 1. Consider Algorithm 2 instantiated with data pool Xm and state representa-
tion Xm-E-VS. When interacting with a labeling oracle T , it incurs total query cost at most
GICXm

(H, ∅) ln |H|+ 1 (see Definition 13). Furthermore, if the Xm-E-VS bisection algorithm
interacts with an identifiable oracle T consistent with some h∗ ∈ H, then it identifies h∗.

The only remaining consideration is how to efficiently search for the point that maximally bi-
sects clusters in Xm-E-VS. Here, we show that we may adapt the membership check implemented
in Algorithm 3 (with the data pool set to Xm) to check hypothesis membership in the coarser
Xm-E-VS. That is, we still have an oracle-efficient way of accessing the Xm-E-VS, without
needing to explicitly compute and iterate through the clusters.
Proposition 5. h ̸∈ EXm

(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM
output on Algorithm 3, Line 3 with X = Xm.

2.4.2 Noised labeling

In some cases, a labeler can make honest mistakes simply due to human error. We can model this
by assuming noised queries [57]: querying example x returns h∗(x) w.p. 1−δ(x), and−h∗(x) w.p.
δ(x). In this setup, we may use the common approach of repeatedly query a datum to estimate its
label w.h.p. (e.g. as in [303]). This approach thus reduces the noised-label setting to cost-sensitive
exact learning, where each x incurs differing cost c(x) dependent on δ(x). In Appendix 2.9, we
prove the generalized version of the results in Section 2.3 that factors in example-based cost,
showing that Algorithm 2 can be applied in this setting with near-optimal guarantees.

2.4.3 Arbitrary labeling

Thus far, we have assumed a labeler who can (approximately) identify h∗. Here, we touch on
when the labeler either does not know h∗ (or h∗’s cluster), or myopically labels in a way that
cannot guarantee the learning outcome. Since the labeler behaves arbitrarily, the learner now
cannot be assured of any learning outcome guarantees. In this case, we note that the learner can
use the E-VS to preemptively detect when the learning outcome cannot be realized, and halt
the interaction. While the h∗ is unknown, it is possible to detect when no hypothesis/cluster is
learnable. This is when the E-VS is empty, certifying that the labeler cannot realize the learning
outcome. Here, our Theorem 1 provides guarantees on the maximum number of times that a
non-identifiable oracle will be queried.

17

Corollary 2 (of Theorem 1). Algorithm 2 guarantees bounded query complexity GIC(H, ∅) ln |H|+
1 even when the labeling oracle is non-identifiable.

Finally, we note that our algorithm is sound in that if the labeler can identify h∗, then our
algorithm learns h∗. Thus, in summary, Algorithm 2 is both sample-efficient with respect to an
identifiable labeler, and robust to a non-identifiable one. Please see Appendix 2.11 for more
details on this section.

2.5 Multi-Task learning from a Strategic Labeler

Multi-task setting: In most jobs, workers in fact perform multiple roles. This motivates the study
of multi-task exact learning from a strategic labeler, which we now outline:

• The learner is now interested in learning multiple h∗i ∈ Hi, for tasks i ∈ [n]. Define
learner’s hypothesis classH = ×ni=1Hi which contains h∗ = (h∗1, . . . , h

∗
n). The learner can

query from instance domain X ⊆ ×ni=1Xi, where Xi is the instance domain for task i.
• Labeler now provides multi-task labels y ∈ Yn = {+1,−1,⊥}n, and for the label cost:

i) One natural extension of the single task payoff is: cone(y) = 1(∃i, yi ̸=⊥).
ii) Another variant of the multi-task labeling payoff is: call(y) = 1(∀i, yi ̸=⊥).

We are interested in asking: can the labeler use the multi-task structure to further amplify the
query complexity? To answer this question, we relate the multi-task query complexity to that of
single-task.

Single-task setting:
• Definition of SiX: given queried data SX , define the queried data for task i, SiX , as:
SiX = Xi \ (X \ SX)i, where we use the notation that set Zi = {xi : x ∈ Z} for Z ⊆ X .
In words, SiX are examples in Xi whose label can no longer be obtained. Note that in
the multi-task setting, there may exist multiple points that can label some xi ∈ Xi. So
abstention on one of those points does not necessarily mean that xi cannot be labeled.
Example: X = {x11, x12} × {x21, x22}. SX =

{
[x11, x21], [x12, x22]

}
, then SiX = {} for

i = 1, 2. This is because it is still possible for the labeler to give labels on all points, i.e.
x11, x22 through [x11, x22] and x12, x21 through [x12, x21].

• Definition of Vi: given the current multi-task version space V , we can naturally define the
single-task version space for task i as: (V)i = Vi = {hi : h ∈ V }

2.5.1 Upper Bound
To understand if multi-task structure can inflate query complexity, we upper bound the multi-task
complexity in terms of the sum of the single-task complexities. Proving an upper bound would
imply that the labeler cannot increase the query complexity through the multi-task structure. We
find that upper bounds only arise under certain regularity assumptions. Thus, we first provide
complementary negative results without these assumptions, showing settings where the labeler can
amplify the multi-task query complexity. All proofs in this section may be found in Appendix 2.12,
where we also prove results in the non-abstention setting that may be of independent interest.

18

Proposition 6. Under both label costs, there exists a non-Cartesian product version space V ⊆ H
and query response S ⊆ (X × Y)∗ such that Cost(Vi, SiX) ≥ 0 for all i, and: Cost(V, SX) ≥∑n

i=1Cost(Vi, S
i
X) + n− 1.

Furthermore, we show that if the version space is allowed to be a Cartesian product, and the
(more generous) cone is used as label cost, the labeler can still increase the query complexity.
Proposition 7. Assuming the version space is a Cartesian product, under label cost cone(y) =
1(∃i, yi ̸=⊥), there exists V and S such that Cost(Vi, SiX) = 1, but Cost(V, SX) = |X |. This
implies that: Cost(V, SX) >

∑n
i=1 Cost(Vi, S

i
X).

Thus, for the labeler to be unable to increase multi-task query complexity, two necessary
conditions are a) the VS is a cartesian product b) the payoff cost is call (and not cone). Below, we
prove the two conditions are sufficient, providing a full characterization when the upper bound
can be achieved.
Theorem 3. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥),
Cost(V, SX) ≤

∑n
i=1Cost(Vi, S

i
X).

For the remainder of the section, we will prove results under the (more generous) label cost,
cone.

2.5.2 Lower Bound
Through lower bounds, we illustrate that the multi-task version space structure can in fact speed
up learning as well. The intuition is that the structure in V may make it so that the multi-task
E-VS shrinks faster due to unidentifiability. The following negative example evidences this.
Proposition 8. There exists a non-Cartesian product version space V and query response S such
that Cost(Vi, SiX) ≥ 0 for all i, but: Cost(V, SX) < maxi∈[n] Cost(Vi, S

i
X).

Proposition 9. There exists a Cartesian product version space V and query response S with
Cost(V, SX) < 0 such that: Cost(V, SX) < maxi∈[n] Cost(Vi, S

i
X).

Thus, we have that identifiability (Cost(V, SX) ≥ 0), and V being a Cartesian product are
needed to prove a lower bound.
Theorem 4. For all V = ×i∈[n]Vi and SX ⊆ X , if Cost(V, SX) ≥ 0, then: Cost(V, SX) ≥
maxi∈[n] Cost(Vi, S

i
X).

2.6 Related Works

The theory of Active Learning [133] (AL) has a rich history and began with the study of realizable
learning [13, 81, 83, 109, 138]. To the best of our knowledge, we are the first to consider a labeler
whose objective is at odds with the learner. In face of such a strategic labeler, we develop an
active learning algorithm with near-optimal query complexity guarantees.

Abstaining Labeler: The closest two papers to our work are Huang et al. [146], Yan et al.
[303], which also study learning from an abstaining labeler. In Yan et al. [303], the labeler can
abstain or noise, where the rate of an incorrect label/abstention is fixed apriori. Our work differs
from that of Yan et al. [302, 303] in that the labeler can adaptively label (abstain) based on the full
interaction history so far, thus allowing for more complex, sequential labeling strategies. In Huang

19

Notation
S S =

{
(x1, y1), (x2, y2), ...

}
, query responses in the interaction history

SX SX =
{
x : (x, y) ∈ S

}
, indexes the queried examples in S

S⊥ S⊥ =
{
x : (x, y) ∈ S, y =⊥

}
, queried examples that were given abstention

V y
x , V [(x, y)] V y

x , V [(x, y)] =
{
h ∈ V : h(x) = y

}
, updated VS (used interchangeably)

E(V, SX) E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
, effective VS

SA,T Interaction history between A and T
Ai Ai = {xi : i ∈ A}
SiX SiX = Xi \ (X \ SX)i
(V)i (V)i = Vi = {hi : h ∈ V }
cone(y) cone(y) = 1(∃i, yi ̸=⊥)
call(y) call(y) = 1(∀i, yi ̸=⊥)

Table 2.2: Table of commonly used notation.

Figure 2.1: The setup behind Proposition 1 is that of learning an one-to-one threshold-interval
hypothesis class H =

{
(hi, h

′
i)
}
i∈[n]. The learner seeks to identify (hi∗ , h

′
i∗). The labeler can

abstain on X1, and prevent the learner from learning through this sample-efficient part of the
instance space. This forces the learner to learn the interval h′∗

i (instead of threshold h∗i) through
X2, and incur much larger sample complexity.

et al. [146], the labeler abstains when uninformed, and after a number of abstentions in a region,
learns to label the region (an “epiphany”). Our setting differs in that the labeler does know the
labels for all regions, but instead strategically abstains to increase query complexity. Please see
Appendix 2.14 for further discussion on related works and on alternative formulations of the
learning game, including when the learner is allowed to query an example multiple times.

2.7 Proofs for Section 2.1

2.7.1 Technical Results

Proposition 10. There exists a hypothesis classH, instance domainX such that the exact learning
sample complexity is O(log |X |) if the labeler is unable to abstain, and Ω(|X |) for any learning
algorithm if the labeler is allowed to abstain.

Proof. Let the hi : [0, 1] → {+1,−1} for i ∈ [n] denote intervals of length 1/n centered at
(2i− 1)/2n for i ∈ [n], and h′i : (1, 2]→ {+1,−1} for i ∈ [n] denote thresholds at 1 + i/n for

20

i ∈ [n]. Define hybrid-hypothesis classH of threshold-intervals,H = {f1, ..., fn}, where:

fi(x) =

{
hi(x) x ∈ [0, 1]

h′i(x) x ∈ (1, 2]

Let X = X1 ∪ X2, where X1 =
{

1
2n
, ..., 2n−1

2n

}
and X2 =

{
1 + 3

2n
, ..., 1 + 2n−1

2n

}
.

1) When the labeler is not allowed to abstain, the learner may binary search on X2 to identify
h′i∗ , which identifies fi∗ . The required sample complexity is O(log n).

2) When the labeler is allowed to abstain, consider the following labeling strategy T :
i) T (x) =⊥ for all x ∈ X2

ii) T (x) = hi∗(x) for all x ∈ X1.
Note T is a labeling strategy that allows for identification. H[T (X)] = H[T (X1)] = {fi∗}.
Interacting with T is equivalent to learning one of n disjoint intervals, which requires Ω(n)

samples under any learning algorithm [81]. And so, T induces Ω(n) samples, which in turn lower
bounds the sample complexity induced by the minimax labeling strategy.

Remark 1. We note that one may generalize the above result to any cross-space learning
setting [274] with significant differences in query complexity among the instance spaces.

The labeler’s optimal strategy here is simple: label only through the instance space that leads
to the highest query complexity, and abstain on all other (more informative) instance spaces.
Remark 2. We also add that the labeling strategy need not be identifiable for this result to hold.
One can simply define T to still abstain on all of X2 and output −1 on all of X1, which still
induces Ω(|X |) query complexity.

2.8 Proofs for Section 2.2

2.8.1 The Minimax Learning Game

We present Protocol 4, which can be viewed as a relaxation of the original Protocol 1 by allowing
h∗ to be chosen aposteriori. This gives the labeler more freedom in answering the learner’s queries,
and therefore any query complexity upper bound here translates to query complexity upper bounds
in Protocol 1. Recall that the optimal value function of this game is given in (2.1).

2.8.2 Preliminaries

We now come back to Protocol 1. The game strategy for the labeler and learner now corresponds
to a labeling oracle, and a querying algorithm, which we formally define below.

Labeling Oracle Notation: Given h ∈ H, recall that we define the set of labeling oracles
consistent with h as,

Th = {T : X → {+1,−1,⊥}|∀x ∈ X s.t Th(x) ̸=⊥, T (x) = h(x)}

21

Protocol 4 Minimax strategic slow learning game
Require: Instance domain X , hypothesis classH
S ← ∅, V ← H
▷ Throughout, the labeler needs to maintain that there is at least one classifier consistent with
all labels so far and is identifiable
while |E(V, SX)| ≥ 2 do

Learner queries example x ∈ X \ SX
Labeler provides label feedback y ∈ {−1,+1,⊥}
Learner incurs cost c(y), and updates its version space V ← V y

x

S ← S ∪
{
(x, y)

}
Nature sets h∗ to be the only model in E(V, SX) if |E(V, SX)| = 1 ▷ Nature sides with the
labeler, sets h∗ to be the remaining model at the end

Given subset SX ⊆ X , let us define T (SX) to be the set of labeled examples induced by oracle T
on the examples SX .

Suppose V ⊆ H, let us define:

V [T (SX)] =
{
h ∈ V |h(x) = T (x),∀x ∈ SX ∧ T (x) ̸=⊥

}
A labeling strategy T ∈ Th is an identifiable oracle ifH[T (X)] = {h}.

Querying Algorithm Notation: Formally, a deterministic learning algorithm A consists of the
following:

• Query function fquery : (X × Y)∗ → X
• Termination function fterm : (X × Y)∗ → {TRUE,FALSE}
• Output function fout : (X × Y)∗ → H

A interacts with the labeler by:

Algorithm 5 The interaction process between A and labeler

S ← ∅
while fterm(S) = FALSE do

Query x← fquery(S)
Receive label y
S ← S ∪

{
(x, y)

}
return fout(S)

Properties of fterm:
• If A is an exact learning algorithm, fterm(S) = TRUE if |E(V, SX)| ≤ 1.
• IfA has a fixed budgetN , fterm outputs TRUE when S is such that: |

{
(x, y) ∈ S : y ̸=⊥

}
| =

N

22

The formal interaction process between the learner using A and the labeler is summarized in
Algorithm 5.

Learning Game Payoff: Denote CostA,T (V, SX) as the learning game payoff under an exact
learning querying strategy A and labeling strategy T . Formally, let point xA,S be queried by A
after seeing interaction history S (corresponding to some sequentially labeled dataset) induced by
labeling oracle T . With this, the value function of the learning game with strategies A and T may
be recursively defined as follows:

CostA,T (V, SX) =


−∞ E(V, SX) = ∅
0, |E(V, SX)| = 1

1(T (xA,S) ̸=⊥) + Cost(V [(xA,S, T (xA,S))], SX ∪
{
xA,S

}
) |E(V, SX)| ≥ 2,

2.8.3 Technical Results
Lemma 3. Let the deterministic query algorithm A interact with labeling oracle T ∈ Th0 for M
queries, generating the following interaction history: SM = (x1, T (x1)), (x2, T (x2)), ..., (xM , T (xM)).
Suppose there exists a classifier h1 and T ′ ∈ Th1 such that for all x ∈ {x1, ..., xM}, T (xi) =
T ′(xi). Then, A generates the same interaction history, when interacting with T ′ for M queries.

Proof. As defined previously, algorithm A comprises of query function fquery, termination
function fterm and output function fout. We show by induction that for steps i = 0, 1, ...,M , the
interaction histories of A with T and T ′ agree on their first i elements for i ≤M .

Base Case: For step i = 0, both interaction histories are empty and thus agree.
Induction Step: Suppose the statement holds up until step i for some i < M . That is, when

A interacts with T and T ′ generates the same set of queried examples:

Si =
{
(x1, y1), ..., (xi, yi)

}
Consider step i+1. Firstly,A continues to make a query and does not terminate, since fterm(Si) =
FALSE for i < M .

Now, for the (i+ 1)-th query, A applies function fquery and queries xi+1 = fquery(Si). Since
T ′(xj) = T (xj) for all j and in particular for j = i + 1, we have that (xi+1, T

′(xi+1)) =
(xi+1, T (xi+1)). And so, with this and the induction hypothesis, we have that A when interacting
with T ′ and T generates the same set of queried examples:

Si+1 =
{
(x1, y1), ..., (xi+1, yi+1)

}
up to step i+ 1.

Using this, we can conclude that the interaction histories after M steps of A with T ′ and T
are identical.

Remark 3. Suppose, after the M th step, we have that TRUE = fterm(SA,T) = fterm(SM). And
so, we have that SM = SA,T ′ , and the interaction of A with T ′ also terminates at the M th step.

Thus, for model output, we have SA,T = SM = SA,T ′ ⇒ fout(SA,T) = fout(SA,T ′).

23

Proposition 11. Let N denote the labeling budget. Let SA,TN be the interaction history of a
deterministic algorithmA with oracle T up until the N th label is given, or at termination (without
using all of the budget). Let (SX)

A,T
N be the unlabeled examples queried during the interaction.

For any deterministic algorithm A, if N < Cost(H, ∅), there exists some h ∈ H and identifiable
oracle T ∈ Th such that |E(H[SA,TN], (SX)

A,T
N)| ≥ 2.

Proof. Fix a deterministic algorithm A. We will show the following. If A has already ob-
tained an ordered sequence of queried examples S, and has a remaining label budget N ≤
Cost(H[S], SX)− 1, then there exists h ∈ H[S] and Th such that, A, when interacting with Th:

1. obtains a sequence of queried examples S in the first |S| rounds
2. when the interaction terminates, the E-VS has cardinality at least two: |E(H[SA,ThN], (SX)

A,Th
N)| ≥

2.

The theorem follow from the second point of this claim by taking S = ∅.
We now turn to proving the above claim by induction on A’s remaining label budget N .
Base Case: IfN = 0, then Cost(H[S], SX) ≥ 1. By Lemma 8, we know that |E(H[S], SX)| ≥

2.
Construction of Th:
Let h ∈ E(H[S], SX).
Define Th to be such that for (xi, yi) ∈ S, Th(xi) = yi = h(xi) (the latter equality holds by

definition of h) if yi ̸=⊥ and Th(xi) =⊥ if yi =⊥, and define Th(x) = h(x) for all x ∈ X \ SX .
Since h ∈ E(H[S], SX), we know that h(X \ S⊥) ̸= h′(X \ S⊥),∀h′ ̸= h ∈ V . And so,

H[T (X)] = H[T (X \ S⊥)] = {h}, which implies that T is an identifiable oracle for h.
By construction and using Lemma 3, Th’s interaction with A results in S, satisfying the first

item. Moreover, since N = 0, SA,Th0 = S. And so, |E(H[SA,Th0], (SX)
A,Th
0)| = |E(H[S], SX)| ≥

2.
Induction Step: Suppose the claim holds for all N ≤ n for some 0 ≤ n < Cost(H, ∅)− 1.
Now, suppose during the interaction, algorithm A has remaining budget N = n+ 1, and the

obtained queried examples history S is such that Cost(H[S], SX) ≥ N + 1 = n+ 2.
Our goal is to show the existence of h and Th that satisfy the two listed properties under these

two assumptions.
Define x′j for index j ≥ 1 to be the next example A queries such that a binary label y′j is given

(i.e y′j ̸=⊥), as we recursively unroll the Cost expression, via the construction procedure below.

Algorithm 6 The construction procedure for (x′j, y
′
j)

L← S, LX ← SX , j ← 1
repeat

Query x′k ← f(L) using A
Labeler return y′k = argmaxy∈{−1,+1,⊥}

(
1(y ̸=⊥) + Cost(H[L ∪

{
(x′k, y)

}
], LX ∪

{
x′k
})

L← L ∪
{
(x′k, y

′
k)
}

LX ← LX ∪
{
x′k
}

until y′j ̸=⊥ or fterm(L) = TRUE

24

There are two cases:

• If the final j satisfies y′j ̸=⊥, then after querying
{
(x′i, y

′
i)
}
1:j

, the learner has a remaining
budget of N − 1 = n.
Next, we see that with each abstention, the Cost value is non-decreasing, as justified in the
first three steps:
We have that:

Cost(H[S], SX) ≤ max
y1∈{+1,−1,⊥}

1(y1 ̸=⊥) + Cost(H[S ∪
{
(x′1, y1)

}
], SX ∪

{
x′1
}
)

= 1(y′1 ̸=⊥) + Cost(H[S ∪
{
(x′1, y

′
1)
}
], SX ∪

{
x′1
}
)

= Cost(H[S ∪
{
(x′1, y

′
1)
}
], SX ∪

{
x′1
}
)

≤ ... (unroll from j − 1 to 1, using 1(y′i ̸=⊥) = 0 for i < j and ⋄)
≤ 1(y′j ̸=⊥) + Cost(H[S ∪

{
(x′i, y

′
i)
}
1:j
], SX ∪

{
x′i
}
1:j
)

= 1 + Cost(H[S ∪
{
(x′i, y

′
i)
}
1:j
], SX ∪

{
x′i
}
1:j
) (2.2)

(⋄) : We may use the non-decreasingness property to unroll, because from non-decreasingness,
for all l ≤ j, Cost(H[S ∪

{
(x′i, y

′
i)
}
1:l
], SX ∪ {x′i}1:l) = Cost(H[S], SX) ≥ n + 2 ≥ 2.

Therefore,
∣∣∣E(H[S ∪ {(x′i, y′i)}1:l], SX ∪ {x′i}1:l)∣∣∣ ≥ 2, and we have that:

Cost(H[S ∪
{
(x′i, y

′
i)
}
1:l
], SX ∪

{
x′i
}
1:l
) =

min
x

max
y

1(y ̸=⊥) + Cost(H[S ∪
{
(x′i, y

′
i)
}
1:l
∪
{
(x, y)

}
], SX ∪

{
x′i
}
1:l
∪ {x})

Continuing (2.2), we get that:

n ≤ Cost(H[S], SX)− 2 ≤ Cost(H[S ∪
{
(x′i, y

′
i)
}
1:j
], SX ∪

{
x′i
}
1:j
)− 1

By induction hypothesis, there exists h ∈ H[S ∪
{
(x′i, y

′
i)
}
1:j
] and Th, such that when A

interacts with Th (after obtaining query history S ∪
{
(x′i, y

′
i)
}
1:j

) and with label budget n,
the final version space is of cardinality at least two:

|E(H[SA,ThN], (SX)
A,Th
N)| ≥ 2

In addition, when interacting with Th, A obtains history S ∪
{
(x′i, y

′
i)
}j
i=1

in its first |S|+ j
rounds of interaction, which implies that it obtains example sequence S in its first |S| rounds
of interaction with Th. This proves the first property also holds and completes the induction.

• Now, we consider the case the final j satisfies y′j =⊥. This means that the other exit
condition must hold: fterm(L) = TRUE. And so,A terminates with all abstentions: y′i =⊥
for i ∈ [j].
As above, we iteratively use the non-decreasingness of Cost with abstention y′i =⊥ to get
that:

n+ 2 ≤ Cost(H[S], SX) ≤ ... ≤ Cost(H[L], LX)

25

for the final stateH[L], LX .
From this, we have that |E(H[L], LX)| ≥ 2.
Pick some h ∈ E(H[L], LX). As in the prior Th construction, define Th so that: Th(x) = y
for all (x, y) ∈ L, and Th(x) = h(x) for all x ∈ X \ LX .
By construction and Lemma 3, Th’s interaction with A induces L.
Since fterm(L) = TRUE, SA,TN = L. And so, |E(H[SA,ThN], (SX)

A,Th
N)| = |E(H[L], LX)| ≥

2, satisfying the second condition.
Finally, since A’s interaction with Th generates L, the first |S| steps also matches S. This
satisfies the first property.

Proposition 12. For any deterministic, exact learning algorithm A,

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ Cost(H, ∅)

Proof. From Prop. 11, we know that for N = Cost(H, ∅) − 1, there exists some h ∈ H and
T ∈ Th such that |E(H[SA,TN], (SX)

A,T
N)| ≥ 2.

We construct a labeling strategy T ′ that yields at least N + 1 binary labeled examples as
follows:

1. Let T ′(x) = T (x) for x ∈ SA,TN .
2. Let T ′(x) = h(x) for x ∈ X \ SA,TN .

Note that T ′ is an identifiable oracle for h by construction.
And so, we have that:

max
h∈H,T∈Th

CostA,T (H, ∅) ≥ CostA,T ′(H, ∅)

= N + CostA,T ′(H[SA,T
′

N], (SX)
A,T ′

N) (⋄)
= Cost(H, ∅)− 1 + CostA,T ′(H[SA,T

′

N], (SX)
A,T ′

N)

≥ Cost(H, ∅)− 1 + 1 (⋄⋄)

Two steps in the above derivation are justified as follows:
(⋄) : Since T ′(x) = T (x) for x ∈ SA,TN , by Lemma 3, we must have that SA,T

′

N = SA,TN , and
(SX)

A,T ′

N = (SX)
A,T
N .

In particular, note that this implies |E(H[SA,T
′

N], (SX)
A,T ′

N)| = |E(H[SA,TN], (SX)
A,T
N)| ≥ 2.

(⋄⋄) : Since A is an exact learning algorithm, it does not terminate at the |SA,T
′

N |th step,
because |E(SA,T

′

N , (SX)
A,T
N))| ≥ 2.

And so,A will make at least one more query on some x ∈ X \SA,T
′

N . Since T ′(x) ̸=⊥ for any
x ∈ X\SA,T

′

N , and T ′ is identifiable (yielding terminal cost 0), we have thatCCA,T ′(H[SA,T
′

N], (SX)
A,T ′

N) ≥
1.

26

2.9 Proofs for Section 2.3

2.9.1 Example-dependent Cost Setting: Definitions

In this section, we consider the following generalization of our learning setting that allows each
binary label to have varying cost dependent on the feature x:

• A cost function c : X → (0,+∞) is known to both the learner and the labeler ahead of
time.

• The learner is interested in learning a hypothesis h∗ in hypothesis class H ⊂ (X →
{+1,−1}) over a finite pool of unlabeled data X , collected by the learner. A cost function

• The labeler knows h∗, and responds using labeling strategy T with response T (x) ∈{
h∗(x),⊥

}
.

• The learner repeatedly interacts with the labeler adaptively, and makes label queries on
unqueried example x, and incurs cost c(x) if T (x) ̸=⊥, and cost 0 otherwise.

Note that the setting studied in the main text is a special case with cost function c ≡ 1. We
aim to analyze the following generalization of Algorithm 2:

Algorithm 7 E-VS Bisection Algorithm
Require: Data pool X , hypothesis classH

1: V ← H, S ← ∅ ▷ VS, queried dataset
2: while

∣∣E(V, SX)∣∣ ≥ 2 and SX ̸= X do
3: Query: ▷ Maximal E-VS bisection point

x = argmin
x∈X\SX

max
y∈{−1,+1}

∣∣E(V, SX)[(x, y)]∣∣
c(x)

4: Labeler T provides label response: y ∈ {−1,+1,⊥}
5: S ← S ∪

{
(x, y)

}
6: if y ̸=⊥ then
7: V ← V [(x, y)]

return h, the unique element in E(V, SX)

For the analysis below, we slightly abuse notation and let c(x, y) denote to c(x)1(y ̸=⊥), the
cost of querying example x and receiving label feedback y.
Definition 9 (Generalization of Definition 7). GivenH,X and cost c, define the global identifica-
tion cost of version space V ⊂ H and example set S as

GIC(V, SX) = inf{t ∈ R : ∀T : X \ SX → {−1,+1,⊥} ,

∃Σ ⊆ X \ SX s.t.
∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

27

Definition 10. Define ΓV,SX : N→ {TRUE,FALSE} as:

ΓV,SX (t) = {∀T : X \ SX → {−1,+1,⊥} , ∃Σ ⊆ X \ SX s.t.∑
x∈Σ

c(x, T (x)) ≤ t ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1}

Note that ΓV,SX is monotonically increasing: for t1, t2 ∈ N, if t1 < t2, then ΓV,SX (t1) →
ΓV,SX (t2). Also, with this notation, GIC(V, SX) = inf

{
t : ΓV,SX (t) = TRUE

}
.

We have the following definition of all possible cumulative cost values that can appear in the
learning process.
Definition 11. Define C =

{∑
x∈S c(x) : S ⊂ X

}
.

Note that C is a finite set since X is finite.
The following lemma implies that the set

{
t : ΓV,SX (t) = TRUE

}
is a left-closed interval.

Lemma 4. If {tn} ↓ t and ΓV,SX (tn) = TRUE for all n, then ΓV,SX (t) = TRUE.

Proof. Since {tn} ↓ t and C is a finite set, there exists n large enough such that for any z,

z ∈ C ∧ z ≤ tn =⇒ z ≤ t.

Importantly, since for any T : X \ SX → {−1,+1,⊥} ,Σ ⊂ X \ SX ,
∑

x∈Σ c(x, T (x)) ∈ C, we
have: ∑

x∈Σ

c(x, T (x)) ≤ tn =⇒
∑
x∈Σ

c(x, T (x)) ≤ t

and therefore, for any T : X \ SX → {−1,+1,⊥}, there exists Σ ⊂ X \ SX such that∑
x∈Σ c(x, T (x)) ≤ tn (and thus

∑
x∈Σ c(x, T (x)) ≤ t) and |E(V [T (Σ)], SX ∪ Σ)| ≤ 1, proving

that ΓV,SX (t) = TRUE.

Remark 4. The above lemma implies that in the definition of GIC, the infimum is achieved in the
set
{
t : ΓV,SX (t) = TRUE

}
. In other words,

GIC(V, SX) = min
{
t : ΓV,SX (t) = TRUE

}
.

And therefore,

GIC(V, SX) ≤ N

⇐⇒ ΓV,SX (N) = TRUE

⇐⇒ ∀T : X \ SX → {−1,+1,⊥} ,∃Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ N ∧ |E(V [T (Σ)], SX ∪ Σ)| ≤ 1

and

GIC(V, SX) > N−

⇐⇒ ΓV,SX (N−) = FALSE

⇐⇒ ∃T : X \ SX → {−1,+1,⊥} ,∀Σ ⊆ X \ SX ,
∑
x∈Σ

c(x, T (x)) ≤ N− → |E(V [T (Σ)], SX ∪ Σ)| ≥ 2

28

2.9.1.1 Lemmas

We prove several lemmas on the properties of E-VS and Cost.
Lemma 5. For any V ⊂ H and SX ⊂ X ,

E(V, SX ∪ {x∗}) ⊆ E(V, SX)

Proof. It suffices to prove that h ∈ E(V, SX ∪ {x∗})⇒ h ∈ E(V, SX).
To see this, let h ∈ E(V, SX ∪ {x∗}). Then, ∀h′ ∈ V \ {h} , h((X \ SX) \ {x∗})) ̸= h′((X \

SX) \ {x∗}))⇒ ∀h′ ∈ V \ {h} , h(X \SX) ̸= h′(X \SX). This implies that h ∈ E(V, SX).

Lemma 6. We have the following:
1. For any x ∈ X \ SX and y ∈ {−1, 1},

E(V [(x, y)], SX ∪ {x}) = E(V, SX)[(x, y)].

2. For any set of binary-labeled examples W ⊂ (X × {−1, 1}),

E(V [W], SX ∪W) = E(V, SX)[W].

Proof. 1. We have the following equivalence:

h ∈ E(V [(x, y)], SX ∪ {x})
⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ (SX ∪ {x})) ̸= h(X \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′ ̸= h→ h′(X \ SX) ̸= h(X \ SX)
⇐⇒ h(x) = y ∧ h ∈ E(V, SX)
⇐⇒ h ∈ E(V, SX)[(x, y)]

where the first equality uses the definition of effective version space; the second equality
uses the fact that for h, h′ ∈ V [(x, y)], h′(X \(SX∪{x})) ̸= h(X \(SX∪{x})) is equivalent
to h′(X \ SX) ̸= h(X \ SX); the third equality follows from that for h such that h(x) = y,
for all h′ ∈ V such that h′(x) ̸= y, h′(x) ̸= h(x) and therefore h′(X \ SX) ̸= h(X \ SX)
holds trivially; the fourth equality uses the definition of effective version space; the last
equality uses the definition of version space with respect to labeled examples.

2. The claim follows by induction on |W |:

Base case. If |W | = 1, the claim follows from the previous item.

Inductive case. Assume that E(V [W ′], SX ∪W ′) = E(V, SX)[W
′] holds for any W ′

such that |W ′| < n; Now consider any W of size n; W can be represented as
{
(x, y)

}
∪W ′

for some (x, y) ∈ X × {−1, 1} and |W ′| = n− 1. We have:

E(V [W], SX ∪W) =E(V [W ′][(x, y)], SX ∪W ′ ∪ {x}) (Definition of version space)
=E(V [W ′], SX ∪W ′)[(x, y)] (item 1)
=E(V, SX)[W

′][(x, y)] (Inductive hypothesis)
=E(V, SX)[W] (Definition of version space)

29

This completes the induction.

Lemma 7. E(V, SX) ̸= ∅ iff Cost(V, SX) ≥ 0.

Proof. (⇐) From the first terminal condition in the definition of Cost, we know that E(V, SX) =
∅ =⇒ Cost(V, SX) = −∞ < 0. So Cost(V, SX) ≥ 0 =⇒ E(V, SX) ̸= ∅.

(⇒) By backward induction on |SX |.

Base case. If SX = X , |E(V, SX)| = 0 or 1. If |E(V, SX)| = 1, we have by the base case of
the definition of Cost, Cost(V, SX) = 0. Therefore, E(V, SX) ̸= ∅ =⇒ Cost(V, SX) ≥ 0.

Inductive case. Suppose E(V, SX) ̸= ∅ =⇒ Cost(V, SX) ≥ 0 holds for any dataset SX of
size ≥ j + 1. Consider SX of size j and V such that E(V, SX) ̸= ∅:

• If |E(V, SX)| = 1, then Cost(V, SX) = 0 ≥ 0.
• Otherwise, |E(V, SX)| ≥ 2; take h1 ∈ E(V, SX); we have

Cost(V, SX) ≥ min
x

(
Cost(V [(x, h1(x))], SX ∪ {x}) + 1)

)
By Lemma 6, h1 ∈ E(V [(x, h1(x))], SX∪{x}), by inductive hypothesis, Cost(V [(x, h1(x))], SX∪
{x}) ≥ 0, and therefore Cost(V, SX) ≥ 1 ≥ 0.

In summary, Cost(V, SX) ≥ 0.
This completes the induction.

Taking the contrapositive of the above lemma we obtain the following corollary.
Corollary 3. Cost(V, SX) = −∞ iff |E(V, SX)| = 0.
Lemma 8. |E(V, SX)| ≥ 2 iff Cost(V, SX) ≥ 1.

Proof. (⇐) From the first two terminal conditions in the definition of Cost, we know that if
|E(V, SX)| ≤ 1⇒ Cost(V, SX) ≤ 0 and so, Cost(V, SX) ≥ 1⇒ |E(V, SX)| ≥ 2.

(⇒) Let h1 ∈ E(V, SX), consider labeling strategy T (x) = h1(x) for all x ∈ X \S (i.e. never
abstains).

Following the definition of Cost(V, SX), we have

Cost(V, SX) ≥ min
x

(
Cost(V [(x, h1(x))], SX ∪ {x}) + 1)

)
Also, note that by Lemma 6,

E(V [(x, h1(x))], SX ∪ {x}) = E(V, SX)[(x, h1(x))] ∋ h1

Therefore, by Lemma 7, for every x, Cost(V [(x, h1(x))], SX∪{x}) ≥ 0, and thus Cost(V, SX) ≥
1.

30

Because Cost(V, SX) can have three possibilities: Cost(V, SX) =


−∞
= 0

≥ 1

, and E(V, SX)

having three possibilities: |E(V, SX)|


= 0

= 1

≥ 2

, the above two lemmas yield the following simple

corollary.
Corollary 4. Cost(V, SX) = 0⇔ |E(V, SX)| = 1.
Proposition 13. For any V , |E(V,X)| ≤ 1.

Proof. We consider three cases:

1. If V = ∅, then E(V,X) = ∅
2. If |V | = 1, then E(V,X) = V

3. If |V | ≥ 2, then E(V,X) = ∅.
This is because for any h ∈ V , consider some h′ ∈ V \ {h}. h′ trivially agrees with h on
X \ X = ∅. And so, h(∅) = h′(∅)⇒ h ̸∈ E(V,X).

In summary, in all three cases, |E(V,X)| ≤ 1.

Lemma 9. Algorithm 2 maintains the invariant that GIC(V, SX) ≤ GIC(H, ∅).

Proof. It suffices to show that GIC(V, SX) is nonincreasing throughout. In other words, after
obtaining queried sample (x, T (x)) during an iteration of the algorithm,

GIC(V [T (x)], SX ∪ {x}) ≤ GIC(V, SX) (2.3)

Denote by t = GIC(V, SX). It therefore suffices to show that, for any oracle T ′ : X\(SX∪{x})→
{−1,+1,⊥}, there exists Σ′ ⊂ X \ (SX ∪ {x}) such that:∑

x∈Σ′

c(x, T ′(x)) ≤ t ∧
∣∣E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

∣∣ ≤ 1. (2.4)

Below we construct such a Σ′ for each T ′.
First, define oracle T̃ : X \ SX → {−1,+1,⊥} as:

T̃ (z) =

{
T (x) z = x

T ′(z) z ̸= x

By the definition of GIC(V, SX), for this T̃ , there exists Σ̃ such that:∑
x∈Σ̃

c(x, T̃ (x)) ≤ t ∧
∣∣∣E(V [T̃ (Σ̃)], SX ∪ Σ̃)

∣∣∣ ≤ 1.

We now construct Σ′ by considering two cases of Σ̃ respectively:

31

1. If x ∈ Σ̃, we construct Σ′ := Σ̃\{x}. Note that
∑

x∈Σ′ c(x, T ′(x)) ≤
∑

x∈Σ̃ c(x, T̃ (x)) ≤ t,
and by the definition of T̃ ,

E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

=E(V [T̃ (x)][T̃ (Σ̃ \ {x})], SX ∪ {x} ∪ (Σ̃ \ {x}))
=E(V [T̃ (Σ̃)], SX ∪ Σ̃)

and therefore has size ≤ 1.
2. If x /∈ Σ̃, we construct Σ′ = Σ̃. Note that

∑
x∈Σ′ c(x, T ′(x)) =

∑
x∈Σ̃ c(x, T̃ (x)) ≤ t, and:

E(V [T (x)][T ′(Σ′)], SX ∪ {x} ∪ Σ′)

=E(V [T̃ (Σ̃)][T (x)], SX ∪ Σ̃ ∪ {x}) (since T ′(Σ′) = T̃ (Σ̃))

⊆E(V [T̃ (Σ̃)], SX ∪ Σ̃) (⋄)

and therefore has size ≤ 1. Here, for the last inequality (⋄), we use Lemma 6 (for when
T (x) ∈ {+1,−1}) and Lemma 5 (for when T (x) =⊥) which implies that for any set
F ⊂ H and unlabeled examples U , E(F [T (x)], U ∪ {x}) ⊆ E(F , U).

In summary, there always exists Σ′ that satisfies (2.4), and therefore (2.3) holds for every iteration
of Algorithm 2. This concludes the proof of the lemma.

2.9.2 Main Results
In this section, we prove the generalized version of results in Section 2.3, in which examples may
incur differing costs.
Lemma 10. For any V, SX such that GIC(V, SX) is finite, ∃x ∈ X \ SX such that:

max
y∈{−1,+1}

(
|E(V [(x, y)], SX ∪ {x}))| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Proof. Recall from Lemma 6 that we have: E(V [(x, y)], SX ∪ {x})) = E(V, SX)[(x, y)], it
suffices to prove that there exists x ∈ X \ SX such that

max
y∈{−1,+1}

(
|E(V, SX)[(x, y)])| − 1

)
≤ (|E(V, SX)| − 1)

(
1− c(x)

GIC(V, SX)

)
.

Also, note that |E(V, SX)| = |E(V, SX)[(x,−1)]|+|E(V, SX)[(x,+1)]|, asE(V, SX)[(x,−1)]
and E(V, SX)[(x,+1)] form a disjoint partition of E(V, SX).

And so, equivalently, it suffices to show that there exists x ∈ X \ SX such that:

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
≥ c(x)

|E(V, SX)| − 1

GIC(V, SX)

So, assume towards contradiction that the statement above does not hold. Then, we have that
∀x ∈ X \ SX :

min
(
|E(V, SX)[(x,−1)]|, |E(V, SX)|[(x,+1)]

)
< c(x)

|E(V, SX)| − 1

GIC(V, SX)
(2.5)

32

Define oracle T0 : X \ SX → {−1,+1,⊥} such that,

T0(x) = argmax
y∈{−1,1}

|E(V, SX)[(x, y)]|

With this, for every subset Σ ⊆ X \ SX such that
∑

x∈Σ c(x, T0(x)) ≤ GIC(V, SX), we have:

|E(V [T0(Σ)], SX ∪ Σ)| = |E(V, SX)[T0(Σ)]| (Lemma 6, item 2)
= |E(V, SX)| − |{h ∈ E(V, SX) : ∃x ∈ Σ, h(x) ̸= T0(x)}|

(Set algebra)

≥ |E(V, SX)| −
∑
x∈Σ

|E(V, SX)[(x,¬T0(x))]| (Union bound)

= |E(V, SX)| −
∑
x∈Σ

min
y∈{+1,−1}

|E(V, SX)[(x, y)]|

(by definition of T0(x))

> |E(V, SX)| −
∑
x∈Σ

c(x, T0(x))
|E(V, SX)| − 1

GIC(V, SX)

(by (2.5) and c(x) = c(x, T0(x)) since T0(x) ∈ {−1,+1})
≥ |E(V, SX)| − (|E(V, SX)| − 1) = 1,

In summary, the constructed oracle T0 is such that for any Σ ⊆ X\SX such that
∑

x∈Σ c(x, T0(x)) ≤
GIC(V, SX), |E(V [T0(Σ)], SX ∪ Σ)| > 1. Therefore, ΓV,SX (GIC(V, SX)) = FALSE, which
contradicts the definition of GIC(V, SX).

For the lemma below, we will consider the following Algorithm that simulates the interaction
between a query strategy and oracle.

Using this, we will aim to show that Cost upper bounds GIC.
In the following Algorithm, let us define T to be a labeling oracle that satisfies the properties

in (2.6).
And we will define U to be the output of executing the following algorithm, Algorithm 8,

which simulates the interaction between a specific label query strategy and the oracle T before a
stopping criterion is reached.

Algorithm 8 Simulation process on letting T interacting with a targeted label query strategy

U ← ∅
while U ̸= X \ SX and

∑
x∈U c(x, T (x)) ≤ k do

Choose example:
x = argminx∈X\(SX∪U) maxy∈{−1,+1,⊥} c(x, y)+Cost

(
V [T (U) ∪

{
(x, y)

}
], SX ∪ U ∪ {x}

)
U ← U ∪ {x}

return U

33

Lemma 11. For any V ⊂ H and SX ⊂ X ,

GIC(V, SX) ≤ Cost(V, SX)

Proof. Let ϵ > 0 and k = GIC(V, SX)− ϵ.
By the definition of GIC, ΓV,SX (k) = FALSE. That is:

∃T : X \SX → {−1,+1,⊥} ,∀Σ ⊆ X \SX ,
∑
x∈Σ

c(x, T (x)) ≤ k ⇒
∣∣E(V [T (Σ)], SX ∪ Σ)

∣∣ ≥ 2

(2.6)
With Algorithm 8, we first claim that

∑
x∈U c(x, T (x)) > k. Suppose not, we have

∑
x∈U c(x, T (x)) ≤

k.
By the stopping criterion of Algorithm 8, we must have that U = X \ SX .
In this case, by (2.6), |E(V [T (U)], SX ∪ U)| = |E(V [T (U)],X)| ≥ 2.
However, this contradicts Proposition 13 that for any V , |E(V [T (U)],X)| ≤ 1. Therefore,∑
x∈U c(x, T (x)) > k.
Denote by x1, . . . , xm the sequence of m examples queried by Algorithm 8. Under this

notation, we have that U = {x1, . . . , xm}.
Also, for i ∈ {0, 1, . . . ,m}, denote by Ui := {x1, . . . , xi} the set of first i examples queried,

with the convention that U0 := ∅.
We make two observations:

• For any i ∈ {0, 1, . . . ,m− 1}, by the loop condition,
∑

x∈Ui c(x, T (x)) ≤ k, therefore
by (2.6),

∣∣E(V [T (Ui)], SX ∪ Ui)
∣∣ ≥ 2, and therefore, by the definition of Cost,

Cost(V [T (Ui)], SX∪Ui) = min
x∈X\(SX∪Ui)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (Ui)][(x, y)], SX ∪ Ui ∪ {x})

)
(2.7)

• T (xm) ̸=⊥. This is because
∑m−1

i=1 c(xi, T (xi)) ≤ k <
∑m

i=1 c(xi, T (xi)), implying that
c(xm, T (xm)) > 0. Furthermore, by our notation that c(x, y) = c(x)1(y ̸=⊥),

m−1∑
i=1

c(xi, T (xi)) + c(xm,−1) =
m−1∑
i=1

c(xi, T (xi)) + c(xm,+1) > k.

by (2.6), we also have
∣∣E(V [T (U)], SX ∪ U)

∣∣ ≥ 2 and by Lemma 8, Cost(V [T (U)], SX ∪
U) ≥ 1.

34

Based on these observations, we have:

Cost(V, SX) = min
x∈X\SX

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [(x, y)], SX ∪ {x})

)
(Eq. 2.7 with i = 0)

= max
y∈{−1,+1,⊥}

(
c(x1, y) + Cost(V [(x1, y)], SX ∪ {x1})

)
(Eq. 3)

≥ c(x1, T (x1)) + Cost(V [T (U1)]), SX ∪ U1)

= c(x1, T (x1)) + min
x∈X\(SX∪U1)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (U1)][(x, y)], SX ∪ U1 ∪ {x})

)
(Eq. 2.7 with i = 1)

≥ ...

≥
m−1∑
i=1

c(xi, T (xi)) + Cost(V [T (Um−1)], SX ∪ Um−1)

(Repeated application of Eqs. 2.7 and 3)

=
m−1∑
i=1

c(xi, T (xi))+

min
x∈X\(SX∪U1)

max
y∈{−1,+1,⊥}

(
c(x, y) + Cost(V [T (Um−1)][(x, y)], SX ∪ Um−1 ∪ {x})

)
≥

m−1∑
i=1

c(xi, T (xi)) + max
y∈{−1,+1}

(
c(xm, y) + Cost(V [T (Um−1)][(xm, y)], SX ∪ Um−1 ∪ {xm})

)
(Eq. 3 and restricting the choice of y)

≥
m∑
i=1

c(xi, T (xi)) > k

Here, in the second to last inequality, we use the following observations: first, for any c(xm,−1) =
c(xm,+1) = c(xm, T (xm)); second, |E(V [T (Um−1), SX ∪Um−1])| ≥ 2, which implies that there
is at least one y ∈ {−1,+1} such that |E(V [T (Um−1)[(x, y)], SX ∪ Um−1 ∪ {x}])| ≥ 1 (recall
Lemma 6), and therefore

Cost(V [T (Um−1)[(x, y)], SX ∪ Um−1 ∪ {x}]) ≥ 0.

In summary, for any ϵ > 0, we have shown that Cost(V, SX) ≥ GIC(V, SX)− ϵ. The lemma
statement follows by letting ϵ ↓ 0.

Theorem 5. If Algorithm 2 interacts with a labeling oracle T , then it incurs total query cost at
most GIC(H, ∅) ln |H|+ 1. Furthermore, if Algorithm 2 interacts with an identifiable oracle T
consistent with some h∗ ∈ H, then it identifies h∗.

Proof. First, we show that Algorithm 2 terminates and correctly identifies h∗ when interacting
with an identifiable oracle of h∗. Its termination can be seen by the fact that the size of SX is
increasing by 1 for each iteration and SX ̸= X is part of the stopping criterion.

We now show that when it returns, E(V, SX) = {h∗}. This can be seen by:

35

• As T is an identifiable oracle that is consistent with h∗, the algorithm maintains the invariant
that h∗ ∈ E(V, SX).
This is because if at some point h∗ ̸∈ E(V, SX), then exists some h′ ̸= h∗ in V = H[T (SX)]
such that h′(X \ SX) = h∗(X \ SX). Then, we combine with that h′ ∈ H[T (SX)] to get
that h′ ∈ H[T (SX) ∪ h∗(X \ SX)] ⊆ H[T (SX) ∪ T (X \ SX)] = H[T (X)], which is in
contradiction with that T is an identifiable oracle.

• We claim that when it returns, |E(V, SX)| = 1. Since the E-VS always contains h∗, we
must have |E(V, SX)| ≥ 1.
And so, if it returns, we have the condition of the while loop being false, i.e., we either
have |E(V, SX)| < 2 =⇒ |E(V, SX)| = 1, or SX = X =⇒ |E(V, SX)| = 1 thanks to
Proposition 13.

Next we bound the query cost complexity of Algorithm 2, when interacting with any labeling
oracle.

Denote Vi and Si as the value of V and S at the i-th iteration, and denote (xi, yi) by the
example (x, y) obtained at the i-th iteration. We denote (Si)X as the unlabeled part of Si.

Therefore, Vi+1 = V [(xi, yi)] and Si+1 = Si ∪
{
(xi, yi)

}
.

We claim that

(
∣∣E(Vi+1, (Si+1)X)

∣∣− 1) ≤ (
∣∣E(Vi, (Si)X)∣∣− 1) · exp

(
− c(xi, yi)

GIC(H, ∅)

)
. (2.8)

To see this, we consider two cases:

1. If yi ∈ {−1,+1}, then applying Lemma 10 with V = Vi, SX = (Si)X , x = xi, we have

(|E(Vi+1, (Si+1)X)| − 1) ≤ max
y∈{−1,+1}

(∣∣E(Vi[(xi, y)], (Si+1)X)
∣∣− 1

)
≤(|E(Vi, (Si)X)| − 1)

(
1− c(xi)

GIC(Vi, (Si)X)

)
(Lemma 10 since yi ∈ {−1,+1})

≤(|E(Vi, (Si)X)| − 1)

(
1− c(xi)

GIC(H, ∅)

)
(by Lemma 9, GIC(Vi, (Si)X) ≤ GIC(H, ∅))

≤(
∣∣E(Vi, (Si)X)∣∣− 1) · exp

(
− c(xi)

GIC(H, ∅)

)
.

(since 1− x ≤ e−x)

2. If yi =⊥, c(xi, yi) = 0. Therefore, to show (2.8), it suffices to show thatE(Vi+1, (Si+1)X) ⊆
E(Vi, (Si)X). This follows from Lemma 5.

To summarize, (2.8) holds for each iteration i.
Consider the last iteration i0 before the termination condition is reached; note that by the

termination criterion, the penultimate E-VS is such that |E(Vi0 , (Si0)X)| ≥ 2. We now upper

36

bound the total cost up to iteration i0 − 1. By repeatedly using (2.8) for i = 1, . . . , i0 − 1, we
have:

1 ≤
∣∣E(Vi0 , (Si0)X)∣∣− 1 ≤

∣∣E(H, ∅)∣∣ · exp(−∑i0−1
i=1 c(xi, yi)

GIC(H, ∅)

)
Therefore,

∑i0−1
i=1 c(xi, yi) ≤ GIC(H, ∅) ln |H| (since E(H, ∅) = H) and:

i0∑
i=1

c(xi, yi) = c(xi0 , yi0) +

i0−1∑
i=1

c(xi, yi) ≤ GIC(H, ∅) ln |H|+ 1.

2.10 Proofs for Subsections 2.3.1 and 2.3.2

2.10.1 Comparing VS versus E-VS

Consider the case when H is linear: H =
{
hw(x) = sign(wTx)|w = [w′, 1], w′ ∈ [0, 1]d

}
. We

observe that, for any set of points X , X divide polytope W =
{
w = [w′, 1] : w′ ∈ [0, 1]d

}
into

clusters, where every point in the cluster has the same labeling of X . Thus, without loss of
generality, we can treat each cluster formed by X as an element ofH, andH comprises of all the
clusters that lie in polytope W . In this setting, the (conventional) version space is a single convex
polytope, which we may access by sampling using any polytope sampler. The structural lemma
below illustrates that, by contrast, the E-VS can be a more complicated object to access.
Proposition 14. There exists an instance space X ⊂ Rd and query responses S such that the
resultant E-VS is a union of eΩ(d) disjoint polytopes.

Proof. Defining the Instance Space: We construct a X that allows us to easily reason about the
E-VS. Consider any 3n positive reals ajk for j ∈ [n], k ∈ [3] such that 0 < a11 < a12 < a13 < ... <
an3 < 1. Define xijk = [−ei, ajk] for i ∈ [d]. As a concrete example, x123 = [−1, 0, ..., a32].

Define the instance space to be X =
{
xijk|i ∈ [d], j ∈ [n], k ∈ [3]

}
. With X defined, we see

the clusters of W formed by X (referred to as cells subsequently) consists of: ×di=1I , where
I =

{
[0, a11], [a

1
1, a

1
2], [a

1
2, a

1
3], ..., [a

n
3 , 1]

}
.

Now, define the interaction history S =
{
(xijk,⊥)|i ∈ [d], j ∈ [n], k = 2

}
. Note that then

SX =
{
xijk|i ∈ [d], j ∈ [n], k = 2

}
.

Characterizing the E-VS: We first claim that for any cell with one of its faces a subset
of a hyperplane in SX cannot be in the E-VS. Specifically, if there ∃i ∈ [d], j ∈ [n] such that
wi ∈ [aj1, a

j
3], then the cell w belongs to is not in the E-VS.

To see this, WLOG wi ∈ [aj1, a
j
2]; the case of wi ∈ [aj2, a

j
2] can be analyzed analogously.

Now, construct w̃ = [w1, ..., wi−1, w̃i, wi+1, ...1], for some w̃i ∈ [aj2, a
j
3]. Note that by con-

struction, w′ does not lie in the same cell as w. Then, we see that sign(w′Tx) = sign(wTx),
∀x ∈ X \

{
xij2

}
. And so, since X \SX ⊆ X \

{
xij2

}
, we have that w(X \SX) = w′(X \SX)⇒

w ̸∈ E(V, SX).

37

This means that only the set of disjoint cells ×di=1I
′, where I ′ =

{
[0, a11], [a

1
3, a

2
1], . . . , [a

n
3 , 1]

}
,

can be in the E-VS. Next, we will argue that the E-VS is all of ×di=1I
′.

Consider a classifier corresponding to some cell c ∈ ×di=1I
′. Consider any other cell classifier

corresponding to cell c′ ∈ ×di=1I . Since c ̸= c′, there must be at least one dimension, WLOG i,
such that c and c′ belong to different sub-intervals, when projected onto coordinate i.

We know that along dimension i, c’s sub-interval is either of the form [0, a11], [a
j
3, a

j+1
1] for

some j, or [an3 , 1].
We see that in the first case, xi11 ∈ X \ SX must separate c and c′, since c(x) = +1 ̸= −1 =

c′(x). Analogously, in the second case, either xij3 or xi(j+1)1 must separate c and c′ (with both such
points are in X \ SX). Finally, in the last case, xin3 ∈ X \ SX must separate c and c′.

This shows that all of ×di=1I
′ is in the E-VS. And so, since I ′ comprises of n + 1 disjoint

intervals, there are in total (n+ 1)d number of disjoint cells, corresponding to distinct classifiers.

2.10.2 E-VS Membership Check
The key idea behind the membership check h ∈ E(V, SX) (lines 2 to 4 in Algorithm 3) is that
we want to find a hypothesis ĥ in V , different from h, that agrees on the rest of the unqueried
samples. If we succeed in finding this ĥ, then this means that even if all of the remaining unqueried
samples X \ SX is labeled, h and ĥ cannot be distinguished from each other. This implies that h
is non-identifiable and does not belong to the E-VS.
Proposition 15. Given some h ∈ V and access to a C-ERM oracle, lines 2 to 4 in Algorithm 3
verifies whether h ∈ E(V, SX), with one call to the oracle.

Proof. Firstly, note that by definition, ∀h, h′ ∈ H, h ̸= h′ ⇒ h(X) ̸= h′(X).
Recall that in Algorithm 3, S⊥ denotes the set of examples in SX on which the labeler abstains.

Now, we rewrite the definition of h ∈ V not being in the E-VS:

h ̸∈ E(V, SX)
⇔∃h′ ∈ V \ {h} , h′(X \ SX) = h(X \ SX)
⇔∃h′, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(X) ̸= h(X) ∧ h′(X \ SX) = h(X \ SX)
⇔∃h′, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(S⊥) ̸= h(S⊥) ∧ h′(X \ SX) = h(X \ SX)
⇔∃h′,∃x⊥ ∈ S⊥, h′(SX \ S⊥) = h(SX \ S⊥) ∧ h′(x⊥) ̸= h(x⊥) ∧ h′(X \ SX) = h(X \ SX)

And so, we may check for the existence of such a h′ with one C-ERM call onH, given some
h ∈ V , using the following program:

min
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ X \ S⊥

This may be emulated by defining data Z1 =
{
(x,−h(x))

}
x∈S⊥ , Z2 =

{
(x, h(x))

}
x∈X\S⊥ ,

and calling C-ERM on Z1, Z2 to compute ĥ ∈ argmin
{
err(h′, Z1) : h

′ ∈ H, err(h′, Z2) = 0
}

.

38

Figure 2.2: Geometric view of the linear hypothesis class in dual space (as in Tong and Koller
[278]), with examples as hyperplanes and hypotheses as cells, illustrates: (i) Abstention on
example x1 (hyperplane in black) renders hypotheses wi1 and wi2 (cells of the same color) in-
distinguishable from each other. In this way, abstentions can carve up the VS (single polytope)
into multiple polytopes, as in Proposition 3. (ii) In the approximate identifiability game (Sub-
section 2.4.1), if x1 is not in pool Xm, then it induces clusters of merged {wi1, wi2} for i ∈ [4].
The goal then is to only identify up to clusters (e.g. the blue cluster of {w21, w22}), instead of the
exact hypothesis (e.g. cell w21).

It can be now seen that: if C-ERM outputs ĥ ̸= h, then h ̸∈ E(V, SX); otherwise, ĥ = h and
therefore h ∈ E(V, SX).

2.10.3 Contrasting E-VS bisection Algorithm with VS bisection

2.10.3.1 Proof of Theorem 2

In this section we prove Theorem 2, showing an exponential gap between our new E-VS bisection
algorithm and the conventional VS bisection algorithm.

Setup: Our example will revolve around a hybrid hypothesis class of thresholds and in-
tervals. Let n ≥ 8. Our instance space X = X ∪ X2, where X1 =

{
1
2n
, . . . , 2n−3

2n

}
and

X2 =
{
1 + 3

2n
, . . . , 1 + 2n−1

2n

}
. Note that |X | = 2(n− 1).

Let fi : (−∞, 1]→ {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i−1)/n, i/n])
for i ∈ [n− 1].

Let f ′i : (1,+∞)→ {+1,−1} denote thresholds, f ′i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].

DefineH =
⋃n−1
i=1

{
hfi,f ′i , hfi,f ′i+1

}
, where hf,f ′(x) =

{
f(x), x ≤ 1

f ′(x), x > 1
.

2.10.3.2 Algorithm Analysis

Under the paired interval-threshold setup, we compare the algorithms based on the number of
samples queried before termination.

In the case of the VS-bisection algorithm, it queries the point that maximally bisects the VS
each time. Accordingly, the algorithm terminates when there is no point that can split the VS.
This arises either because the set of unqueried points is non-empty but the VS agrees on all their
labels, or the set of unqueried points is empty.

39

While for the E-VS bisection algorithm, it terminates either when the E-VS is of cardinality
zero or of one.
Lemma 12 (E-VS bisection algorithm query complexity). In the paired interval-threshold hypoth-
esis learning setting, the E-VS algorithm incurs O(log n) sample complexity against any labeling
oracle.

Proof. Define ρ(E(V, SX), x) = miny∈{+1,−1} |E(V, SX)[x, y]|.

1. LetU2 ⊆ X2 denote the unlabeled part ofX2 such thatU2 =
{
x : ρ(E(V, SX), x) > 0, x ∈ X2

}
(i.e. x ∈ X2 is in the disagreement region formed by the current E-VS).

Definition 12. A point x ∈ U2 is balanced if there exists a three-point segments with
x2i + 2/n = x2i+1 + 1/n = x2i+2, x2j + 2/n = x2j+1 + 1/n = x2j+2 such that x2i+2 < x < x2j ,
where points x2i , x

2
i+1, x

2
i+2 ∈ U2, and x2j , x

2
j+1, x

2
j+2 ∈ U2.

We have that, if:
a) x is a balanced point
b) all queried points thus far have been in X2, then:

ρ(E(V, SX), x) ≥ 2 = max
x′∈X1

ρ(E(V, SX), x
′)

This follows because if no points have been queried in X1, x2i , x
2
i+1, x

2
i+2 ∈ U2 implies that

hfi+1,f ′i+1
and hfi+1,f ′i+2

∈ E(V, SX). Similarly, x2j , x
2
j+1, x

2
j+2 ∈ U2 implies that hfj+1,f ′j+1

and hfj+1,f ′j+2
∈ E(V, SX).

Since x2i+2 < x < x2j , the two pairs of models disagree on x (in the second coordinate).
And so, if there is some point x ∈ U2 that is balanced, and all points queried thus far
have been in X2, then the E-VS algorithm will query a point in U2 (we assume that in a
tie-breaker, the E-VS algorithm will select the point in X2).

2. From Lemma 13, we have that the E-VS algorithm will query some point in U2 ⊆ X2 so
long as |U2| ≥ 7.
The number of binary labeled samples needed to reach |U2| < 7 is at most log n. This
because abstention decreases |U2| by 1, while a binary label removes ⌊|U2|/2⌋ points from
U2.
And so, since |U2| = n, there can be at most log n binary labeled examples before |U2| < 7.

3. It remains to count the number of binary label samples needed when |U2| < 7 before the
interaction finishes.
We note that if |U2| < 7, then the size of the |E(V, SX)| ≤ 2 · 6 + 2 (since it always holds
that |E(V, SX)| ≤ 2|U2|+ 2).
As each binary label point removes at least one hypothesis from the E-VS, at most 11 more
binary label points are needed.
In summary, we have that the E-VS algorithm incurs O(log n) samples.

Below are the deferred lemmas:

Lemma 13. If |U2| ≥ 7, then the E-VS algorithm will query some point x ∈ U2 ⊆ X2.

40

Proof. We will show the following properties about U t
2, which is U2 at the tth step.

If |U t
2| ≥ 7, then:

i) U t
2 is of the form {a1 : b1} ∪ {b2 : a2}, where b1 ≤ b2 ({a1 : b1} is used to abbreviate{

a1, a1 + 1/n, ..., b1 − 1/n, b1
}

).
ii) Some x ∈ {b1, b2} satisfies the following: ||

{
x′ ∈ U t

2 : x
′ < x

}
|−|
{
x′ ∈ U t

2 : x
′ > x

}
|| ≤

1.
iii) No points x1, ..., xt−1 will have been queried from X1.
iv) E-VS will query some point x ∈ U t

2 at step t.
We will see that, at step t, proving property i), ii), iii) proves iv), which is the desired result.
We prove by induction on j, the number of queries, that i), ii), iii) and thus iv) holds.
Base Case: When j = 0, no points have been queried from X1. And so, properties i)-iii) are

true with U2 =
{
1 + 3/2n : 1 + (2n− 1)/2n

}
. Since n ≥ 8, |U2| = |X2| = 7, and so Lemma 14

applies, meaning iv) is satisfied.
Induction Step: Suppose that if |U j

2 | ≥ 7, properties i)-iv) holds for time step j = 0, ..., k− 1.
Now consider time step j = k. Suppose |Uk

2 | ≥ 7.
This means that, at time step k − 1, |Uk−1

2 | ≥ |Uk
2 | ≥ 7 (since the disagreement region only

decreases in size).
From induction hypothesis, we know Uk−1

2 satisfies i)-iv). Let Uk−1
2 = {a′1 : b′1} ∪ {b′2 : a′2}.

Since iv) holds at time j = k − 1 (xk−1 ∈ X2), combined with that iii) applies at time k − 1
(x1, ..., xk−2 ∈ X2) implies property iii) holds at time j = k (x1, ..., xk−1 ∈ X2)).

Since iv) is satisfied at time step k − 1, we may WLOG xk−1 = b′1. There are two cases to
consider:

• If a label is given for xk−1, then we know that Uk
2 is either

{
a′1 : b

′
1 − 1/n

}
or {b2 : a2}, in

either case, both i) and ii) are satisfied at step j = k.
• If an abstention is given for xk−1, then we know that Uk

2 =
{
a′1 : b

′
1 − 1/n

}
∪ {b′2 : a′2},

which proves i).
Since xk−1 = b′1, we have that || {a′1 : b′1} | − | {b′2 : a′2} || ≤ 1.
If | {b′2 : a′2} | ≥ | {a′1 : b′1} |, picking b′2 satisfies the property, else picking b′1−1/n satisfies
the property. And so, property ii) for Uk

2 holds.

Finally, since iii), i) and ii) holds for Uk
2 , using Lemma 14, we have that xk ∈ X2, which

means that iv) holds at j = k.

Lemma 14. If |U t
2| ≥ 7, and i)-iii) holds at step t: the E-VS algorithm will query one of

b1, b2 ∈ U t
2.

Proof. Due to ii), we know at least one of b1, b2 satisfies ||
{
x′ ∈ U t

2 : x
′ < x

}
|−|
{
x′ ∈ U t

2 : x
′ > x

}
|| ≤

1.
WLOG let this be b1 (assume that b1 wins the E-VS algorithm tie-breaker if both b1, b2 satisfy

this condition). We claim the E-VS algorithm will query b1.

• For points in X2 \ U t
2, they are not in the disagreement region and ρ(E(V, SX), x) = 0,

which means they will not be queried.

41

• For points in U t
2, we have the following observation.

Due to i) and iii):

ρ(E(V, SX), x) = min(2 · |
{
x′ ∈ U t

2 : x
′ < x

}
|+ 1, 2 · |

{
x′ ∈ U t

2 : x
′ > x

}
|+ 1)

= 2 ·min(|
{
x′ ∈ U t

2 : x
′ < x

}
|, |
{
x′ ∈ U t

2 : x
′ > x

}
|) + 1

From this, we can see that from ii),

b1 = argmax
x∈Ut2

min(|
{
x′ ∈ U t

2 : x
′ < x

}
|, |
{
x′ ∈ U t

2 : x
′ > x

}
|)

= argmax
x∈Ut2

ρ(E(V, SX), x)

• For points x ∈ X1.
We know that |U t

2| ≥ 7⇒ min(|
{
x′ ∈ U t

2 : x
′ < b1

}
|, |
{
x′ ∈ U t

2 : x
′ > b1

}
|) ≥ 3.

Due to i), we know that
{
x′ ∈ U t

2 : x
′ < b1

}
and

{
x′ ∈ U t

2 : x
′ > b1

}
are contiguous. And

so, one can find three-point segments to the left and right of b1, which means that b1 is
balanced.
And so, ρ(E(V, SX), b1) ≥ 2 = maxx∈X1 ρ(E(V, SX), x).

In conclusion, b1 is the point that maximally bisects the E-VS out of all unqueried points, and
will thus be queried by the E-VS bisection algorithm.

Remark 5. In closing, we note that the construction is nontrivial in that the same result does not
hold if the hypothesis class is simplyH =

{
hf1,f ′1 , . . . , hfn−1,f ′n−1

}
.

In this case, the E-VS-bisection algorithm will also have a linear label complexity, as absten-
tion from U2 does not result in a reduction in the size of E-VS. For a formal justification of this,
please refer to the proof of Proposition 1
Theorem 6. There exists a H and X such that the number of labeled examples queried by the
E-VS bisection algorithm is O(log |X |), while the VS bisection algorithm queries Ω(|X |).

Proof. From Lemma 12, we have shown the first part of the theorem. It remains to analyze the
VS bisection query complexity.

VS bisection algorithm complexity: By contrast, we show that there exists a labeling oracle
that induces Ω(n) sample complexity from the VS algorithm.

This labeling oracle T is as follows:
i) T (x) =⊥ for all x ∈ X2

ii) T (x) = −1 for all x ∈ X1

Under T , we have that labeling each point x ∈ X1 removes two hypotheses from the version
space at any step in time. Namely, labeling x1i = [2i−1

2n
, 0] removes hfi,f ′i , hfi,f ′i+1

.
And so, |X1| − 1 samples x ∈ X1 will be queried. Because if there exists two unqueried points

x1i , x
1
j ∈ X1, then hfi,f ′i and hfj ,f ′j are both in the VS. This means that the disagreement region is

non-empty, and in particular contains both x1i , x
1
j .

42

Since each x ∈ X1 is given a binary label by T , the VS bisection algorithm incurs cost n− 1.
We note that in the end the VS will be of size 2, but the remaining sample in X1 cannot distinguish
between the two.

We may also obtain a corresponding result for an identified setting, by tweaking the above
setting slightly. In this setting, we still find that the VS-bisection algorithm still incurs an
exponentially larger sample complexity relative to E-VS bisections.
Proposition 16. There exists aH, X , and a labeling oracle that leads to identification, and the
number of labeled examples queried by the E-VS bisection algorithm is O(log |X |), while the VS
bisection algorithm incurs Ω(|X |) samples.

Proof. Setup: Let X = X1 ∪ X2 ∪ {x̃}, where X1 =
{
x11, ..., x

1
n−1
}
=
{

1
2n
, ..., 2n−3

2n

}
, X2 ={

x21, ..., x
2
n−1
}
=
{
1 + 3

2n
, ..., 1 + 2n−1

2n

}
, and x̃ = − 1

2n
. So |X | = 2(n− 1) + 1.

Let the fi : [−1, 1] → {+1,−1} denote intervals of length 1/n, fi(x) = 1(x ∈ [(i −
1)/n, i/n]) for i ∈ {0, 1, . . . , n− 1}.

Let f ′i : (1, 2]→ {+1,−1} denote thresholds, f ′i(x) = 1(x ≥ 1 + i/n) for i ∈ [n].

DefineH =
⋃n−1
i=1

{
hfi,f ′i , hfi,f ′i+1

}
∪
{
hf0,f ′1

}
, where hf,f ′(x) =

{
f(x), x ≤ 1

f ′(x), x > 1
.

Ensuring identifiability: Note that obtaining labeled example (x̃,+1) identifies h̃ := hf0,f ′1 .
E-VS bisection algorithm complexity:
Note that for any V, SX , ρ(E(V, SX), x̃) ≤ 1.
And so, in the case analysis of Lemma 14, we again find that as long as |U2| ≥ 7, the E-VS

algorithm will query some point x ∈ U2.
Thus, the E-VS algorithm will query at most log n labeled samples before reaching |U2| ≤ 6,

at which point the E-VS contains at most 2 · 6 + 2 hypotheses and will thus require at most 13
more labeled examples before identification.

VS bisection algorithm complexity: We show that there exists an identifiable labeling oracle
that induces Ω(n) samples with the VS algorithm.

This labeling oracle T goes as follows:
i) T (x) =⊥ for all x ∈ X2

ii) T (x) = −1 for all x ∈ X1

iii) T (x̃) = 1

It is clear thatH[T (X)] =
{
h̃
}

and T is an identifiable oracle.
The main observation is that while |SX ∩ X1| < |X1| − 1, if a point in X \ X2 is queried, then

it will be a point in X1, and not x̃.
This is because x̃ for any V, SX , is such that ρ(E(V, SX), x̃) = 1. While for any x ∈ X1 \ SX ,

ρ(E(V, SX), x) = 2.
In more detail, if x1i ̸∈ SX , then hfi,f ′i , hfi,f ′i+1

∈ V [S], whose label for x1i is [1,−1]. And
when |SX ∩ X1| < |X1| − 1, there exists at least two other models in V [S] that label x1i with
[−1,−1].

Hence, since T never abstains on x ∈ X1, |X1| − 1 labels will be given, at which point the
disagreement region is still non-empty. Then, the algorithm either queries the x̃ or the remaining
element in X1 depending on the tie-breaker, both of which identifies h̃.

43

2.10.4 Comparison with EPI-CAL
EPI-CAL [146] is a “mellow” active learning algorithm that can handle labeler abstention in a
streaming setting, wherein the learner cannot control the query order (unlike Algorithm 2), and
performs PAC learning [282]. Despite the differences between this and our pool-based setup, we
can nevertheless analyze what happens when the labeler can strategically abstain. Our finding is
that a strategic labeler can again hold up learning and induce an arbitrarily large query complexity,
when the data pool size is not finite and the query order cannot be decided by the learner. This
may be evidenced in the simple setting of learning thresholds, where we note that the stream
samples are drawn i.i.d, from a continuous distribution satisfying a standard regularity condition.

In particular, we find that in the infinite-support case, even if the data stream is made up of i.i.d
samples, EPI-CAL can incur large sample complexity. This is because the learner experiences an
arbitrarily large “hold-up”, which may be evidenced even in the simple threshold example in the
lemma below.
Proposition 17. Fix some constant ϵ > 0. Consider a PAC-learning task, where the learner seeks
to learn a 1D threshold with at most ϵ−risk with respect to continuous distribution D. For any m
i.i.d samples with m sufficiently large and D probability density bounded away from 0, there is
a labeling strategy under which EPI-CAL queries Ω(

√
m) labeled samples, with probability at

least 1/2.

Proof. Let h∗ = h0 for the 1D threshold hypothesis classH =
{
hθ = 1(x ≥ θ) : θ ∈ [0, 1]

}
.

Let D be some continuous distribution with supp(D) = [0, 1]. Let X1, .., Xm denote the m
i.i.d samples from D. By assumption, suppose the pdf of D is lower bounded by κ > 0, i.e.
Pr(x) ≥ κ, ∀x ∈ supp(D).

Then, Prx∼D(x ∈ (ϵ, 1]) = β ≥ (1− ϵ)κ = Ω(1).
Under m ≥ 6, consider some β0 with β0 ≤

ln 4
3

2m
. Since the CDF is continuous, there exists r

such that Prx∼D(x ≤ r) < β0, which is such that:

Pr(∀i ∈ [m], xi ̸∈ [0, r]) ≥ (1− β0)m ≥ exp(−2mβ0) ≥
3

4

using that 1− x ≥ exp(−2x) when x ∈ [0, 1/2].
Define r̂ = min(r, ϵ), which also satisfies the condition above since [0, r̂] ⊆ [0, r].
Now, we proceed to defining the labeling strategy:

1. Let M =
√
m. Using the continuity of Prx∼D(x < r) in r, we can find 1 = r1 > ... >

rM > rM+1 with rM+1 = ϵ, such that:

Prx∼D(x ∈ [ri+1, ri]) =
β

M

Let Si = (ri+1, ri] for i ∈ [M].
2. We make the observation that if EPI-CAL has only seen points from Si1 , ..., Sij , then any

point xk ∈ Sk with k > max(i1, ..., ij) will be accepted (bigger index means close to θ∗).
This is because with labeled points only from Si1 , ..., Sij , the resultant VS is a superset of
[0, rmax(i1,...,ij)+1].
And so, xk is in the disagreement region, since xk ≤ rmax(i1,...,ij)+1.

44

3. Now, we describe the sequential labeling strategy.
a) Abstain on the region: [r̂, ϵ].
b) Label if Xi ∈ [0, r̂). Note that labeling [0, r̂) ensures that ϵ−PAC learning is possible.
For Xi ∈ (ϵ, 1], sequentially label as follows:
i) Divide the m samples into M stages of M samples for M =

√
m.

ii) At the ith stage, abstain if on the jth sample of this stage, Xij ̸∈ Si.
iii) The first time sample Xik for k ∈ [M] is such that Xik ∈ Si, label it and abstain for the
rest of this stage.
Using our previous point, we know that any point Xik ∈ Si labeled will be accepted by
EPI-CAL, since i is increasing.
Intuitively, this labeling strategy slows down learning by only labeling points that shrink
the VS by a little.

4. To analyze the total number of labeled points, let random variable Zi denote whether a point
is labeled at stage i. It is Bernoulli with probability:

p = Pr(∃j ∈ [M], Xij ∈ [ri+1, ri]) = 1− (1− β/M)M ≥ 1− exp(−β) = Ω(1)

Using one-sided Chernoff’s for Binomial random variables for M sufficiently large (i.e. for
M ≥ 8 ln 4

p
) with p constant, we have:

Pr(
M∑
i=1

Zi ≤Mp/2) ≤ exp(−Mp/8) ≤ 1/4

5. And so, using union bound, we have that:

Pr(xi ̸∈ [0, r̂],∀i ∈ [m] ∧
M∑
i=1

Zi ≥Mp/2)

≥ 1− Pr(∃i ∈ [m], xi ∈ [0, r̂])− Pr(
M∑
i=1

Zi < Mp/2)

≥ 1− 1/4− 1/4

= 1/2

And so, the probability that all m samples are seen (i.e. the interaction does not terminate
before all m), and that at least Mp/2 = Ω(

√
m) samples are labeled and accepted by

EPI-CAL occurs with probability at least 1/2.

Remark 6. We remark that:
• Consider when there is no labeler abstention. Let Z ′i = 1(xi ≤ minj∈[i−1] xj). Then we see

that the expected sample complexity is:

E[
m∑
i=1

Z ′i] =
m∑
i=1

1/i = O(logm)

45

Thus, we see that this is yet another setting, where labeler abstention can significantly
increase the sample complexity.

• From the Erdős–Szekeres theorem, the Θ(
√
m) result is tight in expectation.

2.11 Additional Material on Section 2.4

In this section, we examine a few ways in which the labeler (e.g. a human worker) may be
imperfect in both labeling and strategy, and extend our guarantees to such settings. We elaborate
on the content covered in Section 2.4.

Note that in this paper, we make inroads into understanding the minimax strategies of the
learning game. Analyzing minimax strategies is the canonical way of characterizing games,
studying how players (e.g. a data provider company) may play rationally in the learning game.
However, it has been recognized that players with bounded rationality (e.g. a human worker) may
play behavioral strategies that are not minimax-optimal [53]. And so, we consider allow for the
labeler labeling in a way that is sub-optimal.

2.11.1 Relaxed Learning Goal
In the previous section, it is assumed that the learner is interested in exact learning some h∗. One
may consider the relaxed goal of PAC learning some ĥ such that Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ w.p.
greater than 1− δ, for some distribution D supported on X .

Reduction: Then, following the standard realizable, PAC learning (with VC class) reduc-
tion [283], one may reduce the PAC setting to the exact learning by samplingm = O(V C(H)

ϵ
(ln 1

ϵ
+

ln 1
δ
)) i.i.d samples from D.
More precisely, let this random subset be Xm ⊆ X . Xm partitions H into clusters of

equivalent hypotheses. If we let the projection ofH on Xm beH|Xm =
{
h(Xm) : h ∈ H

}
, then

a cluster C(y) of equivalent hypotheses is defined C(y) =
{
h(Xm) = y : y ∈ H|Xm , h ∈ H

}
.

The reduction guarantees that, with probability better than 1− δ over the samples Xm, iden-
tification of h∗’s cluster C(h∗(Xm)) is sufficient for ϵ−PAC learning. Xm is such that w.h.p
diam(C(h∗(Xm)) ≤ ϵ, where diameter of a setH is defined as diam(H) = maxh,h′∈H Prx∼D(h(x) ̸=
h′(x)). With this, picking any one model ĥ ∈ C(h∗(Xm)) satisfies Prx∼D(ĥ(x) ̸= h∗(x)) ≤ ϵ,
and PAC learning thus reduces to identifying cluster C(h∗(Xm)).

2.11.1.1 Approximate Identification Game

Using this reduction, we may analyze the query complexity of PAC learning as an exact learning
game, where the learner chooses the data pool to be Xm (in place of X). The goal is now only
approximate identifiability, and identifying the cluster h∗ belongs to, C(h∗(Xm)).

We demonstrate how our E-VS definition can be extended to develop a near-optimal algorithm
under this approximate identifiable game. Our first observation is that the original E-VS, defined
overH and Xm will no longer suffice:

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(Xm \ SX) ̸= h(Xm \ SX)

}
46

The issue is premature elimination. Consider some h ∈ H such that |C(h(Xm))| ≥ 2 with
h′ ∈ C(h(Xm)), h′ ̸= h. Then, h(Xm) = h′(Xm)⇒ ∃h′ ∈ H, h′(Xm \ ∅) = h(Xm \ ∅), which
results in the elimination of the entire C(h(Xm)) cluster at the very start. E(H, ∅) will not contain
any clusters with cardinality more than one.

To address this degeneracy, we define a modification of the E-VS, Xm-E-VS, with relaxed
elimination condition. This is a coarser E-VS, and so, we observe that we should only consider
non-identifiability with respect to hypotheses from other clusters:

EXm

(V, SX) =
{
h ∈ V : ∀h′ ∈ V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
: h′(Xm \ SX) ̸= h(Xm \ SX)

}
The added constraint of V \

{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
means that two h, h′ within the

same cluster do not render each other un-identifiable. And so, we only consider h′’s from another
cluster (that differs on Xm) that can render h (h’s cluster) un-identifiable.
Remark 7. Through this we see that either an entire cluster is in the Xm-E-VS or it is not.

We also define the global identification cost in the approximate identification game accord-
ingly:
Definition 13. GivenH and a set of unlabeled examples Xm, define the global identification cost
of version space V ⊂ H and instance set SX:

GICXm

(V, SX) = min{t ∈ N : ∀T : Xm \ SX → {+1,−1,⊥} ,

∃Σ ⊆ Xm \ SX s.t.
∑
x∈Σ

1(T (x) ̸=⊥) ≤ t ∧ |EXm

(V [T (Σ)], SX ∪ Σ)| ≤ 1}.

Under the new definitions of Xm−E-VS and Xm−GIC, we may prove that the Xm−E-VS
bisection algorithm similarly attains near-optimal guarantees. One may follow the same proof
structure as in Lemma 10 and Theorem 5 to show both results also hold under Xm-E-VS. Thus, it
suffices to prove the following two lemmas, which are analogues of Lemmas 5 and 6.
Lemma 15. For any V ⊂ H and SX ⊂ X ,

EXm

(V, SX ∪ {x}) ⊆ EXm

(V, SX)

Proof. It suffices to prove that h ∈ EXm
(V, SX ∪ {x})⇒ h ∈ EXm

(V, SX).
To see this, let h ∈ EXm

(V, SX ∪ {x}). Then if h is such that:

∀h′ ∈ V, h′(Xm) ̸= h(Xm), h((X \ SX) \ {x})) ̸= h′((X \ SX) \ {x}))
⇒ ∀h′ ∈ V, h′(Xm) ̸= h(Xm), h(X \ SX) ̸= h′(X \ SX)
⇒ h ∈ E(V, SX)

Lemma 16. For any x ∈ X \ SX and y ∈ {−1, 1},

EXm

(V [(x, y)], SX ∪ {x}) = EXm

(V, SX)[(x, y)]

47

Proof. The proof is identical to the one for the fine-grain E-VS:

h ∈ EXm

(V [(x, y)], SX ∪ {x})
⇐⇒ h ∈ V [(x, y)] ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V [(x, y)] � h′(Xm) ̸= h(Xm)→ h′(Xm \ (SX ∪ {x})) ̸= h(Xm \ (SX ∪ {x}))
⇐⇒ h ∈ V ∧ h(x) = y ∧ ∀h′ ∈ V � h′(Xm) ̸= h(Xm)→ h′(X \ SX) ̸= h(X \ SX)
⇐⇒ h(x) = y ∧ h ∈ EXm

(V, SX)

⇐⇒ h ∈ EXm

(V, SX)[(x, y)]

Guarantee from learning from labeler with h′ that approximates h∗: Suppose the labeler
labels with h′ and Pr(h′(x) ̸= h∗(x)) ≤ ϵ/2. One may consider the approximate identifiability
learning game with precision ϵ/2. Approximately-identifying some ĥ ∈ C(h′(Xm)) will be such
that Pr(ĥ(x) ̸= h′(x)) ≤ ϵ/2. From this, we can conclude that:

Pr(ĥ(x) ̸= h∗(x)) = Pr(ĥ(x) = h′(x) ∧ h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x) ∧ h′(x) = h∗(x))

≤ Pr(h′(x) ̸= h∗(x)) + Pr(ĥ(x) ̸= h′(x))

≤ ϵ

2.11.1.2 Accessing the Xm−E-VS

After modifying the E-VS definition, the remaining issue is that we wish to find the maximal
bisection point for coarse, Xm-E-VS. Here, we show that for the coarsened E-VS, the membership
check implemented in Algorithm 3 (with the pool being Xm) is still sound. That is, we still have
an oracle-efficient way of accessing the coarser Xm-E-VS, and can can implicitly track clusters
through calls to the C-ERM oracle.

Proposition 18. h ̸∈ EXm(V, SX) iff ĥ(Xm) ̸= h(Xm), where ĥ is the minimizer of the C-ERM
output below:

ĥ = argmin
h′∈H

∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
s.t h′(x) = h(x),∀x ∈ Xm \ S⊥

48

Proof.

¬(h ∈ EXm(V, SX))⇔ ¬(∀h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) ̸= h(Xm \ SX))

⇔ ∃h′ ∈ V \
{
h̄ : h̄(Xm) = h(Xm), h̄ ∈ V

}
� h′(Xm \ SX) = h(Xm \ SX)

⇔ ∃h′ ∈ V � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)
⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(Xm) ̸= h(Xm) � h′(Xm \ SX) = h(Xm \ SX)
⇔ ∃h′ � h′(SX \ S⊥) = h(SX \ S⊥) � h′(S⊥) ̸= h(S⊥) � h′(Xm \ SX) = h(Xm \ SX)
⇔ ∃h′ � h′(S⊥) ̸= h(S⊥) � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ∃h′ �
∑
x′∈S⊥

1
{
h′(x′) = h(x′)

}
< |S⊥| � h′(Xm \ S⊥) = h(Xm \ S⊥)

⇔ ĥ(Xm) ̸= h(Xm) � ĥ(Xm \ S⊥) = h(Xm \ S⊥)

2.11.2 Noised labeling
It may be reasonable that in some cases, a labeler can make mistakes (even when they have tried
their best) due to differing opinion and/or human error. For example, for medical diagnoses,
doctors may hold differing opinions for the same case. This can be naturally modeled by the
noised learning setting, as in [57]: querying example x returns h∗(x) with known probability
1− δ(x), and −h∗(x) with noise rate δ(x).

In this setup, we may use the common approach of repeatedly query a datum to estimate
its label w.h.p. (e.g. as [303]). This approach reduces noised-label exact learning to cost-
sensitive exact learning, where for each x there is some known query cost c(x) — associated with
determining h∗(x) with high probability. With this, we may apply the results from Subsection 2.9.2
to see that E-VS bisection algorithm will have near-optimal guarantees in this setting with example-
dependent costs.

2.11.3 Myopic labeling
Some labelers may want to enlarge the query complexity, but myopically may not have a near-
optimal identifiable strategy. Instead, the labeler may have only a heuristic, which is only
h∗-labeling, and can be non-identifiable. Non-identifiability is something neither parties want: the
learner wants to learn h∗, and the labeler wants to be paid, which can only happen if h∗ is learned.

In this light, we believe that the E-VS game representation is not only useful for the learner,
but also for a labeler to reason about the game’s state. For the labeler, there is an oracle-efficient
way through which identifiability can be checked without enumerating the entire E-VS: simply
apply the membership check on h∗ as in Line 3 of Algorithm 3.

So even if the labeler is using some sub-optimal heuristic that may lead to non-identifiability
of h∗, the labeler can prevent the next label from leading to non-identifiability by performing a
membership check with a single C-ERM call. We add that only verifying that h∗ is in E-VS, need
not require enumerating all of the E-VS, and is thus tractable provided access to a C-ERM oracle.

49

2.12 Proofs for Section 2.5

2.12.1 Lemmas used
Lemma 17. For all V = ×ni=1Vi and SX ,

E(V, SX) = ×ni=1E(Vi, S
i
X)

Proof. We show both that:

1. For V = ×ni=1Vi, ×ni=1E(Vi, S
i
X) ⊆ E(V, SX):

It suffices to show that if hi ∈ E(Vi, SiX) for i ∈ [n], then h = (h1, .., hn) ∈ E(V, SX) for
V = ×ni=1Vi.
Firstly, since hi ∈ Vi and V = ×i∈[n]Vi, we have that h ∈ V .
Now suppose there is some h′ ∈ V such that h′(X \ SX) = h(X \ SX); we would like to
show that h′ = h – proving this would conclude that h ∈ E(V, SX).
Indeed, consider any i; we have h′i((X \SX)i) = hi((X \SX)i); equivalently, h′i(Xi\SiX) =
hi(Xi \ SiX).
As hi ∈ E(Vi, SiX) and h′i ∈ Vi, we have that h′i = hi. Therefore h′ and h are equal in all
components, and h′ = h.

2. For V = ×ni=1Vi, E(V, SX) ⊆ ×ni=1E(Vi, S
i
X):

Consider any h ∈ E(V, SX); we would like to show that for any i, hi ∈ E(Vi, SiX).
Suppose not, then there exists i, h′ ∈ Vi and h′ ̸= hi such that h′(Xi \ SiX) = hi(Xi \ SiX).
This implies that h′((X \ SX)i) = hi((X \ SX)i), therefore, consider

h̃ = (h1, . . . , hi−1, h
′, hi+1, . . . , hn)

We have that h̃ ∈ V , h̃ ̸= h, and h̃ agrees with h on X \ SX , which contradicts the
assumption that h ∈ E(V, SX).

Lemma 18. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1,⊥}:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ Cost(V, SX)

Proof. We prove this by induction on |SX |.
Base Case:
The base case is when |SX | = |X | − 1. Here SX ∪ {x1} = X . We have two subcases:

• E(V [(x1, y1)], SX ∪ {x1}) = ∅.
In this case, the inequality is satisfied.

• |E(V [(x1, y1)], SX ∪ {x1})| = 1.
We will show in general that E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX):
i) If y ̸=⊥, we know from Lemma 6 thatE(V [(x1, y1)], SX∪{x1}) = E(V, SX)[(x1, y1)] ⊆
E(V, SX).
ii) If y =⊥, then E(V [(x1, y1)], SX ∪ {x1}) = E(V, SX ∪ {x1}) ⊆ E(V, SX).
And so, |E(V, SX)| ≥ 1⇒ Cost(V, SX) ≥ 0 = Cost(V [(x1, y1)], SX ∪ {x1}).

50

Induction Step:
For the inductive case, suppose the induction hypothesis holds for |SX | = |X | − 1, .., j + 1.

Consider some SX with |SX | = j.
We have three subcases:

• E(V [(x1, y1)], SX ∪ {x1}) = ∅
In this case, the inequality is satisfied.

• |E(V [(x1, y1)], SX ∪ {x1})| = 1
As shown before, E(V [(x1, y1)], SX ∪ {x1}) ⊆ E(V, SX).
And so, we have that |E(V, SX)| ≥ 1⇒ Cost(V, SX) ≥ 0 = Cost(V [(x1, y1)], SX∪{x1}).

• |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2.
Using similar logic as before, |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2⇒ |E(V, SX)| ≥ 2.
Define

x′ ∈ argmin
x∈X\SX

max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′
}
)

With this definition,

Cost(V, SX) = max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′
}
)

If x′ = x1, then the result follows since Cost(V, SX) ≥ 1(y1 ̸=⊥)+Cost(V [(x1, y1)], SX∪
{x1}).
If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1(y ̸=⊥) + Cost(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |E(V [(x1, y1)], SX ∪ {x1})| ≥ 2 so we can unroll, and x′ ∈ X \ S ∪ {x1})

≤ max
y

1(y ̸=⊥) + Cost(V [(x′, y)], SX ∪
{
x′
}
)

(using induction hypothesis since |SX ∪ {x′} | = j + 1)

= Cost(V, SX)

Lemma 19. For y ̸=⊥, x ∈ X \ SX:

Cost(V [(x, y)], SX) = Cost(V [(x, y)], SX ∪ {x})

Proof. Firstly, we have that:

E(V [(x, y)], SX) =
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ SX) ̸= h(X \ SX)

}
=
{
h ∈ V [(x, y)] : ∀h′ ∈ V [(x, y)] \ {h} , h′(X \ (SX ∪ {x}) ̸= h(X \ SX ∪ {x})

}
= E(V [(x, y)], SX ∪ {x})

Hence the statement holds when SX = X \{x}, or more generally, when Cost(V [(x, y)], SX∪
{x}) or Cost(V [(x, y)], SX) is at its base case (one implies the other due to having the same
E-VS).

51

Now, we will induct on the size of |SX |, since the base case of SX = X \ {x} is satisfied.
Base case: |SX | = |X | − 1.
If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;
If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.
Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.
We first handle the base cases:
If E(V, SX) = E(V, SX ∪ {x}) = ∅, then LHS = RHS = −∞;
If |E(V, SX)| = |E(V, SX ∪ {x})| = 1, then LHS = RHS = 0.
Finally, it remains to consider when |E(V, SX)| = |E(V, SX ∪ {x})| ≥ 2. In this case,

Cost(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V [(x′, y′)], SX ∪
{
x′
}
).

Define x∗ ∈ argminx′∈X\SX maxy′∈{+1,−1,⊥} 1(y
′ ̸=⊥) + Cost(V [(x′, y′)], SX ∪ {x′}).

We will show that x∗ ̸= x.
In fact, for any x′ ∈ X \ S, x′ ̸= x∗ (which exists because {x} ⊂ X \ SX) we have:

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + Cost(V y
x , SX ∪ {x}), 1 + Cost(∅, SX ∪ {x}),Cost(V y

x , SX ∪ {x}))
= 1 + Cost(V y

x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)], SX ∪
{
x, x′

}
)

(using 1 ≥ 1(y ̸=⊥) and Lemma 18)

= max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)], SX ∪
{
x′
}
)

(using induction hypothesis since |SX ∪ {x′} | = j + 1)

And so,

Cost(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′
}
)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y′

x′ [(x, y)]], SX ∪
{
x′
}
)

(since we have just shown that x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y′

x′ [(x, y)]], (SX ∪
{
x′
}
) ∪ {x})

(using induction hypothesis since |SX ∪ {x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1,⊥}

1(y′ ̸=⊥) + Cost(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′
}
)

(rearranging)

= Cost(V [(x, y)], SX ∪ {x})

52

2.12.2 Upper Bound

2.12.2.1 Negative Results

Upper Bound when there is Identifiability:
We first observe that without assumptions on the structure of V , there exists a setting, in which

the upper bound does not hold.
Proposition 19. There exists a non-Cartesian product version space V ⊆ H and query response
S ⊆ (X × Y)∗ such that Cost(Vi, SiX) ≥ 0 for all i, but:

Cost(V, SX) ≥
n∑
i=1

Cost(Vi, S
i
X) + n− 1

Proof. We will construct a V and S such that Cost(V, SX) ≥ n− 1, but Cost(Vi, SiX) = 0.
Hypothesis Class: Define thresholds functions f1 = 1(x ≥ 1/4), f2 = 1(x ≥ 1/2), f3 =

1(x ≥ 3/4) for x ∈ [0, 1].
DefineH′ as:

H′ =
{
(f1, f2, ..., f2), (f2, f1, ..., f2), ..., (f2, f2, ,, f1)

}
where the jth model has its jth task model as f1 instead of f2.

Define the non-Cartesian product hypothesis class as:

H = H′ ∪
{
(f2, f2, ..., f2), (f3, f3, ..., f3)

}
We have thatHi = {f1, f2, f3}.

Data: Let X1 = {xi1}ni=1 and X2 = {xi2}ni=1, where xi1 = 1/3ei and xi2 = 2/3ei. Let
X = X1 ∪ X2.

Query Responses: Suppose S =
{
(xi2, [⊥, ...,⊥]) : i ∈ [n]

}
.

This means that SX =
{
xi2 : i ∈ [n]

}
, and that SiX =

{
2/3
}

, since the only x ∈ X such that
xi = 2/3 is xi2 and xi2 ∈ SX .

Define V = H[S] = H. And so, Vi = {f1, f2, f3}.
We have that E(Vi, SiX) = {f1}, and so, Cost(Vi, SiX) = 0.
Now, it remains to show that E(V, SX) = H′.
Firstly, since V = H[S] = H, we examine each model inH.
The model (f2, f2, ..., f2) and (f3, f3, ..., f3)’s predictions on xi1 (for any i) are both (−1,−1, . . . ,−1).

Thus, they have the same predictions on {xi1}i∈[n] = X\SX , and so, (f2, f2, ..., f2), (f3, f3, ..., f3) ̸∈
E(V, SX).

With this, we see that E(V, SX) = H′, because for the ith element of H′, it disagrees with
every other element on xi1.

Finally, we will show that Cost(V, SX) ≥ n− 1.
Consider a labeling strategy that returns label (−1, ...,−1) for any xi1 queried.
This strategy identifies some h ∈ H, since each point in X1 that is queried removes one model

from E-VS. And so, after n − 1 queries on points in X1, the E-VS has one hypothesis and the
learning interaction finishes since the identification condition is met.

53

We note that any querying algorithm will require n− 1 labeled queries. Each binary labeled
example removes only one model from the E-VS, thus n− 1 labels are required for identification
under any querying algorithm. And so, we have that Cost(V, SX) ≥ n− 1.

Upper Bound when there is no Identifiability:
Proposition 20. For non-Cartesian product hypothesis class V , there exists V, S such that
Cost(Vi, S

i
X) = −∞ for some i, but Cost(V, SX) ≥ 1.

Proof. ConsiderH =
{
(h1, h2), (h3, h4)

}
.

X =
{
[x1, 0], [0, x2]

}
, where for x1, x2 ̸= 0, h1(x1) ̸= h3(x1) and h2(x2) ̸= h4(x2). h1(0) =

h3(0) and h2(0) = h4(0).
Consider query response S =

{
([x1, 0], [⊥,⊥])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1} , S2
X = {0}.

V = H[S] = H. V1 = {h1, h3} and V2 = {h2, h4}.
E(V1, {x1}) = E({h1, h3} , {x1}) = ∅. However, E(V,

{
[x1, 0]

}
) = H, since (h1, h2) and

(h3, h4) differ on [0, x2].
And so, 1 = Cost(V, SX) >

∑2
i=1Cost(Vi, S

i
X) = −∞, since Cost(V1, S

1
X) = −∞.

Remark 8. In conclusion, to show the upper bound, need to impose Cartesian product condition.
Negative Example motivating the need to assume a particular label cost definition:
When the label cost is cone, there are settings where Cost(V, SX) can be much larger i.e.

Cost(V, SX)≫
∑n

i=1 Cost(Vi, S
i
X).

Proposition 21. Assuming the version space is a Cartesian product, under label cost cone(y) =
1(∃i, yi ̸=⊥), there exists V and S such that Cost(Vi, SiX) = 1, but Cost(V, SX) = |X |. This
implies that: Cost(V, SX) >

∑n
i=1 Cost(Vi, S

i
X).

Proof. Consider V = {h1, h2} × {h3, h4}, where h1, h2 ∈ V1 are thresholds functions h1 =
1(x ≥ 0), h2 = 1(x ≥ 1) and h3, h4 ∈ V2 are also thresholds h3 = 1(x ≥ 0), h4 = 1(x ≥ 1).
X =

{
[1
m+1

, 1
m+1

], ..., [m
m+1

, m
m+1

]
}

, which means that X1 = X2 =
{

1
m+1

, ..., m
m+1

}
.

We will show that:
Cost(V, ∅)≫ Cost(V1, ∅) + Cost(V2, ∅)

We first have that Cost(V1, ∅),Cost(V2, ∅) = 1, since only one labeled sample is needed to
distinguish between h1, h2 and between h3, h4.

However, we have Cost(V, ∅) ≥ m = |X | with the following labeling strategy T :
1) As long as |SX | < m− 1, for queried point [i

m+1
, i
m+1

], return (⊥, h3(i
m+1

)).
2) Only when |SX | = m− 1, for queried point [j

m+1
, j
m+1

], return (h1(
j

m+1
), h3(

j
m+1

)).
We can first that this is an identifiable labeling strategy that identifies (h1, h3).
And, for any querying algorithm, h∗ is only identified when SX = X .
Thus, |X | labeled samples need to be queried, making Cost(V, ∅) = |X |.

Remark 9. To prove the above bound, we need to assume the label cost to be: 1(y ̸=⊥) =
1(∀i, yi ̸=⊥) = call(y).

54

2.12.2.2 Positive Results

Change in Definition of the Game:
• To prove the upper bound, we have a changed definition in labeling payoff, which is now:

1(y ̸=⊥) := 1(∀i, yi ̸=⊥)

• The earlier negative example motivates requiring the assumption that V is a Cartesian
product.

Theorem 7. For all V = ×i∈[n]Vi and SX ⊆ X , under labeling cost call(y) = 1(∀i, yi ̸=⊥):

Cost(V, SX) ≤
n∑
i=1

Cost(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .
Base Case: When SX = X ⇒ SiX = Xi. So for all i, |E(Vi, SiX)| ≤ 1.
It suffices to check that Cost(V, SX) = 0⇒ ∀i,Cost(Vi, SiX) = 0.
Indeed, if Cost(V, SX) = 0, then |E(V,X)| = 1. Denote by h the only element of E(V,X).
We must have V = {h}, which in turn implies that for all i Vi = {hi}. Therefore, for all i,

|E(V,X)| = {hi} = 1, which implies ∀i,Cost(Vi, SiX) = 0.
Induction Step:
Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j (note

that SX ⊂ X).
We will analyze the three cases:

• ∃i,Cost(Vi, SiX) = −∞
• ∀i,Cost(Vi, SiX) ≥ 0 and ∀i,Cost(Vi, SiX) = 0
• ∀i,Cost(Vi, SiX) ≥ 0 and ∃i,Cost(Vi, SiX) ≥ 1.

1. If there is at least one i such that Cost(Vi, SiX) = −∞.
It suffices to verify that ∃i, E(Vi, SiX) = ∅ ⇒ E(V, SX) = ∅.
This follows immediately from that E(V, SX) = ×ni=1E(Vi, S

i
X) (Lemma 17).

2. For all i, Cost(Vi, SiX) is at its base case and Cost(Vi, S
i
X) = 0.

That is, we have ∀i, |E(Vi, SiX)| = 1.
From Lemma 17, we have thatE(V, SX) = ×ni=1E(Vi, S

i
X), which means that |E(V, SX)| =

1. And so, Cost(V, SX) = 0 =
∑n

i=1Cost(Vi, S
i
X).

3. Exists i such that Cost(V1, S1
X) ≥ 1, and Cost(Vi, S

i
X) ≥ 0 for all i.

Without loss of generality, i = 1.
Note that if |E(V, SX)| ≤ 1, then Cost(V, SX) ≤ 0 ≤

∑n
=1 Cost(Vi, S

i
X).

And so, throughout the rest of the proof, we focus on the case that |E(V, SX)| ≥ 2. Also,
recall that since Cost(V1, S

1
X) ≥ 1 implies that E(V1, S1

X) ≥ 2.
Define

x∗1 = argmin
x∈X1\S1

X

max
y∈Y

1(y ̸=⊥) + Cost(V1[(x
∗
1, y)], S

1
X ∪ {x∗1})

55

We may express:

Cost(V1, S
1
X) = max

y∈Y
1(y ̸=⊥) + Cost(V1[(x

∗
1, y)], S

1
X ∪ {x∗1})

And since x∗1 ∈ X1 \ S1
X , the set X∗1 =

{
x′ ∈ X \ SX : x′1 = x∗1

}
is non-empty.

Denote LX =
{
x : (x, y) ∈ L

}
. Consider the following procedure:

repeat
L = ∅
Query some x ∈ X∗1
Labeler returns y:

y = argmax
y

1(y ̸=⊥) + Cost(V [L ∪
{
(x, y)

}
], SX ∪ LX ∪ {x})

X∗1 ← X∗1 \ {x}
L← L ∪

{
(x, y)

}
until y1 ̸=⊥ or X∗1 = ∅

Denote by ŷ1 the value of y1 at the end of the procedure, let |L| = m and, in order, interaction
historyL is such thatL =

{
(x1, y1), ..., (xm, ym)

}
. LetLi =

{
(xi, yi) : (x, y) ∈ L, yi ̸=⊥

}
index the binary labeled data for the ith task.

Cost(V, SX) ≤ 1(y1 ̸=⊥) + Cost(V [(x1, y1)], SX ∪
{
x1
}
) (since x1 ∈ X∗1 ⊆ X \ SX)

= Cost(V [(x1, y1)], SX ∪
{
x1
}
) (since y11 =⊥)

≤ ...
(unrolling according to L, which is possible as Cost(V, SX) ≥ 1⇒ Cost(V [L], SX ∪ LX) ≥ 1)

≤ 1(ym ̸=⊥) + Cost(V [L], SX ∪ LX)
≤ 1(ŷ1 ̸=⊥) + Cost(V [L], SX ∪ LX)

(1(∀i, ymi ̸=⊥) ≤ 1(ŷ1 ̸=⊥) since ym1 = ŷ1)

= 1(ŷ1 ̸=⊥) + Cost(×i∈[n]Vi[Li], SX ∪ LX) (V is a Cartesian product)

≤ 1(ŷ1 ̸=⊥) +
n∑
i=1

Cost(Vi[L
i], (SX ∪ LX)i)

(using induction hypothesis as |LX | ≥ 1)

= 1(ŷ1 ̸=⊥) + Cost(V1[(x
∗
1, ŷ1)], S

1
X ∪ {x∗1}) +

n∑
i=2

Cost(Vi[L
i], (SX ∪ LX)i)

(⋄)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi[L
i], (SX ∪ LX)i) (by definition of x∗1)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi, S
i
X) (⋄⋄)

56

(⋄): For the fourth step, there are two cases:

• If upon exit, X∗1 = ∅:
Then using the definition of S1

X , since ̸ ∃x ∈ X \ (SX ∪ LX) with x1 = x∗1, we have
that (SX ∪ LX)1 = S1

X ∪ {x∗1}.
Therefore, Cost(V1[L1], (SX ∪ LX)1) = Cost(V1[(x

∗
1, ŷ1)], S

1
X ∪ {x∗1}).

• Otherwise, upon exit, X∗1 ̸= ∅. Then, we must have that ŷ ̸=⊥:
So ∃x ∈ X \ (SX ∪ LX) with xi = x∗i .
Therefore, (SX∪LX)1 = S1

X , hence Cost(V1[L1], (SX∪LX)1) = Cost(V1[(x
∗
1, ŷ1)], S

1
X).

From Lemma 19, we have that Cost(V1[(x∗1, ŷ1)], S
1
X) = Cost(V1[(x

∗
1, ŷ1)], S

1
X ∪

{x∗1}).
(⋄⋄): For the last step, consider each task i for i ∈ {2, . . . , n}:
Define:

• Li1X =
{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ∈ (SX ∪ LX)i

}
• Li2X =

{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ∈ (SX ∪ LX)i

}
• Li3X =

{
x′ : ∃(x, y) ∈ L, xi = x′, yi ̸=⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
• Li4X =

{
x′ : ∀(x, y) ∈ L, xi = x′, yi =⊥ ∧x′ ̸∈ (SX ∪ LX)i

}
With these definitions, we have (SX ∪LX)i = SiX ∪Li1X ∪Li2X . The binary labeled examples
comprise of LiX = Li1X ∪ Li3X .
We have that:

Cost(Vi[L
i], (SX ∪ LX)i) = Cost(Vi[L

i], SiX ∪ Li1X ∪ Li2X)
= Cost(Vi[L

i], SiX ∪ Li1X ∪ Li2X ∪ Li3X)
(using Lemma 19 on Li3X)

= Cost(Vi[L
i ∪
{
(x,⊥) : x ∈ Li2X

}
], SiX ∪ Li1X ∪ Li2X ∪ Li3X)

≤ Cost(Vi, S
i
X)

(iteratively applying Lemma 18 on Li1X ∪ Li2X ∪ Li3X)

2.12.3 Lower Bound

Label Cost Function: From this point onwards, we assume that the label cost is (the more
generous) cone.

2.12.3.1 Negative Results

Lower Bound when there is Identifiability:
The following example leverages the fact that structure in the multi-task hypothesis class

constrains the target hypotheses across all n tasks. And so, abstentions can lead to the multi-
task setting requiring fewer samples than even the single-task setting with the highest sample
complexity.

57

Proposition 22. There exists a non-Cartesian product version space V and query response S
such that Cost(Vi, SiX) ≥ 0 for all i, but:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)

Proof. Hypothesis Class: Define all zero-classifier, h0(x) = 0 for all x. Let hi = 1(x ∈ [i, i+1))
for i ∈ [n] be the ith interval.

Let g1, g2, g3 be three distinct threshold functions, g1 = 1(x ≥ 1/4), g2 = 1(x ≥ 1/2), g3 =
1(x ≥ 3/4) for x ∈ [0, 1].

SetH to be
{
(h0, g1), (h0, g2),

{
(hi, g3)

}n
i=1

}
.

Data: Define X =
{
[x11, 0],, [x1n, 0], [0, x21], [0, x22]

}
where x1i = i + 1/2 for i ∈ [n]

and x21 = 1/3, x22 = 2/3. By construction, g1(x21) ̸= g2(x21) and g2(x22) ̸= g3(x22).
Define S =

{
([0, x21], [⊥,⊥])

}
. SX =

{
[0, x21]

}
, S1

X = {}, S2
X = {x21}.

We have V = H[S] = H. V1 = H1 = {h0, h1, h2, h3, ..., hn} and V2 = H2 = {g1, g2, g3}.
g1((X \ SX)2) = g2((X \ SX)2)⇒ (h0, g1), (h0, g2) ̸∈ E(V, SX).
We have E(V, SX) =

{
(hi, g3)

}n
i=1

, because for any i ̸= j, (hi, g3) and (hj, g3) differ on
[x1j, 0].

From this, we get that Cost(V, SX) = n− 1. Querying any point [x1i, 0] at any time removes
only one model from the E-VS. Since the E-VS is of size n, n− 1 binary labeled examples are
needed to reduce the E-VS size to at most 1.

On the other hand, we have that for Cost(V1, S1
X) with |V1| = n+1 and S1

X = ∅, Cost(V1, S1
X) =

n > Cost(V, SX).

Lower Bound when there is no Identifiability even with Cartesian product assumption:
Proposition 23. There exists a Cartesian product version space V and query response S with
Cost(V, SX) < 0 such that:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)

Proof. Let H = {h11, h12} × {h21, h22}, where h11 = 1(x ≥ 0), h12 = 1(x ≥ 1) are intervals,
and h21 = 1(x ≥ 0), h22 = 1(x ≥ 1) are intervals.
X =

{
[x1, 0], [0, x2]

}
where x1 = 1/2, x2 = 1/2.

Labeling is: S =
{
([x1, 0], [⊥, 1])

}
. SX =

{
[x1, 0]

}
, S1

X = {x1}, S2
X = {0}.

So V = H[S] = H. V1 = {h11, h12} and V2 = {h21, h22}.
Under S, we observe that E(V, SX) = ∅, since (h11, h) and (h12, h) for h ∈ V2 = {h21, h22},

predict the same on
{
[0, x2]

}
= X \ SX . Hence, Cost(V, SX) = −∞.

However, Cost(V2, S2
X) = Cost({h21, h22} , {0}) = 1 > Cost(V, SX).

Remark 10. To prove the lower bound, need to impose both identifiability Cost(V, SX) ≥ 0
and Cartesian product condition.

58

2.12.3.2 Positive Results

Theorem 8. For all V = ×i∈[n]Vi and SX ⊆ X , if Cost(V, SX) ≥ 0, then:

Cost(V, SX) ≥ max
i∈[n]

Cost(Vi, S
i
X)

Proof. We prove this by induction on the size of SX .
Base Case: When SX = X ⇒ SiX = Xi, so for all i, Cost(Vi, SiX) ≤ 0 ≤ Cost(V, SX).
Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1.
Now let |SX | = j. Note that this implies SX ⊂ X .
First, consider the case when Cost(V, SX) = 0. We have that |E(V, SX)| = 1. And so, using

Lemma 17, for all i, |E(Vi, SiX)| = 1. Thus, Cost(Vi, SiX) = 0 for all i.
Now, we consider the case when Cost(V, SX) ≥ 1.
Let k = argmaxi∈[n] Cost(Vi, S

i
X). It suffices to verify the statement when Cost(Vk, S

k
X) ≥ 1.

Since X \ SX is non-empty due to SX ⊂ X , define:

xmin = argmin
x∈X\SX

max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

x , SX ∪ {x})

We have thatXk\SkX = (X \SX)k =
{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′

}
, and so xmink ∈ Xk\SkX

since xmin ∈ X \ SX .
Since Cost(Vk, S

k
X) ≥ 1, we know there exists ỹk such that:

Cost(Vk, S
k
X) ≤ 1(ỹk ̸=⊥) + Cost(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmink

}
).

Note in particular that E(Vk[(xmink , ỹk)], S
k
X ∪

{
xmink

}
) ̸= ∅, as otherwise Cost(Vk, S

k
X) ≤

−∞ which would contradict our assumption that Cost(Vk, SkX) ≥ 1.

Cost(V, SX) = max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

xmin
, SX ∪

{
xmin

}
)

≥ 1(y ̸=⊥) + Cost(×i∈[n](Vi)yixmini
, SX ∪

{
xmin

}
)

(setting y′ = y as constructed in Lemma 20 and using that V y
xmin

= ×i∈[n](Vi)yixmini
)

≥ 1(y ̸=⊥) + max
i∈[n]

Cost((Vi)
yi
xmini

, (SX ∪
{
xmini

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1(ỹk ̸=⊥) + Cost((Vk)
ỹk
xmink

, (SX ∪
{
xmin

}
)k)

(1(y ̸=⊥) ≥ 1(yk ̸=⊥) = 1(ỹk ̸=⊥) as yk = ỹk by construction)

≥ 1(ỹk ̸=⊥) + Cost((Vk)
ỹk
xmink

, SkX ∪
{
xmink

}
)

(note that xmink ∈ (X \ SX)k, so xmink ∈ Xk \ SkX and ⋄)
≥ Cost(Vk, S

k
X)

(⋄): Either we have (SX ∪
{
xmin

}
)k = SkX ∪

{
xmink

}
or (SX ∪

{
xmin

}
)k = SkX . The former

case yields equality and the statement holds.

59

For the latter case, we can use Lemma 18 (for ỹk =⊥) or Lemma 19 (for ỹk ̸=⊥) to get that:
Cost((Vk)

ỹk
xmink

, (SX ∪
{
xmin

}
)k) = Cost((Vk)

ỹk
xmink

, SkX) ≥ Cost((Vk)
ỹk
xmink

, SkX ∪
{
xmink

}
).

Lemma 20. SupposeC(V, SX) ≥ 0 and xmin = argminx∈X\SX maxy∈Y 1(y ̸=⊥)+Cost(V y
x , SX∪

{x}). If there ỹk such that Cost(Vk, SkX) ≤ 1(ỹk ̸=⊥) + Cost(Vk[(x
min
k , ỹk)], S

k
X ∪

{
xmink

}
) for

Cost(Vk, S
k
X) ≥ 0, then there exists y such that its kth coordinate yk = ỹk such that:

Cost(V [(xmin, y)], SX ∪
{
xmin

}
) ≥ 0

Proof. We explicitly construct some y such that yk = ỹk and the above holds:

• Firstly, Cost(V, SX) ≥ 0, which implies there exists h ∈ E(V, SX).
h ∈ V implies that ∀i, hi ∈ Vi.
Also, Cost(Vk[(xmink , ỹk)], S

k
X ∪

{
xmink

}
) ≥ Cost(Vk, S

k
X)− 1 ≥ 0. This implies that there

exists some h̃k ∈ E(Vk[(xmink , ỹk)], S
k
X ∪

{
xmink

}
).

• We claim that y = (h1(x
min
1), ..., h̃k(x

min
k), ..., hn(x

min
n)) satisfies the condition.

To show this, define h̃ = (h1, ..., h̃k, ..., hn).
Firstly, since hi ∈ Vi (for i ̸= k, i ∈ [n]) and h̃k ∈ Vk, we have that h̃ ∈ ×i∈[n]Vi = V .
Also, h̃(xmin) = y. Therefore, h̃ ∈ V y

xmin
.

• We will show that h̃ ∈ E(V y
xmin

, SX ∪
{
xmin

}
), which proves the result.

From Lemma 5, We have that:

h̃k ∈ E(Vk[(xmink , ỹk)], S
k
X ∪

{
xmink

}
) ⊆ E(Vk[(x

min
k , ỹk)], (SX ∪

{
xmin

}
)k)

since Sk ∪
{
xmink

}
⊇ (SX ∪

{
xmin

}
)k.

For all i ̸= k, we have:

h ∈ E(V, SX)⇒ hi ∈ E(Vi, SiX)⇒ hi ∈ E(Vi[(xmini , yi)], S
i
X ∪

{
xmini

}
)

since for all h′ ∈ Vi \ {hi} with h′(xmini) = yi = hi(x
min
i), h′ must be such that h′(X \

(SiX∪
{
xmini

}
)) ̸= hi(X \(SiX∪

{
xmini

}
)). Since this holds for all h′ ∈ Vi[(xmini , yi)]\{hi},

we have hi ∈ E(Vi[(xmini , yi)], S
i
X ∪

{
xmini

}
).

From Lemma 5, We have that:

hi ∈ E(Vi[(xmini , yi)], S
i
X ∪

{
xmini

}
) ⊆ E(Vi[(x

min
i , yi)], (SX ∪

{
xmin

}
)i)

since SiX ∪
{
xmini

}
⊇ (SX ∪

{
xmin

}
)i.

Hence,

h̃ ∈ ×ki=1E(V [(xmini , yi)], (SX ∪
{
xmin

}
)i))⇒ h̃ ∈ E(V [(xmin, y)], SX ∪

{
xmin

}
))

since from Lemma 17, we have that:

E(V [(xmin, y)], SX ∪
{
xmin

}
)) = ×ki=1E(V [(xmini , yi)], (SX ∪

{
xmin

}
)i))

Remark 11. As Cost(×i∈[n](Vi)yixmini
, SX∪

{
xmin

}
) ≥ 0, the precondition for induction hypothesis

holds.

60

2.12.4 Multi-task Active Learning without Abstention
We also investigate the related multi-task, minimax active learning setting without abstention,
which may be of independent interest. To our knowledge, this is also an open problem. Our goal
is again to relate the multi-task complexity to the single-task complexity. Since abstention is the
cause of several of the negative examples above, one can prove more general upper bounds when
labels have to be given.

2.12.4.1 Game Setup

Without abstention, the state may now be tracked simply with VS (instead of E-VS). The analogous
game value may be defined as follows:

Cost(V, SX) =


−∞ |V | = 0

0, |V | = 1

minx∈X\SX maxy∈{−1,+1}
(
1 + Cost(V y

x , SX ∪ {x})
)
, |V | ≥ 2

2.12.4.2 Lemmas Used

Lemma 21. For any SX , |V | ≥ 1⇔ Cost(V, SX) ≥ 0.

Proof. Base Case: We prove this by induction on |SX |. If SX = X , then |V | ≥ 1⇒ |V | = 1⇒
Cost(V, SX) = 0.

Induction Step: Suppose this is true for |SX | = |X |, ..., j + 1. Now |SX | = j. Let h ∈ V .
If |V | = 1, then the result holds.
Otherwise, |V | ≥ 2. We will show that |V | ≥ 2⇒ Cost(V, SX) ≥ 1:

Cost(V, SX) = min
x∈X\SX

max
y∈{+1,−1}

1 + Cost(V y
x , SX ∪ {x})

≥ 1 + Cost(V [(x∗, h(x∗)], SX ∪ {x∗}))
(for x∗ = argminx∈X\SX maxy∈{+1,−1} 1 + Cost(V y

x , SX ∪ {x}))
≥ 1

The last step that Cost(V [(x∗, h(x∗)], SX ∪ {x∗})) ≥ 0 follows from induction hypothesis,
whose precondition is satisfied because h ∈ V ⇒ h ∈ V [(x∗, h(x∗)].

(⇐) |V | = 0⇒ Cost(V, SX) = −∞ < 0, hence Cost(V, SX) ≥ 0⇒ |V | ≥ 1.

Corollary 5. We have that:

1. Cost(V, SX) = −∞⇔ |V | = 0

2. Cost(V, SX) = 0⇔ |V | = 1

Proof. 1. (⇒): Follows from that Cost(V, SX) < 0⇒ |V | < 1⇒ |V | = 0.
(⇐): Follows from the base case definition of Cost.

61

2. (⇒): From the above, we have that |V | ≥ 2⇒ Cost(V, SX) ≥ 1. And so, Cost(V, SX) ≤
0⇒ |V | ≤ 1.
The result follows since Cost(V, SX) = 0 ̸= −∞⇒ |V | ≠ 0⇒ |V | = 1.
(⇐): Follows from the base case definition of Cost.

Lemma 22. For V ′ ⊆ V and any SX ⊆ X :

Cost(V, SX) ≥ Cost(V ′, SX)

Proof. We will prove this statement by induction on the size of SX .
Base Case: SX = X . This means Cost(V, SX),Cost(V

′, SX) are at the base-case. If
|V ′| = 1⇒ |V | = 1, and the statement holds. If |V ′| = 0, the statement holds since RHS is equal
to −∞.

Induction Step: Suppose the statement holds for |SX | = |X |, ..., j + 1 and any V ′ ⊆ V .
Consider some SX such that |SX | = j.

(a) First, we examine what happens if |V | ≤ 1.
(i) if |V | = 0⇒ |V ′| = 0, then Cost(V, SX) = −∞ = Cost(V ′, SX)
(ii) if |V | = 1⇒ |V ′| ≤ 1, so Cost(V, SX) = 0 ≥ Cost(V ′, SX).
(b) If |V | ≥ 2 and |V ′| ≤ 1, then since |V | ≥ 1, we have Cost(V, SX) ≥ 0 ≥ Cost(V ′, SX)

using Lemma 21.
(c) The remaining case is when |V | ≥ 2 and |V ′| ≥ 2.
We have that:

Cost(V, SX) = min
x∈X\SX

max
y∈{+1,−1}

1 + Cost(V y
x , SX ∪ {x}) (since |V | ≥ 2, we can unroll)

≥ min
x∈X\SX

max
y∈{+1,−1}

1 + Cost((V ′)yx, SX ∪ {x})

(for all x, y, V ′ ⊆ V ⇒ V ′[(x, y)] ⊆ V [(x, y)], so we may apply induction hypothesis)

= Cost(V ′, SX)

Lemma 23. For any data point (x1, y1) for x1 ̸∈ SX and y1 ∈ {+1,−1}:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ Cost(V, SX)

Proof. Base Case:
We first handle the case when |V [(x1, y1)]| ≤ 1:
If |V [(x1, y1)]| = 0, then the result holds.
If |V [(x1, y1)]| = 1⇒ |V | ≥ 1, and the result holds from Lemma 21.
This covers the base case when SX = X .
Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.
It suffices to examine the case that |V [(x1, y1)]| ≥ 2, which implies that |V | ≥ 2.
Define

x′ ∈ argmin
x∈X\SX

max
y

1 + Cost(V [(x′, y)], S ∪
{
x′
}
);

62

with this definition,

Cost(V, SX) = max
y

1 + Cost(V [(x′, y)], SX ∪
{
x′
}
)

If x′ = x1, then the result follows.
If x′ ̸= x1, then x′ ∈ X \ S ∪ {x1}, and we can write:

Cost(V [(x1, y1)], SX ∪ {x1}) ≤ max
y

1 + Cost(V [(x1, y1), (x
′, y)], SX ∪

{
x1, x

′})
(as |V [(x1, y1)| ≥ 2 so we can unroll with x′ ∈ X \ SX ∪ {x1})
≤ max

y
1 + Cost(V [(x′, y)], SX ∪

{
x′
}
)

(using induction hypothesis)

= Cost(V, SX)

Lemma 24. For x ∈ X \ SX and some y ∈ {+1,−1}:

Cost(V [(x, y)], SX) = Cost(V [(x, y)], SX ∪ {x})

Proof. We show this by induction on size of SX .
Base Case: Firstly, the version space are the same, V [(x, y)].
So LHS is equal to RHS when |V [(x, y)]| ≤ 1 in the base case. This covers the case when

SX = X .
Induction Step: Suppose the statement holds for when |SX | = |X |, ..., j + 1. Let |SX | = j.
It suffices to consider when |V [(x, y)]| ≥ 2. We may write:

Cost(V, SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + Cost(V [(x′, y′)]], SX ∪
{
x′
}
)

Define x∗ ∈ argminx′∈X\SX maxy′∈{+1,−1} 1 + Cost(V [(x′, y′)]], SX ∪ {x′}).
We will show that x∗ ̸= x.
In fact, for any x′ ∈ X \ SX , x′ ̸= x∗ (which exists because {x} ⊂ X \ SX) we have:

max
y′∈{+1,−1}

1 + Cost(V y
x [(x, y

′)]], SX ∪ {x})

= max(1 + Cost(V y
x , SX ∪ {x}), 1 + Cost(∅, SX ∪ {x}))

= 1 + Cost(V y
x , SX ∪ {x}) (maximized at when y′ = y)

≥ max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x, x′

}
) (using Lemma 23)

= max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′
}
)

(using induction hypothesis since |SX ∪ {x′} | = j + 1)

63

And so,

Cost(V [(x, y)], SX) = min
x′∈X\SX

max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], SX ∪
{
x′
}
)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y′

x′ [(x, y)]], SX ∪
{
x′
}
)

(since x∗ ̸= x)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y′

x′ [(x, y)]], (SX ∪
{
x′
}
) ∪ {x})

(using induction hypothesis since |SX ∪ {x′} | = j + 1)

= min
x′∈X\(SX∪{x})

max
y′∈{+1,−1}

1 + Cost(V y
x [(x

′, y′)]], (SX ∪ {x}) ∪
{
x′
}
)

(rearranging)

= Cost(V [(x, y)], SX ∪ {x})

2.12.4.3 Upper Bound

Theorem 9. For all V ⊆ H and SX ⊆ X :

Cost(V, SX) ≤
n∑
i=1

Cost(Vi, S
i
X)

Proof. We will proceed by induction on the size of SX :
Base Case: When SX = X . In this case, SiX = Xi. So all Cost’s are at the base-case.
It suffices to check that if Cost(V, SX) = 0⇒ ∀i,Cost(Vi, SiX) = 0.
This follows because Cost(V, SX) = 0 ⇔ |V | = 1. By definition of Vi, |Vi| = 1. And so,

Cost(V, SX) = 0 =
∑n

i=1Cost(Vi, S
i
X).

Induction Step:
Suppose the following holds for SX ⊂ X for |SX | = |X |, ..., j + 1. Now let |SX | = j (with

SX ⊂ X).
We consider three cases:

• ∃i, Vi = ∅
• ∀i, |Vi| ≥ 1 and ∀i, |Vi| = 1
• ∀i, |Vi| ≥ 1 and ∃i, |Vi| ≥ 2

1. If there is i such that Cost(Vi, SiX) = −∞.
Then Vi = ∅ ⇒ V = ∅, and therefore, Cost(V, SX) = −∞.

2. For all i, Cost(Vi, SiX) = 0.
This means that for all i, |Vi| = 1. And we wish to show that |V | ≤ 1, which would imply
that Cost(V, SX) ≤ 0 =

∑n
i=1Cost(Vi, S

i
X).

Suppose not, there exists h, h′ ∈ V . Then, h ̸= h′ ⇒ ∃i such that hi ̸= h′i ⇒ hi, h
′
i ∈ Vi ⇒

|Vi| ≥ 2, which is a contradiction.

64

3. Exists i such that Cost(Vi, SiX) ≥ 1, and Cost(Vj, S
j
X) ≥ 0 for all j.

Assume WLOG i = 1. Note that if |V | ≤ 1, then Cost(V, SX) ≤ 0 ≤
∑n

i=1 Cost(Vi, S
i
X).

And so, we will consider the case when |V | ≥ 2 and |V1| ≥ 2.
Define

x∗1 ∈ argmin
x∈X1\S1

X

max
y∈{+1,−1}

1 + Cost(V1[(x
∗
1, y)], S

1
X ∪ {x∗1})

we may express:

Cost(V1, S
1
X) = max

y∈{+1,−1}
1 + Cost(V1[(x

∗
1, y)], S

1
X ∪ {x∗1}) (2.9)

Moreover, we have that ∃x∗ ∈ X \ SX with the first coordinate equal to x∗1. And so,

Cost(V, SX) ≤ max
y∈{+1,−1}n

1+Cost(V [(x∗, y)], SX∪{x∗}) = 1+Cost(V [(x∗, y′)], SX∪{x∗})

With this,

Cost(V, SX) ≤ 1 + Cost(V [(x∗, y′)], SX ∪ {x∗})

≤ 1 +
n∑
i=1

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i) (using induction hypothesis)

= 1 + Cost((V [(x∗, y′)])1, (SX ∪ {x∗})1) +
n∑
i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

≤ 1 + Cost(V1[(x
∗
1, y
′
1)], S

1
X ∪ {x∗1}) +

n∑
i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Lemma 22 and ⋄ for task 1)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i)

(using Equation 2.9)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi[(x
∗
i , y
′
i)], S

i
X ∪ {x∗i })

(using Lemma 22 and ⋄ for tasks 2 to n)

≤ Cost(V1, S
1
X) +

n∑
i=2

Cost(Vi, S
i
X) (using Lemma 23 for tasks 2 to n)

For any task i:

Lemma 25. For any x, y and V ,

(V [(x, y)])i ⊆ Vi[(xi, yi)]

65

Proof. We have that h′i ∈ (V [(x, y)])i ⇒ ∃h ∈ V [(x, y)], hi = h′i.
hi ∈ Vi[(xi, yi)], since h ∈ V [(x, y)]⇒ hi ∈ Vi ∧ hi(xi) = yi (from h(x) = y).
And so, we get that h′i = hi ∈ Vi[(xi, yi)].

Using this lemma, we may apply Lemma 22 to get that:

Cost((V [(x∗, y′)])i, (SX ∪ {x∗})i) ≤ Cost(Vi[(x
∗
i , y
′
i)], (SX ∪ {x∗})i)

We will show below that:

Cost(Vi[(x
∗
i , y
′
i)], (SX ∪ {x∗})i) = Cost(Vi[(x

∗
i , y
′
i)], S

i
X ∪ {x∗i })

(⋄): There are two cases to consider:

• Case 1: (SX ∪ {x∗})i = SiX ∪ {x∗i }; in this case, Cost(Vi[(x∗i , y
′
i)], (SX ∪ {x∗})i) =

Cost(Vi[(x
∗
i , y
′
i)], S

i
X ∪ {x∗i }) holds;

• Case 2: (SX∪{x∗})i = SiX , in this case, Cost(Vi[(x∗i , y
′
i)], (SX∪{x∗})i) = Cost(Vi[(x

∗
i , y
′
i)], S

i
X) =

Cost(Vi[(x
∗
i , y
′
i)], S

i
X ∪ {x∗i }), where the last equality uses Lemma 24.

2.12.4.4 Lower Bound

Example of non-Cartesian Product V can reverse inequality:
Proposition 24. There exists a non-Cartesian product version space V and SX such that:

Cost(V, SX) < max
i∈[n]

Cost(Vi, S
i
X)

Proof. ConsiderH =
{
(h1, g1), (h2, g1), (h3, g2)

}
. hi and gj’s are thresholds.

Let X =
{
[x11, x2], [x12, x2]

}
, where x11 separates h1, h2, x12 separates h2, h3 and x2 sepa-

rates g1, g2.
Let S = ∅, so SX = S1

X = S2
X = ∅.

V = H =
{
(h1, g1), (h2, g1), (h3, g2)

}
, V1 = {h1, h2, h3}, V2 = {g1, g2}.

Then, we have that Cost(V1, ∅) = 2 for V1 = {h1, h2, h3}. However, Cost(V, ∅) = 1, since
one needs to query [x11, x2] only.

Remark 12. The observation is that x11 helps to distinguish between h1 and h2 ∈ V1, while x2
helps with distinguishing between g1 and g2 ∈ V2, which in turn helps to distinguish between
{h1, h2} and {h3} ⊂ V1.
Theorem 10. For all V = ×i∈[n]Vi and SX ⊆ X such that Cost(V, SX) ≥ 0:

Cost(V, SX) ≥ max
i∈[n]

Cost(Vi, S
i
X)

66

Proof. We prove this by induction on the size of SX .
Base Case: SX = X ⇒ SiX = Xi.
If Cost(V,X) = 0, then |V | = 1⇒ |Vi| = 1,∀i⇒ Cost(Vi, S

i
X) = 0 for all i.

Induction Step: Suppose the following holds for |SX | = |X |, ..., j + 1. Now let |SX | = j,
note that SX ⊂ X .

We first handle the base cases.
If Cost(V, SX) = 0, then V = {h} ⇒ ∀i, Vi = {hi} (due to the Cartesian product structure

of V)⇒ Cost(Vi, S
i
X) = 0.

Now, if Cost(V, SX) ≥ 1 and if k = argmaxi∈[n] Cost(Vi, S
i
X), then it suffices to verify the

statement when Cost(Vk, S
k
X) ≥ 1.

Define:
xmin = argmin

x∈X\SX
max
y′∈Y

1(y′ ̸=⊥) + Cost(V y′

x , SX ∪ {x})

From definition, Xk \ SkX = (X \ SX)k =
{
x′ ∈ Xk : ∃x ∈ X \ SX , xk = x′

}
. And so xmink ∈

Xk \ SkX since xmin ∈ X \ SX . Since Cost(Vk, S
k
X) ≥ 1, we know there exists ỹk such that:

Cost(Vk, S
k
X) ≤ 1 + Cost(Vk[(x

min
k , ỹk)], S

k
X ∪

{
xmink

}
)

Note in particular that Vk[(xmink , ỹk)] ̸= ∅ as otherwise Cost(Vk, S
k
X) ≤ −∞ (which contra-

dicts our assumption):

Cost(V, SX) = min
x∈X\SX

max
y′∈Y

1 + Cost(V y′

x , SX ∪ {x}) (X \ SX is non-empty, since SX ⊂ X)

= max
y′∈Y

1 + Cost(V y′

xmin
, SX ∪

{
xmin

}
)

≥ 1 + Cost(×i∈[n](Vi)yixmini
, SX ∪

{
xmin

}
)

(setting y′ = y as constructed below (†) and using that V y
xmin

= ×i∈[n](Vi)yixmini
)

≥ 1 + max
i∈[n]

Cost((Vi)
yi
xmini

, (SX ∪
{
xmini

}
)i)

(using induction hypothesis since xmin ̸∈ SX , so |SX ∪
{
xmin

}
| = j + 1)

≥ 1 + Cost((Vk)
ỹk
xmink

, (SX ∪
{
xmin

}
)k) (by construction, yk = ỹk)

= 1 + Cost((Vk)
ỹk
xmink

, SkX ∪
{
xmink

}
)

(note that xmink ∈ (X \ SX)k, so xmink ∈ Xk \ SkX and ⋄)
≥ Cost(Vk, S

k
X)

(†) : Claim: There exists some y such that yk = ỹk and V y
xmin
̸= ∅ (that is, (Vi)

yi
xmini
̸= ∅ for

each i).
Firstly, Cost(V, SX) ≥ 0 ⇒ |V | ≥ 1. This means that there exists h ∈ V , and that

∀i,∃hi ∈ Vi.
Since Vk[(xmink , ỹk)] ̸= ∅, there exists some h̃k ∈ Vk[(xmink , ỹk)] ̸= ∅.
We claim that y = (h1(x

min
1), ..., h̃k(x

min
k), ..., hn(x

min
n)) satisfies the property.

67

Let h = (h1, ..., h̃k, ..., hn). Then we have h ∈ V y
xmin

, since:
i) hi ∈ Vi, h̃k ∈ Vk implies h ∈ ×i∈[n]Vi = V
ii) h(xmin) = y.
And so, |V y

xmin
| ≥ 1⇒ Cost(V y

xmin
, SX ∪

{
xmin

}
) ≥ 0, which means we meet the precondi-

tion needed to use the induction hypothesis.
(⋄): For task k, We know that (SX ∪

{
xmin

}
)k is either SkX or SkX ∪

{
xmink

}
. In the latter case,

equality holds.
In the former case, we may use Lemma 24 to get that equality also holds:
Cost((Vk)

ỹk
xmink

, (SX∪
{
xmin

}
)k) = Cost((Vk)

ỹk
xmink

, SkX) = Cost((Vk)
ỹk
xmink

, SkX∪
{
xmink

}
).

2.13 Miscellaneous

2.13.1 Data-based Game Representation
We begin with defining a natural state representation of the minimax learning game in Protocol 4,
using the examples queried by the learner so far, motivated by the definition of identifiability for
determining the termination condition.
Definition 14. Given the set of labeled examples and their labels S, and the queried examples
SX , classifier h ∈ H is said to be identifiable with respect to (S, SX), if (1) h is consistent with S;
(2) for all h′ ∈ H consistent with S,

h′(X \ SX) = h(X \ SX) =⇒ h′ = h

The above definition naturally motivates the following definition of effective version space:
Definition 15. Given the set of labeled examples and their labels S, and the queried examples
SX , define its induced effective version space as

F (S, SX) =
{
h ∈ H : h is identifiable with respect to (S, SX)

}
With this, it is natural to recursively define the game and its optimal value function using this

state representation:

f(S, SX) =



−∞, F (S, SX) = ∅
0, |F (S, SX)| = 1

minx∈X\SX max

f(S ∪
{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 , |F (S, SX)| ≥ 2,

Here, we use the base-case game payoffs to encode the labeler’s promise of identifiability.
Non-identifiability (F (S, SX) = ∅) leads to a terminal payoff of −∞. Identifiability constrains
the labeler to not provide arbitrary labels and “string along” the learner for as long as possible.
As we will later see, this constraint is not crucial, as the algorithm we develop is also robust to a
labeler that does not guarantee identifiability.

68

2.13.1.1 Version Space-based Game Representation

We now turn to the version space game representation, which we use throughout, and prove it is
correct.
Definition 16. Given a labeled dataset S and a set of classifiers V , define version space V [S] ={
h ∈ V : ∀(x, y) ∈ S ∧ y ̸=⊥, h(x) = y

}
as the subset of classifiers in V consistent with S.

Definition 17. Given the set of labeled examples and their labels S, and the queried examples
SX , classifier h ∈ H is said to be identifiable with respect to (S, SX) if:

• h is consistent with S, h ∈ H[S].
• for all other consistent h′ ∈ H[S]: h′(X \ SX) = h(X \ SX) =⇒ h′ = h, where for

brevity we denote h1(SX) = h2(SX) ⇐⇒ ∀x ∈ SX � h1(x) = h2(x).
Definition 18. Given a set of classifiers V and a set of queried examples SX , define

E(V, SX) =
{
h ∈ V : ∀h′ ∈ V \ {h} : h′(X \ SX) ̸= h(X \ SX)

}
as the effective version space (E-VS) with respect to V and SX .

The following proposition relates the effective version space to the classical notion of version
space:
Proposition 25.

F (S, SX) = E(H[S], SX)

Proof.

h ∈ F (S, SX)⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′(X \ SX) = h(X \ SX) =⇒ h′ = h

⇔ h ∈ H[S] ∧ ∀h′ ∈ H[S], h′ ̸= h =⇒ h′(X \ SX) ̸= h(X \ SX)
(taking the contrapositive)

⇔ h ∈ E(H[S], SX)

Thus, another potential state space representation is using the version space and the unlabeled
examples that has been queried. The following structural lemma justifies that this is also a valid
representation.
Lemma 26. f(S, SX) = Cost(H[S], SX)

Proof. We prove this by backward induction on SX .

Base case: SX = X . In this case, F (S,X) = E(H[S],X) has size 0 or 1; in both cases,
f(S, SX) = Cost(H[S], SX) by their respective definitions in the bases cases.

69

Inductive case. Suppose f(S, SX) = Cost(H[S], SX) holds for any S and any SX such that
|SX | ≥ j + 1. Now consider any S and any SX of size j.

If F (S, SX) = E(H[S], SX) has size 0 or 1, f(S, SX) = Cost(H[S], SX) holds true.
Otherwise, |F (S, SX)| = |E(H[S], SX)| ≥ 2. By inductive hypothesis, for any x ∈ X \ SX :

f(S ∪
{
(x,⊥)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

f(S ∪
{
(x,+1)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,+1)

}
], SX ∪ {x})

f(S ∪
{
(x,−1)

}
, SX ∪ {x}) = Cost(H[S ∪

{
(x,−1)

}
], SX ∪ {x})

Therefore, for any x:

max


f(S ∪

{
(x,⊥)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,+1)

}
, SX ∪ {x})

1 + f(S ∪
{
(x,−1)

}
, SX ∪ {x})

 = max


Cost(H[S ∪

{
(x,⊥)

}
], SX ∪ {x})

1 + Cost(H[S ∪
{
(x,+1)

}
], SX ∪ {x})

1 + Cost(H[S ∪
{
(x,−1)

}
], SX ∪ {x})


Taking minimum over x ∈ X \ SX , we also have f(S, SX) = Cost(H[S], SX).
This completes the induction.

2.14 Discussions on Additional Related Works and Formula-
tion

2.14.1 Additional Related Works
More related AL works: Our technical results are inspired by the minimax results on exact
learning in Hanneke [131]. The noisy setup we consider is similar to that of e.g. Castro and
Nowak [57]. Our algorithm belongs the class of “aggressive” learning algorithms [81, 124], which
has been of interest for their sample-efficiency. As in [245], we also study label-dependent cost.

Abstaining Classifiers: Prior works have studied the task of learning a predictor with the
ability to abstain [233, 326]. Our settings differ in that we aim to learn the true classifier that does
not abstain. Rather, it is the labeler that can abstain during the learning process to slow-down
learning.

Cross space learning: One of our constructions is related to the cross space learning [274]
setup, where each sample is represented in multiple instance spaces. The key observation is that a
strategic labeler can force learning on the instance space with the highest sample complexity, by
abstaining on all other instance spaces.

Strategic Machine Learning: Strategic ML is a line of work concerned with agent manipula-
tion of inputs into the ML model [136]. Much of this topic has focused on inference-time feature
manipulation to influence the model output. And among this large body of work, there is a subset
that deal with strategic manipulation of labels. In these settings, there are multiple agents, each of
whom can (mis)reports their data point label to manipulate the final model trained on all of their
collective data [65, 89, 227]. This line of work largely focuses on the linear-regression setting,
under various notions of strategyproofness.

70

Our work differs from this body of work in considering, at training time (instead of at
inference time), how a single labeler can maximize the query complexity of a learner under
general hypothesis classes, which includes the linear hypothesis class.

Economics of Knowledge Transfer: We note that the idea of strategically slowing down
the transfer of knowledge is not a novel conception. It is a real strategy that people have been
documented to use in apprenticeships for example [110, 111], spanning across several industries
such as law, entertainment and culinary arts. There are two reasons that motivate the slowed
transfer of expertise.

Firstly, as described in [110, 111], before the apprentice has learned everything and can
graduate, he will be working for the teacher (or master as is often used in apprenticeship parlance)
and performing labor for cheap. Thus, this incentivizes the master to slowly down training, so
that the apprentice takes longer to graduate and the master can enjoy this cheap labor for longer.

Secondly, the master can better protect the value of his expertise by slowing down the
transfer of his expertise. Overly fast transfer of the master’s know-how would graduate too many
apprentices too quickly, all of whom also have the same expertise and could thus reduce the value
of the master’s expertise.

In our setting, we consider the relationship between a human teacher (labeler) and a student
(machine). There is a similar incentive at play in that, while the learner has yet to learn h∗, the
labeler is paid by the learner for the training labels provided. But once h∗ is identified, the student
has no need for the teacher. And so, this incentivizes the labeler to slow down learning, in order to
give and be paid for as many labels as possible. One difference we note is that in this setting, the
transfer of expertise has more serious consequences in rendering the labeler’s expertise obsolete,
which is not the case in the apprenticeship setting.

2.15 Experiments

To supplement our theoretical minimax analysis in the main section, we examine the performance
of three learning algorithms, E-VS bisection, VS-bisection and randomly query (a point), in
“average-case” settings by randomly generating learning instances.

Experiment Setup: We consider five sizes for the hypothesis class ranging from 15 to
40. Given a particular hypothesis class size |H|, we generate 50 random learning instances by
randomly generating the binary labels of hypotheses on examples x ∈ X , where the number
of data points |X | is varied from 5 to 30. Given a learning instance, we consider setting (the
underlying hypothesis) h∗ to be every h ∈ H, and thus average the query complexity across
random instances as well as acrossH. This is done to explore the average-case query complexity,
where we do not focus on the query complexity of one particular h∗ = h ∈ H (as was done in
some of the worst-case analyses).

We investigate two possible labeling strategies, with varying amounts of abstention p =
0.0, 0.15, 0.3, 0.45, 0.6. The first strategy is that given the underlying hypothesis h∗ ∈ H, it
abstains on labeling a point x with probability p, and outputs h∗(x) otherwise (w.p. 1 − p).
This labeling strategy may be viewed as one that abstains arbitrarily, and may compromise
identifiability. This models the labeling strategy of a myopic labeler. The second strategy is a
more careful, adaptive labeling strategy that always ensures identifiability. Given the underlying

71

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 2.3: The average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set of plots,
the labeling oracle is random (and may not ensure identifiability), with varying probability of
abstention p. In the plots, the lower the average, the better the algorithm (needing fewer samples).

h∗, when x is queried, it computes the resultant E-VS if x was abstained upon. If abstention leads
to non-identifiability, it labels x and returns h∗(x). Otherwise, it abstains with probability p and
provides the label otherwise. This may be viewed as a more shrewd labeling strategy that always
ensures identifiability, while using some abstention.

Results: We plot results in Figure 2.3 and Figure 2.4, with Figure 2.3 corresponding to the
first (random labeling) strategy and Figure 2.4 corresponding to the identifiable labeling strategy.

We have a few observations. First, as a sanity check, we observe that in the absence of
abstention (p = 0.0), the E-VS and VS algorithm behave exactly the same and thus their
performance should match, which they do as in the first plot of both Figure 2.3 and Figure 2.4.

Next, we observe the general trend that the E-VS algorithm attains the lowest query complexity,
followed by the VS algorithm and then the random querying algorithm. Moreover, the gap
becomes more pronounced with the amount of abstention. This makes sense because the E-VS
representation is designed to handle abstention, while the VS is not. This trend thus illustrates the
effectiveness of using the E-VS representation in face of an abstaining labeler.

Finally, we see that the gap is most significant in face of a non-identifying labeler (as in plots
of Figure 2.3). This is because the E-VS algorithm can do early detection of non-identifiability
and aptly halt the interaction, while the VS bisection and random querying algorithm cannot detect
non-identifiability due to the use of the VS representation. We proved that the query complexity

72

p = 0.0 p = 0.15 p = 0.3

p = 0.45 p = 0.6

Figure 2.4: The average number of examples queried by each algorithm across 50 randomly
generated instances, along with its standard deviation (shaded region). For this set of plots, the
labeling oracle is identifiable, with varying probability of abstention p. In the plots, the lower the
average, the better the algorithm (needing fewer samples).

can be significantly larger in a worst-case setup in Theorem 2. And here, we see that in addition
to the worst-case setting (as in Theorem 2), the E-VS also fares better in the average-case. Thus,
this again affirms the robustness of the E-VS algorithm in face of a non-identifying labeler.

73

74

Chapter 3

Strategic Prediction

3.1 Introduction

With the increasing use of machine learning models in automating decision making, there is
growing concern over the opacity of these models. Such concerns have given rise to laws, such
as the European GDPR, which aim to provide a “Right to Explanation”[98, 251, 286]. However,
one stumbling block to this solution is the tension between transparency and gaming. Greater
transparency into the predictive model gives rise to gaming – individuals strategically misreporting
their features to induce desired classification outcomes from the ML model.

As a result, government agencies are still reluctant to reveal details about their deployed ML
algorithms that make predictions on strategic individuals, which we term strategic prediction.
Subsequently, Freedom of Information requests have been filed by civil interest groups in the
Netherlands [293]. And organized movements such as the OpenSCHUFA project [219] have
formed, through which citizens take matters into their own hands and crowd-source data in order
to reverse-engineer the algorithms.

In this work, we investigate this tension in strategic prediction through a natural, formal model.
To the best of our knowledge, this is the first formal model that captures the tradeoff between
transparency and gaming in strategic machine learning.

The setting we will study is one where an organization uses model h∗ : X → {−1,+1}
to perform classification over feature space X . At the same time, the organization provides
transparency through model explanations. We focus on example-based explanations E , which
have been found to be one of the most intuitive types of explanations in a recent human study
[155], and in particular on prototype-based explanations (e.g k-medoid or MMD-critic [162]).

In more detail, the explanation mechanism E : X → 2X will select a representative subset
of X to label and explanations {(x, h∗(x)) | x ∈ E(X)} will be released. For example, for loan
applications, such explanation could be in the form of past, anonymized (un)successful profiles.

Intuitively, the concern with releasing explanations is that applicants may use the knowledge
of the hypothesis classH ∋ h∗ along with the explanations to construct the version space (VS),
HC = {h ∈ H | h(x) = h∗(x),∀x ∈ E(X)}, to infer h∗. If the explanation is “good” and
allows for “simulatability” of h∗ [209], then the few models inHC would be constrained by the
explanations to have very similar predictions on X as h∗. And so, even though the VS does not

75

directly identify h∗, the VS allows one to estimate h∗’s prediction with high certainty. This we
will formalize soon.

To address this issue, we propose margin-distancing as a simple and general method that can
make the tradeoff between transparency and gaming. We show that with margin-distancing it
need not be one or the other: it is possible to offer individuals some idea of how the model works
while still preventing gaming in strategic prediction.

Concretely, given classification models h∗ and input example x, we use f ∗ : X → R to denote
a function that outputs an underlying margin score, h∗(x) = sign(f ∗(x)), where sign(a) = +1
for a ≥ 0 and sign(a) = −1 otherwise. Margin-distancing selects a subset of X whose margin
score

∣∣f ∗(x)∣∣ is greater than some threshold α. This is done to induce a sufficiently largeHC and,
as a result, sufficiently low certainty on how h∗ predicts to dissuade gaming.

This approach is compatible with any example-based explanations. We note that our approach
is also applicable with local surrogate based methods with bounded fidelity region. Indeed, these
methods may be viewed as example-based explanation methods that impart labels for all points
within the fidelity regions.

Our Contributions:
(1) We formalize the tradeoff between transparency and gaming, and propose margin-distancing

as a way of making this tradeoff.
(2) We prove that margin-distancing does monotonically decrease decision boundary certainty

under a uniform prior over homogeneous linear models and spherical feature space. We also give
a set of complementary negative results showing that monotonicity does not hold in general.

(3) We evaluate boundary points’ certainty using sampling for general model classes. Our
empirical studies suggest margin-distancing does reduce boundary certainty in a relatively mono-
tonic fashion, and in some cases, completely monotonically, which would enable binary search as
a computationally efficient means of finding the optimal amount of explanations to release.

3.2 Related Works

Transparency vs Gaming: To the best of our knowledge, there has been only one technical
paper [281] that examines the tension between explanation and gaming. In this work, an organi-
zation focuses on releasing an optimal set of counterfactual explanations S to induce agents to
change their reports in a way that maximizes the organization’s utility; this work does not focus
on examining the tradeoff explored in our paper. Moreover, the key assumption that differs from
our setting is that all feature alteration is viewed as being causal. Lastly, in our work, we do not
assume that agents can only change to points in S (if possible), but rather to any point x̂ in the
neighborhood of x.

Strategic ML: Similar to most of strategic classification literature [65, 94, 136, 163], we
assume strategic behavior is gaming. However, different from most, past formulations, agents in
our setting do not have full knowledge of h∗ and have to best respond with only partial knowledge
(explanations) of h∗.

In the interest of space, we have included further related works on topics including Improve-
ment vs Gaming, Explanation Manipulation in Appendix 3.10.

76

3.3 Problem Formulation

Gaming: We assume all individuals desire to be classified the positive label (e.g “loan granted”)
by h∗. An individual with profile x may use the explanations of h∗ to compute and misreport
x̂ ̸= x so as to improve the chance of being classified as the positive label. As is standard in
strategic classification, this act of misreporting is referred to as gaming [136].

In face of gaming, the organization wishes to have its predictions be unaffected by the release
of explanations E(X): h∗(x̂) = h∗(x), ∀x ∈ X .

For our analysis, we first assume that applicants cannot report arbitrary profiles – otherwise
everyone will simply report some x ∈ E(X) with a positive label. This assumption may also be
motivated as follows: in strategic ML literature, individuals are typically assumed to have a cost
function. This naturally induces a region beyond which it is too costly to change to. For modeling
purposes, we assume that if an applicant has feature x, then x̂ ∈ Rr(x) := {x′ | ∥x − x′∥ <
r, x′ ∈ X}, with r > 0 being the maximum extent of manipulation. Additionally, we assume that
applicants are aware of the model classH ∋ h∗ used by the organization.

Next, since the explanations only allow one to conclude that h∗ ∈ HC , we need to specify
how individuals reason about whether to misreport x′ or report x truthfully with only partial
knowledge about h∗. To model this calculus, as is common in Economics, we assume that the
individual is Bayesian and calculates the increased chance of obtaining positive label under x′

instead of x through a prior distribution U that gets updated to posterior U(HC) (the restriction of
U on the setHC) with knowledge of E(X):

π(x, x′) = Prh∼U(HC)(h(x
′) = 1)

− Prh∼U(HC)(h(x) = 1).

A natural choice for U is the uniform distribution, though it need not be so. We assume that the
organization also knows U .

Naturally, individuals will choose to misreport if there is a sufficiently high certainty of success,
since they obtain positive utility for getting the positive label (i.e if h∗ is s.t h∗(x̂) = 1). However,
in misreporting, they incur negative utility for the cost of manipulation: x→ x′. These two may
be weighted linearly in rational agents or nonlinearly in behavioral agents due to risk-aversion
[160]. Following the formal model of the rationality of crime as introduced by Becker [39],
we abstract this away by assuming that there is some threshold κ such that if π(x, x′) ≤ κ, the
individual is too risk-averse to misreport x̂ = x′: the cost of manipulation offsets the increased
likelihood of obtaining positive utility through positive classification.

This brings us to our main insight: we only need HC to be sufficiently ambiguous near the
decision boundary because only individuals with points near the boundary can misreport in a way
that flips h∗’s prediction.

Formally, define the set of boundary points to be all x’s where such a label flip is possible:
Nr(X) := {x ∈ X | ∃x′ ∈ Rr(x) ∧ h∗(x′) ̸= h∗(x)}. Similarly, we define boundary pairs
to be pairs (x, x′) that are within a distance of r, but predicted differently by h∗; formally,
Mr(X) :=

{
(x, x′) ∈ X 2 | x′ ∈ Rr(x) ∧ h∗(x′) ̸= h∗(x)

}
. Observe thatMr(X) ⊂ Nr(X)2.

Margin-distancing: To make it difficult to infer the decision boundary through HC , it is
natural to remove explanations that are close to the decision boundary. This gives rise to our

77

Figure 3.1: Visualization ofHC in a toy example where the amount of explanations (blue points)
is varied (80, 50, 20 percent of all explanations is kept). In red is one randomly chosen boundary
pair. 100 lines (green and black) are randomly sampled fromHC ; in black are lines that predict
the pair like h∗ (opposite labels), and green the same.

approach of margin-distancing. We will designate some indicator function Λα for choosing
explanations, which evaluates to 1 iff the examples’ classification margin score is greater than
cutoff α; formally, Eh∗(X , α) =

{
x ∈ X : Λα(x) = 1

}
. Note that HC is a function of α, since

HC is a function of the explanations, which are in turn a function of α. Intuitively, a big α that
only retains explanations with large margins would decrease boundary certainty, which we define
as max(x,x′)∈Mr(X) π(x, x

′).
Policy Goals: Herein lies the tradeoff for the organization:
1) Provide explanation Eh∗(X , α) such that the boundary certainty is made sufficiently low:

max(x,x′)∈Mr(X) π(x, x
′) ≤ κ. This makes all individuals x ∈ X too risk-averse to misreport

x̂ ∈ Rr(x) with h∗(x̂) ̸= h∗(x), thus preventing gaming.
2) The explanation provided Eh∗(X , α) is as transparent as possible. That is, α is as small as

possible to retain as many explanations from the full set of explanations as possible. Naturally, in
our setting, we define transparency to be the amount of explanations that remain after margin-
distancing.

The technical problem we study is:

How can we search for the smallest threshold α possible such that max(x,x′)∈Mr(X) π(x, x
′) ≤

κ, which is needed to prevent gaming?

Before we proceed, we obtain some intuition first through a qualitative visualization ofHC

in a toy example, Figure 3.1. This figure helps to confirm that allowing explanations with small
margins “boxes in” the version space too much, and makes models inHC too similar to h∗. And
so, removing explanations with small margin help enlargeHC and decrease boundary-certainty.

Simple Example: Next, for a quantitative toy example, consider when X = [0, 1] and
H = {hw(x) := sign(x − w) | w ∈ [0, 1]} is the class of 1D thresholds. Let U be the uniform
distribution overH. We know then that w∗ ∈ [x−, x+], where x− is the largest negative point in
E(X) and x+ the smallest positive point. Therefore, for x ∈ (x−, x+) and some x′ ∈ Rr(x) > x,
we have that π(x, x′) = min{x′,x+}−x

x+−x− . In this case, it is evident that margin-distancing (i.e
increasing x+ and decreasing x−) decreases boundary certainty π(x, x′).

In the section that follow, we study a more general hypothesis class and verify that the intuitive
trend of removing information around the decision boundary does make it more difficult to infer
the decision boundary, thus reducing boundary certainty.

78

r max extent of manipulation
α min distance from the margin
Π(α) boundary certainty, Π(α) = max(x,x′)∈Mr(X) πα(x, x

′)
ϕ max angle between w ∈ HC and w∗; related to α by α = sinϕ
ψ max angle: related to r by cosψ = 1− r2/2

Table 3.1: A table of notations that appears in Section 3.4.

3.4 Homogeneous Linear Models

We focus our theoretical study on the property of monotonicity, which if true, allows for binary
search as an efficient way to compute the optimal α. In this section, we identify homogeneous
linear models in Rd, i.e. H =

{
hw | ∥w∥2 = 1

}
(where hw := x 7→ sign(⟨w, x⟩)), as one setting

where margin-distancing monotonically leads to decreased boundary certainty.
For the results that follow, we also assume that individuals have uniform prior U over H.

We will also focus on when the feature space X is the origin-centered unit sphere, i.e., X ={
x ∈ Rd | ∥x∥2 = 1

}
, which means that r ≤ 2. Intuitively, this corresponds to a normalized

dataset with profiles of “all kinds”, which is not unreasonable for profiles of a general population.
We handle more general settings in the following section.

For linear models, it is natural to take Λ to be a function of the margin of a point with respect
to w∗ (the parameter of h∗): Λα(x) = 1{

∣∣⟨w∗, x⟩∣∣ > α}, for α ∈ [0, 1). Therefore, for every α,

its associated set of explanations is Eh∗(X , α) =
{
x ∈ X :

∣∣⟨w∗, x⟩∣∣ > α
}

.
Under this “nice” setting, we first show that we can give a simple characterization of the

version space in terms of α:
Lemma 27. Fix α ∈ [0, 1). Recall thatHC = {h ∈ H | h(x′) = h∗(x′), ∀x′ ∈ Eh∗(X , α)} is the
version space induced by explanation Eh∗(X , α). HC can be equivalently written as:

HC =
{
hw | ∥w∥2 = 1, w · w∗ ≥

√
1− α2

}
.

For ease of the exposition of the next theorem, we reason in the spherical counterpart to α and
r:

• Define ϕ to be the maximum angle between any w ∈ HC and w∗. From Lemma 27, under
explanation Eh∗(X , α), ϕ = arccos(

√
1− α2) = arcsinα. Intuitively, ϕ measures how

largeHC is and shrinks with a bigger set of explanations.
• Define ψ = 2arcsin(r

2
) = arccos(1 − r2

2
). The boundary region Nr(X) may then be

described as the set of points {x ∈ X | ⟨w∗, x⟩ ∈ [− sinψ, sinψ)}. Intuitively, ψ measures
how “thick” the boundary region is. Geometrically, this means that θ(x,w∗) ∈ [π/2 −
ψ, π/2 + ψ] for x in the boundary region, where θ(x,w∗) denotes the angle between x and
w∗ the decision boundary: θ(u, v) = arccos(⟨u,v⟩

∥u∥2∥v∥2) ∈ [0, π].
Please refer to Figure 3.2 for an illustration of notation ϕ and ψ, which we note are both acute

by definition, and refer to Table 3.1 for a summary of definitions.
Firstly, it is clear that increasing boundary thickness ψ leads to a largerMr(X), therefore

a higher max(x,x′)∈Mr(X) πα(x, x
′). We derive an analytical form of max(x,x′)∈Mr(X) πα(x, x

′)

79

Figure 3.2: Visualization of the notation: HC in green, boundary region in red and true model w∗

in yellow.

below that formalizes this.
Theorem 11. We have:

max
(x,x′)∈Mr(X)

πα(x, x
′) =


∫ ψ/2
0 F (θ)dθ∫ ϕ
0 F (θ)dθ

ψ ≤ 2ϕ

1 ψ > 2ϕ,

where F (θ) = (1− cos2 ϕ
cos2 θ

)d/2−1; therefore, it is strictly increasing for ψ in [0, 2ϕ].
Our next two theorems consider the margin-distancing effect in terms of α. For simplicity and

to relate α’s effect onHC through explanations Eh∗(X , α), we subsequently abbreviate boundary
certainty max(x,x′)∈Mr(X) πα(x, x

′) as Π(α).
To recap, a higher threshold α, corresponding to more margin-distancing, leads to a smaller

set of explanations Eh∗(X , α) (lowered transparency since more explanations are removed) and
thus a biggerHC . This leads to lower boundary certainty Π(α), preventing gaming.

In the next result, we show that Π(α) is provably monotonically decreasing in α. Thus, this
enables the use of binary search to efficiently find the optimal α. Indeed, it is not clear that
decreasing the amount of explanations and enlarging the version space will always decrease Π(α).
The reason is that enlargingHC increases both models that agree with h∗ on x, x′ (black lines in
Figure 3.1) and models that do not (green lines). If proportionally more of them do predict like
h∗, then the new πα(x, x

′) will actually increase. We prove Theorem 12 that shows this is not so
in this “nice” setting; the proof may be found in Appendix 3.7.1.
Theorem 12. Π(α) is decreasing in α, for α ∈ [0, 1), and is strictly decreasing in [sin(ψ/2), 1).

Finally, in some cases, we may skip the search if we can analytically derive conditions on
ϕ, ψ in which Π(α) is upper bounded. Next, we show that there exists some constant c such that
limα→1Π(α) ≤ cψ. Thus, when ψ is small and α increases to 1, Π(α) decreases to a small value.
Theorem 13. 1. If α ≥ 1− 1

8d
, then Π(α) ≤ 9ψ.

2. For any C1 ∈ (0, 1), there exists C2 > 0 such that the following holds: if α ≤ 1− 1√
d

and
ψ ≥ C2

d1/4
, then Π(α) ≥ 1− C1.

A more refined version of this theorem and proofs of other theorems may be found in
Appendix 3.7.

80

3.5 General Models

For arbitrary feature spaces, it is unclear if it is possible to explicitly characterize HC even
for non-homogeneous linear models. Still, let us suppose we have devised some function Λ
parameterized by threshold parameter α. Algorithmically, how do we search for the smallest α
such that Π(α) < κ for a given κ?

First, we will need an approach to approximate Π(α) under a given threshold α. Indeed, there
is generally no closed-form expression for Π(α), so we will assume access to an algorithm that can
sample from the posterior distribution U(HC). Our approach is simply to draw samples h1, ..., hn
using the algorithm and evaluate: ρ̂(x′)− ρ̂(x) = 1

n

∑n
i=1 1{hi(x′) = 1}− 1

n

∑n
i=1 1{hi(x) = 1}.

To understand the sample complexity needed, we see that, ρ̂(x) = 1
n

∑n
i=1 1{hi(x) = 1} =

1
n

∑n
i=1 1{H∗x(hi) = 1}, where for a fixed x, H∗x : h 7→ h(x) is its associated dual function.

Definition 19 (Dual Class). For any domain X and set of functionsH whose image is {−1,+1},
the dual class ofH is defined asH∗ := {H∗x | x ∈ X}.

As introduced in [17], VC(H∗) is finite as long as VC(H) is finite. And so, withO
(

VC(H∗)+log 1/δ
ϵ2

)
random draws, we may obtain an 2ϵ−accurate estimation of ρ̂(x)− ρ̂(x′) for all boundary pairs
x, x′, due to uniform convergence. This gives us a 4ϵ-accurate estimation of Π(α). In the case of
linear models, due to point-line duality, we know that VC(H∗) = VC(H) = O(d), which informs
us how many samples are needed to calculate a high fidelity approximation of πα(x, x′).

Search: Once we know how to approximate maxπα(x, x
′) for a given α, if monotonicity

does hold, then search for the optimal threshold may be efficiently done through binary search.
Recall from Theorem 12 that, if a) the feature space is spherical, and b) the prior distribution over
the hypothesis class is uniform, and c) the hypothesis class is homogeneous halfspaces, then Π(α)
decreases monotonically to O(ψ). To complement this result, we next show that removing one of
a, b or c (and keeping the rest) breaks this pattern.

Our next two proposition show that, removing the spherical feature space condition, or
removing the assumption of U being uniform, can cause boundary certainty to increase with
increasing margin distancing parameter α in worst-case settings.
Proposition 26. Suppose d = 2. We have uniform prior over homogeneous linear models
H = {w ∈ Rd | ∥w∥ = 1}, there exists a feature space X and thresholds 0 < α2 < α1 such that
Π(α2) < Π(α1).
Proposition 27. Suppose X is the d-dimensional unit sphere with d ≥ 3. There exists a non-
uniform distribution U over homogeneous linear models H, such that there exists thresholds
0 < α2 < α1 with Π(α2) < Π(α1).

Finally, we show that by removing the assumption that the hypothesis class is the set of
homogeneous linear models, Π(α) can stay at a high value for all α ∈ (0, 1] and all ψ ∈ (0, π].
This is in sharp contrast with the homogeneous linear model class setting, in which limα→1Π(α) ≤
O(ψ) and could thus be made arbitrarily small with ψ → 0.
Proposition 28. There exists a class of non-homogeneous linear models, with spherical X such
that Π(α) decreases monotonically (and strictly so at some point) with increasing α, and yet
Π(α) ≥ 1/3 for all α ∈ [0, 1) and ψ ∈ (0, π].

Thus, we have that in general monotonicity does not hold. However, our negative results

81

are worst-case in nature. Next, we turn to experiments to examine the relationship between
margin-distancing and boundary-certainty on real-world, non-worst case datasets.

3.6 Experiments

In this section, we empirically chart the relationship between margin distancing (the amount
of explanation omission) and boundary certainty. We experiment with linear and multi-layer
Perceptron (MLP) models.

Explanation Methods: As mentioned in the formulation, we focus on example-based expla-
nation methods that can return a subset of prototypical instances that serve as explanations. This
leads us to use k-medoid and MMD-critic [162], and rules out other example-based explanation
methods such as [166] that return a single (and not subset), most “influential” data point out
of the training set. Note also, that counterfactual and contrastive-based explanations are ruled
out by the need to margin-distance. Indeed, by construction, counterfactual/contrastive-based
explanations are boundary points, whose release greatly increase the users’ boundary certainty –
in fact, max(x,x′)∈Mr(X) π(x, x

′) = 1. Thus, if manipulation (gaming) is to be prevented, the use
and release of this type of explanations is a non-starter.

Our experimental procedure goes as follows:
1) The explanation method (e.g k-medoid) is used to compute the full set of explanations.
2) Then, we vary the degree of margin-distancing and remove explanations that are too close

to the decision boundary. To measure the closeness of an explanation point with respect to the
decision boundary, we look at its percentile in the distribution of all explanations’ margin scores.
This allows us to identify which points are in the top l percent of all explanations closest to
the margin. We do this separately for positive and negative explanations as they have different
distributions of margin scores.

3) To compute boundary certainty, we remove this top l percent closest explanations, compute
models HC consistent with the remaining explanations Eh∗(X , α) and compute π(x, x′) using
HC .

4) To generate our plots, we vary l for l ranging from 0 to 75 (on the x-axis) and plot this
against three metrics that capture boundary certainty (on the y-axis). The three metrics that
summarize π(x, x′) for all boundary pairs (x, x′) are: max(x,x′)∈Mr(X) π(x, x

′) (worst boundary
pair), average of top 5 percent of π(x, x′)’s (somewhat worse case) and average of all π(x, x′).

3.6.1 Linear Models
Procedure: We train a linear model on the Credit Card Default dataset [314] using
Logistic Regression to obtain w∗. We focus on mutable features only that preclude features age
and marital status. We take Λ to be margin distance ⟨w∗, x⟩. For these experiments, at a given r,
we focus on and use w∗ to find the set of all pairs of boundary points (x, x′) that lead to a positive
flip:

{
(x, x′) : w⋆ · x < 0, w⋆ · x′ ≥ 0

}
. This is relatively cheap since by Cauchy-Schwarz, we

only need to try all pairs of points whose margin score is ≤ r, a much smaller set.
For a given set of explanations, we construct and sample from HC , which is a polytope.

Sampling from polytopes is a well-studied problem and we use the state-of-the-art John’s Walk

82

Figure 3.3: Plots of the max(x,x′)∈Mr(X) π(x, x
′) (left), average of top 5 percent of all π(x, x′)

(middle) and average of all π(x, x′) (right) under k-medoid explanations for linear models.

[67] with mixing time O(d2). We assume uniform U over H. Thus, with these samples, we
compute the empirical max(x,x′)∈Mr(X) π̂(x, x

′) with w’s sampled uniformly fromHC . We repeat
this sampling 16 times for each set of explanations corresponding to a margin-distance percentile.

Monotonicity: We present our results in Figure 3.3. Qualitatively, we observe a generally
smooth decreasing trend with increased distance of explanations from the margin and we observe
some non-monotonicity under all three metrics, most prominently under the max metric. For all
three metrics, we see that the trend levels out quickly. This suggests that trying smaller values of
α (small amounts of explanation omission) can quickly decrease various measures of boundary
certainty and this strategy is effective in this setting.

Quantitatively, we check if the trend is generally monotonic in an experiment that goes as
follows. We pick 10 target boundary certainty values evenly spaced out from the attainable
boundary certainties as found on the y-axis. Then, for each target value, we find the minimum
percent of explanation points that need to be removed to bring the boundary certainty below the
target; this optimal percentage is found simply by sweeping through all (percentage, certainty)
pairs we have from left to right. Finally, we obtain the percentage that need to be removed as
found by binary search and compute the difference between the percentage found by binary search
against the optimal.

Under k-medoid explanations for linear model, we summarize the results by looking at the
average of the difference and the max difference, which we report as follows. For plots of the
max(x,x′)∈Mr(X) π(x, x

′): r = 0.1, 7, 35; r = 0.2, 11, 55; r = 0.3, 0, 0. For plots of average of
top 5 percent of all π(x, x′): r = 0.1, 7, 35; r = 0.2, 10, 50; r = 0.3, 0, 0. For plots of average of
all π(x, x′): r = 0.1, 6, 30; r = 0.2, 11, 55; r = 0.3, 0, 0. We record the full set of differences in
tables in Appendix 3.8.4.

As a synopsis, we observe that the difference is generally small for higher r’s and larger for
lower r’s. The relatively jagged line means that binary search is likely to be quite far off. Here
we wish to note that this problem may be alleviated by electing to try the smaller amounts of
explanation omission instead of binary search, in the case that we find that the boundary certainties
are close at the extremes. Indeed, the closeness would suggest that not much decrease in boundary
certainty could be obtained by significantly increasing the percentage of explanation omission.

We also observe the result from varying the allowed extent of manipulation r. As expected,
the larger the manipulation extent r, the higher the π(x, x′) that may be attainable.

83

3.6.2 Neural Network Models

Procedure: We train MLPs with one or two hidden layers on the givemecredit1 dataset. We
present the one layer MLP experiment results in the main body and the two layer in the appendix.
We experiment with k-medoid and MMD-critic [162], whose results we present in the appendix.
To measure of distance from margin, we take Λα(x) to be the model’s confidence of a point:
Λα(x) = 1{|f ∗(x)| ≥ α}, where f ∗ : X → [−1

2
, 1
2
] represents the MLP’s predictive probability

of class 1, offset by −1
2
.

To the best of our knowledge, there is no known algorithm that provably sample uniformly
from neural network version spaces. Indeed, this is an important problem described by recent
works on the “Rashomon effect” [80, 196, 252]. We use the procedure in [80] used to probe the
version space: randomly initialize the network with different seeds to obtain different models
consistent with the explanations. For computational tractability, we sample 100 MLPs this way
with 4 repetitions per margin-distance percentile.

Observations: Our first observation is that varying just the initialization is not an effective
sampling procedure under the givemecredit dataset. We find small variation in the MLPs
produced. To showcase this, we randomly sample 100 pairs of MLPs from theHC we collected and
calculate their label agreement on the boundary points, Prh,h′∼U(HC),x∼Unif(Mr(X))(h(x) = h′(x)).
The high average consistency ofHC is charted in green in Figure 3.5.

We also compute the three metrics in this setting (Figure 3.6), which interestingly are very high
despite the overall low agreement with respect to h∗ – defined as Prh∼U(HC),x∼Unif(Mr(X))(h(x) =
h∗(x)) (please see right figure in Figure 3.5). This seems to be due to a small fraction of points
which most MLPs inHC consistently agree with h∗ on. The large values of max(x,x′)∈Mr(X) π(x, x

′)
in this case suggests the difficulty of preventing worst-case manipulation when the full set of
hyperparameters used to train the network is known.

Indeed, as is noted in [153], it seems generally implausible for attackers to know the exact
hyperparameters used to train the networks, which has been the assumption in the past model
extraction works. And so, from hereon, we experiment with the natural, sampling procedure in
the absence of such knowledge, which is just to randomly initialize the network and also the
set of hyperparameters (ℓ2 regularization constant, learning rate, momentum, batch size). These
are randomly sampled from uniform distributions that contain the hyperparameters’ true values.
Verily, this leads to greater variation (please see the yellow barplots in Figure 3.5).

Since neural networks may require higher sample complexity, we also examine data augmen-
tation techniques that one might consider to enhance the explanation set. In addition to 1) just the
explanations, we consider 2) explanations plus random draws from Gaussian balls of radius 0.1
around the explanations 3) the full {x | x ∈ X ,Λα(x) = 1}, which would correspond to “perfect”
extrapolation of the feature space based off of E(X). The plots are given in Figure 3.4.

Comparing the effectiveness of the data augmentation, We observe small change in the π with
mildly augmented data as in 1). However, the full knowledge of the {x | x ∈ X ,Λα(x) = 1}
results in higher measures of boundary certainty. Indeed, this is to be expected since more labeled
data naturally induces higher boundary certainty.

Monotonicity: In terms of the general trend for monotonicity, we again observe that margin-

1http://www.kaggle.com/c/GiveMeSomeCredit/

84

Figure 3.4: MLP results: k-medoid explanations (top), k-medoid explanations + random draws
from small balls around the explanations (middle), full {x | x ∈ X ,Λα(x) = 1} (bottom). The
three metrics are in column: max π(x, x′) (left), top 5 percent of all π(x, x′)’s (middle), average
π(x, x′) (right).

Figure 3.5: Boundary point label agreement withinHC (left), and boundary point label agreement
ofHC with respect to h∗ (right). This is estimated by sampling h from version space using random
initializations of parameters (green) and hyperparameters (yellow), respectively.

85

Figure 3.6: Plots of the max(x,x′)∈Mr(X) π(x, x
′) (left), average of top 5 percent of all π(x, x′)’s

(middle) and average of all π(x, x′) (right) for the MLP case with random initialization only under
k-medoid explanations.

distancing does help to reduce all three metrics. Qualitatively, max(x,x′)∈Mr(X) π(x, x
′) trend is

non-monotonic and jagged at places, but smooths out with even a bit of averaging (the latter two
metrics). In fact, we see that the average of top 5 percent of π(x, x′)’s and average of all π(x, x′)
metrics are monotonic. This is instructive in that it suggests that binary search could be used to
efficiently search for the appropriate threshold.

Quantitatively, we verify if this trend is generally monotonic as before. We pick 10 target
boundary certainty values evenly spaced out from the attainable boundary certainties as found on
the y-axis. For each target value, we find the minimum percent of explanation points that need to
be removed to bring the boundary certainty below the target and compare against the percentage
found by binary search.

Under k-medoid explanations for MLP models, we again summarize the results by looking
at the average of the difference and the max difference. Here, due to the much smoother curves
(relative to those of the linear models) and the large discrepancy in boundary certainties at the two
extremes, we find that under all three r’s, binary search is able to match the optimal percentage
needed to bring the boundary certainty below the target value.

3.6.3 Fair accessibility to explanations
A notable concern that may arise with margin distancing is that though omission of prototypical
explanations is necessary, it may disproportionately affect individuals in regions close to the
boundary. We plot the composition of the boundary region in the appendix under linear models
logistic and SVM models. We observe that margin-distancing does disparately affect the release
of explanations to different groups. Verily, this is another important factor that needs to be taken
into account in the explanation release process.

3.7 Proofs

3.7.1 Deferred Proofs from Section 3.4

Recall that in Section 3.4, X is the origin-centered unit sphere in Rd, and H is the set of
homogeneous linear classisfiers in Rd, and U denotes the uniform distribution overH.

86

In the proofs that follow, we will mainly work in terms of polar angles ϕ and ψ. Recall ϕ =
arcsinα is defined to be the maximum angle between any w ∈ HC and w∗, and ψ = 2arcsin(r

2
)

measures the thickness of the boundary region Nr(X).
Now, we prove a characterization of the boundary region in terms of ψ.

Fact 1. Nr(X) =
{
x ∈ X | ⟨w∗, x⟩ ∈ [− sinψ, sinψ)

}
.

Proof. Recall our definition that Nr(X) := {x ∈ X | ∃x′ ∈ Rr(x) ∧ h∗(x′) ̸= h∗(x)}, where
h∗(x) = sign(⟨w∗, x⟩). Thus, it suffices to show that

⟨w∗, x⟩ ∈ [− sinψ, sinψ)⇐⇒ ∃x′ ∈ Rr(x) � sign(⟨w∗, x′⟩) ̸= sign(⟨w∗, x⟩).

We show the implications in both directions.

(⇒): Suppose we are given x such that ⟨w∗, x⟩ ∈ [− sinψ, sinψ). Then x can be represented
as x = βw∗ +

√
1− β2x⊥, for some β ∈ [− sinψ, sinψ), and x⊥ is a unit vector perpendicular

to w∗. Observe that x− x⊥ = βw∗ + (
√
1− β2 − 1)x⊥, and therefore,

∥x− x⊥∥2 =
√
β2 + (

√
1− β2 − 1)2 =

√
2(1−

√
1− β2).

We now consider two cases of β:

1. If β ∈ [− sinψ, 0), we consider x′ = x⊥. First observe that x′ ∈ Rr(x). Indeed,

∥x− x′∥2 =
√

2(1−
√

1− β2) ≤
√

2(1− cosψ) = r.

Meanwhile, sign(⟨w∗, x′⟩) = sign(0) = 1 ̸= −1 = sign(β) = sign(⟨w∗, x⟩), which
establishes the claim.

2. If β ∈ [0, sinψ), we first observe that ∥x−x⊥∥ =
√

2(1−
√

1− β2) <
√

2(1− cosψ) =

r. Therefore, there exists a small enough γ > 0, such that x′ = −γw∗ +
√

1− γ2x⊥ is
close enough to x⊥, and hence lie inRr(x). Now, sign(⟨w∗, x′⟩) = sign(−1) = −1 ̸= 1 =
sign(β) = sign(⟨w∗, x⟩), which establishes the claim.

(⇐): Assume toward contradiction that ⟨w∗, x⟩ ∈ [−1,− sinψ) ∪ [sinψ,+1]. Without loss of
generality (due to spherical symmetry) suppose thatw∗ = (1, 0, . . . , 0) and x = (sin θ, cos θ, 0, . . . , 0)
with θ ∈ [−π

2
,−ψ) ∪ [ψ, π

2
].

Consider any z ∈ X ∩Rr(x). We have:

d∑
i=1

z2i = 1,

(z1 − sin θ)2 + (z2 − cos θ)2 +
d∑
i=3

z2i ≤ r2,

87

holding simultaneously. Combining the above two equations, we get

sin θz1 + cos θz2 ≥ 1− r2

2
= cosψ.

We now consider two cases of θ:

1. θ ∈ [ψ, π
2
]. In this case, cos θ ≤ cosψ. And so, sin θz1 ≥ cosψ − cos θz2 ≥ 0. Therefore,

for all z ∈ Rr(x), sin θ · z1 ≥ 0 and hence z1 ≥ 0. In this case, sign(⟨w∗, x⟩) =
sign(sin θ) = 1 = sign(z1) = sign(⟨w∗, z⟩).

2. θ ∈ [−π
2
,−ψ). In this case, cos θ < cosψ. And so, sin θz1 ≥ cosψ − cos θz2 > 0.

Therefore, for all z ∈ Rr(x), sin θ·z1 > 0 and hence z1 < 0. In conclusion, sign(⟨w∗, x⟩) =
sign(sin θ) = −1 = sign(z1) = sign(⟨w∗, z⟩).

In either case, sign(⟨w∗, x⟩) = sign(⟨w∗, z⟩) holds for all z ∈ Rr(x), which contradicts the
assumption that ∃x′ ∈ Rr(x) � sign(⟨w∗, x′⟩) ̸= sign(⟨w∗, x⟩). This concludes the proof.

Recall that we define Λα(x) = 1(
∣∣⟨w∗, x⟩∣∣ > α) and assume a uniform prior over homoge-

neous linear model class H and that X is the origin-centered unit sphere in Rd. With this, we
show that the trend of monotonicity exists in this “nice” setting and we can also develop direct
upper bounds on Π.

To do this, we first begin by characterizing the version space,
Lemma 28 (Restatement of Lemma 27). Fix α ∈ [0, 1). Recall that HC = {h ∈ H | h(x′) =
h∗(x′), ∀x′ ∈ Eh∗(X , α)} is the version space induced by explanation Eh∗(X , α). HC can be
equivalently written as:

HC =
{
hw | ∥w∥2 = 1, w · w∗ ≥

√
1− α2

}
.

Proof. First observe that w∗ ∈ Eh∗(X , α). We will show

(∀x ∈ Eh∗(X , α) � sign(⟨w, x⟩) = sign(⟨w∗, x⟩))⇐⇒ ⟨w,w∗⟩ ≥
√
1− α2.

We show the implications in both directions:

(⇒) First, since w∗ ∈ Eh∗(X , α), we must have ⟨w,w∗⟩ ≥ 0.
Assume towards contradiction that ⟨w,w∗⟩ <

√
1− α2, then w can be represented as w =√

1− β2w⋆ + βw⊥, where β > α and w⊥ is a unit vector perpendicular to w⋆. We now show
that there is an x0 ∈ Eh∗(X , α) such that sign(⟨w∗, x0⟩) ̸= sign(⟨w, x0⟩), which will reach
contradiction.

Choose γ ∈ (α, β), and define x0 = γw⋆ −
√
1− γ2w⊥. It can be readily checked that

⟨w∗, x0⟩ = γ > α, so x0 ∈ Eh∗(X , α). Meanwhile, because γ < β,

⟨w, x0⟩ =
√

1− β2γ − β
√

1− γ2 =
√

1− β2γ

(
1− β

γ
·
√

1− γ2√
1− β2

)
< 0,

implying sign(⟨w, x0⟩) = −1 ̸= 1 = sign(⟨w∗, x0⟩).

88

(⇐) If ⟨w,w∗⟩ ≥
√
1− α2, then w can be represented as w =

√
1− β2w⋆ + βw⊥, where

β ≤ α and w⊥ is a unit vector perpendicular to w⋆.
Now consider any x ∈ Eh∗(X , α); we would like to show that sign(⟨w∗, x0⟩) = sign(⟨w, x0⟩).

First, since x ∈ Eh∗(X , α), x can be represented as x = ξw⋆+
√

1− ξ2x⊥, where ξ ∈ [−1,−α)∪
(α,+1] and x⊥ is a unit vector perpendicular to w⋆.

Without loss of generality, assume that ξ ∈ (α,+1]; the case of ξ ∈ [−1, α) is symmetric. In
this case, we have sign(⟨w⋆, x⟩) = 1. Meanwhile,

⟨w, x⟩ =⟨
√

1− β2w⋆ + βw⊥, ξw
⋆ +

√
1− ξ2x⊥⟩

=
√
1− β2ξ + β

√
1− ξ2⟨w⊥, x⊥⟩

≥
√

1− β2ξ − β
√

1− ξ2

=
√

1− β2ξ(1− β

ξ
·
√

1− ξ2√
1− β2

) > 0,

where the first inequality is by Cauchy-Schwarz; the second inequality uses the observation that
β ≤ α < ξ. The above implies that sign(⟨w, x⟩) = 1 = sign(⟨w⋆, x⟩).

It is clear that increasing margin thickness ψ leads to a strictly bigger margin region, and a
higher max(x,x′)∈Mr(X) πα(x, x

′). We derive an analytical form of this.
Theorem 14 (Restatement of Theorem 11). max(x,x′)∈Mr(X) πα(x, x

′) can be written as:

max
(x,x′)∈Mr(X)

πα(x, x
′) =


∫ ψ/2
0 F (θ)dθ∫ ϕ
0 F (θ)dθ

ψ ≤ 2ϕ

1 ψ > 2ϕ,

where F (θ) = (1− cos2 ϕ
cos2 θ

)(d−2)/2; therefore, it is strictly increasing for ψ in [0, 2ϕ].

Proof. Denote by F+(θ) = (1− cos2 ϕ
cos2 θ

)
(d−2)/2
+ , where (z)+ := max(z, 0). Note that F+(θ) = 0 if

θ /∈ [−ϕ, ϕ].
To show the theorem statement, note that

∫ π
−π F+(θ)dθ = 2

∫ ϕ
0
F (θ)dθ; it therefore suffices to

show that,

max
(x,x′)∈Mr(X)

πα(x, x
′) =

∫ ψ/2
−ψ/2 F+(θ)dθ∫ π
−π F+(θ)dθ

We show the left hand side is both at most and at least the right hand side, respectively. Without
loss of generality, let w∗ = (1, 0, . . . , 0).

1. LHS ≥ RHS: We choose x′ = (sin ψ
2
, cos ψ

2
, 0, . . . , 0), x = (− sin ψ

2
, cos ψ

2
, 0, . . . , 0). It

can be seen that ∥x − x′∥2 = 2 sin ψ
2
= r, and ⟨w∗, x′⟩ > 0, ⟨w∗, x⟩ < 0, and therefore

(x, x′) is indeed a boundary pair (i.e. inMr(X)).
In addition, for w = (w1, w2), denote by ϕ(w) ∈ (−π, π] its polar angle with respect to
(1, 0) (so that ϕ((1, 0)) = 0).

89

Figure 3.7: An illustration of Prhw∼U(HC)(⟨w, x′⟩ ≥ 0) in the proof of Theorem 11. Suppose x
(red dot) has angle π

2
− θ with w∗, and we project U(HC) to the 2-dimensional plane spanned by

w∗ and x; U(HC) (after projection) is supported on the green circle segment (the union of the
dark and light green regions), whereas the subset

{
hw ∈ HC : ⟨w, x′⟩ ≥ 0

}
corresponds to the

dark green region.

In this case, by Claim 1 given below (see also Figure 3.7 for an illustration), we have:

Prhw∼U(HC)(⟨w, x′⟩ ≥ 0) =Prhw∼U(HC)(ϕ(w) ∈ [−ψ/2, π/2])

=

∫ π/2
−ψ/2 F+(θ)dθ∫ π
−π F+(θ)dθ

,

and

Prhw∼U(HC)(⟨w, x⟩ ≥ 0) =Prhw∼U(HC)(ϕ(w) ∈ [ψ/2, π/2])

=

∫ π/2
ψ/2

F+(θ)dθ∫ π
−π F+(θ)dθ

,

and therefore,

max
(x,x′)∈Mr(X)

πα(x, x
′) ≥ Prhw∼U(HC)(⟨w, x′⟩ ≥ 0)−Prhw∼U(HC)(⟨w, x⟩ ≥ 0) =

∫ ψ/2
−ψ/2 F+(θ)dθ∫ π
−π F+(θ)dθ

2. LHS ≤ RHS: First, for every z ∈ Rd, denote by θ(w∗, z) = arccos(⟨w
∗,z⟩

∥w∗∥∥z∥) ∈ [0, π] the
angle between z and w∗.

Prhw∼U(HC)(⟨w, z⟩ ≥ 0) =

∫ π
2

θ(w,z)−π
2
F+(θ)dθ∫ π

−π F+(θ)dθ

90

To see this, without loss of generality, let z = (z1, z2, 0, . . . , 0). Then, by Claim 1 (given
below), we have

Prhw∼U(HC)(⟨w, z⟩ ≥ 0) = Prhw∼U(HC)

(
ϕ((z1, z2)) ∈ [θ(w, z)− π

2
,
π

2
]

)
=

∫ π
2

θ(w,z)−π
2
F+(θ)dθ∫ π

−π F+(θ)dθ
.

Therefore, for every (x, x′) ∈Mr(X),

Prhw∼U(HC)(⟨w, x′⟩ ≥ 0)− Prhw∼U(HC)(⟨w, x⟩ ≥ 0)

=

∫ θ(w,x)−π
2

θ(w,x′)−π
2
F+(θ)dθ∫ π

−π F+(θ)dθ

≤
max

{∫ b
a
F+(θ)dθ : b− a ≤ ψ

}
∫ π
−π F+(θ)dθ

,

where the inequality follows by observing θ(w, x)−θ(w, x′) ≤ θ(x, x′) ≤ ψ, which follows
from 2 sin θ(x,x′)

2
= ∥x − x′∥ ≤ r = 2 sin ψ

2
and that ψ/2 is acute by definition, which

means that θ(x, x′)/2 ≤ ψ/2 and ψ/2 are both acute. It suffices to show that for every a, b
such that b− a ≤ ψ, ∫ b

a

F+(θ)dθ ≤
∫ ψ/2

−ψ/2
F+(θ)dθ. (3.1)

As F+(θ) ≥ 0 for any θ ∈ R, the max must be achieved at b− a = ψ and so it suffices to
show ∀c, ∫ c+ψ/2

c−ψ/2
F+(θ)dθ ≤

∫ ψ/2

−ψ/2
F+(θ)dθ.

Let F (c) =
∫ c+ψ/2
c−ψ/2 F+(θ)dθ; it can be seen that F ′(a) = F+(c + ψ/2) − F+(c − ψ/2).

Therefore,

F ′(c)


≥ 0 c ≤ −ψ/2
≥ 0 −ψ/2 ≤ c ≤ 0

≤ 0 0 ≤ c ≤ ψ/2

≤ 0 c ≥ ψ/2,

and hence maxc∈R F (c) = F (0) =
∫ +ψ/2

−ψ/2 F+(θ)dθ, which concludes the proof of Equa-
tion (3.1), and concludes that LHS ≤ RHS.

Fact 2. The probability density function of the uniform distribution over unit sphere projected
onto the first two dimensions is

p(w1, w2) =
d− 2

2π
(1− w2

1 − w2
2)

d−4
2 .

91

Claim 1. In the notation of the proof of Theorem 11 above, for every a < b such that [a, b] ⊂
(−π, π],

Prhw∼U(HC)
(
ϕ((w1, w2)) ∈ [a, b]

)
=

∫ b
a
F+(θ)dθ∫ π

−π F+(θ)dθ

Proof. Recall Lemma 27 that characterizesHC (see also Figure 3.2), we have:

Prhw∼U(HC)
(
ϕ((w1, w2)) ∈ [a, b]

)
=

Prhw∼U

(
w1 ≥

√
1− α2, ϕ((w1, w2)) ∈ [a, b]

)
Prhw∼U

(
w1 ≥

√
1− α2

)
From Fact 2 above, we can express the numerator and the denominator in integral form. For the
denominator, by changing of variables to the polar coordinates,

Prhw∼U

(
w1 ≥

√
1− α2

)
=

∫ ϕ

−ϕ

(∫ 1

cosϕ
cos θ

d− 2

2π
(1− r2)

d−4
2 rdr

)
dθ

=
1

2π

∫ ϕ

−ϕ

(
1− cos2 ϕ

cos2 θ

) d−2
2

dθ

=
1

2π

∫ π

−π
F+(θ)dθ.

For the numerator,

Prhw∼U

(
w1 ≥

√
1− α2, ϕ((w1, w2)) ∈ [a, b]

)
=

∫ min(ϕ,b)

max(−ϕ,a)

(∫ 1

cosϕ
cos θ

d− 2

2π
(1− r2)

d−4
2 rdr

)
dθ

=
1

2π

∫ min(ϕ,b)

max(−ϕ,a)

(
1− cos2 ϕ

cos2 θ

) d−2
2

dθ

=
1

2π

∫ b

a

F+(θ)dθ.

The lemma follows by combining two equalities above.

Theorem 15 (Restatement of Theorem 12). Π(α) is decreasing in α, for α ∈ [0, 1), and is strictly
decreasing in [sin(ψ/2), 1).

Proof. Consider Π(α) for α = sinϕ ∈ [sin(ψ/2), 1], which, from the proof of Theorem 11, has

92

the following form:

Π(α) =Prhw∼U(HC)
(
ϕ(w) ∈ [−ψ/2, ψ/2]

)
=
Prhw∼U

(
w1 ≥

√
1− α2, ϕ((w1, w2)) ∈ [−ψ/2, ψ/2]

)
Prhw∼U

(
w1 ≥

√
1− α2

)
=

∫ 1√
1−α2

(∫ w1 tanψ

0
p(w1, w2)dw2

)
dw1∫ 1√

1−α2

(∫√1−w2
1

0
p(w1, w2)dw2

)
dw1

,

where p(w1, w2) =
d−2
2π

(1− w2
1 − w2

2)
(d−4)/2 is the pdf of (w1, w2) when hw ∼ U (Fact 2).

Consider f(w1) =
∫ w1 tanψ

0
p(w1, w2)dw2, and g(w1) =

∫√1−w2
1

0
p(w1, w2)dw2, and F (t) =∫ 1

t f(w1)dw1∫ 1
t g(w1)dw1

. ;with this, Π(α) = F (
√
1− α2). It suffices to show that F (t) is monotonically

increasing, i.e. F ′(t) ≥ 0 for all t.
To show this, first observe that f(w1)

g(w1)
is monotonically increasing: indeed,

f(w1)

g(w1)
=

∫ w1 tanψ√
1−w2

1

0 (1− v2) d−4
2 dv∫ 1

0
(1− v2) d−4

2 dv
,

which is increasing in w1. As a consequence,∫ 1

t

f(w1)dw1 =

∫ 1

t

g(w1) · (
f(w1)

g(w1)
)dw1 ≥

f(t)

g(t)
·
∫ 1

t

g(w1)dw1 (3.2)

Therefore,

F ′(t) =
−f(t)

∫ 1

t
g(w1)dw1 + g(t)

∫ 1

t
f(w1)dw1

(
∫ 1

t
g(w1)dw1)2

≥ 0,

where the last inequality is from Equation (3.2).

Below, we derive bounds on Π(α) given specific assumptions on ϕ and ψ.
Theorem 16 (Refined version of Theorem 13). We have the following:

1. If cosϕ ≤ 1
2d1/4

, then Π(α) ≤ 6 ·
(
ψ(1 + d

1
2 cosϕ)

)
.

2. For any c1, c2 > 0, there exists c3 > 0 such that the following holds: given any ϕ ∈
[
c1,

π
2

)
,

and

ψ ≥ c3max

cosϕ,
1

d
1
2 cosϕ

√√√√ln
4

c2
+ ln

(
1 +

1

d
1
2 cosϕ

) , (3.3)

then Π(α) ≥ 1− c2.
Before presenting the proof of Theorem 16, we first show how it concludes the proof of

Theorem 13.

93

Proof of Theorem 13. We show the two items respectively.

1. Recall that α = sinϕ. If α ≥ 1− 1
8d

, then cos2 ϕ = 1−α2 ≤ 1
4d

, implying that cosϕ ≤ 1
2
√
d
.

As 1
2
√
d
≤ 1

2d1/4
, the conditions of item 1 of Theorem 16 is satisfied. As a result,

Π(α) ≤ 6 ·
(
ψ(1 + d

1
2 cosϕ)

)
≤ 9ψ.

2. Let C1 ∈ (0, 1). Choose ϕ′ := arccos(1
d1/4

). Note that ϕ′ ≥ ϕ, since 1 − cos2 ϕ = α2 =
(1− 1√

d
)2 ≤ 1− 1√

d
= 1− cos2 ϕ′. Denote by α := sinϕ and α′ := sinϕ′; we have α′ ≥ α.

In addition, as ϕ′ = arccos(1
d1/4

), there exists some numerical constant c1 > 0 such that
ϕ′ ≥ c1. Now, by item 2 of Theorem 16, there exists some c3 > 0, such that when

ψ ≥
c3
√

ln 8
C1

d1/4
≥ c3max

 1
d1/4

,

√
ln 4
C1

+ln
(
1+ 1

d1/4

)
d1/4

, Π(α′) ≥ 1 − C1. Now, as Π(·) is

monotonically decreasing in α, Π(α) ≥ Π(α′) ≥ 1−C1. Therefore, the theorem statement

holds with C2 = c3
√

ln 8
C1

.

We now present the proof of Theorem 16.

Proof. Recall that

Π(α) =


∫ ψ/2
0 F (θ)dθ∫ ϕ
0 F (θ)dθ

, arcsinα = ϕ ≥ ψ/2

1, arcsinα = ϕ < ψ/2.

1. First we note that cosϕ ≤ 1
2d1/4

implies that ϕ ≥ π
3
.

If ϕ ≤ ψ/2, then ψ ≥ 2
3
π. Therefore, Π(α) = 1 ≤ 6ψ ≤ 6 ·

(
ψ(1 + d

1
2 cosϕ)

)
holds.

For the rest of the proof, we focus on the case of ϕ > ψ/2. In this case, Π(α) equals the inte-

gral ratio
∫ ψ/2
0 F (θ)dθ∫ ϕ
0 F (θ)dθ

. With foresight, define θ′ = min

(
ϕ
2
, arctan(1

d
1
2 cosϕ

), arccos(d
1
4 cosϕ)

)
.

As we will see below, this is a “critical threshold” of the integral
∫ ϕ
0
F (θ)dθ, in the sense

that the contribution of [θ′, ψ] to the integral is negligible.
By our assumption that cosϕ ≤ 1

2d
1
4

, arccos(d
1
4 cosϕ) ≥ π

3
. In addition, arctan(1

d
1
2 cosϕ

) ≥

min

(
π
4
, 1

2d
1
2 cosϕ

)
by Lemma 32 given after the proof. Moreover, recall that ϕ ≥ π

3
.

Combining the above bounds, θ′ ≥ min

(
π
6
, 1

2d
1
2 cosϕ

)
.

We now upper bound Π(α). First we upper bound the numerator:∫ ψ/2

0

F (θ)dθ ≤ ψ/2 · F (0) = ψ

2
(1− cos2 ϕ)

d−2
2 ≤ ψ

2
exp

(
−d− 2

2
cos2 ϕ

)
.

94

We next lower bound the denominator. As θ′ ≤ ϕ
2
≤ π

4
(since by definition, ϕ/2 ≤ π/2),

this implies that cos2 θ′ ≥ 1
2

and hence ϕ ≥ π/3⇒ cos2 ϕ
cos2 θ′

∈ [0, 1
2
]. Therefore,

∫ ϕ

0

F (θ)dθ ≥
∫ θ′

0

F (θ)dθ ≥ θ′F (θ′) = θ′

(
1− cos2 ϕ

cos2 θ′

) d−2
2

≥ θ′ exp

−d− 2

2

(
cos2 ϕ

cos2 θ′
+

cos4 ϕ

cos4 θ′

) ,

where the last inequality uses the elementary fact that 1− x ≥ exp(−x− x2) for x ∈ [0, 1
2
].

Combining the upper and lower bounds, we get that the integral ratio is bounded by:

∫ ψ/2
0

F (θ)dθ∫ ϕ
0
F (θ)dθ

≤ ψ

2θ′
exp

d− 2

2

(
cos2 ϕ tan2 θ′ +

cos4 ϕ

cos4 θ′

)
From our choice of θ′, it can be easily seen that: (1) cos2 ϕ tan2 θ′ ≤ cos2 ϕ · 1

d cos2 ϕ
≤

1
d
, and (2) cos4 ϕ

cos4 θ′
≤ cos4 ϕ

(d
1
4 cosϕ)4

≤ 1
d
. This implies that the exponential term is at most

exp
(
d−2
2
· 2
d

)
≤ e.

In conclusion, we have that:

∫ ψ/2
0

F (θ)dθ∫ ϕ
0
F (θ)dθ

≤ e

2
· ψ
θ′
≤ 6 ·

(
ψ(1 + d

1
2 cosϕ)

)
,

where in the last inequality we recall that θ′ ≥ min

(
π
6
, 1

2d
1
2 cosϕ

)
, and use that for A,B >

0,max(A,B) ≤ A+B.
2. Fix c1, c2 > 0, and let ϕ ≥ c1.

If ϕ ≤ ψ/2, then Π(α) = 1 ≥ 1− c2 holds.
For the rest of the proof, we focus on the case of ϕ > ψ/2. As ϕ ≥ c1 > 0, cosϕ ≤
cos c1 < 1.
Therefore there exists some small constant c5 > 0 such that cosϕ ≤ 1− 2c5; meanwhile
there exists some small enough constant c4 < 1

4
such that cos2(c4ψ) ≥ 1 − c5 since

c4ψ ≤ π/4; as a consequence, cos2 ϕ/ cos2(c4ψ) ≤ 1−2c5
1−c5 ≤ 1 − c5. In summary, there

exist some small enough constants c4, c5 > 0 (independent of ϕ), such that c4 < 1
4

and
cos2 ϕ

cos2(c4ψ)
≤ 1− c5.

By Lemma 31 (deferred after the proof), there exists some constant c6 > 0 (independent of
ϕ) such that

1− cos2 ϕ

cos2(c4ψ)
≥ exp

(
−
(

cosϕ

cos(c4ψ)

)2

− c6
(

cosϕ

cos(c4ψ)

)4
)
. (3.4)

95

Therefore,∫ ψ/2
0

F (θ)dθ∫ ϕ
ψ/2

F (θ)dθ
≥
∫ c4ψ
0

F (θ)dθ∫ ϕ
ψ/2

F (θ)dθ

≥c4ψ · F (c4ψ)
ϕ · F (ψ/2)

≥2c4ψ

π
·

(
1− cos2 ϕ

cos2(c2ψ)

)(d−2)/2
(
1− cos2 ϕ

cos2(ψ/2)

)(d−2)/2
≥2c4ψ

π
·
exp

(
−d−2

2
(cos2 ϕ
cos2(c4ψ)

+ c6(
cos2 ϕ

cos2(c4ψ)
)2)
)

exp
(
−d−2

2
cos2 ϕ

cos2(ψ/2)

)
=
2c4ψ

π
· exp

d− 2

2
cos2 ϕ

(
1

cos2(ψ/2)
− 1

cos2(c4ψ)
− c6

cos2 ϕ

cos4(c4ψ)

) ,

where the first inequality is because c4 ≤ 1
4
; the second inequality is because F (θ) is

monotonically decreasing for θ ≥ 0; the third inequality follows from the definition of F (θ),
and ϕ ≤ π

2
; the fourth inequality is from Equation (3.4) as well as using 1− x ≤ exp(−x)

to upper bound the denominator; the equality is by algebra.
Observe:

1

cos2(ψ/2)
− 1

cos2(c4ψ)
=
cos2(c4ψ)− cos2(ψ/2)

cos2(c4ψ) · cos2(ψ/2)

=
sin2(ψ/2)− sin2(c4ψ)

cos2(c4ψ) · cos2(ψ/2)

=
(sin(ψ/2) + sin(c4ψ))(sin(ψ/2)− sin(c4ψ))

cos2(c4ψ) · cos2 ψ

≥
ψ
2π
· cos(ψ/2)ψ

4

cos2(c4ψ) · cos2 ψ

≥ψ
2

8π
.

where the first inequality uses, sin(ψ/2) ≥ ψ
2π

, and the Lagrange mean value theorem
and the choice of c4, such that c4 ≤ 1

4
so that sin(ψ/2) − sin(c4ψ) = (ψ/2 − c4ψ) cos ξ

for some ξ ∈ [c4ψ, ψ/2], which in turn is ≥ ψ
4
cos(ψ/2); the second inequality uses that

cos(c4ψ) ≥ cos(ψ/2), and cos γ ≤ 1 for any γ.
With foresight, we will choose c3 ≥ 16

√
c6, and defer the exact setting of c3 to the next

paragraph. By the assumption of lower bound on ψ (Equation (3.3)), We have ψ ≥
16
√
c6 cosϕ, and therefore ψ2

8π
≥ 8c6 cos

2 ϕ. In addition, recall that c4 ≤ 1
4
, c6 cos2 ϕ

cos4(c4ψ)
≤

96

c6 · cos2 ϕ
cos4(π

8
)
≤ 4c6 cos

2 ϕ. Hence,

1

cos2 ψ
− 1

cos2(c2ψ)
− c4

cos2 ϕ

cos4(c2ψ)
≥ ψ2

8π
· (1− 1

2
) ≥ ψ2

16π
.

We would also like to set c3 > 0 such that

exp

(
d− 2

2
cos2 ϕ · ψ

2

16π

)
≥ π

c2c4ψ
, (3.5)

because this would imply that∫ ψ/2
0

F (θ)dθ∫ ϕ
ψ/2

F (θ)dθ
≥ 2c4ψ

π
· exp

(
d− 2

2
cos2 ϕ · ψ

2

16π

)
≥ 2

c2
,

which in turn implies∫ ψ/2
0

F (θ)dθ∫ ϕ
0
F (θ)dθ

=
1

1 +
∫ ϕ
ψ/2

F (θ)dθ∫ ψ/2
0 F (θ)dθ

=
1

1 + c2/2
≥ 1− c2.

We analyze a sufficient condition for Equation (3.5) to hold:

exp

(
d− 2

2
cos2 ϕ · ψ

2

16π

)
≥ π

c2c4ψ

⇐ d− 2

2
cos2 ϕ · ψ

2

16π
≥ ln

(
π

c2c4
· 1
ψ

)
⇐ ψ2 ≥ 96π

d cos2 ϕ
ln

(
2π

c2c4

1

ψ2

)
⇐ ψ2 ≥ 192π

d cos2 ϕ

(
ln

8π

c2c4
+ ln

(
1 +

96π

d cos2 ϕ

))

⇐ ψ ≥

√√√√ 192π

d cos2 ϕ

(
ln

8π

c2c4
+ ln

(
1 +

96π

d cos2 ϕ

))

Therefore, choosing c3 = max

(
16
√
c6, 2, 1 +

ln(96π)+ln(2π
c4

)

ln 4
c2

)
(which is independent of ϕ),

and by algebra, it satisfies c3 1

d
1
2 cosϕ

√
ln 4

c2
+ ln

(
1 + 1

d
1
2 cosϕ

)
≥

√
192π
d cos2 ϕ

(
ln 8π

c2c4
+ ln

(
1 + 96π

d cos2 ϕ

))
,

we have that Equation (3.5) is satisfied, and therefore Π(α) =
∫ ψ/2
0 F (θ)dθ∫ ϕ
0 F (θ)dθ

≥ 1− c2.

Lemma 29. For a, b > 0, ζ ∈ (0, 1), if a ≥ 2b
(
ln 4

ζ
+ ln(1 + 1

b
)
)

, then a ≥ b ln 1
ζa

.

97

Proof. If a ≥ 2b
(
ln 4

ζ
+ ln(1 + 1

b
)
)

= 2b
(
ln 1

ζ
+ ln(4 + 4

b
)
)

, then a ≥ 2b ln 1
ζ

and a ≥
2b ln(max(e, 1

2b
)) hold simultaneously.

The latter condition implies that 1
a
≤

1
2b

ln(max(e, 1
2b

))
. By Lemma 30, this gives 1

a
ln 1

a
≤ 1

2b
, in

other words, a ≥ 2b ln 1
a
.

Now combine this with a ≥ 2b ln 1
ζ

by taking average on both sides, we get a ≥ 1
2
(2b ln 1

ζ
+

2b ln 1
a
) = b ln 1

aζ
. The lemma follows.

Lemma 30. For y > 0, and x ≤ y
ln(max(e,y))

, then x lnx ≤ y.

Proof. Define x0 := y
ln(max(e,y))

. We first verify that x0 lnx0 ≤ y.

1. If y ≤ e, then x0 = y; in this case, x0 lnx0 = y ln y ≤ y holds.
2. Otherwise, y > e. In this case, x0 = y

ln y
≤ y. Therefore, x0 lnx0 ≤ x0 ln y = y.

Now, given x ≤ x0, we consider two cases of x:

1. If x ≤ 1
e
, then x lnx < 0 < y holds.

2. Otherwise, x > 1
e
, and since f(x) = x lnx is monotonically increasing in (1

e
,+∞), we

have that x lnx ≤ x0 lnx0 ≤ y.

In summary, if x ≤ x0, we must have x lnx ≤ y.

Lemma 31. For any c5 > 0, there exists c6 > 0 such that

1− x ≥ exp(−x− c6x2), ∀x ∈ [0, 1− c5].

Proof. It suffices to choose c6 > 0 such that

− ln(1− x) ≤ x+ c6x
2, ∀x ∈ [0, 1− c5].

By Taylor’s expansion,

− ln(1− x) =x+
∞∑
i=2

xi

i

≤x+ x2

2

 ∞∑
i=0

xi


≤x+ x2

2(1− x)
,

therefore, it suffices to choose c6 = 1
2c5

such that the above is at most x + c6x
2 for all x ∈

[0, 1− c5].

Lemma 32. For x ≥ 0, arctan(x) ≥ min(π
4
, x
2
).

Proof. We consider two cases:

98

Figure 3.8: An illustration ofHα1 andHα2 in the proof of Proposition 1.

1. If x ≥ 1, arctan(x) ≥ π
4
≥ min(π

4
, x
2
).

2. If x < 1, by mean value theorem, there exists some ξ ∈ [0, x], such that arctan(x) =
0 + x · (arctan(z))′

∣∣
z=ξ

= x
1+ξ2
≥ x

2
≥ min(π

4
, x
2
).

The lemma follows by combining the two cases.

3.7.2 Deferred Proofs from Section 3.5
In this section, we provide complementary negative results to the positive results obtained under
the assumptions that: 1) X is a sphere; and 2) U is the uniform distribution overH, the class of
homogeneous linear models. We show that removing one of the two conditions, i.e either allowing
for non-spherical features (Proposition 1) or allowing U to be non-uniform overH (Proposition 2),
leads to non-monotonicity.
Proposition 1. Suppose d = 2. We have uniform prior over homogeneous linear models H =
{hw | w ∈ Rd, ∥w∥ = 1}, there exists a feature space X and thresholds 0 < α2 < α1 such that
Π(α2) < Π(α1).

Proof. Define X =
{
x1, x2, x3, z1, z2

}
, with the choices of x1, x2, x3, z1, z2 specified shortly.

Let w⋆ = (1, 0), and therefore h⋆((x1, x2)) = sign(x1). Let θ ∈ (0, π
4
) be an angle. Define

z1 = (r
2
sin θ, r

2
cos θ), z2 = (− r

2
sin θ, r

2
cos θ); it can be readily seen that ∥z1 − z2∥ ≤ r and

sign(h⋆(z1)) = +1 ̸= −1 = sign(h⋆(z2)); therefore (z1, z2) ∈ Mr(X). As we will see shortly,
this is the only pair inMr(X) up to reordering.

Let α′1, α
′
2 be such that 0 < r < α′2 < α′1, and angles γ, µ, ν be such that γ < µ < θ < ν, and

θ + ν < π
2
. Define x1 = (α′1,−α′1 cotµ), x2 = (α′1, α

′
1 cot ν), and x3 = (α′2,−α′2 cot γ). It can

be seen that h∗(x1) = h∗(x2) = h∗(x3) = +1; in addition, note that all of ∥x1 − z2∥, ∥x2 − z2∥,
∥x3 − z2∥ are > r, ensuring thatMr(X) =

{
(z1, z2), (z2, z1)

}
.

Let α2 = α′2/2 and α1 = (α′1 + α′2)/2. Observe that
{
x ∈ X : Λα1(x) = 1

}
=
{
x1, x2

}
, and{

x ∈ X : Λα2(x) = 1
}
=
{
x1, x2, x3

}
.

99

Numerical Example. For concreteness, we can take α′1 = 10, α′2 = 5, α1 = 7.5, α2 = 2.5,
r = 1, γ = π

16
, µ = π

12
, θ = π

8
, and ν = π

4
, which satisfy all requirements above.

Given w = (w1, w2) ∈ R2, denote by ϕ(w) ∈ (−π, π] its polar angle with respect to (1, 0) (so
that ϕ((1, 0)) = 0).

We now calculate Π(α1). First, observe that

Hα1 =
{
h ∈ H : h(x1) = 1, h(x2) = 1

}
=
{
hw : ∥w∥2 = 1, ϕ(w) ∈ [−ν, µ]

}
Therefore,

Π(α1) = max
(x,x′)∈Mr(X)

(
Phw∼U(Hα1)(⟨w, x⟩ ≥ 0)− Phw∼U(Hα1)(⟨w, x

′⟩ ≥ 0)
)

=
∣∣∣Phw∼U(Hα1)(⟨w, z1⟩ ≥ 0)− Phw∼U(Hα1)(⟨w, z

2⟩ ≥ 0)
∣∣∣

=

∣∣∣∣µ+ θ

µ+ ν
− 0

∣∣∣∣ = µ+ θ

µ+ ν
.

We now calculate Π(α2). First observe that

Hα2 =
{
h ∈ H : h(x1) = 1, h(x2) = 1, h(x3) = 1

}
=
{
hw : ∥w∥2 = 1, ϕ(w) ∈ [−ν, γ]

}
Therefore,

Π(α2) = max
(x,x′)∈Mr(X)

(
Phw∼U(Hα2)(⟨w, x⟩ ≥ 0)− Phw∼U(Hα2)(⟨w, x

′⟩ ≥ 0)
)

=
∣∣∣Phw∼U(Hα2)(⟨w, z1⟩ ≥ 0)− Phw∼U(Hα2)(⟨w, z

2⟩ ≥ 0)
∣∣∣

=

∣∣∣∣γ + θ

γ + ν
− 0

∣∣∣∣ = γ + θ

γ + ν
.

In conclusion,

Π(α1) =
µ+ θ

µ+ ν
≥ γ + θ

γ + ν
= Π(α2).

Proposition 2. Suppose X is the d-dimensional unit sphere with d ≥ 3. There exists a non-
uniform distribution U over homogeneous linear models H, such that there exists thresholds
0 < α2 < α1 with Π(α2) < Π(α1).

Proof. WLOG, we assume that w∗ = (1, 0, . . . , 0). Define x = (− sin(ψ/2), cos(ψ/2), 0, . . . , 0)
and x′ = (sin(ψ/2), cos(ψ/2), 0, . . . , 0) which will be used later. It can be seen that x, x′ and w∗

are on the same 2-dimensional plane.
Let α2, α1 be such that 0 < α2 < α1 < 1 and with ϕ1 = arcsinα1 and ϕ2 = arcsinα2,

ϕ1 > ϕ2 > ψ/2. We know from Lemma 27 that

Hα2 =

{
hw : ∥w∥2 = 1, ⟨w,w∗⟩ ≥

√
1− α2

2

}
⊂ Hα1 =

{
hw : ∥w∥2 = 1, ⟨w,w∗⟩ ≥

√
1− α2

1

}
,

and thatHα1\Hα2 =
{
hw : ∥w∥2 = 1, ⟨w,w∗⟩ ∈ [

√
1− α2

1,
√
1− α2

2)
}

.

100

Figure 3.9: In the proof of Proposition 2, a projection of U onto the 2-dimensional plane spanned
by w∗, x and x′; it is uniform when restricted toHα2 (the dark green region), and is concentrated
in {hw ∈ Hα1\Hα2

: −1 = sign(w · x) ̸= sign(w · x′) = +1} (the light green region) when
restricted toHα1 \ Hα2 .

We define the density of the non-uniform prior U as follows. Let U be uniform when restricted
to Hα2 . And let U have positive density that is uniform over {hw : w ∈ Hα1\Hα2 ,−1 =
sign(w · x) ̸= sign(w · x′) = +1}; note that this is an non-empty set as it comprises of all
w’s whose projection onto w∗ has value in [

√
1− α2

1,
√
1− α2

2] and has polar angle wrt w∗ in
[−ψ/2, ψ/2]. Finally, let U have zero density over all other parts of w ∈ Hα1\Hα2 . The density
of U outsideHα1 can be chosen arbitrarily. See Figure 3.9 for an illustration.

By the definition of x, x′, and the fact that U is uniform when restricted toHα2 , from the proof
of Theorem 11, (x, x′) ∈ argmax(x,x′)∈Mr(X) πα2(x, x

′); in other words, πα2(x, x
′) = Π(α2).

With this, we know that since ϕ0 > ψ, Π(α2) = πα2(x, x
′) < 1. Then,

Π(α1) ≥ πα1(x, x
′)

= Phw∼U(Hα1)(⟨w, x
′⟩ ≥ 0)− Phw∼U(Hα1)(⟨w, x⟩ ≥ 0)

=
(
Phw∼U(Hα2)(⟨w, x

′⟩ ≥ 0)− Phw∼U(Hα2)(⟨w, x⟩ ≥ 0)
)
Phw∼U(Hα1)(w ∈ Hα2)+(

Phw∼U(Hα1\Hα2)(⟨w, x
′⟩ ≥ 0)− Phw∼U(Hα1\Hα2)(⟨w, x⟩ ≥ 0)

)
Phw∼U(Hα1)(w ∈ Hα1\Hα2)

= πα2(x, x
′) · Phw∼U(Hα1)(w ∈ Hα2) + Phw∼U(Hα1)(w ∈ Hα1\Hα2)

> πα2(x, x
′) = Π(α2),

where the first inequality is from the definition of Π(α1); the first equality is by the definition of
π(α1); the second equality is by the total law of probability; the third equality is by the construction
that U has zero density in {hw : w ∈ Hα1\Hα2 , sign(w · x) = +1 ∨ sign(w · x′) = −1}, so
that Phw∼U(Hα1\Hα2)(⟨w, x

′⟩ ≥ 0) = 1 and Phw∼U(Hα1\Hα2)(⟨w, x⟩ ≥ 0) = 0, along with the
definition of πα2(x, x

′); the last inequality is strict because Phw∼U(Hα1)(w ∈ Hα1\Hα2) > 0 and

101

Figure 3.10: The construction in Proposition 3. In blue are the explanations, in green are the
decision boundaries of models in the version space, in red is the margin region and in yellow is
w∗.

that Π(α2) = πα2(x, x
′) < 1.

Lastly, fixing assumptions 1 and 2, one may also wonder if it is possible to achieve any
threshold κ in the more general, non-homogeneous linear models. We saw that this is not so
asymptotically in the homogeneous case (Theorem 13). Here, we demonstrate that this does not
hold in general.
Proposition 3. There exists a class of 2-dimensional non-homogeneous linear models, with
sphericalX such that Π(α) decreases monotonically (and strictly so at some point) with increasing
α, and yet Π(α) ≥ 1/3 for all α ∈ [0, 1) and ψ ∈ (0, π].

Proof. Let the hypothesis class of interest beH = H1 ∪H0, where

H0 =
{
x 7→ sign(w1x1 + w2x2) : ∥w∥2 = 1

}
is its homogeneous part, and

H1 =
{
x 7→ sign(w1x1 + w2(x2 − 1)) : ∥w∥2 = 1

}
is its non-homogeneous part.

We will take same setting as before X is a unit circle centered at (0, 0) and Eh∗(X , α) = {x ∈
X | Λα(x) = 1}. We assume an uniform prior U overH, i.e. drawing i ∼ Bern(1

2
), and chooses

a classifier uniformly at random fromHi induces U .

102

Let h∗(x) = x 7→ sign(x1), which is a member ofH. We consider a boundary pair (x, x′) ∈
Mr(X) where ∥x′ − x∥2 ≤ r, h∗(x′) = +1 ̸= −1 = h∗(x).

Given w = (w1, w2) ∈ R2, denote by ϕ(w) ∈ (−π, π] its polar angle with respect to (1, 0) (so
that ϕ((1, 0)) = 0).

Given a value of α ∈ [0, 1), the induced explanation set

Eh∗(X , α) =
{
x ∈ X : ϕ(x) ∈ [−π,−π + γ) ∪ (−γ, γ) ∪ (π − γ, π]

}
,

with γ = arccosα ∈ (0, π
2
].

We will examine the structure of version spaceHC and count how much of it predicts (x, x′)
differently. Please refer to Figure 3.10 for an illustration. We will look atHC ∩H1 andHC ∩H0

respectively.

Part 1: HC ∩ H1. For any h ∈ HC ∩ H1, it always holds that h(x) = +1 and h(x′) = −1 as
long as γ > 0. This is because if the explanation is nonempty, then it includes points (−1, 0) and
(1, 0), which enforces that any h ∈ HC ∩ H1 must be a subset of h ∈ H1 with polar angle in
interval [−π/4, π/4] and all such h’s predict (x, x′) differently. More specifically,

HC ∩H1 =

{
x 7→ sign(w1x1 + w2(x2 − 1)) : ∥w∥2 = 1, ϕ(w) ∈

[
−(π

4
− γ

2
),
π

4
− γ

2

]}
,

whose total arc length of π
2
− γ. To summarize,

Ph∼U (h ∈ HC ∩H1) =
1

2
·
π
2
− γ
2π

=
π
2
− γ
4π

,

and
Ph∼U(HC∩H1)(h(x

′) = +1)− Ph∼U(HC∩H1)(h(x) = +1) = 1.

Part 2: HC ∩H0. As we showed in Lemma 1,

H0 =

{
x 7→ sign(w1x1 + w2x2) : ∥w∥2 = 1, ϕ(w) ∈

[
−(π

2
− γ), π

2
− γ
]}

,

whose total arc length is π − 2γ.
In addition, by Theorem 11 with d = 2 with ϕ = π

2
− γ, we have

max
(x,x′)∈Mr(X)

(
Ph∼U(HC∩H0)(h(x

′) = +1)− Ph∼U(HC∩H0)(h(x) = +1)
)
=

 ψ
2(π

2
−γ) ψ ≤ 2(π

2
− γ),

1 ψ > 2(π
2
− γ).

To summarize,

Ph∼U (h ∈ HC ∩H0) =
2(π

2
− γ)
4π

which is twice Ph∼U (h ∈ HC ∩H1) and,

103

max
(x,x′)∈Mr(X)

(
Ph∼U(HC∩H0)(h(x

′) = +1)− Ph∼U(HC∩H0)(h(x) = +1)
)
= min

(
1,

ψ

2(π
2
− γ)

)

Combining the two parts, observe that Ph∼U(HC)(h ∈ HC ∩H0) =
2
3
, and by the law of total

probability,

Π(α) = max
(x,x′)∈Mr(X)

πα(x, x
′)

= max
(x,x′)∈Mr(X)

(
Ph∼U(HC)(h(x) = +1)− Ph∼U(HC)(h(x

′) = +1)
)

= max
(x,x′)∈Mr(X)

(
Ph∼U(HC)(h ∈ HC ∩H0) ·

(
Ph∼U(HC∩H0)(h(x

′) = +1)− Ph∼U(HC∩H0)(h(x) = +1)
)

+Ph∼U(HC)(h ∈ HC ∩H1) ·
(
Ph∼U(HC∩H1)(h(x

′) = +1)− Ph∼U(HC∩H1)(h(x) = +1)
))

=
2

3
·min

(
1,

ψ

2(π
2
− γ)

)
+

1

3

≥1

3

through which we see that Π(α) is increasing in γ and strictly so for when π/2− γ > ψ/2.
In other words, Π(α) is identically 1 for α ∈ [0, sin(ψ/2)], and is strictly decreasing in α for
α ∈ [sin(ψ/2), 1).

3.8 Additional Experiments

3.8.1 Fair accessibility to explanations
A notable concern that may arise with margin distancing is that omission of prototypical expla-
nations is necessary for regions close to the margin. Thus, this could disproportionately affect
individuals in those regions, since they will not have their representative explanation be in the
explanation set. We plot the composition of margin set in Figure 3.11 with a threshold of 0.03 for
both logistic and SVM models and note that there is some disproportionate effect. Verily, this is
another important factor that needs to be taken into account in the explanation generation process.

3.8.2 MMD Explanations
We include results on the trend of the three metrics under MMD-Critic explanations to further
empirically trace how the boundary certainty varies with explanation omission. Similar to the
MLP results under k-medoid, we see that in Figure 3.12 the trend is almost monotonic everywhere.
One difference however, is that the boundary certainty does not drop off as fast as in the k-medoid
setting. This suggests that the search strategy of trying small omission percentages may work
with some explanation methods such as the k-medoid, but will not with others like MMD-Critic.

104

Figure 3.11: Racial composition of margin points under LR (left) and SVM (right).

Target Certainty Binary Search Optimal Difference

0.036 45 10 35
0.046 45 10 35
0.055 10 10 0
0.065 10 10 0
0.075 10 10 0
0.084 10 10 0
0.094 5 5 0
0.103 5 5 0
0.113 5 5 0
0.122 5 5 0

Table 3.2: Difference table with the max metric and at r = 0.1

3.8.3 Effects of Larger Models
We include results on the trend of the three metrics for a two hidden-layer MLP to showcase the
effects of larger models. In Figure 3.13, we see similar trends under both explanations, but with
higher values across the board in comparison with the one-layer case. Again, as in the one-layer
MLP case, under MMD-critic explanations, the drop in the metrics are slower than the drop under
k-medoid explanations.

3.8.4 Monotonicity Tables
We present tables charting the differences between the percentage of explanations omitted cal-
culated through binary search and the optimal percentage of explanation calculated through a
left-to-right linear search, for ten, equally spaced out values of target boundary certainty corre-
sponding to Figure 3.3 in Tables 3.2 through 3.10.

3.9 Additional Modeling Discussion

One objection with our modeling assumption could be that if it is the case that most of the X is
inMr(X), then margin-distancing could remove most of the representative-based explanations

105

Target Certainty Binary Search Optimal Difference

0.071 70 15 55
0.11 45 10 35
0.15 10 10 0
0.18 10 10 0
0.22 10 10 0
0.26 5 5 0
0.30 5 5 0
0.33 5 5 0
0.37 5 5 0
0.41 5 5 0

Table 3.3: Difference table with the max metric and at r = 0.2

Target Certainty Binary Search Optimal Difference

0.16 65 65 0
0.23 25 25 0
0.31 10 10 0
0.39 5 5 0
0.47 5 5 0
0.55 5 5 0
0.63 5 5 0
0.7 5 5 0

0.78 5 5 0
0.86 5 5 0

Table 3.4: Difference table with the max metric and at r = 0.3

Target Certainty Binary Search Optimal Difference

0.03 45 10 35
0.04 45 10 35
0.05 10 10 0
0.06 10 10 0
0.07 10 10 0
0.08 10 10 0
0.09 5 5 0
0.1 5 5 0

0.11 5 5 0
0.12 5 5 0

Table 3.5: Difference table with the top 5 percentile average and at r = 0.1

106

Target Certainty Binary Search Optimal Difference

0.05 65 15 50
0.07 40 10 30
0.1 10 10 0

0.12 10 10 0
0.14 10 10 0
0.17 5 5 0
0.19 5 5 0
0.21 5 5 0
0.24 5 5 0
0.26 5 5 0

Table 3.6: Difference table with the top 5 percentile average and at r = 0.2

Target Certainty Binary Search Optimal Difference

0.11 65 65 0
0.17 25 25 0
0.23 10 10 0
0.3 10 10 0

0.36 5 5 0
0.42 5 5 0
0.48 5 5 0
0.54 5 5 0
0.6 5 5 0

0.66 5 5 0

Table 3.7: Difference table with the top 5 percentile average and at r = 0.3

Target Certainty Binary Search Optimal Difference

0.008 45 15 30
0.014 45 10 35
0.019 40 10 30
0.025 10 10 0
0.031 5 5 0
0.037 5 5 0
0.042 5 5 0
0.048 5 5 0
0.054 5 5 0
0.06 5 5 0

Table 3.8: Difference table with the average and at r = 0.1

107

Target Certainty Binary Search Optimal Difference

0.013 65 10 55
0.02 45 10 35

0.027 10 10 0
0.034 10 10 0
0.041 5 5 0
0.049 5 5 0
0.056 5 5 0
0.063 5 5 0
0.07 5 5 0

0.077 5 5 0

Table 3.9: Difference table with the average and at r = 0.2

Target Certainty Binary Search Optimal Difference

0.044 65 65 0
0.075 40 30 10
0.106 10 10 0
0.137 10 10 0
0.168 5 5 0
0.199 5 5 0
0.229 5 5 0
0.26 5 5 0

0.291 5 5 0
0.322 5 5 0

Table 3.10: Difference table with the average and at r = 0.3

Figure 3.12: MLPs results with MMD-Critic explanations: max (left), top 5 percentile average
(middle), average π(x, x′) (right). We observe similar trends as in the k-medoid case with one
difference being that the drop off rate is slower in the MMD-Critic case.

108

Figure 3.13: Two layer MLP results: under k-medoid explanations (top), under MMD explanations
(bottom). The three metrics are in column: max (left), top 5 percentile average (middle), average
π(x, x′) (right).

E(X). We assume this is not the case and thatMr(X) is only a small fraction of X .
Indeed, this assumes that the feature collection and modeling is done well and that most points

are not within r of another point with the opposite label.

3.10 Additional Related Works

Improvement vs Gaming: A crucial point about feature alteration is whether to think of it
as causal (beneficial) or gaming [204]. In our setting, the organization first offers individuals
transparency into how the model “works” and predicts based on the reported features. We assume
individuals are not aware of the underlying causal model. Hence, we view misreporting in the
first stage as gaming.

Explanation Manipulation: There has been work focusing on how organizations may
manipulate an unfair model’s explanation to make it look more fair than it actually is [8, 12, 263].
By contrast, we study how to provide explanations that are informative and cover as much of X
as possible while protecting boundary points’ label information.

Security of ML models: Our work is also related to model extraction literature [205, 280]
that assumes one can query an API for model prediction/gradient-based explanation on any point.
We view our work as a study on how to “limit” the API so as to prevent a new type of attack –
individual-level gaming, which need not require the full model extraction in order to carry out the
attack [153].

Model Multiplicity: The set of models consistent with labelled data is also referred to as
version space [206]. Our paper thus pertains to a recent line of work highlighting the existence
of the “Rashomon effect” [80, 252] or model multiplicity [196]. These papers do not focus on

109

strategic manipulation, but study or raise the importance of developing sampling algorithms that
can explore the version space.

110

Chapter 4

Causal Strategic Modeling

4.1 Introduction

In consequential settings, machine learning models do more than predict. They also drive decisions
that impact people’s lives. For example, credit scores may simultaneously serve as predictions of
the likelihood of repayment and as the basis on which loans are approved. When decisions impact
individuals whose features are manipulable, these individuals will be incentivized to intervene
on their features in order to raise the model scores. Whether or not these increases in score
(e.g., predicted likelihood of repayment) result in improvements in the outcome of interest (e.g.,
actual likelihood of repayment) depends on the causal relationships between the features and the
outcome. Thus, this causal knowledge is crucial to designing scoring mechanisms that serve as
both accurate predictors and beneficial incentives.

A blossoming line of research on strategic machine learning studies these incentive effects [7,
38, 52, 55, 66, 94, 113, 136, 163, 184, 201, 226, 271, 309, 319]. Hardt et al. [136] conceive of
feature manipulations as gaming, putting aside the possibility that manipulations might change the
outcome of interest. More recently, researchers have recognized that manipulations can causally
influence the outcome interest, and seek to learn optimal scoring mechanisms for outcome
improvement [163, 258]. However, most works thus far assume that the underlying causal
structure is known. A notable exception is Miller et al. [204] who demonstrate that producing an
optimal scoring mechanism is at least as hard as identifying the underlying causal graph. However,
they do not explore how the ability to deploy mechanisms and observe the induced strategic
responses can be leveraged to efficiently identify the underlying causal structure, and in turn,
derive the optimal scoring mechanism.

This motivates our study of Causal Strategic Prediction, wherein a principal designs a predictor
that also serves a reward model that incentivizes interventions on the part of the agent. These
interventions are applied on variables (features) related by a Structural Causal Model (SCM),
resulting in an overall change in the outcome of interest [224]. In this setup, the principal seeks to
design a mechanism that is simultaneously a good predictor and a good reward model through
multiple rounds of interaction with the agent.

In more detail, we may view feature manipulations as soft interventions on the underlying
causal graph. Subject to some cost structure, individuals apply additive perturbations to variables,

111

which influence both the value of the intervened-upon variable and all downstream variables in
the graph (possibly, but not necessarily, including the outcome of interest). Capturing the causal
effect of feature manipulation lies at the heart of strategic ML and our formulation thus allows us
to quantify the causal effect incentivized by the predictor, distinguishing the good (improvement)
from the bad (gaming).

4.1.1 The general problem of Reward Design
More generally, we can view Causal Strategic Prediction as one instance of the more general
reward design problem. This problem surfaces in many principal-agent settings, wherein the
principal wishes to design a reward (mechanism) that incentivizes the agent to perform the desired
action.

Reward model design has long been known to be difficult, in part due to the challenge of
specification. Hence, reward hacking can arise due to imperfectly designed rewards, which one
may view as the incentivization of sub-optimal agent actions (interventions) by the reward model.
The end result is thus sub-optimal improvement in the outcome of interest incentivized by the
principal’s inapt reward model.

A general approach in prior literature for reward design is the use of some predictive proxy
of the reward model, with learned reward models being one such example that has seen sizable
success recently [220]. This is indeed a natural idea. When the true reward model is too difficult
or complex to specify or design, a proxy that is predictive of and highly correlated with the true
reward model seems sensible as a substitute.

Yet, despite this motivation and some success, learned reward models are still known to contain
defects, despite its high correlation with the true reward. Correlation does not imply causation and
a common criticism of the learned reward models is that they are only proxies of the true reward
[56, 222, 276]. Since proxies can be analyzed through the causal lens, this motivates the more
general study of reward models through the lens of causality. We focus in particular on the setting
where the principal/designer is unable to directly specify the reward of interest, as otherwise the
agent can directly optimize the true reward specified by the principal, without concern for reward
hacking.

Towards building this understanding, we consider a general, theoretical setup useful for
quantitatively analyzing reward hacking. In this setup, a designer (principal) iteratively sets a
(surrogate) reward model that an agent seeks to optimize in relation to the underlying world model.
Using this, we can chart how well a reward model can incentivize increase in the true reward,
contrasting it with how well it predicts the true reward. We answer:

• What is the relationship between predictiveness and reward hacking in learned reward
models? Would the designer need to sacrifice predictiveness to reduce reward hacking?

• Can a reward model’s high predictiveness belie the improvement in true reward it incen-
tivizes?

We answer both questions and include analysis for two natural RMs: invariant causal predictor
and proxy (descendants of R) reward models [231]. Through our result, we hope to challenge the
common adage that the invariant causal predictor is always a sound choice for a predictor and a
reward model, and that proxy rewards always make for poor reward models.

112

Finally, we obtain results on how to do experiment design with reward models, so as to
incentivize interventions that reveal causal structure. We develop algorithms that leverage the
resultant data to enable causal discovery. With these algorithms, the principal can then uncover
the underlying causal mechanisms, and design more apt reward models accordingly.

4.2 Preliminaries

We consider a general setup where a designer designates a reward model (RM) optimized by the
agent, with respect to the unknown, underlying world model. The interaction protocol is described
as in Protocol 9.

4.2.1 World Model
First, to describe the world model, the agent acts in a world modelM that corresponds to a causal
graph consisting of endogenous nodes (X1, ..., Xn, R) and exogenous nodes (U1, ..., Un, UR). We
assume this causal graph is acyclic. The associated DAG has a directed edge Xi → Xj , if Xi is a
direct cause of Xj . Let pa(i) denote the indices of parent nodes of i. Each node Xi is related to
its parents Xpa(i) (used to denote {Xj : j ∈ pa(i)} for brevity) by the structural equation with
continuously differentiable function gi ∈ C1:

Xi = gi(Xpa(i), Ui), ∀i ∈ [n].

In the causal discovery section of this work, a general class of SCMs we consider is Additive
Noise Models (ANMs) with zero-mean exogenous noise of the form: Xi = gi(Xpa(i)) + Ui,
E[Ui] = 0 [231].

We assume thatM satisfies causal sufficiency: there are no unobserved common causes of
the endogenous nodes. And so, the exogenous noises U1, .., Un, UR are mutually independent. D0

denote the observational distribution ofM, pre-intervention.

4.2.2 Reward Model
The reward node R inM is the node the designer wishes to incentivize the agent to optimize.
Crucially, we assume it is only possible for the designer to specify the reward model f in terms of
observable nodes {Xi}ni=1 and not R (and nor the latent noise nodes U). The same applies for the
agent, who can only observe variables {Xi}ni=1 (and not U) and intervenes on X in accordance of
f andM.

In this way, R can only be optimized through interventions on observable nodes, which
captures the key difficulty with reward modeling. The designer is unable to have the agent
optimize the true reward R directly, which in many cases is too difficult or abstract to specify as
a reward model (e.g. alignment with humans values). The challenge then is for the designer to
communicate an apt surrogate RM, as a function of observable nodes X . A natural choice for the
reward model f is a model predictive of R. Here, we choose MSE as a standard measure of the
predictiveness of f .

113

Algorithm 9 Agent Interaction Protocol
1: Designer chooses reward model f from the reward model class F .
2: Agent observes pre-intervention X inM and learns to optimize f , eventually learning to

play optimal policy a∗(f) as in Equation 4.1.
3: Designer observes the post-intervention world model distributionDi under the agent’s optimal

policy intervention a∗(f).

Definition 20 (RM Predictiveness). Let the measure of the predictiveness of reward model f be
the population squared loss (MSE) with respect to the observational distribution:

Risk(f) = ED0 [(f(X)−R)2]

As such, we will analyze RMs both by its risk and its degree of reward hacking (to be defined
subsequently). In this paper, we focus on both in the infinite-sample setting, deferring finite
sample analysis to future works.

4.2.3 Agent Optimization of Reward Model f
For generality, we assume the agent is a Von Neumann-Morgenstern Expected Utility Maxi-
mizer [285]. During a given episode, the agent learns (through e.g. some RL algorithm) to
optimize the expected reward model and learns an intervention policy mapping pre-intervention
state X to intervention (a : X → Rn). We assume this agent’s optimization algorithm is sound, in
that the agent eventually learns the optimal policy a∗(f) : X → Rn, which is defined as follows:

a∗(f) = arg max
a:X→Rn

EU [f(X ′1, ..., X ′n)]

s.t. X ′j = gj(X
′
pa(j), Uj) + aj(X) ∀j ∈ [n]

E[c(a1(X), ..., an(X))] ≤ b,

(4.1)

Under policy a∗(f), its additive soft interventions shift Xj to X ′j(a
∗(f), U) = gj(X

′
pa(j), Uj)+

a∗j(f), defined recursively. In what follows, we will use X ′(a(X), U) to denote post-intervention
joint distribution X ′(a(X), U) = (X ′1(a(X), U), ..., X ′n(a(X), U) and R(X ′(a(X), U), U) =
gR(X

′
pa(R)(a(X), U), UR) under intervention policy a(X).

Finally, c is the agent’s cost function and b the budget in the constrained optimization program,
where we assume c is convex and strictly increasing in each coordinate (∂c/∂ai > 0 s.t. no
intervention is cost-free). We note that this generalizes the formulation of agent optimization
considered in prior works on reward misspecification [327].

4.3 Reward Hacking

We are now ready to write down the causal definition of reward hacking. Reward hacking arises
due to the sub-optimal choice of interventions on nodes that do not maximally increase the true
reward R. We measure the extent of reward hacking of f as the fraction of the reward increase

114

lost by optimizing the chosen reward model f instead of the optimal RM in the reward model
class.
Definition 21 (Degree of Reward Hacking). For a sufficiently expressive reward model class F
and reward model f ∈ F , define the degree of reward hacking τ(f) as:

τ(f) = 1− EU [R(X ′(a∗(f), U), U)]− EU [R]
maxf ′∈F EU [R(X ′(a∗(f ′), U), U)]− EU [R]

where F is such that maxf ′∈F EU [R(X ′(a∗(f ′), U), U)] − EU [R] > 0 (leading to a non-zero
denominator).

A high degree of reward hacking for a learned RM implies that f can be very correlated with
R, but (deceptively) poor at inducing a policy that increases R in expectation.

4.3.1 Analytical Examples of Reward Model Optimization in Linear Graphs
For a concrete example of the agent’s optimization problem, consider when the underlying SCM
is linear. We can write x = Bgx + u ⇒ x = (I − Bg)

−1u = Bu. Under soft intervention a,
x′ = B(u+ a) = x+Ba.

Quadratic Cost Example: Thus, under linear reward model f(x′) = wTx′, quadratic cost C
(diagonal matrix) and b = 1, the agent’s optimization program is as follows:

max
a

E[wT (X +Ba)]

s.t.
1

2
aTCa ≤ 1.

Note that since the optimization objective is wTBa, the optimal intervention a∗(w) =
1
λ
C−1BTw (with Lagrange Multiplier λ =

√
1
2b
wTBC−1BTw) is conveniently constant in X .

This closed form solution shows that the optimal policy and thus reward increase is smooth in the
reward model w.

Linear Cost Example: Under linear cost c, this corresponds to a linear objective with linear
constraints.

max
a

E[wT (X +Ba)]

s.t. cTa ≤ b.

The optimal policy is thus a corner solution, leading to sharp changes in the single-node
intervention. Hence, the reward increase (and thus degree of reward hacking) is no longer smooth
in w. This simple example emulates the sudden phase shift that are possible with reward hacking,
as first documented in [222].

4.4 Related Works

The problem of reward hacking is one of the main challenges in AI safety [11]. Our work builds
upon causality-based research that aims to address this challenge.

115

Theoretical Works: Theoretically, [103] is an early work that formalizes reward hacking
through the lens of causal influence diagrams. They distinguish between the intended goal and the
specified reward function, with the insight that reward hacking is where an inapt reward model
results in a suboptimal intervention on the part of the agent. More broadly, causal incentives is a
well-known formalism in AI safety for analyzing agents that are incentivized by the reward model
to perform causal interventions in the world [102, 105, 290].

Empirical Works: there have been several papers that empirically demonstrate reward
hacking and/or provide causality-based mitigation methods. [171, 276] studies causal confusion
and how agents can exploit incorrect causal models, proposing remedies such as learning from
diverse environments or causal discovery. [192] introduces a framework to mitigate undesirable
causal influences in RL, by decomposing the value function into contributions from distinct causal
pathways. This is so that spurious paths that contribute to reward hacking can be penalized. [264]
proposes Causal Reward Adjustment (CRA) that trains sparse autoencoders to recover interpretable
features from PRM activations. Using explicit causal modeling, a backdoor adjustment is used
to correct for confounding semantic features that spuriously correlate with rewards. [190] trains
robust reward models that disentangle prompt-driven preferences from prompt-independent
artifacts, by using data augmentation techniques to eliminate spurious correlations. Finally, [289]
trains causal reward models to be counterfactual invariant by remaining consistent when irrelevant
variables are altered, with the latter used to explicitly target spurious correlations such as length
bias and sycophancy in LLM alignment.

Our work builds on the theoretical line of work in causal incentives, with a specific focus on
analyzing learned RMs. In particular, we chart the relationship between a RM’s predictiveness vs
reward hacking — in general SCMs. Furthermore, we develop discovery algorithms that leverage
reward hacking to uncover causal structure so that a better RM can be designed. Altogether, our
theoretical results aim to complement the body of causality-inspired empirical works that reduce
reward hacking.

4.5 Characterization of Reward Hacking in Learned Reward
Models

4.5.1 Causal Invariant Predictor
We begin by analyzing the setting when the designer has some predictive RM. A common
recommendation for this RM across several works is the invariant predictor of the reward across
different environments, which verily corresponds to E[R|Xpa(R)] [230]. Suppose the designer has
this model, it is natural to ask: does the invariant causal predictor induce reward hacking? When
R has no descendants, the following result shows that E[R|Xpa(R)] is in fact an optimal reward
model, which achieves the best of both worlds.
Proposition 4 (Invariant Causal Predictor is risk-minimizing and reward-maximizing). In any
causal graph where R has no descendants, f = EU [R|Xpa(R)] is a reward model with minimal
risk and zero reward hacking.

Proof. EU [R|Xpa(R)] is risk-minimizing:

116

This follows from that EU [R|X] is the risk-minimizer. And due to no descendants of R in X ,
we have that R ⊥⊥ X \Xpa(R)|Xpa(R) ⇒ EU [R|X] = EU [R|Xpa(R)]. Hence, EU [R|Xpa(R)] is
also risk-minimizing.

EU [R|Xpa(R)] is reward-maximizing:
We will show that maximizing EU [R|Xpa(R)] = EUR [R|Xpa(R)] is the same as optimizing R

in the optimization objective. The key aspect to handle is that the resulting intervention a(X)
could be a function of X due to the reward model.

Write f(x) = EUR [gR(x, UR)].
We will show that the optimization objective under f matches that ofR underX ′pa(R)(a(X), U)

for every a(X). f thus incentivizes direct optimization of R and yields maximal reward increase.

EU [f(X ′pa(R)(a(X), U)] (objective under RM f)

= E(UR,U−R)[EUR [gR(X
′
pa(R)(a(X), U), UR)]] (definition of f)

= E(UR,U−R)[EUR [gR(X
′
pa(R)(a(X), U), UR)|X ′pa(R)(a(X), U)]] (⋆)

= EU−R [EUR [gR(X
′
pa(R)(a(X), U), UR)|U−R]]

(inner expectation already marginalizes over UR)

= E(UR,U−R)[gR(X
′
pa(R)(a(X), U), UR)] (law of iterated expectations)

= E(UR,U−R)[R(X
′
pa(R)(a(X), U), U)]

(⋆) : X ′pa(R)(a(X), U) is a function of U−R, thus UR ⊥⊥ U−R ⇒ UR ⊥⊥ X ′pa(R)(a(X), U).
Crucially, this is the step where we use that intervention a(X) is a function of X , which are all
upstream of R by assumption. And, a(X) is a function of U−R and thus independent from UR.

Next, we provide the complementary negative result to the positive result above. We formalize
the intuition above that descendants/proxy is useful in terms of aptly designing better reward
models (dependent on UR), which can incentivize more targeted interventions. In doing so, we
show that perhaps surprisingly, if R does have descendants, the invariant causal predictor may not
be the best reward model and can incentivize ineffective (but not ineffectual) interventions.
Proposition 5 (Suboptimality of Invariance Causal Predictor). For every ϵ > 0, there exists a
causal graph where R has descendants and F such that f = EU [R|Xpa(R)] attains 1− ϵ degree
of reward hacking.

Proof. Consider the setting where the cost is quadratic and equal across the two features, c(a) =
a21 + a22, and budget b = 1.

Now, suppose the causal graph is as follows: X1 → R → X2. And the SCM is such that
R = URX1, X2 = R, where X1 ∼ U [2, 3] and UR ∈ {±1} where P (UR = 1) = p. Let
p = (1 + ϵ)/2 (p > 1/2).

E[R|Xpa(R)] = E[UR]X1 = (2p− 1)X1. This will induce an intervention of a∗1 = 1, and thus
an expected reward increase of p− (1− p) = 2p− 1.

However, the optimal reward model can in fact induce optimal reward increase of 1. If we
let F be the class of Piecewise Linear Functions with finitely many pieces, one optimal reward

117

model is:
f = 1{X2 < 0}(−X1) + 1{X2 ≥ 0}(X1).

To see this, first note that the optimal policy’s intervention will be such that a∗2 = 0. Since
|x2| ≥ 2, any change to x2 will not flip the sign and thus change the objective.

Now, since X2 < 0⇔ UR < 0⇔ gR = −X1, when UR = −1 and we incentivize with RM
f = −X1, a∗ = −1. And similarly, since f is monotonic in a1, when UR = 1 and we incentivize
with RM f = X1, a∗ = 1.

The reward increase induced by this RM is thus always 1, which is optimal as the maximal
change in R is 1: since a21 ≤ 1, the per episode change (for any U) from intervention on X1 by a1
results in reward increase of UR(X1 + a1)−R = R + URa1 −R ≤ 1.

To further build on the characterization, in terms of risk, we show that f = EU [R|Xpa(R)]’s
optimal pre-intervention risk can be illusory. There exists settings where it attains arbitrarily high
risk under the post-intervention distribution.
Proposition 6. There exists a causal graph and cost structure such that EU [R|Xpa(R)] has
arbitrarily small population MSE on the observational distribution, but arbitrarily large MSE
under the post-intervention distribution.

Finally, one may wonder: can we always expect to find a best of both worlds RM? To
complement Proposition 4, we show that when R has descendants, there exists a (family of) causal
graph, where no reward model is simultaneously risk minimizing and reward maximizing. This
negative result completes the characterization, showing that in general, the reward-maximizing
RM may not be among the risk-minimizing predictors of R.
Theorem 17. There exists a causal graph and cost structure where no reward model achieves the
optimal risk and zero degree of reward hacking.

Proof. We consider again the linear–Gaussian SCM: where X1 ∼ N(0, σ2
1), R = X1+UR, UR ∼

N(0, σ2
R) and X2 = R + U2, U2 ∼ N(0, σ2

2). Let the cost be quadratic 1
2
a⊤Ca ≤ b, where

C = diag(c1, c2).
Bayes Predictor: Our first observation is that the Bayes predictor f ⋆(X) = E[R | X] is the

unique minimizer of population risk over measurable functions:

R(f)−R(f ⋆) = E
[
(f(X)− f ⋆(X))2

]
≥ 0,

with equality iff f = f ⋆ a.s.
In this Gaussian model f ⋆ is linear, it has closed form:

f ⋆(X) = w1X1 + w2X2, w1 =
σ2
2

σ2
R + σ2

2

, w2 =
σ2
R

σ2
R + σ2

2

.

Reward Increase under Bayes Predictor: As derived before, the optimal intervention under

f ⋆ is: a∗(f ⋆) = λC−1w where λ =
√

2b
w⊤C−1w

. Therefore, the expected increase in R under f ⋆ is:
a∗1(f

⋆) = λw1

c1
.

118

Reward Increase under other RM: Now consider the reward maximizing RM f(x) = x1.
We have that: a∗(f) =

√
2b

1/c1
C−1e1, which means the expected reward increase under f is

a∗1(f) =
√

2b
c1

.
One can verify that so long as:

w2
2

c2
> 0⇒ a∗1(f) > a∗1(f

⋆).

which can happen when e.g. when w2 ̸= 0. And so, we conclude that no reward model
simultaneously minimizes population risk and maximizes expected true reward under this SCM
and cost.

4.5.2 A Closer Look at Proxy Rewards
As we saw, the existence of proxies can complicate our optimal choice of a reward model. When
proxies (descendants) exist, we know that the invariant causal predictor may no longer be the
optimal RM choice. Thus, a natural next question is: what about proxy reward models? Do very
predictive proxy reward models result in very high reward hacking? We find that the answer to
this depends on depends on the underlying SCM and cost function, as a range of possibilities
exist.
Proposition 7 (Proxy RMs can exhibit both extremes of degrees of reward hacking). For any ϵ,
there exists an ANM and cost structure, and a proxy Reward Model such that:

• It has risk o(ϵ) and 1−O(ϵ) degree of reward hacking.
• It has risk o(ϵ) and O(ϵ) degree of reward hacking.

Proof. Consider the setting where the cost is quadratic and equal across the two nodes, c(a) =
a21 + a22, and budget b = 1.

Consider the causal graph X1 → R→ X2. It has SCM: R = β1X1+UR and X2 = β2R+U2.
Define v1 = var(X1), vR = var(UR) and v2 = var(U2). Then, for any linear RM f =

w1X1+w2X2, its MSE in terms of the variances has closed-form: (w1+β2w2− 1)2v1+(w2β2−
1)2vR + w2

2v2.
The optimal policy has intervention (a∗1, a

∗
2) = (w1+β2w2√

(w1+β2w2)2+w2
2

, w2√
(w1+β2w2)2+w2

2

). And so,

the reward increase induced by reward model f has closed form: w1+β2w2√
(w1+β2w2)2+w2

2

. The optimal

possible reward increase is 1 and is attainable with w = (1, 0) (only the parent is intervened
upon).

Let SCM be such that v1 = vR = 1/ϵ and v2 = ϵ4. This means that the variance of UR is large,
which makes X1 a noisy predictor of R. By contrast, the variance of proxy X2 is small, which
makes X2 a good predictor of R:

• First consider a SCM where β2 = ϵ is small.
We know that the optimal risk attainable is upper bounded by ϵ2, which is the risk of
w = (0, 1/β2) = (0, 1/ϵ). And so, it is possible to have very predictive models.

119

Now, for any predictive model with near-optimal risk o(ϵ), we need that |w2β2 − 1| = o(ϵ)
and |w1 + β2w2 − 1| = o(ϵ). The former implies that w2 = 1/ϵ+ o(1) and in combination
with the second condition implies that w1 = o(ϵ).
This means that w1 + β2w2 = 1 + o(ϵ). And so, the reward increase of any RM can be at
most O(ϵ), and thus reward hacking degree of any model at least 1−O(ϵ).

• Now, consider a SCM where β2 = 1/ϵ is large.
We claim that f = 1/β2X2 will now have both low risk and low degree of reward hacking.
Indeed, under w = (0, 1/β2) = (0, ϵ), the risk is ϵ2 · v2 = ϵ6.
Moreover, w attains a near-optimal reward increase (and hence degree of reward hacking):

w1+β2w2√
(w1+β2w2)2+w2

2

= 1√
1+ϵ2
≥ 1− ϵ.

The key difference here is that while we again have to resort to using proxy X2 to predict R,
since β2 is large, under equal cost, almost all the budget will be used to intervene on X1 instead of
X2. Because increasing X1 increases X2 much more than increasing X2 itself, X2 is both a good
predictor of the reward and a good incentive for inducing interventions that maximally increase R.

And so, depending on the SCM parameter and cost, it is possible that proxies reward models
can be very effective RMs. The reason is that while the interventions on the proxy node itself
is not reward maximizing, the SCM parameters and cost could be that maximizing the proxy
incentivizes mostly interventions on upstream nodes, which in turn greatly increases R. In such
settings, of which we have detailed one, proxy reward models are not all bad. In addition to being
good predictors of R, proxies can also make for good reward models too.

4.6 Leveraging Reward Hacking for Causal Discovery

As we saw through the simple, minimalistic examples in the previous section, proxy reward
models can incur a varying degrees of reward hacking. And this is dependent on the unknown,
underlying causal world model. In this section, we illustrate an interesting application of reward
hacking. Reward hacking can be used to do causal discovery. The high level idea is that given a
conjectured causal structure, we can design a RM that incentivizes an expected intervention. And
when we observe that this intervention is not reflected in the agent’s optimal policy, this reveals
causal structure and helps us to revise our conjecture.

To this end, we develop Algorithm 10 that can be used to orient any ANM. It requires access
to observational distribution D0 and the function class of gi as in [141, 229]. Notably, using
D0, we may compute the graph skeleton using e.g. the PC algorithm [265]. And in addition to
regression, the function class can be used to recover the full SCM parameters once the causal
graph is oriented by Algorithm 10.

The approach to discovery leverages the following result: if we guess Xpa(i) correctly, we
should expect there to be only a single intervention on Xi induced by RM fXi . All the proofs in
this section may be found in Appendix 4.8.
Proposition 8 (Targeted Reward Model). For any node Xi, choosing reward model fXi =
Xi − gi(Xpa(i)) induces an optimal intervention only on node Xi.

120

Algorithm 10 Discovery Algorithm for ANM under Finite Cost
1: Input: Distribution D0, Graph Skeleton GS
2: G = GS ▷ partially oriented graph G
3: SG = {Xi}i∈[n] ∪ {R} ▷ subgraph of unoriented nodes SG
4: S = {} ▷ set of oriented nodes S (complement of nodes in SG)
5: while |SG| > 1 do
6: R_leaf = True
7: for Xi ∈ SG \ {R} do
8: XPi ← nodes adjacent to Xi in GS
9: if Pi = ∅, ĝi = 0; else ĝi = ED0 [Xi|XPi]

10: Deploy fXi = Xi − ĝi(XPi) to obtain distribution Di
11: X_leaf = True
12: for node V ∈ SG \ {Xi} do ▷ test if Xi is a leaf node in subgraph SG
13: if EDi [V] ̸= ED0 [V] then
14: X_leaf = False
15: break
16: if X_leaf then
17: for node V ∈ SG adjacent to Xi in GS do ▷ each adj node is parent as Xi is leaf
18: Orient V → Xi in G, Remove edge V −Xi from GS
19: SG← SG \ {Xi}, S ← S ∪ {Xi} ▷ update set of (un)oriented nodes SG and S
20: R_leaf = False
21: break
22: if R_leaf then ▷ no X leaf node found in SG, by elimination, R must be the (only) leaf
23: for node Xj ∈ SG adjacent to R in GS do ▷ each adj node is parent as R is leaf
24: Orient Xj → R in in G, Remove edge Xj −R from GS
25: SG← SG \ {R}, S ← S ∪ {R} ▷ update set of (un)oriented nodes S and SG
26: return G ▷ returns fully oriented graph

To prove the correctness of the algorithm, we will also need a mild form of Mean Interventional
Faithfulness [320]. At a high level, this is so that contrapositive of the proposition holds: if we
get the parents of Xi incorrect, then at least one other node besides Xi will have its mean shift.
Please see Appendix 4.8 for the full details.
Theorem 18. Algorithm 10 orients the full causal graph after at most n(n− 1)/2 episodes.

Algorithm 10 is a bottom-up algorithm that iteratively discovers leaf nodes in the current
subgraph. The leaf-node test is based on the observation that intervening on a leaf only changes
the leaf node itself and no other node in the subgraph. Thus, when we observe an unexpected
intervention elsewhere, we know our guess for the leaf node is off. When we have identified the
leaf node, this means that every node it is adjacent to in the subgraph must be its parent. We can
then orient edges accordingly, and recurse on the remaining subgraph.

Comparison with Existing Algorithms: An astute reader may question why Algorithm 10
is needed given there already exists causal discovery algorithms for ANMs [141, 229]. To this,
we note that Algorithm 10 has the advantage of reducing orientation to one-dimensional mean

121

shift detection, in place of the much higher dimensional conditional independence tests as needed
in [229].

Thus, despite its current guarantees holding in infinite-sample regimes, we believe Algo-
rithm 10 is a promising method to realize the benefit of interventional data in this (important)
setting, but non-standard setting. In standard causal discovery settings, the experimenter can
directly pick interventions exogenously. However, this setting is more challenging in that inter-
ventions are realized endogenously by the agent’s optimization of the RM. Our algorithm thus
offers one way to nevertheless do discovery, wherein the experimenter uses aptly chosen RMs to
indirectly incentivize interventions useful for discovery.

When the Causal Graph is Unidentifiable: Finally, one caveat with Algorithm 10 is that it is
predicated on every node being mutable (i.e. finite cost). This may not always be the case as some
nodes may have infinite cost, making the true causal graph unidentifiable. Towards handling this
challenging setting, we develop Algorithm 11 for the linear graph setting, showing that we need
not have to discover the causal structure in order to find the reward maximizing reward model. Our
key idea is that, through apt choices of reward models, we can provably incentivize all possible
interventions that can be induced, and then simply select the one that is reward maximizing.
Theorem 19. Algorithm 11 finds the reward maximizing policy using at most 2n episodes.

Algorithm 11 Optimization Algorithm under Linear SCM and Linear Cost

1: Deploy f(x) = x1, f(x) = −x1 ▷ collect initial pair of distributions
2: Compute ED0 [X] = (ED1 [X] + ED−1 [X])/2
3: Initialize S = {D1,D−1}, W = {ED1 [X]− ED−1 [X]}, Π = {}
4: for i = 2, ..., n do
5: Compute some wi in the nullspace of W T using SVD of WW T ▷ wi is such that all prior

interventions cannot change the reward under wi
6: Deploy RM f(x) = wTi x, f(x) = −wTi x and obtain Di,D−i
7: if Di ∈ S then ▷ encounter duplication
8: W ← W ∪ {wi}
9: else ▷ observe pair of new distributions with new underlying intervention

10: S ← S ∪ {Di,D−i}
11: W ← W ∪ {EDi [X]− ED0 [X]}
12: Π← {(wi,EDi [R]), (−wi,ED−i [R])}
13: if |S| = 2k : break ▷ only 2k pairs of distinct distributions are possible
14: return reward maximizing policy in Π

4.7 Discussion

In this paper, we study the relationship between a reward model’s risk (with respect to R) and
its degree of reward hacking. We develop a general, theoretical setup useful for analyzing both.
We believe it is a natural, theoretical testbed with simple and minimal examples of causal reward
hacking, useful for examining other future approaches (besides predictiveness) to selecting RMs.

122

We use this testbed to characterize when the causal invariant predictor is optimal, and analyze
when proxy RMs may in fact be better. We show that this is a possibility, and in general, a range
of degree hacking is attainable. Through our results, we aim to highlight that proxies can be useful
for reward modeling and that a designer need not always choose the invariant causal predictor.
Indeed, this choice depends on the underlying causal graph. And so, we also develop algorithms
that leverage incentivized interventions to discover the underlying graph, which can in turn allow
us to design better reward models.

4.8 All Deferred Proofs

Proposition 9. There exists a causal graph and cost structure such that EU [R|Xpa(R)] has
arbitrarily small population MSE on the observational distribution, but arbitrarily large MSE
under the post-intervention distribution.

Proof. Let X1 ∼ Unif([−1, 1]) (observationally) and let UR ∼ N (0, 1) be independent of X1.
Fix constants ε > 0 and M > 0, and define the measurable function

s(x) =

ε, |x| ≤ 1,

M, |x| > 1.

Define the structural equation
R = X1 + s(X1)UR.

Then for every x we have E[R | X1 = x] = x, hence fpa(R)(x) = x.
The observational MSE is

Robs(fpa(R)) = EX1 [s(X1)
2] = ε2,

since X1 ∈ [−1, 1] a.s.
Let c = a21 and b = 1. Then, the agent maximizes E[fpa(R)(X1 + a1)] = E[X1] + a1 = a1,

with constraint a21 ≤ 1. So the optimal intervention is a∗1 = 1. Hence, the post-intervention state
X ′1 = X1 + 1 is Unif([0, 2]).

The post-intervention MSE of E[R | X1 = x] is

Rpost(fpa(R)) = EX′
1
[s(X ′1)

2] = 1
2
ε2 + 1

2
M2 =

ε2 +M2

2
,

because Pr(X ′1 ∈ [0, 1]) = Pr(X ′1 ∈ (1, 2]) = 1/2. By choosing ε arbitrarily small and M
arbitrarily large we can make Robs(fpa(R)) arbitrarily small while Rpost(fpa(R)) is arbitrarily
large.

Remark 13. This result crucially requires heteroskedasticity, while in ANMs with homoskedastic
additive noise the conditional-mean predictor’s MSE is invariant to marginal changes of parents.
So such divergence does not arise.

123

Proposition 10 (Targeted Reward Model). For any node Xi, choosing reward model fXi =
Xi − gi(Xpa(i)) induces an optimal intervention only on node Xi.

Proof. With this choice of RM, the optimization objective is:

max
a

E[X ′i − gi(X ′pa(i))]

s.t. X ′j = gj(X
′
pa(j), Uj) + aj ∀j ∈ [n]

c(a1, ..., an;x) ≤ b

Since gi is additive, we may plug in gi(X ′pa(i), Ui) = gi(X
′
pa(i))+Ui and the objective becomes

E[X ′i − gi(X
′
pa(i))] = E[gi(X ′pa(i), Ui) + ai − gi(X

′
pa(i))] = E[Ui + ai]. And so, the agent is

optimizing:

max
a

E[Ui] + ai

s.t. x′j = gj(x
′
pa(j), uj) + aj ∀j ∈ [n]

n∑
j=1

cj(aj;x) ≤ b

Since the objective is not a function of X , a∗ is constant in X . Next, because each cost
function cj is strictly increasing in the magnitude of aj , we must have that a∗j = 0 for j ̸= i
(otherwise one can increase ai instead to increase the objective). And since the objective is strictly
increasing in a (in particular ai). The budget constraint is binding and thus we have that only
a∗i ̸= 0.

Assumptions: To show the following Theorem, we will need the following assumptions:

1. (Mean Interventional Faithfulness): Let V ∈ G be any node in G. Let I i be the set of all
non-null, intervention nodes under intervention induced by fXi , resulting in distribution
Di:

∃I ∈ I i s.t I ̸⊥⊥ V ′ ⇔ EDi [V] ̸= ED0 [V].

This is a mild faithfulness assumption, and for the proof to go through, we will actually
only require a particular instantiation of the faithfulness assumption above (as used also in
e.g [320]).
This is that if node Xi is intervened upon, and V is its child highest in the topological order,
then the mean of V in the interventional distribution shifts. Put another way, this assumes
that the event that the interventional values on Xi and V , and the SCM parameter relating
the two nodes are not pathologically such that the interventions cancel out exactly. And so,
the mean of V changes almost surely.

2. Secondly, our algorithm will require access to the observational distribution of the world
model (D0) and the function class for gi as in [141, 229]. Using Do, we note that we may
compute the graph skeleton e.g. using the PC algorithm [265]. And the function class can
be used to recover the SCM parameters once the causal graph is oriented as in Algorithm 10.

124

Theorem 20. Algorithm 10 orients the full causal graph after at most n(n− 1)/2 episodes.

Proof. We will prove that the parents of each node are correctly identified by the algorithm, which
implies that the full graph is correctly identified. To do this, we will show that Algorithm 10
always maintains the invariant property (1) that, each iteration, the node that is added to S from
the subgraph SG is always a leaf node.

(1) has the implication that (2) no node is added before all of its descendants. Indeed, a node
is only added when it is a leaf, and if a node does have at least one descendant in the subgraph, it
is not a leaf and cannot be added.

Thus, with (1), the algorithm will be such that the following holds: (3) that every node in S
has its parents correctly and completely identified. When a new node is added to S, we identify
all nodes in SG adjacent to the new node as its parents. Since the node is a leaf, every such node
in SG can only be its parents, and by (2) must be all of its parents. And so, this ensures that this
new node’s parents also satisfy (3).

We see that (1) is satisfied for S at initialization. To prove (1) always holds, it suffices to show
that leaf nodes in any subgraph SG will be such that Condition 13 is always false and no non-leaf
node in any subgraph SG will be such that Condition 13 is always false.

LetX be the set of {Xi}ni=1 nodes. For a particular subgraph SG, suppose SG and S = X\SG
satisfies (2).

Non-Leaf Nodes in X do not pass test: First, note that there has to exist at least one node
that is intervened upon. This is because f ′ is monotonically increasing in ai.

Next, since the policy is a function of XPi and Xi, the intervention will take place on node(s)
that are ancestors of nodes of {i} ∪ Pi. This is again because for any j ̸∈ anc(i) ∪ anc(Pi),
changing aj will not change X ′Pi and X ′i (and thus the objective), but strictly increases costs. By
(2), since {i} ∪ Pi ∈ SG, anc(i) ∪ anc(Pi) ∈ SG. That is, every node that will be intervened
upon when fXi = Xi − ĝi(XPi) is deployed will be in the subgraph SG.

Out of all nodes which are intervened upon under f = Xi − ĝi(XPi), let k be the index of a
node such that none of its ancestors is intervened upon (i.e an intervened node that is highest in
topological order). If k ̸= i, we have EDi [Xk] ̸= ED0 [Xk] since Xk is dependent on I ik.

Else, we have that k = i. We know that since Xi is not a leaf, it must have at least one child.
Let V in SG be the child of i with the highest topological order. We have that V is dependent
on I ii due to chain I ii → Xi → V . And so, by our faithfulness assumption, its expectation under
Di will change due to the intervention on Xi. Note that it may be that under f , V may also be
intervened upon; our faithfulness assumption is that the SCM parameters are not such that the two
interventions cancel out exactly.

Either way, we conclude that Condition 13 will hold for at least one node in the subgraph.
Leaf Nodes in X pass test: Suppose first that subgraph SG has a leaf node Xi. Then, all

its parents must be still in the subgraph SG by property (2). Since it is a leaf in SG, none of
its children is in SG. And so, all the nodes Pi adjacent to Xi in the GS must be its parents
and only its parents. Thus, in additive SCMs, the model ĝi = ED0 [Xi|XPi] identifies gi, the
true SCM parameter, up to a fixed constant which does not affect the best response. Thus, from
Proposition 10, we have that in Di, only Xi is intervened upon.

With this, we can conclude that no other node in SG has its distribution change since Xi

has no descendants; Xi’s intervention only changes the distribution of Xi. Hence if Xi is a leaf,

125

Condition 13 will always be false. (1) will be satisfied as we have just shown that a node of the
subgraph will make Condition 13 always false iff it is a leaf.

Lone R leaf: Finally, the remaining case is when R is the only leaf of the current subgraph.
We have just shown that if there is a leaf in SG and in X , it will meet the criteria. We have also
shown earlier that no non-leaf node in X can meet the criteria. So if it is the case that no nodes in
X meets the criteria, then by the process of elimination, R must be the only leaf in the subgraph.

Termination: The algorithm terminates when there is only one node left in the subgraph. By
(2), it must be a root node in the full graph. This means that we have also managed to identify its
parents, which is the empty set.

Complexity: The algorithm adds one node to S per iteration and there are at most n iterations.
During each iteration, we run at most |SG| regressions and |SG| episodes. And so, at most
n(n− 1)/2 regressions and episodes are needed to discover the graph.

Remark 14. Intuitively, leaves of subgraphs are useful since intervention and change in distribu-
tion is isolated to the leaf nodes. By contrast, for root nodes, interventions will change nodes of
the entire subgraph.

Optimal Policy under Linear Graph and Linear Cost Under this setting, the agent is opti-
mizing:

max
a

wTBa

s.t.
n∑
i=1

ci|ai| ≤ b

Then the optimal intervention a∗(w) is as follows: with i∗ = argmaxj∈[n]
|(BTw)j |

cj
:

a∗(w) = sign((BTw)i∗)

[
b

ci∗
ei∗

]
(4.2)

From this, we observe that at most 2n types of interventions may be induced: ± b
ci
ei. Moreover,

each one intervention can be induced. For example, we note that a∗(w) = b
ci
ei for w = (BT)−1ei.

Now to address the tie-breaker in the case when some nodes can be immutable, let SM ⊆ [n]
be the subset of nodes which are mutable. That is, ci ̸= ∞ ⇔ i ∈ SM . We will assume that
if w is such that (BTw)j = 0 for all j ∈ SM , then the optimal a∗(w) we observe will be some
intervention i ∈ SM . We will make no assumption on how this tie-breaking is done and which
index i ∈ SM is chosen, just that the agent’s tie-breaking on which node is intervened on by the
same RM w is consistent across episodes.
Theorem 21. Algorithm 11 finds the reward maximizing policy using at most 2n episodes.

Proof. We will prove algorithm correctness in several parts:

126

Estimation of ED0 [X] Through the distribution induced by w, we may observe ED0 [X] +
Ba∗(w). The first step of the problem is to estimate ED0 [X] such that we may observe Ba∗(w)
directly.

To do this, we deploy w = e1, w = −e1. It remains to argue that a∗(w) = −a∗(−w). This
follows because i∗ = argmaxj∈[n]

|(BTw)j |
cj

⇔ i∗ = argmaxj∈[n]
|(BT (−w))j |

cj
. From this, we can

conclude a∗(w) = sign((BTw)i∗)
[
b
ci∗
ei∗
]
= −sign((BT (−w))i∗)

[
b
ci∗
ei∗
]
= −a∗(−w), using

the closed form optimal solution in Equation 4.2.

Elicitation of all possible distributions WLOG SM = {1, ..., k}, where k ≤ n is the number
of mutable features. Let W 0 denote the nullspace of [Be1; ...;Bek], where ei corresponds to the
standard basis vector wrt node i.

We will show that, after n − 1 iterations of for-loop 4, we will not have observed a new
distribution (corresponding to a new underlying intervention) n− k times (reaching Condition 7).
From this, we must have observed n− 1− (n− k) = k − 1 new underlying interventions, which
must correspond to the rest of the k − 1 interventions that are possible. Thus, when the algorithm
terminates, we would have observed all 2k distributions that are possible, corresponding to the k
possible interventions, with both signs possible for each intervention.

Consider iteration i and suppose we have observed distributions corresponding to interventions
on nodes {i1, ..., ik′} for k′ < k. The algorithm uses SVD to find a vector wi ̸= 0 in the null-space
of W , which means it is also in the nullspace of [Ba∗(w′1); ...;Ba

∗(w′k′)] where w′j denotes the
model that induced intervention ij . Note that since rank(W) ≤ i < n, the nullspace of W is
non-empty and we can always find such a wi.

Next, notice that since wi is in the nullspace of [Ba∗(w′1); ...;Ba
∗(w′k′)], it must also be in the

null-space of [Bei1 ; ..., Beik′]. With this, wi must be such that wTi Beij = 0⇔ (BTwi)ij = 0 for
all j ∈ [k′]. Moreover, we know that since BT is full-rank, BTwi ̸= 0. And so, if wTi Bej ̸= 0
for some j ∈ [k] \ {i1, ..., ik′}, then we will observe a new distribution corresponding to some
intervention in [k] \ {i1, ..., ik′}.

If it is the case that we do not observe a new distribution, we must have that wTi Bej = 0 for
all j ∈ [k] \ {i1, ..., ik′} as well. Therefore, wi ∈ W 0.

Suppose by contradiction, we reach Condition 7 more than n − k times. This means that
there exists at least n − k + 1 vectors wj1 , .., wjn−k+1

in W 0. By construction, each vector is
orthogonal to the rest, which means wj1 , .., wjn−k+1

are linearly independent. This implies that
dim(W 0) ≥ n− k + 1.

This however is a contradiction, because we have:

dim(W 0) + dim({Be1, ..., Bek}) = dim(W 0) + k = n,

since B is full rank and its columns are linearly independent.
With this, we can observe all possible interventions that can be induced, and thus determine

the policy that maximizes R.

127

4.9 Additional Related Works

Broadly on the topic of reward hacking and its definitions/properties, [262] provides a first
theoretical definition of reward hacking in general in RL. This happens when an agent achieves
high proxy rewards, while performing poorly with respect to the true reward. Moreover, this
work shows that reward hacking can emerge even when the proxy and true rewards are positively
correlated, highlighting the severity of the problem. [175] adds a new definition of reward
hacking, based on the correlation between proxy and true rewards under a reference policy
distribution. Their key insight is that reward hacking occurs when this correlation breaks down
during optimization, even if the proxy initially appears well-aligned. Finally, [222] provides
interesting theoretical insights into reward hacking through their study of phase transitions in
agent behavior. They demonstrate that as optimization power increases, agents can undergo
sudden behavioral shifts from benign to highly exploitative strategies, often with little warning.

128

Chapter 5

Finite-Sample Causal Discovery

5.1 Introduction

Causal discovery is a fundamental goal of natural and social sciences, with widespread use across
fields such as biology, physics and economics [224, 265]. As a result, there has been great interest
in discovery methods with provable guarantees. In the task of causal discovery, one assumes
access to the observational distribution, from which one can compute the undirected graph skeleton
G with an unoriented edge between every cause and effect. Under specific functional assumptions
on the graph, the underlying causal DAG can be identified from observational data alone. In more
general settings, interventional data is needed for discovery. The goal of causal discovery is thus
to minimize the amount of interventional data needed to identify the true causal graph. A typical
discovery algorithm is outlined as in Algorithm 12, where the two key subroutines are the “query
step” (adaptively determine which interventional data to collect next) and the “update step” (given
the latest sample, orient edges in G using all the data collected so far).

The existing line of work on causal discovery with provable guarantees have largely focused on
the query step; a non-exhaustive list of such papers include [70, 97, 114, 143, 148, 164, 188, 257].
Key to the analysis is the assumption of hard intervention (under infinite samples), an idealized
model of node intervention. That is, when node v is intervened on, the orientation of all edges in
G incident to v is revealed. Thus, the update step can be easily implemented, and the algorithm
performance be neatly defined in terms of the number of intervened nodes needed to fully orient
the graph.

Importantly, this idealized model of node intervention overlooks the statistical complexity
of orienting an edge in real world settings. If we view each edge orientation as a hypothesis,
then almost always multiple samples are needed to reject with high probability (w.h.p.) an
incorrect hypothesis (edge orientation), due to stochasticity in the data samples. Thus, towards
studying finite-sample discovery, we consider the setup considered by Greenewald et al. [125].
An experiment with intervention v now provides one sample from v’s interventional distribution,
which by itself may not be sufficient to orient the edge.

In this setting, it is no longer trivial to implement the update step. Thus, to even begin to study
the finite-sample setting, we first need a framework that can implement the update step: given the
interventional data obtained so far, decide which edges can be oriented. Put another way, a correct

129

Algorithm 12 Causal Discovery Algorithm Template
1: Input: Essential graph G, Query algorithm A
2: while |MEC(G)| > 1 do ▷ multiple graphs in the Markov Equivalence Class
3: A(G)→ X t ▷ query step
4: Observe a sample from interventional distribution (xt1, ..., x

t
n) ∼ X1, ..., Xn|do(X t) ▷

collect new data
5: Test orientation of each unoriented edge using data {(xj1, ..., xjn)}tj=1 collected so far, and

update G accordingly ▷ update step
6: Return G

implementation of the update step is needed to measure algorithm performance. And only after
we have this can we get to developing algorithms with provably good performance. Specifically,
we note the following two properties are desirable for the framework to have:

1. Anytime Valid Testing: The most basic property required of any framework that imple-
ments the update step is correctness. That is, any edge that is oriented at any timestep should
be correct w.h.p. In the finite-sample causal setting, this means that the testing framework
has to have anytime validity.
To see why, note that the number of samples needed for orientation varies depends on the
unknown, underlying edge strength. For instance, many fewer samples are needed to orient
X1

1000−−→ X2 w.h.p. compared to that of X1
0.001−−−→ X2. And so, anytime valid testing is

needed as hypotheses (corresponding to edge orientation e.g. of X1 → X2) will be tested a
number of times, where this number is unknown apriori.

2. Encoding Propagation Implications: Efficient discovery algorithms under hard inter-
vention orient edges by considering the propagation implications of node interventions.
Intervening on an “informative” node orients edges, whose orientations in turn propagate to
many other edges via Meek rules [200].
Thus in the finite-sample setting, a secondary, useful property for the framework to have is
to be able to encode this structure, and relate hypotheses (edge orientations). We note that
that this structure is useful for obtaining higher power tests. For a simple example, consider
testing X1 → X2 in X1 −X2 −X3. Evidence against X2 → X3 also serves as evidence
against X1 → X2, since by Meek rule X1 → X2 ⇒ X2 → X3 ∴ ¬X2 → X3 ⇒ ¬X1 →
X2.

In this chapter, we develop a framework that has both properties 1 and 2. To the best of our
knowledge, our framework is the first that has these requisite properties. It perform anytime valid
testing using the collected interventional data, with controlled error rate. That is, at any point in
time (for however long it takes for the graph to be fully oriented), every oriented edge is correct
w.h.p. This allows our framework to be paired with any causal discovery strategy (that implements
the “query step”) to perform finite-sample causal discovery.

The key observation used to develop the framework is that causal discovery can be viewed
as structured, anytime hypothesis testing. The orientation of each edge in G corresponds to two
hypotheses, one for each possible orientation. There is structure among the hypotheses due to
the Meek rules. Accordingly, our framework makes use of e-processes for testing. This is a

130

type of test statistics that allows for both anytime valid testing and flexible combination of test
statistics [235].

Our Contributions: First, in Section 5.3, we develop test statistics that is anytime valid
(Property 1). In Section 5.4, we consider how one may combine test statistics to leverage graph
structure (Property 2). In Section 5.5, we empirically verify the validity of our framework. Finally
in Section 5.6, to make use of our testing framework, we develop a novel multi-constraint bandit
algorithm for causal verification.

5.2 Problem Setup

We consider a linear graph with n nodes, where Xi = θTi Xpa(i) + ui with the set of exogenous
noises U sub-Gaussian: ui ∼ subG(σ2). We note that our results generalize to additive graphs,
provided knowledge of upper bounds on the variance of intervention distributions.

In line with the canonical setup in theoretical causal discovery literature, we assume causal
sufficiency and access to the observational distribution D0 and graph skeleton G [70, 97, 114,
143, 148, 164, 188, 257]. In certain settings, existing algorithms such as the PC algorithm [265]
can orient additional edges on top of the graph skeleton. We note that our results are applicable
to any essential graph returned by such algorithms. For most of our results, we are concerned
with the worst-case setting wherein we only know the graph up to the graph skeleton. Still, our
framework can be used to efficiently test and orient the remaining unoriented edges given any
essential graph. Finally, with consideration for real-world robustness, we also consider the setting
where the graph skeleton contains spurious edges in Section 5.3.4. We demonstrate that we can
construct robust test statistics that do not propagate the error in the graph skeleton.

In addition to causal sufficiency, we also assume faithfulness: when a node is intervened
upon, the expectation of each of its children nodes does change. Just as in the setup of [125],
we consider a mildly stronger form of faithfulness where, for every cause-effect pair, there is a
minimal causal effect b. That is, if we let the causal effect of i on j be µj(i) := E[Xj|do(Xi)],
then µj(i) ̸= 0⇒ |µj(i)| > b.

For experimentation, we assume the scientist can perform sequential, single-node interventions
with interventional value ν. In our setting, we focus on soft intervention, and we note that our
testing framework is also applicable in the hard intervention setting, when mean-shift detection
is used for edge orientation. Let It denote the node intervened on at time t. As in [125],
following an intervention on node It, we observe one sample from the joint distribution, XIt ∼
Pr(X1, ..., Xn|do(XIt)).

Our primary goal in this chapter is to design a framework where we can use the data we collect
from interventions to construct a sequence of partially oriented graphs (Ĝt) such that every edge
is oriented correctly at all time steps t ∈ N with high probability.
Definition 22 (Anytime-valid partially oriented graph). Let Ĝt denote the set of oriented edges
after the first t interventions. A sequence of partially oriented graphs (Ĝt) is an anytime-valid
partially oriented graph if it satisfies:

Pr(∃t ∈ N : exists incorrect edge in Ĝt) ≤ α (5.1)

for some predetermined error rate α ∈ [0, 1].

131

For further discussion on other relevant works and setups, please refer to Section 5.7.

5.3 Anytime-valid testing via e-processes

First, in Section 5.3.1, we show that if we are able to construct an e-process for each edge
orientation, then we can correctly implement the update step. This is because testing using
e-processes guarantees that every edge that is oriented at any point in time is correct w.h.p. That
is, the update step is correct across time w.h.p. With this motivation in mind, in Section 5.3.2, we
construct e-processes that can be used for edge orientation. We begin with some definitions.
Definition 23 (Canonical Filtration). A filtration (Ft)t∈N0 is a sequence of nested sigma-algebras,
i.e., Ft ⊆ Ft for all t ∈ N. We define the canonical filtration to have elements Ft := σ({Xk}k∈[t]∪
{U}) for each t ∈ N and let F0 := σ({U}). (Ft) is essentially the sequence of variables observed
after each intervention, and any internal randomness in the algorithm for selecting Ii for the first
t interventions.
Definition 24 (Intervention-specific Filtration). Define (F it) as the filtration over data just from
interventions on i: F it := σ({Xk}k:k∈[t],It=i ∪ {U}) for each t ∈ N.
Definition 25. Define a supermartingale w.r.t. to filtration (F ′t) be any process (Mt)t∈N s.t.
E[Mt | F ′t−1] ≤ Mt−1 and Mt is measurable w.r.t. F ′t for each t ∈ N. For simplicity, we will
always let nonnegative supermartingale (NSM) (Mt) satisfy E[M1] ≤ 1.
Definition 26. Define an e-process (Et)t∈N w.r.t. to (F ′t) as a nonnegative process where there
exists an NSM w.r.t. to (F ′t), (Mt), s.t. Et ≤Mt for all t ∈ N almost surely, and E[M1] ≤ 1. Note
that every NSM is an e-process. Equivalently, (Et) is an e-process iff it satisfies E[Eτ] ≤ 1 for
any stopping time τ .

The only (key) property we use about e-processes is that it satisfies the following anytime
guarantee, per Ville’s inequality. At a high level, e-processes may be thought of something that
satisfies the following crucial property, which is what enables sequential testing with provable
error control.
Fact 3 (Ville’s inequality [284]). For any e-process (Et)t∈N: Pr(∃t ∈ N : Et ≥ 1/α) ≤ α.

5.3.1 A general approach for constructing anytime-valid partially oriented
graphs

As mentioned previously, we may view each edge orientation as a hypothesis test. For an oriented
edge i→ j, we may define the associated null hypothesis to be:

H i→j
0 : edge (i, j) has orientation i→ j in G∗.

To test a hypothesis H i→j
0 with anytime validity, our testing framework simply requires the

construction of an process (Ei→j
t) that satisfies the following condition:

H i→j
0 holds ⇒ Ei→j

t is an e-process

Note that this framework is general and one may design test statistics specific to the problem at
hand, so long as the test statistic is an e-process under the null. Once we have such an (Ei→j

t), our

132

test is φi→jt (α) := 1{Ei→j
t ≥ 1/α} and we may test as follows:

Reject H i→j
0 (i.e. claim j → i is correct)

if φi→jt (α) = 1 at any t ∈ N. (5.2)

Proposition 11. (φi→jt) is an anytime-valid test. That is, the procedure in (5.2) ensures that for
all error rates α ∈ [0, 1]:

P(H i→j
0 is rejected | H i→j

0 is true) =

P(exists t ∈ N : φi→jt (α) = 1 | H i→j
0 is true) ≤ α

Being able to construct anytime-valid test statistics is useful, because one can use it to produce
anytime-valid partially-oriented graphs.

Using anytime-valid tests, we can construct an anytime-valid partially oriented graph by union
bounding across the |G| tests.
Proposition 12. Given an anytime-valid test (φi→jt), orient edge i → j in Ĝt the first time
φj→it (α/|G|) = 1. Then, (Ĝt) is an anytime-valid partially oriented graph.

In summary, if we are able to construct anytime valid partially oriented graphs through
anytime valid test statistics (such as e-processes), then we have in hand a testing framework that
can correctly execute the update step w.h.p.

5.3.2 Construction of per-edge base e-processes
One way to construct e-processes is by combing a sequence of sequential e-values, defined as
follows.
Definition 27. A sequence of sequential e-values (St) w.r.t. to a filtration (F ′t) under null hypoth-
esis H0 is defined as satisfying: E[St | F ′t−1] ≤ 1 for all t ∈ N under H0.

To develop a test statistic for testing hypothesis i → j, we develop sequential e-values for
testing H i→j

0 .
It is natural to start by considering evidence from interventional data on node i and j. Both

interventions provide evidence against i→ j if the edge is actually j → i. Below, we construct
e-values under do(i) and do(j), which allows us to construct an e-process when we are given
interventional data from i and j respectively.

Intervention on j: Suppose It = j, under do(j), it natural to look at X i
t . If i → j, then X i

t

would still be mean 0, sub-Gaussian random variable, since the cause is not changed by changes
in the effect. However, if i← j, then X i

t would have a shifted mean.
Thus, we define updates Si→j,+t (j), Si→j,−t (j), which we show are sequential e-values:

Si→j,+t (j) := exp

(
λtX

i
t −

λ2tσ
2
i

2

)

Si→j,−t (j) := exp

(
λt(−X i

t)−
λ2tσ

2
i

2

)
.

where (λt) is adapted to (Ft).

133

Proposition 13 (Effect on cause). For any sequence (λt) that is predictable w.r.t. (F jt), S
i→j,+
t (j)

and Si→j,−t (j) are both sequential e-values under H i→j
0 w.r.t. filtration (F jt).

Intervention on i: Suppose It = i, under do(i), the assumption of minimal causal effect, b,
allows us to include further evidence. We have that H i→j

0 = H i→j,+
0 ∪ H i→j,−

0 , where the two
hypotheses are defined:

H i→j,+
0 : H i→j

0 is true and µi(j) ≥ 0

H i→j,−
0 : H i→j

0 is true and µi(j) < 0

That is, if i causes j, then the casual effect of i on j is either positive or negative.
Since interventions result in a minimal shift of b in the mean, we can construct the following

sequential e-values:

Si→j,+t (i) := exp
(
λt(b−Xj

t)− λ2tσ2
j/2
)

if µj(i) > 0 ,

Si→j,−t (i) := exp
(
λt(b+Xj

t)− λ2tσ2
j/2
)

if µj(i) < 0

Proposition 14 (Cause on effect). Under the minimal causal effect condition, we have the
following:

Under H i→j,+
0 , Si→j,+t (i) are sequential e-values w.r.t. filtration (F it).

Under H i→j,−
0 , Si→j,−t (i) are sequential e-values w.r.t. filtration (F it).

With these e-values, we may construct aggregate test statistics under interventional data i and
j, which we prove are e-processes.
Proposition 15. Under H i→j

0 , the following processes are e-processes w.r.t. filtrations (F jt), (F it)
respectively:

Ei→j
t (j) :=

1

2

 t∏
k:Ik=j

Si→j,−k (j) +
t∏

k:Ik=j

Si→j,+k (j)


Ei→j
t (i) := min

 t∏
k:Ik=i

Si→j,−k (i),
t∏

k:Ik=i

Si→j,+k (i)



5.3.3 Growth rate of e-processes
Suppose that it is the case that j → i, we show that our test statistics in Proposition 15 are such the
test has power. That is, it suffices to show that the test statistic will increase under the alternative,
eventually exceed 1/α, and lead to the rejection of the null hypothesis H i→j

0 .
Below, we derive the expected growth rate, which is a standard measure of the power of an

e-process test. We note that the growth rate of (the log of) the e-values is edge-specific. It is a
function of the edge’s causal strength and variance. Also, we note that since the log of the e-values
is sub-Gaussian, the test statistic concentrates quickly.

134

Proposition 16. Suppose the true edge orientation is actually that j → i and WLOG µi(j) > 0.
By setting λt = b/σ2

i for Si→jt (i) and λt = b/σ2
j for Si→jt (i), we have the following growth rates:

1. E[logSi→j,+t (j) | Ft−1] = b(µi(j)− b/2)/σ2
i

2. E[logSi→j,+t (i) | Ft−1] = E[logSi→j,−t (i) | Ft−1] = b2/(2σ2
j)

5.3.4 Robust Testing

In practical settings, the graph skeleton provided may contain mis-oriented edges. In what follows,
we show that it is possible to detect and correct incorrect edges in the graph skeleton.

Specifically, we observe that by using only the test statistic Si→jt (j), our tests will be robust to
spurious edges. The proof is simply that, if neither nodes have an effect on each other, the shift in
mean is zero. Thus, both test statistics have expectation at most 1, and are thus e-processes. From
Proposition 11, we then know that neither tests will reject w.h.p. And so, we will not mistakenly
orient an edge w.h.p, when there is none there.

On top of this, we can then use the non-conclusiveness of both tests, after sufficiently many
rounds, to correct an incorrectly specified edge. Indeed, when there is an edge, we should expect
one of the two tests to reject within a bounded number of rounds with high probability. Thus, if
we know a lower bound for the edge size, then we can use the non-rejection of both tests after
sufficiently many rounds to determine that the edge is spurious. Indeed, if there is an edge, one of
the two tests should have rejected w.h.p.

We now derive this bound as follows. For a sequence of sequential e-variables (St), define
τα := min{t ∈ N ∪ {∞} :

∏t
k=1 Sk ≥ α−1} to be the first time t ∈ N where the product of St

exceeds α−1 for any α ∈ [0, 1] (or∞ if St never exceeds α−1).
Proposition 17. . If the edge j → i is the true orientation in G, then each of the the following
statements hold true with probability 1− β for each β ∈ [0, 1]:

1. For (Si→j,+t (j)), we have that τα ≤ σ2
i log(α

−1β−1)

b(µi(j)−b) .

2. For (Si→j,±t (i)), we have that τα ≤
σ2
j log(α

−1β−1)

b2

Thus, these sample complexity results provide high probability upper bounds on the process
corresponding to the product of sequential e-variables.

Please refer to Section 5.8 for the proofs of all results in this section and experiment plots.

5.4 Combining edge e-processes according to propagation rules

In this section, we study the theory of combining anytime valid e-processes, developed in the
previous section. Recall, these test statistics (as in Proposition 15) were constructed for testing a
single edge, in isolation. However, implications of Meek rules can allow us to propagate evidence
from other edges to our edge of interest.

Importantly, this means that for testing i→ j, it is possible to make use of interventional data
from not just nodes i, j. As we will show, e-processes can be flexibly combined and allow for
propagation rules to be encoded into the test-statistic to take advantage of this structure.

135

Firstly, we observe that each Meek rule may be viewed as being one of two types of logical
implications. Let i0 → j0, i1 → j1, i2 → j2 be directed edges in the graph. Meek rules are of two
forms:

i1 → j1 ⇒ i0 → j0 i.e., propagation of a single edge. (5.3)
(j2 → i2 ∧ j1 → i1)⇒ j0 → i0

i.e., propagation of two edges to a single edge. (5.4)

Taking the contrapositive (CP) of Rule (5.4) results in the following rule: i0 → j0 ⇒ (i2 →
j2 ∨ i1 → j1).

Lemma 33 (Meek rules imply hypothesis conjunction/disjunction). For any edge orientation
hypotheses H i0→j0

0 , H i1→j1
0 , H i2→j2

0 , we have that

H i0→j0
0 = H i0→j0

0 ∩H i1→j1
0 by Rule 5.3

H i0→j0
0 = H i0→j0

0 ∩ (H i1→j1
0 ∪H i2→j2

0) by CP of Rule 5.4

This is useful, because under Rule 5.3 for example, testing i0 → j0 is equivalent to testing
i0 → j0 and i1 → j1. Thus, we can use evidence from i1 → j1 to reject i0 → j0, which increases
the power of testing i0 → j0.

In light of this observation, it is useful to enumerate i0 → j0’s implications, to to obtain
additional evidence for testing. Intuitively, the more implications an edge (hypothesis) has (due to
propagation rules), the more ways there are to verify this hypothesis, since it only takes one false
implication to reject a hypothesis. In the next subsection, we develop an algorithm that recursively
enumerates these implications.

5.4.1 Enumeration of implications of an edge orientation
In this subsection, we develop an algorithm, Algorithm 13, for enumerating the “extended
hypothesis” implied by the original hypothesis corresponding to the edge orientation of interest,
i→ j. This algorithm allows us to operationalize the Meek rules and enumerate edges that are
implied by the null hypothesis, i→ j.

In the algorithm, a tree of edges is recursively expanded to enumerate all the edges implied by
the root edge. To emphasize, the tree we refer to in this section does not refer to the causal graph
(which need not be a tree), but rather a representation of the logical implications that are implied
by the root edge.

Let T i→j be the tree constructed by applying Algorithm 13. A path in a tree T is the set of
edges encountered by traversing T from its root to a leaf node.
Definition 28. For a tree T , define the logical implications represented by T as follows:

H0(T) :=
⋃

P∈P(T)

⋂
i′→j′∈P

H i′→j′
0 .

Proposition 18. Algorithm 13 satisfies the following properties:
• (Soundness) Algorithm 13 is sound and does terminate.

136

Algorithm 13 Enumerating edges implied by Meek rule for a given edge orientation
Require: Essential graph G, hypothesized orientation i→ j.

1: Initialize empty tree T , insert edge i→ j as root.
2: while exists root to leaf path P such that the oriented edges in P imply new edge via a Meek

rule in G do
3: if Meek rule of the form (5.3) or (5.4) propagates a single new edge i′ → j′ not in P then
4: Append i′ → j′ to the leaf node of P .
5: if Meek rule of the form (5.4) propagates two new edges i1 → j1, i2 → j2 both not in P

then
6: Add i1 → j1 and i2 → j2 as children of the leaf node of P . ▷ do not include the pair

if at least one of the edges is on the path
7: Return tree T where each path from root to leaf P is a set of edges that are implied by i→ j.

• (Correctness) Let T i→j be the resultant tree of Algorithm 13, then:

H i→j
0 =

⋃
P∈P(T i→j)

⋂
i′→j′∈P

H i′→j′
0 .

Remark 15. As we prove in Lemma 36, we can stop the tree expansion in Algorithm 13 after any
number of application of Meek rules. The corresponding tree T would still be valid (H0(T) =
H i→j

0). That is, we need not exhaust all implications based on the Meek rules. This is useful
because one can trade off between the power of the test, and the time/space complexity of a more
complicated tree/test statistic. Testing with fewer implications results in lower power, but has the
benefit of being easier to track and evaluate.

5.4.2 Conversion of expanded hypothesis into an e-process
Having enumerated other edge orientations implied by the original edge orientation, in this
subsection, we show how to convert these logical relationships into an “extended” e-process useful
for testing.

Given a logical tree T i→j , we first design an e-process corresponding to a particular path
P ∈ T i→j . Let V be the set of all nodes in the graph. Let ∆d denote the probability simplex on
d-dimensions. Let P (i′) := {i → j : i → j ∈ P, i = i′ ∨ j = i′} be the set of edges on path P
with one its vertex node i′. We can now construct a corresponding e-process which is defined as
follows.
Proposition 19. Let (Ei→j

t (i)) be an e-process w.r.t. (F it) under H i→j
0 . For a path P , define:

EP
t := exp

∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)

−|P (i
′)| − 1

2
· log(2|Ti′(t)| − 2)

)
,

Then (EP
t) is an e-process w.r.t. (Ft) under HP

0 .

137

Having defined the e-process corresponding to some path P ∈ T i→j , we may now define the
e-process corresponding the full tree T i→j as follows.
Proposition 20 (Correctness of combined e-process). Define:

Ei→j
t := min

P∈P(T i→j)
EP
t .

Then, (Ei→j
t) is an e-process when H i→j

0 is true.
Theorem 22. For any sequence of interventions (It) predictable w.r.t. (Ft), let Ĝt be the partially
oriented DAG where the test for each orientation is defined as follows:

φi→jt = 1{Ei→j
t ≥ |G|/α}.

Then, (Ĝt) is anytime-valid orientation (as defined in (5.11)).

5.4.3 Additional power in combined test statistics

We note that Proposition 20 applies to any expanded T i→j tree, which includes the tree without
any expansion i.e. T i→j = (i→ j). So does an expanded tree lead to higher power? We note that
an increase in power depends on the graph: for instance, if a graph comprises of only isolated
edges, no additional power can be gained from propagation. Below, we present one instance
where we can prove that the power of the test is sizably larger, thus providing a concrete example
showing the value of combining evidence.
Proposition 21. Consider an uniform intervention policy over nodes [n]. There exists a graph and
edge i→ j, such that the expected growth rate (i.e. power) of logEi→j

t under the fully expanded
tree T i→j is Ω(|G|) times that of logEi→j

t under the non-expanded tree (i.e. just the single edge
i→ j).

Please see Figure 5.15 of Section 5.12 for an illustration of a simple n-node chain graph,
wherein additional power can be obtained due to Meek rules. Please refer to Section 5.9 for the
proofs of all results in this section as well as time complexity analysis of the proposed algorithms.

In closing, we note that this approach to test statistic combination can apply more broadly to
other structured hypothesis testing settings, wherein there are logical relationships (Meek rules in
this case) relating the hypotheses.

5.5 Experiments on fixed-time versus anytime methods

To illustrate the usefulness of anytime valid tests, we compare our anytime-valid test statistic (as
in Section 5.3.2) against a fixed-time test statistic across a variety of graphs.

Graph Setups: We consider two classes of graphs. (1) Erdos-Renyi graphs with vary-
ing number of nodes and density (n, p) ∈ {10, 20, 30} × {0.3, 0.5} (2) tree graphs with n ∈
{10, 20, 50, 100}. These are used to generate the graph skeleton. The SCM of the graphs is linear
Gaussian; the edge strengths are randomly sampled from max(U [0, k], b), where k is the upper
bound.

138

Figure 5.1: (Left) Number of samples vs Miscoverage rate (Middle) Number of samples vs
Number of oriented edges (Right) Edge signal size k vs Miscoverage rate.

Fixed-time Baseline: We consider the following p-value that corresponds to the two-sided
z-test for edge i → j. The hypothesis test involves checking if the test statistic is below the
acceptance threshold α

2|G| (from union bound).

Let µ̂j|do(i)
t :=

∑
k∈Ti(t)

Xj
k, µ̂

i|do(j)
t :=

∑
k∈Tj(t)

X i
k. Let Ti(t) be the number of times we have

intervened on i at time t. Define the fixed-time p-value baseline as:

P i→j
t = 2

1− Φ

(
b · |Ti(t)| − |µ̂j|do(i)

t |+ |µ̂i|do(j)
t |)√

|Tj(t)| varXi + |Ti(t)| varXj

)
where Φ is the Gaussian CDF function.

Proposition 22 (P i→j
t is a p-value). P i→j

t satisfies P(P i→j
t ≤ s) ≤ s for all s ∈ [0, 1] and t ∈ N

under H i→j
0 .

Experiment Configurations: In the experiment, we fix b = 0.1, variance 1 and the interven-
tional value ν = 1. We vary the number of interventional samples∈ {100, 500, 1000, 5000, 10000},
tolerated error rate α ∈ {0.1, 0.2} and edge strength k ∈ {0.1, 0.2, 1, 2, 10}, all of which affect
hypotheses testing (i.e. number of orientations). Fixing a particular setting, we simulate 20 trials
to compute the mean and standard deviation.

We plot two metrics. The most important is the mis-coverage rate, which is defined to be the
number of trials wherein the test statistic returns at least one falsely oriented edge. That is, the
percentage of time that an update step that uses this test statistic is wrong. Alongside miscoverage,
we also plot the number of oriented edges. This indicates the informativeness of a test statistic, as
indeed a test that never rejects can trivially achieve 0 miscoverage rate.

Comparing anytime vs fixed-time: In the interest of space, we present results under the ER
graph with (n, p, α) = (30, 0.5, 0.2) in Figure 5.1. Overall, we observe the following trends in
our experiments.

Miscoverage: In every setting, we find that our testing framework achieves miscoverage rate
below α (line in green), thus validating our theoretical anytime guarantee. On the other hand, in a
number of settings, we observe that the fixed-time statistic leads to high miscoverage rate.

Number of Orientations: The reason for the high miscoverage seems to be that the fixed
time test statistic is not conservative enough to control the error rate. The anytime test is more
conservative in orienting fewer number of edges, so as to attain error control. Note that this

139

control is important in preventing spurious edge orientations, which would then be fed back into
the query step as an erroneous representation of the partially oriented graph.

Comparing combined e-values vs base e-values: We also conduct an experiment comparing
the combined e-values (Section 5.4) against the base e-values (Section 5.3) in a chain graph,
where we expect the combined e-values to be helpful. We find that combining e-values is more
useful in large data/graph regimes, while the light-weight, base e-values are more effective in
small data/graph regimes.

Please refer to Section 5.10 for all experimental results.

5.6 Optimizing test statistic for causal verification

Once we have an anytime valid test framework that correctly implements the update step, we
can turn to designing query strategies that minimize sample complexity under this framework.
Towards this goal, we consider the task of causal verification, which acts as a stepping-stone
towards causal discovery. Knowing how to optimally intervene to verify a known graph is an
useful building block for understanding how to optimally intervene to learn an unknown graph. In
this section, we develop a novel querying algorithm with provable guarantees that we believe can
be be a stepping stone to more practical algorithms. To do so, we highlight a connection between
finite-sample causal verification and the structured bandit literature [23], by demonstrating that
causal verification reduces to multi-constraint bandit optimization.

To recap, the goal of active verification is: given knowledge of the true graph, verify the edge
orientations, while minimizing the expected number of samples needed to conclude that each edge
orientation is oriented as in the graph w.h.p.

Problem Setup: Formally, construct an intervention policy that (adaptively) intervenes on
nodes I1, ..., Iτ such that the the expected stopping time E[τ] is minimized, where τ is defined as
the earliest time step such that every hypothesis corresponding to incorrect orientation j → i is
rejected. That is, ∀j → i, Ej→i

τ ≥ |G|/α.

5.6.1 Construction of test statistic for causal verification

Since the SCM is known in verification, all edge strengths are known. This allows us to construct
a more simplified test-statistic than that of Proposition 19.

Consider some incorrect orientation j → i. Let its logical tree be T j→i. With full information,
it is natural to construct a test statistic for j → i by including only the e-value with the highest
expected growth rate. Define S∗t (P, It) = Se

∗,s∗

t (It) for e∗, s∗ = argmaxe∈P (It),s∈{±} E[S
e,s(It)].

This represents the edge and sign e-value with the largest expected growth-rate under intervention
It, out of all the possible e-values of edges in P (It).

With this, we may define a test statistic with the highest expected growth rate under intervention

i′ as E∗j→it (i′) =
∏t

k:Ik=i′
S∗k(P, i

′), path test statistic as E∗Pt := exp

(∑
i′∈V

logE∗j→it (i′)

)
and

full test statistic as E∗j→it = minP∈P(T j→i)E
∗P
t . In what follows, we will make the assumption

140

that Xi is a bounded r.v. with b, ν such that logS∗k(P, I) is positive (as arm rewards are usually
assumed to be positive in bandits literature).

5.6.2 Reduction to multi-constraint bandit optimization

Having defined E∗Pt , causal verification then corresponds to choosing an apt intervention policy
that jointly optimizes E∗j→it for every incorrect orientation j → i, and only insofar as to have
E∗j→it exceed a threshold, |G|/α. To solve this problem, we observe that causal verification
reduces to multi-constraint bandit optimization, defined as follows.

Multi-constraint bandit optimization: An instance is parameterized by n arms,m constraints
and budget b:

• There are T rounds for T a specified time horizon.
• At round i, the algorithm may pull an arm xi, yielding a “gain” vector, where rxi ∼ Dxi for
rxi ∈ [0,M]m.

• There is a known threshold b ∈ R+ on the aggregate gain of each constraint.
• The interaction terminates at the earliest round τ , when

∑τ
t=1 rxt ≥ b · 1 (aggregate gain of

every constraint exceeds b), or at the end of the T th round.
The goal of the algorithm is to minimize the total expected cost

∑τ
i=1 cxi (node intervention cost

cxi is set to 1).
Reduction to multi-constraint bandits: We observe that the test statistic for each path

P ∈ P(T j→i) grows additively in the log of e-values logS∗k(P, Ik):

E∗j→it ≥ |G|/α⇔ ∀P ∈ P(T j→i), E∗Pt ≥ |G|/α

⇔ ∀P ∈ P(T j→i),
t∑

k=1

logS∗k(P, Ik) ≥ log(|G|/α)

Thus, given a causal verification instance, we may instantiate a multi-constraint bandit instance as
follows:

1. Arms: define n = |V | arms, each corresponding to a node intervention in the graph.
2. Constraint: define a constraint corresponding to every (P, i′) pair, for path P ∈ T j→i and

intervention i′ ∈ V . Thus, the gain of pulling arm i′ ∈ V corresponds to a vector of
realizations of random variable logS∗(P, i′) of every path P ∈ T j→i of every tree T j→i.

3. Set the threshold b = log(|G|/α).

Guarantee: We develop Algorithm 14 that attains provable guarantees in the multi-constraint
bandit setting, which applies immediately to the causal verification setting via the reduction.
Let OPT be the expected total number of interventions needed by the optimal dynamic policy.
Let REWtot be the algorithm performance of Algorithm 14, which is the expected number of
interventions such that every incorrect orientation test statistic exceeds b. Then, we have that:

141

Algorithm 14 Causal Verification as multi-constraint bandits

Require: threshold b; time horizon T ; for each node x, known expected gain vector r̄x ∈ [0,M]m

▷ for node x, this vector’s entries are the expected growth rates under intervention on node x
(E[logS∗(P, x)] of every path P of every logical tree T j→i)

1: In the first n rounds, intervene on each node once
2: Initialize v1 = 1 ∈ [0, 1]m

3: Set ϵ =
√

M lnm
b+M

4: while [donot all tests have concluded, since not all test statistics have exceeded b]
∑t

i=1 rxi <
b · 1 and t < T

5: for node x ∈ [n] do
6: Set weighted total gain gx = r̄x · vt
7: Intervene on node xt = argmaxx∈X gx with the highest weighted gain
8: Receive vector rx, whose entries are realizations of random variables logS∗(P, x) of

every path P ∈ T j→i of every tree T j→i

9: Update vt entry-wise with normalized rx, where its ith entry changes as follows:

vt+1(i) = vt(i)(1− ϵ)ℓ, ℓ = rx(i)/M

Theorem 23. The regret of Algorithm 14 is:

REWtot −OPT ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPT

+ Õ

(
M
√
T

b
+ nM

)
.

To provide some intuition, in Algorithm 14, one may view v as a varying, weighting over each
constraint. Each round, the algorithm greedily pulls the arm whose sum of weighted expected
gain is the largest. After a round, if a constraint has seen a sizable increase, then its weighting in
v is reduced. This adaptive re-balancing then allows for an arm selection that focuses more on
increasing other constraints, which are further away from exceeding the threshold b. Please refer
to Section 5.11 for the proofs of all results in this section.

5.7 More Related Works

Finite-Sample Considerations in Causality: The three papers most similar in motivation
to that of ours are: Greenewald et al. [125], Wadhwa and Dong [287] and Acharya et al. [3].
Like Greenewald et al. [125], our paper is similarly motivated by finite-sample considerations
that exist in real-world settings, where the collection of interventional data (e.g. RCTs) is much
more difficult and costly than that the collection of observational data. As such, we also assume
that infinitely many observational samples are available, while only finitely many interventional

142

samples can be obtained. [287] is concerned with the sample complexity of causal discovery,
albeit that of learning the equivalence class, and not the actual graph, given only observational
data only. Finally, [3] is also concerned with finite-sample causal discovery via testing. They
study the two node setting, and assume both finite interventional and observational data, which
are contrasted in the paper.

While our paper’s goal of studying finite-sample causal discovery is the same as those of
Acharya et al. [3], Greenewald et al. [125], our paper differs in focusing primarily on the update
step. Additionally, our testing framework is applicable in general graphs, going beyond the
two-node or tree settings. Different from [125], we study soft interventions instead of hard
interventions, thus introducing the need to consider the strength of edges, as edges with weak
causal strength require more samples to orient. Different from [3], we study how to propagate
edge orientations in hypothesis testing, which is needed when the graph comprises of more than
two nodes and a single edge.

Causal Verification: Causal Verification is a well-known task in causal discovery. Besides
having practical applications (e.g. verifying a scientific conjecture corresponding to some causal
graph structure), it has the theoretical benefit of better understanding the lower bound that underlies
any active causal discovery algorithm [70, 232, 266].

Bayesian causal discovery: There has also been a line of work in Bayesian causal discovery,
wherein one uses interventional data to update the posterior over all graphs [6, 277, 279]. Since
the set of all graphs in the MEC may be prohibitively large, approximation methods are used to
sample from the posterior, making less clear what provable guarantees one may be able to provide
about such methods.

Functional Causal Discovery: Further afield, there has been a sizable number of paper
that leverage specific functional forms of graphs for orientation, using observational data only.
Examples of such methods include [141, 260, 321]. Interested readers may refer to for example
[120] for a more complete survey of this line of work.

Bandit Multiple-Testing: The closest type of methods in the bandit literature are those
dealing with multiple testing [154, 301]. Current work on bandit multiple testing differs from the
methods in this paper in two significant ways: (1) bandit multiple testing is primarily focused on
controlling the false discovery rate (FDR) and (2) methods lie in the typical hypothesis testing
problem setting where one can only reject a hypothesis — in the causal discovery setting, each
unoriented edge will be one of two directions, and the negation of one implies the other — hence
the relationships between the hypotheses require methods that will derive a certain conclusion for
each unoriented edge.

Necessity of Non-Negative Martingales: [234] proves that under a suitable definition of
admissibility, all admissible constructions of test statistics for any-time sequential inference must
necessarily utilize nonnegative martingales. This shows that the martingale test statistic we
construct is in some sense of the “right form”.

5.8 Deferred Proofs from Section 5.3

Lemma 34. Let Mt :=
t∏

k=1

Sk. Then, (Mt) is an NSM w.r.t. filtration (Ft) under H0.

143

Proof. The conditional expectation of Mt is as follows:

E[Mt | Ft−1] = E[St | Ft−1] ·
t−1∏
k=1

Ek = E[St | Ft−1] ·Mt−1 ≤Mt−1,

where the inequality is by definition of St being a sequential e-value for each t ∈ N.

5.8.1 Deferred Proofs from Section 5.3.1

Proposition 23. (φi→jt) is an anytime-valid test, that is, the procedure in (5.2) ensures that

P(H i→j
0 is rejected) = P(exists t ∈ N : φi→jt (α) = 1) ≤ α when H i→j

0 is true for all α ∈ [0, 1].

Proof.

P(exists t ∈ N : φi→jt (α) = 1|H i→j
0) = Pr(exists t ∈ N :M i→j

t ≥ 1/α|H i→j
0)

(by definition of φi→jt (α))

≤ α
(Ville’s inequality, because under H i→j

0 is true⇒ (M i→j
t) is an e-process)

Proposition 24. Given an anytime-valid test (φi→jt), orient edge i → j in Ĝt the first time
φj→it (α/|G|) = 1. Then, (Ĝt) is an anytime-valid partially oriented graph.

Proof. Let the final oriented graph be Ĝ.

P
(

exists t ∈ N : exists oriented edge in Ĝt not in G∗
)

≤
∑
i→j∈Ĝ

P (exists t ∈ N : orient edge i→ j ∧ j → i in G∗)

=
∑
i→j∈Ĝ

Pr(exists t ∈ N : ϕj→it (α/|G|) = 1 ∧ j → i in G∗)

≤
∑
i→j∈Ĝ

α/|Ḡ| (by Proposition 11)

= α (5.5)

5.8.2 Deferred Results from Section 5.3.2

Proposition 25. For any sequence (λt) that is predictable w.r.t. (F jt), S
i→j,+
t (j) and Si→j,−t (j)

are both sequential e-values under H i→j
0 w.r.t. filtration (F jt).

144

Proof. At time t with It = j, under H i→j
0 , we have that ±X i

t | F
j
t−1 is a mean 0, σ2

i -sub-Gaussian
random variable. We work through the X i

t case, and the −X i
t case follows analogously. From

definition, its MGF is such that:

E[exp(λX i
t)] ≤ exp

(
λ2σ2

i

2

)
⇔ E[Si→j,+t (j) | F jt−1] = E[Si→j,+t (j)] = exp

(
λX i

t −
λ2σ2

i

2

)
≤ 1

Proposition 26. Under the minimal causal effect condition, we have the following:
Under H i→j,+

0 , Si→j,+t (i) are sequential e-values w.r.t. filtration (F it).
Under H i→j,−

0 , Si→j,−t (i) are sequential e-values w.r.t. filtration (F it).

Proof. We prove the first statement, and the second follows analogously. WLOG µj(i) =
E[Xj

t (i)] ≥ b. We have that:

E
[
exp

(
λ(b−Xj

t (i))− λ2σ2
j/2
)
| Ft−1

]
≤ 1⇔ E[Si→j,+t (i) | F it−1] = E[Si→j,+t (i)] ≤ 1

since b−Xj
t (i) | Ft−1 is a σ2

i -sub-Gaussian with nonpositive mean b− E[Xj
t (i)].

Proposition 27. Under H i→j
0 , the following processes are e-processes w.r.t. to filtration (F jt),

filtration (F it) respectively:

Ei→j
t (j) =

1

2

 t∏
k:Ik=j

Si→j,−k (j) +
t∏

k:Ik=j

Si→j,+k (j)

 , Ei→j
t (i) = min

 t∏
k:Ik=i

Si→j,−k (i),
t∏

k:Ik=i

Si→j,+k (i)


Proof. • (Ei→j

t (j)) is the average of two processes

M+
t (j) =

∏
k∈Tj(t)

Si→j,+k (j), M−
t (j) =

∏
k∈Tj(t)

Si→j,−k (j).

By Proposition 13, each of these processes are the product of sequences of sequential
e-values (w.r.t. to filtration (F jt)) under H i→j

0 , i.e., (Si→j,−k) and (Si→j,+k). This implies that
they are NSMs by Lemma 34, and hence also e-processes w.r.t. to filtration (F jt).
To show that the average of these two e-processes is an e-process, we introduce the notion
of a stopping time, and note the following e-process equivalence.

Definition 29. A stopping time τ ∈ N w.r.t. a filtration (F ′t)t∈N is a random variable that
where 1{τ = t} is measurable w.r.t. Ft.

Further, we use the following fact about e-processes from [234].

Fact 4 (Item (vi) from Lemma 6 of Ramdas et al. 234). (Et) is a an e-process w.r.t. to a
filtration (F ′t) iff it is nonnegative and E[Eτ] ≤ 1 for all stopping times τ defined w.r.t. (F ′t).

145

Now, we get that, for any stopping time τ defined w.r.t. to filtration (F jt):

E[Ei→j
τ (j)] =

1

2
(E[M+

τ (j)] + E[M−
τ (j)]) ≤ 1,

where the last inequality is by (M+
t (j)), (M

−
t (j)) being NSMs defined w.r.t. to filtration

(F jt).
• Now, we will prove (Ei→j

t (i)) is also an e-process. Since H i→j
0 ⇒ H i→j,+

0 ∪ H i→j,−
0 , if

H i→j
0 is true, one of H i→j,+

0 or H i→j,−
0 holds. Without loss of generality, let H i→j,+

0 be true.
Here, the processes under consideration are now:

M+
t (i) =

∏
k∈Tj(t)

Si→j,+k (i), M−
t (i) =

∏
k∈Tj(t)

Si→j,−k (i).

We will show that M+
t (i) is an NSM w.r.t. to filtration (F it), which implies that M i→j

t is an
e-process since M i→j

t ≤M+
t (i) for all t ∈ N almost surely.

When It = i, by Proposition 14, Si→j,+t (i) is an e-value and so:

E[M+
t (i)|Ft−1] = E[Si→j,+t (i)|Ft−1] ·M+

t−1 ≤M+
t−1.

Finally, we check that when It ̸= i, we have that:

E[M+
t (i)|Ft−1] =M+

t−1 ≤M+
t−1.

And we note that at the base case t = 1, for the NSM, we have that:

E[M+
t (i)] = E[Si→j,+1 (i)] ≤ 1 or E[M+

t (i)] = 1

5.8.3 Deferred Results from Section 5.3.3

Proposition 28. Suppose the true edge orientation is actually that j → i and WLOG µi(j) > 0.
By setting λ = b/σ2

i for Si→jt (i) and λ = b/σ2
j for Si→jt (i), we have the following growth rates:

1. E[logSi→j,+t (j) | Ft−1] = b(µi(j)− b/2)/σ2
i

2. E[logSi→j,+t (i) | Ft−1] = E[logSi→j,−t (i) | Ft−1] = b2/(2σ2
j)

Proof. We analyze the growth rates of each case separately:

1.

E[logSi→jt (j) | Ft−1] = λ

(
E
[
X i
t | Ft−1

])
− λ2σ2

i

2

=
b

σ2
i

µi(j)−
b2

2σ2
i

=
b(µi(j)− b/2)

σ2
i

146

2. We have that:

E[logSi→j,±t (i) | Ft−1] = λ(b± E[Xj
t | Ft−1])− λ2σ2

j/2

= λb− λ2σ2
j/2

=
b2

2σ2
j

.

Remark 16. We note that var(Xi) in any interventional distribution is identified, and the same as
varD0(Xi). This allows us to put in the exact multiplier for λ2/2 in the the NSM.

From Linear Graphs to Additive Graphs: We note that our setting may be generalized to
additive graphs, when given an upper bound on the variance of variables in the interventional.

This is because, to set the appropriate λ for sequential e-values, we only need to have
knowledge of b and an upper bound on the variance interventional distribution. With this, we
could set a rate such that the growth rate is positive as in the power analysis above.
Proposition 29. If the edge j → i is the true orientation in G, then each of the the following
statements hold true with probability 1− β for each β ∈ [0, 1]:

1. For (Si→j,+t (j)), we have that τα ≤ σ2
i log(α

−1β−1)

b(µi(j)−b) .

2. For (Si→j,±t (i)), we have that τα ≤
σ2
j log(α

−1β−1)

b2

Proof. We prove this explicitly for Si→j,+t (j) and other results for (Si→j,±t (i)) follow similarly.

Let Mt :=
t∏

k=1

Si→j,+k (j) as follows.

Mt = exp

 t∑
k=1

λX i
t −

λ2σ2
i

2


= exp(t(λµi(j)− λ2σ2

i)) · exp

 t∑
k=1

λ(X i
t − µi(j)) +

λ2σ2
i

2

 .

Now, we note that exp
(∑t

k=1−λ(X i
t − µi(j))−

λ2σ2
i

2

)
is a nonnegative supermartingale since

X i
t − µi(j) are i.i.d. σ2

i -sub-Gaussian random variables with mean 0. As a result, we know that

Mt ≥ exp(t(λµi(j)− λ2σ2
i)) · β

for all t ∈ N with probability 1− β by Ville’s inequality. If we set λ = b/σ2
i . We get that

σ2
i log(α

−1β−1)

b(µi(j)− b)
≤ t.

implies Mt ≥ α−1 with probability 1− β. This concludes our desired result.

147

Figure 5.2: The four meek rules for propagating oriented edges.

5.9 Deferred Proofs from Section 5.4

Lemma 35 (Meek rules imply hypothesis conjunction/disjunction (general)). For any edge
orientation hypotheses H i→j

0 , H i1→j1
0 , H i2→j2

0 , we have that

H i→j
0 = H i→j

0 ∩H i1→j1
0 if i→ j ⇒ i1 → j1

H i→j
0 ∩H i1→j1

0 = H i→j
0 ∩H i1→j1

0 ∩H i2→j2
0 if i→ j ∧ i1 → j1 ⇒ i2 → j2

H i→j
0 = H i→j

0 ∩ (H i1→j1
0 ∪H i2→j2

0) if i→ j ⇒ i1 → j1 ∨ i2 → j2

Proof. The results follow from an application of the logical rule that if A⇒ B, then A = A ∩B.
For the first rule, we get the following implications:

H i→j
0 ⇔ i→ j in G∗ ⇒ i1 → j1 in G∗ ⇔ H i1→j1

0 .

For the second rule, we can show its true by the following derivation.

H i→j
0 ∩H i→j

0 ⇔ i→ j and i1 → j1 in G∗ ⇒ i2 → j2 in G∗ ⇔ H i2→j2
0 .

For the last rule, we can derive the implication as follows:

H i→j
0 ⇔ i→ j in G∗

⇒ i1 → j1 in G∗ ∨ i2 → j2 in G∗

⇔ H i1→j1
0 ∪H i2→j2

0 .

5.9.1 Deferred Results from Section 5.4.1
Let P(T) denote the set of paths in T . The following lemma proves the correctness of the
“extended hypothesis” generated by Algorithm 13.
Lemma 36. Given some tree T , let T ′ be the tree that results from applying a single Meek rule to
T , i.e., through either Line 4 or Line 6 in Algorithm 13. Then, H0(T) = H0(T

′).

148

Proof. We perform a case analysis depending on the Meek rule (as defined in (5.3), (5.4), (5.4))
that is applied to T . Let the path in T that is expanded be P̂ .

1. In the case of (5.3) or (5.4), there exists a single path P ′ = P̂ ∪ {i′ → j′} ∈ P(T ′) such
that

P(T ′) = P(T) \ {P̂} ∪
{
P ′
}
,

i.e., the only difference between T and T ′ is that path P̂ gained a child i′ → j′ to become
P ′. We have that:

⋂
i→j∈P̂

H i→j
0 =

 ⋂
i→j∈P̂

H i→j
0

 ∩H i′→j′
0 =

⋂
i→j∈P ′

H i→j
0 . (5.6)

where the first equality is from Lemma 33. Hence, we get

H0(T
′) =

⋃
P∈P(T ′)

⋂
i→j∈P

H i→j
0 =

 ⋃
P∈P(T ′)\{P ′}

⋂
i→j∈P

H i→j
0

 ∪
 ⋂
i→j∈P ′

H i→j
0


(a)
=

 ⋃
P∈P(T)\{P̂}

⋂
i→j∈P

H i→j
0

 ∪
 ⋂
i→j∈P̂

H i→j
0


= H0(T).

where equality (a) is by P(T ′) \ {P ′} = P(T) \ {P̂} and (5.6).
2. In the case of (5.4), we know that there exist two paths P ′1, P

′
2 ∈ P(T ′) such that P ′1 = P̂ ∪

{i′1 → j′1} and P ′2 = P̂ ∪{i′2 → j′2}, where P̂ ∈ P(T) and P(T ′) = P(T)\{P̂}∪{P ′1, P ′2}.
Further, by Lemma 33, we know that:⋂

i→j∈P̂

H i→j ⇒ H i′i→j′1 ∪H i′2→j′2 .

Hence, we get the following equality (using the logical relation A ∩ (B ∪ C) = (A ∩B) ∪
(A ∩ C)):

⋂
i→j∈P̂

H i→j
0 =

 ⋂
i→j∈P̂

H i→j
0

 ∩ (H i′1→j′1
0 ∪H i′2→j′2

0

)
=

 ⋂
i→j∈P ′

1

H i→j
0

 ∪
 ⋂
i→j∈P ′

2

H i→j
0

 .

(5.7)

149

From this, we obtain

H0(T
′) =

 ⋃
P∈P(T)\{P ′

1,P
′
2}

⋂
i→j∈P

H i→j

 ∪
 ⋂
i→j∈P ′

1

H i→j

 ∪
 ⋂
i→j∈P ′

2

H i→j


=

 ⋃
P∈P(T)\P̂

⋂
i→j∈P̂

H i→j

 ∪
 ⋂
i→j∈P ′

1

H i→j

 ∪
 ⋂
i→j∈P ′

2

H i→j


(since P(T ′) \ {P ′1, P ′2} = P(T) \ {P̂})

=

 ⋃
P∈P(T)\P̂

⋂
i→j∈P̂

H i→j

 ∪
 ⋂
i→j∈P̂

H i→j

 (by (5.7))

= H0(T).

Proposition 30. Algorithm 13 satisfies the following properties.
• (Soundness) Algorithm 13 is sound and does terminate.
• (Correctness) Let T i→j be the resultant tree of Algorithm 13, then:

H i→j
0 =

⋃
P∈P(T i→j)

⋂
i′→j′∈P

H i′→j′
0 .

Proof. Soundness: We note that a Meek rule cannot introduce a novel edge to a path in the tree if
the path is of length |E| and already contains an orientation for each possible edge in G. And so,
the algorithm must terminate since each root to leaf path’s length is bounded. This in turn means
that so is the depth of the final tree T i→j .

Correctness: This follows from Lemma 36 that each added edge(s) maintains the invariant
that the logical expression corresponding to the tree is equal to H i→j

0 .

5.9.2 Deferred Proofs from Section 5.4.2

Proposition 31. Let (Ei→j
t (i)) be an e-process w.r.t. (F it) under H i→j

0 . For any path P ⊆ E
define

EP
t := exp

∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)

−|P (i
′)| − 1

2
· log(2|Ti′(t)| − 2)

)
,

Then (EP
t) is an e-process w.r.t. (Ft) under HP

0 .

150

We are able to justify that (EP
t) is an e-process by constructing an NSM that upper bounds

EP
t . We begin with the following fact.

Fact 5 (Theorem 2 of Cover and Ordentlich [79]). Define xt ∈ Rd
+ to be a d-dimensional

nonnegative real vector for each t ∈ N. Then, there exists a sequence of weight vectors, (wt),
where wt ∈ ∆d and wt is solely a function of (xk)k∈[t−1] for each t ∈ N, such that

log

 t∏
k=1

w⊤k xt

 ≥ max
w∈∆d

log

 t∏
k=1

w⊤xt

− d− 1

2
· log(2(t+ 1)) for all t ∈ N.

Proof. For each e-process Ei→j
t (i′), let M i→j

t (i′) be the corresponding (F i′t)-NSM (under H i→j
0)

such that Ei→j
t (i′) ≤M i→j

t (i′) for all t ∈ N almost surely. Now, define

∆M i→j
t (i′) :=


M i→j

t (i′) if t = 1

1 if M i→j
t−1 (i

′) = 0
M i→j
t (i′)

M i→j
t−1 (i′)

otherwise
.

For t ≥ 2, we have that:

E[∆M i→j
t (i′)|F i′t−1] =

E[M i→j
t (i′)|F i′t−1]
M i→j

t−1 (i
′)

≤ 1

as a result of M i→j
t (i′) being an NSM. And so, (∆M i→j

t (i′)) is a sequence of sequential
e-values with respect to the filtration F i′t . And E[M i→j

1 (i′)] ≤ 1 by Definition 25.
Furthermore, we use the following lemma.

Lemma 37. M i→j
t (i′) is a NSM and (∆M i→j

t (i′)) is a sequence of sequential e-values under (Ft)
as well.

Proof. The filtration (F i′t) is important here, since this implies that

M i→j
t (i′) =M i→j

t−1 (i
′) and ∆M i→j

t (i′) = 1 if It ̸= i′, (5.8)

as M i→j
t (i′) is F i′t -measurable (i.e., a function of samples from i′) for each t ∈ N.

Note that for each t ∈ N,

Xt ⊥⊥ Ft−1 | It. (5.9)

We will now show that E[∆M i→j
t | Ft−1] ≤ 1, i.e., is a sequential e-value under (Ft). This is

trivially true if It ̸= i′, so we consider the case where It = i′.

E[∆M i→j
t | It = i′,Ft−1] = E[∆M i→j

t | F i′t−1, It = i,
⋃

j∈V,j ̸=i′
F jt−1]

= E[∆M i→j
t | F i′t−1, It = i′] ≤ 1.

The first equality is because Ft = F i
′
t−1 ∪

⋃
j∈V,j ̸=i′ F

j
t−1. The last line is by (5.9) and ∆M i→j

t

being a sequential e-value under F i′t−1.

151

Let ∆Mt(i
′) be the vector of ∆M i→j

t (i′) indexed for each i→ j ∈ P (i′). Now, we utilize the
following regret bound from Fact 5, which implies that there exists a sequence of weights (wt)
predictable w.r.t. (Ft) such that we can define the following process:

MP
t :=

t∏
k=1

w⊤k∆Mk(Ik) = exp

 t∑
k=1

log(w⊤k∆Mk(Ik))


= exp

∑
i′∈V

log

 ∏
k∈Ti′ (t)

w⊤k∆Mk(i
′)


 (collecting terms across Ik ∈ V)

(a)
≥ exp

∑
i′∈V

max
w∈∆|P (i′)|

log

 ∏
k∈Ti′ (t)

w⊤∆Mk(Ik)

− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))


(b)
= exp

∑
i′∈V

max
w∈∆|P (i′)|

log

∏
k∈[t]

w⊤∆Mk(Ik)

− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))


(c)
≥ exp

∑
i′∈V

max
i→j∈P (i′)

logM i→j
t (i′)− |P (i

′)| − 1

2
· log(2(|Ti′(t)| − 1))


≥ exp

∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)− |P (i

′)| − 1

2
· log(2(|Ti′(t)| − 1))



Inequality (a) is a result of Fact 5. For equality (b), we note that ∆Mk(i
′) = 1 (i.e., the vector

of ones) for each k ̸∈ Ti′(t), as a result of (5.8). Consequently, is we can change the index of the
product from Ti′(t) to [t], since multiplying by w⊤1 = 1 does not change the product. Inequality
(c) is because the elementary bases is a subset of ∆|Ai′ | and

∏
k∈Ti′ (t)

∆M i→j
k (i′) =M i→j

t (i′) due
to telescoping product. The last inequality is by definition of M i→j

t (i′) ≥ Ei→j
t (i′) for all t ∈ N.

Now, we only need to show thatMP
t is an NSM w.r.t. (Ft). RecallMP

t =
∏

k∈Ti′ (t)
w⊤k∆Mk(Ik).

We have that:
E[MP

t |Ft−1] = E[w⊤t ∆Mt(It) | Ft−1]MP
t−1

Thus, it suffices to show the following:

E[w⊤t ∆Mt(It) | Ft−1] ≤ 1 under HP
0 . (5.10)

We know the following is true under HP
0 :

E[w⊤t ∆Mt(It) | Ft−1] =
∑

i→j∈PIt

wi→jt E[∆M i→j
t (It) | Ft−1] ≤

∑
i→j∈PIt

wi→jt = 1.

152

The inequality is by definition of ∆M i→j
t of being a sequential e-value (under (Ft)) under

H i→j
0 , which holds as i → j ∈ P and HP

0 holds by assumption. The last equality is by
wt ∈ ∆|AIt |.

Thus, we have shown (5.10) and proven our desired result.

Proposition 32 (Correctness of combined e-process). Define

Ei→j
t := min

P∈P(T i→j)
EP
t .

Then, (Ei→j
t) is an e-process when H i→j

0 is true.

Proof. By the definition of P(T i→j):

H i→j
0 = H0(T

i→j) =
⋃

P∈P(T i→j)

HP
0

Thus, if H i→j
0 is true, then there exists P ∈ P(T i→j) such that HP

0 is true.
(EP

t) is an e-process by Proposition 19. Since, Ei→j
t ≤ EP

t for all t ∈ N almost surely, (Ei→j
t)

is an e-process, and we have shown our desired result.

Theorem 24. For any sequence of interventions (It) predictable w.r.t. (Ft), let Ĝt be the partially
oriented DAG where the test for each orientation is defined as follows:

φi→jt = 1{Ei→j
t ≥ |G|/α}.

Then, (Ĝt) is anytime-valid orientation (as defined in (5.11)).

Proof. Let the final oriented graph be Ĝ.

P
(

exists t ∈ N : exists oriented edge in Ĝt not in G∗
)

≤
∑
i→j∈Ĝ

P (exists t ∈ N : orient edge i→ j ∧ j → i in G∗)

=
∑
i→j∈Ĝ

Pr(exists t ∈ N : Ej→i
t ≥ |G|/α ∧ j → i in G∗)

≤
∑
i→j∈Ĝ

α/|Ḡ| (by Proposition 20)

= α (5.11)

Proposition 33 (Additional power of combining test statistics). Consider an uniform set of
interventions over nodes [n]. There exists a graph and edge i→ j, such that the expected growth
rate (i.e. power) of logEi→j

t under the fully expanded tree T i→j , is Ω(|Ḡ|) times that of logEi→j
t

under the non-expanded tree (i.e. just the single edge i→ j).

153

Proof. Consider a chain graph Ḡ = X1 −X2 − ...−Xn (generalizable to trees where the root
has only one child), where the underlying graph is such that X1 ← X2...← Xn. Such a setting
allows for a simple, closed-form expression for the test statistic.

Suppose we are interested in testing H1→2
0 . Suppose there are m interventions, which means

m/n interventions of each node.
In this setting, we assume that edge causal effects and variance are equal for fair comparisons.

Thus ∀i, j,E[logEi→i+1
t (i+1)] = E[logEj→j+1

t (j+1)]. Certainly, ifEj→j+1
t (j+1)] > E1→2

t (2)],
then gain in power will be even more pronounced.

Using Proposition 19, we have that:

E[logE1→2
t]

= E

logE1→2
t (1) +

n−1∑
i=2

[max(logEi−1→i
t (i), logEi→i+1

t (i))− 1/2(log(2|Ti(t)| − 2))] + logEn−1→n
t (n)


≥ E

logE1→2
t (1) +

n−1∑
i=2

logEi−1→i
t (i) + logEn−1→n

t (n)− 1/2(n− 2) log(2m/n− 2)


≥

n−1∑
i=2

E[logEi−1→i
t (i)]− 1/2(n− 2) log(2m/n− 2)

= (n− 2) · E[logE1→2
t (2)]− Õ(n)

≥ (n− 2)/2 · E[logE1→2
t (2) + logE1→2

t (1)]− Õ(n)
(for any edge i→ j, E[logSi→j,+t (j) | Ft−1] ≥ E[logSi→j,+t (i) | Ft−1])

≥ C · E[logE1→2
t (2) + logE1→2

t (1)] (we assume that logE1→2
t (2) = Ω(m) >> Õ(n))

for constant C = Ω(n).

Remark 17. Note that the combination of evidence is such that we need not reject any of
Xi → Xi+1 to reject X1 → X2. The cumulative evidence is enough, despite the data not being
conclusive for any of the downstream edges!

5.9.3 Time complexity analysis of algorithms
Algorithm 13: Each path in the loop contains at most |E| edges. Each round in the while loop
requires examining at most |E| to see if there is a new edge that is implied via Meek’s rule. Thus,
if the algorithm is run for T rounds, the time complexity is T · |E|. We note that how much the
tree is expanded out, as a function of T , is an user choice.

Algorithm 15: First, we consider the time complexity of updating test-statistic given a new
intervention i at time t. It suffices to update EP

t for every path P ∈ T i→j , which is pre-computed.
Using the definition of EP , it suffices to just re-compute logEi→j

t (i′) to incorporate the new
interventional data, and then take the minimum.

If one re-computation is taken to require one unit of computation, then there are |P (i′)| many
logEi→j

t (i′) re-computations. Using the definition of |P (i′)|, we know it is upper bounded by

154

Algorithm 15 Anytime Testing for Updates in Finite-Sample Causal Discovery

Require: Input: pre-compute logical tree T i→j for each hypothesized edge orientation for edge
i− j in skeleton (via Algorithm 13)

Require: Sample from intervention distribution (xt1, ..., x
t
n) ∼ X1, ..., Xn|do(X t)

1: for node Xi adjacent to XIt do
2: if edge Xi −XIt unoriented then
3: Update Ei←It

t , Ei→It
t

4: Test Ei←It
t ≥ |G|/α,Ei→It

t ≥ |G|/α ▷ Test if we can conclude i ̸← It or i ̸→ It
w.h.p.

5: for [doPropagation]hypothesized orientation edge i′ → j′; i′ − j′ unoriented, i′, j′ ̸= It
6: if exists edge i← It or i→ It in T i′→j′ then
7: Update Ei′→j′

t using updated Ei←Xt

t or Ei→Xt

t

8: Test Ei′→j′
t ≥ |G|/α ▷ Test if we can conclude i′ ̸→ j′ w.h.p.

the degree of i′. Thus, if the max degree of the graph is deg(G), then the update to each edge
test statistic requires at most deg(G) · |P ∈ P (T i→j)| updates. In total, updating this for all
edge hypotheses is upper bounded by: 2|E| · deg(G) · |P ∈ P (T i→j)| = O(|V ||E|maxi→j |P ∈
P (T i→j)|). Finally, if there are T rounds with T interventions, the total number of updates comes
out to: O(T · |V ||E|maxi→j |P ∈ P (T i→j)|).

Note that this characterizes the time-complexity of the e-process updates in as being polyno-
mial (more precisely linear) in terms of the graph parameters and the size of the implication trees.
As we previously note, the size of this implication tree (that is pre-computed) is an user-based
choice. The more implications that are enumerated in the tree, the higher the power of the test.
However, this in turn increases the time-complexity (and memory), which we can observe above.

5.10 Experiments

5.10.1 Fixed-time test statistic construction

Proposition 34. P i→j
t satisfies P(P i→j

t ≤ s) ≤ s for all s ∈ [0, 1] and t ∈ N under H i→j
0 .

Proof. For c ∈ {±1}, define

P+
t (c) := 1− Φ

(
b · Ti(t)− µ̂j|do(i)

t + c · µ̂i|do(j)
t√

|Tj(t)| varXi + |Ti(t)| varXj

)
,

P−t (c) := 1− Φ

(
µ̂
j|do(i)
t + b · Ti(t) + c · µ̂i|do(j)

t√
|Tj(t)| varXi + |Ti(t)| varXj

)
.

Note that, for any choice of c, P+
t (c) and P−t (c) are z-test p-values under H i→j,+

0 and H i→j,−
0

respectively. As a result, max(P+
t , P

−
t) is a p-value under H i→j

0 .

155

Now, we can see that the following is true:

P i→j
t = 2min(max(P+

t (1), P
−
t (1)),

max(P+
t (−1), P−t (−1))).

Since taking double the minimum of any two p-values is still a valid p-value by union bound, we
get our desired result that P i→j

t is a p-value.

Remark 18. Note the difference in qualifiers from the anytime guarantee, wherein correctness is
guaranteed across time t, and not only at some fixed point t in time.

5.10.2 Comparing fixed-time vs anytime test statistics

Experiment Configurations: In experiments, we fix b = 0.1, variance as 1 and interventional
value ν = 1. Each setting is run for 20 trials to evaluate the mean and standard deviation.

We plot two metrics: (1) the mis-coverage rate (number of trials wherein the test statistic re-
turns at least one falsely oriented edge) (2) the number of oriented edges (indeed an uninformative
test that never rejects can trivially achieve 0 miscoverage rate).

To assess the guarantee of anytime approaches across a number of settings, we have the
following experiments:

• Figures 5.3 and 5.5: Varying the number of interventional samples {100, 500, 1000, 5000, 10000}
(fixing k = 0.2) in ER graphs with number of nodes ∈ {10, 20, 30}, α ∈ {0.1, 0.2} and
p = 0.3.

• Figures 5.4 and 5.6: Varying the number of interventional samples {100, 500, 1000, 5000, 10000}
(fixing k = 0.2) in ER graphs with number of nodes ∈ {10, 20, 30}, α ∈ {0.1, 0.2} and
p = 0.5.

• Figures 5.7 to 5.10: Varying the number of interventional samples {100, 500, 1000, 5000, 10000}
(fixing k = 0.2) in tree graphs with number of nodes ∈ {10, 20, 50, 100} and α ∈ {0.1, 0.2}.

• Figures 5.11 and 5.12: Varying edge causal strength k ∈ {0.1, 0.2, 1, 2, 10} (fixing number
of samples at 1000) in ER graphs (n, p) ∈ {10, 20, 30} × (0.3, 0.5) and α = 0.2.

In all these settings, in terms of miscoverage, we find that the anytime approach has controlled
error rate below that of α (in green), although the miscoverage rate is not always 0. On the other
hand, the fixed time approach can attain sizable error rate and introduce spuriously oriented edges.
This trend seems consistent across two classes of graphs (ER and trees), as well as in ER graphs
with varying SCM parameters edge strength k.

In terms of number of orientations, we observe that the number of orientations increases with
sample complexity (as expected). However, the anytime test statistic orients conservatively at a
(much) lower pace than does the fixed time approach. In exchange, this provides the error control
and guarantees a high probability of only correct orientations.

156

5.10.3 Understanding the effectiveness of combining test statistics
To examine the effectiveness of propagating evidence from test statistics, we have the following
experiment:

• Figure 5.13: Varying the number of interventional samples {100, 500, 1000, 5000, 10000}
(fixing k = 0.2) and plot the number of oriented edges in a chain graph with the number of
nodes in {5, 10, 20, 50} and edges have alternating causal strength in {0.1, 10}.

Chain graphs are an example where edges may benefit from propagation effects. We set up
the causal strength to vary such that some edge orientations (those with low edge strength) will
benefit from other edges (those with high edge strength). In the experiment, we compare the
number of oriented edges at a fixed sample size by base e-values (as in Section 5.3) against the
combined e-values (as in Section 5.4). Note that we also check for miscoverage rate to ensure
correctness (in order to have a fair comparison); we do find that the miscoverage rate under both
are 0.

In the plot, we observe that combining test statistics may help. It orients more edges than base
e-values, when one has a sizable number of samples. Interestingly, we find that the base e-values
is better in lower sample regimes. Moreover, the number of data points after which the combined
test statistic is more effective increases with graph size.

We believe that this happens, because the combined test statistic, while having higher mean,
also has higher variance. Thus, it is most effective when there are more samples. Overall, this
suggests we should favor base e-values in smaller data and/or graph regimes, and combined test
statistics in big data/graph regimes. The lighter-weight base e-values can be surprisingly effective.
Verily, an interesting future work would be to develop testing methods that adapt the test statistic
to the (unknown) SCM parameters and the test parameters (e.g. number of budgeted samples).

157

Figure 5.3: Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.2, p = 0.3. First Row: (n, p) = (10, 0.3); Second Row: (n, p) = (20, 0.3); Third Row:
(n, p) = (30, 0.3).

158

Figure 5.4: Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.2, p = 0.5. First Row: (n, p) = (10, 0.5); Second Row: (n, p) = (20, 0.5); Third Row:
(n, p) = (30, 0.5).

159

Figure 5.5: Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.1, p = 0.3. First Row: (n, p) = (10, 0.3); Second Row: (n, p) = (20, 0.3); Third Row:
(n, p) = (30, 0.3).

160

Figure 5.6: Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with
α = 0.1, p = 0.5. First Row: (n, p) = (10, 0.5); Second Row: (n, p) = (20, 0.5); Third Row:
(n, p) = (30, 0.5).

161

Figure 5.7: Plotting miscoverage rate and number of orientations in tree graphs with α = 0.2, n ∈
{10, 20}. First Row: n = 10; Second Row: n = 20.

162

Figure 5.8: Plotting miscoverage rate and number of orientations in tree graphs with α = 0.2, n ∈
{50, 100}. First Row: n = 50; Second Row: n = 100.

163

Figure 5.9: Plotting miscoverage rate and number of orientations in tree graphs with α = 0.1, n ∈
{10, 20}. First Row: n = 10; Second Row: n = 20.

164

Figure 5.10: Plotting miscoverage rate and number of orientations in tree graphs with α =
0.1, n ∈ {50, 100}. First Row: n = 50; Second Row: n = 100.

165

Figure 5.11: Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with
α = 0.2, p = 0.3. First Row: n = 10 (left) and n = 20 (right); Second Row: n = 30.

166

Figure 5.12: Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with
α = 0.2, p = 0.5. First Row: n = 10 (left) and n = 20 (right); Second Row: n = 30.

167

Figure 5.13: Comparing number of orientations of combined e-values vs those of base e-values in
chain graphs with α = 0.2. First Row: n = 10 (left) and n = 20 (right); Second Row: n = 30
(left) and n = 50 (right).

168

5.10.4 Evaluating Derived Upper Bounds on Stopping Time useful for
Robust Testing

In Subsection 5.3.4, we derive a set of upper bounds on the number of samples needed for testing.
One important implication is that this allows one to have an upper bound estimate on the amount
of interventional data that one needs to collect to do the test. The other implication of this, useful
for robust testing, is that one can use the non-conclusiveness of the test after this number of
samples to detect spurious, non-edges.

In this subsection, we empirically verify this claim by evaluating the sample complexity
needed for testing the orientation of some edge. Please refer to Figure 5.14 for a plot of the results.

• Firstly, we verify that with high probability, the bounds derived in Proposition 17 holds.
In the experiments, we vary one parameter and fix the rest, checking the number of times
the number of samples needed for testing is below the derived upper bound, out of 100 trials
for each setting.
We vary α = {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1}, while setting µi(j) = 1.0, σ =
1.0, b = 0.1, β = 0.1.
We vary σ = {1e-6, 1e-3, 1e-2, 1e-1, 1, 10}, while setting α = 0.01, µi(j) = 1.0, b =
0.1, β = 0.1.
We vary µi(j) = {5e-1, 1, 5, 10, 100, 1000}, while setting α = 0.01, σ = 1.0, b = 0.1, β =
0.1.

• Secondly, we verify that when there is no edge between the two edges, then with high
probability the test statistic does not reject before the derived number of samples, thus
allowing us to use the contrapositive of Proposition 17 to detect spuriously oriented edges.
In this set of experiments, we use the same parameter setting as above, with the only
difference that there is no causal effect from node i to node j. We check the number of
times the number of samples needed for test conclusion is below the derived upper bound,
out of 100 trials for each setting.
We vary α = {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1}, while setting σ = 1.0, b = 0.1, β =
0.1. Here, µi(j) = 0.0.
We vary σ = {1e-6, 1e-3, 1e-2, 1e-1, 1, 10}, while setting α = 0.01, b = 0.1, β = 0.1. Here,
µi(j) = 0.0.

169

Figure 5.14: (Left Column) the fraction of 100 trials where the needed number of samples to
conclude the test is below that of the derived upper bound (Right Column) the fraction of 100
trials where the needed number of sample complexity is below that of the derived upper bound,
when there is no edge between the two nodes (i.e. µj(i) = 0).

170

5.11 Multi-constraint Bandit Optimization

Causal verification is a well-known and important task in causal discovery [70, 232, 266]. Besides
having practical applications (e.g. verifying a scientific conjecture corresponding to a causal graph
structure), it has the theoretical benefit of understanding the lower bound that underlies any causal
discovery algorithm.

The key challenge that arises in this problem is that an intervention policy needs to choose
nodes It in order to grow the test statistic of all n edges simultaneously. Moreover, it only needs
to optimize each test statistic only to the extent that the test statistic exceeds a threshold. In this
section, we develop a novel, multi-constraint bandit algorithm needed for verification. Our key
observation is that the causal verification setting reduces to the dual of the Bandits with Knapsack
(BwK) setup [23].

To this end, we develop Algorithm 14 that attains provable guarantees in the multi-constraint
bandit setting, and applies immediately to the causal verification setting using the reduction. As
observed in [23], OPT, the expected total number of interventions needed by the optimal dynamic
policy is difficult to characterize. In fact, even evaluating the expected number of interventions
needed by a given time invariant, intervention policy is difficult. This is due to the difficulty
of characterizing the random stopping time τ , when every test statistic exceeds the threshold.
Thus, an algorithmic approach is taken where the proposed algorithm is shown to attain provable
guarantees with respect to OPT.

5.11.1 Problem Statement

Setup: An instance of multi-constraint bandit optimization is parameterized by n arms, m
constraints (henceforth “resources”), gain vector distributions Di for arm i and budget b:

• There are n arms and m resources.
• Time proceeds in T rounds, where T is a finite time horizon given as input into the algorithm.
• Each round t, the learning algorithm picks some arm xt ∈ X .
• Pulling arm x incurs deterministic cost cx.
• The algorithm receives a gain vector, Rxt ∈ [0,M]m where Rxt ∼ Dxt (some known

distribution).
• There is a threshold b ∈ R+ on the total gain of each resource.
• The interaction terminates the first time

∑τ
t=1Rxt ≥ b · 1.

• The goal of the algorithm is to minimize the total expected cost
∑τ

i=1 cxi .

5.11.2 Reducing causal verification to multi-constraint bandits

We show that the causal verification problem corresponds to an instance of the multi-constraint
bandit optimization problem. This algorithm is needed as our choice of intervention affects the
e-processes of all edges.

171

We observe that bandit optimization is possible, because for any j → i, the test statistic grows
additively in the log of e-values:

E∗j→it ≥ 1/α⇔ ∀P ∈ P(T j→i), E∗Pt ≥ 1/α

⇔ ∀P ∈ P(T j→i),
∑
i′∈V

logE∗j→it (i′) ≥ log(1/α)

⇔ ∀P ∈ P(T j→i),
t∑

k=1

logS∗k(P, Ik) ≥ log(1/α)

Reduction: Thus, given a causal verification instance, we may reduce to a multi-constraint
bandit instance as follows:

1. Arms: define n = |V | arms, each corresponding to a node intervention in the graph.
Set ci = 1 for all i ∈ V , as we only care about the total number of interventions. However,
we note that our algorithm can handle differing node intervention costs.

2. Resources: define a resource corresponding to each (P, i′) pair each path P ∈ T j→i and
intervention i′ ∈ V .
Accordingly, define the gain of pulling arm i′ ∈ V (i.e. intervening on node i′) as a random
draw of logS∗(P, i′).

3. Define budget b = log 1/α.

In the causal verification setting, node intervention cost is set as ci = 1 for all i ∈ V , since the
objective of interest is the total number of interventions. Note however that Algorithm 14 can
handle varying node intervention costs.

In the analysis below, we assume that Xi is a bounded r.v. with b, ν such that logS∗k(P, I)
is positive (as arm rewards are usually assumed to be positive in bandits literature). While this
represents a subset of all SCM instances, as we will see, the query strategy design already results
in solving an involved and novel multi-constraint bandit problem.

Finally, we note that one needs to manually specified the horizon T as in the multi-constraint
bandit setting. This is a common assumption in BwK literature [23], which has proven to be
difficult to remove. T in the causal verification setting may be viewed as the maximum number of
experiments a scientist can run, or a known upper bound on the number of experiments needed to
verify the graph. Verily, an exciting future direction is understanding how to remove the need to
specify T , and develop a

5.11.3 Algorithm Guarantee:

The goal is to compete with the optimal dynamic policy given all the latent information. That is,
OPT is the expected total number of steps of the optimal dynamic policy, given foreknowledge of
the distribution of outcome vectors.

Since OPT is difficult to analyze, consider the fractional relaxation of this problem in which
the number of rounds in which a given arm is selected (and also the total number of rounds) can

172

be fractional, and the reward and resource consumption per unit time are deterministically equal
to the corresponding expected values in the original instance.

min
k1,...,kn

c1k1 + ...+ cnkn

s.t.
n∑
j=1

rjiki ≥ b for each resource i ∈ [m]

ki ≥ 0

where ki is the the fractional relaxation for the number of rounds in which a given arm i is
selected.

This is a bounded LP, because
∑n

i=1 ki ≤ T by definition. The optimal value of this LP is
denoted by OPTLP. We may construct the dual program:

max
v1,...,vm

b(v1 + ...+ vm)

s.t.
m∑
i=1

rjivi ≤ cj for each arm j ∈ [n]

vj ≥ 0

The dual variables vi can be interpreted as a unit gain for the corresponding resource i.
Lemma 38. OPTLP is a lower bound on the value of the optimal dynamic policy: OPTLP ≤
OPT.

Proof. Let v∗ be the optimal solution to the dual program. We note that by strong duality,
b
∑m

i=1 v
∗
i = OPTLP =

∑n
j=1 cik

∗
i .

Let Zt denote the potential function: sum of costs incurred in optimal dynamic policy, plus
total gain of the remaining resource endowment after round t.

At the start, the total gain of the remaining (all the) resource endowment is Z0 = b
∑m

i=1 v
∗
i .

We have that Zt = Zt−1 + cxit −
∑m

i=1 rxtivi from arm pull xt at time t.
From dual feasibility, we have that cj −

∑m
i=1 rjivi ≤ 0. Then, it follows that the stochastic

process Z0, Z1, ..., ZT is a submartingale.
Let τ be the stopping time of the optimal dynamic algorithm, i.e. the total number of rounds.
Thus, Zτ−1 equals the algorithm’s total cost, plus the gain of the remaining (non-negative)

resource supply at the start of round τ .
By Doob’s optional stopping theorem, we have that Z0 ≤ E[Zτ−1] ≤ OPT.

Let us REWtot =
∑τ

t=1 ct.
The algorithmic approach will make use of dual vectors, computed as follows.
Learning the dual variable: We use the multiplicative weights update method to learn the

optimal dual vector. This method raises the cost of a resource exponentially as it is consumed,
which ensures that heavily demanded resources become costly, and thereby promotes balanced
resource consumption.

173

Algorithm 16
1: In the first n rounds, pull each arm once
2: For each arm x, define known expected gain vector Rx ∈ [0,M]m

3: v1 = 1 ∈ [0, 1]m ▷ vt ∈ [0, 1]m is the round-t estimate of the optimal solution to the dual v∗

4: Set ϵ =
√

M lnm
b+M

5: for rounds t = n+ 1, ..., τ do
6: for arm x ∈ X do
7: Set expected gain gx = Rx · vt
8: Pull arm x = xt ∈ X that maximizes gx/cx
9: Observe realized reward for each resource rx ∈ [0,M]

10: Update estimated unit gain for each resource i with normalized gain rx(i)/M : ▷
Cost-based MWU

vt+1(i) = vt(i)(1− ϵ)ℓ, ℓ = rx(i)/M

Scaled-Hedge: This update scheme is such that for any τ and asequence of vectors π1, ..., πτ ∈
[0,M]m, feed in normalized π1/M, ..., πτ/M vectors into the hedge algorithm and obtain guaran-
tee:

∀y ∈ ∆[m],
τ∑
t=1

yTt πt ≤ (1 + ϵ)
τ∑
t=1

yTπt +
M lnm

ϵ

5.11.4 Algorithm Analysis under Known Arm Means

Let R̂t ∈ [0,M]m×n be the actual gain matrix for round t. The (i, x) entry is the realized gain of
resource i in round t if arm x were chosen in this round.

Suppose it holds with probability at least 1− 1/T that the confidence interval for every latent
parameter, in every round of execution, contains the true value of that latent parameter. We call
this high-probability event a “clean execution”.

The regret guarantee will hold almost surely assuming that a clean execution takes place. The
regret can be at most T ·M when a clean execution does not take place, and since this event has
probability at most 1/T it contributes only O(M) to the regret. We will henceforth assume a
clean execution.
Claim 2. The Algorithm total cost is such that:

REWtot−OPTLP ≤

Õ(M
b

+

√
(b+M)M

b

)
OPTLP + nM

+Õ(1

b

)
OPTLP∥

τ∑
t=n+1

Etzt∥∞

where Et = R− R̂t under Algorithm 14.

Proof. Let k∗ be the optimal solution to the LP-Primal with OPTLP =
∑n

j=1 cjk
∗
j . For any

realized gains by the algorithm policy, we have the following analysis.

174

Let ŷ = ei, where resource i is (one of) the last resources, whose gain exceeds b:

ŷT

τ−1∑
t=1

R̂tzt

 ≤ b⇒ ŷT

 τ−1∑
t=n+1

R̂tzt

 ≤ b

Let the total cost after exploration be REW =
∑τ

t=n+1 ct and define:

ȳ =
1

REW

τ−1∑
t=n+1

ctyt

Under Algorithm 14, we have at time t, by our choice of xt, the corresponding zt must be
such that:

zt ∈ argmax
z∈∆(X)

yTt Rz

cT z

b ≤ ȳTRk∗ (from primal feasibility, Rk∗ ≥ b1)

=
1

REW

τ−1∑
t=n+1

cty
T
t Rk

∗ (plug in definition of ȳ)

=
cTk∗

REW

τ−1∑
t=n+1

cty
T
t R

k∗

cTk∗

≤ OPTLP

REW

τ−1∑
t=n+1

yTt Rzt (since yTt Rzt
cT zt

≥ yTt Rk
∗

cT k∗
)

≤ min
y

OPTLP

REW

(1 + ϵ)
τ−1∑
t=n+1

yTRzt +M lnm/ϵ


(since this holds for all y ∈ ∆[m] using hedge)

< (1 + ϵ)
OPTLP

REW
min
y

yT τ−1∑
t=n+1

R̂tzt + yT
τ−1∑
t=n+1

Etzt +M lnm/ϵ

 (pull out (1 + ϵ))

≤ (1 + ϵ)
OPTLP

REW

ŷT τ−1∑
t=n+1

R̂tzt + ŷT
τ−1∑
t=n+1

Etzt +M lnm/ϵ

 (choose y = ŷ)

≤ (1 + ϵ)
OPTLP

REW

b+ ŷT
τ−1∑
t=n+1

Etzt +M lnm/ϵ

 (since ŷT
(∑τ−1

t=n+1 R̂tzt

)
≤ b)

From this we get that by setting ϵ =
√

M lnm
b+M

:

175

REW ≤ OPTLP

(1 + ϵ) +
1 + ϵ

b

ŷT τ−1∑
t=n+1

Etzt

+
1 + ϵ

b

M lnm

ϵ


⇔ REW −OPTLP ≤ OPTLP

ϵ+ 1 + ϵ

b

M lnm

ϵ
+

1 + ϵ

b

ŷT τ−1∑
t=n+1

Etzt




⇔ REWtot −OPTLP ≤
(
ϵ+

1 + ϵ

b

M lnm

ϵ

)
OPTLP +

n∑
t=1

ct +
1 + ϵ

b
OPTLP

ŷT τ−1∑
t=n+1

Etzt


⇔ REWtot −OPTLP ≤

(√
M lnm

b+M
+
M lnm

b
+

√
(b+M)M lnm

b

)
OPTLP

+ nM +
1 + ϵ

b
OPTLP

ŷT τ−1∑
t=n+1

Etzt


⇔ REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + nM + Õ

(
1

b

)
OPTLP

ŷT τ−1∑
t=n+1

Etzt



Remark 19. This roughly leads to a M factor larger than when M = 1, which should yield a

O(
√

lnm
b

+ lnm
b
) multiplier.

5.11.4.1 Known R Concentration

For Error Analysis, it remains to bound the error term ∥
∑τ

t=n+1Etzt∥∞.
In this case, we observe that each entry of Et is a mean-zero random variable bounded in

[0,M]. We may then use Hoeffding and union bound across all m resources to get that:

Pr

∥ τ∑
t=n+1

Etzt∥∞ ≤ (τ − n− 1)κ

 ≥ 1−m ·
(
2 exp(−2(τ − n− 1)κ2/M2)

)
Setting 1/T = m ·

(
2 exp(−2(τ − n− 1)κ2/M2)

)
, we obtain that:

κ =

√
M2 log 2mT

2(τ − n− 1)
⇒ (τ − n− 1)κ = O(M

√
T log 2mT).

176

5.11.4.2 Regret Guarantee

Theorem 25. Algorithm 14 with parameter ϵ =
√

M lnm
b+M

attains total regret:

REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(
M
√
T

b
+ nM

)
Proof. We have that:

REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + nM + Õ

(
1

b

)ŷT τ−1∑
t=n+1

Etzt


≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(
∥
∑τ

t=n+1Etzt∥∞
b

+Mn

)

≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(
M
√
T

b
+Mn

)

Remark 20. The regret dependence on the number of resources m is O(lnm).
We note that Theorem 23 follows from that OPTLP ≤ OPT.

5.12 Worked through Examples

We work out in close form the test statistic of simple graphs to illustrate our test statistic construc-
tion and illustrate how it draws on power from its implications. Having already seen the chain
graph example, we turn to the triangle example.

Three-node Triangle Graph: Consider testing X1 → X3 in triangle graph X1 −X2 −X3.
Since X3 → X2 ∧X2 → X1 ⇒ X3 → X1, ∴ X1 → X3 ⇒ X2 → X3 ∨X2 → X1.
We have that T 1→3 = (X2 → X3 ∧X1 → X3) ∨ (X1 → X2 ∧X1 → X3).
For path P = X2 → X3 ∧X1 → X3, we have that:

EP
t = exp

(
logE1→3

t (1) + logE2→3
t (2) + max(logE1→3

t (3), logE2→3
t (3))− 1/2(log(2|T3(t)| − 2))

)
For path P ′ = X1 → X2 ∧X1 → X3, we have that:

EP ′

t = exp
(
max(logE1→2

t (1), logE1→3
t (1))− 1/2(log(2|T1(t)| − 2)) + logE1→2

t (2) + logE1→3
t (3)

)
Thus we see that, asymptotically (ignoring log factors in t),E1→3

t = min(EP
t , E

P ′
t) has strictly

higher power. This is because both EP
t and EP ′

t have higher power the single-edge e-process
corresponding E1→3

t (1)E1→3
t (3) = exp(logE1→3

t (1) + logE1→3
t (3)).

Here, we can also observe that there are two possible updates when node X3 is intervened
upon, which corresponds to a choice when optimizing the test statistic. This naturally later
motivates the use of bandit optimization.

177

Figure 5.15: Consider testing X1 → X2 in the n-node chain graph X1 − X2 − ... − Xn. This
is a graph, where the propagation of edge orientation is crucial for minimizing interventional
complexity. We have that X1 → X2 ⇒ Xi → Xi+1, with which we can derive T 1→2 and E1→2

t

explicitly. We note that, asymptotically (ignoring log factors in t), E1→2
t has much higher power

than the e-process of exp(logE1→2
t (1) + logE1→2

t (2)) (from Section 5.3), under non-expanded
tree (1→ 2). E1→2

t leverages evidence from for example hypothesis X2 → X3 (blue).

Remark 21. In Figure 5.15, another interesting observation of note is that, due to the combination
of evidence, we need not reject any of Xi → Xi+1 to reject X1 → X2. The cumulative evidence
across all n− 1 edges may be enough for E1→2

t to exceed 1/α, and lead to the rejection of the
null. This is despite the data being inconclusive for any of the downstream edges (i.e. Ei→i+1

t

need not exceed 1/α).

178

Chapter 6

Strategic Auditing

6.1 Introduction

With the growing usage of artificial intelligence across industries, governance efforts are increas-
ingly ramping up. A key challenge in regulatory efforts is the problem of scalability. Even for
well-resourced countries like Norway, which is a pioneer in AI governance, regulators are only
able to monitor and engage with a “small fraction of the companies” [198]. This growing issue
calls for a better understanding of efficient algorithms that can audit machine learning (ML)
models. We are particularly interested in the strategic auditing case, where the company whose
model is under audit is aware of the auditing strategy. Towards understanding this process, we
begin by formalizing the problem of auditing.

Problem Formulation: A regulatory institution is interested in auditing an unknown model
h∗ : X → {−1, 1} held by a company (e.g. a lending company in the finance sector), where X
is the feature space (e.g. of all information supplied by users). We assume that the regulatory
institution only has knowledge of the hypothesis classH where h∗ comes from (e.g. the family of
linear classifiers), and it would like to estimate µ(h∗) for a function µ that measures the model
property of interest. To this end, the institution is allowed to send black-box queries to the model
h∗, i.e. send the company a query example x and receive h∗(x). The regulatory institution’s goal
is to efficiently estimate µ(h∗) to within an error of at most ϵ > 0.

We measure an algorithm’s efficiency in terms of both its query complexity and computational
complexity. Having an auditing algorithm with low query and computational complexity naturally
helps to address the scalability challenge: greater efficiency means that each audit may be
processed faster and more audits may be processed at a time.

Property of Interest: While which properties µ to assess is still heavily debated by regulators,
we initiate the study of algorithms that audit fairness, a mainstay in regulatory efforts. In particular,
we will take µ to be Demographic Parity (DP)1: given distribution DX over X × {0, 1} (where
feature x and sensitive attribute xA are jointly drawn from), µDX (h) = Pr(x,xA)∼DX (h(x) =
1|xA = 1) − Pr(x,xA)∼DX (h(x) = 1|xA = 0). For brevity, when it is clear from context, we
abbreviate PrDX , µDX as Pr, µ, respectively. DP measures the degree of disparate treatment of
model h on the two sub-populations x | xA = 0 and x | xA = 1, which we assume are non-

1While fairness is the focus of our work, our algorithm may be adapted to any µ which is a function of X and h∗.

179

negligible: p := min(Pr(xA = 1),Pr(xA = 0)) = Ω(1). Achieving a small Demographic Parity
may be thought of as a stronger version of the US Equal Employment Opportunity Commission’s
“four-fifths rule”.2

To focus on query complexity, we will abstract away the difficulty of evaluating µ by assuming
that DX is known, which means that for any h we may evaluate µ(h) to arbitrary precision; for
instance, this may be achieved with the availability of an arbitrarily large number of (unlabeled)
samples randomly drawn from x | xA = 0 and x | xA = 1. Our main challenge is that we do not
know h∗ and only want to query h∗ insofar as to be able to accurately estimate µ(h∗).

Guarantees of the Audit: In this chapter, we investigate algorithms that can provide two
types of guarantees. The first is the natural, direct estimation accuracy: the estimate returned by
the algorithm should be within ϵ of µ(h∗).

The second is that of manipulation-proof (MP) estimation. Audits can be very consequential
to companies as they may be subject to hefty penalties if caught with violations. Not surprisingly,
there have been strategic attempts in the past to avoid being caught with violations [e.g. 140]
by “gaming” the audit. We formulate our notion of manipulation-proofness in light of one way
the audit may be strategically gamed, which we now describe. Note that all the auditor knows
about the model used by the company is that it is consistent with the queried labels in the audit.
So, while our algorithm may have estimated µ(h∗) accurately during audit-time, nothing stops
the company from changing its model post-audit from h∗ to a different model hnew ∈ H (e.g to
improve profit), so long as hnew is still consistent with the queries seen during the audit. With
this, we also look to understand: given this post-hoc possibility of manipulation, can we devise an
algorithm that nonetheless ensures the algorithm’s estimate is within ϵ of µ(hnew)?

Indeed, a robust set of audit queries would serve as a certificate that no matter which model
the company changes to after the audit, its µ-estimation would remain accurate. Given a set of
classifiers V , a classifier h, and a unlabeled dataset S, define the version space [207] induced by S
to be V (h, S) :=

{
h′ ∈ V : h′(S) = h(S)

}
. An auditing algorithm is ϵ-manipulation-proof if, for

any h∗, it outputs a set of queries S and estimate µ̂ that guarantees that maxh∈H(h∗,S)

∣∣µ(h)− µ̂∣∣ ≤
ϵ.

Baseline: i.i.d Sampling: One natural baseline that comes to mind for the direct estimation is
i.i.d sampling. We sample O(1/ϵ2) examples i.i.d from the distribution x | xA = i for i ∈ {0, 1},
query h∗ on these examples and take the average to obtain an estimate of Pr(h∗(x) = +1 | xA = i).
Finally, we take the difference of these two estimates as our final DP estimate. By Hoeffding’s
Inequality, with high probability, this estimate is ϵ-accurate, and this estimation procedure makes
O(1/ϵ2) queries.

However, i.i.d sampling is not necessarily MP. To see an example, let there be 2n points in
group xA = 1 with n = 1/ϵ2 that are shattered byH andDX is uniform over these points. Suppose
that all points in group xA = 0 are labeled the same: PrDX (h(x) = 1|xA = 0) = 0,∀h ∈ H.
Then, µ-estimation reduces to estimating the proportion of positives in group xA = 1. i.i.d
sampling will randomly choose n of these data points to see, and it will produce an ϵ-accurate
estimate of µ(h∗). However, we do not see the other n points. Since the 2n points are shattered
byH, after the queried points are determined, we see that the company can increase or decrease

2The “selection rate for any race, sex, or ethnic group [must be at least] four-fifths (4/5) (or eighty percent) of the
rate for the group with the highest rate.”

180

DP by up to 1/2 by switching to a different model.
To perform both direct and MP estimation, it seems promising then to examine algorithms

that make use of non-iid sampling. Moreover, for MP, we observe that the auditing algorithm
should leverage knowledge of the hypothesis class as well, which i.i.d sampling is agnostic to.

Baseline: Active Learning: PAC active learning [135] (where PAC stands for Probably
Approximately Correct [282]) algorithms are a set of algorithms that can achieve both direct and
MP estimation accuracy. PAC active learning algorithms guarantee that, with high probability,
ĥ in the resultant version space is such that P(ĥ(x) ̸= h∗(x)) ≤ pϵ = O(ϵ). With this, we have∣∣∣µ(ĥ)− µ(h∗)∣∣∣ ≤ ϵ (see Lemma 41 in Appendix 6.7 for a formal proof).

To mention a setting where learning is favored over i.i.d sampling, learning homogeneous
linear classifiers under certain well-behaved unlabeled data distributions requires onlyO(d log 1/ϵ)
queries [e.g. 30, 82] and would thus be far more efficient than O(1/ϵ2) for low-dimensional
learning settings with high auditing precision requirements.

Still, as our goal is only to estimate the µ values of the induced version space, it is unclear if
we always need to go as far as to learn the model itself. In this chapter, we investigate whether,
and if so when, it may be possible to design adaptive approaches to efficiently directly and MP
estimate µ(h∗) using knowledge ofH.

To the best of our knowledge, we are the first to theoretically investigate active approaches
for direct and MP estimation of µ(h∗). Our first exploration of active fairness estimation seeks to
provide a more complete picture of the theory of auditing machine learning models. Our hope is
that our theoretical results can pave the way for subsequent development of practical and efficient
algorithms.

Our Contributions: Our main contributions are on two fronts, MP and direct estimation of
µ(h∗):

• For the newly introduced notion of manipulation-proofness, we identify a statistically
optimal, but computationally intractable deterministic algorithm. We gain insights into its
query complexity through comparisons to the two baselines, i.i.d sampling and PAC active
learning.

• In light of the computational intractability of the optimal deterministic algorithm, we design
a randomized algorithm that enjoys oracle efficiency [e.g. 84]: it has an efficient imple-
mentation given access to a mistake-bounded online learning oracle, and an constrained
empirical risk minimization oracle for the hypothesis class H. Furthermore, its query
performance matches that of the optimal deterministic algorithm up to polylog|H| factors.

• Finally, on the direct estimation front, we obtain bounds on information-theoretic query
complexity. We establish that MP estimation may be more expensive than direct estimation,
thus highlighting the need to develop separate algorithms for the two guarantees. Then,
we establish the usefulness of randomization in algorithm design and develop an optimal,
randomized algorithm for linear classification under Gaussian subpopulations. Finally, to
shed insight on auditing in general settings, we develop distribution-free lower bounds
for direction estimation under general VC classes. This lower bound charts the query
complexity that any optimal randomized auditing algorithms must attain.

181

6.1.1 Additional Notations

We now introduce some additional useful notation used throughout the chapter. Let [m] de-
note {1, ...,m}. For an unlabeled dataset S, and two classifiers h, h′, we say h(S) = h′(S)
if for all x ∈ S, h(x) = h′(x). Given a set of classifiers V and a labeled dataset T , de-
fine V [T] :=

{
h ∈ V : ∀(x, y) ∈ T, h(x) = y

}
. Furthermore, denote by V y

x = V
[{

(x, y)
}]

for notational simplicity. Given a set of classifiers V and fairness measure µ, denote by
diamµ(V) := maxh,h′∈V µ(h)− µ(h′) the µ-diameter of V . Given a set of labeled examples T ,
denote by PrT (·) the probability over the uniform distribution on T ; given a classifier h, denote
by err(h, T) = PrT (h(x) ̸= y) the empirical error of h on T .

Throughout this chapter, we will consider active fairness auditing under the membership query
model, similar to membership query-based active learning [13]. Specifically, a deterministic
active auditing algorithm A with label budget N is formally defined as a collection of N + 1
(computable) functions f1, f2, . . . , fN , g such that:

1. For every i ∈ [N], fi : (X × Y)i−1 → X is the label querying function used at step i, that
takes into input the first (i − 1) labeled examples ⟨(x1, y1), . . . , (xi−1, yi−1)⟩ obtained so
far, and chooses the i-th example xi for label query.

2. g : (X × Y)N → R is the estimator function that takes into input all N labeled examples
⟨(x1, y1), . . . , (xN , yN)⟩ obtained throughout the interaction process, and outputs µ̂, the
estimate of µ(h∗).

When A interacts with a target classifier h, let the resultant queried unlabeled dataset be
SA,h = ⟨x1, . . . , xN⟩, and the final µ estimate be µ̂A,h.

Similar to deterministic algorithms, a randomized active auditing algorithm A with label
budget N and B bits of random seed is formally defined as a collection of N + 1 (computable)
functions f1, . . . , fN , g, where fi : (X ×Y)i−1×{0, 1}B → X and g : (X ×Y)N×{0, 1}B → R.
Note that each function now take as input a B-bit random seed; as a result, when A interacts with
a fixed h∗, its output µ̂ is now a random variable. Note also that under the above definition, a
randomized active auditing algorithm A that uses a fixed seed b may be viewed as a deterministic
active auditing algorithm Ab.

We will be comparing our algorithms’ query complexities with those of disagreement-
based active learning algorithms [75, 135]. Given a classifier h and r > 0, define B(h, r) ={
h′ ∈ H : PrDX

(
h′(x) ̸= h(x)

)
≤ r
}

as the disagreement ball centered at hwith radius r. Given

a set of classifiers V , define its disagreement region DIS(V) =
{
x ∈ X : ∃h, h′ ∈ V : h(x) ̸= h′(x)

}
.

For a hypothesis classH and an unlabeled data distribution DX , an important quantity that charac-
terizes the query complexity of disagreement-based active learning algorithm is the disagreement
coefficient θ(r), defined as

θ(r) = sup
h∈H,r′≥r

PrDX (x ∈ DIS(B(h, r′)))

r′
.

182

6.2 Related Work

Our work is most related to the following two lines of work, both of which are concerned with
estimating some property of a model without having to learn the model itself.

Sample-Efficient Optimal Loss Estimation: Dicker [93], Kong and Valiant [167] propose U-
statistics-based estimators that estimate the optimal population mean square error in d-dimensional
linear regression, with a sample complexity of O(

√
d) (much lower than O(d), the sample

complexity of learning optimal linear regressor). Kong and Valiant [167] also extend the results
to a well-specified logistic regression setting, where the goal is to estimate the optimal zero-one
loss. Our work is similar in focusing on the question of efficient µ(h∗) estimation without having
to learn h∗. Our work differs in focusing on fairness property instead of the optimal MSE or
zero-one loss. Moreover, our results apply to arbitraryH, and not just to linear models.

Interactive Verification: Goldwasser et al. [123] studies verification of whether a model
h’s loss is near-optimal with respect to a hypothesis class H and looks to understand when
verification is cheaper than learning. They prove that verification is cheaper than learning for
specific hypothesis classes and is just as expensive for other hypothesis classes. Again, our work
differs in focusing on a different property of the model, fairness.

Our algorithm also utilizes tools from active learning and machine teaching, which we review
below.

Active Learning and Teaching: The task of learning h∗ approximately through membership
queries has been well-studied [e.g. 13, 83, 131, 132, 138]. Our computationally efficient algorithm
for active fairness auditing is built upon the connection between active learning and machine
teaching [121], as first noted in Hanneke [132], Hegedűs [138]. To achieve computational
efficiency, our work builds on recent work on black-box teaching [85], which implicitly gives an
efficient procedure for computing an approximate-minimum specifying set; we adapt Dasgupta
et al. [85]’s algorithm to give a similar procedure for approximating the minimum specifying set
that specifies the µ value.

In the interest of space, please see discussion of additional related work in Appendix 6.5.

6.3 Manipulation-Proof Algorithms

6.3.1 Optimal Deterministic Algorithm
We begin our study of the MP estimation of µ(h∗) by identifying an optimal deterministic
algorithm based on dynamic programming. Inspired by a minimax analysis of exact active
learning with membership queries [131], we recursively define the following value function for
any version space V ⊆ H:

Cost(V) =

{
0, diamµ(V) ≤ 2ϵ

1 + minxmaxy Cost(V [(x, y)]), otherwise

Note that Cost(V) is similar to the minimax query complexity of exact active learning [131],
except that the induction base case is different – here the base case is diamµ(V) ≤ 2ϵ, which

183

Algorithm 17 Minimax optimal deterministic auditing
Require: Finite hypothesis classH, target error ϵ, fairness measure µ
Ensure: µ̂, an estimate of µ(h∗)

1: Let V ← H
2: while diamµ(V) > 2ϵ do
3: Query x ∈ argminxmaxy Cost (V

y
x), obtain label h∗(x)

4: V ← V (h∗, {x})
return 1

2

(
maxh∈V µ(h) + minh∈V µ(h)

)
implies that subject to h∗ ∈ V , we have identified µ(h∗) up to error ϵ. In contrast, in exact active
learning, Hanneke [131]’s induction base case is |V | = 1, where we identify h∗ through V .

The value function Cost also has a game-theoretic interpretation. Imagine that a learner plays
a multi-round game with an adversary. The learner makes sequential queries of examples to obtain
their labels, and the adversary reveals the labels of the examples, subject to the constraint that all
labeled examples shown agree with some classifier inH. The version space V encodes the state
of the game: it is the set of classifiers that agrees with all the labeled examples shown so far in
the game. The interaction between the learner and the adversary ends when all classifiers in V
has µ values 2ϵ-close to each other. The learner would like to minimize its total cost, which is
the number of rounds. Cost(V) can be viewed as the minimax-optimal future cost, subject to the
game’s current state being represented by version space V .

Based on the notion of Cost, we design an algorithm, Algorithm 17, that has a worst-case
label complexity at most Cost(H). Specifically, it maintains a version space V ⊂ H, initialized
to H (line 1). At every iteration, if the µ-diameter of V , diamµ(V) = maxh,h′∈V µ(h) − µ(h′),
is at most 2ϵ, then since µ(h∗) ∈ I = [minh∈V µ(h),maxh∈V µ(h)] returning the midpoint of I
gives us an ϵ-accurate estimate of µ(h∗) (line 4). Otherwise, Algorithm 17 makes a query by
choosing the x that minimizes the worst-case future value functions (line 3). After receiving
h∗(x), it updates its version space V (line 4). By construction, the interaction between the learner
and the labeler lasts for at most Cost(V) rounds, which gives the following theorem.
Theorem 26. If Algorithm 17 interacts with some h∗ ∈ H, then it outputs µ̂ such that

∣∣µ̂− µ(h∗)∣∣ ≤
ϵ, and queries at most Cost(H) labels.

By the minimax nature of Cost, we also show that among all deterministic algorithms,
Algorithm 17 has the optimal worst-case query complexity:
Theorem 27. If A is a deterministic algorithm with query budget N ≤ Cost(H)− 1, there exists
some h∗ ∈ H, such that µ̂, the output of A after querying h∗, satisfies

∣∣µ̂− µ(h∗)∣∣ > ϵ.
The proofs of Theorems 26 and 27 are deferred to Appendix 6.8.1.

6.3.1.1 Comparison to Baselines

To gain a better understanding of Cost(H), we relate it to the label complexity of the two baselines,
i.i.d sampling and active learning. To establish the comparison, we prove that we can derandomize
existing i.i.d sampling-based and active learning-based auditing algorithms with a small overhead
on label complexity.

184

Our first result is that the label complexity of Algorithm 17 is within a factor of O(ln |H|) of
the label complexity of i.i.d sampling.
Proposition 35. Cost(H) ≤ O

(
1
ϵ2
ln |H|

)
.

Our second result is that the label complexity of Algorithm 17 is always no worse than the
distribution-dependent label complexity of CAL [75, 135], a well-known PAC active learning
algorithm. We believe that similar bounds comparing Cost(H) to the complexity of generic active
learning algorithms can also be shown; these algorithms include the Splitting Algorithm [82] or
the confidence-based algorithm of Zhang and Chaudhuri [318], through suitable derandomization
procedures.
Proposition 36. Cost(H) ≤ O

(
θ(ϵ) · ln |H| · ln 1

ϵ

)
, where θ is the disagreement coefficient ofH

with respect to DX (recall Section 6.1.1 for its definition).

Proof sketch. We present Algorithm 18, which is a derandomized version of the Phased CAL
algorithm [142, Chapter 2]. To prove this proposition, using Theorem 27, it suffices to show
that Algorithm 18 has a deterministic label complexity bound of O

(
θ(ϵ) · ln |H| · ln 1

ϵ

)
. We only

present the main idea here, and defer a precise version of the proof to Appendix 6.8.3.
We first show that for every n, the optimization problem in line 7 is always feasible. To see

this, observe that if we draw Sn, a sample of size mn, drawn i.i.d from DX , we have:

1. By Bernstein’s inequality, with probability 1− 1
4
,

PrSn(x ∈ DIS(Vn)) ≤ 2PrDX (x ∈ DIS(Vn)) +
ln 8

mn

,

2. By Bernstein’s inequality and union bound over h, h′ ∈ H, we have with probability 1− 1
4
,

∀h, h′ ∈ H : PrS(h(x) ̸= h′(x)) = 0

=⇒ PrDX (h(x) ̸= h′(x)) ≤ 16 ln |H|
mn

.

By union bound, with nonzero probability, the above two condition hold simultaneously, showing
the feasibility of the optimization problem.

We then argue that for all n, Vn+1 ⊆ B(h∗, 16 ln |H|
mn

). This is because for each h ∈ Vn+1, h and
h∗ are both in Vn and therefore they agree on Sn \ Tn; on the other hand, h and h∗ agree on Tn
by the definition of of Vn+1. As a consequence, PrSn(h(x) ̸= h∗(x)) = 0, which implies that
PrDX (h(x) ̸= h∗(x)) ≤ 16 ln |H|

mn
. As a consequence, for all h ∈ VN+1, Pr(h(x) ̸= h∗(x)) ≤ pϵ,

which, combined with Lemma 41, implies that
∣∣µ(h)− µ(h∗)∣∣ ≤ ϵ.

Finally, to upper bound Algorithm 18’s label complexity:
N∑
n=1

|Tn| =
N∑
n=1

mn · (2 PrDX (x ∈ DIS(Vn)) +
ln 8

mn

)

≤
N∑
n=1

mn · (2θ(ϵ)
16 ln |H|
mn

+
ln 8

mn

)

≤O
(
θ(ϵ) · ln |H| · ln 1

ϵ

)
.

185

Algorithm 18 Derandomized Phased CAL for Auditing
Require: Hypothesis class H, target error ϵ, minority population proportion pminor, fairness

measure µ
Ensure: µ̂, an estimate of µ(h∗)

1: Let N = ⌈log2
16 ln |H|
pminorϵ

⌉
2: Let V1 ← H
3: for n = 1, . . . , N do
4: Let mn = 2n

5: Find (the lexicographically smallest) Sn ∈ Xmn such that:
6: PrSn(x ∈ DIS(Vn)) ≤ 2PrDX (x ∈ DIS(Vn)) + ln 8

mn

7: and ∀h, h′ ∈ H: if PrSn(h(x) ̸= h′(x)) = 0 then PrDX (h(x) ̸= h′(x)) ≤ 16 ln |H|
mn

8: Query h∗ for the labels of examples in Tn := Sn ∩ DIS(Vn)
9: Vn+1 ← Vn(h

∗, Tn)

10: return µ(h) for an arbitrary h ∈ VN+1

6.3.1.2 Computational Hardness of Implementing Algorithm 17

Although Algorithm 17 attains the optimal label complexity of deterministic algorithms, we
show in the following proposition that, under standard complexity-theoretic assumptions (NP ̸⊆
TIME(nO(log logn))), even approximating Cost(H) is computationally intractable.
Proposition 37. If there is an algorithm that can approximate Cost(H) to within 0.3 ln |H| factor
in poly(|H|, |X |, 1/ϵ) time, then NP ⊆ TIME(nO(log logn)).

We remark that the constant 0.3 can be improved to a constant arbitrarily smaller than 1.
The main insight behind this proposition is a connection between Cost(H) and optimal-depth
decision trees (see Theorem 30). Using the hardness of computing an approximately-optimal-
depth decision tree [173] and taking into account the structure of µ, we establish the intractability
of approximating Cost(H).

Owing to the intractability of Algorithm 17, in the next section, we turn to the design of
a computationally efficient algorithm whose label complexity nears that of Algorithm 17 (i.e.
Cost(H)).

6.3.2 Efficient Randomized Algorithm with Competitive Guarantees
We present our efficient algorithm in this section, which also serves as a first upper bound on the
statistical complexity of computationally tractable algorithms. Our algorithm, Algorithm 19, is
inspired by the exact active learning literature [132, 138], based on a connection between machine
teaching [121] and active learning.

Algorithm 19 takes into input two oracles, a mistake-bounded online learning oracle O and an
constrained empirical risk minimization (ERM) oracle C-ERM, defined below.
Definition 30. An online-learning oracle O is said to have a mistake bound of M for hypothesis
class H, if for any classifier h∗ ∈ H, and any sequence of examples x1, x2, . . ., at every round
t ∈ N, given historical examples (xs, h∗(xs))t−1s=1, outputs classifier ĥt such that

∑∞
t=1 I(ĥt(xt) ̸=

h∗(xt)) ≤M .

186

Well-known implementations of mistake bounded online learning oracle include the halving
algorithm and its efficient sampling-based approximations [43] as well as the Perceptron / Winnow
algorithm [40, 189].

For instance, ifO is the halving algorithm, a mistake bound of M = log2 |H|may be achieved.
We next define the constrained ERM oracle, which has been previously used in a number of

works on oracle-efficient active learning [84, 134, 145].
Definition 31. An constrained ERM oracle for hypothesis classH, C-ERM, is one that takes as in-
put labeled datasetsA andB, and outputs a classifier ĥ ∈ argmin

{
err(h,A) : h ∈ H, err(h,B) = 0

}
.

The high-level idea of Algorithm 19 is as follows: at every iteration, it uses the mistake-
bounded online learning oracle to generate some classifier ĥ (line 3); then, it aims to construct
a dataset T of small size, such that after querying h∗ for the labels of examples in T , one of the
following two happens: (1) ĥ disagrees with h∗ on some example in T ; (2) for all classifiers
in the version space V =

{
h ∈ H : ∀x ∈ T, h(x) = h∗(x)

}
, we have diamµ(V) ≤ 2ϵ. In case

(1), we have found a counterexample for ĥ, which can be fed to the online learning oracle to
learn a new model, and this can happen at most M times; in case (2), we are done: our queried
labeled examples ensure that our auditing estimate is ϵ-accurate, and satisfies manipulation-
proofness. Dataset T of such property is called a (µ, ϵ)-specifying set for ĥ, as formally defined in
Definition 34 in Appendix 6.8.5.

Another view of the µ-specifying set is a set T such that for all h, h′ with µ(h)− µ(h′) > 2ϵ,
there exists some x ∈ T , such that h(x) ̸= ĥ(x) or h′(x) ̸= ĥ(x). The requirements on T can be
viewed as a set cover problem, where the universe U is

{
(h, h′) ∈ H2 : µ(h)− µ(h′) > 2ϵ

}
, and

the set system is C = {Cx : x ∈ X}, where (h, h′) is in Cx if h(x) ̸= ĥ(x) or h′(x) ̸= ĥ(x).
This motivates us to design efficient set cover algorithms in this context. A key challenge of

applying standard offline set cover algorithms (such as the greedy set cover algorithm) to construct
approximate minimum (µ, ϵ)-specifying set is that we cannot afford to enumerate all elements in
the universe U as U can be exponential in size.

In face of this challenge, we draw inspiration from online set cover literature [9, 85] to
design an oracle-efficient algorithm that computes O(log |H| log |X |)-approximate minimum
(µ, ϵ)-specifying sets, which avoids enumeration over U .

Our key idea is to simulate an online set cover process. We build the cover set3 T iteratively,
starting from T = ∅ (line 5). At every inner iteration, we first try to find a pair (h1, h2) in U
not yet covered by the current T . As we shall see next, this step (line 9) can be implemented
efficiently given the constrained ERM oracle C-ERM. If such a pair (h1, h2) can be found, we
use the online set cover algorithm implicit in [85] to find a new example that covers this pair, add
it to T , and move onto the next iteration (lines 14 to 17). Otherwise, T has successfully covered
all the elements in U , in which case we break the inner loop (line 11).

To see how line 9 finds an uncovered pair in U , we note that it can be also written as:

(h1, h2) = argmax
h,h′∈H

{
µ(h)− µ(h′) : h(T) = h′(T) = ĥ(T)

}
Thus, if µ(h1)− µ(h2) > 2ϵ, then the returned pair (h1, h2) corresponds to a pair in universe U
that is not covered by T . Otherwise, by the optimality of (h1, h2), T covers all elements in U .

3When it is clear from context, we slightly abuse notations and say “x covers (h, h′)” if (h, h′) ∈ Cx.

187

Furthermore, we note that optimization problems (8) and (9) can be implemented with access
to C-ERM. We show this for program (8) and the reasoning for program (9) is analogous.
Observe that maximizing µ(h) from h ∈ H subject to constraint h(T) = ĥ(T) is equivalent
to minimizing (a weighted) empirical error of h ∈ H on dataset

{
(x,+1) : x ∈ X , xA = 0

}
∪{

(x,−1) : x ∈ X , xA = 1
}

, subject to h having zero error on {(x, ĥ(x)) : x ∈ T}.
We are now ready to present the label complexity guarantee of Algorithm 19.

Algorithm 19 Oracle-efficient Active Fairness Auditing
Require: Hypothesis classH, online learning oracleO with mistake bound M , constrained ERM

oracle C-ERM, target error ϵ, fairness measure µ.
Ensure: µ̂, an estimate of µ(h∗)

1: Initialize S ← ∅
2: while True do
3: ĥ← O(S)
4: Let T ← ∅
5: ▷ Computing an approximate minimum (µ, ϵ)-specifying set for ĥ
6: Initialize weights w(x) = 1

|X | and threshold τx ∼ Exponential(ln(|H|2M/δ)) ▷ random
initialization of thresholds

7: while true do
8: Use C-ERM to solve program: ▷ T is an (µ, ϵ)-specifying set for ĥ

h1 ← find maxh∈H µ(h), s.t. h(T) = ĥ(T)
9: Use C-ERM to solve program:

h2 ← find minh∈H µ(h), s.t. h(T) = ĥ(T)
10: if µ(h1)− µ(h2) ≤ 2ϵ then
11: break
12: else
13: ▷ Add examples to T to cover (h1, h2), using the online set cover algorithm

implicit in [85]
14: Determine ∆(h1, h2) = {x ∈ X : h1(x) ̸= ĥ(x) or h2(x) ̸= ĥ(x)}
15: while

∑
x∈∆(h1,h2)

w(x) ≤ 1 do
16: Double weights w(x) for all x in ∆(h1, h2)
17: Update T ←

{
x ∈ X : w(x) ≥ τx

}
18: Query h∗ on T
19: S ← S ∪ T
20: if ĥ(T) = h∗(T) then return 1

2
(µ(h1) + µ(h2))

Theorem 28. If the online learning oracle O makes a total of M mistakes, then with probability
1− δ, Algorithm 19 outputs µ̂ such that

∣∣µ̂− µ(h∗)∣∣ ≤ ϵ, with its number of label queries bounded
by:

O

(
Cost(H)M log

|H|M
δ

log |X |
)
.

The proof of Theorem 28 is deferred to Appendix 6.8.5. In a nutshell, it combines the following
observations. First, Algorithm 19 has at mostM outer iterations using the mistake bound guarantee

188

of oracle O. Second, for each ĥ in each inner iteration, its minimum (µ, ϵ)-specifying set has
size at most Cost(H); this is based on a nontrivial connection between the optimal deterministic
query complexity and (µ, ϵ)-extended teaching dimension (see Definition 36), which we present in
Lemma 44. Third, by the O

(
log |H|M

δ
log |X |

)
-approximation guarantee of the online set cover

algorithm implicit in [85], each outer iteration makes at most O
(
Cost(H) log |H|M

δ
log |X |

)
label

queries.
Remark 22. Via an argument similar to that in Proposition 37, we can show that, for computationally-
efficient algorithms, the approximation factor in constructing an approximately-minimum (µ, ϵ)-
specifying set for ĥ cannot be significantly improved to, say, 0.3 ln |H|.

6.4 Statistical Limits of Estimation

In this section, we turn to direct estimation, the second of the two main guarantees one may wish
to have for auditing. In particular, we focus on the statistical limits of direct estimation, which
involves designing an efficient auditing algorithm that can output µ̂ such that

∣∣µ̂− µ(h∗)∣∣ ≤ ϵ
with a small number of queries.

6.4.1 Separation between Estimation with and without Manipulation-proofness

To start, it is natural to contrast the guarantee of ϵ-manipulation-proofness against ϵ-direct
estimation accuracy. Indeed, if the two guarantees are one and the same, we may simply use the
MP estimation algorithms for direct estimation as well.

More specifically, we look to answer the question of whether achieving MP is strictly harder,
and we answer this question in the affirmative. Indeed, following simple example suggests that
MP estimation can sometimes require a much higher label complexity than direct estimation.
Example 1. Let ϵ = 1

4
and n ≫ 1. X = {0, 1, . . . , n}, and x | xA = 0 ∼ Uniform({0}), and

x | xA = 1 ∼ Uniform({1, . . . , n}). LetH =
{
h : X → {−1,+1} , h(0) = −1

}
.

First, as ϵ = 1
4
, the iid sampling baseline makes O(1) queries and ensures that it estimates

µ(h∗) with error at most ϵ with probability ≥ 0.9.
However, for manipulation-proof estimation, at least Ω(n) labels are needed to ensure that

the queried dataset S satisfies diamµ(H(h∗, S)) ≤ ϵ. Indeed, let h∗ ≡ −1. For any unlabeled
dataset S of size ≤ n/2, by the definition of H, there always exist h, h′ ∈ H(h∗, S), such that
for all x ∈ {1, . . . , n} \ S, h(x) = −1 and h′(x) = +1. As a result, µ(h) = 0

n
− 0

1
= 0, and

µ(h′) =
|{1,...,n}\S|

n
− 0

1
≥ 1

2
, which implies that diamµ(H(h∗, S)) ≥ 1

2
> ϵ.

6.4.2 Randomized Algorithms for Direct Estimation

The separation result above suggests that different algorithms may be needed if we are only
interested in efficient direct estimation. Motivated by our previous exploration, a first question to
answer is whether randomization should be a key ingredient in algorithm design. That is, can a

189

randomized algorithm achieve query complexity smaller than that of the optimal deterministic
algorithm? Through the example below, we answer this question in the affirmative.
Example 2. Same as the setting of Example 1; recall that iid sampling, a randomized algorithm,
estimates µ(h∗) with error at most ϵ = 1

4
with probability ≥ 0.9; it has a query complexity of

O(1).
In contrast, consider any deterministic algorithm A with label budget N ≤ n

2
; we consider its

interaction history with classifier h0 ≡ −1, which can be summarized by a sequence of unlabeled
examples S = ⟨x1, . . . , xN⟩. Now, consider an alternative classifier h1 such that h1(x) = −1 on
S ∪ {0}, but h1(x) = +1 on {1, . . . , n} \ S. By an inductive argument, it can be shown that the
interaction history betweenA and h1 is also S, which implies that when the underlying hypotheses
h∗ = h0 and h∗ = h1, A must output the same estimate µ̂ (see Lemma 40 in Appendix 6.6 for a
formal proof); however, µ(h0)−µ(h1) ≥ 1

2
, implying that under at least one of the two hypotheses,

we must have
∣∣µ̂− µ(h∗)∣∣ ≥ 1

4
= ϵ.

In summary, in this setting, a randomized algorithm has a query complexity of O(1), much
smaller than Ω(n), the optimal query complexity of deterministic algorithms.

6.4.3 Case Study: Non-homogeneous Linear Classifiers under Gaussian
Populations

In this subsection, we identify a practically-motivated setting where we are able to comprehen-
sively characterize the minimax (randomized) active fairness auditing query complexity up to
logarithmic factors. Specifically, we present a positive result in the form of an algorithm that has a
query complexity of Õ

(
min(d, 1

ϵ2
)
)

as well as a matching lower bound that shows any (possibly
randomized) algorithm must have a query complexity of Ω

(
min(d, 1

ϵ2
)
)
.

Example 3. Let d ≥ 2 andX = Rd. x | xA = 0 ∼ N(m0,Σ0), whereas x | xA = 1 ∼ N(m1,Σ1).
Let hypothesis class Hlin =

{
ha,b(x) := sign(⟨a, x⟩+ b) : a ∈ Rd, b ∈ R

}
be the class of non-

homogenenous linear classifiers.
Recall that i.i.d sampling has a label complexity of O

(
1
ϵ2

)
. On the other hand, through a

membership query-based active learning algorithm (Algorithm 22 in Appendix 6.9.2), we can
approximately estimate µ(h∗) (up to scaling) by doing d-binary searches, using active label
queries. This approach incurs a total label complexity of Õ(d). Choosing the better of these two
algorithms gives an active fairness auditing strategy of label complexity Õ

(
min(d, 1

ϵ2
)
)
.

We only present the main idea of Algorithm 22 here, with its full analysis deferred to
Appendix 6.9.2. Its core component is Algorithm 20 below, which label-efficiently estimates
γ(h∗) = Px∼N(0,Id)(h

∗(x) = +1), with black-box label queries to h∗(x) = sign(⟨a∗, x⟩ + b∗).

Algorithm 20 is based on the following insights. First, observe that γ(h∗) = Φ
(

b∗

∥a∗∥2

)
=: Φ(sr),

where Φ is the standard normal CDF, s := sign(b∗), and r :=
√

1∑d
i=1m

−2
i

, for mi := − b∗

a∗i
. On

the one hand, s can be easily obtained by querying h∗ on 0 (line 2). On the other hand, estimating
r can be reduced to estimating each mi. However, some mi’s can be unbounded, which makes
their estimation challenging. To get around this challenge, we prove the following lemma, which
shows that it suffices to accurately estimate those mi’s that are not unreasonably large (i.e. mi’s
for i ∈ S, defined below):

190

Lemma 39. Let α :=
√

2d ln 1
ϵ

and β := 2d
5
2 (ln 1

ϵ
)
3
4 (1

ϵ
)
1
2 . Suppose r ≤ α. If there is some

S ⊂ [d], such that:
1. for all i /∈ S,|mi| ≥ β,
2. for all i ∈ S, |m̂i −mi| ≤ ϵ;

then,
∣∣∣∣√ 1∑

i∈S m̂
−2
i

− r
∣∣∣∣ ≤ 2ϵ.

Algorithm 20 carefully utilizes this lemma to estimate r. First, it tests whether for all i,

h∗(αei) = h∗(−αei); if yes, for all i, |mi| ≥ α, and r ≥
√

ln 1
ϵ
, and γ(h∗) is ϵ-close to 0

or 1 depending on the value of s (line 4). Otherwise, it must be the case that r ≤ α. In this
case, we go over each coordinate i, first testing whether |mi| ≤ β (line 7); if no, we skip this
coordinate (do not add it to S); otherwise, we include i in S and estimate mi to precision ϵ using
binary search (line 10). By the guarantees of Lemma 39, we have|sr̂ − sr| ≤ 2ϵ, which, by the
1√
2π

-Lipschitzness of Φ, implies that
∣∣γ̂ − γ(h∗)∣∣ ≤ ϵ. The total query complexity of Algorithm 20

is 1 + 2d+ 2d+ d log2
β
ϵ
= Õ(d).

Algorithm 20 A label efficient estimation algorithm for γ(h∗) for non-homogeneous linear
classifiers
Require: query access to h∗ ∈ Hlin, target error ϵ.
Ensure: γ̂ such that

∣∣γ̂ − γ(h∗)∣∣ ≤ ϵ.

1: Let α =
√

2d ln 1
ϵ
, β = 2d

5
2 (ln 1

ϵ
)
3
4 (1

ϵ
)
1
2 .

2: s← Query h∗ on 0
3: Query h∗ on

{
ραei : ρ ∈ {±1} , i ∈ [d]

}
4: if for all i ∈ [d], h∗(αei) = h∗(−αei) then

return 1 if s = +1, 0 if s = −1
▷ Otherwise, r ≤ α =

√
2d ln 1

ϵ

5: S ← ∅
6: for i = 1, . . . , d do
7: Query h∗ on βei and −βei
8: if h∗(βei) ̸= h∗(−βei) then
9: S ← S ∪ {i}

▷ Use binary search to obtain m̂i, an estimate of mi = − b∗

a∗i
with precision ϵ

10: m̂i ← BINARY-SEARCH(i, β, ϵ) (Algorithm 21)
11: r̂ ←

√
1∑

i∈S m̂
−2
i

▷ r̂ is an estimate of r

12: return Φ(sr̂)

For the lower bound, we formulate a hypothesis testing problem, such that under hypotheses
H0 and H1, the µ(h∗) values are approximately ϵ-separated. This is used to show that any
active learning algorithm with label query budget ≤ Ω

(
min(d, 1

ϵ2
)
)

cannot effectively distinguish
H0 and H1. Our construction requires a delicate analysis on the KL divergence between the
observation distributions under the two hypotheses, and we refer the readers to Theorem 32 for
details.

191

Algorithm 21 BINARY-SEARCH

Require: i, β such that h∗(βei) ̸= h∗(−βei), precision ϵ
Ensure: m, an ϵ-accurate estimate of mi = − b

ai
1: u← β, l← −β
2: while u− l ≥ ϵ do
3: m← u+l

2

4: Query h∗ on mei
5: if h∗(mei) = h∗(lei) then
6: l← m
7: else
8: u← m

return m

6.4.4 General Distribution-Free Lower Bounds

Finally, in this subsection, we move beyond the Gaussian population setting and derive general
query complexity lower bounds for randomized estimation algorithms that audit general hypothesis
classes with finite VC dimension d. This result suggests that, when d ≫ 1

ϵ2
, or equivalently

ϵ ≫ 1√
d
, there exists some hard data distribution and target classifier in H, such that active

fairness auditing has a query complexity lower bound of Ω(1
ϵ2
). Put another way, iid sampling is

near-optimal.
Theorem 29 (Lower bound for randomized auditing). Fix ϵ ∈ (0, 1

40
] and a hypothesis classH

with VC dimension d ≥ 1600. For any (possibly randomized) algorithm A with label budget
N ≤ O(min(d, 1

ϵ2
)), there exists a distribution DX over X and h∗ ∈ H, such that A’s output µ̂

when interacting with h∗, satisfies:

P
(∣∣µ̂− µ(h∗)∣∣ > ϵ

)
>

1

8

The proof of Theorem 29 can be found at Appendix 6.9.1. The lower bound construction
follows from a similar setting as in Example 1, except that we now choose h∗ in a randomized
fashion.

6.5 Additional Related Works

Property Testing: Our notion of auditing that leverages knowledge ofH is similar in theme to the
topic of property testing [31, 45, 46, 47, 122, 243] which tests whether h∗ is inH, or h∗ is far away
from any classifier inH, given query access to h∗. These works provide algorithms with testing
query complexity of lower order than sample complexity for learning with respect toH, for specific
hypothesis classes such as monomials, DNFs, decision trees, linear classifiers, etc. Our problem
can be reduced to property testing by testing whether h∗ is in

{
h ∈ H : µ(h) ∈ [iϵ, (i+ 1)ϵ]

}
for

all i ∈
{
0, 1, . . . , ⌈1

ϵ
⌉
}

; however, to the best of our knowledge, no such result is known in the
context of property testing.

192

Feature Minimization Audits: Rastegarpanah et al. [236] study another notion of auditing,
focusing on assessing whether the model is trained inline with the GDPR’s Data Minimization
principle. Specifically, this work evaluates the necessity of each individual feature used in the ML
model, and this is done by imputing each feature with constant values and checking the extent
of variation in the predictions. One commonality with our work, and indeed across all auditing
works, is the concern with minimizing the number queries needed to conduct the audit.

Herding for Sample-efficient Mean Estimation: Additionally, the estimation of DP may be
viewed as estimating the difference of two means. Viewed in this light, herding [300] offers a way
to use non-iid sampling to more efficiently estimate means. However, the key difference needed
in herding is that h∗, whose output is {−1, 1}, may be well-approximated by ⟨w, ϕ(x)⟩ for some
mapping ϕ known apriori.

Comparison with Sabato et al. [245]: Lastly, Sabato et al. [245] also uses the term “auditing”
in the context of active learning with outcome-dependent query costs; although the term “auditing”
is shared, our problem settings are completely different: [245] focuses on active learning the
model h∗ as opposed to just estimating µ(h∗).

6.6 A General Lemma on Deterministic Query Learning

In this section, we present a general lemma inspired by Hanneke [132], which are used in our
proofs for establishing lower bounds on deterministic active fairness auditing algorithms.
Lemma 40. If an deterministic active auditing algorithm A with label budget N interacts
with labeling oracle that uses classifier h0, and generates the following interaction history:
⟨(x1, h0(x1)), (x2, h0(x2)), . . . , (xN , h0(xN))⟩, and there exists a classifier h1 such that h1(x) =
h0(x) for all x ∈ {x1, . . . , xN}. ThenA, when interacting with h1, generates the same interaction
history, and outputs the same auditing estimate; formally, SA,h1 = SA,h0 and µ̂A,h1 = µ̂A,h0 .

Proof. Recall from Section 6.1.1 that deterministic active auditing algorithm A can be viewed
as a sequence of N + 1 functions f1, f2, . . . , fN , g, where {fi}Ni=1 are the label query function
used at each iteration, and g is the final estimator function. We show by induction that for steps
i = 0, 1, . . . , N , the interaction histories of A with h0 and h1 agree on their first i elements.

Base case. For step i = 0, both interaction histories are empty and agree trivially.

Inductive case. Suppose that the statement holds for step i, i.e. A, when interacting with both
h0 and h1, generates the same set of labeled examples

Si = ⟨(x1, y1), . . . , (xi, yi)⟩,

up to step i.
Now, at step i+ 1, A applies the query function fi+1 and queries the same example xi+1 =

fi+1(Si). By assumption of this lemma, h1(xi+1) = h0(xi+1), which implies that the (i+ 1)-st la-
beled example obtained whenA interacts with h1, (xi+1, h1(xi+1)) is identical to (xi+1, h1(xi+1)),
the (i+ 1)-st example when A interacts with h0. Combined with the inductive hypotheses that

193

the two histories agree on the first i examples, we have shown that A, when interacting with h0
and h1, generates the same set of labeled examples

Si+1 = ⟨(x1, y1), . . . , (xi, yi), (xi+1, yi+1)⟩

up to step i+ 1.
This completes the induction.
As the interaction histories A with h0 and h1 are identical, the unlabeled data part of the

history are identical, formally, SA,h1 = SA,h0 . In addition, as in both interactive processes, A
applies deterministic function g to the same interaction history of length N to obtain estimate µ̂,
we have µ̂A,h1 = µ̂A,h0 .

6.7 Deferred Materials from Section 6.1

The following lemma formalizes the idea that PAC learning with O(ϵ) error is sufficient for
fairness auditing, given that p = min

(
PrDX (xA = 0),PrDX (xA = 1)

)
is Ω(1).

Lemma 41. If h is such that P(h(x) ̸= h∗(x)) ≤ α, then
∣∣µ(h)− µ(h∗)∣∣ ≤ α

p
.

Proof. First observe that∣∣Pr(h(x) = +1 | xA = 0)− Pr(h∗(x) = +1 | xA = 0)
∣∣

≤Pr(h(x) ̸= h∗(x) | xA = 0)

=
Pr(h(x) ̸= h∗(x), xA = 0)

Pr(xA = 0)

≤Pr(h(x) ̸= h∗(x), xA = 0)

p
,

where the first inequality is by triangle inequality; the second inequality is by the defini-
tion of p. Symmetrically, we have

∣∣Pr(h(x) = +1 | xA = 1)− Pr(h∗(x) = +1 | xA = 1)
∣∣ ≤

Pr(h(x)̸=h∗(x),xA=1)
p

. Adding up the two inequalities, we have:

∣∣µ(h)− µ(h∗)∣∣
≤
∣∣Pr(h(x) = +1 | xA = 0)− Pr(h∗(x) = +1 | xA = 0)

∣∣+∣∣Pr(h(x) = +1 | xA = 1)− Pr(h∗(x) = +1 | xA = 1)
∣∣

≤Pr(h(x) ̸= h∗(x), xA = 0)

p
+

Pr(h(x) ̸= h∗(x), xA = 1)

p

=
Pr(h(x) ̸= h∗(x))

p
≤ α

p
.

194

6.8 Deferred Materials from Section 6.3

6.8.1 Proof of Theorems 26 and 27

Proof of Theorem 26. Suppose Algorithm 17 (denoted as A throughout the proof) interacts with
some target classifier h∗ ∈ H.

We will show the following claim: at any stage of A, if the set of labeled examples L shown
so far induces a version V = H[L], then A will subsequently query at most Cost(V) more labels
before exiting the while loop.
Note that Theorem 26 follows from this claim by taking L = ∅ and V = H: after Cost(H) label
queries, it exits the while loop, which implies that, the queried unlabeled examples SA,h∗ induces
version space V ′ = H(h∗, SA,h∗) with

max
h∈V ′

µ(h)−min
h∈V ′

µ(h) = diamµ(V
′) ≤ 2ϵ.

Also, note that h∗ ∈ V ′; this implies that µ(h∗) ∈ [minh∈V ′ µ(h),maxh∈V ′ µ(h)]. Combining
these two observations, we have

∣∣µ̂− µ(h∗)∣∣ ≤ 1

2

(
max
h∈V ′

µ(h)−min
h∈V ′

µ(h)

)
≤ ϵ.

We now come back to proving this claim by induction on Cost(V).

Base case. If Cost(V) = 0, then A immediately exits the while loop without further label
queries.

Inductive case. Suppose the claim holds for all V such that Cost(V) ≤ n. Now consider a
version space V with Cost(V) = n+ 1. In this case, first recall that

Cost(V) = 1 + min
x∈X

max
y∈{−1,+1}

Cost (V y
x) ,

i.e. minx∈X maxy∈{−1,+1}Cost (V
y
x) = Cost(V) − 1 = n. Also, recall that by the definition of

Algorithm 17, when facing version space V , the next query example x0 chosen by A is a solution
of the following minimax optimization problem:

x0 = argmin
x∈X

max
y∈{−1,+1}

Cost (V y
x) ,

which implies that maxy∈{−1,+1}Cost (V
y
x) = n. Specifically, this implies that the version space

at the next iteration, V
(
h∗, {x0}

)
= V

h∗(x0)
x0 , satisfies that Cost(V

(
h∗, {x0}

)
) ≤ n. Combining

with the inductive hypothesis, we have seen that after a total of 1+Cost(V
(
h∗, {x0}

)
) ≤ n+1 =

Cost(V) number of label queries, A will exit the while loop.
This completes the inductive proof of the claim.

195

Proof of Theorem 27. Fix a deterministic active fairness auditing algorithm A. We will show the
following claim: If A has already obtained an ordered sequence of labeled examples L, and has
a remaining label budget N ≤ Cost(H[L])− 1, then there exists h ∈ H[L], such that, A, when
interacting with h as the target classifier:

1. obtains a sequence of labeled examples L in the first |L| rounds;
2. has final version spaceH(h, SA,h) with µ-diameter > 2ϵ.

The theorem follow from this claim by taking L = ∅. To see why, we let h ∈ H[∅] = H be
the classifier described in the claim. First, note that there exists some other classifier h′ ̸= h in the
final version space H(h, SA,h), such that

∣∣µ(h′)− µ(h)∣∣ > 2ϵ. For such h′, h′(SA,h) = h(SA,h).
Therefore, by Lemma 40, SA,h = SA,h′ (which we denote by S subsequently), and h and h′ have
the exact same labeling on S, and µ̂A,h = µ̂A,h′ . This implies that, for A, at least one of the
following must be true: ∣∣µ̂A,h − µ(h)∣∣ > ϵ or

∣∣µ̂A,h′ − µ(h′)∣∣ > ϵ,

showing that it does not guarantee an estimation error ≤ ϵ under all target h ∈ H.
We now turn to proving the above claim by induction on A’s remaining label budget N . In

the following, denote by V = H[L].

Base case. If N = 0 and Cost(V) ≥ 1, then A at this point has zero label budget, which means
that it is not allowed to make more queries. In this case, SA,h = L, and H(SA,h, h) = V . As
Cost(V) ≥ 1, we know that

max
h1,h2∈H(h,SA,h)

∣∣µ(h1)− µ(h2)∣∣ = max
h1,h2∈V

∣∣µ(h1)− µ(h2)∣∣ > 2ϵ.

This completes the proof of the base case.

Inductive case. Suppose the claim holds for all N ≤ n. Now, suppose in the learning process,
A has a remaining label budget N = n + 1, and has obtained labeled examples L such that
V = H[L] satisfies Cost(V) ≥ n+ 2. Let x be the next example A queries. By the definition of
Cost, there exists some y ∈ {−1,+1}, such that

Cost

(
H
[
L ∪

{
(x, y)

}])
= Cost (V y

x) ≥ Cost(V)− 1 ≥ n+ 1,

and after making this query, the learner has a remaining label budget of N − 1 = n.
By inductive hypothesis, there exists some h ∈ H

[
L ∪

{
(x, y)

}]
, such that when A interacts

with h subsequently (with obtained labeled examples L ∪
{
(x, y)

}
and label budget < n), the

final unlabeled dataset SA,h satisfies

diamµ

(
H(h, SA,h)

)
= max

h1,h2∈H(h,SA,h)

∣∣µ(h1)− µ(h2)∣∣ > 2ϵ.

In addition, when interacting with h,A obtains the example sequence ⟨L, (x, y)⟩ in its first |L|+1
rounds of interaction, which implies that it obtains the example sequence L in its first |L| rounds
of interaction with h. This completes the induction.

196

6.8.2 Proof Sketch of Proposition 35

Proof sketch. Let S1 and S2 be O
(

1
ϵ2
ln |H|

)
i.i.d samples from DX | xA = 1 and DX | xA = 0,

respectively. Define

µ̂(h, S1, S2) = Prx∼S1(h(x) = +1)− Prx∼S2(h(x) = +1).

Hoeffding’s inequality and union bound guarantees that with probability at least 1
2
, ∀h ∈ H,

|µ̂(h, S1, S2)− µ(h)| ≤ ϵ. Now consider the following deterministic algorithm A:

• Let n = O
(

1
ϵ2
ln |H|

)
;

• Find (the lexicographically smallest) S1 and S2 in X n, such that

∀h ∈ H,
∣∣µ̂(h, S1, S2)− µ(h)

∣∣ ≤ ϵ. (6.1)

This optimization problem is feasible, because as we have seen, a random choice of S1, S2

makes Equation (6.1) happen with nonzero probability.
• Return µ̂(h∗, S1, S2) with 2n label queries to examples in S1 ∪ S2.

By its construction,A queries 2n = O
(

1
ϵ2
ln |H|

)
labels and returns µ̂ that is ϵ-close to µ(h∗).

6.8.3 Proof of Proposition 36
Before we prove Proposition 36, we first recall the well-known Bernstein’s inequality:
Lemma 42 (Bernstein’s inequality). Given a set of iid random variables Z1, . . . , Zn with mean µ
and variance σ2; in addition, |Zi| ≤ b almost surely. Then, with probability 1− δ,∣∣∣∣∣∣ 1n

n∑
i=1

Zi − µ

∣∣∣∣∣∣ ≤
√

2σ2 ln 2
δ

n
+
b ln 2

δ

3n
.

Proof of Proposition 36. We will analyze Algorithm 18, a derandomized version of the Phased
CAL algorithm [142, Chapter 2]. To prove this proposition, using Theorem 27, it suffices to show
that Algorithm 18 has a deterministic label complexity bound of O

(
θ(ϵ) · ln |H| · ln 1

ϵ

)
.

We first show that for every n, the optimization problem in line 7 is always feasible. To see
this, observe that if we draw Sn = {x1, . . . , xmn} as sample of size mn drawn iid from DX , we
have:

1. By Bernstein’s inequality with Zi = I(xi ∈ DIS(Vn)), with probability 1− 1
4
,

PrSn(x ∈ DIS(Vn)) ≤PrDX (x ∈ DIS(Vn)) +

√
2PrDX (x ∈ DIS(Vn)) ln 8

mn

+
ln 8

3mn

≤2PrDX (x ∈ DIS(Vn)) +
ln 8

mn

.

where the second inequality uses Arithmetic Mean-Geometric Mean (AM-GM) inequality.

197

2. By Bernstein’s inequality and union bound over h, h′ ∈ H, we have with probability 1− 1
4
,

∀h, h′ ∈ H : PrDX (h(x) ̸= h′(x)) ≤ PrSn(h(x) ̸= h′(x)) +

√
4PrDX (h(x) ̸= h′(x)) ln |H|

mn

+
4 ln |H|
3mn

in which,

∀h, h′ ∈ H : PrSn(h(x) ̸= h′(x)) = 0 =⇒ PrDX (h(x) ̸= h′(x)) ≤ 16 ln |H|
mn

.

By union bound, with nonzero probability, the above two condition hold simultaneously, showing
the feasibility of the optimization problem.

We then argue that for all n, Vn+1 ⊆ B(h∗, 16 ln |H|
mn

). This is because for all h ∈ Vn+1, it
and h∗ are both in Vn and therefore they agree on Sn \ Tn; on the other hand, h and h∗ agree
on Tn by the definition of of Vn+1. As a consequence, PrSn(h(x) ̸= h∗(x)) = 0, which implies
that PrDX (h(x) ̸= h∗(x)) ≤ 16 ln |H|

mn
. As a consequence, for all h ∈ VN+1, Pr(h(x) ̸= h∗(x)) ≤

16 ln |H|
mN

≤ pϵ, implying that
∣∣µ(h)− µ(h∗)∣∣ ≤ ϵ (recall Lemma 41).

We now turn to upper bounding Algorithm 18’s label complexity:

N∑
n=1

|Tn| =
N∑
n=1

mn · (2 PrDX (x ∈ DIS(Vn)) +
ln 8

mn

)

≤
N∑
n=1

mn · (θ(ϵ) ·
16 ln |H|
mn

· 2
p
+

ln 8

mn

)

≤O
(
θ(ϵ) · ln |H| · ln 1

ϵ

)
,

where the inequality uses the observation that for every n ∈ [N],

PrDX (x ∈ DIS(Vn)) ≤ PrDX

(
x ∈ DIS(B(h∗,

16 ln |H|
mn

))

)
≤ θ(

pϵ

2
)·16 ln |H|

mn

≤ θ(ϵ)·16 ln |H|
mn

·2
p
,

where the second inequality is from the definition of disagreement coefficient (recall Section 6.1.1),
and the last inequality is from a basic property of disagreement coefficient [135, Corollary
7.2].

6.8.4 Proof of Proposition 37
We first prove the following theorem that gives a decision tree-based characterization of the
Cost(·) function. Connections between active learning and optimal decision trees have been
observed in prior works [e.g. 31, 173].
Definition 32. An example-based decision tree T for (instance domain, hypothesis set) pair
(X , V) is such that:

1. T ’s internal nodes are examples in X ; every internal node has two branches, with the left
branch labeled as +1 and the right labeled as −1.

198

2. Every leaf l of T corresponds to a set of classifiers Vl ⊂ V , such that all h ∈ Vl agree with
the examples that appear in the root-to-leaf path to l. Formally, suppose the path from the
root to leaf l is an alternating sequence of examples and labels ⟨x1, y1, . . . , xn, yn⟩, then
for every i ∈ [n], h(xi) = yi.

Definition 33. Fix DX . An example-based decision tree T is said to (µ, ϵ)-separate a hypothesis
set V , if for every leaf l of T , Vl satisfies diamµ(Vl) ≤ 2ϵ.
Theorem 30. Given a version space V , Cost(V) is the minimum depth of all decision trees that
(µ, ϵ)-separates V .

Proof. We prove the theorem by induction on Cost(V).

Base case. If Cost(V) = 0, then diamµ(V) ≤ 2ϵ. Then there exists a trivial decision tree (with
leaf only) of depth 0 that (µ, ϵ)-separates V , which is also the smallest depth possible.

Inductive case. Suppose the statement holds for any V such that Cost(V) = n. Now consider
V such that Cost(V) = n+ 1.

1. We first show that there exists a decision tree of depth n+ 1 that (µ, ϵ)-separates V . Indeed,
pick x = argminx∈X maxy Cost(V

y
x).

With this choice of x, we have both Cost(V −1x) and Cost(V +1
x) are equal to n. Therefore,

by inductive hypothesis for V −1x and V +1
x , we can construct decision trees T − and T + of

depths n that (µ, ϵ)-separate the two hypothesis classes respectively. Now define T to be
such that it has root node x, and has left subtree T + and right subtree T −, we see that T
has depth n+ 1 and (µ, ϵ)-separates V .

2. We next show that any decision tree of depth n does not (µ, ϵ)-separate V . Indeed, assume
for the sake of contradiction that such tree T exists. Then consider the example x at the
root of the tree; by the definition of Cost, one of Cost(V −1x) and Cost(V +1

x) must be ≥ n.
Without loss of generality, assume that V ′ = V +1

x is such that Cost(V ′) ≥ n. Therefore,
there must exists some subset V ′′ ⊂ V ′ such that Cost(V ′′) = n. Applying the inductive
hypothesis on V ′′, no decision tree of depth n− 1 can (µ, ϵ)-separate V ′′. This contradicts
with the observation that the left subtree of T , which is of depth n − 1, (µ, ϵ)-separates
V ′.

We now restate a more precise version of Proposition 37. First we define the computational
task of computing a 0.3 ln(|H|)-approximation of Cost(H) by the following problem:

Problem Minimax-Cost (MC):
Input: instance space X , hypothesis classH, data distribution DX , precision parameter ϵ.
Output: a number L such that Cost(H) ≤ L ≤ 0.3 ln(|H|)Cost(H).

Proposition 38 (Proposition 37 restated). If there is an algorithm that solves Minimax-Cost in
poly(|H|, |X |, 1/ϵ) time, then NP ⊆ TIME(nO(log logn)).

Proof of Proposition 38. Our proof takes after [173]’s reduction from set cover (SC) to Decision
Tree Problem (DTP). Here, we reduce from SC to the Minimax-Cost problem (MC), i.e. computing

199

Cost(H) for a given hypothesis classH, taking into account the unique structure of active fairness
auditing. Specifically, the following gap version of SC’s decision problem has been shown to be
computationally hard4:

Problem Gap-Set-Cover (Gap-SC):
Input: a universe U = {u1, ..., un} of size n with n ≥ 10, and a family of subsets C =
{C1, ..., Cm}, and an integer k, such that either of the following happens:

• Case 1: OPTSC ≤ k,
• Case 2: OPTSC ≥ 0.99k lnn,

where OPTSC denotes the minimum set cover size of (U, C).
Output: 1 or 2, which case the instance is in.

Specifically, it is well-known that obtaining a polynomial time algorithm for the above decision
problem5 on minimum set cover would imply that NP ⊆ TIME(nO(log logn)) [107], which is
believed to be false.

To start, recall that an instance of Gap-SC problem ISC = (U, C, k); an instance of the MC
problem IMC = (H,X , DX , ϵ).

With this, we define a coarse reduction β that constructs a MC-instance from a Gap-SC
instance with universe U = {u1, ..., un} and sets C = {C1, ..., Cm}, which will be refined shortly:

1. LetH = {h0, h1, . . . , hn}, where h0(x) ≡ −1 always, and for all j ∈ [n], hj corresponds
to uj (the definitions of hj’s will be given shortly).

2. Create example x0 such that for all h ∈ H, h(x0) = −1.
3. For every i ∈ [m], create basis example xi to correspond to Ci such that for every j ∈ [n],
hj(xi) = 1 iff uj ∈ Ci.

4. For each set Ci, create |Ci| − 1 auxiliary x’s as follows: Given set Ci with |Ci| = si that
corresponds to {hi1, .., hisi}, create a balanced binary tree Ti with each leaf corresponding
to a hij . Create an auxiliary example associated with each internal node in Ti as follows:
for each internal node in the tree, define the corresponding auxiliary sample x such that
its label is +1 under all the classifiers in the leaves of the subtree rooted at its left child,
and its label is −1 under all remaining classifiers inH. The total number of auxiliary x’s is
≤ m · (n− 1).

5. Define X as the union of the example sets constructed in the above three items, which has at
mostN ≤ mn+1 examples. DefineDX to be such that: x | xA = 0 ∼ Uniform(X \{x0}),
and x | xA = 1 ∼ Uniform({x0}), and set ϵ = 1/(2N). With this setting of ϵ, for every h ∈
H such that h ̸= h0,

∣∣µ(h)− µ(h0)∣∣ = ∣∣Pr(h(x) = +1 | xA = 0)− Pr(h0(x) = +1 | xA = 0)
∣∣ ≥

1
N−1 > 2ϵ.

Recall that OPTSC is defined as the size of an optimal solution for SC instance (U, C); we
let OPTMC denote the height of the tree corresponding to the optimal query strategy for the MC

4The definition of Gap-SC requires that n ≥ 10, which is without loss of generality: all Gap-SC instances with
n < 10 are solvable in constant time.

5The constant 0.99 can be changed to any constant < 1 [107].

200

instance IMC obtained through reduction β. We have the following result:

Lemma 43. OPTSC ≤ OPTMC ≤ OPTSC +max
C∈C

log |C|.

Proof. Let k = OPTSC. We show the two inequalities respectively.

1. By Theorem 30, it suffices to show that any example-based decision tree T that (µ, ϵ)-
separatesH must have depth at least k. To see this, first note that by item 5 in the reduction
β and the definition of (µ, ϵ)-separation, the leaf in T that contains h0 must not contain
other hypotheses inH. In addition, as h0 ≡ −1, h0 must lie in the rightmost leaf of T .
Now to prove the statement, we know that the examples along the rightmost path of T
corresponds to a collection of sets that form a set cover of C. It suffices to show that this
set cover has size no greater than the set cover of ISC. This is because the examples along
the rightmost path are either xi’s, which correspond to some set in C, or auxiliary examples
which correspond to some subset of a set in C. A set cover instance with U and C ′ where C ′
comprises of sets from C and subsets of sets from C will not have a smaller set cover.
Therefore, the length of the path from the root to the rightmost leaf is at least k, the size of
the smallest set cover of the original SC instance ISC.

2. Let an optimal solution for ISC be G = {i1, ..., ik}. Below, we construct an example-based
decision tree T of depth k +max

C∈C
log |C| that (µ, ϵ)-separatesH:

Let the rightmost path of T contain nodes corresponding to xi1 , ..., xik (the order of these are
not important). At level l = 1, ..., k, the left subtree of xil is defined to be Til as defined in
step 4 of reduction β. Note that this may result in T with potentially empty leaves, in that for
some h covered by multiple xil’s, it only appears in xio where o = min

{
l : h(xil) = +1

}
.

We will prove that by the above construction, T (µ, ϵ)-separatesH, as every leaf corresponds
to a version space V that is a singleton set (and thus has diamµ(V) = 0 ≤ 2ϵ):

(a) For all but the rightmost leaf, this holds by the construction of Til’s.
(b) For the rightmost leaf, we will show that only h0 is in the version space. Since G

is a set cover, we have that ∪kl=1Cil = U . Therefore, ∀j ∈ [n], ∃l ∈ [k] such that
uj ∈ Cil ⇔ hj(xil) = 1 by construction. This implies that the all zero labeling of
xi1 , ..., xik can only correspond to h0. Therefore, the version space at the rightmost
leaf V satisfies |V | = {h0}.

Recall from Theorem 30 that the depth of T upper bounds OPTMC. T ’s maximum root to
leaf path is of length at most k +maxC∈C log |C|.

Built from β, we now construct an improved gap preserving reduction β′, defined as follows.
Given any Gap-SC instance ISC = (U, C, k) with universe U = {u1, ..., un} and sets C =
{C1, ..., Cm}:

1. Take constant z = log n. Construct a Gap-SC instance ISC,z = (U z, Cz, kz), contain-
ing z copies of the original set covering instance: U z = {u11, . . . , u1n, . . . , uz1, . . . , uzn},
Cz = {C1, . . . , Czm}, where C(p−1)m+i = {upi1, . . . , u

p
isi
} for p ∈ [z], i ∈ [m]. Note that

OPTSC,z = kOPTSC.
2. Apply reduction β to obtain IMC,z from ISC,z.

Now, we will argue that β′ is a gap-preserving reduction:

201

1. Suppose the original Gap-SC instance ISC = (U, C, k) is in case 1, i.e., OPTSC ≤ k. Then,
OPTSC,z ≤ kz. By Lemma 43, OPTMC,z ≤ kz + maxC∈Cz log |C| ≤ kz + log n ≤
z(k + 1) ≤ 2zk.

2. Suppose the original Gap-SC instance ISC = (U, C, k) is in case 2, i.e., OPTSC ≥ 0.99k lnn.
Then, OPTSC,z ≥ 0.99zk lnn, which by Lemma 43, yields that OPTMC,z ≥ 0.99zk lnn.

Now suppose that there exists an algorithmA that solves the MC problem in poly(|H|, |X |, 1
ϵ
)

time. We propose the following algorithm A′ that solves the Gap-SC problem in polynomial time,
which, as mentioned above, implies that NP ⊆ TIME(nO(log logn)):

Input: ISC = (U, C, k).
• Apply β′ on ISC to obtain an instance of MC, IMC,z

• Let L← A(IMC,z). Output 1 if L ≤ 0.7zk lnn, and 2 otherwise.

Correctness. As seen above, if ISC is in case 1, then OPTMC,z ≤ 2zk. For n ≥ 10, by
the guarantee of A, L ≤ 0.3 ln |H| · OPTMC,z ≤ 0.6 ln(n log n) · zk ≤ 0.7zk lnn, and A′
outputs 1. Otherwise, ISC is in case 2, then OPTMC,z ≥ 0.99zk lnn, and by the guarantee of A,
L ≥ 0.99zk lnn > 0.7zk lnn, and A′ outputs 2.

Time complexity. In IMC,z, |X | ≤ (mz · nz + 1) = O(mn log2 n), |H| = nz = n log n, and
ϵ = 1

2N
= 1

2(mz·nz+1)
= Ω(1

mn log2 n
). As A runs in time O(poly(|X |, |H|, 1

ϵ
)), A′ runs in time

O(poly(m,n)).

6.8.5 Deferred Materials for Section 6.3.2

6.8.5.1 (µ, ϵ)-specifying set, (µ, ϵ)-teaching dimension and their properties

The following definitions are inspired by the teaching and exact active learning literature [132,
138].
Definition 34 ((µ, ϵ)-specifying set). Fix hypothesis class H and any function h : X → Y ,6

a set of unlabeled examples S is said to be a (µ, ϵ)-specifying set for h and H, if ∀h1, h2 ∈
H(h, S) � |µ(h1)− µ(h2)| ≤ 2ϵ.
Definition 35 ((µ, ϵ)-extended teaching dimension). Fix hypothesis class H and any function
h : X → Y , define t(h,H, µ, ϵ) as the size of the minimum (µ, ϵ)-specifying set for h andH, i.e.
it is the optimal solution of the following optimization problem (OP-h):

min |S|, s.t.∀h1, h2 ∈ H(h, S) � |µ(h1)− µ(h2)| ≤ 2ϵ

Definition 36. We define the µ-extended teaching dimension XTD(H, µ, ϵ) := maxh:X→Y t(h,H, µ, ϵ).

6Note that h is allowed to be outsideH.

202

The improper teaching dimension is related to Cost(H) in that:
Lemma 44.

XTD(H, µ, ϵ) ≤ Cost(H).

Proof. Let h0 = argmaxh:X→Y t(h,H, µ, ϵ). Let k denote t(h0,H, µ, ϵ)− 1. It suffices to show
that Cost(H) ≥ k. To see this, first note that

Cost(H) = 1 + min
x

max
y

Cost(H[(x, y)])

≥ 1 + min
x1∈X

Cost(H[(x, h0(x))])

≥ 2 + min
x1∈X

min
x2∈X

Cost(H[{(x1, h0(x1)), (x2, h0(x2))}])

We can repeatedly unroll the above expression as long as diamµ(H[{(x1, h0(x1)), . . . , (xi, h0(xi))])
is at least > 2ϵ. After unrolling k − 1 times where Uk−1 = ⟨x1, . . . , xk−1⟩, we have

Cost(H) ≥ k − 1 + min
Uk−1

Cost(H(h0, Uk−1)).

By the definition of t(h,H, µ, ϵ), for any U with U ≤ k − 1, there exists h′, h′′ ∈ H(h0, U)
such that |µ(h′)− µ(h′′)| > ϵ⇒ diamµ(H(h0, U)) > ϵ. Thus, for any unlabeled dataset Uk−1 of
size k − 1, Cost(H(h0, Uk−1)) ≥ 1. Therefore, Cost(H) ≥ k.

6.8.5.2 Proof of Theorem 28

Proof. We prove the theorem as follows:

Correctness. Observe that right before Algorithm 19 returns, it must execute lines 11 and 20.
Since the condition on line 20 is also satisfied, the dataset T must be such that ĥ(T) = h∗(T).
Combined with the definitions of optimization problems (8) and (9), this implies that, the h1 and
h2 used in line 11 right before return satisfy that

µ(h1) = min
h∈H(h∗,T)

µ(h), µ(h2) = max
h∈H(h∗,T)

µ(h).

Therefore, µ(h∗) ∈ [minh∈H(h∗,T) µ(h),maxh∈H(h∗,T) µ(h)] = [µ(h1), µ(h2)]. Furthermore, by
line 11, µ(h1)− µ(h2) ≤ 2ϵ. Hence, µ̂, the output of Algorithm 19, satisfies that,

∣∣µ̂− µ(h∗)∣∣ = ∣∣∣∣12 (µ(h1) + µ(h2)
)
− µ(h∗)

∣∣∣∣ ≤ ϵ.

Label complexity. We now bound the label complexity of the algorithm, specifically, in terms
of XTD(H, µ, ϵ).

First, at the end of the t-th iteration of the outer loop, the newly collected dataset Tt must be
such that ∃x ∈ Tt and ĥ(x) ̸= h∗(x). As O has a mistake bound of M , the total number of outer
loop iterations, denoted by N , must be most M . In addition, by Lemma 45 given below, with

203

probability 1− δ/M , |Tt| ≤ O
(
XTD(H, µ, ϵ) · log |H|M

δ
log |X |

)
. Therefore, by a union bound,

with probability 1− δ, the total number of label queries made by Algorithm 19 is at most

N∑
t=1

|Tt| ≤ O

(
M · XTD(H, µ, ϵ) · log |H|M

δ
log |X |

)
.

Lemma 45. For every outer iteration of Algorithm 19, with probability ≥ 1− δ
M

, T , the dataset

at the end of this iteration, satisfies|T | ≤ O
(
XTD(H, µ, ϵ) · log |H|M

δ
log |X |

)
.

Proof. The inner loop is similar to the “black-box teaching” algorithm of [85] except that we
are teaching µ(ĥ) as opposed to ĥ itself. Although [85]’s algorithm was originally designed for
exact (interactive) teaching, it implicitly gives an oracle-efficient algorithm for approximately
computing the minimum set cover; we will use this insight throughout the proof. As the analysis
of [85] is only on the expected number of teaching examples, we use a different filtration to obtain
a high probability bound over the number of teaching examples.

First we setup some useful notations for the proof. let X = {x1, . . . , xm}. Recall that
λ = ln |H|

2M
δ

. Let Wi(x) denote the weight of point x ∈ X (denoted by w(x) in the algorithm)
at the end of round i of the inner loop and let τxj be the exponentially-distributed threshold
associated with xj . Define random variable Ui,j = 1{τxj > Wi(xj)}. Let Mi denotes the number
of teaching examples selected in the ith round of doubling; it can be seen that Mi =

∑
j∈[m] Ui,j .

Also define (i, j) ⪯ (i′, j′) iff (i, j) precedes (i′, j′) lexicographically.
Define two filtrations:

1. Let Fi,j be the sigma-field of all indicator events {Ui′,j′ : (i′, j′) ⪯ (i, j)}. As a convention,
Fi,0 := Fi−1,m.

2. Let Fi be the sigma-field of all indicator events {Ui′,j′ : j′ ∈ [m], 1 ≤ i′ ≤ i}; this is the
filtration used by [85]. It can be easily seen that Fi = Fi,m.

Define Yi,j =
∑

(i′,j′)⪯(i,j) Zi′,j′ , where Zi,j = Ui,j − E
[
Ui,j | Fi,j−1

]
∈ [−1,+1]. Then Yi,j

is a martingale as E[Yi,j|Fi,j−1] = E[Zi,j|Fi,j−1] + E[Yi,j−1|Fi,j−1] = Yi,j−1.
LetN be the total number of rounds, which by item 1 of Lemma 47, isO(XTD(H, µ, ϵ) ln |X |)

(Lemma 4 of [85]) with probability 1. We may then apply Freedman’s inequality (Lemma 46):
since Yi,j − Yi,j−1 = Zi,j ≤ 1 almost surely, for any s and any σ2 > 0,

Pr

∃n,m, Ynm ≥ s,
∑

(i,j)⪯(n,m)

E[Z2
ij|Fi(j−1)] ≤ σ2

 ≤ exp

(
− s2

2(σ2 + s/3)

)
(6.2)

204

Next, we let σ2 = λ(1 + XTD(H, µ, ϵ) ln(2|X |)); we have for any n,m:∑
(i,j)⪯(n,m)

E[Z2
ij|Fi(j−1)]

=
∑

(i,j)⪯(n,m)

E[U2
ij|Fi(j−1)]− E[Uij|Fi(j−1)]2

≤
∑

(i,j)⪯(n,m)

E[U2
ij|Fi(j−1)]

=
∑

(i,j)⪯(n,m)

E[Uij|Fi(j−1)]

=
n∑
i=1

EFi−1
[Mi]

≤ λ
∑
x∈X

Wn(x) (Lemma 48)

≤ λ(1 + XTD(H, µ, ϵ) ln(2|X |)) = σ2. (Lemma 47)

Meanwhile, we choose s = 1
6
log(1

δ
)+
√

2σ2 log 1
δ
+ 1

6
log(1

δ
) = O

(√
ln 1

δ
σ + ln 1

δ

)
, which

ensures that the right hand side of Eq. (6.2) is at most δ.
Thus, by Equation (6.2), we have with probability 1− δ, for all n,m,

Ynm =
∑

(i′,j′)⪯(n,m)

Ui′j′ −
n∑
i=1

EFi−1
[Mi] ≤ O

(√
ln

1

δ
σ + ln

1

δ

)
.

Also, using Lemma 48 and 47, with probability 1,
∑N

i=1 EFi−1
[Mi] ≤ λ(1+XTD(H, µ, ϵ) ln(2|X |)).

Therefore, for YNm in particular,

YNm ≤ O
(
λ(1 + XTD(H, µ, ϵ) ln(2|X |)) +

√
λ(1 + XTD(H, µ, ϵ) ln(2|X |)) ln(1/δ) + ln(1/δ)

)
= O

(
λ(1 + XTD(H, µ, ϵ) ln(2|X |)) + ln

1

δ

)
= O

(
XTD(H, µ, ϵ) ln(|X |) ln((|H|M)/δ)

)
.

Lemma 46 (Freedman’s Inequality). Let martingale {Yk}∞k=0 with difference sequence {Xk}∞k=0

be such that Xk ≤ R a.s for all k and Y0 = 0. Let Wk =
∑k

j=1 Ej−1[X2
j]. Then, for all t ≥ 0 and

σ2 > 0:

Pr(∃k ≥ 0 : Yk ≥ t ∧Wk ≤ σ2) ≤ exp

(
− t2/2

σ2 +Rt/3

)
.

Lemma 47. For any outer iteration of Algorithm 19:
1. The number of inner loop iterations is at most XTD(H, µ, ϵ) · log(2|X |).
2. At any point in the inner loop, we have that,

∑
x∈X w(x) ≤ 1 + XTD(H, µ, ϵ) · log(2|X |).

205

Proof. The proof is very similar to Dasgupta et al. [85, Lemma 4] with some differences; for
completeness, we include a proof here.

We first prove the second item. First, note that at any point of the algorithm, for all x,
w(x) ≤ 2. Let S∗(ĥ) be the optimal solution of optimization problem (OP-ĥ) - we have |S∗(ĥ)| =
t(ĥ,H, µ, ϵ) ≤ XTD(H, µ, ϵ). Note that every time when line 16 is called, by the feasibility of
S∗(ĥ) with respect to (OP-ĥ), ∆(h1, h2) ∩ S∗(ĥ) ̸= ∅, therefore, the weight of some element
x ∈ S∗(ĥ) gets doubled. This implies that the total number of times line 16 is executed is at most
|S∗(ĥ)|·log(2|X |). Otherwise, if the number of time line 16 is executed is≥ |S∗(ĥ)|·log(2|X |)+1,
by the pigeonhole principle, there must exist some element x ∈ S∗(ĥ) whose weight exceeds 1,
which is a contradiction.

Finally, note that each weight doubling only increases the total weight by ≤ 1, we have the
final total weight is at most

1 + 1 · |S∗(ĥ)| · log(2|X |) ≤ 1 + XTD(H, µ, ϵ) · log(2|X |).

The first item follows since the number of inner iterations is at most the number of weight
doublings.

Lemma 48. For every inner iteration, E[Mi|Fi−1] ≤
∑

x∈X λ(Wi(x)−Wi−1(x)).

Proof. The proof is almost a verbatim copy of Dasgupta et al. [85, Lemma 6], which we include
here:

E[Mi|Fi−1] =
∑
x∈X

Pr(x chosen in round i|x not chosen before round i,Fi−1)

=
∑
x∈X

1− Pr(τx > Wi(x)|τx > Wi−1(x))

=
∑
x∈X

(1− exp(−λ(Wi(x)−Wi−1(x))))

≤
∑
x∈X

λ(Wi(x)−Wi−1(x)).

6.9 Deferred Materials from Section 6.4

6.9.1 Distribution-free Query Complexity Lower Bounds for Auditing with
VC classes

Theorem 31 (Lower bound for randomized auditing). If hypothesis classH has VC dimension d ≥
1600, and ϵ ∈ (0, 1

40
], then for any (possibly randomized) algorithm A, there exists a distribution

D realizable by h∗ ∈ H, such that when A is given a querying budget N ≤ Ω(min(d, 1
ϵ2
)), its

output µ̂ is such that

P
(∣∣µ̂− µ(h∗)∣∣ > ϵ

)
>

1

8
.

206

Proof. We will be using Le Cam’s method with several subtle modifications. First, we will reduce
the estimation problem to a hypothesis testing problem, where under different hypotheses, the
µ(h∗) will be centered around two Ω(ϵ)-separated values with high probability. Second, we will
upper bound the distribution divergence of the interaction history under the two hypotheses; this
requires some delicate handling, as the label on a queried example depends not only on the identity
of the example, but also historical labeled examples.

Step 1: the construction. As VC(H) = d, there exists a set of examplesZ = {z0, z1, . . . , zd−1} ⊂
X shattered byH. Let Z+ = {z1, . . . , zd−1}. Let DX be as follows: x | xA = 0 is uniform over
Z+, whereas x | xA = 1 is the delta mass on z0.

Let ϵ̃ = 10max(ϵ, 1√
d
); by the conditions that d ≥ 1600 and ϵ ≤ 1

40
, we have ϵ̃ ≤ 1

4
. Let label

budget N = 1
24ϵ̃2

= Ω
(
min(d, 1

ϵ2
)
)
.

Consider two hypotheses that choose h∗ randomly from {−1,+1}Z+ , subject to h∗(z0) = 0:

• H0: choose h∗ such that for every i ∈ [d−1], independently, h∗(zi) =

{
+1, with probability 1

2
− ϵ̃

−1, with probability 1
2
+ ϵ̃

• H1: choose h∗ such that for every i ∈ [d−1], independently, h∗(zi) =

{
+1, with probability 1

2
+ ϵ̃

−1, with probability 1
2
− ϵ̃

We have the following simple claim that shows the separation of µ(h∗) under the two hypothe-
ses. Its proof is deferred to the end of the main proof.

Claim 3. Ph∗∼H0

(
µ(h∗) ≤ 1

2
− 1

2
ϵ̃
)
≥ 15

16
, and Ph∗∼H1

(
µ(h∗) ≥ 1

2
+ 1

2
ϵ̃
)
≥ 15

16
.

Step 2: upper bounding the statistical distance. Next, we show that H0 and H1 are hard to
distinguish with A having a label budget of N . To this end, we upper bound the KL divergence of
the joint distributions of ⟨(x1, y1), . . . , (xn, yn)⟩ =: (x, y)≤n under H0 and H1, denoted as P0 and
P1 respectively. Applying Lemma 56, we have:

KL(P0,P1) =
n∑
i=1

E
[
KL
(
P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi)

)]
. (6.3)

We claim that for every i and ((x, y)≤i−1, xi) ∈ (X × Y)i−1 ×X on the support of P0,

KL
(
P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi)

)
≤ 3ϵ̃2. (6.4)

First, observe that if ⟨(x, y)≤i−1, xi⟩ is in the support of P0, there must exists some h∗ : Z →
{−1,+1} such that h∗(xj) = yj for all j ∈ [i− 1]; in particular, this means there must not exist
j1 ̸= j2 in [i− 1], such that xj1 = xj2 but yj1 ̸= yj2 .

Next, we note that, under H0, conditioned on (x, y)≤i−1, the posterior distribution of h∗ is
supported over the set

{
h | h : Z → {−1,+1} ,∀j ∈ [i− 1], h(xj) = yj

}
, and specifically, for

all x ∈ Z \
{
xj : j ∈ [i− 1]

}
, the h∗(x)’s are independent conditioned on (x, y)≤i−1, and

P0

(
h∗(x) = +1 | (x, y)≤i−1

)
=

1

2
− ϵ̃.

207

The same statement holds for H1 except that for all x ∈ Z \
{
xj : j ∈ [i− 1]

}
, we now have

P1(h
∗(x) = +1 | (x, y)≤i−1) = 1

2
+ϵ̃. In addition, the conditional distribution of yi | (x, y)≤i−1, xi,

equals the conditional distribution of h∗(xi) | (x, y)≤i−1, under both H0 and H1. We now perform
a case analysis:

1. If xi ∈
{
xj : j ∈ [i− 1]

}
, then under both H0 and H1, the distributions of h∗(xi) |

(x, y)≤i−1 are equal: they both equal to the delta mass supported on the only element
of the singleton set

{
yj : j ∈ [i− 1], xj = xi

}
. In this case,

KL
(
P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi)

)
= 0 ≤ 3ϵ̃2.

2. Otherwise, xi /∈
{
xj : j ∈ [i− 1]

}
. Under H0, h∗(xi) | (x, y)≤i−1 takes value +1 with

probability 1
2
− ϵ̃, and takes value −1 with probability 1

2
+ ϵ̃; similarly, under H1, h∗(xi) |

(x, y)≤i−1 takes value +1 with probability 1
2
+ϵ̃, and takes value−1 with probability 1

2
−ϵ̃. In

this case, by Fact 6 and that ϵ̃ ≤ 1
4
, KL

(
P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi)

)
=

kl
(
1
2
− ϵ̃, 1

2
+ ϵ̃
)
≤ 3ϵ̃2.

In summary, in both cases, Equation (6.4) holds, and plugging this back to Equation (6.3) with
n = 1

24ϵ̃2
, we have KL(P0,P1) ≤ 3nϵ̃2 ≤ 1

8
. By Pinsker’s inequality (Lemma 54), dTV(P0,P1) ≤√

1
2
KL(P0,P1) ≤ 1

2
. By Le Cam’s Lemma (Lemma 53), for any hypothesis tester b̂, we have

1

2
P0

(
b̂ = 1

)
+

1

2
P1

(
b̂ = 0

)
≥ 1

2

(
1− dTV(P0,P1)

)
≥ 1

4
. (6.5)

Step 3: concluding the proof. Given A’s output auditing estimate µ̂, consider the following
hypothesis test:

b̂ =

{
0, µ̂ < 1

2
,

1, µ̂ ≥ 1
2
.

Plugging into Equation (6.5), we have

1

2
P0

(
µ̂ ≥ 1

2

)
+

1

2
P1

(
µ̂ <

1

2

)
≥ 1

4
. (6.6)

Now, recall Claim 3, and using the fact that P(A ∩ B) ≥ P(A) − P(BC) = P(A) + P(B) − 1,
we have

P0

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

2
ϵ̃

)
≥ P0

(
µ̂ ≥ 1

2
, µ(h∗) ≤ 1

2
− 1

2
ϵ̃

)
≥ P0

(
µ̂ ≥ 1

2

)
+
15

16
−1 ≥ P0

(
µ̂ ≥ 1

2

)
− 1

16
.

(6.7)
Symmetrically, we also have

P1

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

2
ϵ̃

)
≥ P1

(
µ̂ <

1

2
, µ(h∗) ≥ 1

2
+

1

2
ϵ̃

)
≥ P1

(
µ̂ <

1

2

)
− 1

16
. (6.8)

Combining Equations (6.6), (6.7), and (6.8), we have

1

2
P0

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

2
ϵ̃

)
+

1

2
P1

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

2
ϵ̃

)
≥ 1

4
− 1

16
>

1

8
.

208

As 1
2
ϵ̃ > ϵ, and the left hand side can be viewed as the total probability of

∣∣µ̂− µ(h∗)∣∣ > ϵ when
h∗ is drawn from the uniform mixture distribution of the h∗ distributions under H0 and H1. By
the probabilistic method, there exists some h∗ such that Ph∗,A

(∣∣µ̂− µ(h∗)∣∣ > ϵ
)
> 1

8
.

Proof of Claim 3. Without loss of generality, we show the first inequality; the second inequality
can be shown symmetrically. Note that under H0, the random h∗’s DP value satisfies

µ(h∗) = Pr(h∗(x) = +1 | xA = 0)− Pr(h∗(x) = +1 | xA = 1) =
1

d− 1

d−1∑
i=1

1{h∗(zi) = +1},

where the second equality follows from that Pr(h∗(x) = +1 | xA = 1) = 0 as h∗(z0) = −1 is
always true.

Under H0, (d − 1)µ(h∗) is the sum of (d − 1) iid Bernoulli random variables with mean
parameter 1

2
− ϵ̃. Therefore, by Hoeffding’s inequality, we have

P0

(
µ(h∗) >

1

2
− 1

2
ϵ̃

)
≤ exp

(
−2(d− 1) ·

(
1

2
ϵ̃

)2
)
≤ 1

16
,

where the second inequality uses the fact that ϵ̃ = 10max
(
ϵ, 1√

d

)
≥ 10√

d
.

6.9.2 Query Complexity for Auditing Non-homogeneous Halfspaces under
Gaussian Subpopulations

Theorem 32 (Lower bound). Let d ≥ 6400 and ϵ ∈ (0, 1
80
]. If DX is such that x | xA = 0 ∼

N(0d, Id), whereas x | xA = 1 ∼ N(0d, (0)d×d) (i.e. the delta-mass supported at 0d). For any
(possibly randomized) algorithm A, there exists h∗ inHlin the class of nonhomogeneous linear
classifiers, such that when A is given a query budget N ≤ Ω

(
min(d, 1

ϵ2
)
)
, its output µ̂ is such

that
PA,h∗

(∣∣µ̂− µ(h∗)∣∣ > ϵ
)
>

1

8
.

Proof. Similar to the proof of Theorem 31, we will use Le Cam’s method. In addition to the same
challenges in the proof of Theorem 31, in the active fairness auditing for halfspaces setting, we
are faced with the extra challenge that the posterior distributions of h∗(xi) | (x, y)≤i−1 deviates
significantly from the prior distribution of h∗(xi), and cannot be easily calculated in closed form.
To get around this difficulty, using the chain rule of KL divergence, along with the posterior
formula for noiseless Bayesian linear regression with Gaussian prior, we calculate a tight upper
bound on the KL divergence between two carefully constructed, well-separated hypotheses.

Step 1: the construction. Let ϵ̃ = 40max(ϵ, 1√
d
); by the assumption that ϵ ≤ 1

80
and d ≥ 6400,

we have ϵ̃ ≤ 1
2
. Let label budget N = 1

64ϵ̃2
= Ω

(
min(d, 1

ϵ2
)
)
.

Consider two hypotheses that choose h∗ = ha∗,b∗ , such that b∗ = −1, and a∗ is chosen
randomly from different distributions:

209

• H0 : a
∗ ∼ N(0, 1

d
(1 + ϵ̃)Id)

• H1 : a
∗ ∼ N(0, 1

d
(1− ϵ̃)Id)

We have the following claim that shows the separation of µ(h∗) under the two hypotheses. Its
proof is deferred to the end of the main proof.

Claim 4. Ph∗∼H0

(
µ(h∗) > Φ(−1) + ϵ̃

36

)
≥ 15

16
, and Ph∗∼H1

(
µ(h∗) < Φ(−1)− ϵ̃

36

)
≥ 15

16
, where

Φ(z) =
∫ z
−∞

1√
2π
e−

z2

2 dz is the standard normal CDF.

Step 2: upper bounding the statistical distance. Next, we show that H0 and H1 are hard to
distinguish with A making n ≤ N label queries. To this end, we upper bound the KL divergence
of the joint distributions of (x, y)≤n under H0 and H1, denoted as P0 and P1 respectively. To this
end, define ỹi = ⟨a∗, xi⟩−1 for i ∈ [n], and yi = sign(ỹi). Define P̃0 and P̃1 (resp. Q0 and Q1) as
the joint distributions of (x, ỹ)≤n (resp. (x, y, ỹ)≤n) under H0 and H1 respectively. By the chain
rule of KL divergence (Lemma 55 with Z = (x, y)≤n,W = ỹ≤n and Z = (x, ỹ)≤n,W = y≤n
respectively), we get:

KL(Q0((x, y, ỹ)≤n),Q1((x, y, ỹ)≤n)

=KL(Q0((x, y)≤n),Q1((x, y)≤n)︸ ︷︷ ︸
KL(P0,P1)

+KL(Q0((ỹ)≤n | (x, y)≤n),Q1((ỹ)≤n | (x, y)≤n))︸ ︷︷ ︸
≥0

=KL(Q0((x, ỹ)≤n),Q1((x, ỹ)≤n)︸ ︷︷ ︸
KL(P̃0,P̃1)

+KL(Q0((y)≤n | (x, ỹ)≤n),Q1((y)≤n | (x, ỹ)≤n))︸ ︷︷ ︸
0

,

where the last term is 0 because under both Q0 and Q1, (y)≤n | (x, ỹ)≤n is the delta mass supported
on (sign(ỹ))≤n. As a consequence,

KL(P0,P1) ≤ KL(P̃0, P̃1)

Also, note that A can be viewed as a query learning algorithm that at round i, receives (x, ỹ)≤i−1
as input, and choose the next example for query (i.e., it elects to only use the thresholded value
yj’s as opposed to the ỹj’s). Applying Lemma 56, we have:

KL(P̃0, P̃1) =
n∑
i=1

E
[
KL(P0(ỹi = · | (x, ỹ)≤i−1, xi)),P1(ỹi = · | (x, ỹ)≤i−1, xi))

]
. (6.9)

We claim that for every i and ((x, ỹ)≤i−1, xi) ∈ (X × Y)i−1 ×X on the support of P̃0,

KL(P0(ỹi = · | (x, ỹ)≤i−1, xi)),P1(ỹi = · | (x, ỹ)≤i−1, xi)) ≤ 3ϵ̃2. (6.10)

First, by Lemma 49 (deferred to the end of the proof), under H0, conditioned on (x, ỹ)≤i−1
on the support of P̃0, the posterior distribution of a∗ is the same as a∗ ∼ N(0, 1

d
(1 + ϵ̃)Id)

conditioned on the affine set S =
{
a ∈ Rd : ⟨a, xl⟩+ 1 = ỹl,∀l ∈ [i− 1]

}
. Denote Xi−1 =

[x⊤1 ;x
⊤
2 ; . . . , x

⊤
i−1] ∈ R(i−1)×d, and Ỹi−1 = (ỹ1, . . . , ỹi−1); for (x, ỹ)≤i−1 on the support of P̃0, it

must be the case that S ̸= ∅, and as a result, â = X†i−1(Ỹi−1 − 1i−1) ∈ S. Also, denote by X⊥i−1

210

a matrix whose columns are an orthonormal basis of span(x1, . . . , xi−1); such a X⊥i−1 is always
well-defined as i− 1 ≤ n− 1 ≤ d− 1. Applying Lemma 57, we have

a∗ | (x, ỹ)≤i−1 ∼ N

(
â,

1

d
(1 + ϵ̃)X⊥i−1(X

⊥
i−1)

⊤
)
,

with its covariance matrix 1
d
(1 + ϵ̃)X⊥i−1(X

⊥
i−1)

⊤ being rank-deficient.
Now, observe that ỹi | (x, ỹ)≤i−1, xi has the same distribution as ⟨a∗, xi⟩ + 1 | (x, ỹ)≤i−1,

which is N
(
⟨â, xi⟩+ 1, 1

d
(1 + ϵ̃)x⊤i X

⊥
i−1(X

⊥
i−1)

⊤xi
)
.

Similarly, underH1, we have ỹi | (x, ỹ)≤i−1, xi has distribution N
(
⟨â, xi⟩+ 1, 1

d
(1− ϵ̃)x⊤i X⊥i−1(X⊥i−1)⊤xi

)
.

We now prove (6.10) by a case analysis:

1. If xi ∈ span(x1, . . . , xi−1), then (X⊥i−1)
⊤xi = 0, and under both H0 and H1, the poste-

rior distributions of ỹi | (x, ỹ)≤i−1, xi are both delta mass on ⟨â, xi⟩ + 1, and therefore,
KL(P0(ỹi = · | (x, ỹ)≤i−1, xi)),P1(ỹi = · | (x, ỹ)≤i−1, xi)) = 0 ≤ 3ϵ̃2.

2. If xi /∈ span(x1, . . . , xi−1), then (X⊥i−1)
⊤xi ̸= 0, and under H0 and H1, the posterior

distributions of ỹi | (x, ỹ)≤i−1, xi are N(µ̂i, (1 + ϵ̃)σ2
i) and N(µ̂i, (1 − ϵ̃)σ2

i) respectively,
where µ̂i = ⟨â, xi⟩+ 1, and σ2

i =
1
d
x⊤i X

⊥
i−1(X

⊥
i−1)

⊤xi. In this case, by Fact 7,

KL
(
P0(ỹi = · | (x, ỹ)≤i−1, xi)),P1(ỹi = · | (x, ỹ)≤i−1, xi)

)
=KL

(
N(µ̂i, (1 + ϵ̃)σ2

i),N(µ̂i, (1− ϵ̃)σ2
i)
)

=
1

2

(
1 + ϵ̃

1− ϵ̃
− 1 + ln(

1− ϵ̃
1 + ϵ̃

)

)
≤1

2

(
2ϵ̃

1− ϵ̃

)2

≤8ϵ̃2,

where the first inequality is by the fact that ln(1 + x) ≥ x− x2 when x ≥ 0, and taking x = 2ϵ̃
1−ϵ̃ ,

and the second inequality is from ϵ̃ ≤ 1
2

and algebra.
In summary, in both cases, Equation (6.10) holds, and plugging this back to Equation (6.9) with

n ≤ 1
64ϵ̃2

, we have KL(P0,P1) ≤ 8nϵ̃2 ≤ 1
8
. By Pinsker’s inequality (Lemma 54), dTV(P0,P1) ≤√

1
2
KL(P0,P1) ≤ 1

2
. Le Cam’s lemma (Lemma 53) implies that, for any hypothesis tester b̂, we

have
1

2
P0(b̂ = 1) +

1

2
P1(b̂ = 0) =

1

2
(1− dTV(P0,P1)) ≥

1

4
.

Step 3: concluding the proof. Given A’s output auditing estimate µ̂, consider the following
hypothesis tester:

b̂ =

{
0, µ̂ > Φ(−1),
1, µ̂ ≤ Φ(−1).

Plugging into Equation (6.5), we have

1

2
P0

(
µ̂ ≤ Φ(−1)

)
+

1

2
P1

(
µ̂ > Φ(−1)

)
≥ 1

4
. (6.11)

211

Now, recall Claim 4, and using the fact that P(A ∩ B) ≥ P(A) − P(BC) = P(A) + P(B) − 1,
we have

P0

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

36
ϵ̃

)
(6.12)

≥ P0

(
µ̂ ≤ Φ(−1), µ(h∗) > Φ(1)− 1

36
ϵ̃

)
≥ P0

(
µ̂ ≤ Φ(−1)

)
+

15

16
− 1

≥ P0

(
µ̂ ≤ Φ(−1)

)
− 1

16
.

Symmetrically, we also have

P1

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

36
ϵ̃

)
≥ P1

(
µ̂ > Φ(−1)

)
− 1

16
. (6.13)

Combining Equations (6.11), (6.12), and (6.13), we have

1

2
P0

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

36
ϵ̃

)
+

1

2
P1

(∣∣µ̂− µ(h∗)∣∣ ≥ 1

36
ϵ̃

)
≥ 1

4
− 1

16
>

1

8
.

As 1
36
ϵ̃ ≥ ϵ, and the left hand side can be viewed as the total probability of

∣∣µ̂− µ(h∗)∣∣ ≥ ϵ when
h∗ is drawn from the uniform mixture distribution of the h∗ distributions under H0 and H1. By
the probabilistic method, there exists some h∗ ∈ H such that Ph∗

(∣∣µ̂− µ(h∗)∣∣ > ϵ
)
> 1

8
.

Lemma 49. Given the same setting above. For any fixed i ∈ N and (x, ỹ)≤i, the posterior distri-
bution a∗ | (x, ỹ)≤i is the same as a∗ | {a∗ ∈ U}, where U =

{
a : ∀j ∈ [i] : ⟨xj, a⟩+ 1 = ỹj

}
.

Proof. We use the Bayes formula to expand the posterior; below ∝ denotes equality up to a
multiplicative factor independent of a∗.

P(a∗ | (x, ỹ)≤i) ∝P(a∗, (x, ỹ)≤i)

∝P(a∗)
i∏

j=1

P(xj | a∗, (x, ỹ)≤j−1)P(ỹj | xj, a∗, (x, ỹ)≤j−1)

∝P(a∗)
i∏

j=1

P(xj | (x, ỹ)≤j−1)1
{
ỹj = ⟨xj, a∗⟩+ 1

}
∝P(a∗)

i∏
j=1

1
{
ỹj = ⟨xj, a∗⟩+ 1

}
where the second equality uses the definition of conditional probability; the third equality uses
the fact that for any fixed query learning algorithm A, xj is independent of a∗ conditioned on
(x, ỹ)≤j−1, and the observation that given xj and a∗, ỹj = ⟨xj, a∗⟩ + 1 deterministically. This
concludes the proof.

212

Proof of Claim 4. For h∗(x) = sign(⟨a∗, x⟩+ b∗) where b∗ = −1, it can be seen that,

P0(h
∗(x) = +1 | xA = 1) = 0,

On the other hand,

P0(h
∗(x) = +1 | xA = 0) = Pz∼N(0,Id)(⟨a

∗, z⟩ ≥ 1) = Pz∼N(0,Id)

(〈
a∗

∥a∗∥
, z

〉
≥ 1

∥a∗∥

)
= 1−Φ

(
1

∥a∗∥

)
.

Also, note that under H0, d∥a
∗∥22

(1+ϵ̃)
∼ χ2(d); Therefore, by Fact 8, we have that with probability

≥ 15
16

, d∥a
∗∥22

(1+ϵ̃)
≥ d · (1− 10

√
1
d
), which implies that

1

∥a∗∥
≤
√√√√ 1

(1 + ϵ̃)(1− 10
√

1
d
)
≤
√

1

(1 + ϵ̃)(1− ϵ̃
4
)
≤ 1− ϵ̃

4
.

Therefore, as for every a, b ∈ [3
4
, 1],

∣∣Φ(a)− Φ(b)
∣∣ ≥ minξ∈[3

4
,1]Φ

′(ξ)|a− b| ≥ 1
9
|a− b|, we

have:

1− Φ

(
1

∥a∗∥

)
≥ 1− Φ

(
1− ϵ̃

4

)
≥ 1− (Φ(1)− ϵ̃

36
) ≥ Φ(−1) + ϵ̃

36
.

This concludes the proof of the first inequality. The second inequality is proved symmetrically.

We now present our (deterministic) active fairness auditing algorithm, Algorithm 22 and its
guarantees. Algorithm 22 works under the setting when the two subpopulations are Gaussian,
whose mean and covariance parameters (m0,Σ0), (m1,Σ1) are known. It also assumes access
to black-box queries to h∗ ∈ Hlin =

{
ha,b(x) := sign(⟨a, x⟩+ b) : a ∈ Rd, b ∈ R

}
, and aims to

estimate µ(h∗) within precision ϵ. Recall that

µ(h∗) = Prx∼DX
(
h∗(x) = 1 | xA = 0

)
− Prx∼DX

(
h∗(x) = 1 | xA = 1

)
,

it suffices to estimate γb := Prx∼DX
(
h∗(x) = 1 | xA = 0

)
within precision ϵ/2, for each b ∈

{0, 1}. To this end, we note that

γb = Prx∼N(mb,Σb)

(
h∗(x) = 1

)
= Prx̃∼N(0,Id)

(
h∗(mb + Σ

1/2
b x̃) = 1

)
;

if we define h̃b : Rd → {−1,+1} such that

h̃b(x̃) = h∗(mb + Σ
1/2
b x̃), (6.14)

γb equals to γ(h̃b), where γ(h) = Px̃∼N(0,Id)

(
h(x̃) = 1

)
is the probability of positive prediction

of h under the standard Gaussian distribution. Importantly, as h∗ is a linear classifier, h̃b is also a
linear classifier and lies inHlin.

Recall that procedure ESTIMATE-POSITIVE (Algorithm 20) label-efficiently estimates γ(h)
for any h ∈ Hlin, using query access to h. Algorithm 22 uses it as a subprocedure to estimate
γb = γ(h̃b) (line 3). To simulate label queries to h̃b using query access to h∗, according to

213

Algorithm 22 Active fairness auditing for nonhomogeneous linear classifiers under Gaussian
subpopulations

Require: Subpopulation parameters (m0,Σ0), (m1,Σ1), query access to h∗ ∈ Hlin, target error
ϵ.

Ensure: µ̂ such that
∣∣µ̂− µ(h∗)∣∣ ≤ ϵ.

1: for b ∈ {0, 1} do
2: Define h̃b : Rd → {−1,+1} such that h̃b(x̃) = h∗(mb + Σ

1/2
b x̃); ▷ h̃b ∈ Hlin, and each

query to h̃b can be simulated by one query to h∗

3: γ̂b ← ESTIMATE-POSITIVE(h̃b,
ϵ
2
)

return γ̂0 − γ̂1

Equation (6.14), it suffices to apply an affine transformation on the input x̃, obtaining transformed
input mb + Σ

1/2
b x̃, and query h∗ on the transformed input.

Finally, after γ̂0, γ̂1, ϵ/2-accurate estimators of γ0, γ1 are obtained, Algorithm 22 takes their
difference as our estimator µ̂ for µ(h∗) (line 3).
Theorem 33 (Upper bound). If h∗ ∈ Hlin, DX is such that x | xA = 0 ∼ N(m0,Σ0), x | xA =
1 ∼ N(m1,Σ1). Algorithm 22 outputs µ̂, such that with probability 1,

∣∣µ̂− µ(h∗)∣∣ ≤ ϵ; moreover,
Algorithm 22 makes at most O(d ln d

ϵ
) label queries to h∗.

Proof. As we will see from Lemma 50, for b ∈ {0, 1}, the respective calls of ESTIMATE-POSITIVE

ensures that
|γ̂b − γb| ≤

ϵ

2
.

Therefore, ∣∣µ̂− µ(h∗)∣∣ ≤|γ̂0 − γ0|+|γ̂1 − γ1| ≤ ϵ.

Moreover, for every b, Lemma 50 ensures that each call to ESTIMATE-POSITIVE only makes at
most O(d ln d

ϵ
) label queries to h̃b; as simulating each query to h̃b takes one query to h∗, for every

b, it also makes at most O(d ln d
ϵ
) label queries to h∗. Summing the number of label queries over

b ∈ {0, 1}, the total number of label queries by Algorithm 22 is O(d ln d
ϵ
).

We now turn to presenting the guarantee of the key subprocedure ESTIMATE-POSITIVE and
its proof. This expands the analysis sketch in Section 6.4.3.
Lemma 50 (Guarantees of ESTIMATE-POSITIVE). Recall that γ(h) = Prx∼N(0,Id)(h(x) = +1).
ESTIMATE-POSITIVE (Algorithm 20) receives inputs query access to h∗ ∈ Hlin, and target error
ϵ, and outputs γ̂ such that ∣∣γ̂ − γ(h∗)∣∣ ≤ ϵ. (6.15)

Furthermore, it makes at most O(d ln d
ϵ
) queries to h∗.

Proof. Let h∗(x) = sign(⟨a∗, x⟩ + b∗) be the target classifier. First, observe that γ(h∗) =

Φ
(

b∗

∥a∗∥2

)
=: Φ(sr), where Φ is the standard normal CDF, s := sign(b∗), and r :=

√
1∑d

i=1m
−2
i

,

for mi := − b∗

a∗i
. Note that line 2 of ESTIMATE-POSITIVE correctly obtains s, as s = h∗(0) =

sign(⟨a∗,0⟩+ b) = sign(b).

214

Recall that α =
√

2d ln 1
ϵ

and β = 2d
5
2 (ln 1

ϵ
)
3
4 (1

ϵ
)
1
2 . We consider two cases depending on the

line in which ESTIMATE-POSITIVE returns:

1. If ESTIMATE-POSITIVE returns in line 4, then it must be the case that for all i ∈ [d],
h∗(αei) = h∗(−αei). In this case, by Lemma 52, we have that for every i, |mi| ≥ α. This

implies that r =
√

1∑d
i=1m

−2
i

≥
√

1
dα−2 ≥

√
2 ln 1

ϵ
. For the case that s = −1, we have

that γ(h∗) = Φ(sr) ≤ ϵ, where we use the standard fact that Φ(x) ≤ exp(−x2

2
) for x ≤ 0;

in this case γ̂ = 0 ensures Equation (6.15) holds; for the symmetric case that s = +1,
γ(h∗) = Φ(sr) ≥ 1− ϵ and γ̂ = 1, which also ensures Equation (6.15).

2. On the other hand, ESTIMATE-POSITIVE returns in line 12, it must be the case that there
exists some i0 ∈ [d], such that |mi0| ≤ α. This implies that r =

√
1∑d

i=1m
−2
i

≤
√

1
m−2
i0

=

|mi0| ≤ α.
Now, ESTIMATE-POSITIVE must execute lines 5 to 10. The final S it computes has the fol-
lowing properties: for every i ∈ S added, by the guarantee of procedure BINARY-SEARCH

(Algorithm 21), |m̂i −mi| ≤ ϵ; otherwise, for i /∈ S, it must be the case that h∗(βei) ̸=
h∗(−βei), which, by Lemma 52, implies that |mi| ≥ β. Therefore, all the conditions of
Lemma 39 are satisfied, and thus,|r̂ − r| ≤ 2ϵ. This also yields that|sr̂ − sr| ≤ 2ϵ. Finally,
note that Φ is 1√

2π
-Lipschitz, we have

∣∣γ̂ − γ(h∗)∣∣ = ∣∣Φ(sr̂)− Φ(sr)
∣∣ ≤ 1√

2π
·|sr̂ − sr| ≤ ϵ.

In summary, in both cases, ESTIMATE-POSITIVE outputs γ̂ such that Equation (6.15) is satisfied.
We now calculate the total query complexity of ESTIMATE-POSITIVE. Line 2 makes 1

label query; line 3 makes 2d label queries; for each i ∈ [d], line 7 makes 2 label queries, and
BINARY-SEARCH makes log 2β

ϵ
label queries. In summary, the total label query complexity of

ESTIMATE-POSITIVE is:

1 + 2d+ d(2 + log
2β

ϵ
) = O

(
d ln

d

ϵ

)
.

We now present the proof of Lemma 39, which is key to the proof of Lemma 50.

Proof of Lemma 39. First, by Lemma 51, and the assumption that for all i ∈ S, |m̂i −mi| ≤ ϵ,
we have ∣∣∣∣∣∣

√
1∑

i∈S m̂
−2
i

−
√

1∑
i∈Sm

−2
i

∣∣∣∣∣∣ ≤ ϵ.

It remains to prove that ∣∣∣∣∣∣
√

1∑
i∈Sm

−2
i

−
√

1∑d
i=1m

−2
i

∣∣∣∣∣∣ ≤ ϵ,

which combined with the above inequality, will conclude the proof.

215

To see this, let z =
∑d

i=1m
−2
i and zS =

∑
i∈Sm

−2
i ; since for all i /∈ S,|mi| ≥ β, this implies

that
|z − zS| ≤

d

β2
≤ 2ϵ

(4d ln 1
ϵ
)
3
2

,

Also, note that
√

1∑d
i=1m

−2
i

= r ≤ α implies that z ≥ 1
α2 = 1

2d ln 1
ϵ

; therefore, zS ≥ z −
2ϵ

(4d ln 1
ϵ
)
3
2
≥ 1

4d ln 1
ϵ

. Now, by Lagrange mean value theorem,∣∣∣∣∣ 1
√
zS
− 1√

z

∣∣∣∣∣ ≤ max
z′∈(zS ,z)

1

2
(z′)−

3
2 ·|zs − z| ≤

1

2
(zS)

− 3
2 ·|zs − z| ≤

1

2
(4d ln

1

ϵ
)
3
2 · 2ϵ

(4d ln 1
ϵ
)
3
2

≤ ϵ.

This concludes the proof.

Lemma 51. Let l ∈ N+ and f(m1, . . . ,ml) :=
√

1∑l
i=1m

−2
i

; then f is 1-Lipschitz with respect to

∥ · ∥∞.

Proof. First, we show that f is 1-Lipschitz with respect to ∥ · ∥∞ in each of the orthants of Rl.
Without loss of generality, we focus on the positive orthant R =:

{
m ∈ Rl : mi ≥ 0, ∀i

}
. We

now check that for any two points m and n in R,
∣∣f(m)− f(n)

∣∣ ≤ ∥m − n∥∞. By Lagrange
mean value theorem, there exists some θ ∈

{
tm+ (1− t)n : t ∈ (0, 1)

}
, such that∣∣f(m)− f(n)

∣∣ = ∣∣⟨∇f(θ),m− n⟩
∣∣ ≤ ∥∇f(θ)∥1∥m− n∥∞,

where the second inequality is from Hölder’s inequalty. Therefore, it suffices to check that for
all m in the R0 =:

{
m ∈ Rl : mi > 0,∀i

}
(interior of R), ∥∇f(m1, . . . ,ml)∥1 ≤ 1. To see this,

note that

∇f(m1, . . . ,md) =

(
m−31

(
∑l

i=1m
−2
i)

3
2

, . . . ,
m−3l

(
∑l

i=1m
−2
i)

3
2

)
=: g,

Observe that
∑l

i=1|gi|
2
3 = 1; this implies that for every i ∈ [l],|gi| ≤ 1, and therefore,

∥g∥1 =
l∑

i=1

|gi| ≤ 1.

Now consider m,n ∈ Rl that do not necessarily lie in the same orthant. Suppose the line seg-
ment

{
tm+ (1− t)n : t ∈ [0, 1]

}
consists of k pieces, where piece i is

{
tm+ (1− t)n : t ∈ [ti−1, ti]

}
,

where 1 = t0 > t1 > . . . > tk = 0, where each piece is contained in an orthant. Then we have:∣∣f(m)− f(n)
∣∣ ≤ k∑

i=1

∣∣f(ti−1m+ (1− ti−1)n)− f(tim+ (1− ti)n)
∣∣

≤
k∑
i=1

∥(ti−1m+ (1− ti−1)n)− (tim+ (1− ti)n)∥∞

=
k∑
i=1

(ti−1 − ti)∥m− n∥∞

=∥m− n∥∞,

216

where the second inequality uses the Lipchitzness of f within the orthant that contains piece i, for
each i in [k].

Lemma 52. Given i ∈ [d] and ξ > 0, if h∗(ξei) = h∗(−ξei), then|mi| ≥ ξ.

Proof. Suppose h∗(ξei) = h∗(−ξei) = +1; in this case, −bi ≤ ξa∗i ≤ bi, and therefore,
|ξa∗i | ≤ bi, which implies that |mi| ≥ ξ. The case of h∗(ξei) = h∗(−ξei) = +1 can be proved
symmetrically.

6.9.3 Auxiliary Lemmas for Query Learning Lower Bounds

In this subsection we collect a few standard and useful lemmas for establishing lower bounds
for general adaptive sampling and query learning algorithms, including active fairness auditing
algorithms. Throughout, denote by P the distribution of interaction transcript (the sequence
of N labeled examples ⟨(x1, y1), . . . , (xN , yN)⟩) obtained by the query learning algorithm by
interacting with the environment, and use the shorthand (x, y)≤i to denote ⟨(x1, y1), . . . , (xi, yi)⟩.
Lemma 53 (Le Cam’s Lemma). Given two distributions P0, P1 over observation space z ∈ Z ,
and let b̂ : Z → {0, 1} be any hypothesis tester. Then,

1

2
P0

(
b̂(Z) = 1

)
+

1

2
P1

(
b̂(Z) = 0

)
≥ 1

2

(
1− dTV(P0,P1)

)
,

where dTV(P0,P1) denotes the total variation distance between P0 and P1.

Lemma 54 (Pinsker’s Inequality). For two distributions P and Q, dTV(P0,P1) ≤
√

1
2
KL(P,Q).

Lemma 55 (Chain rule of KL divergence). For two distributions Q0(Z,W) and Q1(Z,W) over
Z ×W , we have

KL(Q0,Q1) =KL(Q0
Z ,Q1

Z) + Ez∼Q0
Z

[
KL(Q0

W |Z(· | z),Q1
W |Z(· | z))

]
.

Fact 6. Let kl(·, ·) denote the binary relative entropy function. For a, b ∈ [1
4
, 3
4
], kl(a, b) ≤

3(b− a)2.
The following lemma is well-known.

Lemma 56 (Divergence decomposition). For a (possibly randomized) query learning algorithm
A with label budget N , under two hypotheses H0, H1 (represented by distributions over the target
concept h∗), we have:

KL(P0,P1) =
N∑
i=1

E
[
KL(P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi))

]
217

Proof. We simplify KL(P0,P1) as follows:

KL(P0,P1) =
∑

(x,y)≤N

P0((x, y)≤N) ln
P0((x, y)≤N)

P0((x, y)≤N)

=
∑

(x,y)≤N

P0((x, y)≤N)
N∑
i=1

ln
PA(xi | (x, y)≤i−1)
PA(xi | (x, y)≤i−1)

+ ln
P0(yi | (x, y)≤i−1, xi)
P1(yi | (x, y)≤i−1, xi)

=
N∑
i=1

∑
(x,y)≤i

P0((x, y)≤i) ln
P0(yi | (x, y)≤i−1, xi)
P1(yi | (x, y)≤i−1, xi)

=
N∑
i=1

∑
(x,y)≤i−1,xi

P0((x, y)≤i−1, xi) ·
∑
yi

P0(yi | (x, y)≤i−1, xi) ln
P0(yi | (x, y)≤i−1, xi)
P1(yi | (x, y)≤i−1, xi)

=
N∑
i=1

E
[
KL(P0(yi = · | (x, y)≤i−1, xi)),P1(yi = · | (x, y)≤i−1, xi))

]
,

where the first equality is by the definition of KL divergence; the second equality is from the chain
rule of conditional probability; the third equality is by canceling out the conditional probabilities
of unlabeled examples given history, as we run the same algorithm A under two environments;
the fourth equality is by the law of total probability; the fifth equality is again by the definition of
the KL divergence.

Fact 7 (KL divergence between Gaussians of the same mean). If µ ∈ R and σ1, σ2 > 0, then,

KL
(
N(µ, σ2

1),N(µ, σ
2
2))
)
=
σ2
1

σ2
2

− 1 + ln
σ2
2

σ2
1

.

Fact 8 (Concentration of χ2 random variables). For d ≥ 1, Z ∼ χ2(d), and δ > 0,

P

(
|Z − d| ≤ 2

√
d ln

1

δ
+ 2 ln

1

δ

)
≥ 1− δ.

Specifically,

P
(
|Z − d| ≤ 10

√
d
)
≥ 15

16
.

The lemma below is a standard fact on normal distribution conditioned on affine subspaces;
we include a proof here as we cannot find a reference.
Lemma 57. Suppose U =

{
θ ∈ Rd : Xθ = y

}
is an nonempty affine subspace of Rd, where X ∈

Rm×d has rows x1, . . . , xm ∈ Rd. Let dim(span(x1, . . . , xm)) = l, and let W ∈ Rd×(d−l) be a
matrix whose columns form an orthonormal basis of span(x1, . . . , xm)⊥. Consider Z ∼ N(0, Id);
then,

Z | {Z ∈ U} ∼ N(X†y,WW⊤).

218

Proof. Denote by θ̂ = X†y the least norm solution of equation Xθ = y. It is well-known that
θ̂ ∈ span(x1, . . . , xm). As U ̸= ∅, Xθ̂ = y. We now claim that U can be equivalently written as{
θ̂ +Wα : α ∈ Rd−l

}
:

1. On one hand, for all θ = θ̂ +Wα, Xθ = Xθ̂ +XWα = y + 0 = y.
2. On the other hand, for every θ ∈ U , as Xθ = y, we have X(θ − θ̂) = 0, which implies that
θ − θ̂ ∈ span(x1, . . . , xm)

⊥. Therefore, there exists some α ∈ Rd−l such that θ = θ̂ +Wα.

Define V ∈ Rd×l to be a matrix whose columns form an orthonormal basis of span(x1, . . . , xm).
We also claim that given a vector z ∈ Rd, z ∈ U ⇔ V ⊤z = V ⊤θ̂:

1. If z ∈ U , by the previous claim, z = θ̂+Wα, and therefore V ⊤z = V ⊤θ̂+V ⊤Wα = V ⊤θ̂.
2. If V ⊤z = V ⊤θ̂, then note that z = V V ⊤z+WW⊤z = V V ⊤θ̂+W (W⊤z) = θ̂+W (W⊤z),

where the last equality follows from that θ̂ ∈ span(x1, . . . , xm). Taking αz = W⊤z ∈ Rd−l,
we have z = θ̂ +Wαz, implying that z ∈ U .

For the rest of the proof, let d
= denote equality in distribution. Consider random variable

Z
d
= N(0, Id). Let ϵV = V ⊤Z, ϵW = W⊤Z. Now, note that the matrix T =

(
W⊤

V ⊤

)
∈ Rd×d is a

orthonormal matrix, (
ϵV
ϵW

)
=

(
V ⊤

W⊤

)
Z = TZ

d
= N(0, Id),

Therefore, ϵV , ϵW are two independent, standard normal random variables with distributions
N(0, Il) and N(0, Id−l), respectively.

Note from the second claim that the event {Z ∈ U} is equivalent to {ϵV = V ⊤θ̂}; therefore,
ϵW | {Z ∈ U}

d
= N(0, Id−l). As a result,

Z | {Z ∈ U} d
= V ϵV +WϵW | {Z ∈ U}

d
= θ̂ +WϵW | {Z ∈ U}

d
= N(X†y,WW⊤).

219

220

Part II

Machine Learning for and of Multi-Agent
Systems

221

Chapter 7

Multi-agent Attribution via the Shapley
Value

7.1 Introduction

Suppose we have a group of individuals out of which we need to select a team to perform a
task. Besides maximizing team performance, we also wish to reward individuals fairly for their
contributions to the team [208]. This general problem of multi-agent attribution is important
in many real world contexts: choosing the best athletes for a sports team [186], choosing good
workers for a project [246], choosing a subset of classifiers to use in an ensemble [242] etc. In
this chapter we ask: how can we use data on past performance to figure out which individuals
complement each other? And how can we fairly compensate team members accordingly?

Standard game theory (sometimes called ‘non-cooperative’ game theory) explicitly specifies
actions, players, and utility functions. By contrast, cooperative game theory abstracts away from
the ‘rules of the game’ and simply has as primitives the agents and the characteristic function
(henceforth CF). The CF measures how much utility a coalition can create. Solution concepts
in cooperative game theory have been developed to be ‘fair’ divisions of the total utility created
by the coalition. These solution concepts can be viewed either as prescriptive (i.e. this is what
an individual ‘deserves’ to get given their contribution) or predictive of what will happen in real
world negotiations, where the intuition is that coalitions (or individuals) that don’t receive fair
compensations will opt to leave the game and simply transact amongst themselves.

These tools are useful for answering our main questions. The CF tells us how well a team
will perform and the solution concepts will tell us how to divide value across individuals. For the
purposes of this chapter, we consider one of the most prominent solution concepts: the Shapley
Value (SV). However, there are two hurdles to overcome.

1. The CF is unknown to us, and is combinatorial in nature, thus requiring a sensible parametric
model through which we can learn the CF from team performance data.

2. The SV requires an exponential number of operations to compute.

We introduce the cooperative game abstraction (CGA) model that simultaneously addresses
both of these issues. In addition, CGA models are interpretable so as to aid analysts in understand-
ing group synergy. Our main idea is motivated by a particular decomposition of the CF into an

223

additive series of weights that capture m-way interaction between the n players for m = 1, ..., n.
When we zero out terms of order order k + 1 and higher, this leaves behind an abstraction, a
sketched version of the real cooperative game, which we refer to as a kth order CGA.

Our Contribution: To the best of our knowledge, we are the first to estimate characteristic
functions with lossy abstractions [118] of the true characteristic function using parametric models,
and bound the error of the estimated CF and SV. The second order variant of the CGA was first
proposed in [92]. We generalize this work to study CGA models of any order. Our theoretical
contributions are as follows: (i) sample complexity characterization of when a CGA model of
order k (for any order k) is identifiable from data (ii) sensitivity analysis of how the estimation
error of the characteristic function propagates into the downstream task of estimating the Shapley
Value.

Empirically, we first validate the usefulness of CGAs in artificial RL environments, in which
we can verify the predictions of CGAs on counterfactual teams. Then, we model real world data
from the NBA, for which we do not have ground truth, using CGAs and show that its predictions
are consistent with expert knowledge and various metrics of team strength and player value.

7.2 Related Work

Past works on ML for cooperative games have largely been theoretical and focus either on
estimating the CF or estimating the Shapley Value directly without the CF. This differs from our
goal, which is to model both with a provably good model that demonstrates sound performance
on real world data. Indeed, our central premise is that the CF is unknown and needs to be learned
from data. To the best of our knowledge, we are the first design a compact representation for the
CF with learning from samples in mind: CGA not only has good learning theoretic properties, but
also allows for fast SV computation.

Below, we describe related work in machine learning and cooperative game theory that assume
the CF is unknown. In the appendix, we list additional, more distantly related work that assume
the CF is known.

Modeling Characteristic Functions: As mentioned previously, [92] is the first to consider
what we consider the second order variant of CGA. However, its focus was on the computational
complexity of the exact computation of the Shapley Value. We consider the generalization of
this representation to any order and are concerned with using lower rank CGA as an abstraction
of complex games for computational tractability. As the low rank CGA is a lossy estimator of
the true CF, we study and obtain theoretical bounds on the estimation errors of what we aim to
compute: the CF and the SV.

A related work is [108] which proposes the MGH model for CFs. While the MGH model is
like CGA in that both are complete representations, it contains nonlinearity that makes it harder
to optimize and interpret. More crucially, the MPH model does not admit an easy computation
of the SV. On the other hand, there are succinct representation models proposed for CFs that do
allow the SVs to be readily computed. These are algebraic decision diagrams [24] and MC-nets
[149], which represent CFs with a set of logical rules. However, the key drawback is that these
models cannot be readily parameterized in tensor form and optimized using modern auto-grad
toolkits, unlike the CGA.

224

Lastly, there has also been work in learning theory [33] that examines conditions under which
a characteristic function can be PAC learned from samples. This work is concerned only with the
theoretical learnability of the CF (and not the SV) for certain classes of cooperative games. By
contrast, we study a concrete, parametric model that can approximate the CF of any cooperative
game, study how approximation noise propagates into the SV and empirically verify that the
model obtains good performance on real data.

Computing the Shapley Value: There has also been work that directly approximates the
Shapley Value, without first learning the CF [35]. This differs from our goal in that we are
interested in estimating both the Shapley and the CF. The latter is needed for applications such as
counterfactual team performance prediction and optimal team formation, as we will demonstrate
in the experiments.

Team Performance Analysis from Data: We note that all of the work cited above are
theoretical and do not test their model on real world data. [186] is one empirical work that does.
They model e-Sports team performances using a 2nd order CGA. Our work differs in that i)
we generalize their model and study CGA models any order to obtain comprehensive sample
complexity bounds ii) we are interested in fair payoff assignment in addition to team strength. To
this end, we show that CGA allows for easy computation of SV and derive noise bounds for the
estimated SV.

Abstraction in Games: Abstraction is an idea often used in game theory to make the
computation of solution concepts such as the Nash Equilibrium (NE) tractable. One can efficiently
solve for the NE of a abstracted game and lift the strategy to the original game. In non-cooperative
game theory, the relationship between the quality of abstraction and the quality of the lifted
strategy with respect to the original game has been heavily studied [169, 170, 176]. Our analysis
characterizes the relationship between the abstractions and the solution concept, here being the
Shapley Value, for any cooperative game. To the best of our knowledge, our work is the first to
apply abstraction for computational tractability in the context of cooperative games.

7.3 Cooperative Game Theory Preliminaries

We begin with definitions in cooperative game theory.
Definition 37. A cooperative game is defined by:

1. A set of agents A = {1, . . . , n} with generic element i
2. A characteristic function v : 2A → R
We will refer to a subset of agents C ∈ 2A for which v(C) measures how much utility a team

C can create and divide amongst themselves. A ‘fair division’ of this value can be given according
to the Shapley Value.
Definition 38. The Shapley Value of an agent i with respect to team A is:

φi(v) =
∑
S⊆A\i

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

The Shapley Value is typically justified axiomatically. It is the unique division of total
value that satisfies axioms of efficiency (all gains are distributed), symmetry (individuals with

225

equal marginal contribution to all coalition get the same division), linearity (if two games are
combined, the new division is the sum of the games’ divisions), null player (players with 0
marginal contribution to any coalition receive 0 value). The Shapley value has been widely
applied in ML, in domains such as cost-division [214, 273], feature importance [194], and data
valuation [158] to name a few.

7.4 Cooperative Game Abstractions

7.4.1 Motivation

To model the characteristic function v, a natural set of abstractions can be derived from the fact
that the characteristic function v can be decomposed into a sum of interaction terms across subsets
of agents. In what follows, we will denote abstractions of v as v̂.
Fact 9. There exists a set of values ωS for each S = {i1, . . . , ik} ⊆ A such that any characteristic
function can be decomposed into its interaction form where:

v(C) =

|C|∑
k=1

∑
S∈2Ck

ωS. (7.1)

where 2Ck is the set of all coalitions of size k.
Note that Fact 9 implies that CGA is a complete representation: a CGA model of order n can

model any set function. Its downside is that it has 2n parameters to be learned from data. We may
elect to truncate higher order terms and use an order k CGA model v̂ to model v instead:
Definition 39. A kth CGA model is parameterized by weight vector ω, which includes a weight
ωC for all coalitions C with |C| ≤ k. The corresponding v(C) is defined as in equation 7.1.

A key property of CGA models is that the Shapley Value may be computed from a simple
weighted sum of the CGA parameters.
Fact 10. The Shapley Value of an individual i with respect to players A may be expressed as:

φi(v) =
∑

T⊆A\{i}

1

|T |+ 1
ωT∪{i}

7.4.2 Learning a CGA

We learn the CGA model from samples of coalition values from v. Given hypothesis class beH, we
perform empirical risk minimization (ERM) with criterion: minv̂∈H

∑
(C,v(C))∈DP (v̂(C)− v(C))

2

An important question that immediately follows is: when can a CGA model be identified from
data? We define an exact identification notion as below:
Definition 40. Suppose that we have a set of hypotheses H from which we will choose v̂ via
minimization of the criterion above. Suppose the dataset DP is actually generated via a true
v∗ ∈ H, we say that DP identifies v∗ if v∗ is the unique minimizer of the criterion.

226

Identification is an important question for three reasons. We are interested in the parameters
of the model since they will be used to (i) predict the performance of unseen teams (ii) compute
the Shapley value (iii) understand complementarity and substitutability between team members.
If there are multiple sets of parameters consistent with the data, then none of the inferences we
perform to answer those questions (e.g the marginal contribution of players) will be well defined.

We now give some sufficiency and necessity conditions on DP for v∗ to be identified exactly.
These results generalize known sample complexity bounds from [254], expanding their bounds
for only order 2 to any order k.
Theorem 34 (Sufficiency for Identification). Suppose H includes all kth order CGAs and v∗

is a kth order CGA. If DP include performances from all teams of at least k different sizes
s1, . . . , sk ∈ [k, n− 1], then DP identifies v∗.
Theorem 35 (Necessity for Identification). SupposeH includes all kth order CGAs and v∗ is a
kth order CGA. If DP contains performances of teams of only m < k different sizes, then DP
does not always identify v∗.

We relegate the full proofs to the Appendix, as they are quite involved. To provide some
intuition for the proof, in the sufficiency result, the argument uses induction to exploit structure
in the matrix to arrive at the conditions under which its null space is empty, which implies that
the matrix is full rank and the CGA is identifiable. In the complementary necessity result, we
offer counterexamples that show even with all subsets of m < k different sizes, the matrix
corresponding to the system of linear equations may not be full rank, thus making the CGA model
non-identifiable from data.

These results show that if the order k = O(1), identification is possible with poly(n) samples
and that if k = O(n), the number of samples becomes exponential in n. Therefore, we suggest
that practitioners should focus on the lowest order CGAs that they believe are suitable. For us, we
find that low rank, second order CGAs demonstrate good performance in our experiments.

One consideration is that these bounds may be too pessimistic in requiring exact recovery
of the true v. In the appendix, we provide sample bounds for identification of CGA under a
PAC/PMAC [29] framework (Proposition 1). In particular, we have that under the looser, PMAC
approximation notion, only O(n) instead of O(dk) samples are needed for approximate estimation
of most coalition values.

7.5 Approximate Shapley Values

With our approximation of the CF v̂ in hand, we examine the fidelity of the SV computed from
v̂. We denote the approximated SV of player i as φi(v̂) and the real SV φi(v). As is typical in
sensitivity analysis, we derive bounds relating the error in v to the error in the Shapley value.

These bounds may be of independent interest since often in ML applications v is stochastic.
For instance, SV is widely used in interpretability literature [62, 74, 88, 116, 194], where v is
taken to be the model performance. The model performance is typically stochastic, since it is
a function of the random samples of data used to train the model and the randomness in the
optimization, which can converge to differing local optima due to the nonconvexity of the losses
e.g of deep models.

227

Let φ(v) be the vector of Shapley Values. We start with a worst-case error bound for ℓ2 when
the adversary can choose how to distribute a fixed amount of error into v to construct v̂.

Theorem 36. The ℓ2 norm of the estimation error of the Shapley Values is bounded by:

∥φ(v)− φ(v̂)∥22 ≤
2

n
∥v − v̂∥22

Though this result is tight, it assumes a non-smooth, adversarial distribution that places infinite
density on the eigenvector corresponding to the largest singular value of the SV operator. Below,
we consider average case bounds assuming that the error is of fixed norm and drawn from a
smooth distribution; this type of assumption is often used in smooth analysis [127].

Theorem 37. Assuming that v − v̂ is drawn from distribution DBr with support equal to a sphere
and smooth in that κ0 ≤ PrDBr (x) ≤ κ1 for any point x in its support, then:

Ev−v̂∼DBr [∥φ(v)− φ(v̂)∥
2
2] ≤

6

n

κ1
κ0

∥v − v̂∥22
2n

We can generalize these results to any noise distribution thus:

Corollary 6. Suppose noise v − v̂ ∼ Dn is such that its conditional distribution satisfies κ0(r) ≤
PrDn(x|∥x∥22 = r2) ≤ κ1(r) for all r and x in Dn’s support, then:

Ev−v̂∼Dn [∥φ(v)− φ(v̂)∥22] ≤
6

n
Er

κ1(r)
κ0(r)

(
r2

2n

)
Intuitively, this means that if the error v− v̂ is on average spread out in thatDn is fairly smooth

in expectation across concentric spheres in its support, then the ℓ2 error of the Shapley value is
small on average. Indeed, an astute reader may worry that only a 2

n
reduction in the aggregate

approximation error ∥v− v̂∥22 is not large enough since v− v̂ ∈ R2n . Theorem 37 and Corollary 6
show that the SV actually induces a 6

n
κ1
κ0

scaling of the average approximation error.

We also obtain analogous worst and average-case ℓ1 bounds with scaling factors on the same
order. Due to space constraints, please see Theorem 5 and 6 in the appendix for the results.

Lastly, we note that these bounds are general. In the appendix, we obtain a simple derivation
of the CGA-specific bias, which can be plugged into these bounds for the SV bias. Note that
bias in the estimation of the CF only arises due to model misspecification, i.e if order k is used
to model a game of order r for r > k. This description covers all cases as any CF of a game
necessarily corresponds to a CGA model of a certain order (Fact 9) and estimation error only
arises due to a smaller order being specified. Certainly, we note that more refined bounds are a
natural future extension to this work.

228

7.6 Experiments

7.6.1 Virtual Teams

We generate team performance data from the OpenAI particle environment [191] 1. The task
in this environment is team-based and requires cooperation: 3 agents are placed in a map and 3
landmarks are marked, and agents have a limited amount of time to reach the landmarks and are
scored according to the minimum distance of any agent to any landmark. In addition, negative
rewards are incurred for colliding with other agents. Thus, a team which can cooperate well is
able to assign a single landmark per agent in real time and spread out to cover them without
colliding with each other.

1CGA 2CGA Deep Set

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

10

20

Percentage of Best Team Score

C
ou

nt

Figure 7.1: Left: Interaction matrix from second order CGA model. Players are clustered by
original training team ({0, 1, 2} trained together as did {3, 4, 5}, etc...). We see complex patterns
of complementarity and substitutability as well as a clear replication of the well known fact that
agents that train together can coordinate much better than agents which are trained separately
- this can be seen in the figure by the strong complementarity in the diagonal blocks of size 3
compared to other 3× 3 off-diagonal blocks. Right: Histograms of ratios of the score attained
by the completed team chosen by the model normalized by the score of the actual best team
containing a given initial agent.

We train 12 teams of agents (36 agents total) using the default algorithm and parameters from
the OpenAI GitHub repo. We then evaluate all

(
36
3

)
= 7140 mixed teams of these agents evaluated

over 100000 episodes. The train/validation/test split is 50/10/40. We fit a baseline first order
(where team = sum of members) CGA and a second order CGA to predicting the final score of
each team. We also compare to a more general, state of the art model for learning set functions,
DeepSet [315], which is designed purely for prediction.

1https://github.com/openai/multiagent-particle-envs

229

https://github.com/openai/multiagent-particle-envs

Since DeepSet contains more parameters than the CGA model, we expect it to fit data
better. However, unlike the CGA model, Deepset is (i) less easily identified due to the larger
sample complexity needed (ii) not readily interpretable due to the non-linearity of ϕ (iii) and
importantly, one cannot readily compute or estimate the Shapely. To compute the Shapley values
exactly, one would have to first compute v(C) for each coalition C, thus requiring 2n feed-foward
passes through the network. Even to approximate the Shapley value, it is known that O(n log n)
evaluations of the model (network) are needed [158]. In contrast, to compute the Shapley with
CGA, only one weighted sum of the CGA model parameters is needed and thus takesO(1) number
of evaluation.

Prediction: The first order CGA model achieves an test set MSE of of .79, the second order
model achieves an order of magnitude smaller at .07. These results show that in this environment
teams are not just sums of their parts. The DeepSet model achieves an MSE of .042, showing that
we give up some predictive accuracy (but not that much) from using the simpler 2nd order CGA.
We emphasize that the goal of this experiment is not to find the most predictive model. Rather, it
is to show that the much smaller, second order CGA model is roughly comparable to Deepset, all
the while conferring the advantages of: 1. being interpretable 2. allowing easy computation of the
Shapley Value.

Interpretability: To the first point, we visualize the learned matrix V̂ of the second order
CGA in a heatmap (Figure 7.1) that allows us to discern players that complement/substitute each
other.

Best Team Formation: For each of the 36 agents we have trained, we ask: what is the best
set of 2 agents to add to them to make a team? More generally, this problem of optimal player
addition is one often faced by real world sports teams, as they choose new players to draft or sign
so as to further bolster their team performance. In this virtual setting, we can evaluate all possible
additions to the team so as to gauge the predictive performance of our models.

In our setup, we restrict only to possible teammates which the original agent was not trained
with. Figure 7.1 shows the histogram of ratios of the score attained by the completed team,
which was selected by the model, normalized by the score of the actual best team. While the
first-order CGA fails to construct good teams (since it does not consider any complementarities),
the second order CGA and DeepSet model achieve more than ∼ 95% of the possible value. Thus,
the complementarity patterns learned via the 2nd order CGA are, in fact, important for this task.
We also note that the second order CGA model outperforms DeepSet on this task.

7.6.2 Real World Sports Teams

We now consider a more complex, real world problem: predicting team performance in the NBA.
We collect the last 6 seasons of NBA games (a total of 7380 games) from Kaggle along with
the publicly available box scores 2. Unlike in the dataset above, we do not observe absolute
team performance, rather we only observe relative performance (who wins). We model matchup
outcomes using the Bradley–Terry model. In particular, given the team strengths, the probability
of team i winning in a match against team j as:

2https://www.kaggle.com/drgilermo/nba-players-stats

230

https://www.kaggle.com/drgilermo/nba-players-stats

Pr[w = 1 | v̂, Ci, Cj] =
exp(v̂(Ci))

exp(v̂(Ci)) + exp(v̂(Cj))

This gives us a well defined negative log likelihood (NLL) criterion of the data D, which we
optimize with respect to v̂. We set each team in each game to be represented by its starting lineup
(5 individuals). Then we learn v̂ such that it minimizes the negative log likelihood using standard
batch SGD with learning rate 0.001. Because basketball teams are of a fixed size (only one set of
sizes), we use L2 regularization to choose one among the many possible set of models parameters.

As with the RL experiment above we compare a first order CGA, a second order CGA, and a
DeepSet model. We split the dataset randomly into 80 percent training, 10 percent validation, and
10 percent test subsets. We set hyperparameters by optimizing the loss on the validation set.

7.6.2.1 Results

Prediction: How well does the CGA perform in this task? We begin by studying an imperfect
metric: out-of-sample predictive performance. First, we see that the NBA performance can be fit
fairly well with just a first order CGA - that is, we can think of most teams roughly as the sum of
their parts. The first order CGA yields an out of sample mean negative log likelhood of −.631
which is slightly improved to −.627 under the second order CGA. We do also experiment with a
third order CGA which did not improve over the second order CGA performance. This suggests
that the second order is an apt choice for the abstraction. Finally, we observe that the DeepSet
model is not able to outperform the CGA yielding an out of sample mean NLL of −.63.

Overall, we find that predictive accuracy is low, at only about ∼ 65%, as a result of the league
being very competitive and teams being fairly evenly matched. Thus, predictive accuracy does
not tell the whole story and is not the focus of the experiment. Note that the data at hand is
observational and while players do move across teams and starting lineups change due to factors
such as injuries, time in the season, etc... who plays with whom is highly correlated across
years and starting lineups are endogenous (for example, a coach may not start one of their best
players when playing a much weaker team to avoid risking injury). Thus, we cannot evaluate
counterfactual teams. Instead, we supplement our the predictive analysis with analyses of the
competing models to see if they are truly able to extract insights from the data consistent with
NBA analytics experts.

Unseen teams: We consider teams the model has not seen: NBA All Star teams. During each
season, fans and professional analysts vote to select ‘superstar’ teams of players that then play
each other in an exhibition game, which is not included in our training data. We collect every All
Star team from the time period spanning our training set and compare our second-order CGA
model scores given to All Star teams with those of 1000 randomly generated, ‘average’ teams.

Recall that in the matchup datasets, the difference in scores between two teams is reflective of
the probability that one team will win in a matchup. Thus, there is no natural zero point like when
we are predicting v directly and we have chosen one particular normalization where the average
score is zero. If our model does generalize well, it should predict that these all star teams are far
above average despite never seeing this combination of players in the training set.

We also investigate whether the CGA has learned things about whole teams (e.g “the Cavaliers
usually win”) and whether there is sufficient variation in starting lineups that we have learned the

231

disentangled contributions of individual players (e.g the team’s success is largely due to Lebron’s
brilliance). We investigate this by constructing synthetic ‘same-team-All-Star’ teams where we
replace each player in a real All Star team with a randomly selected teammate from their real
NBA team from that year.

Figure 7.2 shows the distribution of scores for randomly constructed teams with red lines
representing predicted scores for the real All Star teams and blue lines for predicted scores for the
‘same-team-All-Star’ teams. These results show that the predictive performance of the CGA in
win rate prediction comes from meaningful player-level assessment, not just that certain teams
usually win (or lose).

0

1

2

3

4

5

−0.25 0.00 0.25 0.50
CGA Predicted Score

D
en

si
ty

Random Team All Star Backups All Star Team

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●
●
●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●
● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
● ●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●
●
● ●

●
●

●●

●●
●

●

●

●

●

●

●
●

●

●
●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●
● ●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

Log(Salary) VORP Win Share

−2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5

0

5

10

15

0

2

4

6

8

−1

0

1

2

3

Normalized Shapley Value

N
B

A
 M

et
ric

Figure 7.2: Left Panel: The second order CGA predicts that All Star Teams are far above the
99th percentile of random teams. Replacing each All Star with their team-level replacement gives
much worse teams. These results show that the predictive performance of the CGA in win rate
prediction comes from player-level assessment, and not just memorization of certain teams usually
winning or losing. Right Panel: Marginal contributions of individual NBA players, as measured
by the Shapley Value from the second order CGA, correlate well with measures of player-level
value add used by NBA analysts (VORP, Win-Share) as well as market-level value-add (salary).

Shapley Value as Individual Measure: So far we have asked whether our CGA captures
team-level performance. We now turn to asking whether it captures individual-level marginal
contribution. For each team, we compute the team members’ Shapley Values with respect to that
team. Since our dataset contains multiple years and individuals move across teams, we average
an individual’s computed Shapley values across all his teams. We correlate the Shapley Value
based contribution scores with real world metrics used to evaluate basketball players’ marginal
contributions. We consider 3 measures commonly used in NBA analytics.

First, we look at the value-over-replacement metric player3 (VORP). In basketball analytics,
VORP tries to compute what would happen if the player were to be removed from the team and
replaced by a random player in their position. Second, we look at win-share4 (WS). Win-share
tries to associate what percent of a team’s performance can be attributed to a particular player.
Finally, we use individual salaries, which are market measures of individual value add. Of course,

3https://www.basketball-reference.com/leaders/vorp_career.html
4https://www.basketball-reference.com/about/ws.html

232

https://www.basketball-reference.com/leaders/vorp_career.html
https://www.basketball-reference.com/about/ws.html

a players’ salary reflects much more than an individuals’ contribution to team wins and losses
(e.g their popularity, scarcity, etc...) and is extremely right tailed in the case of the NBA, so we
consider its log. For each of these metrics, for each player, we average their values across the
same years as our dataset.

Figure 7.2 plots CGA Shapley values against these measures. We see that there is a strong
positive relationship between the CGA predicted Shapley value and other measures of individual
contribution. Taken together, these results suggest that CGA indeed learns meaningful individual-
level contribution measures, in a way that is consistent with expert knowledge.

Remark: overall, our experiments highlight the computational benefit of CGAs. In many
cases like the NBA, team sizes are small relative to the number of players. We show that this
structural prior can be encoded in a low rank CGA model, which does just as well (or better) than
more complex, agnostic estimators like DeepSet (our main baseline), and is also interpretable to
the benefit of users.

7.7 Conclusion

Cooperative game theory is a powerful set of tools. However, the CF is combinatorial and
computing solution concepts like the Shapley is difficult. We introduce CGAs as a scalable,
interpretable model for approximating the CF, and easily computing the SV. We provide a bevy of
theoretical and empirical results so as to guide the application of CGA to model real world data.

Non-cooperative Game Theory has received much attention from the Machine Learning and
AI community [54, 177, 178, 181, 261], while Cooperative Game Theory has been less explored.
We believe that the intersection of Machine Learning and Cooperative Game Theory is rich with
topics ranging from Multi-agent RL to Federated Learning. Our broader hope is that our work
provides a springboard for future research in this area.

7.8 Appendix

7.8.1 Identification Theorem Proofs

Theorem 38 (Sufficiency for Identification). SupposeH includes all kth order CGAs and v∗ is
a kth order CGA. If DP include performances from all teams of at least k different subset sizes
s1, . . . , sk ∈ [k, n− 1], then DP identifies v∗.

Proof. Let w be the first-through-k’th order weights we seek to learn, with the first n indices
corresponding to ωS such that |S| = 1, the next

(
n
2

)
indices corresponding to |S| = 2, and so on

up through the last
(
n
k

)
terms corresponding to |S| = k. Let v be the corresponding coalitional

values we observe.
Finding a k’th-order CGA corresponding to D can be formulated as finding a solution to

Mw = v, where matrix M is a matrix whose rows correspond to the data points and each entry
in the matrix ∈ {0, 1}. For a given datapoint (S, v(S)), the corresponding row has ones in all
entries corresponding to interaction terms ωT such that T ⊆ S. Note that we only consider subset
sizes ≥ k, since subsets sizes smaller than k would not exhibit kth order interaction.

233

To show identifiability, it suffices to show that M has rank equal to the column size, since
otherwise the null space is non-empty and there exist multiple w which satisfies the equation.
Equivalently, a full rank matrix ensures that the optimization criterion is strictly convex and that
the minimizer is unique. Define matrix Mntk to be the submatrix consisting of all rows from all
subsets of size t and columns corresponding only to that of the k’th order weights.

M =


first order weight ... k’th order weight

rows from subsets of size s1 Mns11 ... Mns1k

...
rows from subsets of size sk Mnsk1 ... Mnskk


We will now show that we can perform row reductions on the decomposition into submatrices,

such that we end up with all zeroes below the antidiagonal.
First we note that every row in Mnbk is a linear combination of rows in Mnak for any a < b.

Consider a row sb corresponding to subset {i1, ..., ib}. We take all the rows in Mnak corresponding
to subsets s′ where s′ ⊆ {i1, ..., ib} and |s′| = a. We sum all

(
b
a

)
of these rows, and denote this row

s′b. Looking at a particular kth order weight, say WLOG corresponding to {i1, ..., ik} ⊆ {i1, ..., ib},
there is a 1 in this column in sb. This subset of size k shows up in

(
b−k
a−k

)
subsets of size a. Therefore,

the corresponding entry in row s′b is
(
b−k
a−k

)
. And so, we can derive that

(
b−k
a−k

)−1
s′b = sb as they both

have the same support: every subset of size k in {i1, ..., ib} can be found in a subset of {i1, ..., ib}
of size a.

Thus we may use an appropriate multiple α of the first row to replace Mnsik with a zero
for any i > 1. However, this changes the whole row, and so the j’th order term changes to
Mnsij − αMns1j . But by the same logic as for k, summing the l’th weights gives the same row

scaled by
(
b−l
a−l

)
, and thus Mnsij − αMns1j =

(
1− (b−la−l)

(b−ka−k)

)
Mnsij .

The above shows that we can perform row reduction using the first row of submatrices in order
to put zeroes in the last column while retaining all submatrices in other columns (up to rescaling).
But now we may apply this logic inductively, by considering only the submatrices corresponding
to first through k − 1’th order weights and rows from subsets of size s2 or greater, and so on. We
get that the matrix M looks as follows after row reduction:


first order weight ... (k-1)th order weight kth order weight

rows from subsets of size s1 Mns11 ... Mns1(k−1) Mns1k

rows from subsets of size s2 M ′
ns21

... Mns2(k−1) 0
... 0 0
rows from subsets of size sk Mnsk1 ... 0 0


where M ′

ns21
denotes submatrices above the antidiagonal that have been rescaled (note that

the first row does not need rescaling). It is then sufficient to show that Mns1k,Mns2(k−1)...,Mnsk1

(note that each of these submatrices has more rows than columns) are all full rank to show M is
full rank.

234

To do this, we first prove a lemma.

Lemma 58. When t ≥ k and n = t+ k, the matrix Mntk is full rank.

Proof. We will proceed by induction on k.
Base case (k = 1): Since k = 1 each row corresponds to an all-one row with a single zero

for the agent left out. Since we have such a row for each agent that can be left out, we get n
linearly-independent rows.

Thus the matrix is full rank.
Induction step (k > 1):
Assuming this statement holds for orders 1, . . . , k − 1. We will prove the statement for when

the order is k. To do this we will use induction on n:
Base case (n = 2k): n = 2k ⇒ t = k, and so Mntk is the identity matrix and is thus full rank.
Induction step (n > 2k): Assume the matrix is full rank for when number of players is equal

to 2k, ..., n. To prove the matrix is full rank for n+ 1, consider the following decomposition of
M(n+1)(n+1−k)k.

(weights of subsets including 1 weights of excluding including 1
subsets including 1 A B
subsets excluding 1 0 C

)

Observe that matrix B corresponds to Mn(n−k)k and is thus full rank by induction hypothesis.
This means we can use linear combinations of rows of B to reduce rows in C. In particular, we
can performs row reductions such that we replace C with zeroes: For each row in C corresponding
to a team of size of n+ 1− k selected from [2, ..., n], we consider all n− k subsets of this team
in B and sum them. For any subset of this team of size k, then we see that it shows up in the sum:(
n+1−k−(k)
n−k−(k)

)
= n+ 1− 2k times. Therefore, the sum is n+ 1− 2k times the row in C.

Moreover, let D be the n+ 1− k rows from A summed together when performing the row
reduction, let the resultant matrix be D. The reduced matrix looks like:

M(n+1)(n+1−k)k =(weights of subsets including 1 weights of excluding including 1
subsets including 1 A B
subsets excluding 1 D 0

)

Then, we observe that D corresponds to a scaled version of Mn(n+1−k)(k−1), which is full
rank by the inductive assumption. The scaling factor is calculated as follows: For a subset
{1, ..., k}, the k − 1 elements show up in the n + 1 − k subset row of C, then shows up in(
n+1−k−(k−1)
n−k−(k−1)

)
= n + 2 − 2k of the n − k subsets. And so, D is a −n+2−2k

n+1−2k scaled version of
Mn(n+1−k)(k−1).

B remains unchanged after the row reduction and is full rank and thus the whole matrix is full
rank.

235

With this lemma in hand we can return to the main proof. To complete the proof, we will show
that for any k, any n ≥ 2k and any t ∈ [k, n− k], Mntk is full rank.

Note that t ∈ [k, n − k] ⇒
(
n
t

)
≥
(
n
k

)
(as otherwise number of rows is already fewer than

number of columns and the matrix will have rank less than column size).
We will use induction on k.
Base case (k = 1): by Lemma 58, the matrix is full rank when k = 1 for any team size t and

number of players n.
Induction step (k > 1): assumes this holds for orders 1, ..., k − 1 and any t and n. For order k,

fix some t ≥ k, we will show the matrix is full rank for all n ≥ t+ k by induction on n. For the
base case n = t+k the matrix is full rank by Lemma 58. For the induction step assume n > t+k:
assume the matrix is full rank when the number of players is in {t+ k, ..., n− 1}. Now when the
number of players is n, we may decompose the matrix into columns corresponding to weights of
k-size subsets containing player 1, and rows into teams including or excluding player 1.

Mntk=(weights of subsets including 1 weights of subsets excluding 1
subsets including 1 U1 U3

subsets excluding 1 0 U2

)
In doing so, we first observe that U1 is exactly M(n−1)(t−1)(k−1) and is full rank from the

induction hypothesis on k. Secondly, U2 = M(n−1)tk and is thus full rank by the induction
hypothesis on n. Therefore the matrix Mntk is full rank which concludes the inductive step on n.
But this also concludes the inductive step on k > 1, and thus we we get that all Mntk along the
antidiagonal of M are full rank. It follows that M is full rank, and thus Mw = v has a unique
solution.

Finally, because we are choosing k subset sizes from [k, n− 1], it’s easy to see that if we sort
subset size s by

(
n
s

)
, then the jth subset size in this sorted order si is such that

(
n
sj

)
≥
(

n
k−j+1

)
,

which means the above condition applies.

Theorem 39 (Necessity for Identification). SupposeH includes all kth order CGAs and v∗ is a
kth order CGA. If DP contains performances of teams of only m < k different sizes, then DP
does not always identify v∗.

Proof. We will provide an instance when k = 2 such that v∗ is not identified. In that case m = 1,
and we may pick teams of size n − 1. That gives us

(
n
n−1

)
= n rows which is fewer than the

number of columns
(
n
2

)
+
(
n
1

)
. Thus there will be more than one solution.

Moreover, the conditions specified in Theorem 1 are also tight in the sense that: if we allowed
m = k subset sizes, but over a wider interval, then D does not always identify v∗. To see this,
consider k = 2 again. Widening the interval means the inclusion of either subset size k − 1 or n.

If we can pick k − 1, consider m = 2 subset sizes k − 1 and n − 1, which together gives(
n
1

)
+
(
n
n−1

)
rows, which is fewer than the number of columns

(
n
2

)
+
(
n
1

)
.

If we can pick n, consider m = 2 subset sizes n− 1 and n, which together gives
(
n
n−1

)
+
(
n
n

)
rows, which is fewer than the number of columns

(
n
2

)
+
(
n
1

)
.

236

7.8.2 PAC Analysis
Another natural paradigm through which we may analyze sample complexity of learning a CGA
is the PAC framework. Before we proceed, a word about why PAC bounds are not our main focus
for sample complexity. One drawback of PAC bounds we considered is that it is only with high
probability that most coalition values are well approximated. Therefore, it could still be that there
is one v̂(S) that is arbitrarily off. Thus, the resultant estimated Shapley value will inherit this
large bias. Since we hope to use the estimated Shapley Value for fair credit assignment in practice,
we opt for what may be considered more “pessimistic”, exact identification guarantees similar to
those in [254].

Below, we provide two results based on PAC and PMAC notions of approximation. We prove
the result assuming that we have correct CGA order specification. The result follows similarly
when a higher order than that of the true CF is specified.

Consider a random sample S of m (C, v(C)) data points with C uniformly sampled from
2A. There are at most m distinct coalitional values in that sample. Call them vŜ. We will solve
Mnk

Ŝ
ω̂ = vŜ where Mnk

Ŝ
denotes the matrix consisting of all rows corresponding to coalitions

in Ŝ. This is feasible since there exist ω s.t Mnkω = v. Note that this step assuming feasibility
relies on the CGA model being of order k or higher; if not, Mnk

Ŝ
ω̂ = vŜ may not be feasible.

In both parts of the proposition below, we will appeal to uniform convergence results to show
that this construction yields a ω̂ and the corresponding v̂ such that it approximates v with high
probability. In all the sample complexity results that follow, let c denote a generic constant.
Proposition 39. Suppose v is a kth order CGA model with parameter vector ω of bounded ℓ1
norm. Then, with a set Ŝ of (C, v(C)) data points of size m ≥ c

(
dk+log(1/∆)

δ2

)
uniformly sampled

from 2A, we may compute ω̂ and its corresponding v̂ as above such that, with probability at least
1−∆ over the samples Ŝ:

PrC∼2A [v̂(C) = v(C)] ≥ 1− δ

Proof. The proof is motivated by the observation that ω may be viewed as a linear classifier with
dimension dk. Indeed, if ω is the true weight, then Mnkω = v, which is equivalent to:

[−Mnk
C , v(C)]T [ω, 1] ≥ 0 and [Mnk

C ,−v(C)]T [ω, 1] ≥ 0 for all C

where Mnk
C denotes the row of Mnk corresponding to coalition C and [a,b], a ∈ Rn,b ∈ Rm

denotes the n+m-dimensional vector obtained by concatenation of a and b. Thus, if we define
a classification task with 2 · 2N data points that have features [−Mnk

C , v(C)], [Mnk
C ,−v(C)] and

labels 1 for all the points, we know there exists a classifier f(x) = sign([ω, 1]Tx) which achieves
zero loss; here we take the sign of 0 to be 1.

Define data distribution D to be the uniform distribution over these 2 · 2N data points. A
draw of size m from D may be simulated by sampling coalitions from the uniform distribution
over 2A and then for each chosen coalition C, randomly choosing between [−Mnk

C , v(C)] and
[Mnk

C ,−v(C)] with equal probability.
Now, we are ready to prove that the v̂ satisfies the statement in Proposition 39. To do this, we

use the uniform convergence result below (Theorem 6.8 from [256]):

237

Lemma 59. Let H be a hypothesis class for the classifier, and let f be the true underlying
classifier. IfH has VC-dimension d, then with

m ≥ c

(
d+ log

(
1
∆

)
δ2

)

i.i.d data points x1, ...,xm ∼ D,

δ ≥

∣∣∣∣∣∣Prx∼D[h(x) ̸= f(x)]− 1

m

m∑
i=1

1h(xi)̸=f(xi)

∣∣∣∣∣∣
for all h ∈ H and with probability 1−∆ over the sampled data points.

By construction, the classifier defined by ω̂, h(x) = sign([ω̂, 1]Tx)), achieves zero empirical
risk on Ŝ since h(xi) = 1 = f(xi). So, we apply the uniform convergence result Lemma 59 with
δ/2 to get that with probability 1−∆ over the sampled data points x from D:

δ

2
≥ Prx∼D[h(x) ̸= f(x)]

= Prx∼D[[ω̂, 1]
Tx < 0)]

=
1

2
PrC∼2A [M

nk
C ω̂ > vC] +

1

2
PrC∼2A [M

nk
C ω̂ < vC]

=
1

2

(
1− PrC∼2A [M

nk
C ω̂ = vC]

)
Therefore, the guarantee for ω̂ over distribution D translates to the guarantee over the uniform

distribution 2A that v̂ = Mnkω̂ can overpredict or underpredict for at most δ percent of all
coalitions.

To finish, we note that [ω, 1] belongs to the hypothesis class of linear classifiers of dimension
dk + 1, which is known to have VC Dimension dk + 1. So H = {[ω, 1] | ω ∈ Rdk} has VC
dimension d ≤ dk + 1. And so, our sample complexity needed for ω̂ to attain small generalization
risk using Lemma 59 is O(dk+log(1/∆)

δ2
).

We remark that the sample complexity needed is on the same order as that shown by Theorem
1 in section 7.8.1

Next, we provide a PMAC-like guarantee [29] with much smaller sample complexity.

Proposition 40. With samples of size m ≥ c
(

log(dk)+log(1/∆)
ϵ2δ2

)
uniformly sampled from 2A, we

may compute ω̂ and its corresponding v̂ as above such that, with probability at least 1−∆ over
the samples:

PrC∼2A
[
(1− ϵ)v̂(C) ≤ v(C) ≤ (1 + ϵ)v̂(C)

]
≥ 1− δ

238

Proof. The proof follows from combining two known theorems adapted to our setting.
The left hand side of the probabilistic guarantee follows from a straightforward adaptation of

the proof of Theorem 5 in [35]. In particular, the only tweak to the proof is that the features of
the data points are to be instantiated as Mnk

C /v(C) instead of 1C/v(C). Since ω is bounded by
our assumption, we do not need to bound it in terms of values of v(C)’s as is done in the proof
of [35]. We note the loss function would then be defined as ℓ(ω, (Mnk

C /v(C), y)) = [
Mnk
C ω

v(C)
− 1]+

and ω̂ achieves zero empirical loss because Mnk
Ŝ
ω̂ = vŜ ⇒Mnk

C ω̂ = vC ⇒
Mnk
C ω̂

v(C)
− 1 = 0 for all

C ∈ S. Altogether, we may arrive at the statement below:

With a set of m ≥ c
(

log(dk)+log(1/∆)
ϵ2δ2

)
coalitions uniformly sampled from 2A, ω̂ constructed as

above is such that:

PrC∼2A
[
(1− ϵ)Mnk

C ω̂ ≤ v(C)
]
≥ 1− δ

with probability at least 1−∆ over the samples.
The right hand side follows from a related theorem, Theorem 2 in [305] with the same change

in the data features. Again, we can verify that ω̂ achieves zero empirical loss:

With a set of m ≥ c
(

log(dk)+log(1/∆)
ϵ2δ2

)
coalitions uniformly sampled from 2A, ω̂ constructed as

above is such that:

PrC∼2A [v(C) ≤ (1 + ϵ)Mnk
C ŵ] ≥ 1− δ

with probability at least 1−∆ over the samples.
With this, we can initialize both theorems with ∆/2 and δ/2. We first union bound over the

random draw of m− size samples to conclude that with probability ≥ 1−∆, both inequalities
hold for ω̂, meaning that by union bound again for the random draw of C over 2A:

PrC∼2A [(1− ϵ)Mnk
C ŵ ≤ v(C) ≤ (1 + ϵ)Mnk

C ŵ] ≥ 1− δ

In summary, this means that under an even looser definition of approximability of the CGA
model, the sample complexity needed is much smaller: only O(log(dk)) number of points are
needed. Since dk ≤ 2n, this means at most O(n) samples are needed to estimate most of the
coalition values approximately with high probability.

Remark: more generally, we may obtain the above two guarantees under the same sample
complexity for any setting where we are looking to estimate solutions x to large scale linear
programs Ax = b, knowing apriori that ∥x∥1 is bounded. In such cases, we may obtain a PAC
and PMAC-like result by computing x̂ from randomly sampled constraints ai

Tx = bi. Notice
here that A ∈ R2n×dk and the PMAC notion avoids needing the exponential sample complexity
that is required to construct b to compute an exact solution.

This result may be of independent interest.

239

7.8.3 Shapley Noise Bound Theorem Proofs
Theorem 40 (Shapley noise L2 bound). The L2 norm of the estimation error of the Shapley values
is bounded by:

n∑
i=1

(
φi(v)− φi(v̂)

)2 ≤ 2

n

∑
C∈2A

(
v(C)− v̂(C)

)2 (7.2)

Proof. First we observe that the Shapley value is a linear map R2n → Rn taking v to φ(v).
We may describe this map with matrix Sn ∈ Rn×2n where n is the number of players in the
cooperative game. Our work extends a line of work that studies properties of Sn, including [37]
that studies its nullspace.

We have that:

||φ(v)− φ(v̂)||2 = ||Snv − Snv̂||2 ≤ ||Sn||op||v − v̂||2

It suffices then to obtain the operator norm of Sn. We know that ||Sn||op =
√
σmax(STn Sn).

STn Sn is complicated to analyze, so we opt to analyze σmax(SnS
T
n) since we know that the nonzero

eigenvalues of STn Sn are the same as those of SnSTn . SnS
T
n has nice structure in that all its

off-diagonal entries are the same and all its diagonal entries are the same.
Take the ith row of Sn, (Sn)i, we know that the entry in this row corresponding to subset S is:

1. 1
n

(
n−1
|S|−1

)−1
if i ∈ S

2. − 1
n

(
n−1
|S|

)−1
if i ̸∈ S

Therefore, let d1 denote its diagonal entries, then:

d1 = (Sn)
T
i (Sn)i

=
∑

S∈2[n],i∈S

(
1

n

(
n− 1

|S| − 1

)−1
)2 +

∑
S∈2[n],i ̸∈S

(− 1

n

(
n− 1

|S|

)−1
)2

=
1

n2

n∑
k=1

(
n− 1

k − 1

)(
n− 1

k − 1

)−2
+

1

n2

n−1∑
k=0

(
n− 1

k

)(
n− 1

k

)−2
Let d2 denote its off-diagonal entries. Consider the i, jth entry of SnSTn , we can characterize

the weights in the dot product as follows:

1. (1
n

(
n−1
|S|−1

)−1
)2 if i, j ∈ S

2. (1
n

(
n−1
|S|−1

)−1
)(− 1

n

(
n−1
|S|

)−1
) if i ∈ S, j ̸∈ S

3. (− 1
n

(
n−1
|S|

)−1
)(1
n

(
n−1
|S|−1

)−1
) if i ̸∈ S, j ∈ S

4. (− 1
n

(
n−1
|S|

)−1
)2 if i, j ̸∈ S

240

Therefore, when we sum these together:

d2 = (Sn)
T
i (Sn)j

=
∑

S∈2[n],i,j∈S

(
1

n

(
n− 1

|S| − 1

)−1
)2 −

∑
S∈2[n],i∈S,j ̸∈S

(
1

n

(
n− 1

|S| − 1

)−1
)(− 1

n

(
n− 1

|S|

)−1
)

−
∑

S∈2[n],i ̸∈S,j∈S

(− 1

n

(
n− 1

|S|

)−1
)(
1

n

(
n− 1

|S| − 1

)−1
) +

∑
S∈2[n],i,j ̸∈S

(− 1

n

(
n− 1

|S|

)−1
)2

=
n∑
k=2

(
n− 2

k − 2

)(
n− 1

k − 1

)−2
− 2

n−1∑
k=1

(
n− 2

k − 1

)(
n− 1

k

)−1(
n− 1

k − 1

)−1
+

n−2∑
k=0

(
n− 2

k

)(
n− 1

k

)−2
It’s easy to check that d1 > d2 since d2 = (Sn)

T
i (Sn)j ≤ ||(Sn)i||2||(Sn)j||2 = (Sn)

T
i (Sn)i =

d1.
And so, we may write:

SnS
T
n = (d1 − d2)In + d21n

where 1n is the all ones matrix.
This allows us to characterize all the eigenvalues of SnSTn and in particular the biggest one.
If the SVD of 1n = UDUT , then we know that D is a diagonal matrix with one entry being n

as this is an eigenvalue of 1n and the rest being 0 since 1n is only rank 1. And so,

SnS
T
n = U [(d1 − d2)In + d2D]UT

This means that the top eigenvalue is d1 − d2 + n · d2 and the rest are all d1 − d2.
Evaluating d1 − d2 + n · d2 = d1 + (n− 1)d2:

d1 + (n− 1)d2

=
1

n2
(
n−2∑
k=2

(
n− 1

k − 1

)−1
+

(
n− 1

k

)−1
+ (n− 1)[

k − 1

n− 1

(
n− 1

k − 1

)−1
− 2

k

n− 1

(
n− 1

k − 1

)−1
+

(
n− 2

k

)(
n− 1

k

)−2
]) +

1

n2
r

=
1

n2
((
n−2∑
k=2

k

(
n− 1

k − 1

)−1
+

(
n− 1

k

)−1
− 2k

(
n− 1

k − 1

)−1
+ (n− 1)

(
n− 2

k

)(
n− 1

k

)−2
) +

1

n2
r

=
1

n2
((
n−2∑
k=2

−k
(
n− 1

k − 1

)−1
+

(
n− 1

k

)−1
+ (n− 1− k)

(
n− 1

k

)−1
) +

1

n2
r

=
1

n2
((
n−2∑
k=2

−k!(n− k)!
(n− 1)!

+ (n− k)k!(n− 1− k)!
(n− 1)!

) +
1

n2
r

=
1

n2
r

241

It just remains to evaluate r which are the residual terms from the sums, they are:

r = [1 + 1 +
1

n− 1
] + [1 +

1

n− 1
+ 1] (from the two sums in d1)

+ (n− 1)(([1 +
n− 2

(n− 1)2
]− 2[

1

n− 1
+

1

n− 1
] + [1 +

(n− 2)

(n− 1)2
]) (from the three sums in d2)

= 4 +
2

n− 1
+ 2n− 2− 4 +

2(n− 2)

n− 1

= 2n

To summarize, we get that:

σmax(SnS
T
n) = d1 + (n− 1)d2 =

1

n2
2n =

2

n

⇒ ||Sn||op =
√
σmax(STn Sn) =

√
σmax(SnSTn) =

√
2

n

which proves that ||φ(v)− φ(v̂)||2 ≤
√

2
n
||v − v̂||2 (7.2), as desired.

The above is a worst case analysis by computing the largest singular value of the Shapley
matrix. It turns out, most singular values of the Shapley matrix are very small and won’t lead to a
large amplification of the noise in the characteristic function.

We perform average case analysis by assuming that the error in the characteristic function is
drawn uniformly from a smooth distribution, which is not very "peaky" anywhere, over all noise
v − v̂ with the same L2 norm.
Lemma 60. Let DBr be a distribution with support equal to a sphere with radius r and smooth in
that κ0 ≤ PrDBr (x) ≤ κ1 for any x in its support. Consider any matrix A ∈ Rm1×m2:

Ex∼DBr [∥Ax∥
2
2] ≤

κ1
κ0

Tr(ATA)

m2

· r2

Proof. SinceATA is symmetric and thus diagonalizable, consider itsm2 orthonormal eigenvectors
u1, ..,um2 . We know that u1, ..,um2 forms a basis of Rm2 and we can then write any x in the
support of DBr as

∑m2

j=1 αjuj. Moreover,

r2 = ∥x∥2 = (

m2∑
j=1

αjuj)
T (

m2∑
j=1

αjuj) =

m2∑
j=1

α2
j

since uj
Tui = 0 for i ̸= j and ∥uj∥22 = 1.

Define D′Br to be the distribution over α that corresponds to each x drawn from DBr and
set SD′ be its support (which may be characterized as a m2 dimensional standard simplex as
defined by (α2

1/r
2, ..., α2

m2
/r2). We abuse notation in letting x(α) be the corresponding x to

242

coefficients vector α. It’s a 1-1 correspondence, and so from the smoothness assumption on DBr ,
PrD′

Br
(α) = PrDBr (x(α)) ∈ [κ0, κ1].

Define k∗ = argmaxk∈[m2] Eα∼D′
Br
[α2
k], then for any i ̸= k∗:

Eα∼D′
Br
[α2
k∗] =

∫
SD′

α2
k∗ PrD′

Br
(α)dα

≤
∫
SD′

α2
k∗κ1dα

=

∫
SD′

α2
iκ1dα

≤
∫
α2
i

κ1
κ0

PrD′
Br
(α)dα

=
κ1
κ0

Eα∼D′
Br
[α2
i]

where the second equality follows from the symmetry of the support of DBr , which is a sphere.
This implies that:

Eα∼D′
Br
[α2
k∗] ≤

∑m2

j=1
κ1
κ0
Eα∼D′

Br
[α2
j]

m2

=
κ1
κ0

Eα∼D′
Br
[
∑m2

j=1 α
2
j]

m2

=
κ1
κ0

r2

m2

Therefore:

Ex∼DBr [∥Ax∥
2
2] = Ex∼DBr [x

TATAx]

= Ex∼DBr [x
T (

m2∑
j=1

αjλjuj)]

= Eα∼D′
Br
[

m2∑
j=1

λjα
2
j]

=

m2∑
j=1

λjEα∼D′
Br
[α2
j]

≤ Eα∼D′
Br
[α2
k∗]

m2∑
j=1

λj

≤ κ1
κ0

r2

m2

m2∑
j=1

λj

Theorem 41. Assuming that v − v̂ is drawn from distribution DBr with support equal to a sphere
and smooth in that κ0 ≤ PrDBr (x) ≤ κ1 for any point x in its support, then:

Ev−v̂∼DBr [∥φ(v)− φ(v̂)∥
2
2] ≤

6

n

κ1
κ0

∥v − v̂∥22
2n

243

Proof. To obtain the bound in the theorem, using this Lemma 60, we can then perform an average
case analysis:

E[∥Snx∥22] ≤
κ1
κ0

Tr(STn Sn)

2n
∥x∥22 =

κ1
κ0

Tr(SnS
T
n)

2n
∥x∥22

We know that Tr(SnSTn) = nd1 so the average case multiplier of the noise is:

d1 =
1

n2

n∑
k=1

(
n− 1

k − 1

)−1
+

1

n2

n−1∑
k=0

(
n− 1

k

)−1
=

1

n2
(2 +

n−1∑
k=1

(
n− 1

k − 1

)−1
+

(
n− 1

k

)−1
)

=
2

n2
+

1

n2
(
n−1∑
k=1

(k − 1)!(n− k − 1)!(k + n− k)
(n− 1)!

)

=
2

n2
+

1

n(n− 1)
(
n−1∑
k=1

(
n− 2

k − 1

)−1
)

=
2

n2
+

2

n(n− 1)
+

1

n(n− 1)
(
n−2∑
k=2

(
n− 2

k − 1

)−1
)

≤ 2

n2
+

2

n(n− 1)
+

1

n(n− 1)
((n− 3)

(
n− 2

1

)−1
)

=
2

n2
+

3n− 7

n(n− 1)(n− 2)

≤ 6

n2

So, the multiplier is κ1
κ0

6
n2n

over the distribution DBr .

Next, we can obtain a more general result by integrating across all L2 norms r that v − v̂ can
take.
Corollary 7. Suppose noise v − v̂ ∼ Dn is such that its conditional distribution satisfies κ0(r) ≤
PrDn(x|∥x∥22 = r2) ≤ κ1(r) for all r and x in Dn’s support, then:

Ev−v̂∼Dn [∥φ(v)− φ(v̂)∥22] ≤
6

n
Er

κ1(r)
κ0(r)

(
r2

2n

)
Proof. This follows from iterated expectation:

244

Ev−v̂∼D[∥φ(v)− φ(v̂)∥22] = Er[Ev−v̂∼DBr [∥φ(v)− φ(v̂)∥
2
2 | ∥v − v̂∥22 = r2]]

≤ Er

[(
κ1(r)

κ0(r)

6

n2n

)
r2

]

=
6

n2n
Er
[
κ1(r)

κ0(r)
r2
]

where the inequality holds by Theorem 37.

Remark: Therefore, if Er[κ1(r)κ0(r)
r2] = cEr[r2] for some constant c = O(1), then the error in

the Shapley value is fairly small and proportional to O(1/n) of the average L2 error of v − v̂.
Theorem 42 (Shapley noise L1 bound). The sum of absolute errors in Shapley values is bounded
by:

n∑
i=1

∣∣φi(v)− φi(v̂)∣∣ ≤ ∑
C∈2A

∣∣v(C)− v̂(C)∣∣ (7.3)

Assuming there is no error in estimating the grand coalition nor the empty set and n ≥ 3, then
we can give a stronger bound on the sum of absolute errors:

n∑
i=1

∣∣φi(v)− φi(v̂)∣∣ ≤ 2

n

∑
C∈2A

∣∣v(C)− v̂(C)∣∣ (7.4)

Furthermore, assume players are divided into m equal sized teams, G1, ..., Gm, where |Gi| =
N/m. Then if we compute their Shapley values just with respect to their own teams we get:

n∑
i=1

∣∣φi(v)− φi(v̂)∣∣ ≤ 2m

n

∑
C∈2A

∣∣v(C)− v̂(C)∣∣ (7.5)

Proof. We can express the difference in Shapley value for i as:

|φi(v)− φi(v̂)| = |
1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1
([v(S ∪ {i})− v̂(S ∪ {i})]− [v(S)− v̂(S)])|

≤ 1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1
(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

=
1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

Thus, for any S of size s:

245

• If it contains element i, its L1 v error is weighted by
(
n−1
s−1

)−1
.

• If it doesn’t, it is weighted by
(
n−1
s

)−1
.

Observe that the unweighted RHS is equal to:

=
1

n

n−1∑
s=0

∑
S⊆[n]\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

=
1

n

∑
S⊆[n]\{i}

|v(S ∪ {i})− v̂(S ∪ {i})|+
∑

S⊆[n]\{i}

|v(S)− v̂(S)|

=
1

n
||v − v̂||1

Therefore, since
(
n−1
s

)−1 ≤ 1 for s ∈ [0, n− 1]:

|φi(v)− φi(v̂)| ≤
1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

≤ 1

n
||v − v̂||1

Summing across all i’s, this proves inequality (7.3).
Note that

(
n−1
s

)−1
= 1 holds only for (i) the full set [n] (s = n − 1) (ii) the set {i} (s = 0)

(iii) empty set (s = 0) (iv) set [n]\{i} = [−i] (s = n− 1). Thus we can obtain equality if all of
the errors in v lie in estimating the full set or the empty set. This makes the bound tight.

We obtain a stronger inequality (7.4) if we assume that there is no error in estimating the
empty nor the grand coalition value:

Let e = ||v − v̂||1 and ei = |v({i})− v̂({i})|+ |v([−i])− v̂([−i])|. Then:

|φi(v)− φi(v̂)| ≤
1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

≤ 1

n
ei +

1

n

n−2∑
s=1

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

≤ 1

n
ei +

1

n(n− 1)
(e− ei)

since
(
n−1
s

)−1 ≤ 1
n−1 for s ∈ [1, n− 2].

Summing this across i gives:

246

|φ(v)− φ(v̂)| ≤ 1

n

n∑
i=1

ei +
1

n(n− 1)
(ne−

n∑
i=1

ei)

=
e

n− 1
+

n− 2

n(n− 1)
(
n∑
i=1

ei)

≤ e

n− 1
+

n− 2

n(n− 1)
e

=
2e

n

since
∑n

i=1 ei ≤ e.
This proves inequality (7.4).
In some case, as is the case with our NBA experimental setup, players are divided into m

groups, G1, ..., Gm, and we wish to compute their Shapley values only with respect to their own
groups. We can follow a similar analysis as above to derive a bound on the Shapley values. For
player i ∈ Gj:

|φi(v)− φi(v̂)| = |
1

|Gj|
∑

S⊆Gj\{i}

(
|Gj| − 1

|S|

)−1
([v(S ∪ {i})− v̂(S ∪ {i})]− [v(S)− v̂(S)])|

≤ 1

|Gj|
∑

S⊆Gj\{i}

(
|Gj| − 1

|S|

)−1
(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

=
1

|Gj|

|Gj |−1∑
s=0

(
|Gj| − 1

s

)−1 ∑
S⊆Gj\{i},|S|=s

(|v(S ∪ {i})− v̂(S ∪ {i})|+ |v(S)− v̂(S)|)

Let Ej =
∑

S⊆Gj |v(S) − v̂(S)|. It’s clear that
∑m

j=1Ej ≤ e since any two teams Gj1 , Gj2

are disjoint for j1 ̸= j2 and thus don’t have any subsets in common; note our assumption that the
empty set is estimated without any error by v̂.

To maximize the cumulative error, all the errors in e should be placed in subsets S with
S ⊆ Gj for some j. So WLOG we can assume that

∑m
j=1Ej = e. Using inequality (7.4), we get

that: ∑
i∈Gj

|φi(v)− φi(v̂)| ≤
2Ej
|Gj|

So the overall bound is:

|φ(v)− φ(v̂)| ≤
m∑
j=1

2Ej
|Gj|

Assume |Gj| = n/m for each j, this simplifies to 2m
n
e and proves inequality 7.5.

247

While the above bounds are tight, the analysis is worst case. For instance, for the first bound
we provide, equality holds when all the error in the ∥v − v̂∥1 vector is in the coalition value of
the grand coalition or the empty set. Below, we provide a simple, average case analysis to show
that on average, a randomly drawn error vector leads to a small increase in L1 Shapley error in
expectation.
Theorem 43 (Average case Shapley noise L1 bound). Assuming that the error v − v̂ is such that
the vector |v − v̂|/r (where absolute value is coordinate wise) is drawn from distribution DSr
with support equal to the surface of a 2n-simplex and smooth in that κ0 ≤ PrDSr (x) ≤ κ1 for any
point x in its support, then Ev−v̂∼DSr [∥φ(v)− φ(v̂)∥1] ≤ 2κ1

κ0

∥v−v̂∥1
2n

.

Proof.

Ev−v̂∼DSr [
∣∣φi(v)− φi(v̂)∣∣]

= Ev−v̂∼DSr

∣∣ 1
n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1
([v(S ∪ {i})− v̂(S ∪ {i})]− [v(S)− v̂(S)])

∣∣
≤ 1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(
Ev−v̂∼DSr

[
[|v(S ∪ {i})− v̂(S ∪ {i})|

]
+

Ev−v̂∼DSr

[
|v(S)− v̂(S)|

])
(1)

≤ 1

n

n−1∑
s=0

(
n− 1

s

)−1 ∑
S⊆[n]\{i},|S|=s

(
κ1
κ0

r

2n
+
κ1
κ0

r

2n

)
=

2

n

κ1
κ0

r

2n

where (1) is due to the following:
Let subsetC∗ = argmaxC Ev−v̂∼DSr [[|v(C)−v̂(C)|] and subsetC ′ = argminC Ev−v̂∼DSr [[|v(C)−

v̂(C)|]:

Ev−v̂∼DSr [[|v(C
∗)− v̂(C∗)|] =

∫
|v(C∗)− v̂(C∗)|PrDSr (v − v̂)d(v − v̂)

≤
∫
|v(C∗)− v̂(C∗)|κ1d(v − v̂)

(2)
=

∫
|v(C ′)− v̂(C ′)|κ1d(v − v̂)

≤
∫
|v(C ′)− v̂(C ′)|κ1

κ0
PrDSr (v − v̂)d(v − v̂)

=
κ1
κ0

Ev−v̂∼DSr [[|v(C
′)− v̂(C ′)|]

(3)

≤ κ1
κ0

(r
2n

)
.

248

Here (2) holds by symmetry as the expectation of any two vector coordinates under a uniform
distribution over the simplex of vectors is the same. (3) holds because every vector in the support
of DSr has L1 norm of r,

∑
C Ev−v̂∼DSr [|v(C) − v̂(C)|] = Ev−v̂∼DSr [

∑
C |v(C) − v̂(C)|] = r

and so by our choice of C ′, Ev−v̂∼DSr [|v(C
′)− v̂(C ′)|] ≤ r

2n
.

Summing Ev−v̂∼DSr [|φi(v)− φi(v̂)|] across all i gives the result.

This means that, on average, for a randomly drawn φ(v)− φ(v̂) with a fixed error budget in
L1 error, the L1 error in the Shapley is only proportional to the average error in estimating each
coalition. Next, we can obtain a more general bound by integrating across all L1 norms r that
φ(v)− φ(v̂) can take.
Corollary 8. Suppose noise v − v̂ ∼ Dn is such that its conditional distribution satisfies κ0(r) ≤
PrDn(x|∥x∥1 = r) ≤ κ1(r) for all r and x in Dn’s support, then:

Ev−v̂∼Dn [∥φ(v)− φ(v̂)∥1] ≤ 2Er

[
κ1(r)

κ0(r)

(
r

2n

)]
Proof. This follows from iterated expectation:

Ev−v̂∼D[∥φ(v)− φ(v̂)∥1]

= Er
[
Ev−v̂∼DSr

[
∥φ(v)− φ(v̂)∥1 | ∥v − v̂∥1 = r

]]
≤ Er

[(
κ1(r)

κ0(r)

2

2n

)
r

]

= 2Er
[
κ1(r)

κ0(r)

r

2n

]
where the inequality holds by the Theorem above.

Remark: Therefore, if Er[κ1(r)κ0(r)
r] = cEr[r] for some constant c = O(1), then the error in the

Shapley value is fairly small and proportional to the average expected L1 error Er[r]
2n

.

7.8.4 Discussion about CGA-Specific Errors:
Since CGA is a complete representation, every game may be expressed as a CGA of some order
(see Fact 1). And so, we may plug the CGA-specific bias into the general bounds obtained
previously in Theorems 3-6.

Below we derive CGA bias due to model misspecification. Note that the approximation is
lossy only when the true game is generated by a CGA model of order r and we model it with a
simpler CGA model of order k with k < r. When we model the game with a CGA of a higher
order than the actual game, it is clear that we can learn a set of weights that would fit the coalition
values exactly (since v would be in the columnspace).

249

Let Mnk denote the matrix relating the parameters ω to the coalitional values v. It is a 2n× dk
matrix of the form:


first order weights ... kth order weights

row corresponding to null coalition {}
...
row corresponding to grand coalition A


The CGA model parameters ω̂ we learn will be such that:

ω̂ = argmin
w
∥Mnkw −Mnrω∗r∥22

This is just equivalent to projecting vector Mnrω∗r onto the columnspace spanned by Mnk.
Recall from our identification theorem that Mnk has enough rows to be full rank, which makes
(Mnk)TMnk positive definite and invertible; if there are not enough samples, we may instead
consider a regularization term that will make the matrix invertible. Define projection matrix Pnk:

Pnk =Mnk(((Mnk)TMnk)−1(Mnk)T

This means that the misspecification error e(n, k, r) may be expressed as:

e(n, k, r) = (I − Pnk)Mnrω∗r

which we may plug into our noise bounds for the Shapley value computation.
Unlike the Shapley matrix, the error matrix (I − Pnk)Mnr does not seem to admit a closed

form for its trace. Instead, we perform simulations to better understand its properties. In particular,
we look to understand if it enjoys the same "averaging-effect" as the Shapley matrix. We compute
the max eigenvalue and the average trace norm value sweeping over all n, r, k for k < r < n for
n ∈ [2, 15] (we try these sizes since 15 is the largest possible before the error matrix’s size exceeds
that permitted by our machine memory). Our simulations suggest that its largest eigenvalue (for
the worst case bound) and the average trace value (for the average case bound per Lemma 60)
both grow monotonically with n and r (fixing a k). Altogether, this suggests that the ℓ2 error can
grow arbitrarily large with model misspecification.

7.8.5 For Practitioners: How to choose the order of the CGA Model
The order k of the CGA model is dependent on the application at hand. It may be set to be the
maximum k-way interaction that the practitioner expects to take place in the team.

Our model is especially useful in settings like the NBA, in which team sizes are small relative
to the overall number of players. This structural prior can be encoded in the order of the CGA.
As an example, for the NBA, we expect at most 5-way interaction and so it is necessary to only
consider compact, low-rank models.

Note that for the time and space complexity of the model, the time to compute the SV is the
space complexity of the CGA model: the number of parameters. The complexity of learning a
CGA depends on the training method employed to learn v̂ (e.g. we use SGD).

250

7.8.6 Proofs of Facts
For completeness, we provide proofs of the two facts listed.
Fact 11 (Unique decomposition form). There exists a unique set of values ωS for each subset
S ⊆ A with |S| ≤ k such that the characteristic function can be decomposed into its interaction
form where

v(C) =

|C|∑
k=1

∑
S∈2Ck

ωS.

Proof. We can show this inductively. For the base case when |C| = 1 we have wC = v(C), which
is unique.

Induction step: assumewS′ is uniquely determined for |S ′| = 1, ...,m−1. Then for a particular
subset |S| = m:

v(S) =
m−1∑
i=1

∑
S′∈2Si

wS′ + wS

and thus wS is uniquely determined since we must set it to

w(S) = v(S)−
m−1∑
i=1

∑
S′∈2Si

wS′

Fact 12 (Shapley value expression). The Shapley Value of an individual i with respect to team A
can be expressed as:

φi(v) =
∑

T⊆A\{i}

1

|T |+ 1
ωT∪{i}

Proof. The Shapley value for player i is defined as:

φi(v) =
1

n

∑
S⊆A\{i}

(
n− 1

|S|

)−1
(v(S ∪ {i})− v(S))

Plugging in the decomposition form:

v(S ∪ {i})− v(S) =
∑
S′⊆S

wS′∪{i}

Thus, the Shapley value for i is only a function of all wS where i ∈ S.
Given a subset T = {i1...it}, let us derive the weighted sum of wT occurrences in φi1(v). This

term only appears if {i2, .., it} ⊆ S but i1 /∈ S. And so, the weighted sum of occurrences is:

251

1

n

∑
S⊆A\{i1},{i2,..,it}∈S

(
n− 1

|S|

)−1
=

1

n

n−1∑
s=t−1

(
n− 1

s

)−1(
n− t

s− (t− 1)

)

Similarly, wT has the same sum of weighted occurrences in expressions for players i2, ..., it.
And so, by efficiency (since v(A) contains exactly wT and the sum of Shapley payments equals
v(A)), they must be assigned equal portions of wT , i.e wT/|T |. This holds for all subsets T. And
so, a player i’s Shapley value is the sum of all weights wT/|T |, for all subsets T ⊆ [n] and
i ∈ T .

7.8.7 Relationship to the Core

The main text of the paper has focused on the solution concept of the Shapley Value. Another
commonly used solution concept in cooperative game theory is known as the Core [117]. Let n
be the number of players in the game, the Core is an allocation x ∈ Rn that satisfies:

(i) Efficiency:
∑

i∈[n] xi = v([n])

(ii) Stability: for any coalition C ⊂ [n]:∑
i∈C

xi ≥ v(C)

Intuitively, a payoff vector is in the Core if it incentivizes every coalition C to stay with the
grand coalition rather than leave, achieve a value of v(C) and split it amongst themselves in some
other way.

The Core of a game may be empty, though an extension known as the Least Core is always
guaranteed to exist. The Least Core can be computed by solving the following linear program:

mine,x e
s.t.

∑
i∈[n] xi = v([n])∑
i∈C xi ≥ v(C)− e ∀S ⊂ [n]

Intuitively, the Least Core is the allocation which minimizes the subsidy e required to incen-
tivize all coalitions to stay together. We call the minimum subsidy needed the Least Core value.
Unfortunately, [92] show that for any CGA model with order higher than 1, it is NP-Complete to
compute the Least Core Value.

One notable allocation in the Least Core is the Nucleolus. For a given allocation x, define
deficit function ex(C) = v(C)−

∑
i∈C xi. Order all subsets of [n] according to the deficit function

ex. The nucleolus is defined as the imputation which lexicographically minimizes this ordering of
deficits. Intuitively, the Nucleolus is the "inner-most" allocation in the Least Core. In general, the
Nucleolus is difficult to compute and requires solving a series of exponential-size linear programs.

Remarkably, [92] prove the following fact:
Fact 13. Assuming the characteristic function of the underlying game is a second order CGA
model, the Shapley Value is in the Least Core (in fact, it is the Nucleoulus).

252

Therefore, we can simply compute the Shapley value to obtain a point in the Least Core. All
that remains is to approximate the Least Core value. To do this, we establish an approximate
notion of the Least Core value by adapting a similar notion from [35] and derive a simple sample
complexity bound for estimating this value. The definition goes as follows:
Definition 41. Given an allocation x, a value e is a δ−probable least core value if:

PrC∼2A [
∑
i∈C

xi + e ≥ v(C)] ≥ 1− δ

The least core value is the smallest e∗ such that there exist an allocation for which e∗ is a
0−probable least core value.

We will compute a δ−probable least core value by computing the sample least core value on a
set of uniformly sampled coalitions Ŝ. Certainly if |Ŝ| = 2n coalitions, then the sample least core
value will be the true least core value exactly. Using standard learning theory tools, we can relate
the quality of the estimation of the least core value, in terms of δ, to the size of the samples Ŝ
needed:
Theorem 44. Given a set Ŝ of m = O(log(1/∆)

δ2
) coalitions uniformly sampled from 2A, let:

ê = argmin e∑
i∈C φi(v̂) ≥ v(C)− e ∀C ⊆ Ŝ

then with probability 1−∆ over the samples, ê is a δ−least core value.

Proof. We prove this through a simple learning theory setup analogous to the proposition above.
Define a 2-dimensional linear classifier with weights we = [e, 1]. This class of classifier is a
subset of all linear classifiers of dimension 2 and thus has VC dimension ≤ 2.

For each of the 2n− 2 inequality constraints, construct data point [1,
∑

i∈C φi(v̂)− v(C)] that
corresponds to coalition C’s constraint. We assign each data point a label of 1. Notice that if
classifier we = [e, 1] classifies [1,

∑
i∈C φi(v̂)− v(C)] correctly, then:

signwe
([1,
∑
i∈C

φi(v̂)− v(C)]) = 1⇒ [e, 1]T [1,
∑
i∈C

φi(v̂)− v(C)] ≥ 0⇒
∑
i∈C

φi(v̂) ≥ v(C)− e

Moreover, we know that the classifier we obtain, wê = [ê, 1], is such that it classifies all the
samples in Ŝ correctly by construction, and has zero empirical risk. Again, using Lemma 59, we
know that this classifier’s performance on the samples generalize to all 2n − 2 constraints. In
particular, if there are at least

O(
2 + log(1/∆)

δ2
)

samples in Ŝ, then the empirical least core value ê we compute is such that:

PrC∼2A [
∑
i∈C

φi(v̂) ≥ v(C)− ê] = PrC∼2A [signwê
([1,
∑
i∈C

φi(v̂)− v(C)]) = 1] ≥ 1− δ

253

Lastly, we remark that for games whose characteristic functions are CGA models of order
higher than 2, the Shapley is not the Nucleolus. An interesting extension of this work could be
developing faster, sample-based methods for computing the Least Core with higher order CGA
models.

7.8.8 Experiments Hyper Parameter Search

In the low rank approximations of V̂ (as suggested by [186, 254]), we represented a team C via a
one-hot encoding xC and fit a model of the form:

v̂(C) = wTxC + xC
T V̂ xC

We tried parameterizing V̂ via a low-rank matrix and swept weight decay (l2 regularization)
parameters on our validation set. Here we report the results of the full sweep for both of our
experiments.

Table 7.1 shows the MSE (lower is better) of the performance prediction for various parameter
values in the OpenAI particle world experiment. Table 7.2 shows the accuracy of the model in
predicting wins (higher is better) in the NBA experiment. In both cases we see that a relatively
low rank model does very well at capturing structure in our environments. The main text analyzes
the models resulting from these parameter choices.

L2 regularization/V̂ Rank 1 2 5 10 20 35
0.001 0.256 0.092 0.066 0.067 0.068 0.069
0.01 0.261 0.104 0.091 0.090 0.093 0.090
0.1 0.679 0.679 0.652 0.646 0.669 0.664

Table 7.1: Results of hyper-parameter sweep for the second order CGA in the OpenAI particle
world experiment. MSE is shown, lower is better.

L2 regularization/V̂ rank 5 10 20 50 100
0.001 0.61 0.6214 0.6086 0.5971 0.5929
0.01 0.64 0.6414 0.6414 0.6429 0.6429
0.1 0.6214 0.63 0.62 0.6286 0.6242

Table 7.2: Results of hyper-parameter sweep for the second order CGA in the NBA data. Model
accuracy is shown, higher is better.

7.9 Additional Related Works in Cooperative Game Theory

In computational, cooperative game theory [59], there has been ample, albeit orthogonal prior
work that studies CF representations and Shapley computation. We may classify them as follows:

254

• Fast methods to compute the SV for certain subclasses of games: [106] (for voting games).
By contrast, our representation permits facile Shapley computation for all cooperative
games.

• Sample complexity of approximating the SV: [195], [21] (only for simple games), [187]
(only for supermodular games). By contrast, our bounds focus on the sample complexity
of learning the CF function with the CGA representation, thus drawing upon PAC/PMAC
techniques. None of the other works in this category need to nor use learning theoretic
methods. They focus only on studying the concentration of estimated SV values via standard
concentration inequalities.

• Representation designed to allow for easy computation of the SV: [202] (only for networks),
[77]. By contrast, our CGA model has provable, learning theoretic properties (and addition-
ally, practical success on real world data). The provable guarantee is crucial since we need
to use the model to learn the unknown CF from data.

255

256

Chapter 8

Multi-agent Attribution via the Core

8.1 Introduction

As machine learning systems become more capable, they are increasingly used in our society to
automate tasks and generate value. This has lead to a surge in the attention given to the economics
of machine learning: how features and data contribute to the performance of ML models. To
ensure ML models are functioning as intended, much work has been devoted to studying feature
attribution: how the features used to represent the data influence the model’s predictions [61, 73,
86, 87, 193, 269]. Related to feature attribution is data valuation [4, 115, 156, 157, 218], which
studies how data points contribute to model performance. With ML models now generating profit
for enterprises, this understanding is important in order to fairly compensate data suppliers for
their training data.

Similar to the previous chapter, the problem of data valuation may be viewed as a particular
instance of the multi-agent attribution problem. Indeed, central to feature and data valuation is an
equitable means of credit assignment.

Virtually all papers, including every single paper cited above, deem the Shapley value (or
close variants thereof) to be the “right” way to carry out this credit assignment. The Shapley
value is a solution concept from cooperative game theory in which players — in this case features
or data points — are assigned payoffs in a way that satisfies four axioms; roughly speaking, a
player’s payoff is their average marginal contribution to a coalition consisting of other players.

This intense focus on the Shapley value is surprising, however, as — once we have accepted
that problems of credit assignment in machine learning can be modeled as cooperative games —
there are a plethora of other solution concepts [225]. In particular, there is a seminal solution
concept in cooperative game theory that is as prominent as the Shapley value: the core. This
solution concept seeks to achieve maximal stability among all possible coalitions of the players in
the game — an idea that dates back to the writings of Edgeworth on market equilibrium theory in
1881. It is a solution concept that aims to capture economic feasibility.

Specifically, according to the core, the total payoff to each coalition should be at least its
value. When this is not possible, the maximum deficit (difference between value and payoff) of
any coalition should be minimized — this is known as the least core. The (least) core can be seen
as a notion of group fairness, in that each group of players (or coalition) gets its dues. Moreover,

257

it is especially apt in the valuation setting, where the data vendors or feature annotators are paid
in a way that disincentivizes (to the extent possible) any coalition of vendors from choosing to
opt out and not contribute; if a coalition S if not paid at least its value v(S) then the coalition
would be better off separating from the so-called grand coalition. Thus, the core values may be
viewed as the set of all economically plausible payoffs to participants that compensate them for
their contributions.

In this chapter, we provide a much needed comparison of the two solution concepts and show
that the (least) core is, practically and conceptually, an attractive alternative to the Shapley value
for credit assignment in machine learning. In doing so, we hope to raise awareness of the core
as a natural solution concept for fair credit assignment, challenge the wide-ranging usage of the
Shapley value and inspire a closer examination of cases where one solution concept should be
preferred over the other. It is worth emphasizing that, to the best of our knowledge, we are the
first to consider using the core for feature/data valuation in machine learning.

8.1.1 Our Results
Much like the Shapley value, the primary obstacle in applying the concept of least core is
computational complexity. Indeed, it is the solution to a linear program whose number of
constraints is exponential in the number of players. Nevertheless, we construct a Monte Carlo
algorithm that runs in polynomial time and (with given confidence) outputs a payoff allocation in
the δ-probable least core — a slightly relaxed version of the least core where the payoff constraints
may be violated by up to a δ-fraction of coalitions. When the number of players is large, though,
this may still be intractable; we therefore show that it is possible to find a solution in the (ϵ, δ)-
probably approximate least core — whose constraints are additionally relaxed by ϵ each — in time
that is polylogarithmic in the number of players.

We also study a well-known refinement of the least core called the nucleolus. However, it turns
out that results that are analogous to those for the least core are essentially unattainable. Informally,
we prove that any algorithm would have to require access to the values of an exponentially large
number of coalitions to compute a payoff allocation in the (ϵ, δ)-probably approximate nucleolus,
which again relaxes all relevant constraints by ϵ and allows a δ-fraction of the constraints to be
violated. The juxtaposition of the positive computational results for the least core and the negative
result for the nucleolus provides a strong endorsement of the former (somewhat coarser) notion
over the latter.

In our experiments, we verify these theoretical results and confirm that our algorithm can
compute the least core easily and that the nucleolus is difficult to compute. Next, we compare
algorithms one would use to compute the Shapley value against our least core algorithm in data
valuation tasks. Our results suggest that the least core algorithm compares favorably with those of
the Shapley value in low-resource settings that are typical of analysts without access to large-scale
computational resources.

8.1.2 Related Work
There is an entire area of algorithmic game theory devoted to the computation of solutions of
cooperative games [58]. In particular, a slew of papers have studied the complexity of the core,

258

the least core, and the nucleolus in specific classes of cooperative games [20, 76, 91, 99, 100].
Our work is most closely related to that of Balkanski et al. [34]. They study settings where

solutions to cooperative games — specifically, the Shapley value and the core — are learned from
samples consisting of coalitions and their values. Like Balcan et al. [28], they are motivated by
the observation that in classical applications of cooperative games values of coalitions cannot be
accessed via queries; for example, if the game represents company employees working together to
complete tasks, it is impossible to know which tasks would be completed had a specific coalition
worked alone. Importantly, they do not consider valuation at all. Under the assumption that the
underlying game has a nonempty core, Balkanski et al. [34] give bounds on the sample complexity
of three approximations of the core.

On a technical level, our definition of approximate notions of least core (Theorems 45 and 46)
follow those of Balkanski et al. [34] for the core, by eschewing the assumption that the core is
nonempty; our proofs of these results directly build on theirs. Our interpretation of these results is
quite different, though, because in our setting coalition values can be queried — for example, one
can run a black-box predictor with a specific subset of features and measure its accuracy — so we
think of our results as guarantees on the performance of Monte Carlo algorithms. Balkanski et
al. [34] did not study the nucleolus, so our negative result for the nucleolus (Theorem 47) — which
we view as our main theoretical result — is entirely new and has no analog in their work. Finally,
the work of Balkanski et al. [34] is purely theoretical, whereas our empirical results study and
demonstrate the applicability of the least core to credit assignment in machine learning.

8.2 Preliminaries

A cooperative game consists of a set of players N = {1, . . . , n} and a characteristic function
v : 2N → R which assigns a value to each coalition S ⊆ N , such that v(∅) = 0; we assume that
v(S) ≥ 0 and v(S) ≤ 1 for all S ⊆ N for ease of exposition. We think of v(S) as the payoff
the coalition S could obtain if it went it alone. Given such a game, we are interested in finding
a payoff allocation (also known as an imputation) x = (x1, . . . , xn), where xi is the payoff of
player i ∈ N . The payoff allocation must be efficient, that is,∑

i∈N

xi = v(N).

A payoff allocation is in the e-core if and only if the total payoff of each coalition is at least
its value, up to e:

∀S ⊆ N,
∑
i∈S

xi + e ≥ v(S).

The core itself, by this definition, satisfies these constraints with e = 0. Unfortunately, there
are cooperative games whose core is empty. But clearly the e-core is nonempty if e is large
enough.

The idea behind the least core [197] is to choose the smallest e possible. It may be defined as

259

the set of all solutions to the following linear program.

min e
s.t.

∑
i∈N xi = v(N)∑
i∈S xi + e ≥ v(S) ∀S ⊆ N

(8.1)

One can think of the least core as the set of payoff allocations that require the smallest subsidy
e⋆ (the value of e in the optimal solution to (8.1)) to each coalition so that, if the payoff to each
coalition was boosted by e⋆, the allocation would be in the core. The core is nonempty if and only
if e⋆ ≤ 0.

We next consider a refinement of the least core, the nucleolus, first proposed by [250]. Define
the deficit of a payoff allocation x for a coalition S ⊆ N to be v(S)−

∑
i∈S xi. The nucleolus is

the payoff allocation whose sorted list of deficits across all coalitions lexicographically dominates
the list of deficits for any other payoff allocation. That is, the largest deficit (which will be positive
if the core is empty) should be as small as possible; subject to that, the second largest deficit
should be as small as possible, and so on. Notice that, in particular, the nucleolus minimizes the
largest deficit and so its allocation does lie in the least core. In contrast to the least core, which
may contain multiple payoff allocations, the nucleolus is known to be unique [250].

8.3 Theoretical Results

Exact computation of the least core and the nucleolus requires solving linear programs with
as many constraints as there are coalitions, which would typically be prohibitively expensive.
Our strategy, therefore, is to sample a relatively small number of coalitions from an underlying
distribution, and compute the desired solution concept on the sampled coalitions — this can be
done in time that is polynomial in the number of samples, via the linear program (8.1) for the
least core, and via a sequence of such linear programs for the nucleolus [168]. The hope is that
this Monte Carlo algorithm would give us a payoff allocation that approximates the desired one
with respect to the underlying distribution.

8.3.1 Computing the Least Core
We know from the work of Balkanski et al. [34] that computing the least core exactly is a non-
starter — they prove an impossibility even for the core, under the assumption that it is nonempty.
We therefore consider approximate versions of the least core.

Given a cooperative game, let D be a distribution over 2N , and let e⋆ be the subsidy defined by
the least core — the optimal solution to Equation (8.1). A payoff allocation x is in the δ-probable
least core if and only if

PrS∼D

∑
i∈S

xi + e⋆ ≥ v(S)

 ≥ 1− δ.

That is, the least core constraint is violated with probability at most δ when coalitions are drawn
from D.

We have the following result, whose proof appears in Appendix 8.7.

260

Theorem 45. Given a cooperative game (N, v), distribution D over 2N , and δ,∆ > 0, solving
the linear program (8.1) over O((n+ log(1/∆))/δ2) coalitions sampled from D gives a payoff
allocation in the δ-probable least core with probability at least 1−∆.

It may seem surprising that solving the linear program (8.1) with respect to a subset of the
coalitions gives a guarantee with respect to the unknown subsidy e⋆. But the estimated deficit
ê with respect to a subset of coalitions (that is, a subset of constraints) satisfies ê ≤ e⋆ due to
monotonicity.

Also note that the choice ofD rests with the algorithm designer. In other words, we can sample
coalitions from any distribution D and compute an allocation in the least core on the sample; the
probable least core guarantee would then hold with respect to that same D. In particular, if the
uniform distribution over coalitions is used, the guarantee holds with respect to a (1− δ)-fraction
of all coalitions.

While Theorem 45 is encouraging, a potential drawback is that the algorithm’s running time is
polynomial in the number of players n. While this is an exponential improvement over naïve least
core computation, it can still be a nonstarter when the players are features in a high-dimensional
space or data points. We therefore define the (ϵ, δ)-probably approximate least core to be payoff
allocations such that

PrS∼D

∑
i∈S

xi + e⋆ + ϵ ≥ v(S)

 ≥ 1− δ.

With this additional relaxation, we can obtain running time that is polynomial in log(n); the
proof is relegated to Appendix 8.8.
Theorem 46. Given a cooperative game (N, v), distribution D over 2N , and δ,∆, ϵ > 0, solving
the linear program (8.1) over

O

τ 2
(
log n+ log

(
1
∆

))
ϵ2δ2


coalitions sampled from D, where τ = maxS v(S)

minS ̸=∅ v(S)
, gives a payoff allocation in the (ϵ, δ)-probably

approximate least core with probability at least 1−∆.
We note that τ may be considered a constant in general. For example, in multiclass classifica-

tion it is no bigger than 1
1/m

= m, where m is the number of classes.

8.3.2 Computing the Nucleolus
The probably approximate least core can be seen as requiring the deficit of “most” coalitions
to be approximately at most the maximum deficit e⋆ that defines the least core. In the (unique)
nucleolus, though, that deficit is associated only with the worst-off coalition. It is natural to ask,
instead, that the deficit of “most” coalitions be approximately their own deficit under the nucleolus
allocation.

Formally, as before fix a cooperative game and a distribution D. Denote by d⋆(S) the deficit
of coalition S ⊆ N under the unique nucleolus allocation. A payoff allocation x is in the

261

(ϵ, δ)-probably approximate nucleolus if and only if

PrS∼D


∣∣∣∣∣∣
∑
i∈S

xi + d⋆(S)− v(S)

∣∣∣∣∣∣ ≤ ϵ

 ≥ 1− δ.

Unfortunately, it turns out that any algorithm that computes the probably approximate nucle-
olus requires a number of samples that is exponential in the number of players n — a doubly
exponential increase over the probably approximate least core! — as the following theorem shows.
Theorem 47. Let n ≥ 9, ϵ < 1/50, δ < 1/200 and ∆ < 4/5. Then any deterministic algorithm
that for all games (N, v) on n players, and all distributions D on N , computes a payoff allocation
in the (ϵ, δ)-probably approximate nucleolus with probability at least 1−∆ requires access to
the values of Ω(2n/3) coalitions sampled from D.

The importance of Theorem 47 lies in the practical guidance it provides. Indeed, the stark
contrast between Theorem 46 and 47 suggests that we should focus on approximations of the
least core, as natural approximations of the (stronger notion of) nucleolus are essentially beyond
reach. Even though the theoretical result is worst-case in nature, we show in Section 8.5 that its
implication holds in practice.

We also note that the theorem statement deals with algorithms that are deterministic, up to
the random sampling of coalitions from D. However, it is not difficult to extend the theorem to
deal with randomized algorithms too, at the cost of complicating the proof further. Moreover,
the constants in the theorem statement can certainly be improved, but we do not view their exact
values as being important.

8.4 Interlude: A Comparison of the Core and the Shapley
Value

Now that we have established that it is viable to compute the least core, we turn to the conceptual
part of our argument. Before going into how the least core and the Shapley value differ (we
include a comment on when the two are known to coincide in Section 8.5), one thing to note about
the least core is that it is a set of solutions, whereas the Shapley value is a point solution concept.
To compare the two conceptually (and experimentally as well), we break ties by selecting the
payoff allocation in the least core with the smallest ℓ2 norm. This is known as the egalitarian
least core.

Axiomatic Properties. The Shapley value has almost always been justified through its four
axiomatic properties [61, 73, 87, 193, 269]: (i) efficiency (ii) symmetry (iii) null player (iv)
linearity. If we accept this argument, then the egalitarian least core is quite attractive in satisfying
all but the last axiom (linearity).

While the least core’s lack of linearity is ostensibly a disadvantage, it is unclear to us why it
is an essential property for importance scores. The necessity of linearity is commonly justified
by defining a cooperative game for each test point with the coalitional value being the model
accuracy with respect to that point. And so, one would desire that summing the importance scores

262

across these games would yield the score of the game corresponding to the entire test set [115].
However, in this vein, one can simply define a different game, with the coalitional value being the
model accuracy with respect to the entire test set, in the very beginning, thus obviating the need
for this property to hold.1

By contrast, the stability axiom, which the egalitarian least core does satisfy, is crucial if we
are to adopt the economic motivation behind data valuation, as described in data market papers
such as that of Ghorbani and Zou [115]. Put another way, if the goal is to output scores that reflect
and may be interpreted as economically plausible payments in a competitive market, then the
scores should be such that every coalition is compensated for at least its market value. This is
so that the agents in the coalitions, who are rational, do not elect to leave the grand coalition.
Contrast this with the Shapley value, which confers only a generic notion of “importance” (where
relatively bigger means more “important”) and may not necessarily correspond to an economically
feasible set of payoffs (as we will see in the experiments).

Behavioral Studies. Studies in behavioral game theory have found the core to be predictive of
payment distribution in market settings, suggesting that people perceive the core as a fair scheme
for dividing up the total payoffs; by contrast, the Shapley value has received “weaker empirical
support” [294]. This is an especially compelling reason to prefer the core over the Shapley value:
since the stakeholders involved with machine learning are often people, it is imperative to employ
a solution concept that is consistent with their behavior and intuition [44, 172]. Indeed, while
much is still unclear as to how to assign “importance scores” in interpretability so as to truly aid
stakeholders, there exists ample economic literature on how to equitably pay people and the core
is one such prominent concept, which we champion as a principled way to assign these scores in
the valuation setting.

Negative Computational Results for Shapley. Similar to our negative result for the nucleolus in
Theorem 47, prior work has also produced negative results for the computation of the Shapley
value. Indeed, the Shapley value is difficult to approximate, not to mention compute exactly.
Informally, Bachrach et al. [22] show that no polynomial-time randomized algorithm can build a
confidence interval with small accuracy. And Balkanski et al. [34] show that there exist games
such that the Shapley value cannot be approximated from samples over the uniform distribution.

In light of these negative results, the latest state of the art algorithms for computing the Shapley
value [115, 156] either turn to simpler Monte-Carlo approaches that do not enjoy theoretical
guarantees [115] or more complicated algorithms that leverage assumptions such as sparsity to
obtain sizable savings in sample complexity [156]. By contrast, we provide a simpler algorithm
for computing the approximate least core with probable guarantees.

But do these theoretical results translate into practice? In the next section we show, among
other things, that in low-resource settings (where the algorithm has limited computational power)
our least core algorithm outperforms state-of-the-art algorithms for the Shapley value, thereby
bolstering the computational case in favor of the least core.

1We do note that the core satisfies “approximate linearity” in the following sense: An e1-core under coalition
function v1 and an e2-core under coalition function function v2 can be combined into an allocation that satisfies the
(e1 + e2)-core under coalition function v1 + v2 (though certainly the least core could be better than just summing the
least core allocations across the two games).

263

8.5 Empirical Results

The purpose of this section is twofold. First, we empirically verify our theoretical conclusions
about the computability of the least core and nucleolus (which are worst case in nature). Second,
we compare the algorithms that one would use to approximate the Shapley value with that for
least core.

Our experiments are conducted on feature valuation and data valuation tasks. Following
previous work in the area, our primary aim is to use these tasks to confirm that least core values
are predictive of importance, albeit in an indirect way (as the ultimate test of human-centered AI
must be how the system interacts with people).

8.5.1 Feature Valuation

We choose three smaller-scale UCI datasets [95] that have 10–14 features: this makes it compu-
tationally feasible to train a logistic regression classifier on all possible subsets of features and
to compute the exact Shapley and least core values. To define the cooperative game, the players
are the features and the value of a coalition is the test accuracy of a logistic regression classifier
that is trained on those features. The three real-world datasets are of different domains: house
(classifying the party of Congressmen based on their votes on issues), medical (predicting the
presence of breast cancer based on features of images, and chemical (classifying the origin of
wine based on chemical analysis).

To empirically verify Theorem 45 from Section 3 (which deals with the probable least core),
we sample a small fraction of coalitions uniformly at random from all possible coalitions, and
compute the least core by restricting Equation (8.1) to these coalitions. We then determine what
fraction of all coalitions satisfy the least core constraints with respect to the true deficit e⋆ — that
gives us accuracy 1 − δ, which, in turn, leads to δ-probable least core. To obtain error bars,
we repeat this ten times. As can be seen in Figure 8.1, even with a small fraction of sampled
coalitions, the resultant allocations are δ-probable least core allocations with very small δ.

Theorem 47, by contrast, asserts that many samples are needed to compute the probably
approximate nucleolus. Since this is a worst-case result, one may wonder whether it holds in
practice. To check this, we apply the same methodology as above. As can be seen in Figure 8.1,
even when a sizable fraction of samples are used to compute the (ϵ, δ)-probably approximate
nucleolus , most coalitions do not satisfy its constraints.

8.5.2 Data Valuation

Our second set of experiments deals with data valuation. We focus on low-resource settings in
which we assume the analyst who is looking to understand data importance has access to limited
computational resources (e.g., few cores, no pun intended). We examine the performance of
existing algorithms that one would use. To compare, we elect to fix the sample complexity (the
number of v(S) queries) that the algorithms are permitted to use. This sidesteps comparing the
actual runtimes of the algorithms, which may vary depending on the details of the implementation.
The two data valuation Shapley algorithms we compare against are TMC [115] and Group

264

Figure 8.1: Top Panel: Least core accuracy (satisfaction of the core constraint) over coalitions.
Bottom Panel: Nucleolus accuracy (satisfaction of the core constraint) over coalitions (ϵ = 0.01).

265

Testing [156]. Please note that the experiments we conduct below emulate the current, gold
standard for evaluating feature or data valuation methods, which is to add or remove features
or data as ranked by the method and use the resultant model accuracy as an indicator of the
“goodness” of the valuation.

Data Removal. We emulate the data removal experiments as described by Ghorbani and Zou
[115] [115]. In this set of experiments, the data is ranked from most valuable to the least valuable
using the solution concepts, and the model performance is charted as the most valuable/least
valuable five percent of the data is removed at a time. In addition to the two Shapley algorithms
we also include two baselines: leave one out (LOO), defined as v(N)− v(N \{i}) for each player
i, and random score assignment.

For the synthetic data generation, we sample 200 data points from 50-dimensional Gaussian,
the 50-dimensional parameters are sampled from a uniform distribution and the feature-label
relationship is set to be linear. To define the cooperative game, we take the players to be the data
and the value of a coalition to be the test accuracy of the model trained only on the data in the
coalition. The model used here is logistic regression; we relegate results for neural networks to
Appendix 8.11.2. We repeat the procedure 20 times and obtain 95 percent confidence intervals for
the mean model performance.

For the natural dataset, we use the dog-vs-fish classification dataset as in the work of Koh
and Liang [166] and Ghorbani and Zou [115]. We randomly sample 600 data points and obtain
features of the images using Inception network. The model used for training is logistic regression
and we vary the budget as before. This entire process is repeated five times to obtain the error
bars.

We experiment with a budget of 5K, 10K, 25K, 50K for samples as in a low-resource setting.
As a point of reference, for the synthetic data experiment, computing the exact least core uses 2200

samples. The TMC Algorithm with a stopping threshold of less than one percent change in the
estimated Shapley value uses 2.17M samples when run until convergence. For the Group Testing
Algorithm, using the sample complexity derived, running till convergence uses 11.05M samples.

As can be seen in Figure 8.2 (with similar figures for other parameter settings given in
Appendix 8.11.2), the least core algorithm compares favorably with the Shapley algorithms
in terms of predicting the most and least important (in a sense) data points in these settings.
Specifically, the least core’s performance is significantly better than the baselines in the synthetic
setting, whereas in the natural setting it is slightly better than Shapley value computation via the
stronger of the two algorithms.

It is worth pointing out that the formulation of least core is such that it captures a group
measure of value, whereas the Shapley value is more of an individual measure. Therefore, this
data removal setup should conceptually favor Shapley, and yet the least core outperforms it to
some degree.

As one more sanity check, we conduct an experiment studying the percentage of utility
allocated by the core to noisy data. We divide the dataset into two: a clean portion and a noised
portion. We increase the Gaussian noise added to the noised portion and compute the percentage
of utility allocated by the core to the clean data. As expected and seen in Figure 8.3, with higher
noise, the noised data become less “valuable” and are thus allocated a lower percentage of the
overall utility by the core.

266

(a) Synthetic data, remove best, 10K sam-
ples

(b) Synthetic data, remove best, 50K sam-
ples

(c) Natural data, remove best, 10K sam-
ples

(d) Natural data, remove best, 50K sam-
ples

(e) Synthetic data, remove worst, 10K sam-
ples

(f) Synthetic data, remove worst, 50K sam-
ples

(g) Natural data, remove worst, 10K sam-
ples

(h) Natural data, remove worst, 50K sam-
ples

Figure 8.2: Curves of logistic regression test performance when the best and worst data points
ranked according to the solution concepts are removed. In (a)–(d) the best data points are removed:
the steeper the drop, the better. In (e)–(h) the worst data points are removed: the sharper the rise,
the better.

267

Figure 8.3: Plotting noise level against percentage of total utility assigned to clean data.

Figure 8.4: Test performance as we correct more and more training data guided by the least core
vs. random selection.

Fixing Mislabeled Data. We perform another set of experiments to verify that the magnitude of
the least core values strongly correlate with the importance of the data point. In this experiment,
we assume we have a dataset with flipped labels and would like to use the importance scores
assigned to expedite the correction of “flipped” data points, which should correspond to the lower
scores. The specific dataset we use is the Enron Dataset, as in previous work [115, 166]. In total,
1000 data points are used for training a Naive Bayes model which takes as input a bag-of-words
representation of emails. We randomly flip the label for twenty percent of the data and allot a
budget of 5000 samples for computing the solution concepts. The coalitional values are defined
as performance on the validation set, and then the final performance in the plot is assessed on the
test set. As can be seen in Figure 8.4, the least core values are much better at picking out lower
quality data points than random selection.
Is the Approximate Shapley value in the Approximate Least Core? It is known that the Shapley
value coincides with the egalitarian core for convex games, where there is a super-additive effect in
players coming together. This effect is not typically present in what we call “supervised-learning”
games, in which there are diminishing returns as more and more data or features are added and

268

used. However, in theory it may still be the case that the two solutions usually coincide, which
would make it redundant to discuss the core. We therefore test, in the valuation experiments
mentioned above, whether approximate Shapley values are close to being in the approximate least
core. Our results suggest that this is not the case and therefore the approximate Shapley cannot
serve as a proxy for the least core. Details are relegated to Appendix 8.11.2.

8.6 Discussion

In our paper, we provide theoretical and empirical results, along with with conceptual arguments
(Section 8.4), that suggest the least core is a principled, alternative means of doing credit assign-
ment in ML. Currently, it appears that virtually all papers on feature and data valuation use the
Shapley value for this purpose. In light of the many uses of the core as an economically plausible
method of payoff assignment, we introduce this alternative approach to the AI community in the
hope invoking further discussion on when and why one solution concept is to be preferred.

Lastly, we wish to note that outside of the comparison of solution concepts, one limitation
that is shared by both the core and the Shapley value is that they are not suitable for non-additive
models [172]. This problem is an artifact of the game setup and not the solution concept. It is
another important issue that the community would need to come to a consensus on.

8.7 Proof of Theorem 45

This proof is a direct extension of the proof of Theorem 1 of Balkanski et al. [34]. Like them, we
employ the following known lemmas [255].
Lemma 61. Let H be a function class from X to {−1, 1}, and let f be the true underlying
function. IfH has VC-dimension d, then with

m = O

(
d+ log

(
1
∆

)
δ2

)

i.i.d. samples x1, ...,xm ∼ D,∣∣∣∣∣∣Prx∼D[h(x) ̸= f(x)]− 1

m

m∑
i=1

1h(xi)̸=f(xi)

∣∣∣∣∣∣ ≤ δ

for all h ∈ H and with probability 1−∆ over the samples.
Lemma 62. The function class {x 7→ sign(w · x) : w ∈ Rn} has VC-dimension n.

We now turn to the proof. Given a coalition S sampled from D, we convert it into a vector
yS = (xS,−v(S), 1) where xSi = 1 if i ∈ S and xSi = 0 otherwise.

Consider a linear classifier h define by wh = (z, 1, e) where z ∈ Rn and e ∈ R. If sign(wh ·
yS) = 1 then

∑
i∈S zi − V (S) + e ≥ 0. And if there exist a linear classifier h that satisfies

this property for all coalitions S ∈ 2N , and in addition z is efficient, then it represents a payoff

269

allocation in the e-core. This allows us to define a class of functions that contains the e-core for
all e. This class is:

H =

y 7→ sign(w · y) : w = (z, 1, e), z ∈ Rn, e ∈ R,
n∑
i=1

zi = v(N)

 .

This class H is a subset of the class of all linear classifiers of dimension n + 2 and thus, by
Lemma 62, it has VC-dimension at most n+ 2.

Now, suppose that we run the linear program (8.1) on our samples S1, . . . , Sm, which gives us
a payoff allocation ẑ and a value ê. Define the corresponding classifier ĥ; notice that ĥ(ySi) = 1
for all i = 1, . . . ,m. In addition, let z⋆ be a payoff allocation in the least core, and e⋆ the required
subsidy, and define the corresponding classifier f ⋆. It holds that f ⋆(yS) = 1 for all S ∈ 2N .

By Lemma 61 we have uniform convergence for all classifiers with probability 1−∆, and in
particular for ĥ it holds that

PrS∼D

∑
i∈S

ẑi − v(S) + e⋆ ≥ 0

 ≥ PrS∼D

∑
i∈S

ẑi − v(S) + ê ≥ 0


= 1− PrS∼D

[
sign(wĥ · yS) = −1

]
= 1− PrS∼D

[
ĥ(yS) ̸= f ⋆(yS)

]
= 1−

PrS∼D

[
ĥ(yS) ̸= f ⋆(yS)

]
− 1

m

m∑
i=1

1ĥ(ySi) ̸=f⋆(ySi)


≥ 1− δ

where the first transition holds because ê ≤ e⋆ and the fourth transition holds because ĥ and
f ⋆ agree on S1, . . . , Sm.

8.8 Proof of Theorem 46

This proof directly extends the proof of Theorem 5 of Balkanski et al. [34]. Like them, we use the
following result [255].
Lemma 63. LetH = {w : ||w||1 ≤ B} be the hypothesis class, and Z = X ×Y be the examples
domain. SupposeDZ is a distribution over Z s.t ||x||∞ ≤ R. Let the loss function ℓ : H×Z → R
be of the form ℓ(w, (x, y)) = ϕ(⟨w,x⟩, y) and ϕ : R × Y → R is such that for all y ∈ Y , the
scalar function a→ ϕ(a, y) is ρ-Lipschitz and such that maxa∈[−BR,BR] |ϕ(a, y)| ≤ c. Then for
any ∆ ∈ (0, 1), with probability of at least 1 − ∆ over the choice of an iid sample of size m,
(x1, y1), ..., (xm, ym):

E(x,y)∼DZ [ℓ(w, (x, y))] ≤
1

m

m∑
i=1

ℓ(w, (xi, yi)) + 2ρBR

√
2 log(2d)

m
+ c

√
2 log(2/∆)

m
.

270

for all w ∈ H.
We also require the observation that if an (ϵ, δ)-probably approximate least core holds in

expectation, then it is likely to hold.
Lemma 64. For any ϵ > 0, δ < 1 and e-core allocation x computed from samples,

E
S∼D

[1− ∑i∈S zi + e

v(S)

]
+

 ≤ ϵδ

1 + ϵ
⇒ PrS∼D

∑
i∈S

zi + e⋆ + ϵ ≥ v(S)

 ≥ 1− δ.

Proof. Recall Markov’s inequality: for a > 0, random variable X ≥ 0,

Pr[X ≤ a] ≥ 1− E[X]

a
.

To use it, let a = ϵ
1+ϵ

and define a nonnegative random variable

X =

[
1−

∑
i∈S zi + e

v(S)

]
+

.

Then event X ≤ a is such that

X ≤ a⇔ 1−
∑

i∈S zi + e

v(S)
≤ ϵ

1 + ϵ

⇔
∑
i∈S

zi + e ≥ 1

1 + ϵ
v(S)

⇔
∑
i∈S

zi + e+
ϵ

1 + ϵ
v(S) ≥ v(S)

⇒
∑
i∈S

zi + e+ ϵ ≥ v(S)

⇒
∑
i∈S

zi + e⋆ + ϵ ≥ v(S)

where the penultimate step uses v(S) ≤ 1 for all S ⊆ N , and the last step uses that e⋆ ≥ e since e
is the least core value obtained from only a sample of all coalitional constraints.

We conclude that

Pr

∑
i∈S

zi + e⋆ + ϵ ≥ v(S)

 ≥ Pr[X ≤ a] ≥ 1− E[X]

a
≥ 1− δa

a
= 1− δ.

Turning to the theorem’s proof, in order to use Lemma 63, we begin by bounding the L1 norm
of every allocation and e in the e-core to obtain B.

271

Suppose z is an allocation in the e-core, then ||(z, e)||1 = v(N)+e. This holds because zi ≥ 0
for all i ∈ N and, by efficiency, ||z||1 = v(N). Therefore:

||(z, e)||1 = v(N) + e ≤ v(N) + max
S

v(S) ≤ 2max
S

v(S)

Then, we can take our hypothesis class to be:

H =

{
z ∈ Rn : ||z||1 ≤ 2max

S
v(S)

}
Given S ∼ D, define the corresponding xS = (1i∈S

v(S)
, 1
v(S)

) and the label to be yS = 1. This
allows us define to DZ to be the uniform distribution over all (xS, yS) pairs. Next, suppose we
obtain m samples S1, . . . , Sm from D, the uniform distribution over all coalitions, we may again
run the linear program (8.1) on the m samples, which gives us a payoff allocation ẑ and a value ê.
We take our classifier to be of the form w = (ẑ, ê) and we may define its loss ℓ to be:

ℓ(w, (xS, yS)) = ℓ

(ẑ, ê),

((
1i∈S

v(S)
,

1

v(S)

)
, yS

)
=

[
yS − (ẑ, ê) ·

(
1i∈S

v(S)
,

1

v(S)

)]
+

=

[
1−

∑
i∈S ẑi + ê

v(S)

]
+

.

(8.2)

Now, we may utilize Lemma 63 with the remaining variables being R = 1
minS ̸=∅ v(S)

, B =

2maxS v(S), ϕ(a, y) = [y − a]+, ρ = 1 and c = 1 + 2τ . This is legal because, ignoring the
empty set, by definition of xS , ||xS||∞ ≤ 1

minS ̸=∅ v(S)
. By definition of the hypothesis class,

||(z, e)||1 ≤ 2maxS v(S) for all (z, e) ∈ H. ϕ(a, y) = [y − a]+ is 1-Lipschitz as:

[y − a1]+ − [y − a2]+ = max{y − a1, 0} −max{y − a2, 0}

=
|y − a1|+ y − a1

2
− |y − a2|+ y − a2

2

=
|y − a1| − |y − a2|+ a2 − a1

2

≤ |y − a1 − (y − a2)|+ a2 − a1
2

≤ |a2 − a1|

Lastly, because our example domain Z is such that Y = {1}. We may obtain upper bound c:
c = maxa∈[−BR,BR] |ϕ(a, y)| = maxa∈[−BR,BR][1− a]+ ≤ (1−−BR) = 1 +BR = 1 + 2τ .
Moreover, since for all St in our sample it holds that

∑
i∈St ẑi + ê ≥ v(S), Equation (8.2)

implies that

1

m

m∑
t=1

ℓ

(ẑ, ê),

((
xSt ,

1

v(St)

)
, 1

) = 0.

272

Therefore by Lemma 63,

E(x,y)∼D[l(w, (x, y))] = ES∼D

[1− ∑i∈S ẑi + ê

v(S)

]
+


≤ 0 + 2 · 1 · 2τ

√
2 log(2(n+ 1))

m
+ (1 + 2τ)

√
2 log(2/∆)

m

Using Lemma 64, we need the number of samples m to be such that

4τ

√
2 log(2(n+ 1))

m
+ (1 + 2τ)

√
2 log(2/∆)

m
≤ δϵ

1 + ϵ
,

and we get that

O

τ 2
(
log n+ log

(
1
∆

))
ϵ2δ2


samples suffice.

8.9 Proof of Theorem 47

On a high level, we will construct a set of cooperative games G over the same set of players
N , and a distribution D over the coalitions, such that no deterministic algorithm can compute a
payoff allocation in the (ϵ, δ)-approximate nucleolus with probability 1−∆ using m ≤ 1

6
· 2n/3+1

samples with respect to every game in G.
The idea of the proof is as follows. We construct the class of games G in a way that it is likely

to observe v(Si) = 0 for the coalitions S1, . . . , Sm sampled from D. Lemma 65 shows that at
least half of the games in our class are consistent with such an observation. But Lemma 67 asserts
that any payoff allocation would be in the (ϵ, δ)-probably approximate nucleolus of only a small
fraction of the games in G. Intuitively, then, when such an input is observed, the algorithm does
not have enough information about the underlying game and is likely to violate the (ϵ, δ)-probably
approximate nucleolus requirement. In the theorem’s proof itself, we formalize this intuition
by first assuming that the game itself is drawn from a uniform distribution over G; the theorem
statement follows from an averaging argument.

Formally, the class of games G is defined as follows. Let N be a set of n players; we assume
without loss of generality that n is divisible by 3. Let C1 be a set of 3 players {i, j, k}. Define
C2, C3, C4 to be sets of n/3 − 1 players such that C1 ∪ C2 ∪ C3 ∪ C4 = N . Each cooperative
game GC1,C2,C3,C4 in our class G is such that v(S) = 1 if {i, j} ∪ C2 ⊆ S or {i, k} ∪ C3 ⊆ S or
{j, k} ∪ C4 ⊆ S; v(S) = 0 otherwise. The important thing to note is that all coalitions of size
n/3 + 1 have value 0, except for exactly three that have value 1: {i, j} ∪ C2, {i, k} ∪ C3, and
{j, k} ∪ C4. We call C1 the critical set of game GC1,C2,C3,C4 .

Next, we define the distribution D to be the uniform distribution over all coalitions of size
n/3 + 1.

273

Lemma 65. For any m coalitions S1, . . . , Sm of size n/3 + 1, at least half of the games in G
satisfy v(Si) = 0 for all i = 1, . . . ,m.

Proof. To count the number of such games, we can count the number of games in which the value
of Si is 1. By symmetry, the number of games in which a coalition S has value 1 is the same
for all coalitions S of size n/3 + 1. Moreover, for each game in G there are three coalitions of
size n/3 + 1 with value 1. Therefore, for each Si, the number of games in G with v(Si) = 1 is
3|G|/

(
n

n/3+1

)
. It follows that the number of games for which it does not hold that v(Si) = 0 for

all i = 1, . . . ,m is at most 3m|G|/
(

n
n/3+1

)
. Since

(
n

n/3+1

)
≥ 2n/3+1, by our choice of m this is at

most |G|/2.

We next characterize the nucleolus of games in G.
Lemma 66. For every game GC1,C2,C3,C4 ∈ G and every S ⊆ N ,

d∗(S) =


1/3 S ∈ {{i, j} ∪ C2, {i, k} ∪ C3,

{j, k} ∪ C4}
− |S∩{i,j,k}|

3
otherwise

Proof. Let us compute the least core first since we know the nucleolus lies within it. Summing
the constraints of linear program (8.1) for the coalitions {i, j} ∪ C2, {i, k} ∪ C3, {j, k} ∪ C4, we
get that ∑

t∈N

xt + (xi + xj + xk) ≥ 3− 3e.

Since 1 =
∑

t∈N xt ≥ xi + xj + xk, we have that 2 ≥ 3 − 3e, and hence e ≥ 1/3. Moreover,
e = 1/3 is achieved if xi = xj = xk = 1/3.

We claim that this payoff allocation is the only one that achieves e = 1/3. Indeed, the total
payoff to each of the coalitions {i, j} ∪ C2, {i, k} ∪ C3, {j, k} ∪ C4 must be at least 2/3, which
means that the payoff of players at the intersection of each pair of these coalitions must be at least
1/3. But the intersection of each pair is exactly one of the players i, j, k.

Since the payoff allocation x is the unique solution to the least core program, it must be the
nucleolus. The statement of the lemma directly follows.

Lemma 66 implies that two games GC1,C2,C3,C4 and GC′
1,C

′
2,C

′
3,C

′
4

have the same nucleolus if
and only if C1 = C ′1. Let us, therefore, partition G into equivalence classes, where the games in
an equivalence class have the same critical set.
Lemma 67. Any payoff allocation is in the (ϵ, δ)-probably approximate nucleolus for games from
at most one equivalence class.

Proof. Let x be a payoff allocation. We consider two cases, based on the number of players
i ∈ N with xi > ϵ.

Case 1: There are at least three players with xi > ϵ. Let those three players be {i, j, k}, and
consider a game in G whose critical set is not {i, j, k}. Then there exists a player ℓ not in the
critical set such that xℓ > ϵ.

274

Consider all coalitions of size n/3 + 1 containing ℓ but no player from the critical set. By
Lemma 66, under the nucleolus of the game, all such coalitions have deficit 0, but under x they
would have a deficit of at at most −xa′ < −ϵ. There are

(
n−4
n/3

)
such coalitions, which accounts

for the following portion of all coalitions of size n/3 + 1:(
n−4
n/3

)(
n

n/3+1

) =
(n/3 + 1)(2n/3− 1)(2n/3− 2)(2n/3− 3)

n(n− 1)(n− 2)(n− 3)

> (1/3 · 1/2 · 1/2 · 1/2) = 1

24
≥ δ.

Case 2: There are less than three players with xi > ϵ.
In this case, for any game in G, x is such that there exists at least one player in its critical

set with allocation at most ϵ. We show that this means x cannot satisfy the (ϵ, δ)-probably
approximate nucleolus property with respect to the game.

Fix a game in G, let the critical set of the game be {i, j, k}, and let xi ≤ ϵ. Assume for the
sake of contradiction that x satisfies the (ϵ, δ)-probably approximate nucleolus property for this
game.

Consider the set of all coalitions of size n/3 + 1 that contain i, j but not k. There are
(
n−3
n/3−1

)
such coalitions. We know by Lemma 66 that all but one of these coalitions have value 0 and
deficit −2/3. In order for the property∣∣∣∣∣∣

∑
i∈S

xi + d⋆(S)− v(S)

∣∣∣∣∣∣ ≤ ϵ (8.3)

to hold for such coalitions, we would need their payoff to be at least 2/3− ϵ.
Overall, there are at least

(
n−3
n/3−1

)
− δ
(

n
n/3+1

)
− 1 many coalitions containing i, j but not k for

which Equation (8.3) applies and have value 0. The middle term comes from factoring in that
at most a δ fraction of all

(
n

n/3+1

)
coalitions will not satisfy the probably approximate nucleolus

property. By summing over the total payoffs of all such coalitions we have(
n− 3

n/3− 1

)
(xi + xj) +

(
n− 4

n/3− 2

) ∑
t̸∈{i,j,k}

xt


≥

((
n− 3

n/3− 1

)
− δ
(

n

n/3 + 1

)
− 1

)
(2/3− ϵ)

since each player that is not i, j or k shows up
(
n−4
n/3−2

)
times. Dividing by

(
n−3
n/3−1

)
and using the

fact that
(
n−4
n/3−2

)
/
(
n−3
n/3−1

)
= 1/3, we have

xi + xj +
1

3

 ∑
t̸∈{i,j,k}

xt


≥

1−

(
n

n/3+1

)(
n−3
n/3−1

) · δ − 1(
n−3
n/3−1

)
 (2/3− ϵ).

275

With n ≥ 9, 1

(n−3
n/3−1)

≤ 1
15

and so we obtain

xi + xj +
1

3

 ∑
t̸∈{i,j,k}

xt

 ≥
14

15
−

(
n

n/3+1

)(
n−3
n/3−1

)δ
 (2/3− ϵ).

Using efficiency,
∑

t̸∈{i,j,k} xt = 1− xi − xj − xk, and using the fact that(
n

n/3+1

)(
n−3
n/3−1

) =
n(n− 1)(n− 2)

(n/3 + 1)(n/3)(2n/3− 1)
≤ 27

we get
2

3
xi +

2

3
xj +

1

3
− 1

3
xk ≥

(
14

15
− 27δ

)
(2/3− ϵ).

Similarly, by considering the set of all coalitions that contain i, k but not j, we see that

2

3
xi +

2

3
xk +

1

3
− 1

3
xj ≥

(
14

15
− 27δ

)
(2/3− ϵ).

Summing both inequalities, we conclude that

4

3
xi +

1

3
(xj + xk) +

2

3
≥ 4

3
· 14
15
− 36δ − 28

15
· ϵ+ 54δϵ.

Since xj + xk ≤ 1,
4

3
xi ≥

11

45
− 36δ − 28

15
ϵ+ 54δϵ,

which is impossible for xi ≤ ϵ since ϵ < 1/50 and δ < 1/200.

We are now ready to prove the theorem.

Proof of Theorem 47. Fix the set of players N . Let U be the uniform distribution over games in
G. Since N is fixed, we think of U as a distribution over characteristic functions and write v ∼ U .

Suppose that we draw coalitions S1, . . . , Sm from D, and v from U . Let the payoff allocation
returned by the given algorithm A on this input be A((S1, v(S1)), . . . , (Sm, v(Sm))). Consider
the event E that occurs whenA((S1, v(S1), . . . , (Sm, v(Sm)) is in the (ϵ, δ)-probably approximate
nucleolus of the game (N, v). We wish to upper-bound the probability of E .

To this end, instead of drawing v from U directly, it will be useful to use the following
generative process. First, decide whether it holds that v(Si) = 0 for all i = 1, . . . ,m; call this
event F . If F occurred, condition U on F and draw v from this posterior distribution. As we will
see shortly, there is no need to explicitly define the process for the case where F did not occur.

Denoting the complement of F by F̄ , it holds that

Pr[E] = Pr[E | F] · Pr[F] + Pr[E | F̄] · Pr[F̄]
≤ Pr[E | F] + Pr[F̄].

(8.4)

276

Since for every S1, . . . , Sm, the probability of drawing v from U such that F occurs is the
same by symmetry, we can compute Pr[F] by reversing the coin flips, first drawing v and then
S1, . . . , Sm. Only three of the

(
n

n/3+1

)
coalitions of size n/3 + 1 have non-zero value; therefore

Pr[F̄] = 1−

1− 3(
n

n/3+1

)
m

< 1/10, (8.5)

where the inequality holds for n ≥ 9 and m ≤ 1
6
· 2n/3+1.

As for Pr[E | F], by Lemma 65 at least half of the games in G (or, equivalently, at least half
of the corresponding characteristic functions) are in the support of U conditioned on F . But by
Lemma 67, the payoff allocation A((S1, v(S1)), . . . , (Sm, v(Sm))) can be in the (ϵ, δ)-probably
approximate nucleolus of at most one of the

(
n
3

)
equivalence classes. It follows that

Pr[E | F] ≤ 2(
n
3

) < 1/10. (8.6)

Plugging Equations (8.5) and (8.6) into Equation (8.4), we conclude that Pr[E] < 1/5.
To recap, when drawing S1, . . . , Sm from D and v from U , the probability that the output ofA

is in the (ϵ, δ)-probably approximate nucleolus of G = (N, v) ∈ G is at most 1/5. But since this is
true for a random game G ∈ G, there must exist a game G⋆ ∈ G where the same is true when only
drawing S1, . . . , Sm from D. That is, m samples are insufficient to compute a payoff allocation in
the (ϵ, δ)-probably approximate nucleolus with probability at least 1−∆ for ∆ < 4/5.

8.10 Approximate Least Core Implementation

The approximate least core algorithm works as follows: compute the approximate least core value
ê from the samples via linear program (8.1), then minimize the ℓ2 norm over all allocations x s.t
x is in the ê−core:

min ∥x∥2
s.t.

∑
i∈N xi = v(N)∑
i∈S xi + ê ≥ v(S) ∀S ⊆ N

This may be easily done with any standard optimization library and it is not hard to argue that
the resultant x satisfies null player and symmetry in addition to efficiency.

8.11 Additional Experimental Results

8.11.1 Feature Valuation
Maximum Deficit. By definition, the maximum deficit e⋆ under the least core should be at most as
large as that under the Shapley value. However, we wish to verify that the difference is significant
in practice. To that end, we compute the least core, the Shapley value, and (as a baseline) equal

277

House Medical Chemical
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
la

tiv
e

Di
ffe

re
nc

e

Shapley
Least Core
Equal

Figure 8.5: Relative difference between different solution concepts’ largest deficits and the least
core’s largest deficit

payoffs on our three datasets. Figure 8.5 shows the difference between the maximum deficit of
each of the solution concepts (including the least core itself) and the maximum deficit of the
least core. It can be seen that there is a sizable gap between the Shapley value and the least core,
considering that the maximum value of any coalition is 1. Note that no sampling (indeed, no
randomness) is involved in this experiment.

House Medical Chemical
Dataset

0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 D
ev

ia
tio

n Shapley
Least Core

Figure 8.6: Standard deviation of solution concepts

Standard Deviation. On each of our three datasets, we compute the empirical standard
deviation of payoff allocations given by the least core and the Shapley value (again no sampling is
involved). Interestingly, we observe that the least core has considerably higher standard deviation
and may thus be considered more discriminating; see Figure 8.6.

278

8.11.2 Data Valuation

8.11.2.1 Additional Experimental Details

Below include attach plots for the synthetic and natural experiments that were not included in
the main body due to space constraints. We observe that in the synthetic settings, as depicted
in Figures 8.7 and 8.8, the approximate least core values are decidedly better than the other
importance scores. Under the natural setting, as portrayed by Figure 8.9, it seems that the change
in performance is small and the least core and the Shapley value are roughly comparable across
all budgets. Lastly, we note that LOO does not have an error bar in the natural experiment since
all the runs are based on the same random sample of data points, and so the error bars are only due
to the randomness in the sample of v(S)’s that are drawn to approximate the solution concepts.

8.11.2.2 Data Quality vs. Score

Lastly, we repeat one more experiment that assesses data quality vs solution concept value. We
randomly sample 200 dog-vs-fish data points to form an equally balanced training set. We corrupt
20 percent of train data by adding varying levels of white noise to the features and compute
the Least Core value of clean and noisy images. The 5 noise levels are such that it leads to a
monotonic decrease in test performance. Then, we plot the percentage of total utility that is
assigned to clean scores (since the total utility goes down with noise, using the absolute scale
makes it harder to interpret the result). This procedure is repeated 20 times and a budget of 1000
is alloted for approximating the least core.

As can be seen in Figure 8.3, under the no-noise setting, the clean data account for roughly 80
percent of the total utility and with increasing noise added the proportion grows bigger. The slight
trend is due to the fact that the test performance does not drop by too much, going from 96.3 to
92.7.

8.11.2.3 Is the Approximate Shapley Value in the Approximate Least Core

Our test procedure is as follows: for each randomly sampled coalition value v(S) used in
approximating the least core and estimated Shapley value xS , we compute (

∑
i∈S xi + ê)/v(S).

We count the number of samples for which the ratio is below 0.95. Indeed, if we find one, then the
approximate Shapley value x is not close to being in the approximate least core. Overall, we find
that in all the settings we checked, the approximated Shapley does not lie in the approximated
least core. For most experiments, at least one percent of all sampled coalitions has its ratio below
0.95. Other trends include that Group Testing tends to produce many more violations than TMC
and that the percentage of violations decreases with a larger budget.

279

0 5 10 15 20 25 30 35 40
Percentage Removal

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(a) Dropping best data curve at budget 5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(b) Dropping worst data curve at budget 5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(c) Dropping best data curve at budget 10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(d) Dropping worst data curve at budget 10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(e) Dropping best data curve at budget 25K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.74

0.75

0.76

0.77

0.78

0.79

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(f) Dropping worst data curve at budget 25K

Figure 8.7: Curves of synthetic dataset (under a logistic regression model) test performance when
the best and worst data points ranked according to the solution concepts are removed. For the left
column, the steeper the drop, the better. For the right column, the sharper the rise, the better.

280

0 5 10 15 20 25 30 35 40
Percentage Removal

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(a) Dropping best data curve at budget 5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.70

0.71

0.72

0.73

0.74

0.75

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(b) Dropping worst data curve at budget
5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(c) Dropping best data curve at budget 10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(d) Dropping worst data curve at budget
10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(e) Dropping best data curve at budget 25K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(f) Dropping worst data curve at budget
25K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(g) Dropping best data curve at budget
50K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(h) Dropping worst data curve at budget
50K

Figure 8.8: Curves of synthetic dataset (under a feedforward neural network model) test perfor-
mance when the best and worst data points ranked according to the solution concepts are removed.
For the left column, the steeper the drop, the better. For the right column, the sharper the rise, the
better.

281

0 5 10 15 20 25 30 35 40
Percentage Removal

0.955

0.960

0.965

0.970

0.975

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(a) Dropping best data curve at budget 5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.972

0.974

0.976

0.978

0.980

0.982

0.984

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(b) Dropping worst data curve at budget 5K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.960

0.965

0.970

0.975

0.980

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(c) Dropping best data curve at budget 10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.974

0.976

0.978

0.980

0.982

0.984

0.986

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(d) Dropping worst data curve at budget 10K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(e) Dropping best data curve at budget 25K

0 5 10 15 20 25 30 35 40
Percentage Removal

0.976

0.978

0.980

0.982

0.984

0.986

Ac
cu

ra
cy

TMC Shapley
Group Testing Shapley
Least Core
Leave One Out
Random

(f) Dropping worst data curve at budget 25K

Figure 8.9: Curves of natural, dog-vs-fish dataset (under a logistic regression model) test perfor-
mance when the best and worst data points ranked according to the solution concepts are removed.
For the left column, the steeper the drop, the better. For the right column, the sharper the rise, the
better.

282

Chapter 9

Decentralized Coordination via
Outcome-based Payment

9.1 Introduction

Increasingly, we are seeing businesses deploying agents to carry out tasks on their behalf. In the
coming agentic era, we will inevitably have multiple, decentralized agents interacting together.
An emerging challenge that businesses may have to face is how to incentivize other agents to
work alongside its agent. This challenge requires addressing a central difficulty in decentralized
multi-agent systems, which is that of differing interests.

In present day commerce, payment is a standard way that two parties use to resolve this
challenge and more closely align their business interests. This inspires us to study the overarching
question in this chapter: how can we analogously implement such payment schemes in the multi-
agent setting and enable economic alignment? That is, if I am a business looking to use payment
to incentivize another business (and/or its agent) to work with my agent, how can I learn a good
policy for my agent along with a payment scheme to go with it?

On a technical level, this setting may be viewed as a Stackelberg Markov game. In this
chapter, we study the two-player Stackelberg game, where one player (leader) commits to a policy
taking into account the best response to the policy by the other player (follower). We focus on
Stackelberg Markov games in particular as agents will be interacting over multiple turns and
potentially long horizons. Finally, to model the payment aspect, the leader is able to also increase
the reward of the follower in the Markov game, which may be viewed as a form of reward shaping
in line with the existing formulation in the literature [41, 48, 152, 248, 297].

In this work, we aim to consolidate the theoretical foundations of Stackelberg learning with
payment, as complexity results have yet to be established for two-player Stackelberg Markov
games. We focus on a fundamental question: is there an efficient algorithm that can provably
compute or learn the optimal policy and payment? Indeed, this is an important question to address
as businesses in the future would want payment schemes with provable guarantees, so as to ensure
that their expenditure is optimal.

Contributions: We analyze the planning and learning setting through both the computational
and statistical lens. Please see Table 9.1 for an overview of our results.

283

Without Payment With Payment

Planning, Learning DAG Tree DAG

Cooperative ✓, (Theorem 4950) ✓, ✓ ✓, ✓ (Theorem 5253)
General Sum , (Proposition 41) ✓, ✓ (Proposition 42) , (Theorem 48)

Table 9.1: Planning & learning settings where computationally and statistically efficient algorithms
exist.

1. We begin by considering planning in general-sum games. Is there an efficient algorithm
that can return the optimal policy and payment? We prove that such a computationally
efficient algorithm cannot exist unless NP=P, and identify the structural property of the
MDP that results in this hardness. To complement the negative results, we develop an
efficient algorithm, applicable when this property is removed.

2. Next, we turn to Cooperative games, which is a broad subclass of Markov games useful
for modeling e.g. the interaction between AI service-providers and their users. Moreover,
planning is computationally efficient in this setting, making it plausible that efficient learning
algorithms may be attainable. As the rewards are already aligned, we begin by considering
learning in the Stackelberg game without payment. Surprisingly, however, we find that an
efficient algorithm cannot exist, this time in the statistical sense. We identify structural
properties of the MDP that result in statistical hardness, and develop an efficient algorithm
for when such properties are removed to complement our negative results.

3. Finally, we study learning in Cooperative games with payment. Can payment be used to
alleviate the statistical hardness of learning? We answer this in the affirmative by showing
that we can adapt existing no-regret RL algorithms to enable sample-efficient learning. In
closing, we also use this setting to contrast the two different payment settings we study. We
derive matching upper and lower regret bounds for when the leader has to make payments
upfront versus on-the-fly, allowing us to quantitatively assess the benefits of being able to
make payments on-the-fly.

9.2 Formulation

9.2.1 Stackelberg Markov Game
We consider the standard two-player, episodic finite-horizon Markov game M parameterized by
⟨S,A,B,H, P, ρ, rL, rF ⟩ with state space S, initial state distribution s0 ∼ ρ, transitions P and
episode length H . The leader has action set A and reward rL ∈ [−1, 1], the follower action set B
and reward rF ∈ [−1, 1]. In the case that the game is cooperative, rL = rF .

In the problem of online learning for Stackelberg Markov games, the learner plays the role of
the leader, where apriori the reward functions rL, rF and the transitions are unknown to the leader.
At each episode k ∈ [T], the leader commits first to a policy πk. The follower best responds to πk
with µ(πk) ∈ argmaxµ V

πk,µ(s0; r
F). One may view best response as the equilibrium behavior

284

of the follower to the leader policy.
After the episode, the leader and the follower observe the resultant trajectory τk realized

by the chosen policies in M , where τk =
{
(si, ai, bi, r

L(si, ai, bi), r
F (si, ai, bi)

}H
i=1

and ai ∼
πk(si), bi ∼ µ(πk)(si), si+1 ∼ Pi(·|si, ai, bi).

This trajectory is the outcome of the policies’ interaction, which in turn determines the
outcome-based payment the follower receives.

Leader Payment: Following existing formulations in prior literature, the leader can increase
rF by creating outcome-based payment bki (si, ai, bi), if state-actions si, ai, bi are realized during
the episode, si, ai, bi ∈ τk. This results in a modified Markov game where the leader is able to
additionally assign payment, with the payment function having signature bki : S × A×B → R+.

We note that the outcome-based payment need not correspond to direct monetary transfer. For
example, we may be interested in modeling the setting where the leader is an AI-service-provider
and the follower is a customer user. The leader spends money to improve its agent, and this
improved agent adds additional value (e.g. more saved time) for the user during its use. But
during this interaction, there is no direct transfer of money from the company to the user.

Thus, to model indirect payments in addition to direct ones, we introduce a final piece of
notation, multiplier κ ∈ R+. κ · bki (si, ai, bi) corresponds to the proportional cost to the leader in
creating payment (reward) bki (si, ai, bi) for the follower. We believe proportionality is a natural
assumption to make, and verily κ = 1 corresponds to direct payment.

9.2.2 Payment Settings

To complete the formulation, we touch on the two types of payment settings considered in this
chapter.

Trajectory Payment: The first is the existing payment setting commonly studied in prior
literature, which we term trajectory payment. Here, a payment is made by the leader for every state-
action on the realized trajectory. This form of payment is considered in principal-agent contracting
literature, where the trajectory informing how much the leader will be paying ex-post [96].

Moreover, this form of payment corresponds to the trendy outcome-based pricing model,
which is experiencing rapid adoption by several notable SaaS companies due to the rising usage
of AI agents [150, 268, 316]. Indeed, this marks a fundamental paradigm shift in software pricing
in industry, moving from seat-based subscriptions (traditional SaaS) and usage-based models
(cloud infrastructure) to now outcome-based pricing in the agent era [49, 253]. This also makes
it imperative then to bolster our theoretical understanding of outcome based pricing, which we
study in this chapter.

Upfront Payment: In this chapter, we will also consider a setting that we term upfront
payment. As the name suggests, the leader pays for every state-action in the MDP, regardless of
the realized trajectory. Note that the follower is still paid based on the realized trajectory. This
is more realistic in settings where the leader pays indirectly to the benefit of the follower, and is
bound by temporal constraints such that the payment cannot be made on-the-fly.

For a motivating example, consider the AI-service provider setting discussed earlier. The
company invests before deployment to improve the agent’s functionality, which means that the user
(follower) gains added value (reward) on the trajectory realized during the agent’s use. However,

285

the key temporal constraint is that the company cannot improve its agent on-the-fly, as the users
are using it. Thus, this makes upfront payment a more realistic model of the leader’s expenditure.
The leader had to invest upfront to improve the agent’s capabilities in all states, even though this
includes off-trajectory states that are not visited during the interaction with the user. For instance,
suppose the agent is a computer-using-agent [14]. The user may use it to handle emails, and the
agent would act in states of the computer corresponding to the inbox. However, even though the
company had also invested to improve the agent’s capabilities in coding, the user may not invoke
the agent to do so (perhaps due to excessive risk). And so, the agent would not have acted in other
states of the computer corresponding to the codebase.

More generally, there is sizable body of economics contracting literature studying settings
where only ex-ante (upfront) payment is possible. Some reasons for this include non-enforceable
contracts, where the principal can renege upon observing the outcome [137]. Another cause for
this may be non-verifiable outcomes; that is, when outcomes cannot be verified, ex-post contracts
become unenforceable as there is no way to condition legally binding payments [5]. Finally, one
other reason may simply be that the agent is risk-averse, thus preferring upfront payment in face
of stochastic outcomes [174].

Leader Optimization: Putting it all together, we can now write down the resulting Stackelberg
game under the two payment settings.
Definition 42. In Stackelberg Markov games with trajectory payment, the leader optimizes:

max
π,b≥0

V π,µ(π)(s0; r
L − κ · b)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

In Stackelberg Markov games with upfront payment, the leader optimizes:

max
π,b≥0

V π,µ(π)(s0; r
L)− κ ·

∑
s,a,b∈S×A×B

b(s, a, b)


s.t. µ(π) ∈ argmax

µ′
V π,µ′(s0; r

F + b)

Before moving on, we highlight the generality of the class of games we are studying. The
class of Stackelberg Markov games with payment generalizes Stackelberg Markov games. Indeed,
constraining the leader to zero payment (i.e. (π, b) = (π, 0)) corresponds to the leader’s policy
space in Stackelberg Markov Games. Analogously, for Cooperative Stackelberg Markov games
with payment studied in the later sections, this class of games generalizes Cooperative Stackelberg
Markov games.

9.3 Related Works

As we focus on Stackelberg Markov games with payment, our work is most related to two lines of
work. The first is the line of work studying the complexity of Stackelberg policy computation
in Markov games. And the second is algorithms for computing optimal payment schemes in

286

MDPs. We cover both lines of work below, and include a discussion on additional related works
in Appendix 9.12.

Stackelberg Optimal Policies in Markov Games without Payment: Due to the wide
applicability of the Stackelberg Markov games, there has been a long line of work seeking to
understand how to compute optimal leader policies with provable guarantees.

For planning, Conitzer and Sandholm [78], Letchford and Conitzer [182], Letchford et al.
[183] study the computational tractability of optimal Stackelberg policy computation in Markov
games and subclasses thereof. For stochastic MDPs, they establish that computing the optimal
Stackelberg policy is NP-Hard.

For learning, Zhao et al. [322] studies the statistical complexity in cooperative bandit games.
Bai et al. [26] studies the statistical complexity in bandit-RL games, a particular subclass of
Markov games. Our work differs from this line of work in focusing on Markov games, which are
more general than bandit-RL games and have longer horizon than bandit settings. Moreover, the
leader is allowed to use payments to shape the follower’s rewards. As we will see, this turns out
to be crucial for improved exploration during learning in certain settings.

Learning the Optimal Payment Scheme in MDPs: Recently, there has been burgeoning
interest in computing optimal payment schemes for contracting agents to act in MDP environments,
wherein the leader may increase the follower’s rewards as a form of reward shaping to incentivize
the follower to play policies desirable to the leader.

The single-agent MDP setting, where only the follower acts in the MDP and the leader
incentivizes, is formulated by Ben-Porat et al. [41], Chen et al. [63]. This is followed by a series
of interesting work by Bollini et al. [48], Ivanov et al. [152], Wu et al. [297], studying learning
under a variety of different payment functions taking as input the state, the state-action or the
state-next-state. Our work adds to this line of work by focusing on two-player Markov games,
which generalize the single-player setting. Furthermore, while previous works mostly focus on
trajectory payment, we also consider upfront payment, applicable in settings where the leader
cannot pay on the fly due to temporal constraints. We derive tight regret guarantees to contrast the
two differing payment settings.

The paper closest in formulation to that of ours is that by Scheid et al. [248], who considers
the same state-action based payment function in the bandit setting. Our work differs in focusing
on Markov games, with a longer horizon than that in bandit settings. This in turn introduces
difficulty in terms of exploration, and requires a more nuanced optimal payment computation
beyond the binary search approach used in [248].

Finally, as payment may be viewed as strategic reward shaping, our analysis is also related
to existing RL literature that seeks to theoretically quantify the benefits of reward shaping [213].
Gupta et al. [126] quantifies how statistical sample complexity is improved by reward shaping
in the single-agent setting. By contrast, in our work, we study improved sample complexity in
two-player cooperative Stackelberg Markov games.

9.4 Planning in General-sum Games

In this section, we ask: is there an efficient algorithm that can compute the optimal policy
and payment in general-sum games? We investigate the computational complexity of such

287

an algorithm, starting with the planning setting. Our main finding is that there is no such
computationally efficient algorithm unless NP=P. Outcome-based payment does not alleviate the
computational intractability of computing the optimal Stackelberg policy, even in planning [78].
We identify that when the MDP has DAG structure, this leads to computational intractability.
Later in the section, we complement this negative result with a positive result for when the MDP
has tree structure. All proofs in this section may be found in Appendix 9.8.

9.4.1 Hardness Results
We first derive a result showing that it is NP-Hard to compute the optimal leader policy even
in deterministic MDPs, without payment. Note that in [78], computational intractability is
demonstrated in stochastic MDPs.
Proposition 41. Under Markov games that are deterministic DAGs, it is NP-Hard to compute the
optimal policy:

max
π

V π,µ(π)(s0; r
L)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F)

Helpfully, deterministic MDPs allow us to provide guarantees for both two payment settings.
As we show in the proof, the optimal payment scheme pays zero in off-policy states, which can be
readily characterized in deterministic MDPs. This result is intuitive as paying in off-policy states
only incentivizes the follower to deviate off-policy, which is undesirable and increases leader
total payment. With this result, we can derive that the optimal payment scheme is the same under
trajectory and upfront payment. Thus, we use same construction, which provides a reduction to
the PARTITION problem, to prove computational intractability under both payment settings.
Theorem 48. Under Markov games that are deterministic DAGs, it is NP-Hard to compute the
optimal policy and optimal trajectory payment:

max
π,b≥0

V π,µ(π)(s0; r
L − κ · b)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

and it is also NP-Hard to compute the optimal policy and optimal upfront payment:

max
π,b≥0

V π,µ(π)(s0; r
L)− κ ·

∑
s,a,b∈S×A×B

b(s, a, b)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

In closing, we note that the optimal objective value of the subset of Markov games used to
reduce to the PARTITION problem is an integral multiple of 1/2. Due to this, we have that
computational intractability in planning implies computational intractability in learning. In more
detail, let M∗ be the optimal objective value, which is an integer multiple of 1/2. Suppose by
contradiction that we had an algorithm with sublinear regret Tα (α < 1). We can then set T large
enough such that Tα/T < 1/2. This allows us to infer M∗ exactly by rounding to the nearest
1/2, giving us a computationally efficient algorithm for answering the decision version of the
PARTITION problem, which is a contradiction.

288

Algorithm 23 Planning Algorithm for MDP with Deterministic Tree Structure

Require: Pre-computed policy π− ∈ argminπ V
π,µ(π)(s0; r

F) (efficiently computed via Nash-
VI)
for all root to leaf paths τ = s1, a1, b1, s2, a2, b2, ..., sH , aH , bH do

Define π(si) = ai for si, ai ∈ τ . In every other state s′i ̸∈ τ , let π(s′i) = π−(s′i).
Compute µ(π) and compute follower Q-values, Qπ,µ(π)(·, ·, ·).
Solve for the minimal payment scheme using LP:

bτ (π) = argmin
b

∑
si,ai,bi∈τ

b(si, ai, bi)

s.t.
∑

i≥h,si,ai,bi∈τ

rF (si, ai, bi) + b(si, ai, bi) ≥ max
b′h ̸=bh

Qπ,µ(π)(sh, ah, b
′
h; r

F)

Output the leader policy π and payment scheme of the path τ with maximal return∑
si,ai,bi∈τ r

L(si, ai, bi)− κ · bτ (π).

9.4.2 Positive Results

To complement our negative results, we show that positive results are attainable in MDPs without
DAG structure. That is, in general-sum games where the MDP has tree structure, there is a
polynomial-time algorithm for learning the optimal leader policy and payment. We describe our
planning algorithm, Algorithm 23, which forms the crux of our approach to learning in this setting
and is applicable under both trajectory and upfront payment.

Proposition 42. Under Markov games that are deterministic trees, there exists a polynomial-time
planning algorithm that computes the optimal policy and payment.

Remark 23. To complete the result, we note in Appendix 9.8 that there is a simple exploration
strategy using payment for general-sum, deterministic trees, as exploration needs to only recover
rewards. This strategy allows us to reduce learning to planning, and then apply Algorithm 23.

Before moving on, we note that in this general-sum game, the leader behaves in a zero-sum
like manner in off-policy states in Algorithm 23. This incentivizes the follower to take the desired
policy and allows the leader to minimize the total payment needed to incentivize such policy.

Finally, due to the intractability of computing a global Stackelberg optimum, it is natural to
consider computing a local Stackelberg optimum instead, so that the policy and payment scheme
does attain some guarantees. Building on existing results on first order methods in Stackelberg
games [259], we derive a first order approach to this end. Note that while our work is concerned
with global Stackelberg optimality guarantees, we use this to illustrate that a more relaxed solution
concept can be computed, if desired.

289

9.5 Learning in Cooperative Games without Payment

The computational intractability in the general-sum case prompts us to investigate whether efficient
algorithms are attainable in significant subclasses of Markov games. Cooperative games are a
broad subclass of Markov games useful for modeling e.g. the aforementioned AI-service based
setting. Indeed, since the goal of the assistant agent is to aid the user, their rewards are aligned.
And so, such settings correspond to a two-player cooperative game, making it an important
subclass of Markov games to understand.

Moreover, on a technical level, it seems that there is hope for efficient algorithms as planning
is efficient in cooperative games (e.g. via Nash-VI as in [25]). And so, in this section, we study
the question: is there an efficient learning algorithm in cooperative games? We delve into this by
first considering cooperative games without payment, which has yet to be addressed in the prior
literature. Since the rewards are already aligned, we might expect that there are efficient learning
algorithms. To our surprise, however, we find that learning in Cooperative Markov games can be
prohibitively hard, this time in the statistical sense. All proofs in this section may be found in
Appendix 9.9.

Structural properties of MDP: We identify the specific MDP properties under which explo-
ration can be statistically intractable, along with complementary positive results. In a nutshell,
we find that if the MDP has deterministic tree structure, then efficient algorithms are possible.
However, allowing for stochastic or DAG transitions leads to statistical hardness.
Theorem 49. There exists a turn-based Stochastic Tree Markov game such that: any (possibly
randomized) algorithm that returns the optimal leader policy with probability at least 1/2 requires
at least Ω(2|S|) number of episodes.
Theorem 50. There exists a turn-based Deterministic DAG Markov game such that: any (possibly
randomized) algorithm that returns the optimal leader policy with probability at least 1/2 requires
at least Ω(2|H|) number of episodes.
Proposition 43. Under Markov games that are deterministic trees, then there exists a polynomial-
time algorithm that can learn a near-optimal leader policy.

We remark that the statistical intractability results are based on a “needle-in-the-haystack”
construction, where only a specific combination of leader actions is optimal. Structural properties
of the MDP like stochastic or DAG transitions allow us to embed this construction in the MDP.
Combined with the follower best responding instead of coordinating exploration with the leader,
we can show that an exponential number of samples is needed by the leader to find the right
combination, even if the rewards are already aligned.

Relaxing Follower Best Response behavior: As the statistical hardness is due to both the
structural property of the MDP and the best response nature of the follower, a natural question
one may ask is: can relaxing the latter alleviate statistical hardness and allow for efficient learning
across all MDPs?

The natural way to relax best response is to consider best response under λ-entropy-regularization,
which generalizes follower best response (corresponding to when λ =∞). This behavior model
is often used to model human behavior in human-AI interaction and behavioral economics litera-
ture [199, 238, 328]. However, we again find that learning with this follower behavior does not
allow for more sample efficient exploration:

290

Theorem 51. There exists a turn-based Deterministic DAG Markov game such that: any (possibly
randomized) algorithm that outputs the optimal policy given λ-Entropy-regularized best response
with probability at least 1/2 requires at least Ω(exp(λ2H/8)) episodes if λ ≤ 1 and Ω(exp(H/8))
episodes if λ > 1.

In closing, we offer a conceptual interpretation of the technical results in this section, using the
example of the assistant agent and the user. Our results suggest that the service provider company
can have difficulty exploring, due to the user’s best response. Indeed, users are simply looking to
use the agent wherever it is at its best, and will not use the agent for the sake of its improvement.
In particular, this means that users are not willing to use the agent in states that it currently does
not currently excel in. Even though, these are precisely the states that the agent needs to obtain
more training samples in. And so, this suggests that if the company wants to efficiently explore to
learn an even better agent, incentivized exploration is needed.

9.6 Learning in Cooperative Games with Payment

In sum, we know from the previous section that in Stackelberg games, coordinated exploration is
necessary for efficient learning. And so, in this section, we study how payment can be used to
align the follower and enable efficient leader exploration. Our overall finding is that payment can
lead to efficient exploration, and alleviate the statistical hardness in cooperative games without
payment. All proofs in this section may be found in Appendix 9.10.

9.6.1 Regret Guarantees in Cooperative Games

We study regret guarantees under the standard reinforcement learning setup with unknown
transitions and unknown rewards, which can be stochastic.

Learning protocol: At each episode k ∈ [T], the leader commits first to a policy πk and a pay-
ment function bk. The follower best responds to πk with µ(πk) ∈ argmaxµ V

πk,µ(s0; r
F +

bk). After the episode, the leader and the follower observe the resultant trajectory τk ={
(si, ai, bi, r

L(si, ai, bi)
}H
i=1

realized by the chosen policies in M (recall that rL = rF). The
goal of the learner is to minimize its Stackelberg regret, defined as follows:
Definition 43. In Stackelberg games with trajectory payment, the Stackelberg regret is defined as:

R(T) =
T∑
k=1

V π∗,µ(π∗;rF+b∗)(s0; r
L − κ · b∗)− V πk,µ(πk;rF+bk)(s0; r

L − κ · bk)

The regret under upfront payment regret may be defined analogously.
Towards analyzing Stackelberg regret, we characterize the optimal policy and trajectory

payment when rL = rF ; we can analogously show the same result under upfront payment.
Lemma 68. For any π∗, b∗ such that:

291

π∗, b∗ = argmax
π,b

V π,µ(π;rF+b)(s0; r
L − κ · b)

s.t. µ(π; rF + b) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

If rL = rF , then we must have π∗, · = argmaxπ,µ V
π,µ(s0; r

L) and b∗ = 0.
With this, we have that the optimal payment scheme in any cooperative game must be zero,

as one would intuitively expect with already aligned rewards. This allows us to decompose
Stackelberg regret into regret due to sub-optimality in policy and regret due to payment used
during exploration, which will be responsible for the differing rates between trajectory and upfront
payment.

Moreover, we note an interesting contrast due to this result. As we just saw, learning can be
prohibitively hard in the absence of payment. Hence, we have that payment is not necessary in
planning, but is crucial for learning (efficiently).

The crux of our positive results is that we can apply the canonical optimism under uncertainty
principle to achieving sublinear Stackelberg regret. This follows from the observation that payment
enables optimism in learning, which the leader can operationalize by setting payments according
to its bonuses. This incentivizes the follower to also explore optimistically. A key lemma for
bounding the policy regret portion of Stackelberg regret goes as follows.
Lemma 69. Suppose we can construct an optimistic MDP Mk of the true MDP M . Let the
optimal leader policy under Mk be πk, then:

T∑
k=1

V
π∗,µM (π∗)
M (s0; r

L)− V πk,µM (πk)
M (s0; r

L) ≤
T∑
k=1

V
πk,µMk (π

k)

Mk
(s0; r

L)− V πk,µMk (π
k)

M (s0; r
L)

Note that because the leader knows Mk, they know the policy µMk
(πk) that they would like to

incentivize the follower to play. Using this, we show that one can also bound the regret due to the
cumulative payment, to obtain the following regret guarantees.
Theorem 52. UCB-VI-FP (Algorithm 24) incurs O(T 1/2) regret under trajectory payment. This is
tight as there exists a subset of Markov games, where any learning algorithm must incur Ω(T 1/2)
regret.
Theorem 53. There exists an algorithm, leveraging UCB-VI-FP as subroutine, that incursO(T 2/3)
regret under upfront payment.

9.6.2 Contrasting Trajectory Payment with Upfront Payment

Finally, as positive results are attainable in Cooperative Markov games, we can analyze the
difference in regret rates under the two different payment settings. What is the benefit afforded by
settings where the leader can pay on-the-fly? Towards answering this question, we analyze the
simple setup of unknown, deterministic rewards. Helpfully, this learning task already a sizable
contrast in terms of regret between the two settings. We provide tight bounds on regret guarantees
under both payment settings to contrast the two payment settings.

292

Algorithm 24 UCB-VI with Follower Payment (UCB-VI-FP)

Initialize Qh(s, a, b) = H for all h ∈ [H], s, a, b ∈ Sh × A×B.
for k = 1, ..., T do

for h = H, ..., 1; s, a, b ∈ Sh × A×B do ▷ construct Mk

Compute estimated transitions from data in buffer: P̂h(s′|s, a, b) =
Nk
h (s,a,b,s

′)

Nk
h (s,a,b)

Compute optimistic rewards of Mk from reward samples in buffer: r̂kh(s, a, b) =

r̄kh(s, a, b) + c
√

H2

Nk
h (s,a,b)

▷ standard bonus for stochastic rewards

Qh(s, a, b) = min(H, r̂kh(s, a, b) + P̂ k
hVh+1(s, a, b))

Vh(s) = maxa,bQh(s, a, b)

Leader commits to Stackelberg policy πk: πk(sh) = argmaxamaxbQh(sh, a, b).
Set outcome-based payment scheme: βkh(sh, ah, bh) = 2 · c

√
H2|S|

Nk
h (s,a,b)

.
for h = 1, ..., H do

Leader plays akh ∼ πk(skh), follower plays bkh via µ(πk)
Transition to skh+1 ∼ P (·|skh, akh, bkh) and save data (skh, a

k
h, b

k
h, s

k
h+1) in buffer

Proposition 44. UCB-VI-FP with indicator bonus incurs constant O(|S||A||B|) regret un-
der trajectory payment, where we designate reward under indicator bonus to be r̂(s, a, b) =
1{if (s, a, b) is unvisited} and r(s, a, b) o.w.

As the regret bound is constant in T , we have that the bound must be tight. Next, we derive
regret rates under upfront payment, whose regret lower bound requires a significantly nuanced
probabilistic argument using Yao’s lemma.

Proposition 45. There exists an algorithm, leveraging UCB-VI-FP with indicator bonus as
subroutine, that incurs O(T 1/2) regret under upfront payment.

Proposition 46. There exists a subset of Markov Game instances such that any learning algorithm
has to incur Ω(T 1/2) regret under upfront payment.

The construction of the negative result reveals the key difference in two payment schemes. In
a nutshell, upfront payment is affected by difficult-to-reach states (ϵ-significant states [159]). On
the other hand, trajectory payment is unaffected as the payment is made only if the follower does
reach such a state. That is, the leader’s payment for actions in that statement is weighted by the
visitation probability.

And so, the key difficulty in exploration under upfront payment is that when payment is
needed to incentivize the follower to reach insignificant states, a lot of the payment can be wasted
even if the follower is aligned, due to the low visitation probability. This is directly responsible
for the sizable change in the regret guarantee, going from O(1) to Ω(T 1/2). Overall, this suggests
that if the leader cannot pay on-the-fly, the payment scheme should factor in the reachability of
states.

293

9.7 Discussion

In this work, we study learning in Stackelberg Markov games with payment. To consolidate the
theoretical foundations of this setting, we chart the computational and statistical complexity of
both planning and learning.

Future Work: Due to the intractability of general-sum settings, we believe that there is much
more work to be done in analyzing more specific subclasses of Markov games. Which other
subclasses of Markov games are such that efficient algorithms are attainable?

Limitations: In this chapter, we consider the full information setting. One key underlying
assumption then is that the follower’s action can be observed by the leader. We believe that this can
be realistic for modeling certain digital settings (such as computers), wherein the agent’s actions
can be readily tracked (computer-using-agent’s actions can be logged and monitored) [14, 270].
With that said, handling the case for when the follower’s action is not observable is very important,
especially in physical environment where monitoring is not possible. And we believe that results
from the full information setting we study can serve as a stepping stone towards results in partial
information settings with unobserved actions.

Another key underlying assumption is that the leader can readily observe the follower’s reward,
either directly or through the follower’s report. It is conceivable that in cases the leader cannot
observe the reward directly, the follower may not report their reward truthfully. In such settings,
we note two observations. Let (π∗(r), b∗(r)) denote an optimal policy under reported follower
reward r. Let rF denote the true reward and r′F the reported reward.

First, if we are in the cooperative setting, we observe that there is no incentive for the follower
to misreport. Because the leader payment is zero, truthful reporting yields the highest return:
V π∗(rF),µ(π∗(rF))(s0; r

F) ≥ V π∗(r′F),µ(π∗(r′F))(s0; r
F).

Second, in the general-sum bandit setting with direct payment considered by [248], the
payment can now be nonzero but the follower’s gain from misreporting is bounded.
Proposition 47. Suppose the follower can misreport rF up to ∆, ∥r′F − rF∥1 ≤ ∆. In the bandit
setting, the follower’s return can change by at most:

|V π∗(rF),µ(π∗(rF))(s0; r
F + b∗(rF))− V π∗(r′F),µ(π∗(r′F))(s0; r

F + b∗(r′F))| ≤ 2∆

and the leader’s return can change by at most:

|V π∗(rF),µ(π∗(rF))(s0; r
L − b∗(rF))− V π∗(r′F),µ(π∗(r′F))(s0; r

L − b∗(r′F))| ≤ 2∆

However, an open question is whether such a bound carries over to the Markov game case.
How much could the follower gain from misreporting rF up to ∆? Are there algorithms that can
induce truthfulness, while still attaining some optimality guarantees? We believe there is a fruitful
line of work to be done to handle cases where the leader cannot directly observe and/or verify the
follower rewards.

294

9.8 Proofs for Planning Results in General-sum Games

In [78], it is demonstrated that it is NP-Hard to compute the optimal Stackelberg policy, in absence
of payment. But with the ability to pay, we are interested in answering the question: is there a
general, efficient algorithm that can compute the optimal policy and payment?

9.8.1 Hardness Results
Proposition 48. Under Markov games that are deterministic DAGs, it is NP-Hard to compute the
optimal policy:

max
π

V π,µ(π)(s0; r
L)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F)

Proof. We show that one can reduce optimal policy computation to the DECISION Knapsack
problem.

For a given knapsack instance ⟨{vi}i , {wi}i ,W ⟩. Construct the following MDP:

Figure 9.1

295

At the ith time step, the follower will select one of the two actions with rewards (vi,−wi) or
(0, 0). The leader influences this through the probability π(si) = πi of playing (0,−wi). Here,
we assume that the follower plays in favor of the leader in the event of a tie-break. That is, the
follower plays the left action with reward (vi,−wi) iff the leader plays (0,−wi) w.p. πi = 1.

Therefore, we have that an optimal leader policy π∗ must maximize the following objective:

max
π1,...,πH

H∑
i=1

vi1 {πi = 1}

s.t.
H∑
i=1

wiπi ≤ W

0 ≤ πi ≤ 1

since the leader wishes to incentivize the follower to play in the left branch (holds iff∑H
i=1 πi(−wi) ≥ −W), while maximizing the return in the left branch.
We will show that introducing the constraint πi ∈ {0, 1} is without loss of optimality. Consider

some optimal policy π∗. For any i such that π∗i ∈ (0, 1), let π′i = 0 and let π′i = π∗i otherwise. It
follows that π′i is still feasible, while retaining the same objective value.

Hence, given some π∗ optimal leader policy, its return matches the optimal objective value of
the program:

H∑
i=1

vi1 {π∗i = 1} = max
π1,...,πH

H∑
i=1

vi1 {πi = 1}

s.t.
H∑
i=1

wiπi ≤ W

πi ∈ {0, 1}

Hence, the return of the optimal leader policy can be used to answer the Knapsack Decision
problem, making optimal Stackelberg leader policy computation at least as hard as the Knapsack
Decision problem.

We show that even with payment, it is still NP-Hard to compute the optimal policy in both
trajectory and upfront payment settings. Note that in the proof that follows, we can scale the
rewards such that r(·) ∈ [−1, 1] is satisfied, as the optimal policies remain unchanged under
scaling.
Theorem 54. Under Markov games that are deterministic DAGs, it is NP-Hard to compute the
optimal policy and optimal trajectory payment:

max
π,b≥0

V π,µ(π)(s0; r
L − κ · b)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

296

and it is also NP-Hard to compute the optimal policy and optimal upfront payment:

max
π,b≥0

V π,µ(π)(s0; r
L)− κ ·

∑
s,a,b∈S×A×B

b(s, a, b)

s.t. µ(π) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

Figure 9.2: Same deterministic MDP with payment

Proof. We will consider the same construction visualized in Figure 9.2 and and for ease of
presentation, we will show that the problem is NP-Hard under κ = 1 (e.g. the direct-payment
settings).

Notation-wise, at the ith time step, let bi1, bi4 be the leader payment in the left/right branch,
bi2 be the total payment for the left leader path in the right branch and bi3 be the total payment on
the right leader path in the right branch. Let b0 = b(s0, aL). And note that clearly any optimal
payment is such that b∗(s0, aR) = 0, since the leader wishes to incentivize the follower to play aL
to obtain a positive return.

With this, we can write down the optimization program under both payment settings.

• Under trajectory payment:

297

M∗
trajectory = max

π1,...,πH ,b

H∑
i=1

vixi −
H∑
i=1

bi1xi −
H∑
i=1

((1− πi)bi2 + πi(bi3) + bi4)yi − b0

s.t.
H∑
i=1

(−wi + bi1)xi +
H∑
i=1

((1− πi)bi2 + πi(−wi + bi3) + bi4)yi + b0 ≥ −W

xi = 1
{
−wi + bi1 ≥ (1− πi)bi2 + πi(−wi + bi3) + bi4

}
, yi = 1− xi

bi1, bi2, bi3, bi4, b0 ≥ 0

• Under upfront payment:

M∗
upfront = max

π1,...,πH ,b

H∑
i=1

vixi −
H∑
i=1

(bi1 + bi2 + bi3 + bi4)xi −
H∑
i=1

(bi1 + bi2 + bi3 + bi4)yi − b0

s.t.
H∑
i=1

(−wi + bi1)xi +
H∑
i=1

((1− πi)bi2 + πi(−wi + bi3) + bi4)yi + b0 ≥ −W

xi = 1
{
−wi + bi1 ≥ (1− πi)bi2 + πi(−wi + bi3) + bi4

}
, yi = 1− xi

bi1, bi2, bi3, bi4, b0 ≥ 0

Now, consider any optimal policy π∗, b∗. Let x∗i (π
∗, b∗), y∗i (π

∗, b∗) denote the follower BR to
π∗, b∗. Note that x∗i (π

∗, b∗), y∗i (π
∗, b∗) = x∗i (π

∗
i , b
∗
i·), y

∗
i (π
∗
i , b
∗
i·).

Claim 1: We will show that there exists an optimal solution π′, b′ of the form:

1. If y∗i (π
∗, b∗) = 1, then π′i = 0, b′i1 = b′i3 = b′i4 = 0.

2. If x∗i (π
∗, b∗) = 1, then π′i = 1, b′i2 = b′i3 = b′i4 = 0.

We will construct a π′, b′ based on π∗, b∗ that satisfy the desired two properties. The construc-
tion is as follows:

1. If y∗i (π
∗, b∗) = 1, we have two cases:

Case 1: If (1− π∗i)b∗i2 + π∗i (−wi+ b∗i3)+ b∗i4 ≥ 0, set π′i = 0, b′i2 = (1− π∗i)b∗i2 + π∗i (−wi+
b∗i3) + b∗i4, b

′
i1 = b′i3 = b′i4 = 0.

Firstly, y′i(π
′, b′) = 1 still since,

− wi + b′i1
≤ −wi + b∗i1
< (1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4
= b′i2 = (1− π′i)b′i2

Thus, feasibly still holds since,

((1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4)yi = ((1− π′i)b′i2 + π′i(−wi + b′i3) + b′i4)yi

298

Finally, the trajectory payment objective value increases as total payment for ith step
decreases from (1− π∗i)b∗i2 + π∗i b

∗
i3 + b∗i4 to (1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4.

The upfront payment objective value increases as total payment for ith step decreases from
b∗i1 + b∗i2 + b∗i3 + b∗i4 to (1− πi)b∗i2 + πi(−wi + b∗i3) + b∗i4.
Case 2: If (1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4 < 0, set π′i = 0 and b′i1 = b′i2 = b′i3 = b′i4 = 0.
y′i(π

′, b′) = 1 still since,

− wi + b′i1
≤ −wi + b∗i1
< (1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4
< 0 = (1− π′i)b′i2

Thus, feasibly still holds since,

((1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4)yi < 0 · 1 = ((1− π′i)b′i2 + π′i(−wi + b′i3) + b′i4)yi

Finally, the trajectory payment objective value increases as total payment for ith step
decreases from (1− πi)b∗i2 + πib

∗
i3 + b∗i4 to 0.

The upfront payment objective value increases as total payment for ith step decreases from
b∗i1 + b∗i2 + b∗i3 + b∗i4 to 0.

2. If x∗i (π
∗, b∗) = 1, set π′i = 1, b′i1 = b∗i1 and b′i2 = b′i3 = b′i4 = 0.

xi(π
′, b′) = 1 still because,

− wi + b′i1
= −wi + b∗i1
≥ (1− π∗i)b∗i2 + π∗i (−wi + b∗i3) + b∗i4
≥ π∗i · −wi
≥ π′i · −wi

Feasibility still holds since (−wi + b∗i1)xi = (−wi + b′i1)xi.
Finally, the trajectory payment objective value is unchanged as total payment for ith step is
still b∗i1.
The upfront payment objective value increases as total payment for ith step decreases from
b∗i1 + b∗i2 + b∗i3 + b∗i4 to b∗i1.

Simplification of optimization programs:
From the above, we can introduce the constraints that define π′, b′ in the optimization programs

without loss of optimality.

• The trajectory payment program with the constraints as in Claim 1 simplifies to:

299

M∗
trajectory = max

π1,...,πH ,b

H∑
i=1

vixi −
H∑
i=1

bi1xi −
H∑
i=1

bi2yi − b0

s.t.
H∑
i=1

(−wi + bi1)xi +
H∑
i=1

bi2yi + b0 ≥ −W

xi = 1 {πi = 1} , yi = 1 {πi = 0}
bi1, bi2, b0 ≥ 0

πi ∈ {0, 1}
• The upfront payment program with the constraints as in Claim 1 simplifies to:

M∗
upfront = max

π1,...,πH ,b

H∑
i=1

vixi −
H∑
i=1

bi1xi −
H∑
i=1

bi2yi − b0

s.t.
H∑
i=1

(−wi + bi1)xi +
H∑
i=1

bi2yi + b0 ≥ −W

xi = 1 {πi = 1} , yi = 1 {πi = 0}
bi1, bi2, b0 ≥ 0

πi ∈ {0, 1}

Reduction to PARTITION:
Since both programs are now the same under the constraints, we will call the optimal objective

value M∗ =M∗
trajectory =M∗

upfront.

M∗ = max
π1,...,πH ,b

H∑
i=1

vixi −
H∑
i=1

bi1xi −
H∑
i=1

bi2yi − b0

s.t.
H∑
i=1

(−wi + bi1)xi +
H∑
i=1

bi2yi + b0 ≥ −W

xi = 1 {πi = 1} , yi = 1 {πi = 0}
bi1, bi2, b0 ≥ 0

πi ∈ {0, 1}

Write B =
∑H

i=1 bi1xi +
∑H

i=1 bi2yi + b0 to simplify the program to:

M∗ = max
x1,...,xH ,B

H∑
i=1

vixi −B

s.t.
H∑
i=1

wixi ≤ W +B

xi ∈ {0, 1}
B ≥ 0

300

Now consider Markov game instances where vi ∈ Z+, wi = 2vi, W =
∑H

i=1 vi.

M∗ = max
x1,...,xH ,B

H∑
i=1

vixi −B

s.t. 2
H∑
i=1

vixi ≤ W +B

xi ∈ {0, 1}
B ≥ 0

Claim 2: We can use this subset of the instances to answer the PARTITION decision problem
for any PARTITION instance. We output YES if the objective value M∗ of the optimal leader
solution computed is exactly M∗ = W/2 and NO otherwise.

To see this, we will show that M∗ = W
2

if and only if there is a balanced partition.
(⇒) : Suppose x1, . . . , xH , B achieves M∗, we have

∑H
i=1 vixi − B ≤ W

2
− B

2
from the

feasibility condition. Therefore, for this to be W
2

, it must be the case that B = 0, which implies
that

∑H
i=1 vixi =

W
2

. And S = {i : xi = 1} gives the balanced partition.
(⇐) : Given some balanced partition S, define xi = 1 {i ∈ S} and B = 0. It is feasible

because 2
∑H

i=1 vixi = 2 ·W/2 ≤ W + 0. And it achieves the optimal objective value W
2

because
M∗ ≤ W/2: from the feasibility constraint, for all x’s and B,

∑H
i=1 vixi −B ≤

W
2
− B

2
.

Remark 24. Scaling all parameters ⟨vi, wi,W ⟩ to ⟨vi/κ, wi/κ,W/κ⟩ in the reduction to PARTI-
TION allows us to show hardness for all κ > 0.
Corollary 9. There exists no computationally efficient, no-regret learning algorithm.

Proof. Note that hereM∗ is an integer multiple of 1/2. Suppose by contradiction that we had such
an algorithm with regret Tα (α < 1). We can then set T large enough such that Tα/T < 1/2. This
allows us to infer M∗ exactly, thus giving us a computationally efficient algorithm for answering
the PARTITION decision problem.

9.8.2 Positive Results

In terms of positive results, we show that there is a polynomial time algorithm for learning the
optimal leader policy and payment, even in general-sum games. This holds when the MDP has
tree structure.
Proposition 49. Under Markov games that are deterministic trees, there exists a polynomial-time
planning algorithm that computes the optimal policy and payment.

Proof. We know that the optimal leader policy and payment induce some root to leaf path τ ∗.
And so, it is sufficient to examine all possible root to leaf paths τ , which is efficient as there are
|SH | root to leaf paths.

301

Characterizing policies with payment: For each path τ , let the set of leader policies, payment
that realize τ be Γ(τ). We have the following characterization.

π, b ∈ Γ(τ) iff:

1. π(si) = ai ∀si, ai ∈ τ
2. Qπ,BR(π)(sj, aj, bj; r

F + b) ≥ maxb′j ̸=bj Q
π,BR(π)(sj, aj, b

′
j; r

F + b) ∀sj, aj, bj ∈ τ

The (⇐) direction is clear. And the (⇒) direction can be shown by proving the contrapositive.
Indeed, if the first condition is not satisfied and π(si) ̸= ai, then π, b ̸∈ Γ(τ). Or, if the second
condition is not satisfied and Qπ,BR(π)(sj, aj, bj; r

F + b) < maxb′j ̸=bj Q
π,BR(π)(sj, aj, b

′
j; r

F + b),
then the follower would play b′j ̸= bj at sj , which implies π, b ̸∈ Γ(τ).

We are interested in the pair of policy, payment π∗(τ), b∗(τ) ∈ Γ(τ) that are the optimum
of the following optimization program. Note that because π∗(τ), b∗(τ) ∈ Γ(τ), they realize τ ,
thus fixing the leader’s return to rL(τ). And so, π∗(τ), b∗(τ) are such that they minimize the total
payment needed to realize τ :

π∗, b∗ = argmin
π,b≥0

∑
si∈Si,ai∈A,bi∈B

b(si, ai, bi)

s.t. Qπ,BR(π)(sj, aj, bj; r
F + b) ≥ max

b′j ̸=bj
Qπ,BR(π)(sj, aj, b

′
j; r

F + b) ∀sj, aj, bj ∈ τ

π(si) = ai ∀si, ai ∈ τ

Simplifying Optimization Program: Next, we make two observations that simplify the
optimization program:

1. Since π, b ∈ Π(τ) and they realize τ , we have that:

Qπ,BR(π)(sj, aj, bj; r
F + b) = rF (τ [j :]) +

∑
i≥j,si,ai,bi∈τ

b(si, ai, bi)

where as the follower is only rewarded payment on the trajectory.
2. Next, we observe that b∗(si, ai, bi) = 0 for si, bi ̸∈ τ .

If not, setting b(si, ai, bi) = 0 maintains feasibility, since it can only reduce the RHS in the
constraints, while reducing the objective.

Thus, we can simplify the optimization program to:

π∗, b∗ = argmin
π,b≥0

∑
si∈Si,ai∈A,bi∈B

b(si, ai, bi)

s.t. rF (τ [h :]) +
∑

i≥h,si,ai,bi∈τ

b(si, ai, bi) ≥ max
b′h ̸=bh

Qπ,BR(π)(sh, ah, b
′
h; r

F)

π(si) = ai ∀si, ai ∈ τ

Let π− ∈ argminπ V
π,BR(π)(·; rF), which may be computed by Nash-VI in polynomial time.

This minimax policy is such that π− ∈ argminπ V
π,BR(π)(s; rF) for any state s ∈ S.

302

We claim that without loss of optimality, we can set π∗(s′i) = π−(s′i) for all states s′i ̸∈ τ .
Given a pair of optimal solution (π∗, b∗), let π′ be such modification of a π∗.
We observe that (π′, b∗) achieves the same objective value, while still being feasible. The

former holds by construction as the payment remains unchanged.
π′(si) = ai ∀si, ai ∈ τ holds still by construction. Now, feasibility holds because at any si,

for any b′i ̸= bi:

Qπ∗,BR(π∗)(si, ai, b
′
i; r

F)

= V π∗,BR(π∗)(s′i+1; r
F) (state s′i+1 = P (si, ai, b

′
i) deterministically)

≥ V π−,BR(π−)(s′i+1; r
F) (definition of π−)

= V π′,BR(π′)(s′i+1; r
F) (⋆)

= Qπ′,BR(π′)(si, ai, b
′
i; r

F)

(⋆) : Due to the tree structure of the MDP, the set of successor states of s′i+1 does not contain
any leader states in τ , as they belong to a different branch than the one τ and thus si+1 are in, with
the root at state si. And so, π′’s actions starting at state s′i+1 are exactly the same as that of π−.

And so, π′ is feasible because for every sh,

rF (τ [h :])+
∑

i≥h,si,ai,bi∈τ

b(si, ai, bi) ≥ max
b′h ̸=bh

Qπ∗,BR(π∗)(sh, ah, b
′
h; r

F) ≥ max
b′h ̸=bh

Qπ′,BR(π′)(sh, ah, b
′
h; r

F)

Minimal Payment LP: Since we have fully determined an optimal policy π∗, the optimal
payment may be found by solving the following LP:

b∗ = argmin
b≥0

∑
si,ai,bi∈τ

b(si, ai, bi)

s.t. rF (τ [h :]) +
∑

i≥h,si,ai,bi∈τ

b(si, ai, bi) ≥ max
b′h ̸=bh

Qπ,BR(π)(sh, ah, b
′
h; r

F)

π(si) = ai ∀si, ai ∈ τ
π(s′i) = π−(s′i) ∀s′i ̸∈ τ

9.8.2.1 General sum learning in deterministic tree

Learning Setting: As a quick recap of the learning setting in the general-sum case, the only
unknown is the follower rewards rF . The MDP is deterministic and so the transitions are known.
Also, the leader knows his own reward rL.

303

Remark 25. To complete the result, there is a simple exploration strategy using payment for
general-sum, deterministic trees, as exploration needs to only recover rewards. This strategy
allows us to reduce learning to planning, and then apply Algorithm 23.

Explore: To see this, for each root-to-leaf path τ =
{
(si, ai, bi)

}H
i=1

, set b(si, ai, bi) = H
for si, ai, bi ∈ τ . Then, setting the leader policy to match τ will realize τ , as the follower is
incentivized to play actions that realize this path. With this exploration strategy, we obtain
estimates of the stochastic reward at every node of the tree r̂F to precision δ w.h.p. (better than
1− 1/T) after m = Õ(|S| · 1/δ2) number of episodes.

Exploit: Now, we bound the instantaneous regret when we plan using r̂F . This regret
arises to due to the difference in payment computed by the LP, since rL is known exactly.
The LP admits closed form solution: b∗(sh, ah, bh) = max(maxb′h ̸=bh Q

π−,µ(π−)(sh, ah, b
′
h; r

F)−∑
i≥h,si,ai,bi∈τ r

F (si, ai, bi) −
∑

i≥h+1,si,ai,bi∈τ b
∗(si, ai, bi), 0). Define b̂(sh, ah, bh) analogously

under r̂F and π̂− (computed using r̂F).
Since the function max(x, 0) is 1−Lipschitz, we will bound the argument of the function.

First, |
∑

i≥h,si,ai,bi∈τ r̂
F (si, ai, bi)− rF (si, ai, bi)| ≤ (H − h)δ.

Second, for any action b′h, let P (s′h+1|sh, ah, b′h) = 1. We have that:

Qπ−,µ(π−)(sh, ah, b
′
h; r

F)−Qπ̂−,µ(π̂−)(sh, ah, b
′
h; r̂

F)

= V π−,µ(π−)(s′h+1; r
F)− V π̂−,µ(π̂−)(s′h+1; r̂

F)

= max
µ

V π−,µ(s′h+1; r
F)−max

µ
V π−,µ(s′h+1; r̂

F) + max
µ

V π−,µ(s′h+1; r̂
F)−max

µ
V π̂−,µ(s′h+1; r̂

F)

≥ max
µ

V π−,µ(s′h+1; r
F)−max

µ
V π−,µ(s′h+1; r̂

F) + 0 (π̂− ∈ argminπmaxµ V
π,µ(s′h+1; r̂

F))

= max
µ

V µ(s′h+1; π
−, rF)−max

µ
V µ(s′h+1; π

−, r̂F)

≥ −δ
(due to same visitation probability, any policy µ’s return under π−, rF vs π−, r̂F differs by ≤ δ)

The other direction follows analogously to get that: |Qπ−,µ(π−)(sh, ah, b
′
h; r

F)−Qπ̂−,µ(π̂−)(sh, ah, b
′
h; r̂

F)| ≤
δ.

Therefore, we have that |b̂(sh, ah, bh)− b∗(sh, ah, bh)| ≤ O((H − h)2δ). This means that the
instantaneous regret due to

∑
si,ai,bi∈τ b̂(si, ai, bi)−

∑
si,ai,bi∈τ b

∗(si, ai, bi) ≤ O(H3δ). Choosing
δ = T−1/3, we have that the cumulative regret is O(δ−2) + O(TH3δ) respectively from the
explore and exploit phase for a total of O(T 2/3) regret.

9.8.2.2 Computing Local Stackelberg Optimum

The computational hardness result does not preclude algorithms for other solution concepts. Due to
the intractability of computing a global Stackelberg optimum, we may be interested in computing
instead a local Stackelberg optimum. To this end, we derive a first order approach to this end,
illustrating that this looser solution concept can be computed. We focus on trajectory-based
payment below as the upfront payment gradient w.r.t. b for f is straightforward.

304

Value-based Penalty: We can use the existing idea of encoding the BR as Langrangian with
value-based penalty [259]. To recap the notation for the policy-based method, leader policy has
policy parameters denoted by x and payment b. Follower has policy with parameter y.

min
x,y,b
−V πx,πy(s0; r

L − b)︸ ︷︷ ︸
f(x,y,b)

+λ(−V πx,πy(s0; r
F + b) + max

y′
V πx,πy′ (s0; r

F + b)︸ ︷︷ ︸
p(x,y,b)

)

From [259], we have that,

∇x,bp(x, b, y) = ∇x,bV
πy
M(x)(ρ) +∇x,bV

πy
M(x)(ρ)

∣∣
π=π∗(x,b)

where π∗(x, b) is the optimal BR to leader policy x and b, and M(x) is the single-agent MDP
w.r.t. follower parameterized by leader policy πx.

We will now describe the gradient component by component, as the overall gradient is the
sum of Stackelberg game and reward shaping gradients:

1.

∇xf(x, y, b) = −E[
∞∑
t=0

γtQπx
πy (st, at; r

L − b)∇ log πx(at|st)|s0 ∼ ρ, πy, πx]

2.

∇yf(x, y, b) = −E[
∞∑
t=0

γtQπy
πx(st, bt; r

L − b)∇ log πy(bt|st)|s0 ∼ ρ, πx, πy]

3.

∇bf(x, y, b) = −E[
∞∑
t=0

γt∇br(st, at, bt; r
L − b)|s0 ∼ ρ, πx, πy]

4.

∇xp(x, y, b)

= ∇xV
πy
πx (ρ) +∇xV

πy
πx (ρ)

∣∣
π=π∗(x,b)

= −E[
∞∑
t=0

γt(Qπx,πy(st, at, bt; r
f + b)− τh(πx))∇ log πx(at|st)|s0 ∼ ρ, πx, πy]

+−E[
∞∑
t=0

γt(Qπx,π∗
y(x,b)(st, at, bt; r

f + b)− τh(πx))∇ log πx(at|st)|s0 ∼ ρ, πx, π
∗
y(x, b)]

5.

∇yp(x, y, b) = ∇yV
πy
πx (ρ) = −E[

∞∑
t=0

γtQπy
πx(st, bt; r

F + b)∇ log πy(bt|st)|s0 ∼ ρ, πx, πy]

305

6.

∇bp(x, y, b)

= ∇bV
πy
πx (ρ) +∇x,bV

πy
πx (ρ)

∣∣
π=π∗(x,b)

= −E[
∞∑
t=0

γt∇br(st, at, bt; r
F + b)|s0 ∼ ρ, πx, πy]

+−E[
∞∑
t=0

γt∇br(st, at, bt; r
F + b)|s0 ∼ ρ, πx, π

∗
y(x, b)]

9.9 Proofs for Learning Results in Cooperative Games without
Payment

From the hardness of computing the optimal policy in the general sum setting, we know that this
translates to the computaional hardness of learning. On the other hand, we know that planning in
cooperative games is efficient. This begs the questions, is learning in cooperative games efficient?

We delve into this question by first considering cooperative games without subsidy, as this
has been previously unaccounted for in prior literature. Surprisingly, we find that learning in
Cooperative Markov games can be prohibitively hard, statistically.

Lemma 70. Suppose an algorithm A tries to identify a∗ ∈ {a1, ..., an}. Each step, it can make a
query ai and receive signal 1 {ai = a∗}. Then, for any possibly randomized algorithm A with
query budget m. If m ≤ n/4, then:

Pra∗∈unif([n]),A(a
∗ ̸∈ {a1, ..., am}) ≥

1

2

Proof. Let a∗ be drawn uniformly from [n]. Let a1, .., am be queries made by algorithm. And let
Yi = 1 {ai = a∗}. We will show by induction that for j ≤ m,

Pr(Y:j ̸= 0) = Pr(a∗ ∈
{
a1, ..., aj

}
) ≤ 2j

n

Base Case: Since a1 is independent of a∗, a∗|a1 is uniform over [n]. Thus,

Pr(a∗ = a1) =
1

n
≤ 2

n

Induction Step: Suppose Pr(a∗ ∈
{
a1, ..., aj−1

}
) ≤ 2(j−1)

n
, we have:

306

Pr(a∗ ∈
{
a1, ..., aj

}
)

= Pr(a∗ ∈
{
a1, ..., aj−1

}
) + P (a∗ = aj, a

∗ ̸∈
{
a1, ..., aj−1

}
)

≤ 2(j − 1)

n
+ P (a∗ = aj, a

∗ ̸∈
{
a1, ..., aj−1

}
)

≤ 2(j − 1)

n
+ P (a∗ = aj|a∗ ̸∈

{
a1, ..., aj−1

}
)

=
2(j − 1)

n
+ E[P (a∗ = aj|a∗ ̸∈

{
a1, ..., aj−1

}
)|a1, ..., aj−1]

=
2(j − 1)

n
+

1

n− (j − 1)
(⋆)

≤ 2(j − 1)

n
+

2

n
(j ≤ n/4)

(⋆) : for any fixed a1, .., aj−1, conditioned on a∗ ̸∈
{
a1, ..., aj−1

}
, a∗ is uniform over [n] \{

a1, ..., aj−1
}

. Thus,

P (a∗ = aj|a∗ ̸∈
{
a1, ..., aj−1

}
) ≤ 1

n− (j − 1)

In conclusion,

P (a∗ ∈ {a1, ..., am}) ≤ 2j/n ≤ 1/2⇒ P (a∗ ̸∈ {a1, ..., am}) ≥ 1/2

where we use that j ≤ m/4⇒ 2j/n ≤ 1/2.

Theorem 55. There exists a turn-based Stochastic Tree Markov game such that: any (possibly
randomized) algorithm that returns the optimal policy with probability at least 1/2 requires at
least Ω(2|S|) number of episodes.

Proof. Setup: Consider a two-branch MDP, where the follower chooses first action aL or aR,
which deterministically transitions to the left and right branch. The leader has return 1− 1/2|S|
for the left branch. In the right branch, this transitions with uniform probability 1/|S| to one of
|S| possible states, each state has two possible actions with reward 0 and 1.

Then, we see that each time step, the leader will choose right branch policy (πt(s1), ..., πt(sm)),
and receive feedback 1 {πt = π∗} = 1

{
µ(πt) = aR

}
, as µ(πt) = aR ⇔ r(πt) ≥ 1− 1/2|S| ⇔

r(πt) = 1⇔ πt = π∗.
To finish, we may use Lemma 70 to get that any algorithm with budget at most T ≤ |Π|/4

will be s.t. PA(π∗ ∈ {π1, .., πT}) ≤ 1/2. Hence, using the contrapositive, any algorithm such that
PA(π

∗ ∈ {π1, .., πT}) > 1/2 must have budget T ≥ |Π|/4 + 1 = 2|S|/4 + 1 = Ω(2|S|).

307

Theorem 56. There exists a turn-based Deterministic DAG Markov game such that: any (possibly
randomized) algorithm that returns the optimal policy with probability at least 1/2 requires at
least Ω(2|H|) number of episodes.

Proof. Setup: Consider a two-branch MDP, where the follower chooses first action aL or aR,
which deterministically transitions to the left and right branch. The leader has return H − 1/2 for
the left branch. In the right branch, there are two actions at each of the H time steps with reward
0 and 1.

Then, we see that each time step, the leader will choose right branch policy (πt(s1), ..., πt(sn)),
and receive feedback 1 {πt = π∗} = 1

{
µ(πt) = aR

}
, as µ(πt) = aR ⇔ r(πt) ≥ H − 1/2 ⇔

r(πt) = H ⇔ πt = π∗.
To finish, we may use the lemma above to get that any algorithm with budget at most T ≤ |Π|/4

will be s.t. PA(π∗ ∈ {π1, .., πT}) ≤ 1/2. Hence, using the contrapositive, any algorithm such that
PA(π

∗ ∈ {π1, .., πT}) > 1/2 must have budget T ≥ |Π|/4 + 1 = 2H/4 + 1 = Ω(2H).

Algorithm 25 Learning Algorithm for Deterministic Tree Markov Game without Payment
for all root to leaf paths τ = s1, a1, b1, ..., sH , aH , bH do

Define π(si) = ai for si, ai ∈ τ , set π(s) to any arbitrary action in states not on τ
Commit to π and observe if τ is realized by µ(π)
If τ is realized, apply π m times and record estimated return r̂L(τ)

Return the leader policy that that has realized τ and has the maximal r̂L(τ)

Learning Setting: As a quick recap of the learning setting in the cooperative case, the only
unknown is the leader rewards rL (the same as that of the follower) The MDP is deterministic and
so the transitions are known.
Proposition 50. Under Markov games that are deterministic trees, then there exists a polynomial-
time algorithm that can learn a near-optimal policy.

Proof. We know that there is some root to leaf path τ ∗ such that τ ∗ ∈ argmaxτ r
L(τ). Our goal

is to search for a leader policy that realizes τ ∗. Note that it is sufficient to simply find τ ∗, as any
leader policy that matches τ ∗ will induce τ ∗ as the follower’s reward is the same as that of the
leader.

To find τ ∗, it is sufficient to iterate through all possible root to leaf paths τ . There are |SH |
many policies, and so this can be done in polynomial time. For each path τ , choose any leader
policy π with π(si) = ai for si, ai ∈ τ . If τ is not realized by π, µ(π), then this means rL(τ)
must be dominated by a different path’s rL(τ ′). And so, τ ̸= τ ∗. Thus, after iterating through all
possible τ ’s, we must have observed τ ∗ among the paths realized.

We can then identify a near-optimal policy by choosing the policy, whose path τ̂ has the
maximal r̂L(·). This gives us a near-optimal policy with high probability (e.g. better than
1− 1/T), as after m = Õ(1/δ2) number of episodes, we have estimated every potential optimal
path return r̂L(τ) to precision δ w.h.p. And so, our returned policy’s return (i.e. r̂L(τ)) must be
sub-optimal by at most δ. Please see Algorithm 25 for the algorithm.

308

Finally, we illustrate that this statistical hardness is surprisingly difficult to overcome, even
when we relax the BR nature of the follower.
Theorem 57. There exists a turn-based Deterministic DAG Markov game such that: any (possibly
randomized) algorithm that outputs the optimal policy given λ-Entropy-regularized BR with
probability at least 1/2 requires at least Ω(exp(λ2H/8)) episodes if λ ≤ 1 and Ω(exp(H/8))
episodes if λ > 1.

Proof. To show this, we will use Yao’s lemma. Let D be the uniform distribution over all MDP
instances X , where the distribution is uniform over which of the two actions at each time step
achieves reward 1 (and the other 0). Define λ′ = min(λ, 1/λ) and let:

m = min(exp(λλ′H/8), exp(H/8))/16

Define cost(A, t, x) = 1(a∗ ̸∈ {a1, ..., at}), which is the probability of A not outputting the
optimal policy a∗ after t episodes.

We will show that for any deterministic algorithm A, if t ≤ m, with probability at least 1
2

over
the choice of x ∼ D, cost(A, t, x) = 1. That is, minA Ex∼D[cost(A, t, x)] ≥ 1

2
, which by Yao’s

lemma means that any randomized algorithms R has minRmaxx∈X E[cost(R, t, x)] ≥ 1
2
).

For some optimal code a∗, let the set SH/4(a∗) be all length-H binary combinations with
Hamming distance at most H/4 or at least 3H/4 from a∗. Let S ′H/4(a

∗) be its complement i.e.
the set of codes with Hamming distance between H/4 and 3H/4 with respect to a∗.

First, for any a∗, we bound the cardinality of the set SH/4(a∗): |SH/4(a∗)| = 2(
(
H
H

)
+ ... +(

H
3H/4

)
) = 2(

(
H
0

)
+ ... +

(
H
H/4

)
). And 2(

∑1/4·H
i=0

(
n
i

)
) ≤ 2 · 2H exp(−2H(1/2 − 1/4)2) ⇒

|SH/4(a∗)|
2H

≤ 2 exp(−H/8).
In round t, let the leader’s chosen binary code be at, and we observe one realization of the

random variable bt ∼ σ(λ · (dL(at, a∗)− 1/2)), which denotes whether the follower chooses to
go left in the BR (1 indicates left). We will use the following lemma, whose proof we defer to the
end.

Lemma 71. For each t ≤ m, we have that for any chosen code at:

Pr(at ̸∈ SH/4(a∗)|b:t−1 = 1) ≥ 1− 6

exp(H/8)

Then, we have that for any t ≤ m:

Pr(bt = 1|b:t−1 = 1)

≥ Pr(bt = 1|at ∈ S ′H/4(a∗), b:t−1 = 1)Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1)

≥ 1

1 + exp(−λ[(H − 1/2)− (3H/4− 1)))
Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1)

≥ (1− 1

1 + exp(λH/4)
) Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1)

> 1− 6

exp(H/8)
− 1

1 + exp(λH/4)
(using the Lemma above)

309

With this, we have that for any algorithm A with output ai at episode i:

Ex∼D[cost(A, t, x)]
= P (a∗ ̸∈ {a1, ..., at})

≥ P (
⋃
i∈[t]

ai ∈ S ′H/4(a∗))

≥ P (
⋃
i∈[t]

ai ∈ S ′H/4(a∗), b:t = 1)

= P (bt = 1|
t⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1)P (at ∈ S ′H/4(a∗)|
t−1⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1)

P (
t−1⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1)

≥ 1

1 + exp(−λ[(H − 1/2)− (3H/4− 1)))
P (at ∈ S ′H/4(a∗)|

t−1⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1)

P (
t−1⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1) (using that at ∈ S ′H/4(a∗) and bt is a function of only at)

≥ (1− 1

1 + exp(λH/4)
)(1− 6

exp(H/8)
)P (

t−1⋃
i=1

ai ∈ S ′H/4(a∗), b:t−1 = 1)

(Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1) ≥ 1− 6
exp(H/8)

for any fixed sequence a:t−1)

≥ (1− 1

1 + exp(λH/4)
− 6

exp(H/8)
)t (unrolling)

≥ 1− 8t

min(exp(H/8), exp(λH/4))

≥ 1/2 (t ≤ m)

Lemma 72. For each t ≤ m, we have that for any chosen code at:

Pr(at ̸∈ SH/4(a∗)|b:t−1 = 1) ≥ 1− 6

exp(H/8)

Proof. Let us define M = λ′H
8

and T = 1 + exp(λM). We will prove the result holds for any
t ≤ T . This is sufficient as T ≥ exp(λλ′H/8) ≥ m.

We will show a stronger result that for any fixed sequence a:t−1, we have that:

Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1) > 1− 6

exp(H/8)

310

And so,

Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1) = E[Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1)|a:t−1] > 1− 6

exp(H/8)

Fix any sequence of a:t−1 and observed b:t−1 = 1, first we note that the posterior is of the
form:

P (a∗ = a|b:t−1 = 1, a:t−1)

∝ P (a∗ = a)
t−1∏
i=1

P (bi = 1|a∗ = a, b:i−1 = 1, a:t−1)

= P (a∗ = a)
t−1∏
i=1

σ(λ(dL(a, ai)− 1/2)) (bi is a function of only a∗, ai)

Next, since the algorithm is deterministic, at is deterministic with given a:t−1 and b:t−1:

Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1)

=
∑
a

Pr(at ∈ S ′H/4(a∗)|a∗ = a, b:t−1 = 1, a:t−1) Pr(a
∗ = a|b:t−1 = 1, a:t−1)

=
∑
a

1
{
a ∈ S ′H/4(at)

}
Pr(a∗ = a|b:t−1 = 1, a:t−1)

=
∑

a∈S′
H/4

(at)

Pr(a∗ = a|b:t−1 = 1, a:t−1)

It suffices to lower bound the posterior probability mass over S ′H/4(at):
∑

a∈S′
H/4

(at)
P (a∗ =

a|b:t−1 = 1, a:t−1).
For any chosen code ai for i ∈ [t− 1], consider all codes up to M hamming distance away

from ai. There are
∑M

i=0

(
H
i

)
such codes. This means there are at most (t− 1)

∑M
i=0

(
H
i

)
codes

with at least one posterior update factor less than σ(λ(M − 1/2)).
This implies the remaining set of codes a in S ′H/4(at) has likelihood factor of at least:

t−1∏
i=1

σ(λ(dL(a, ai)− 1/2))

≥
t−1∏
i=1

σ(λ(M − 1/2))

≥ (1− 1

1 + exp(λM)
)t−1

≥ (1− 1

1 + exp(λM)
)T ≥ 1/e (T = 1 + exp(λM))

311

Let Nt be the normalizing factor at episode t. Then, the posterior is such that:

∑
a∈S′

H/4
(at)

Pr(a∗ = a|b:t−1 = 1, a:t−1)

≥ 1

Nt

(2H − (|SH/4(at)|+ (t− 1) ·
M∑
i=1

(
H

i

)
)) · 1/e

≥ 1

Nt

(2H − (|SH/4(at)|+ T ·
M∑
i=1

(
H

i

)
)) · 1/e

≥ 1

Nt

(2H(1− 2 exp(−H/8)− (1 + exp(λM)) exp(−2H(1/2−M/H)2)) · 1/e

≥ 1

Nt

· 2H(1− 2 exp(−H/8)− 2 exp(λM − 2H(1/2− 1/8)2)) · 1/e (M/H ≤ 1/8)

≥ 1

Nt

· 2H(1− 2 exp(−H/8)− 2 exp(−10H/64)) · 1/e (λM ≤ H/8)

On the other hand, we also have that:

Pr(at ∈ SH/4(a∗)|b:t−1 = 1, a:t−1)

=
∑

a∈SH/4(at)

Pr(a∗ = a|b:t−1 = 1, a:t−1)

≤ 1

Nt

· (2H2 exp(−H/8)) · 1

Therefore, for any t ≤ T , the probability of selecting a code with return between H/4 and
3H/4 is at least:

Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1)

= 1− 1

1 + Pr(at ∈ S ′H/4(a∗)|b:t−1 = 1, a:t−1)/Pr(at ∈ SH/4(a∗)|b:t−1 = 1, a:t−1)

≥ 1− 1

1 + 1−2 exp(−H/8)−2 exp(−10H/64)
e[2 exp(−H/8)]

≥ 1− 1

1 + exp(H/8)/2e− 2/e

> 1− 6

exp(H/8)

312

Figure 9.3: Right branch requires getting the right set of H binary actions at states s1, ..., sH to
exceed the return in the left branch.

9.10 Proofs for Learning Results in Cooperative Games with
Payment

Due to the statistical hardness of learning without payment, we now consider whether payment
can alleviate this hardness. Note that unlike prior works in bandits [248], we can no longer
exhaustively enumerate all possible leader policies, which is feasible only in the bandit setting.
We main approach is to adopt the natural idea of setting the outcome-based payments be the
bonuses, in order to align incentives during exploration.

9.10.1 General regret guarantees

We first prove two results that are used in all the following regret proofs. The first informs us what
is the optimal policy and payment to compete against in the cooperative case.
Lemma 73. For any π∗, b∗ such that:

π∗, b∗ = argmax
π,b

V π,µ(π;rF+b)(s0; r
L − κ · b)

s.t. µ(π; rF + b) ∈ argmax
µ′

V π,µ′(s0; r
F + b)

If rL = rF , then we must have π∗, · = argmaxπ,µ V
π,µ(s0; r

L) and b∗ = 0.

Proof. We show that for π∗ such that it is part of a globally optimal pair π∗, µ∗ = argmaxπ,µ V
π,µ(s0; r

L).
We claim that (π∗, 0) dominates every pair (π, b):

313

V π∗,µ(π∗;rF)(s0; r
L − 0)

= V π∗,µ∗(s0; r
L − 0) (rF = rL ⇒ µ∗ is a BR to π∗)

≥ V π,µ(π;rF+b)(s0; r
L)

(joint optimality π∗, µ∗ = argmaxπ,µ V
π,µ(s0; r

L) implies π∗, µ∗ dominates π, µ(π; rF + b))

≥ V π,µ(π;rF+b)(s0; r
L − κ · b)

Similarly for upfront payment:

V π∗,µ(π∗;rF)(s0; r
L)

= V π∗,µ∗(s0; r
L) (rF = rL ⇒ µ∗ is a BR to π∗)

≥ V π,µ(π;rF+b)(s0; r
L)

(joint optimality π∗, µ∗ = argmaxπ,µ V
π,µ(s0; r

L) implies π∗, µ∗ dominates π, µ(π; rF + b))

≥ V π,µ(π;rF+b)(s0; r
L)− κ ·

∑
s,a,b

b(s, a, b)

Lemma 74. Suppose we can construct an optimistic MDP Mk of the true MDP M . Let the
optimal leader policy under Mk be πk, then:

T∑
k=1

V
π∗,µM (π∗)
M (s0; r

L)− V πk,µM (πk)
M (s0; r

L) ≤
T∑
k=1

V
πk,µMk (π

k)

Mk
(s0; r

L)− V πk,µMk (π
k)

M (s0; r
L)

Proof. By optimality of πk in Mk and optimism, we have that,

V
πk,µMk (π

k)

Mk
≥ V

π∗,µM (π∗)
Mk

≥ V
π∗,µM (π∗)
M

Therefore, we may bound the instantaneous regret,

T∑
k=1

V
π∗,µM (π∗)
M − V πk,µM (πk)

M

≤
T∑
k=1

V
πk,µMk (π

k)

Mk
− V πk,µM (πk)

M (Optimism)

≤
T∑
k=1

V
πk,µMk (π

k)

Mk
− V πk,µMk (π

k)

M (BR means V πk,µM (πk)
M ≥ V

πk,µMk (π
k)

M)

314

In the proofs that follow, we make use of the classic UCB-VI algorithm as the no-regret RL
algorithm [18]. Note that although UCB-VI is applicable when the rewards are in [0, 1], with
translation and scaling, regret guarantees of the same order still hold when rewards are in [−1, 1].
Theorem 58. UCB-VI-FP (Algorithm 24) incurs O(T 1/2) regret under trajectory payment. This is
tight as there exists a subset of Markov games, where any learning algorithm must incur Ω(T 1/2)
regret.

Proof. At episode k, we have three MDPs:

1. The ground truth MDP M = (P, r)

2. An empirical MDP M̂k = (P̂ k, r̄k + 1
2
βk) with βkh = 2c

√
SH2

Nk
h (s,a,b)

.

3. The subsidy MDP M̃k = (P, r + βk)

Optimism: We want to show that:

1. M̂k is optimistic wrt M : for all π, µ,

V π,µ(s0; P̂
k, r̄k +

1

2
βk) ≥ V π,µ(s0;P, r)

2. M̃k is optimistic wrt M̂k: for all π, µ,

V π,µ(s0;P, r + βk) ≥ V π,µ(s0; P̂
k, r̄k +

1

2
βk)

To do this, fix some (s, a, b), step h and policies π, µ. Then, we have from total-variation
concentration bound for multinomial distribution:

∥P̂ k(· | s, a, b)− P (· | s, a, b)∥1 ≤ c′

√
|S|

Nk
h (s, a, b)

Next, we have

(P̂ k
h − Ph)V

π,µ
h+1(s, a, b; ·) =

∑
s′

(P̂ k(s′ | s, a, b)− P (s′ | s, a, b))V π,µ
h+1(s

′; ·).

Applying Hölder’s inequality (with p = 1, q =∞):

|(P̂ k
h − Ph)V

π,µ
h+1(s, a, b;)̇| ≤ ∥P̂

k(· | s, a, b)− P (· | s, a, b)∥1 ∥V π,µ
h+1∥∞ ≤ c′

√
|S|

Nk
h (s, a, b)

·H.

Then by Hoeffding, this means there exists c such that:

|(P̂ k
h − Ph)V

π,µ
h+1(s, a, b; ·)|+ |r̄h(s, a, b)− rh(s, a, b)| ≤ c

√
|S|

Nk
h (s, a, b)

·H.

315

1. Optimism of M̂k:
Using our preceding bound, we have that for all h, s, a, b:

r̄kh(s, a, b) +
1

2
βkh(s, a, b) ≥ rh(s, a, b) + |(P̂ k

h − Ph)V
π,µ
h+1(s, a, b; ·)|.

We will use this in backward induction on h ∈ [H] to show optimism:
Base Case h = H + 1: V π,µ

h (s; P̂ k, r̄k + 1
2
βk) = 0 = V π,µ

h (s;P, r).
Induction Step: suppose we have that for all state s:

V π,µ
h+1(s; P̂

k, r̄k +
1

2
βk) ≥ V π,µ

h+1(s;P, r)

It is sufficient to show that for every s, a, b:

Qπ,µ
h (s, a, b; P̂ k, r̄k +

1

2
βk) ≥ Qπ,µ

h (s, a, b;P, r).

and the result follows from the inequality with maxa,b applied on both sides.
Using induction hypothesis:

Qπ,µ
h (s, a, b; P̂ k, r̄k +

1

2
βk) = r̄kh(s, a, b) +

1

2
βkh(s, a, b) +

∑
s′

P̂ k
h (s
′|s, a, b)V π,µ

h+1(s
′; P̂ k, r̄k +

1

2
βk)

≥ r̄kh(s, a, b) +
1

2
βkh(s, a, b) +

∑
s′

P̂ k
h (s
′|s, a, b)V π,µ

h+1(s
′;P, r)

≥ rh(s, a, b) +
∑
s′

Ph(s
′|s, a, b)V π,µ

h+1(s
′;P, r)

= Qπ,µ
h (s, a, b;P, r).

2. Optimism of M̃k w.r.t. M̂k:
Using our preceding bound, we have that for all h, s, a, b:

r̄kh(s, a, b) +
1

2
βkh(s, a, b) ≥ rh(s, a, b) + |(P̂ k

h − Ph)V
π,µ
h+1(s, a, b; ·)|.

We will use this in backward induction on h ∈ [H] to show optimism:
Base Case h = H + 1: V π,µ

h (s;P, r + βk) = 0 = V π,µ
h (s; P̂ k, r̄k + 1

2
βk).

Induction Step: suppose we have that for all state s:

V π,µ
h+1(s;P, r + βk) ≥ V π,µ

h+1(s; P̂
k, r̄k +

1

2
βk)

It is sufficient to show that for every s, a, b:

Qπ,µ
h (s, a, b;P, r + βk) ≥ Qπ,µ

h (s, a, b; P̂ k, r̄k +
1

2
βk)

Using induction hypothesis:

316

Qπ,µ
h (s, a, b;P, r + βk) = rh(s, a, b) + βkh(s, a, b) +

∑
s′

Ph(s
′|s, a, b)V π,µ

h+1(s
′;P, r + βk)

≥ rh(s, a, b) + βkh(s, a, b) +
∑
s′

Ph(s
′|s, a, b)V π,µ

h+1(s
′; P̂ k, r̄k +

1

2
βk)

≥ r̄kh(s, a, b) +
1

2
βkh(s, a, b) +

∑
s′

P̂ k
h (s
′|s, a, b)V π,µ

h+1(s
′; P̂ k, r̄k +

1

2
βk)

= Qπ,µ
h (s, a, b; P̂ k, r̄k +

1

2
βk),

Bounding Regret: With these, we have

max
π

max
µ

V π,µ(s0;P, r)

≤max
π

max
µ

V π,µ(s0; P̂
k, r̄k +

1

2
βk) (Optimism property 1)

≤max
µ

V πk,µ(s0; P̂
k, r̄k +

1

2
βk) (Definition of πk)

≤max
µ

V πk,µ(s0;P, r + βk) (Optimism property 2)

≤V πk,µk(s0;P, r + βk) (Follower best responding in subsidized MDP)

where in the last line we use the shorthand that µk := µ(πk, r + βk))
This means that the instantaneous regret is bounded by:

regk =max
π

max
µ

V π,µ(s0;P, r)− V πk,µk(s0;P, r − κβk)

≤V πk,µk(s0;P, r + βk)− V πk,µk(s0;P, r − κβk)
=V πk,µk(s0;P, (1 + κ)βk) (Linearity of return)

In closing, we have the cumulative regret:

T∑
k=1

regk ≤
T∑
k=1

V πk,µk(s0;P, (1 + κ)βk)

=
T∑
k=1

H∑
i=1

(1 + κ)b(ski , a
k
i , b

k
i) +O(H

√
T) (Azuma’s inequality)

≤ O(
√
H3|S|2|A||B|T)

where the last step holds as for any realization of
{
ski , a

k
i , b

k
i

}
k∈[T],i∈[H]

, the sum is upper

bounded by O(
√
H2|S| ·

√
H|S||A||B|T).

317

Theorem 59. There exists an algorithm, leveraging UCB-VI-FP as subroutine, that incursO(T 2/3)
regret under upfront payment.

Proof. By Lemma 73, the total regret incurred by a learning algorithm under upfront payment is:

R(T) =
T∑
i=1

V π∗,µ∗ + 0− (
T∑
i=1

E[V πi,µ(πi)]− κ ·
∑

s,a,b∈S×A×B

bi(s, a, b)]))

We can establish the O(T 2/3) with the following algorithm. First, run UCB-VI-FP for
m = T 2/3 iterations. Then, using online to batch conversion, repeat this sequence of policies
π1, ..., πm for the remaining T −m steps, with all payments set to zero.

As shown in Theorem 52, the policy regret from the explore phase is
∑m

i=1 V
π∗,µ∗−E[V πi,µ(πi)] ≤

O(T 1/3). The payment from the explore phase is
∑m

i=1 κ
∑

s,a,b∈S×A×B b
i(s, a, b) ≤ m ·O(1) =

O(T 2/3). The policy regret from the exploit phase is
∑T

i=m+1 V
π∗,µ∗ − E[V πi,µ(πi)] ≤ O((T −

T 2/3)
√
T 2/3

m
) = O(T 2/3). And so, the total regret isR(T) = O(T 2/3).

9.10.2 Contrasting Trajectory Payment with Upfront Payment
Proposition 51. UCB-VI-FP with indicator bonus incurs constant O(|S||A||B|) regret under
trajectory payment.

Proof. Using Lemma 74, we can reduce Stackelberg learning with payment to single-agent
no-regret learning with joint policy class πjoint : S → A×B.

For the no-regret learning algorithm, we will again use the classical UCB-VI algorithm [18].
To obtain a tighter bound of the algorithm’s expected regret, we construct an optimistic MDP Mk

with reward r̂kh(s, (a, b)) := 1 if (s, a, b) unvisited before step k − 1 at step h and r(s, a, b) o.w.
Since r ∈ [−1, 1], r̂kh(s, a, b) ≥ r(s, a, b) for all h, k.

Following the UCB-VI proof outline:

E[V k
h (s

k
h)− V

πk
h (skh)]

= E[(Qk
h −Q

πk
h)(skh, (a

k
h, b

k
h))]

= E[PhV k
h+1(s

k
h, (a

k
h, b

k
h))− PhV

πk
h+1(s

k
h, (a

k
h, b

k
h)) + (r̂kh − rkh)(skh, (akh, bkh))]

= E[V k
h+1(s

k
h+1)− V

πk
h+1(s

k
h+1) + bkh] (let bkh = E[(r̂kh − rkh)(skh, akh, bkh)])

Unrolling, we have that:

T∑
k=1

E[(V ∗1 − V
πk
1)(s1)] ≤

T∑
k=1

E[(V k
1 − V

πk
1)(s1)] ≤ E[

T∑
k=1

H∑
h=1

bkh]

To finish, we observe that for every roll-out, we have that:

T∑
k=1

H∑
h=1

bkh =
∑

s,a,b∈S×A×B

1
{
NT (s, a, b) ≥ 1

}
(1− r(s, a, b)) ≥ 2|S||A||B|

318

Proposition 52. There exists an algorithm, leveraging UCB-VI-FP with indicator bonus as
subroutine, that incurs O(T 1/2) regret under upfront payment.

Proof. We can establish the O(T 1/2) bound with the following algorithm. First, run UCB-VI-FP
with indicator bonus for m = T 1/2 iterations. Then, using online to batch conversion, repeat this
sequence of policies π1, ..., πm for the remaining T −m steps, with all payments set to zero.

As shown in Proposition 45, the policy regret from the explore phase is
∑m

i=1 V
π∗,µ∗ −

E[V πi,µ(πi)] ≤ O(1). The payment from the explore phase is
∑m

i=1 κ
∑

s,a,b∈S×A×B b
i(s, a, b) ≤

m ·O(1) = O(T 1/2). The policy regret from the exploit phase is
∑T

i=m+1 V
π∗,µ∗ −E[V πi,µ(πi)] ≤

O((T − T 1/2) 1
m
) = O(T 1/2). And so, the total regret isR(T) = O(T 1/2).

Proposition 53. There exists a subset of Markov Game instances such that any learning algorithm
has to incur Ω(T 1/2) regret under upfront payment.

Proof. Setup: We will use Yao’s Lemma to show our result. Define cost of algorithm A at the
ith episode in instance X as cost(A, i, x) = E[1 {πi ̸= π∗} (r(π∗)− r(πi)) + Si]. Let D be the
uniform distribution over all MDP instances X , where the distribution is uniform over which
of the two actions at each time step achieves reward 1 (and the other 0). Our aim is to show
minA Ex∼D[

∑T
i=1 cost(A, i, x)] ≥ Ω(

√
T). This implies that any randomized algorithms R has

minRmaxx∈X E[
∑T

i=1 cost(R, i, x)] ≥ Ω(
√
T).

Notation: Let the history up until time t be Ht:

Ht = (π1, S1, τ1, A1,W
′
1, π2, S2, τ2, . . . , πt, St, τt, At,W

′
t)

where for example τ1 = (s11, a
1
1, b

1
1, r(s

1
1, a

1
1, b

1
1), . . . , s

1
H , a

1
H , b

1
H , r(s

1
H , a

1
H , b

1
H)).

• πi is the right branch policy at time i
• τi is the trajectory in the Markov game at time i.
• Si is the payment on the right branch at round i, and S ′i the payment on the left branch.
• Define right branch subsidy being at least 1

2
as Xi = 1(Si ≥ 1

2
).

• Yi = 1 {πi = π∗}.
• Ai denotes if the follower’s BR is the right action.

Ai = 1

⇔ rF (s0, a2) = (1− ϵ)(H − 1/2 + S ′i) + ϵ(Si + r(πi)) ≥ H − 1/2 + S ′i = rF (s0, a1)

⇔ ϵ(Si + r(πi)) ≥ ϵ(H − 1/2 + S ′i)

And so,
Ai = 1(Si + r(πi) ≥ S ′i +H − 1/2)

• Let Zi denote Bernoulli(ϵ) random variable corresponding to the stochastic transition, when
the follower chooses action a2.
Zi = 1 if the follower transitions to the right branch provided Ai = 1.

319

• Let W ′
i denotes if the follower goes into the right branch. We have that:

W ′
i = Ai ∧ Zi

We are interested in the event Wt = Yt ∨XtZt. It has the useful property that Wt = 0⇒ Yt =
0, XtZt = 0. Moreover, we claim that Wt = 0⇒ W ′

t = 0.

Yt = 0, XtZt = 0

⇒ r(πt) ≤ H − 1, XtZt = 0

⇔ H − 1/2− r(πt) ≥ 1/2, XtZt = 0

⇒ Xt ≥ At, XtZt = 0 (At = 1⇒ St ≥ S ′t +H − 1/2− r(πt) ≥ S ′t + 1/2⇒ Xt = 1)
⇒ AtZt = 0 (0 = XtZt ≥ AtZt)
⇒ W ′

t = 0

We will use this property in the lemma that follows.

Lemma 75.
P (Yt = 0|W:t−1 = 0) ≥ 1− t− 1

2H

Proof. ∑
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)P (Ht−1|W:t−1 = 0)

=
∑

Ht−1:W:t−1=0

P (Yt = 0|Ht−1, πt = π′)P (Ht−1|W:t−1 = 0)

(πt is a deterministic function of Ht−1)

=
∑

Ht−1:W:t−1=0

P (π∗ ̸= π′|Ht−1, πt = π′)P (Ht−1|W:t−1 = 0)

=
∑

Ht−1:W:t−1=0

P (π∗ ̸= π′|Y:t−1 = 0, π:t−1)P (Ht−1|W:t−1 = 0) (†)

≥ 1− t− 1

2H
(posterior of π∗ is uniform over Π \ π:t−1)

(†) : First, we have that the observed trajectory has the specific functional form: τi =
τπi1 {W ′

i = 1} + τleft {W ′
i = 0}. Thus, conditioned on W:t−1 = 0⇒ W ′

:t−1 = 0, we have that
τi = τleft for all i ∈ [t− 1]. That is, π∗ ⊥⊥ τi in the conditional joint distribution.

From this, we have that π∗ ⊥⊥ Ht−1 \ {Y:t−1 = 0, π:t−1} | {Y:t−1 = 0, π:t−1} by checking D-
separation of {Si, Ai, τi,W ′

i} with π∗. π∗’s only children are Yi’s, thus conditioning on Yi’s other
parents (πi’s) and Yi’s themselves blocks every path to the rest of the random variables.

320

Lemma 76. For every t ≤ T :

P (W:t = 0) ≥ 1

2
(1−

t∑
j=1

ϵP (Xj = 1|W:j−1 = 0))

Proof. W:t = 0⇔ Y:t = 0, X:tZ:t = 0. Towards bounding the product, we have:

P (Yt = 0, XtZt = 0|W:t−1 = 0)

=
∑

Ht−1:W:t−1=0

P (Yt = 0, XtZt = 0|Ht−1)P (Ht−1|W:t−1 = 0)

(where Ht−1 is the history up until t− 1, W:t−1 ∈ Ht−1)

=
∑

Ht−1:W:t−1=0

P (Yt = 0|Ht−1)P (XtZt = 0|Ht−1)P (Ht−1|W:t−1 = 0)

(Xt deterministic function of Ht−1, Zt is independent of Yt⇒ Yt ⊥⊥ XtZt|Ht−1)

≥ min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)
∑

Ht−1:W:t−1=0

(P (XtZt = 0|Ht−1, Zt = 0)P (Zt = 0|Ht−1)

+ P (Xt = 0|Ht−1, Zt = 1)P (Zt = 1|Ht−1))P (Ht−1|W:t−1 = 0) (condition on Zt)

= min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)
∑

Ht−1:W:t−1=0

(1− ϵ+ P (Xt = 0|Ht−1, Zt = 1)ϵ)P (Ht−1|W:t−1 = 0)

= min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)(1− ϵ+ ϵ
∑

Ht−1:W:t−1=0

P (Xt = 0|Ht−1)P (Ht−1|W:t−1 = 0)

(Xt is deterministic function of Ht−1, so independent of Zt)

= min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)(1− ϵ+ ϵ
∑

Ht−1:W:t−1=0

P (Xt = 0|Ht−1,W:t−1 = 0)P (Ht−1|W:t−1 = 0)

= min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)(1− ϵ+ ϵP (Xt = 0|W:t−1 = 0))

= min
Ht−1:W:t−1=0

P (Yt = 0|Ht−1)(1− ϵP (Xt = 1|W:t−1 = 0))

From before, for any history Ht−1 where W:t−1 = 0:

P (Yt = 0|Ht−1,W:t−1 = 0)

= P (π∗ ̸= π′|Y:t−1 = 0, π:t−1) (from prior lemma)

≥ 1− t− 1

2H

Putting it together,

P (Yt = 0, XtZt = 0|W:t−1 = 0) ≥ (1− t− 1

2H
)(1− ϵP (Xt = 1|W:t−1 = 0))

321

and so,

P (Y:t = 0, X:tZ:t = 0)

≥ 1

2

t∏
i=1

(1− ϵP (Xi = 1|W:i−1 = 0)) (using that 2H >> T)

≥ 1

2
(1−

t∑
j=1

ϵP (Xj = 1|W:j−1 = 0))

Note that the optimal expected return is: (1− ϵ)(H − 1/2) + ϵH . When the follower chooses
aL, the instantaneous regret is: (1 − ϵ)(H − 1/2) + ϵH − (H − 1/2) = ϵ/2. If the follower
chooses aR and πt ̸= π∗, then the instantaneous regret is at least ϵ. Overall, the instantaneous
regret is at least ϵ/2 when πt ̸= π∗. And so, the cumulative regret bound is lower bounded by:

T∑
t=1

P (πt ̸= π∗)ϵ/2 + E[
T∑
t=1

St + S ′t]

≥
T∑
t=1

P (πt ̸= π∗)ϵ/2 + 1/2E[
T∑
t=1

Xt]

≥ ϵ/2
T∑
t=1

P (πt ̸= π∗|W:t−1 = 0)P (W:t−1 = 0) + 1/2E[
T∑
t=1

Xt]

≥ ϵ/2
T∑
t=1

(1− t− 1

2H
)P (W:t−1 = 0) + 1/2E[

T∑
t=1

Xt]

≥ ϵ

4

T∑
t=1

P (W:t−1 = 0) + 1/2E[
T∑
i=1

Xi]

We consider two cases:

1. Case 1: E[
∑T

i=1Xi] =
∑T

i=1 P (Xi = 1) ≥ 1/16ϵ

In this case, the regret is at least 1/32ϵ.
2. Case 2:

∑T
i=1 P (Xi = 1) < 1/16ϵ

Then, we claim that
∑T

j=1 P (Xj = 1|W:j−1 = 0) ≤ 1/4ϵ.
Suppose not and

∑T
j=1 P (Xj = 1|W:j−1 = 0) > 1/4ϵ.

Then, there must exist t < T such that
∑t

j=1 P (Xj = 1|W:j−1 = 0) ∈ [1/4ϵ − 1, 1/4ϵ].
This implies:

322

T∑
i=1

P (Xi = 1)

≥
t∑
i=1

P (Xi = 1|W:i−1 = 0)P (W:i−1 = 0)

≥
t∑
i=1

P (Xi = 1|W:i−1 = 0)
1

2
(1− ϵ

i−1∑
j=1

P (Xj = 1|W:j−1 = 0))

≥
t∑
i=1

P (Xi = 1|W:i−1 = 0)
1

2
(1− ϵ · 1/4ϵ)

=
3

8

t∑
i=1

P (Xi = 1|W:i−1 = 0)

≥ 3

8
(1/4ϵ− 1)

> 1/16ϵ

which is a contradiction.
Now, because

∑T
j=1 P (Xj = 1|W:j−1 = 0) ≤ 1/4ϵ, the cumulative regret from before is:

≥ ϵ

4

T∑
t=1

P (W:t−1 = 0) + E[
T∑
i=1

Xi]

≥ ϵ

4
TP (W:T−1 = 0)

≥ ϵ

4
T
1

2
(1− ϵ

T−1∑
j=1

P (Xj = 1|W:j−1 = 0))

≥ ϵ

4
T
1

2
(1− ϵ 1

4ϵ
)

≥ 3Tϵ

32

In conclusion, the cumulative regret is at least min(1
32ϵ
, 3Tϵ

32
) = Ω(T 1/2) when we let

ϵ = T−1/2.

323

Figure 9.4: Right branch requires getting the right set of H binary actions at states s1, ..., sH to
exceed the return in the left branch.

9.11 Experiments

Setup: We consider a turn-based Markov Game, where the leader is solving a RL problem and
the follower solves a bandit problem in its BR [26]. This class of Markov Games includes the
hard instance construction in Section 5. Our goal is to examine whether learning without payment
can get stuck even in more “average” (and not worst) case Markov Games.

For experimentation, the leader is learning in a toy MDP with H = 5. For the follower, arm
a1 leads to a MDP, whose optimal return is the optimal return in the (turn-based) Markov game.
On the other hand, arm a2 has a deterministic high reward that is α that of the optimal return.

By varying α, we can make the follower get “stuck” in myopically choosing a2, thus preventing
the leader from exploring and learning the actual optimal policy. This is the intuition behind the
negative results, Theorem 49 and Theorem 50, where we set α very high.

For the baseline, we use the single-agent learning algorithm UCB-VI in the without payment
case, and compare it against UCB-VI-FP in the with payment case. We track the cumulative regret
of the two learning algorithms over 40000 episodes and across 20 runs.

Finding: We experiment with different α’s, finding that learning without payment can get
stuck in the myopic optimum even when α is as low as 0.5. Interestingly, this suggests that there
are “non-worst-case” Markov games, where exploration can be difficult without payment. Under
α = 0.5, Figure 9.5 shows that:

1. In absence of payment, even if the leader is using a (one-sided) no-regret algorithm (UCB-
VI), the leader may not be able to explore adequately and incur linear regret.

2. UCB-VI-FP attains sublinear regret, showing the importance of payment in incentivizing

324

Figure 9.5: Regret plot from episodes 1000 to 40000

exploration needed to learn the optimal policy.

3. UCB-VI-FP initially incurs a higher regret, which we expect due to the additional payment
used by the algorithm to incentivize exploration. Over time, its regret improves due to
exploration shrinking the policy regret, and reduced incentivization (and thus payment
regret). Eventually, UCB-VI-FP’s regret dips below that of UCB-VI, with a crossover point
at around episode 13500.

9.12 Additional Related Works

Thematically, our paper belongs to the intersection of literature on Stackelberg policy computation
in Markov games and literature on contracting through reward shaping in MDPs.

Other Variants of Follower best response in Stackelberg Games: In our paper, we con-
sider the standard assumption of the follower best responding as well as its generalization, the
λ−entropy regularized best response model. Moving further away from this canonical formulation
in Stackelberg games, there have also been other formulations of follower behavior. Chen et al.
[64], Zhong et al. [324] study learning the optimal policy in face of a myopic follower that greedily
best responds. Furthermore, there is also a growing line of work on learning in face of an agent
(follower) who is also learning. For example, Guruganesh et al. [128] studies how to contract an
agent that is learning. Kao et al. [161] studies learning in face of a follower that is also learning in
cooperative games.

Broader Stackelberg games literature: Our paper focuses specifically on Stackelberg
Markov games, and adds to the body of work that builds a closer connection with RL theory.
Zooming back out, the broader Stackelberg game literature is vast and varied. For example, there
is an extensive body of work studying Stackelberg games in normal-form games (horizon-one

325

games), often inspired by security games, as well as empirical methods for Stackelberg games.
We mention [32] and [112] as an example of each line of work, in which one may find further
relevant references.

Learning the Optimal Payment Scheme in MDPs: It is natural to ask if there are any
implications from prior papers on contracting in MDPs[41, 48, 152, 297]. Do papers in the
single-agent setting have any implications for the more general two-player Stackelberg Markov
game setup we consider?

In the full information setting that we consider, we have already covered the difference between
the Markov game setting we consider and the bandit setting studied in [248]. Another paper that
studies the full information setting is that of [41], which proves that planning is NP-hard, albeit
under a different formulation where the leader aims to maximize the return subject to the payment
being capped by some budget. By contrast, similar to previous works by Scheid et al. [248], Wu
et al. [297], our paper studies maximizing the return minus the total payment. Hence, it is not
immediately clear how the results carry over to our setting.

Besides this, other papers [48, 152, 297] focus on the imperfect information settings, where
the payment cannot be a function of the follower’s action (hidden at the time of payment). And
so, in this case, it is also not clear how results transfer due to differing setups.

As our paper is the first to study Stackelberg Markov games with payment where the leader
can set both the policy and the payment, the generality of our setup means that new results arise.
For instance, we show hardness results in Cooperative Markov games that do not exist under
existing contracting in MDP settings [41, 48, 152, 297]. This finding motivates us to study how to
learn efficiently with payment in cooperative games, and we develop no-regret algorithms to this
end.

UCB-VI-FP is a notable multi-agent algorithm as the algorithm can only control one player
when exploring. Indeed, our results show that even if the leader is using a no-regret learning
algorithm, then learning can still be inefficient. And so, a new learning algorithm needs to be
developed here, using payment to incentivize collective exploration. Finally, we add that we
also obtain results under upfront payment, which is a new form of payment that has not been
considered in previous contracting in MDP literature.

Bi-level Optimization: While the primary goal of our paper is to study global optimum, we
note that bi-level optimizers can tractably compute local optimum in planning under known re-
wards and dynamics [90, 211, 259, 275]. To handle the learning setting with unknown rewards and
dynamics, we develop a new algorithm (UCB-VI-FP) for adaptive exploration while minimizing
regret.

9.13 Incentive Effects when Follower Reward is Unobservable

Incentive Effects: A key underlying assumption in our setup is that the leader can readily observe
the follower’s reward and/or trust that the follower has reported their true reward. Truthfulness
is important in the partnership, but suppose we allow the follower to misreport all rewards up
to ∆, what may happen then? We have the following result in the direct-payment case studied
by Scheid et al. [248].

326

Proposition 54. Suppose the follower can misreport rF up to ∆, ∥r′F − rF∥1 ≤ ∆. In the bandit
setting, the follower’s return can change by at most:

|V π∗(rF),µ(π∗(rF))(s0; r
F + b∗(rF))− V π∗(r′F),µ(π∗(r′F))(s0; r

F + b∗(r′F))| ≤ 2∆

and the leader’s return can change by at most:

|V π∗(rF),µ(π∗(rF))(s0; r
L − b∗(rF))− V π∗(r′F),µ(π∗(r′F))(s0; r

L − b∗(r′F))| ≤ 2∆

Proof. We show that in the bandit setting, the follower’s return differs by at most 2∆, as does the
leader’s return.

The bandit Stackelberg setting is such that the leader optimizes:

max
i

rLi − bi

s.t. rFi + bi ≥ max
j ̸=i

rFj

The follower may instead report r′F s.t. ∥r′F − rF∥1 ≤ ∆. Let i∗ be the optimal arm under rF

and arm i′ under r′F .
We observe that in all bandit games with reward rF , the follower’s return is maxj r

F
j . If

i∗ = argmaxj r
F
j , then it’s clear that bi∗ = 0 as lowering it to zero preserves the follower choosing

arm i∗, while increasing the leader’s return. In the other case, rFi + bi ≥ maxj r
F
j . If this is

not tight, then we can lower bi∗ s.t. it is tight and preserve the follower choosing arm i∗, while
increasing the leader’s return.

With this, the return of the follower under truthful reporting is maxj r
F
j . Under r′F reporting,

it’s rFi′ +maxj r
′F
j − r′Fi′ (note that it gets the true reward rFi′). The difference is thus:

|rFi′ +max
j
r′Fj − r′Fi′ −max

j
rFj | ≤ |rFi′ − r′Fi′ |+ |max

j
r′Fj −max

j
rFj | ≤ 2∆

since
max
j
r′Fj ≥ r′k ≥ rk −∆ = max

j
rFj −∆

and
max
j
rFj = rk ≥ rl ≥ r′l −∆ = max

j
r′Fj −∆

Moreover, the leader’s return also differs by at most 2∆:

rLi∗ − (max
j
rFj − rFi∗) ≥ rLi′ − (max

j
rFj − rFi′) ≥ rLi′ − (max

j
r′Fj − r′Fi′)− 2∆

and
rLi′ − (max

j
r′Fj − r′Fi′) ≥ rLi∗ − (max

j
r′Fj − r′Fi∗) ≥ rLi∗ − (max

j
rFj − rFi∗)− 2∆

327

328

Chapter 10

Multi-agent Policy Aggregation via IRL

10.1 Introduction

Another common problem in multi-agent systems and alignment is reconciling the differing
policies of agents. That is, we may be interested in inverse reinforcement learning (IRL) from
multiple agents (in place of a single agent) [2, 212]. Specifically, suppose we observe n different
agents executing policies that are optimal for their individual reward functions. Our goal is to
sensibly aggregate these trajectories from these policies into a single policy, through the use of
inverse reinforcement learning.

However, if individual agents have wildly divergent reward functions, then the aggregate
policy may not represent coherent behavior. In addition, to formally reason about the quality
of the optimal policy, we need to relate it to some notion of ground truth. For these reasons,
we consider a more specific setting where the agents are like-minded, in that individual reward
functions are nothing but noisy versions of an underlying reward function. How well would IRL
algorithms then fare?

In sum, our research challenge is this:
Given observations from policies that are optimal with respect to different reward
functions, each of which is a perturbation of an underlying reward function, identify
IRL algorithms that can recover a good policy with respect to the underlying reward
function.

We believe that this problem is both natural and general. To further motivate it, let us briefly
instantiate it in the context of value alignment in AI safety. One of the prominent approaches in
this area is to align the values of the AI system with the values of a human through IRL [129, 244].
Our extension to multiple agents would allow the alignment of the system with the values of
society.

A compelling aspect of this instantiation is that, if we think of the underlying reward function
as embodying a common set of moral propositions, then our technical assumption of like-minded
agents can be justified through the linguistic analogy, originally introduced by Rawls [237].
It draws on the work of Chomsky [69], who argued that competent speakers have a set of
grammatical principles in mind, but their linguistic behavior is hampered by “grammatically
irrelevant conditions such as memory limitations, distractions, shifts of attention and interest, and

329

errors.” Analogously, Rawls claimed, humans have moral rules — a common “moral grammar” —
in our minds, but, due to various limitations, our moral behavior is only an approximation
thereof. Interestingly, this theory lends itself to empirical experimentation, and, indeed, it has
been validated through work in moral psychology [203].

Our Model and Results. We start from a common IRL setup: each reward function is associated
with a weight vector w, such that the reward for taking a given action in a given state is the dot
product of the weight vector and the feature vector of that state-action pair. The twist is that there
is an underlying reward function represented by a weight vector w⋆, and each of the agents is
associated with a weight vector wi, which induces an optimal policy πi. We observe a trajectory
from each πi.

In Section 10.3, we focus on competing with a uniform mixture over the optimal policies of
the agents, π1, . . . , πn (for reasons that we explicate momentarily). We can do this because the
observed trajectories are “similar” to the uniform mixture, in the sense that their feature vectors —
the discounted frequencies of the features associated with the observed state-action pairs — are
close to that of the uniform mixture policy. Therefore, due to the linearity of the reward function,
any policy whose feature expectations approximately match those of the observed trajectories
must be close to the uniform mixture with respect to w⋆. We formalize this idea in Theorem 60,
which gives a lower bound on the number of agents and length of observed trajectories such that
any policy that ϵ/3-matches feature expectations is ϵ-close to the uniform mixture. Furthermore,
we identify two well-known IRL algorithms, Apprenticeship Learning [2] and Max Entropy [329],
which indeed output policies that match the feature expectations of the observed trajectories, and
therefore enjoy the guarantees provided by this theorem.

Needless to say, competing with the uniform mixture is only useful insofar as this benchmark
exhibits “good” performance. We show that this is indeed the case in Section 10.4, assuming
(as stated earlier) that each weight vector wi is a noisy perturbation of w⋆. Specifically, we
first establish that, under relatively weak assumptions on the noise, it is possible to bound the
difference between the reward of the uniform mixture and that of the optimal policy (Theorem 61).
More surprisingly, Theorem 62 asserts that in the worst case it is impossible to outperform the
uniform mixture, by constructing an MDP where the optimal policy cannot be identified — even
if we had an infinite number of agents and infinitely long trajectories! Putting all of these results
together, we conclude that directly running an IRL algorithm that matches feature expectations on
the observed trajectories is a sensible approach to our problem.

Nevertheless, it is natural to ask whether it is possible to outperform the uniform mixture in
typical instances. In Section 10.5 we show that this is indeed the case; in fact, we are able to
recover the optimal policy whenever it is identifiable, albeit under stringent assumptions — most
importantly, that the MDP has only one state. This leads to a challenge that we call the inverse
multi-armed bandit problem. To the best of our knowledge, this problem is novel; its study
contributes to the (relatively limited) understanding of scenarios where it is possible to outperform
teacher demonstrations.

Related work. The most closely related work deals with IRL when the observations come
from an agent who acts according to multiple intentions, each associated with a different reward
function [19, 68]. The main challenge stems from the need to cluster the observations — the
observations in each cluster are treated as originating from the same policy (or intention). By

330

contrast, clustering is a nonissue in our framework. Moreover, our assumption that each wi is a
noisy perturbation of w⋆ allows us to provide theoretical guarantees.

Further afield, there is a body of work on robust RL and IRL under reward uncertainty [119,
239, 240], noisy rewards [323], and corrupted rewards [101]. Of these papers the closest to ours
is that of Zheng et al. [323], who design robust IRL algorithms under sparse noise, in the sense
that only a small fraction of the observations are anomalous; they do not provide theoretical
guarantees. Our setting is quite different, as very few observations would typically be associated
with a near-perfect policy.

10.2 MDP Terminology

We assume the environment is modeled as an MDP {S,A, T, γ,D} with an unknown reward
function. S is a finite set of states; A is a finite set of actions; T (s, a, s′) is the state transition
probability of reaching state s′ from state s when action a is taken; γ ∈ [0, 1) is the discount factor;
and D the initial-state distribution, from which the start state s0 is drawn for every trajectory.

As is standard in the literature [2], we assume that there is a function ϕ : S×A→ Rd that maps
state-action pairs to their real-valued features. We also overload notation, and say that the feature
vector of a trajectory τ = {(s0, a0), (s1, a1), . . . , (sL, aL)} is defined as ϕ(τ) =

∑L
t=0 γ

tϕ(st, at).
We make the standard assumption that the immediate reward of executing action a from state

s is linear in the features of the state-action pair, i.e. rw(s, a) = w⊺ϕ(s, a). This has a natural
interpretation: ϕ represents the different factors, and w weighs them in varying degrees. Note
that we assume that ϕ is a sufficiently rich feature extractor that can capture complex state-action-
reward behavior; for instance, if one is to view rw(s, a) as a neural network, ϕ corresponds to all
but the last layer of the network.

Let µ denote the feature expectation of policy π, that is, µ(π) = E[
∑∞

t=0 γ
tϕ(st, at)|π],

where π defines the action at taken from state st, and the expectation is taken over the transition

probabilities T (st, at, st+1). Therefore, since Rw(π) = E

[∑∞
t=0 γ

trw(st, at)

∣∣∣∣π
]

, the cumulative

reward of a policy π under weight w can be rewritten as:

Rw(π) = w⊺ · E

[
∞∑
t=0

γtϕ(st, a)

∣∣∣∣π
]
= w⊺µ(π)

Let Pπ(s, t) denote the probability of getting to state s at time t under policy π. Then, the
cumulative reward Rw is

Rw(π) =
∞∑
t=0

γt
∑
s∈S

Pπ(s, t)r
w(s, π(s)).

10.3 Approximating the Uniform Mixture

We consider an environment with n agents N = {1, . . . , n}. Furthermore, the reward function of
each agent i ∈ N is associated with a weight vector wi, and, therefore, with a reward function rwi .

331

This determines the optimal policy πi executed by agent i, from which we observe the trajectory
τi, which consists of L steps. We observe such a trajectory for each i ∈ N , giving us trajectories
{τ1, ..., τn}.

As we discussed in Section 10.1, we assume that the reward function associated with each
agent is a noisy version of an underlying reward function. Specifically, we assume that there exists
a ground truth weight vector w⋆, and for each agent i ∈ N we let wi = w⋆ + ηi, where ηi is the
corresponding noise vector; we assume throughout that η1, . . . ,ηn are i.i.d. Following Abbeel
and Ng [2], we also assume in some of our results (when stated explicitly) that ∥w⋆∥2 ≤ 1 and
∥ϕ(s, a)∥∞ ≤ 1.

Let us denote by πu the uniform mixture over the policies π1, . . . , πn, that is, the (randomized)
policy that, in each trajectory, selects one of these policies uniformly at random and executes it
throughout the trajectory.

Our goal in this section is to “approximate” the uniform mixture (and we will justify this
choice in subsequent sections). To do so, we focus on IRL algorithms that “match feature
expectations.” Informally, the property of interest is that the feature expectations of the policy
match the (discounted) feature vectors of observed trajectories. This idea is already present in
the IRL literature, but it is helpful to define it formally, as it allows us to identify specific IRL
algorithms that work well in our setting.

Definition 44. Given n trajectories τ1, ..., τn, a (possibly randomized) policy π ϵ-matches their
feature expectations if and only if ∥µ(π)− 1

n

∑n
i=1 ϕ(τi)∥2 ≤ ϵ.

In a nutshell, due to the linearity of the reward function, two policies that have the same
feature expectations have the same reward. Therefore, if the observed trajectories closely mimic
the feature expectations of πu, and a policy π̃ matches the feature expectations of the observed
trajectories, then the reward of π̃ would be almost identical to that of πu. This is formalized in the
following theorem, whose proof is relegated to Appendix 10.8.

Theorem 60. Assume that ∥ϕ(s, a)∥∞ ≤ 1 for all s ∈ S, a ∈ A. Let w⋆ such that ∥w⋆∥2 ≤ 1, fix
any w1, . . . ,wn, and, for all i ∈ N , let τi be a trajectory of length L sampled by executing πi. Let
π̃ be a policy that ϵ/3−matches the feature expectation of these trajectories. If

n ≥
72 ln

(
2
δ

)
d

ϵ2(1− γ)2
and L ≥ log1/γ

3
√
d

(1− γ)ϵ

then, with probability at least 1− δ, it holds that
∣∣Rw⋆

(π̃)−Rw⋆
(πu)

∣∣ ≤ ϵ.

Note that the required number of agents n may be significant; fortunately, we can expect
access to data from many agents in applications of interest. For example, Noothigattu et al. [215]
built a system that decides ethical dilemmas based on data collected from 1.3 million people.

To apply Theorem 60, we need to use IRL algorithms that match feature expectations. We
have identified two algorithms that satisfy this property: the Apprenticeship Learning algorithm of
Abbeel and Ng [2], and the Max Entropy algorithm of Ziebart et al. [329]. For completeness we
present these algorithms, and formally state their feature-matching guarantees, in Appendix 10.7.

332

10.4 How Good is the Uniform Mixture?

In Section 10.3 we showed that it is possible to (essentially) match the performance of the uniform
mixture with respect to the ground truth reward function. In this section we justify the idea
of competing with the uniform mixture in two ways: first, we show that the uniform mixture
approximates the optimal policy under certain assumptions on the noise, and, second, we prove
that in the worst case it is actually impossible to outperform the uniform mixture.

10.4.1 The Uniform Mixture Approximates the Optimal Policy
Recall that for all i ∈ N , wi = w⋆ + ηi. It is clear that without imposing some structure on the
noise vectors ηi, no algorithm would be able to recover a policy that does well with respect to w⋆.
Assumptions. Let us assume, then, that the noise vectors ηi are such that the ηik are independent
and each η2ik is sub-exponential. Formally, a random variable X is sub-exponential if there are non-
negative parameters (ν, b) such that E

[
exp (λ(X − E[X]))

]
≤ exp (ν2λ2/2) for all |λ| < 1/b.

This flexible definition simply means that the moment generating function of the random variable
X is bounded by that of a Gaussian in a neighborhood of 0. Note that if a random variable is
sub-Gaussian, then its square is sub-exponential. Hence, our assumption is strictly weaker than
assuming that each ηik is sub-Gaussian.

Despite our assumption about the noise, it is a priori unclear that the uniform mixture would
do well. The challenge is that the noise operates on the coordinates of the individual weight
vectors, which in turn determine individual rewards, but, at first glance, it seems plausible that
relatively small perturbations of rewards would lead to severely suboptimal policies. Our result
shows that this is not the case: πu is approximately optimal with respect to Rw⋆ , in expectation.
Theorem 61. Assume that ∥ϕ(s, a)∥∞ ≤ 1 for all s ∈ S, a ∈ A. Let w⋆ such that ∥w⋆∥2 ≤ 1,
and suppose that w1, ...,wn are drawn from i.i.d. noise around w⋆, i.e., wi = w⋆ + ηi, where
each of its coordinates is such that η2ik is an independent sub-exponential random variable with
parameters (ν, b). Then

E[Rw⋆

(πu)] ≥ Rw⋆

(π⋆)−O

(
d
√
u+ ν

√
d

u
+

b√
u

)
,

where u = 1
d

∑d
k=1 E

[
η2ik
]
, and the expectation is taken over the noise.

The exact expression defining the gap between E[Rw⋆
(πu)] and Rw⋆

(π⋆) can be found in the
proof of Theorem 61, which appears in Appendix 10.9; we give the asymptotic expression in the
theorem’s statement because it is easier to interpret. As one might expect, this gap increases as ν
or b is increased (and, in a linear fashion). This is intuitive because a smaller ν or b imposes a
strictly stronger assumption on the sub-exponential random variable (and its tails).

Theorem 61 shows that the gap depends linearly on the number of features d. An example
given in Appendix 10.10 shows that this upper bound is tight. Nevertheless, the tightness holds
in the worst case, and one would expect the practical performance of the uniform mixture to
be very good. To corroborate this intuition, we provide (unsurprising) experimental results in
Appendix 10.11.

333

10.4.2 It is Impossible to Outperform the Uniform Mixture in the Worst
Case

An ostensible weakness of Theorem 61 is that even as the number of agents n goes to infinity,
the reward of the uniform mixture may not approach that of the optimal policy, that is, there is a
persistent gap. The example given in Section 10.4.1 shows the gap is not just an artifact of our
analysis. This is expected, because the data contains some agents with suboptimal policies πi, and
a uniform mixture over these suboptimal policies must itself be suboptimal.

It is natural to ask, therefore, whether it is generally possible to achieve performance arbitrarily
close to π⋆ (at least in the limit that n goes to infinity). The answer is negative. In fact, we show
that — in the spirit of minimax optimality [139, 228] — one cannot hope to perform better than πu

itself in the worst case. Intuitively, there exist scenarios where it is impossible to tell good and
bad policies apart by looking at the data, which means that the algorithm’s performance depends
on what can be gleaned from the “average data”.

This follows from a surprising1 result that we think of as “non-identifiability” of the optimal
policy. To describe this property, we introduce some more notation. The distribution over the
weight vector of each agent i, wi = w⋆+ηi, in turn induces a distribution over the optimal policy
πi executed by each agent. Denote this distribution by P(w⋆).2 Hence, each agent’s optimal
policy πi is just a sample from this distribution P(w⋆). In particular, as the number of agents goes
to infinity, the empirical distribution of their optimal policies would exactly converge to P(w⋆).
Assumptions. For the rest of this section, we make minimal assumptions on the noise vector
ηi. In particular, we merely assume that ηi follows a continuous distribution and that each of its
coordinates is i.i.d. We are now ready to state our non-identifiability lemma.
Lemma 77 (non-identifiability). For every continuous distribution D over R, if ηik is indepen-
dently sampled from D for all i ∈ N and k ∈ [d], then there exists an MDP and weight vectors
w⋆
a, w

⋆
b with optimal policies π⋆a, π⋆b , respectively, such that π⋆a ̸= π⋆b but P(w⋆

a) = P(w⋆
b).

Even if we had an infinite number of trajectories in our data, and even if we knew the exact
optimal policy played by each player i, this information would amount to knowing P(w⋆). Hence,
if there exist two weight vectors w⋆

a, w
⋆
b with optimal policies π⋆a, π

⋆
b such that π⋆a ̸= π⋆b and

P(w⋆
a) = P(w⋆

b), then we would not be able to identify whether the optimal policy is π⋆a or π⋆b
regardless of how much data we had.

The proof of Lemma 77 is relegated to Appendix 10.12. Here we provide a proof sketch.

Proof sketch of Lemma 77. The intuition for the lemma comes from the construction of an MDP
with three possible policies, all of which have probability 1/3 under P(w⋆), even though one
is better than the others. This MDP has a single state s, and three actions {a, b, c} that lead
back to s. Denote the corresponding policies by πa, πb, πc. Let the feature vector be ϕ(s, a) =
[0.5, 0.5], ϕ(s, b) = [1,−δ/2], ϕ(s, c) = [−δ/2, 1], where δ > 0 is a parameter. Let the ground
truth weight vector be w⋆ = (vo, vo), where vo is such that the noised weight vector w = w⋆ + η
has probability strictly more than 1/3 of lying in the first quadrant; an appropriate value of δ
always exists for any noise distribution that is continuous and i.i.d. across coordinates s.t the
above holds.

1At least it was surprising for us — we spent significant effort trying to prove the opposite result!
2Note that this distribution does not depend on i itself since the noise ηi is i.i.d. across the different agents.

334

δ = 1 δ = 0.25 δ = 10

Figure 10.1: Regions of each optimal policy for different values of δ. Blue depicts the region
where πa is optimal, orange is where πb is optimal, and green is where πc is optimal.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are optimal.
πa is the optimal policy when w⊺µa > w⊺µb and w⊺µa > w⊺µc, which is the intersection of
the half-spaces w⊺(−1, 1 + δ) > 0 and w⊺(1 + δ,−1) > 0. Similarly, we can reason about the
regions where πb and πc are optimal. These regions are illustrated in Figure 10.1 for different
values of δ. Informally, as δ is decreased, the lines separating (πa, πc) and (πa, πb) move closer
to each other (as shown for δ = 0.25), while as δ is increased, these lines move away from each
other (as shown for δ = 10). By continuity and symmetry, there exists δ such that the probability
of each of the regions (with respect to the random noise) is exactly 1/3, showing that the MDP
has the desired property.

To complete the proof of the lemma, we extend the MDP by adding two more features to
the existing two. By setting these new features appropriately (in particular, by cycling the two
original features across the arms), we can show that the two weight vectors w⋆

a = (vo, vo, 0, 0) and
w⋆
b = (0, 0, vo, vo) lead to P(w⋆

a) = (1
3
, 1
3
, 1
3
) = P(w⋆

b), even though their corresponding optimal
policies are πa and πb, respectively.

For the next theorem, therefore, we can afford to be “generous:” we will give the algorithm
(which is trying to compete with πu) access to P(w⋆), instead of restricting it to sampled
trajectories. Formally, the theorem holds for any algorithm that takes a distribution over policies
as input, and returns a randomized policy.
Theorem 62. For every continuous distribution D over R, if ηik is independently sampled from
D for all i ∈ N and k ∈ [d], then there exists an MDP such that for any algorithm A from
distributions over policies to randomized policies, there exists a ground truth weight vector w⋆

such that Rw⋆
(A(P(w⋆)) ≤ Rw⋆

(πu) < Rw⋆
(π⋆).

In words, the constructed instance is such that, even given infinite data, no algorithm can
outperform the uniform mixture, and, moreover, the reward of the uniform mixture is bounded
away from the optimum. The theorem’s proof is given in Appendix 10.13.

10.5 The Inverse Multi-Armed Bandit Problem

In Section 10.4, we have seen that it is impossible to outperform the uniform mixture in the worst
case, as the optimal policy is not identifiable. However, it is natural to ask when the optimal policy
is identifiable and how it may be practically recovered. In this section we give an encouraging
answer, albeit in a restricted setting.

335

Specifically, we focus on the multi-armed bandit problem, which is an MDP with a single
state. Note that the non-identifiability result of Lemma 77 still holds in this setting, as the example
used in its proof is an MDP with a single state. Hence, even in this setting of bandits, it is
impossible to outperform the uniform mixture in the worst case. However, we design an algorithm
that can guarantee optimal performance when the problem is identifiable, under some additional
conditions.

Like the general setting considered earlier, there exists a ground truth weight vector w⋆, and
for each agent i ∈ N , wi = w⋆ + ηi. For this section, we assume the noise vector ηi to be
Gaussian and i.i.d. across agents and coordinates. In particular, ηi ∼ N (0, σ2Id), and independent
across i.

The bandit setting is equivalent to a single-state MDP, and hence the components S, T , γ
and D are moot. Instead, there are m arms to pull, denoted by A = {1, 2, . . . ,m}. Similar
to our original feature function ϕ, we now have features xj ∈ Rd associated with arm j, for
each j ∈ A. Although in standard stochastic bandit problems we have a reward sampled from a
distribution when we pull an arm, we care only about its mean reward in this section. For weight
vector w, the (mean) reward of pulling arm j is given by rw(j) = w⊺xj . For each agent i (with
weight vector wi), we assume that we observe the optimal arm being played by this agent, i.e.,
ãi = argmaxj∈Aw

⊺
i xj.

We observe the dataset D = {ã1, ã2, . . . , ãn} which is the set of optimal arms played by
the agents. Define Q(w⋆) to be the distribution over optimal arms induced when the ground
truth weight vector is w⋆. In particular, ground truth weight vector w⋆ induces a distribution
over the noised weight vector of each agent (via w = w⋆ + η), which in turn induces a discrete
distribution over the optimal arm that would be played, which we call Q(w⋆)— analogously to
the P(w⋆) of Section 10.4. Observe that the dataset D could be rewritten as a distribution over
arms, Q̃ = (Q̃1, Q̃2, . . . , Q̃m), which is the observed distribution of optimal arms. Moreover, as
each agent’s optimal arm played is an i.i.d. sample from Q(w⋆), the empirical distribution Q̃ is
an unbiased estimate of Q(w⋆).

The inverse multi-armed bandit problem is to recover w⋆ given the distribution Q̃, which
allows us to identify the optimal arm. In order to achieve this, we aim to find w such that
Q(w) = Q̃, or matches it as closely as possible. Ideally, we would want to find w such that
Q(w) = Q(w⋆),3 but since we do not have access to Q(w⋆), we use the unbiased estimate Q̃
in its place.4 Below, we produce conditions under which the optimal policy is recoverable, and
provide a practical algorithm that achieves this for all settings that meet the criteria.

10.5.1 Identifying the Optimal Arm

Since the constraint Q(w) = Q̃ is “far” from being convex in w, we reformulate the problem
such that the new problem is convex, and all its optimal solutions satisfy the required constraint

3Note that there might be multiple w such that Q(w) = Q(w⋆). However, since we care only about the
corresponding optimal arm, and identifiability tells us that all weight vectors with the same Q value have the same
optimal arm, we just need to find one such weight vector.

4In most cases we will have collected sufficient data such that the optimal arm corresponding to Q̃ coincides with
the optimal arm corresponding toQ(w⋆). Although they may not coincide, this probability goes to zero as the size of
the dataset D increases.

336

(and vice versa). The new objective we use is the cross entropy loss between Q̃ and Q(w). That
is, the optimization problem to solve is

min
w
−
∑
k∈A

Q̃k logQ(w)k. (10.1)

It is obvious that this objective is optimized at points with Q(w) = Q̃, if the original problem
was feasible. Otherwise, it finds w whose Q is as close to Q̃ as possible in terms of cross-entropy.
Furthermore, this optimization problem is convex under a simple condition, which requires the
definition of Xk as an (m− 1)× d matrix with rows of the form (xk−xj)

⊺, for each j ∈ A \ {k}.
Theorem 63. Optimization problem (10.1) is convex if XkX

⊺
k is invertible for each k ∈ A.

The proof of the theorem appears in Appendix 10.14. An exact characterization of when
XkX

⊺
k is full rank is rank(XkX

⊺
k) = rank(Xk) = m − 1, i.e. when Xk is full row rank. For

this to be true, a necessary condition is that d ≥ m − 1 as rank(Xk) ≤ min(d,m − 1). And
under this condition, the requirement for Xk to to be full row rank is that the rows (xk − xj)

⊺ are
linearly independent, which is very likely to be the case, unless the feature vectors were set up
adversarially. One potential scenario where the condition d ≥ m− 1 would arise is when there
are many features but feature vectors xj are sparse.

As the optimization problem (10.1) is convex, we can use gradient descent to find a minimizer.
And for this, we need to be able to compute the gradient accurately, which we show is possible;
the calculation is given in Appendix 10.15.

Importantly, we can also use our procedure to determine whether the optimal arm is identifiable.
Given Q̃, we solve the optimization problem (10.1) to first find a wo such that Q(wo) = Q̃. Let
wo have the optimal arm ao ∈ A. Now, our goal is to check if there exists any other weight w that
has Q(w) = Q̃ but whose corresponding optimal arm is not ao. To do this, we can build a set of
convex programs, each with the exact same criterion (taking care of the Q(w) = Q̃ requirement),
but with the constraint that arm ai ̸= ao is the optimal arm (or at least beats ao) with respect to
w. In particular, the constraint for program i could be w⊺xi > w⊺xao .5 As this is a simple affine
constraint, solving the convex program is very similar to running gradient descent as before. If any
of these convex programs outputs an optimal solution that satisfies Q(w) = Q̃, then the problem
is not identifiable, as it implies that there exist weight vectors with different optimal arms leading
to the same Q̃. On the other hand, if none of them satisfies Q(w) = Q̃, we can conclude that ao
is the desired unique optimal arm.

10.5.2 Experiments
We next study the empirical performance of our algorithm for the inverse multi-armed bandit
problem. We focus on instances inspired by the counter-example from Lemma 77. The reason for
this is that in randomly generated bandit problems, the optimal arm a⋆ is very likely to be the mode
of Q(w⋆), making the mode of Q̃ a very good estimator of a⋆.6 By contrast, the counterexample
allows us to generate “hard” instances.

5The strong inequality can be implemented in the standard way via w⊺xi ≥ w⊺xao
+ ϵ for a sufficiently small

ϵ > 0 that depends on the program’s bit precision.
6This is because, for each arm a, the regionRa = {w : w⊺xa ≥ w⊺xj for each j}, corresponding to where arm

a is optimal, forms a polytope, and the optimal arm’s regionRa⋆ contains w⋆. Hence, as long asRa⋆ has enough

337

Figure 10.2: Performance as δ is varied. Figure 10.3: Performance as σ is varied.

Specifically, the bandit instances we consider have two features (d = 2) and three arms
A = {1, 2, 3}, and their features are defined as x1 = [1, 1], x2 = [2,−δ] and x3 = [−δ, 2], where
δ > 0 is a positive constant. The ground truth weight vector is given as w⋆ = [1, 1]. Hence, for
any δ > 0, the optimal arm is arm 1. The noise is η ∼ N (0, σ2). Such an instance is very similar
to the one of Lemma 77, except that the features are not replicated to extend from two to four
features, and hence the problem remains identifiable.

Observe that when the value of δ is small enough, the blue region of Figure 10.1 becomes a
sliver, capturing a very small density of the noise η, and causing arm 1 to not be the mode of
Q(w⋆). Alternatively, for a given value of δ, if σ is large enough, most of the noise’s density
escapes the blue region, again causing arm 1 to not be the mode of Q(w⋆). In the following
experiments, we vary both δ and σ, and show that even when the optimal arm almost never appears
in Q(w⋆), our algorithm is able to recover it.

Varying parameter δ. In the first set of experiments, we fix the noise standard deviation σ to 1,
generate n = 500 agents according to the noise η ∼ N (0, σ2), and vary parameter δ from 0.01 to
3. Figure 10.2 shows the percentage of times our algorithm and the mode recover the optimal arm
1. This graph is averaged over 1000 runs, and error bars depict 95% confidence intervals.

When δ is extremely close to 0, the optimal arm’s region almost vanishes. Hence, small
differences between Q̃ and Q(w⋆) could have a substantial effect, and unless w⋆ is numerically
recovered within this sliver, the optimal arm would not be recovered. As we move to even slightly
larger values of δ, however, the performance of the algorithm improves substantially and it ends
up recovering the optimal arm 100% of the time.

By contrast, as δ is varied from 0 to∞, the density of the noise η captured by the blue region
increases continuously from 0 to that of the first quadrant. In particular, there is a point where
Q(w⋆) has probability tied across the three arms, after which arm 1 is always the mode (i.e. mode
has 100% performance), and before which arms 2 and 3 are the modes (i.e the mode has 0%
performance). This tipping point is evident from the graph and occurs around δ = 1.7 Observe

volume around w⋆, it would capture a majority of the density of the noise η, and a⋆ would be the mode of the
distribution Q(w⋆).

7The transition in this graph is smoother than a step function because we use the empirical mode from Q̃ whose

338

that the performance of the algorithm rises to 100% much before this tipping point, serving as
evidence that it can perform well even if the optimal arm barely appears in the dataset. Similar
results on when the parameters are set to σ ∈ {0.5, 2.0} or n ∈ {250, 1000} may be found in
Appendix 10.16.1.

Varying noise parameter σ. Next, we fix the parameter δ to 1 and generate n = 500 agents
according to noise η ∼ N (0, σ2), while varying the noise parameter σ from 0.01 to 5. Figure 10.3
shows the percentage of times our algorithm and the mode recover the optimal arm 1. This graph
is also averaged over 1000 runs, and error bars depict 95% confidence intervals.

The results are similar in spirit to Figure 10.2. When σ is extremely large (relative to the
ground truth vector w⋆ = [1, 1]), the weight space becomes less and less distinguishable with
respect to the corresponding Q values. In particular, small differences between Q̃ and Q(w⋆)
again have a substantial effect on the corresponding optimal arms, causing a suboptimal arm to be
recovered. At more reasonable levels of noise, however, we can see that the algorithm recovers
the optimal arm 100% of the time.

The mode’s performance also has a similar flavor to Figure 10.2. For a given value of δ,
the regions of Figure 10.1 are completely decided. When σ is close to zero, the noise is almost
negligible, and hence the blue region captures most of the density of the noise η, and the optimal
arm is the mode. But as σ is varied from 0 to∞, the density captured by this region decreases
continuously from 1 to a ratio of the volumes of the regions. In particular, we again come across
a point where Q(w⋆) has probability tied across the three arms, before which arm 1 is always
the mode (i.e. mode has 100% performance), and after which arms 2 and 3 are the modes (i.e.
the mode has 0% performance). Note that, for σ = 1, this point is achieved around δ = 1
(Figure 10.2). Hence, when we vary σ while fixing δ = 1, the tipping point is expected to be
achieved around σ = 1, which is indeed the case, as evident from Figure 10.3. Again, observe
that the performance of the algorithm is still around 100% significantly after this tipping point.
Similar results on when the parameters are set to δ ∈ {0.5, 2.0} or n ∈ {250, 1000} may be found
in Appendix 10.16.2.

10.6 Discussion

We have shown that it is possible to match the performance of the uniform mixture πu, or that of
the average agent. In Section 10.5 we then established that it is possible to learn policies from
demonstrations with superior performance compared to the teacher, albeit under simplifying
assumptions. An obvious challenge is to relax the assumptions, but this is very difficult, and we
do not know of existing work that can be applied directly to our general setting. Indeed, the most
relevant theoretical work is that of Syed and Schapire [272]. Their approach can only be applied
if the sign of the reward weight is known for every feature. This is problematic in our setting
as some agents may consider a feature to be positive, while others consider it to be negative. A
priori, it is unclear how the sign can be determined, which crucially invalidates the algorithm’s
theoretical guarantees. Moreover, it is unclear under which cases the algorithm would produce a
policy with superior performance, or if such cases exist.

performance varies smoothly as the distance between probabilities of arms 1 and {2, 3} changes.

339

We also remark that, although in the general setting we seek to compete with πu, we are actually
doing something quite different. Indeed, ex post (after the randomness has been instantiated)
the uniform mixture πu simply coincides with one of the individual policies. By contrast, IRL
algorithms pool the feature expectations of the trajectories τ1, . . . , τn together, and try to recover
a policy that approximately matches them. Therefore, we believe that IRL algorithms do a much
better job of aggregating the individual policies than πu does, while giving almost the same
optimality guarantees.

Finally, we wish to highlight potential extensions to our work. One promising extension is to
better understand how notions of social choice could be folded into our framework of aggregation
through IRL; we include a short discussion of this point in Appendix 10.17. Another promising
direction is to understand what can be gained (e.g., in terms of sample complexity) by going
beyond the classical setup of IRL, for instance by allowing for interaction and/or communication
between the agents and teachers.

Appendix

10.7 IRL Algorithms

In this appendix we identify two well-known algorithms that match feature expectations.

10.7.1 Apprenticeship Learning
Under the classic Apprenticeship Learning algorithm, designed by Abbeel and Ng [2], a policy
π(0) is selected to begin with. Its feature expectation µ(π(0)) is computed and added to the bag of
feature expectations. At each step,

t(i) = max
w:∥w∥2≤1

min
j∈{0,..,i−1}

w⊺

 1

n

n∑
i=1

ϕ(τi)− µ
(
π(j)
)

is computed along with the weight w(i) that achieved this. When t(i) ≤ ϵ the algorithm terminates,
otherwise the associated optimal policy π(i) is computed, and its corresponding feature expectation
vector µ(π(i)) is added to the bag of feature expectations. The algorithm provides the following
guarantee.
Theorem 64 (adapted from Abbeel and Ng [2]). For any ϵ > 0, the Apprenticeship Learning
algorithm terminates with t(i) ≤ ϵ after a number of iterations bounded by

T = O

(
d

(1− γ)2ϵ2
ln

d

(1− γ)ϵ

)
,

and outputs a mixture over π(1), ..., π(T) that ϵ-matches the feature expectations of the observed
trajectories.

Note that it is necessary for us to use a randomized policy, in contrast to the case where a
single deterministic policy generated all the trajectory samples, as, in our case, typically there is
no single deterministic policy that matches the feature expectations of the observed trajectories.

340

10.7.2 Max Entropy
We next discuss the Max Entropy algorithm of Ziebart et al. [329], which optimizes the max
entropy of the probability distribution over trajectories subject to the distribution satisfying
approximate feature matching. This is done to resolve the potential ambiguity of there being
multiple stochastic policies that satisfy feature matching. Optimizing entropy is equivalent
to maximizing the regularized likelihood L(w) of the observed trajectories. Specifically, the
objective is

L(w) = max
w

n∑
i=1

log Pr[τi|w, T]−
d∑
i=1

ρi∥wi∥1,

with

Pr[τi|w, T] =
ew

⊺ϕ(τi)

Z(w, T)

∏
st,at,st+1∈τi

T (st, at, st+1).

The regularization term is introduced to allow for approximate feature matching since the observed
empirical feature expectation may differ from the true expectation. Let ρ be an upper bound on
this difference, i.e., for all k = 1, . . . , d,

ρk ≥

∣∣∣∣∣∣ 1n
n∑
i=1

ϕ(τi)k − E

 1
n

n∑
i=1

ϕ(τi)k

∣∣∣∣∣∣ .
One may then derive that the gradient of L(w) is the difference between the feature expectation
induced w and the observed feature expectation.
Theorem 65 (adapted from Ziebart et al. [329]). Let ϵ > 0, and assume that the Max Entropy
algorithm finds w such that |∇L(w)| < ϵ, then this w corresponds to a randomized policy that
(ϵ+ ∥ρ∥1)-matches the feature expectations of the observed trajectories.

The assumption on the gradient is needed because the above optimization objective is derived
only with the approximate feature matching constraint. MDP dynamics is not explicitly encoded
into the optimization. Instead, heuristically, the likelihood of each trajectory Pr[τi|w, T] is
weighted by the product of the transition probabilities of its steps. The follow-up work of
Ziebart [328] addresses this by explicitly introducing MDP constraints into the optimization, and
optimizing for the causal entropy, thereby achieving unconditional feature matching.

10.8 Proof of Theorem 60

We need to bound the difference between Rw⋆
(π̃) and Rw⋆

(πu). First, recall that π̃ ϵ/3−matches
the feature expectations of τ1, . . . , τn. It holds that∣∣∣∣∣∣Rw⋆

(π̃)− (w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣(w⋆)⊺

µ(π̃)− 1

n

n∑
i=1

ϕ(τi)

∣∣∣∣∣∣
≤ ∥w⋆∥2

∥∥∥∥∥∥µ(π̃)− 1

n

n∑
i=1

ϕ(τi)

∥∥∥∥∥∥
2

≤ ϵ

3
,

(10.2)

341

where the second transition follows from the Cauchy-Schwarz inequality, and the last from the
assumption that ∥w⋆∥2 ≤ 1. Hence, it is sufficient to demonstrate that, with probability at least
1− δ, ∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

−Rw⋆

(πu)

∣∣∣∣∣∣ ≤ 2ϵ

3
, (10.3)

as the theorem would then follow from Equations (10.2), and (10.3) by the triangle inequality.
We note that the difference on the left hand side of Equation (10.3) is due to two sources of

noise.
1. The finite number of samples of trajectories which, in our setting, originates from multiple

policies.

2. The truncated trajectories τi which are limited to L steps.
Formally, let τ ′i denote the infinite trajectory for each i, then the difference can be written as∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

−Rw⋆

(πu)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

− (w⋆)⊺

 1

n

n∑
i=1

ϕ(τ ′i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τ ′i)

−Rw⋆

(πu)

∣∣∣∣∣∣
Bounding finite sample noise. We wish to bound:∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τ ′i)

−Rw⋆

(πu)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1n
 n∑

i=1

(w⋆)⊺(ϕ(τ ′i)− µ(πi))

∣∣∣∣∣∣ . (10.4)

Define random variable Zi = (w⋆)⊺(ϕ(τ ′i) − µ(πi)). Then the right-hand side of Equa-
tion (10.4) may be expressed as | 1

n

∑n
i=1 Zi|. Furthermore, Zi is such that E[ϕ(τ ′i)k] = µ(πi)k for

all k = 1, . . . , d. This is because a policy πi defines a distribution over trajectories, and τ ′i is a
draw from this distribution. Using the linearity of expectation, it follows that

E[Zi] = (w⋆)⊺E[ϕ(τ ′i)− µ(πi)] = 0.

Moreover,

|Zi| ≤ ∥w⋆∥2∥ϕ(τ ′i)∥2 + ∥w⋆∥2∥µ(πi)∥2 ≤
2
√
d

1− γ
,

since ∥ϕ(s, ·)∥∞ = 1. Thus, using Hoeffding’s inequality, we conclude that

Pr


∣∣∣∣∣∣ 1n

n∑
i=1

Zi

∣∣∣∣∣∣ > ϵ

3

 ≤ 2exp

−2n
(
ϵ
3

)2
(4
√
d

1−γ)
2

 ≤ δ,

where the last transition holds by our choice of n.

342

Bounding bias due to truncated trajectories. We wish to bound:∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

− (w⋆)⊺

 1

n

n∑
i=1

ϕ(τ ′i)

∣∣∣∣∣∣ .
For each trajectory τi, truncating after L steps incurs a reward difference of:

∣∣(w⋆)⊺ϕ(τ ′i)− (w⋆)⊺ϕ(τi)
∣∣ =

∣∣∣∣∣∣(w⋆)⊺
∞∑
t=L

γtϕ(τ ′i(st), τ
′
i(at))

∣∣∣∣∣∣
≤

∞∑
t=L

γt∥w⋆∥2∥ϕ(τ ′i(st), τ ′i(at))∥2 ≤ γL
√
d

1− γ
≤ ϵ

3
,

where the third transition holds because ∥ϕ(τi(st), τi(at))∥2 ≤
√
d, and the last transition follows

from our choice of L. Hence, we obtain∣∣∣∣∣∣(w⋆)⊺

 1

n

n∑
i=1

ϕ(τi)

− (w⋆)⊺

 1

n

n∑
i=1

ϕ(τ ′i)

∣∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣(w⋆)⊺ϕ(τi)− (w⋆)⊺ϕ(τ ′i)
∣∣ ≤ ϵ

3
.

10.9 Proof of Theorem 61

We require a key property of sub-exponential random variables, which is captured by the following
well known tail inequality; its proof can be found, for example, in Chapter 2 of Wainwright [288].
Lemma 78. Let X1, . . . , Xm be independent sub-exponential random variables with parameters
(ν, b). Then

Pr

 1

m

m∑
j=1

(Xj − uj) ≥ t

 ≤
exp

(
−mt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
−mt

2b

)
for t > ν2

b

,

where uj = E[Xj].
Turning to the theorem’s proof, as πu is a uniform distribution over the policies π1, . . . , πn, its

expected reward is given by

Rw⋆

(πu) =
1

n

n∑
i=1

Rw⋆

(πi). (10.5)

Observe that Rw⋆
(πi) is a random variable which is i.i.d. across i, as the corresponding noise ηi

is i.i.d. as well. We analyze the expectation of the difference with respect to Rw⋆
(π⋆).

343

First, note that for a weight vector w and policy π,

Rw(π) =
∞∑
t=0

γt
∑
s∈S

Pπ(s, t)w
⊺ϕ(s, π(s)),

where Pπ(s, t) denotes the probability of being in state s on executing policy π from the start.
Hence, for each i ∈ N , we have

Rw⋆

(π⋆)−Rw⋆

(πi)

=
∞∑
t=0

γt
∑
s∈S

[
Pπ⋆(s, t)(w

⋆)⊺ϕ(s, π⋆(s))− Pπi(s, t)(w⋆)⊺ϕ(s, πi(s))
]

=
∞∑
t=0

γt
∑
s∈S

[
Pπ⋆(s, t)(wi − ηi)

⊺ϕ(s, π⋆(s))− Pπi(s, t)(wi − ηi)
⊺ϕ(s, πi(s))

]
= Rwi(π⋆)−Rwi(πi) +

∞∑
t=0

γt
∑
s∈S

[
− Pπ⋆(s, t)η⊺

i ϕ(s, π
⋆(s)) + Pπi(s, t)η

⊺
i ϕ(s, πi(s))

]
≤

∞∑
t=0

γt
∑
s∈S

[
− Pπ⋆(s, t)η⊺

i ϕ(s, π
⋆(s)) + Pπi(s, t)η

⊺
i ϕ(s, πi(s))

]
=

d∑
k=1

ηik

[
∞∑
t=0

γt
∑
s∈S

[
− Pπ⋆(s, t)ϕ(s, π⋆(s))k + Pπi(s, t)ϕ(s, πi(s))k

]]

:=
d∑

k=1

ηikαik,

where the inequality holds since Rwi(πi) ≥ Rwi(π⋆), which, in turn, holds because πi is optimal
under wi.

Using the assumption that ∥ϕ(s, a)∥∞ ≤ 1, it holds that
∣∣∑

s∈S Pπ(s, t)ϕ(s, a)k
∣∣ ≤ 1 for any

policy π. We can therefore bound |αik| as follows.

|αik| =
∞∑
t=0

γt

∣∣∣∣∣∣
∑
s∈S

[
−Pπ⋆(s, t)ϕ(s, π⋆(s))k + Pπi(s, t)ϕ(s, πi(s))k

]∣∣∣∣∣∣
≤

∞∑
t=0

γt


∣∣∣∣∣∣
∑
s∈S

Pπ⋆(s, t)ϕ(s, π
⋆(s))k

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
s∈S

Pπi(s, t)ϕ(s, πi(s))k

∣∣∣∣∣∣


≤ 2

1− γ
.

Therefore, it holds that

∥αi∥2 =

√√√√ d∑
k=1

α2
ik ≤

√√√√ d∑
k=1

(
2

1− γ

)2

=
2
√
d

(1− γ)
.

344

Using this bound along with Equation (10.9), we obtain

Rw⋆

(π⋆)−Rw⋆

(πi) ≤
d∑

k=1

ηikαik ≤ ∥ηi∥2∥αi∥2 ≤
2
√
d

(1− γ)

√√√√ d∑
k=1

η2ik

=
2d

(1− γ)

√√√√1

d

d∑
k=1

η2ik.

Denote u = E[1
d

∑d
k=1 η

2
ik]. To compute the expected value of the previous expression (with

respect to the randomness of the noise ηi), we analyze

E


√√√√1

d

d∑
k=1

η2ik

 =

∫ ∞

0

Pr


√√√√1

d

d∑
k=1

η2ik ≥ x

 dx =

∫ ∞

0

Pr

1
d

d∑
k=1

η2ik ≥ x2

 dx
=

∫ √
u

0

Pr

1
d

d∑
k=1

η2ik ≥ x2

 dx+
∫ ∞

√
u

Pr

1
d

d∑
k=1

η2ik ≥ x2

 dx
≤
∫ √u
0

1 dx+

∫ ∞

√
u

Pr

1
d

d∑
k=1

η2ik ≥ x2

 dx
=
√
u+

∫ ∞

0

Pr

1
d

d∑
k=1

η2ik ≥ u+ t

 1

2
√
u+ t

dt

≤
√
u+

1

2
√
u

∫ ∞

0

Pr

1
d

d∑
k=1

η2ik ≥ u+ t

 dt,

where the fourth transition is obtained by changing the variable using x =
√
u+ t. But since each

η2ik is sub-exponential with parameters (ν, b), from Lemma 78 we have

Pr

1
d

d∑
k=1

η2ik ≥ u+ t

 ≤
exp

(
− dt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
− dt

2b

)
for t > ν2

b

.

345

Plugging this into the upper bound for the expected value gives us

E


√√√√1

d

d∑
k=1

η2ik

 ≤ √u+ 1

2
√
u

∫ ∞

0

Pr

1
d

d∑
k=1

η2ik ≥ u+ t

 dt
≤
√
u+

1

2
√
u

∫ ν2

b

0

exp

(
− dt

2

2ν2

)
dt+

∫ ∞
ν2

b

exp

(
−dt
2b

)
dt


=
√
u+

1

2
√
u

∫ ν
√
d
b

0

exp

(
−z

2

2

)
ν√
d
dz +

(
−2b

d

)
exp

(
−dt
2b

) ∣∣∣∣∞
ν2

b


=
√
u+

1

2
√
u

√2π

d
ν

∫ ν
√
d
b

0

1√
2π

exp

(
−z

2

2

)
dz +

2b

d
exp

(
−dν

2

2b2

)
=
√
u+

1

2
√
u

√2π

d
ν

Φ

(
ν
√
d

b

)
− 1

2

+
2b

d
exp

(
−dν

2

2b2

)
=
√
u+

√
π

2ud
ν

Φ

(
ν
√
d

b

)
− 1

2

+
b

d
√
u
exp

(
−dν

2

2b2

)
,

where the transition in the third line is obtained by changing the variable using t = v√
d
z, and

Φ denotes the CDF of a standard normal distribution. Hence, taking an expected value for
Equation (10.9) and plugging in Equation (10.9), we obtain

E
[
Rw⋆

(π⋆)−Rw⋆

(πi)
]
≤ 2d

(1− γ)

√u+√ π

2ud
ν

Φ

(
ν
√
d

b

)
− 1

2

+
b

d
√
u
exp

(
−dν

2

2b2

) .
Rearranging this equation, we have

E
[
Rw⋆

(πi)
]
≥ Rw⋆

(π⋆)− 2d

(1− γ)

√u+√ π

2ud
ν

Φ

(
ν
√
d

b

)
− 1

2

+
b

d
√
u
exp

(
−dν

2

2b2

) .
Taking an expectation over Equation (10.5) gives us E

[
Rw⋆

(πu)
]
= E

[
Rw⋆

(πi)
]
, and the

theorem directly follows.
We remark that Theorem 61 can easily be strengthened to obtain a high probability result (at

the cost of complicating its statement). Indeed, the reward of the uniform mixture Rw⋆
(πu) is the

average of the individual policy rewards Rw⋆
(πi), which are i.i.d. Further, each of these rewards

is bounded, because of the constraints on w⋆ and ϕ. Hence, Hoeffding’s inequality would show
that Rw⋆

(πu) strongly concentrates around its mean.

346

10.10 Example for the Tightness of Theorem 61

Assume ηik ∼ N (0, σ2) with σ ≤ 2/d (to avoid violating the constraint ∥ϕ(s, a)∥∞ ≤ 1).
Suppose the MDP has just one state and 2d−1 + 1 actions. One action has feature vector
(dσ/2, 0, . . . , 0), and for each subset S ⊆ {2, . . . , d}, there is an action aS with a binary feature
vector such that it is 1 for coordinates in S and 0 everywhere else. Let w⋆ = (1, 0, ..., 0). The
optimal policy is to pick the first action which has cumulative reward of dσ

2(1−γ) . As ηik ∼ N (0, σ2)

for each k, with constant probability, roughly d/2 of the coordinates of the noised vector reward
wi will deviate by roughly +σ and the first coordinate will not increase too much. In this case,
the action corresponding to the coordinates with positive deviations will have reward on the order
of dσ/2, beating action 1 to become optimal. Hence, this would lead to πi picking this action and
having 0 reward under w⋆. As this occurs with constant probability for a policy in the data, and
πu is simply a mean of their rewards, its expected value would deviate from the optimum by at
least a constant fraction of dσ/2.

10.11 Empirical Results for the MDP setting

As we have seen in Section 10.4.1, the gap between Rw⋆
(π⋆) and Rw⋆

(πu) is upper bounded by
O(d
√
u+ ν

√
d/u+ b/

√
u) when η2ik is sub-exponential, or O(dσ) when ηik is Gaussian. Further,

Section 10.3 shows that a policy π̃ that matches feature expectations of the observed trajectories
is very close to πu in terms of cumulative reward Rw⋆ . In this appendix, we empirically examine
the gaps between π̃ (obtained by a “feature matching” IRL algorithm), πu and π⋆.

10.11.1 Methodology
As our IRL algorithm we use Apprenticeship Learning, which guarantees the feature-matching
property (see Section 10.3 and Appendix 10.7). By Theorem 60 we may safely assume that any
IRL algorithm that matches feature expectations would have essentially identical rewards, and
therefore would show very similar behavior in our experiments.

We perform our experiments in the following two domains.

Grab a Milk. We adapt the “Grab a Milk” MDP, a route planning RL domain [298], to our setting.
The MDP is defined by a 10 by 10 grid room, where the agent starts at (0, 0) and has to reach a
bottle of milk positioned at (9, 9). There are also 16 babies in the room, 5 of which are crying for
attention. When the agent crosses a crying baby, they can help soothe the baby, but on crossing
a non-crying baby, the agent disturbs the baby. Hence, the goal of this task is to minimize the
number of steps to the milk, while at the same time soothing as many crying babies as possible
along the way and avoiding crossing non-crying babies. This MDP is adapted to our setting, by
defining each state (or grid square) to have three features ϕ(s).8 The first feature captures the
reward of taking a step, and is set to −1 if the state is non-terminal, whereas it is set to 5 for the
terminal state (9, 9). The second is a boolean feature depicting whether there is a crying baby

8For these MDPs, the rewards depend only on the states and not state-action pairs, and hence the reward function
can be defined as rw(s, a) = rw(s) = w⊺ϕ(s).

347

in the particular grid square, and similarly the third is a boolean feature depicting whether there
is a non-crying baby in the particular grid square. The rewards in the MDP are then defined
as rw⋆

(s) = (w⋆)⊺ϕ(s) where the ground truth weight vector is given by w⋆ = [1, 0.5,−0.5].
Intuitively, this weight vector w⋆ can be interpreted as the weights for different ethical factors,
and each member of society has a noised version of this weight.

Sailing. The other domain we use is a modified version of the “Sailing” MDP [165]. The Sailing
MDP is also a gridworld domain (we use the same size of 10 by 10), where there is a sailboat
starting at (0, 0) and navigating the grid under fluctuating wind conditions. The goal of the MDP
is to reach a specified grid square as quickly as possible. We adapt this domain to our setting
by removing the terminal state, and instead adding features for each grid square.9 Now, the goal
of the agent is not to reach a certain point as quickly as possible, but to navigate this grid while
maximizing (or minimizing) the weighted sum of these features. We use 10 features for each
grid square, and these are independently sampled from a uniform distribution over (−1, 1). The
ground truth weight vector w⋆, which defines the weights of these features for the net reward, is
also randomly sampled from independent Unif(−1, 1) for each coordinate. As before, this weight
vector w⋆ can be interpreted as the weights for different bounties, and each member has a noised
version of this weight.

Being gridworld domains, in both the MDPs, the agent has four actions to choose from at
each state (one for each direction). The transition dynamics are as follows: On taking a particular
action from a given state, the agent moves in that direction with probability 0.95, but with a
probability of 0.05 it moves in a different direction uniformly at random. We use a discount factor
of 0.95 in both domains.

We generate the trajectories {τ1, . . . , τn} as described in Section 10.3, and use a Gaussian
distribution for the noise. That is, ηi ∼ N (0, σ2Id). We generate a total of n = 50 trajectories,
each of length L = 30. IRL is then performed on this data and we analyze its reward as σ is
varied. A learning rate of 0.001 is used for the Apprenticeship Learning algorithm.

10.11.2 Results
Figures 10.4 and 10.5 show the performance of πu and the IRL algorithm as σ is varied. We also
include the performance of π⋆ and a purely random policy πr (which picks a uniformly random
action at each step), as references. Each point in these graphs is averaged over 50 runs (of data
generation).

For both domains, the first thing to note is that the uniform mixture πu and the IRL algorithm
have nearly identical rewards, which is why the green IRL curve is almost invisible. This confirms
that matching feature expectations leads to performance approximating the uniform mixture.

Next, as expected, one can observe that as σ increases, the gap between R⋆(π⋆) and R⋆(πu)
also increases. Further, for both domains, this gap saturates around σ = 10 and the R⋆(πu) curve
flattens from there (hence, we do not include larger values of σ in either graph). Note that, in
both domains, the ground truth weight vector w⋆ is generated such that ∥w⋆∥∞ ≤ 1. Hence, a
standard deviation of 10 in the noise overshadows the true weight vector w⋆, leading to the large

9Intuitively, these features could represent aspects like “abundance of fish” in that grid square for fishing, “amount
of trash” in that square that could be cleaned up, “possible treasure” for treasure hunting, etc.

348

0 2 4 6 8 10
Sigma

4

6

8

10

12

14

16

18
Cu

m
ul

at
iv

e
Re

wa
rd

IRL
uniform mixture
optimal policy
random policy

Figure 10.4: Performance on the Sailing MDP.
Error bars show 95% confidence intervals.

0 2 4 6 8 10
Sigma

15

10

5

0

5

Cu
m

ul
at

iv
e

Re
wa

rd

IRL
uniform mixture
optimal policy
random policy

Figure 10.5: Performance on the Grab a Milk
MDP. Error bars show 95% confidence inter-
vals.

gap shown in both graphs. Looking at more reasonable levels of noise (with respect to the norm
of the weights), like σ ∈ [0, 1], we can see that R⋆(πu) drops approximately linearly, as suggested
by Theorem 61. In particular, it is 14.27 at σ = 0.5 and 9.84 at σ = 1.0 for Sailing, and it is 3.93
at σ = 0.5 and 0.39 at σ = 1.0 for Grab a Milk.

Finally, we compare the performance of πu with that of the purely random policy πr. As σ
becomes very large, each wi is distributed almost identically across the coordinates. Nevertheless,
because of the structure of the Grab a Milk MDP, R⋆(πu) still does significantly better than
R⋆(πr). By contrast, Sailing has features that are sampled i.i.d. from Unif(−1, 1) for each state,
which leads the two policies, πu and πr, to perform similarly for large values of σ.

10.12 Proof of Lemma 77

Before proving the lemma, we look at a relatively simple example that we will use later to
complete the proof.

10.12.1 Simpler Example

Consider an MDP with a single state s, and three actions {a, b, c}. Since s is the only state,
T (s, a, s) = T (s, b, s) = T (s, c, s) = 1, and D is degenerate at s. This implies that there are only
three possible policies, denoted by πa, πb, πc (which take actions a, b, c respectively from s). Let
the feature expectations be

ϕ(s, a) = [0.5, 0.5],

ϕ(s, b) = [1,−δ/2],
ϕ(s, c) = [−δ/2, 1],

349

where δ > 0 is a parameter. Hence, the feature expectations of the policies {πa, πb, πc} are
respectively

µa =
1

2(1− γ)
[1, 1],

µb =
1

2(1− γ)
[2,−δ],

µc =
1

2(1− γ)
[−δ, 2].

Let the ground truth weight vector be w⋆ = (vo, vo), where vo is a “large enough” positive
constant. In particular, vo is such that the noised weight vector w = w⋆ + η has probability
strictly more than 1/3 of lying in the first quadrant. For concreteness, set vo to be such that
Pr(w > 0) = 1/2. Such a point always exists for any noise distribution (that is continuous and
i.i.d. across coordinates). Specifically, it is attained at vo = −F−1(1 − 1√

2
), where F−1 is the

inverse CDF of each coordinate of the noise distribution. This is because at this value of vo,

Pr(w > 0) = Pr((vo, vo) + (η1, η2) > 0) = Pr(vo + η1 > 0)2

= Pr(η1 > −vo)2 =
(
1− F (−vo)

)2
=

(
1√
2

)2

=
1

2
.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are optimal.
πa is the optimal policy when w⊺µa > w⊺µb and w⊺µa > w⊺µc, which is the intersection of the
half-spaces w⊺(−1, 1 + δ) > 0 and w⊺(1 + δ,−1) > 0. On the other hand, πb is optimal when
w⊺µb > w⊺µa and w⊺µb > w⊺µc, which is the intersection of the half-spaces w⊺(−1, 1 + δ) < 0
and w⊺(1,−1) > 0. Finally, πc is optimal when w⊺µc > w⊺µa and w⊺µc > w⊺µb, which is
the intersection of the half-spaces w⊺(1 + δ,−1) < 0 and w⊺(1,−1) < 0. These regions are
illustrated in Figure 10.1 for different values of δ. Informally, as δ is decreased, the lines separating
(πa, πc) and (πa, πb) move closer to each other (as shown for δ = 0.25), while as δ is increased,
these lines move away from each other (as shown for δ = 10).

Formally, let Rδ denote the region of w for which πa is optimal (i.e. the blue region in the
figures), that is,

Rδ =

{
w :

w1

1 + δ
< w2 < w1(1 + δ)

}
.

This is bounded below by the line w1 = (1 + δ)w2, which makes an angle of θδ = Tan−1(1
1+δ

)
with the x-axis, and bounded above by the line w2 = (1 + δ)w1, which makes an angle of θδ with
the y-axis. We first show that for any value of δ, the regions of πb and πc have the exact same

350

probability. The probability that πb is optimal is the probability of the orange region which is

Pr(πb is optimal) =
∫ 0

−∞

∫ w1

−∞
Pr(w)dw2dw1 +

∫ ∞
0

∫ w1
(1+δ)

−∞
Pr(w)dw2dw1

=

∫ 0

−∞

∫ t2

−∞
Pr(t2, t1)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t2, t1)dt1dt2

=

∫ 0

−∞

∫ t2

−∞
Pr(t1, t2)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t1, t2)dt1dt2

= Pr(πc is optimal),

where the second equality holds by changing the variables as t1 = w2 and t2 = w1, and the third
one holds because the noise distribution is i.i.d. across the coordinates. Hence, we have

Pr(πb is optimal) = Pr(πc is optimal) =
1− Pr(Rδ)

2
,

as Rδ denotes the region where πa is optimal.
Finally, we show that there exists a value of δ such that Pr(Rδ) = 1/3. Observe that as δ → 0,

the lines bounding the region Rδ make angles that approach Tan−1(1) = π/4 and the two lines
touch, causing the region to have zero probability. On the other hand, as δ → ∞, the angles
these lines make approach Tan−1(0) = 0, so the region coincides with the first quadrant in the
limit. Based on our selection of vo, the probability of this region is exactly 1/2. Hence, as δ
varies from 0 to∞, the probability of the region Rδ changes from 0 to 1/2. Next, note that as
θδ = Tan−1(1

1+δ
), this angle changes continuously as δ changes, and hence does the region Rδ.

Finally, as the noise distribution is continuous, the probability of this region Rδ also changes
continuously as δ is varied. That is, limϵ→0 Pr(Rδ+ϵ) = Pr(Rδ). Coupling this with the fact that
Pr(Rδ) changes from 0 to 1/2 as δ changes from 0 to∞, it follows that there exists a value of δ
in between such that Pr(Rδ) is exactly 1/3. Denote this value of δ by δo.

We conclude that for w⋆ = (vo, vo) and our MDP construction with δ = δo, P(w⋆) = (1
3
, 1
3
, 1
3
).

10.12.2 Completing the Proof

Consider the same MDP as in Section 10.12.1. However, for this example, let the feature
expectations be

ϕ(s, a) = [0.5, 0.5 , −δo/2, 1],
ϕ(s, b) = [1,−δo/2, 0.5, 0.5],

ϕ(s, c) = [−δo/2, 1, 1,−δo/2],

351

where δo is as defined in Section 10.12.1. Hence, the feature expectations of the policies
{πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2],

µb =
1

2(1− γ)
[2,−δo, 1, 1],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo].

Consider two weight vectors w⋆
a = (vo, vo, 0, 0) and w⋆

b = (0, 0, vo, vo), where vo is as defined
in Section 10.12.1. Since w⋆

a completely discards the last two coordinates, it immediately follows
from the example of Section 10.12.1 that P(w⋆

a) = (1
3
, 1
3
, 1
3
). Similarly, the same analysis on the

last two coordinates shows that P(w⋆
b) = (1

3
, 1
3
, 1
3
) as well. On the other hand, the optimal policy

according to w⋆
a is πa while the optimal policy according to w⋆

b is πb. Hence, π⋆a ̸= π⋆b , but we
still have P(w⋆

a) = P(w⋆
b), leading to non-identifiability.

10.13 Proof of Theorem 62

The proof of this theorem strongly relies on Lemma 77 and the example used to prove it. Consider
the MDP as in Section 10.12.2, but now with 6 features instead of just 4. In particular, let the
feature expectations of the three policies be

ϕ(s, a) = [0.5, 0.5 , −δo/2, 1, 1,−δo/2],
ϕ(s, b) = [1,−δo/2, 0.5, 0.5 , −δo/2, 1],
ϕ(s, c) = [−δo/2, 1, 1,−δo/2, 0.5, 0.5].

Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2, 2,−δo],

µb =
1

2(1− γ)
[2,−δo, 1, 1 ,−δo, 2],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo, 1, 1].

Consider three weight vectors

w⋆
a = (vo, vo, 0, 0, 0, 0),

w⋆
b = (0, 0, vo, vo, 0, 0),

w⋆
c = (0, 0, 0, 0, vo, vo).

Since w⋆
a completely discards the last four coordinates, the example of Section 10.12.1 shows

that P(w⋆
a) = (1

3
, 1
3
, 1
3
). Similarly, the same analysis on the middle two and last two coordinates

352

shows that P(w⋆
b) = (1

3
, 1
3
, 1
3
) and P(w⋆

c) = (1
3
, 1
3
, 1
3
), respectively. However, the optimal policy

according to w⋆
a is πa, according to w⋆

b it is πb, and according to w⋆
c it is πc.

Now, consider an arbitrary algorithm A, which takes as input a distribution over policies and
outputs a (possibly randomized) policy. Look at the randomized policy A(1

3
, 1
3
, 1
3
) returned by A

when the input is (1
3
, 1
3
, 1
3
), and let pa, pb, pc be the probabilities it assigns to playing πa, πb and πc.

Let pi (where i ∈ {a, b, c}) denote the smallest probability among the three. Then, pi ≤ 1/3. Pick
the ground truth weight vector to be w⋆

i . As P(w⋆
a) = P(w⋆

b) = P(w⋆
c), the data generated by w⋆

i

follows the distribution
(
1
3
, 1
3
, 1
3

)
, and the policy distribution chosen by A is simply (pa, pb, pc).

Now, with probability pi ≤ 1/3, the policy played is πi leading to a reward of w⋆
i
⊺µi =

vo
(1−γ) ,

and with probability (1− pi), the policy played is some πj (where j ̸= i) leading to a reward of
w⋆
i
⊺µj =

(2−δo)
2

vo
(1−γ) (which is independent of the value of j).10 Hence, the expected reward of

algorithm A in this case is

pi ·
vo

(1− γ)
+ (1− pi) ·

(2− δo)
2

vo
(1− γ)

=
(2− δo)

2

vo
(1− γ)

+ pi ·
δo
2

vo
(1− γ)

≤ (2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
.

Observe that the uniform mixture πu in this case is just the input distribution (1
3
, 1
3
, 1
3
). Whatever

be the chosen w⋆
i , the expected reward of this distribution is exactly

1

3
· vo
(1− γ)

+
2

3
· (2− δo)

2

vo
(1− γ)

=
(2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
,

which is nothing but the upper bound on the expected reward of A. Hence, for any algorithm A
there exists a ground truth weight vector w⋆

i such that A has an expected reward at most that of
πu (which in turn is strictly suboptimal).

10.14 Proof of Theorem 63

To see that this problem is convex, let us analyze the distribution Q(w).

Q(w)k = Pr(Arm k is optimal under weight (w + η))

= Pr((w + η)⊺xk ≥ (w + η)⊺xj for all j)
= Pr((w + η)⊺(xk − xj) ≥ 0 for all j)
= Pr(Xk(w + η) ≥ 0)

= Pr(−Xkη ≤ Xkw).

Since η ∼ N (0, σ2Id), we have

−Xkη ∼ N (0, σ2XkX
⊺
k).

10An interesting point to note is that by carefully selecting vo, one could get the corresponding δo to be arbitrarily
large, thereby causing the optimal and suboptimal policies to have a much larger gap (equally affecting the uniform
mixture πu as well).

353

And since XkX
⊺
k is invertible, this distribution is non-degenerate and has a PDF. Let us use Fk to

denote its CDF. Equation (10.14) then reduces to Q(w)k = Fk(Xkw). Plugging this back into
our optimization problem (10.1), we have

min
w
−
∑
k∈A

Q̃k logFk(Xkw). (10.6)

As Fk corresponds to a (multivariate) Gaussian which has a log-concave PDF, this CDF is also
log-concave. Hence, logFk(Xkw) is concave in w for each k, and therefore (10.6) is a convex
optimization problem.

10.15 Gradient Calculation

From Equation (10.6), we know that the objective function of problem (10.1) can be rewritten as
f(w) = −

∑
k∈A Q̃k logFk(Xkw). Taking the gradient with respect to w, we have

∇wf(w) = −
∑
k∈A

Q̃k∇w logFk(Xkw)

= −
∑
k∈A

Q̃k
Fk(Xkw)

∇wFk(Xkw)

= −
∑
k∈A

Q̃k
Fk(Xkw)

m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

· ∇w(Xkw)i


= −

∑
k∈A

Q̃k
Fk(Xkw)

m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

·X(i)
k

 ,

where the third equality holds as Fk(z) has multidimensional input and we’re taking the total
derivative. Hence, we need to compute ∂Fk(z)

∂zi
. Writing CDF Fk in terms of its PDF pk (which

exists as XkX
⊺
k is invertible), we have

Fk(z) =

∫ z1

−∞
· · ·
∫ zm−1

−∞
pk(x1, . . . , xm−1)dx1 . . . dxm−1.

354

We compute partial derivative w.r.t. z1 first, for simplicity, and generalize it after. In particular,

∂Fk(z)

∂z1
=

∫ z2

−∞
· · ·
∫ zm−1

−∞

∂

∂z1

[∫ z1

−∞
pk(x1, . . . , xm−1)dx1

]
dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk(z1, . . . , xm−1)dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)pk,1(z1)dx2 . . . dxm−1

= pk,1(z1)

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)dx2 . . . dxm−1

= pk,1(z1) · Prk(Z2 ≤ z2, . . . , Zm−1 ≤ zm−1|Z1 = z1)

= pk,1(z1) · Fk,Z−1|Z1=z1(z−1),

where Fk,Z−1|Z1=z1 is the conditional CDF of the distribution Fk given the first coordinate is z1,
pk,1 is the marginal distribution PDF of this first coordinate, and pk,−1 is the PDF of the rest. This
derivation holds for the partial derivative w.r.t. any zi, even though it was derived for z1. Plugging
this into Equation (10.15), the gradient therefore becomes

∇wf(w) = −
∑
k∈A

Q̃k
Fk(Xkw)

m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

 .
Note that the conditional distribution Fk,Z−i|Zi=zi is also a Gaussian distribution with known

parameters, and hence it can be estimated efficiently. We conclude that we can use gradient
descent updates defined by

w+ = w + α
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
,

where α is a suitable step size, to find an optimal solution of (10.1).

10.16 Additional Empirical Results for Inverse Bandits

10.16.1 Varying parameter δ
Here, we present the experimental results as δ is varied for additional values of σ and n. All graphs
in this section have also been averaged over 1000 runs, and error bars depict 95% confidence
intervals. Figure 10.6 shows how the performance varies as δ is varied from 0.01 to 3, when σ is
set to 0.5 and 2.0 (while n is still 500). As expected, one can observe that the tipping point (where
the mode switches to the blue region corresponding to arm 1) occurs much earlier when σ = 0.5,
and much later when σ = 2.

Figure 10.7 shows how the performance varies as δ is varied from 0.01 to 3, when the number
of agents n is 250 and 1000 (while σ is still set to 1). First, note that the tipping point (for the

355

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MDP parameter delta

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

σ = 0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MDP parameter delta

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

σ = 2.0.

Figure 10.6: Performance as δ is varied, when σ is fixed to 0.5 and 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MDP parameter delta

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

n = 250

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MDP parameter delta

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

n = 1000

Figure 10.7: Performance as δ is varied, when the number of agents is 250 and 1000.

mode switch) only depends on the value of δ and σ, and indeed, we can see from the graphs that
the tipping point continues to be around δ = 1 irrespective of the number of the agents. But, the
number of agents defines how close Q̃ is to Q(w⋆), and hence determines the sharpness of the
transition. In particular, for a larger number of agents, the empirical mode (obtained from Q̃)
is more likely to match the true mode (of Q(w⋆)). Hence, we can see that when n = 1000, the
transition of the mode’s performance is sharper across the tipping point (because of less noise),
while when n = 250, the transition is smoother across this tipping point (because of more noise).

10.16.2 Varying noise parameter σ
Next, we present the experimental results as σ is varied, for additional values of δ and n. All graphs
in this section have also been averaged over 1000 runs, and error bars depict 95% confidence
intervals. Figure 10.8 shows how the performance varies as σ is varied from 0.01 to 5, when δ is
set to 0.5 and 2.0 (while n is still 500). As expected, we can see that the tipping point (where the

356

0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

δ = 0.5

0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

δ = 2.0.

Figure 10.8: Performance as σ is varied, when δ is fixed to 0.5 and 2.

0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

n = 250

0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0

Op
t.

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

n = 1000

Figure 10.9: Performance as σ is varied, when the number of agents is 250 and 1000.

mode switches out of the blue region corresponding to arm 1) occurs earlier when δ = 0.5, and
much later when δ = 2. Further, at high values of σ, the algorithm’s performance is more robust
when δ = 2, as the blue region is larger.

Finally, Figure 10.9 shows how the performance varies as σ is varied from 0.01 to 5, when
number of agents n is 250 and 1000 (while δ is still set to 1). Again, note that the tipping point of
the mode switch occurs at the same point (around σ = 1) irrespective of the number of agents.
And, as Section 10.16.1, when n = 1000, the transition of the mode’s performance is sharper
across the tipping point, while when n = 250, the transition is smoother across it. Further, at high
values of σ, n = 1000 has a much better algorithm performance compared to n = 500 (which in
turn outperforms that at n = 250), showing that even at such high levels of noise, if Q̃ coincides
with Q(w⋆), the algorithm is still able to recover the optimal arm 1.

357

10.17 Relationship to Social Choice/Welfare

The framework we introduce is also closely related to varying notions of social choice or welfare.
One may wonder how one could work varying notions of social choice into this framework.
Specifically, suppose that we have learned (via IRL) a reward function and an optimal policy
for each agent. Note that this would require a significant amount of data for each agent. Still,
how should these policies be aggregated into a single policy? One may cast this as a problem of
allocating public goods. A naïve approach would compute each agent’s reward for each possible
policy, and choose the policy that, say, maximizes social welfare notions such as the Nash social
welfare [104]; but this is a pipe dream, due to seemingly insurmountable computational barriers.
We believe the discovery of computationally tractable methods for this policy aggregation problem
may provide attractive alternatives to the approach presented in this paper.

358

Chapter 11

Learning Multi-agent Hierarchical Systems

11.1 Introduction

Next-generation AI models are poised to produce sophisticated outputs such as long-form texts
and videos, and execute complex tasks as agents. To build these AIs responsibly, we need to better
our understanding of scalable oversight: the ability to provide scalable human feedback to these
complex models [11, 50, 71, 180]. An immediate, key challenge to overcome is the size of model
outputs, making it time-consuming for humans to parse and provide reliable feedback on, even
with AI-assistance [247, 267, 296]. To this end, in this work, we consider human labelers with
bounded processing ability such that accurate feedback can only be provided for outputs below
some threshold size. We are interested in answering the question:

How can we scale this limited feedback to supervise a model with outputs larger than
this limit?

Verily, this task is difficult without further assumptions. If the model output can only be
assessed in its entirety, it is impossible for humans to provide reliable feedback. Thus, we
investigate a natural architecture that gives us hope to overcome the limitation in feedback:
hierarchical systems.

Indeed, hierarchical structure exists in many high-dimensional outputs of interest, including
long-form texts (books made up of chapters), videos (movies made up of scenes) and code (main
functions made up of helper functions). It reflects the way we humans produce many of our most
complex creations.

Thus, in this chapter, we study hierarchical learning, wherein we replace a monolithic big
model with many small models in a hierarchical multi-agent system. This is so that bounded
human supervision can nevertheless be used to supervise the model. Specifically, we will consider
learning in the goal-conditioned hierarchical reinforcement learning (HRL) setup and analyze
how this can enable scalable oversight.

Goal-oriented RL is a popular approach that has seen sizable success in leveraging state space
structure to overcome sparse rewards over long horizons [130, 185, 210]. Our aim in this work
differs in using this as an entry-point into understanding how to scale up bounded human feedback
to train hierarchical systems. We explore both the challenges of training a multi-model system
(in place of one) and the numerous benefits of hierarchical systems, which include more efficient

359

exploration, more efficient credit assignment and the nice property of enabled scalable oversight.

11.1.1 Preliminaries

We consider a finite-horizon, Markov Decision Process (MDP)M = ⟨S,A, P, r, s1, H⟩, with
finite state space S, finite action space A, transition probability P : S × A → ∆(S), reward
r(s, a) : S × A → [0, 1] and finite horizon H . The learner interacts withM starting at state s1
and the episode ends after H = HhHl time-steps. In this work, policies are trained using human
feedback. And so, we assume that a human supervisor is needed to evaluate and provide reward r
for trajectories τ ∼ π, P generated by policy π : S → A.

Accompanying Example: Consider the task of learning to generate a long-form, argumenta-
tion essay. Providing feedback to an end-to-end policy is difficult as labelers would have to read
through entire essays to rate the outputs, after which it may be difficult still to assign a single rating
to the entire essay. A tractable alternative is to learn a hierarchical model, with a higher-level
policy that generates the essay arguments (goals), and lower-level policies that flesh out these
points (realize these goals). It would then be easier for the labeler to rate the shorter-length essay
content, and also individual fleshed out arguments, in order to generate a rating on the whole.
This approach also mirrors existing rubrics for scoring essays [1].

Bounded Feedback: To formalize the difficulty of human supervisors assessing long-form
outputs, we assume that reliable feedback can only be provided for trajectories of length at most
max(Hh, Hl). In particular, this means that for the global policy π : S → A, it is infeasible
to obtain reliable feedback for its trajectory τ ∼ π, P , as |τ | = HhHl. This thus motivates
hierarchical learning, which makes possible the acquisition of reliable feedback in spite of
bounded human supervision.

11.1.1.1 Goal-conditioned HRL

Since we are unable to learn a single, monolithic policy, our goal instead will be to learn a set
of smaller policies that make up a hierarchical policy. This set consists of a high-level policy
πh : S → ∆(Ah) (outputs a high-level action ah at state s ∈ S), and a set of low-/sub-policies
πl
s,ah

: Sl
s,ah
→ ∆(A), where Sl

s,ah
⊆ S is the set of all states reachable from s after Hl steps.

In a nutshell, the high-level policy designates goals by choosing high level actions. The
low-level policies then aim to realize these goals, while also trying to achieve a high intermediate
return. Importantly, both such policies act over a shorter horizon of at most max(Hh, Hl), making
it amenable for human supervisors to evaluate.

Goal Function: in the goal-conditioned HRL setting, we assume access to a function g
mapping high-level action ah at state s to a goal-state g(s, ah) ∈ Sl

s,ah
. For example, s is the

current content of the essay, ah is the action (in natural language) “add an argument using X” and
g(s, ah) is the content of the essay with the “argument using X” included.

Goal-conditioned sub-MDP: Given a high level action ah at state s, this defines the sub-MDP
M(s, ah), which has state space Sl

s,ah
⊆ S, action space A (action space of the original M),

transition probabilities P restricted to Sl
s,ah

, starting state s and finite horizon H l. The sub-MDP
reward rl will be defined later and as we will see, an apt choice is important for achieving sublinear

360

regret.
High-level MDP: Given a set of low-level policies, πh may be thought of as operating over a

high-level MDP with state space S, action spaceAh, starting state s1 and finite horizonHh. Impor-
tantly, the high-level transition P ′ of this MDP is a function of the current set of low-level policies
Pr′(s′|s, ah) = Pr(s

π
s,ah

Hl
= s′), which denotes the distribution over the (final) Hlth state that πl

s,ah

reaches. Furthermore, the high-level reward rh(s, ah) = Esj ,aj∼πs,ah ,P [
∑Hl

j=1 r(sj, aj)|s1 = s]

corresponds to the intermediate return of sub-policy πs,ah in M(s, ah). Altogether, this gives rise
to a key complication in hierarchical learning. This is that both the transitions and rewards in the
high-level MDP are non-stationary, as sub-policies πs,ah are updated over time.

Interaction Protocol: At each time-step t, the high level policy chooses a high level action at
based on current state st. This defines the sub-goal state g(st, at), along with the corresponding
sub-MDP M(st, at) with finite-horizon Hl, in which sub-policy πlst,at is used to try to achieve the

goal. The overall return of the high level policy πh and low-level policies
{
πls,a

}
s,a∈S×Ah

is the

sum of intermediate returns r(πlst,at) incurred:

V πh,πl(s1) = E
at∼πh(st),st+1∼Pr(s

πlst,at
Hl

)
[

Hh∑
t=1

r(πlst,at)|st=1 = s1].

Instantiation in the example: returning to our example, for a cogent essay, the arguments
need to be logically related and built on top of each other. This results in a sequential decision
making problem corresponding to the one solved by the high level policy πh. Given an argument
g(s, ah) to flesh out, the low level policy πl

s,ah
generates up to Hl words, whose content aims to

realize this argument. Additionally, low-level policies can incur intermediate rewards (return)
for eloquent diction and clear structure when fleshing out the argument, all of which add to the
essay’s persuasiveness.

11.1.1.2 Learning Task

Our aim is to learn a hierarchical policy, whose return is close to that of the optimal, goal-reaching
hierarchical policy, which we define as follows. For brevity, from this point on, we will use ah

and a interchangeably to denote high level action.
Assumption 1 (Goal-Reachability). In every sub-MDPM(s, a), there exists a policy that achieves
the goal g(s, a) almost surely. That is,there exists at least one policy π ∈ Πs,a in the policy class
Πs,a such that Pr(sπHl = g(s, a)) = 1.

In other words, we assume that the goal function g is well-defined in that it designates goals
that are feasible to reach from the starting state s (e.g. the argument can be successfully fleshed
out in Hl words or less given the essay content thus far). To motivate this assumption, we note
there that there are already many settings of interest, where we have prior knowledge of a good
goal function. This is because we humans have often (and successfully) taken the hierarchical
approach to build up to and produce these long-form creations. So we know what are good
goals to set e.g. we write essays by first writing an outline of arguments, then expanding out
each point in the outline. Indeed, this approach of explicitly encoding prior knowledge in the
hierarchical learning algorithm has been done in both HRL literature (e.g. we know apriori mazes

361

has hierarchical structure in that it consists of rooms [241]) and scalable oversight literature (e.g.
we know that books consists of chapters [296]).

With this assumption, there exists constantC large enough such that if π ∈ argmaxπ∈Πs,a r(π)+
C · Pr(sπHl = g(s, a)), then π is goal-reaching and Pr(sπHl = g(s, a)) = 1.
Definition 45. Define optimal low-level policies as π∗s,a ∈ argmaxπ∈Πs,a r(π) + C · Pr(sπHl =
g(s, a)). Define optimal high-level policy as π∗ = argmaxπ∈Πh V

π,π∗
s,a(s1).

In words, π∗s,a has the highest intermediate return of all goal-reaching policies. Now let π∗ be
the optimal high-level policy fixing each sub-MDP policy to be π∗s,a.

Learning Goal: We wish to learn a set of near-optimal high- and low-level polices (π,
{
πs,a
}
)

such that: V π∗,π∗
s,a(s1)− V π,πs,a ≤ ϵ.

11.1.2 Takeaways

The broad takeaway from this chapter is that hierarchical structure, if it exists, can be provably
used to scale up limited human supervision. That is:

Hierarchical multi-agent systems can enable scalable oversight.

On a more technical level, this chapter studies the challenge of training a set of policies (agents)
that work together to form the hierarchical policy (meta-agent). This is the more complicated
problem we turn to solve when it is not feasible to train a monolithic policy, due to bounded
human supervision. We thus consider learning in the goal-conditioned HRL setup, under both
cardinal and ordinal feedback. A key insight that applies in both settings is that an apt sub-MDP
reward design (a suitable penalty for non-goal reachability) is needed for bounding regret and
controlling the exit state of learned low-level policies. This is so that learned sub-policies do not
land at bad states with sizable probability. Doing so would then allow one to compose low-level
policies together, and stabilize high-level policy learning in the high-level MDP. More specific
takeaways for both types of feedback are as follows:

• Under cardinal feedback, we develop a novel no-regret learning, Algorithm 26, that jointly
learns a high-level and a set of low-level policies. Notably, Algorithm 26 only requires
low-level feedback. Our main structural result in this setting is that hierarhical RL reduces to
multi-task, sub-MDP regret minimization. Thus, the regret from the low-level accumulates
additively (instead of say multiplicatively) as speculated upon in [180].

• Under ordinal feedback, we develop a novel hierarchical experiment-design Algorithm 27,
building off of existing work on experiment design in preferenced-based RL [317]. A
key observation is that in the ordinal case, low-level feedback may not be sufficient and
high-level feedback may be needed. This introduces complications in human supervision, as
the high-level feedback would need to account for the current performance of sub-policies.
To this end, we study two natural forms of feedback, requiring differing cognitive loads
on the human supervisor. Through the experiment design algorithm we develop, we then
analyze the differing sample complexity under the two types of feedback. Finally, we show
that high-level feedback should not be used if low-level feedback is sufficient and one form
of feedback, with higher cognitive load, leads to better sample complexity.

362

11.2 Related Works

HRL under cardinal rewards: There has been sizable interest in understanding of the sample
complexity of HRL algorithms, which to our knowledge has thus focused on learning from
cardinal rewards. On this subject, the two closest papers to that of ours are [241] and [291].
[241] studies goal-conditioned HRL with the key result being a sample complexity lower bound
associated with a given hierarchical decomposition. On the upper-bound side, an algorithm
(SHQL) is presented, albeit without theoretical guarantees. By contrast, our work presents a
learning algorithm with provable guarantees, and further shows that learning in goal-conditioned
HRL reduces to multi-task, sub-MDP regret minimization.

[291] studies HRL under the options framework, providing a model-based, Bayesian algorithm
with access to a prior distribution over MDPs that is updated over time. It does not adaptively
learn sub-policies based on observed returns, computing instead an option for every exit-profile
and equivalence class at each time during model-based planning. By contrast, our work does
not assume knowledge of the prior nor ability to update posteriors, and does adaptively explore
sub-MDPs via the UCB principle. Additionally, [291] demonstrate that when the size of the set of
exit (“bottleneck”) states is small, learning is efficient. Our work shed further light on this insight
by showing that under a suitable sub-MDP reward, we can induce a small set of exit states with
high probability. Thus, even though the total number of possible exit-states may be high, this
condition is sufficient for learning with sublinear-regret.

RL under ordinal rewards: There has also been considerable interest in bandits/RL from
preferences [179, 217, 295, 299, 317, 325]. Following the demonstrated success of RLHF [27,
72, 220, 330], there has been great interest in studying offline RL from preference feedback, and
particularly experiment design for enhanced sample efficiency [317, 325]. Due to the success of
RLHF in alignment, we also consider studying scalable oversight in this setup. Please see the
Appendix 11.6 for further discussions on scalable oversight and goal-conditioned RL.

11.3 Learning from Cardinal Feedback

We begin by considering the setting when feedback is in the form of cardinal rewards. As
noted before, in HRL, the high-level policy performance is dependent on the low-level policies
performance. Thus, a naive approach is to learn near-optimal sub-policies in every sub-MDP
M(s, a), and then learn a high-level policy on top. However, a more sample efficient approach is
to strategically explore sub-MDPs, and discover sub-policies with high intermediate returns in
tandem with a high level policy that visits these “good” sub-MDPs. Please see the Appendix 11.8
for all the proofs. Note that in what follows, for brevity, theoretical statements will contain the
phrase “with high probability” and the appendix will contain proofs that formalize this guarantee.

11.3.1 Sub-MDP reward design for Hier-UCB-VI
We are interested in adaptively learning the necessary sub-policies (the useful goals to achieve) and
the associated high level policy that invokes these sub-policies. It is natural then to adopt an upper
confidence bound approach and construct an exploration bonus that tracks the best/unexplored

363

sub-MDPs. To this end, we develop an adaptation of the classic UCB-VI algorithm [18]. We
highlight two key ingredients needed to construct the Hier-UCB-VI Algorithm 26.

Tradeoffs in sub-MDP reward design: Learned sub-policies in HRL have to tradeoff between
two objectives. One is high intermediate returns r(πs,a). The other is that exit-state; sub-policies
should not land at “bad” states, as even if the intermediate return is high, V (s

πs,a
Hl

) ≈ 0 means the
return from hereon out (and hence the overall return) will be low. Thus, in sub-policy learning, we
also need to consider the goodness of the exit-state. But how can we incentivize sub-policies to
land at “good” states without being able to calculate V ? Luckily, in the goal-conditioned setting,
there is a natural answer for a “good” exit-state: g(s, a).

To operationalize this, we design a sub-MDP reward that trades-off between intermediate
sub-MDP return and goal-reachability. In sub-MDP M(s, a), at time-step h, sub-MDP reward
rl,h(s

′, a′) = r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)). Crucially, here we set the weighting
κ = max(2HhHl, C), which corresponds to an upper bound on the regret should we not reach the
goal-state.

UCB construction: Next, we wish to obtain an UCB for r(π∗s,a). Our main observation is that
by using a no-regret subroutine for learning in M(s, a), the regret guarantee directly translates
to a UCB. Due to our choice of sub-MDP reward rl, the UCB includes a penalty on non-goal
reachability.
Lemma 79 (UCB implied by sub-MDP regret). Let UB(Rn(s, a)) be an upper bound on sub-
MDP M(s, a)’s cumulative regret after n rounds. Define β = (κ + Hl)2 log(

|C(S,A)|HhK
δ

) and
bonus,

bs,ar (n) =
UB(Rn(s, a)) + β

√
n

n
− κ

n

n∑
i=1

1(s
πis,a
Hl
̸= g(sh, ah)).

Then, the average reward plus bonus r̄n(s, a)+ bs,ar (n) is an UCB for r(π∗s,a) with high probability.

High-level MDP transition stabilization: An additional benefit of incentivizing goal-
reachability is that we know the idealized transition probability in the high-level MDP. As
mentioned before, another key difficulty with HRL is that the empirically estimated transitions in
the high-level MDP drifts over time. In our algorithm, the key stabilization approach is to avoid
estimation and set the transition in the upper bound Qi to be the idealized transition (g(s, a) w.p.
1). This allows us to prove our regret guarantee as described below.

11.3.2 Regret Analysis of Hier-UCB-VI

We start with a definition on clusters of equivalent sub-MDPs. Let there be C(S,Ah) such clusters.
In the most general setting, it is not known apriori if there is any shared structure, in which case
each sub-MDP will simply be its own cluster.
Definition 46 (Equivalent sub-MDPs [291]). Two subMDPs M(s, a) and M(s′, a′) are equivalent
if there is a bijectionF between state space, and throughF , the subMDPs have the same transition
probabilities and rewards.

Our main structural result is that HRL regret decomposes to multi-task, sub-MDP regret in the
cardinal reward setting. This has the implication that only low-level feedback is needed for regret

364

Algorithm 26 Hierarchical-UCB-VI (Hier-UCB-VI)

1: Initialize D = ∅, QHh+1(s, a) = HhHl ∀s, a, VHh+1 = 0, κ = max(C, 2HhHl)
2: for episode k = 1, ..., K do
3: for timestep i = Hh, ..., 1 do
4: for (s, a) ∈ S × Ah do
5: if (s, a) ∈ D then
6: Update UCB: UB(rπ

∗
(s, a)) = r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a))

7: Set:

Qi(s, a) = min(HhHl, UB(rπ
∗
(s, a)) + Vi+1(g(s, a)))

8: for s ∈ S do
9: Vi(s) = maxa∈Ah Qi(s, a)

10: for time step h = 1, ..., Hh do
11: Take greedy high-level action akh = argmaxa∈Ah Qh(s

k
h, a)

12: Traverse sub-MDP M(skh, a
k
h) with current sub-policy πNk,h

skh,a
k
h

and transition to skh+1,

human supervisor provides low-level rewards of the length-Hl roll-out of πNh,k

skh,a
k
h
.

13: Feed low-level rewards into no-regret RL algorithm A for sub-MDP M(skh, a
k
h). Set

the sum of the low-level rewards (the intermediate return of πNh,k

skh,a
k
h

in M(skh, a
k
h)) as the

high-level reward r(skh, a
k
h) = r(πN

h,k

skh,a
k
h
)

14: Add to dataset D = D ∪
{
(h, skh, a

k
h, r(s

k
h, a

k
h)
}

minimization in the cardinal reward case, which as we will see in the ordinal reward case will not
always be true.
Theorem 66 (HRL regret minimization reduces to multi-task, sub-MDP regret minimization). Let
UB(RNK,Hh (s,a)) be an upper bound on sub-MDP M(s, a)’s cumulative regret over NK,Hh(s, a)
visits:

K∑
k=1

V π∗

1 (s1)− V πk

1 (s1) ≤ Õ

 ∑
s,a∈C(S,Ah)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)



Proof Sketch. We describe the key regret decomposition. After some manipulation, the regret may
decompose into the following form,

∑K
k=1 V

k
1 (s1)− V πk

1 (s1) ≤
∑K

k=1

∑Hh
h=1 ρ

k
h + γkh + σkh + ζkh ,

which may be parsed as follows.
ρkh = UB(rπ

∗
(s, a)) − r(πNk,h

skh,a
k
h
) captures the regret due to sub-optimal intermediate return,

the return of π∗S,a versus the return of πskh,akh .
γkh = (Ph − P πk,h)V π∗

h+1(s
k
h, a

k
h), σ

k
h = (Ph − P πk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h) captures the regret

due to sub-optimal policies missing goal-reachability. Here Ph is the idealized transition (goal-
reaching), while P πk,h is the transition induced by the current sub-policy.

365

ζkh = P πk,h(V k
h+1 − V πk

h+1)(s
k
h, a

k
h) − (V k

h+1 − V πk
h+1)(s

k
h+1) is a martingale difference that

concentrates via Azuma Hoeffding, and is dominated by the previous three sums.
Focusing on

∑Hh
h=1 ρ

k
h+γ

k
h+σ

k
h+ζ

k
h , we observe that γkh, σ

k
h ≤ 2HhHlP

πk,h(skh+1 ̸= g(skh, a
k
h)).

The key remaining step is to recognize that ρkh + γkh + σkh resembles the instantaneous regret in
M(skh, a

k
h), and the result follows after some further bounding and rearrangement.

For a concrete bound, we note that if A is set as the classic UCB-VI algorithm, then we attain
the usual Õ(

√
K) regret. Furthermore, we note that our bound is flexible in that one can choose

more specialized learning algorithms A to leverage prior knowledge. For instance, if it is known
that sub-MDPs are linear, one may choose to invoke multi-task RL algorithms that offer more
refined regret bounds for UB(RNK,Hh (s,a)) [144].

Goal Selection: An astute reader will note that the return of the learned hierarchical policy
is close to V ∗1 (s1), the return of the optimal hierarchical policy under goal function g. In other
words, our learned policy is only as good as the goal function g we choose.

One way to relax the assumption that we have a good goal function g is to assume we
have access to multiple goal functions to choose from: g1, .., gn. Then, an useful corollary of
the sublinear Hier-UCB-VI regret bound, 1

K
[
∑K

k=1 V
gi,∗
1 (s1)− V gi,πk

1 (s1)] ≤ Õ(
√
K), is that it

directly implies an UCB on V gi,∗
1 (s1) (optimal return under goal gi). Hence, we may apply any

UCB-based bandit algorithm on top of this to compete with the return of the best goal out of all
the candidates

{
gj
}
j∈[n].

11.4 Learning from Preference Feedback

In the previous section, we develop an algorithm to efficiently learn a hierarchical policy, purely
from low-level, cardinal feedback. Now, we consider learning from ordinal (preferences) feedback.
Our first observation is that the low-level feedback is no longer sufficient for learning a good
policy.
Proposition 55 (Non-identifiability of ranking among sub-MDP returns). For any deterministic
high-level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP
instance that induces regret constant in Nl.

The intuition for this is simply that low-level, ordinal feedback can only identify rankings
of low-level policies specific to a goal (sub-MDP), but not necessarily low level policies across
differing goals. Thus, no matter how large the low-level sample-sizeNl, the regret is non-vanishing
in Nl and hence high-level feedback may be needed to learn. Please see Appendix 11.9 for all
proofs of results in this section.

11.4.1 Labeler Feedback and Consequences for Reward Modeling

The canonical approach to learning from preferences is reward modeling. Following previous
works, we study offline experiment design and assume we have the ability to collect comparison
feedback data, in our hierarchical setting both high and low-level data that are then used to learn

366

the reward model [317]. For tractable analysis, we consider the commonly studied linear reward
setup [221, 223, 317, 325].
Assumption 2 (Linear Reward Parametrization). Suppose we have access to some feature map
ϕ : S×A→ Rd,M has linear reward parametrization w.r.t. ϕ if there exists an unknown, reward
vector θ∗ ∈ Rd such that r(s, a) = ⟨ϕ(s, a), θ∗⟩ for all s, a ∈ S × A.

Given trajectory τ = (s1, a1, ..., sH , aH), we may then define trajectory feature ϕ(τ) =∑
si,ai∈τ ϕ(si, ai), and policy feature expectation under transitions P , ϕP (π) = Eτ∼π,P [ϕ(τ)].
With known feature map ϕ and unknown reward parameter θ∗, the preference feedback ot

follows the Bradley-Terry-Luce (BTL) model [51].
Assumption 3. For trajectories τ1, τ2: Pr(τ1 ≻ τ2) = σ((θ∗)T (ϕ(τ1)− ϕ(τ2))).

With the definitions out of the way, we now describe a conceptual challenge that we encounter
when learning from high-level feedback, which as we have shown before may be necessary for
learning.

What can we assume about the high-level labeler’s knowledge?

Consider a high level trajectory τj =
{
(sji , a

j
i)
}Hh
i=1

. ϕ(τj) =
∑

i∈[Hh] ϕ(s
j
i , a

j
i); the key

difficulty is that sub-MDP feature expectation ϕ(sji , a
j
i) is dependent on the sub-policy deployed

in M(sji , a
j
i). Thus, the high level labeler will have to have in mind some sub-policy πs,a, when

making the comparison. We study two natural types of feedback:
1. Comparisons based on current sub-policy execution: It is natural to first assume that the

labeler envisions ϕ(sji , a
j
i) = ϕ(πt

sji ,a
j
i

) at time t. In words, it is equivalent to asking: “How
well does the high level policy do given current execution of sub-goals?”
Current-feedback of this form has the caveat that the labeler will have know about the
performance of the current set of sub-policies πts,a (potentially through AI-assisted means).
This knowledge would need to be updated over time as low-level policies πts,a improve,
which introduces a sizable cognitive load.

2. Comparisons based on idealized sub-policy execution: To reduce the cognitive load on
the labeler, it is natural to fix the sub-policies used in the comparisons. A natural choice then
is for the labeler to envision ϕ(sji , a

j
i) = ϕ(π∗

sji ,a
j
i

). In words, it is equivalent to asking: “How
well does the high level policy do given perfect execution of the sub-goals?” Instantiated
in some examples, this would be: “how good is the essay if each argument is fleshed out
perfectly” or “how good is the code if each helper function is implemented perfectly”.
Idealized-feedback of this form has the caveat that the high-level feedback will be a mis-
match of how the current sub-policies actually execute. Although it has the advantage that
the labeler is no longer required to (somehow) keep track of low-level sub-policies, thus
reducing the cognitive load.

In what follows, we consider both types of feedback, showing that learning from idealized-
feedback is possible. As we note, a drawback of idealized-feedback is that it is biased with
respect to the realized features (since these are generated under current policies πts,a), while
current-feedback is unbiased. We present an upper bound on the bias below.
Lemma 80 (Bias of idealized-feedback). Suppose there are Nh, Nl high, low-level trajectories,
bias b is such that: ∥b∥2 =

∑Nh
t=1 |⟨θ∗, ϕπ

Nl (πi1) − ϕπ
Nl (πi2),−⟩⟨θ∗, ϕπ

∗
(πi1) − ϕπ

∗
(πi2), |⟩2 =

367

O(Nh/Nl).
Proposition 56 (Reward model learning). Let θMLE = argminθ ℓD(θ) and let Cb denote an upper
bound on bias Cb ≥ ∥b∥, and γ,B constants. We have that with high probability:

∥θ∗ − θMLE∥Σ̂h
Nh

+λI ≤ C

√
Cb
√
Nh

γ2
+
C2
b + d+ log(1/δ)

γ2
+ λB2

11.4.2 Hierarchical Preference Learning
We now construct a hierarchical, preference-learning algorithm that invokes REGIME, a con-
temporary preference-learning algorithm with provable guarantees, as sub-routine for sub-MDP
learning [317].

Sub-MDP reward learning: To start, we again need to incentivize goal-reaching in the sub-
MDP reward. As such, given original feature ϕorig, we introduce an additional feature accounting
for goal-reachability. For trajectory τ , define ϕi(sτi , a

τ
i) = [ϕorig(s

τ
i , a

τ
i),1(i = Hl∧sτi = g(s, a))]

and for policy π, feature expectation ϕi(sπi , a
π
i) = [ϕorig(s

π
i , a

π
i),1(i = Hl) Pr(s

π
Hl

= g(s, a))].
The corresponding reward vector will also change to become θ∗ = [θ∗orig, κ] for unknown

θ∗orig, κ.
Assumption 4. Through instructions to the labeler, κ may be raised beyond a threshold of our
choosing.

That is, we assume we can provide instructions to the labeler, emphasizing goal-reachability
such that κ is higher than some given threshold. As before, we take the threshold to be
max(C, 2HhHl). And so while κ is unknown, we know that κ ≥ max(C, 2HhHl). With this set
up, we can then bound the regret due to sub-optimal sub-policies, and sub-optimal simulator P ϵ′ ,
both of which are needed in the final regret analysis.
Lemma 81 (Regret due to sub-optimal sub-policies). For any high-level policy π, with high
probability:

⟨ϕπ∗,P (π)− ϕπNl ,P (π), θ∗,≤⟩Hh(
C1√
Nl

+ C2ϵ
′)

where this bound makes use of the REGIME guarantee on sub-MDP M(s, a) that
|⟨ϕP (π∗s,a), θ∗,−⟩ϕP

ϵ′
(πNls,a), θ

∗| ≤ C1√
Nl

+ C2ϵ
′ [317].

Lemma 82 (Regret due to sub-optimal simulator P ϵ′). Let ΦπNl ,P ϵ
′
(π) denote the feature expecta-

tion under high level policy π, sub-MDP policies πNl and transitions P ϵ′ . With high probability,
for any high level policy π:

|⟨ϕπNl ,P (π)− ϕπNl ,P ϵ
′

(π), θ∗, |⟩ ≤ O((Hhd
2 +H3

hH
2
l)ϵ
′ +

H2
hHl

κ
)

11.4.3 Hier-REGIME Analysis
Now, we present the Hier-REGIME Algorithm 27. At a high-level description goes as follows.
First, we invoke one copy of REGIME across all sub-MDPs with shared exploration (L1-4) and

368

Algorithm 27 Hierarchical-REGIME (Hier-REGIME)

Require: High-level policy class Πh, low level-policy classes Πl
s,a, simulator P ϵ′ with ϵ′-precision

1: for episode n = 1, ..., Nl do
2: (πn1 , π

n
2)← argmaxπ1,π2∈

⋃
s,a Π

l
s,a
∥ϕP ϵ

′
(π1)− ϕP

ϵ′
(π2)∥(Σ̂ln)−1 ▷ explore using policy

feature expectation across sub-MDPs
3: Σ̂l

n+1 = Σ̂l
n + (ϕP

ϵ′
(πn1)− ϕP

ϵ′
(πn2))(ϕ

P ϵ
′
(πn1)− ϕP

ϵ′
(πn2))

T

4: Generate trajectories τn1 , τ
n
2 and acquire comparison feedback on

5: Compute MLE θ̂l from {τn1 , τn2 }
Nl
n=1 and {on}Nln=1

6: Compute πNls,a = argmaxπ∈Πls,a⟨ϕ
P ϵ

′
(π), θ̂l⟩

7: if
{
ϕP

ϵ′
(π1)− ϕP

ϵ′
(π2) | π1, π2 ∈ Πh, πs,a = πNls,a ∀s, a

}
⊆{

ϕP
ϵ′
(π1)− ϕP

ϵ′
(π2) | π1, π2 ∈

⋃
s,aΠ

l
s,a

}
then ▷ Check if high-level feedback can lead to

better coverage
8: for episode n = 1, ..., Nh do
9: (πn1 , π

n
2)← argmaxπ1,π2∈Πh ∥ϕ

πNl ,P ϵ
′
(π1)− ϕπ

Nl ,P ϵ
′
(π2)∥(Σ̂hn)−1

10: Σ̂h
n+1 = Σ̂h

n + (ϕπ
Nl ,P ϵ

′
(π1)− ϕπ

Nl ,P ϵ
′
(π2))(ϕ

πNl ,P ϵ
′
(π1)− ϕπ

Nl ,P ϵ
′
(π2))

T

11: Generate trajectories τn1 , τ
n
2 and acquire comparison feedback on

12: Compute MLE θ̂h from
{
τ i1, τ

i
2

}Nh
i=1

and {oi}Nhi=1

13: else
14: θ̂h = θ̂l.

return high-level policy π̂ = argmaxπ∈Πh⟨ϕπ
Nl ,P ϵ

′
(π), θ̂h⟩, low-level policies{

πNls,a

}
s,a∈S×Ah

learned reward (L5). Next, we use the learned reward to compute sub-MDP policies πNls,a for each
sub-MDP M(s, a) (L6). Finally, we invoke one copy of REGIME for the high-level MDP, where
the feature function is defined as ϕπ

Nl
s,a,P

ϵ′ (L8). Next, we note two properties about Algorithm 27.
Hierarchical Exploration: A key aspect of experiment design in offline RL is ensuring

sufficient coverage with exploration. The difficulty with coverage in the hierarchical setting is that
at first glance, we may need to search for pairs of trajectories over (π1,

{
π1
s,a

}
), (π1,

{
π2
s,a

}
) ∈

(Πh,×s,a
Πl
s,a), instead of over π1, π2 ∈ Πh. However, we show that in the goal-HRL case, we

can fix the sub-policies to be πNls,a (for Nl large enough), and this is sufficient to compete with the
optimal, hierarchical policy.

Additionally, unlike the tabular setting, sub-MDPs now share a common reward parameter θ∗,
thus allowing us to jointly, instead of separately as in tabular case, explore across sub-MDPs.

Sufficiency of low-level feedback: Through the algorithm, we can observe that low- and high-
level exploration generates feature expectations set:

{
ϕP

ϵ′
(π1)− ϕP

ϵ′
(π2) | π1, π2 ∈

⋃
s,aΠ

l
s,a

}
and

{
ϕP

ϵ′
(π1)− ϕP

ϵ′
(π2) | π1, π2 ∈ Πh, πs,a = πNls,a ∀s, a

}
. Therefore, when coverage of high

level policy is subsumed by low-level features already (the latter is a subset of the former), it

369

suffices to explore only using low-level feedback. As shown before in Proposition 56, it is not
always sufficient. However, as we will see below, when it is sufficient, using low-level feedback
leads to better rates. First, we derive the regret decomposition and then use it evaluate the sample
complexity.
Theorem 67. With high probability, under Nh > 0:

V π∗,π∗ − V π̂,πNl

≤ ⟨ϕπ∗,P (π∗)− ϕπNl ,P (π∗), θ∗,+⟩ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂hNh

+

|⟨ϕπNl ,P (π∗)− ϕπNl ,P ϵ
′

(π∗), θ∗, |⟩+ |⟨ϕπNl ,P ϵ
′

(π̂)− ϕπNl ,P (π̂), θ∗, |⟩

To parse this, the regret decomposes into four terms. The first term is the regret due to sub-
optimality in low-level policies πNl . The remaining three terms are derived from sub-optimality
due to high-level policy π̂, decomposing into the second term on regret due to bias in learned
reward θ̂, the third and fourth term on regret due to sub-optimality of simulator P ϵ′ .

A main benefit of developing a learning Algorithm 27 is that we can then quantitatively assess
the sample complexity associated with the two types of human feedback. As one may expect,
there is a tradeoff between better sample complexity and cognitive load, with current-feedback
attaining better sample efficiency but also requiring higher cognitive load on the human supervisor.
Corollary 10. Using Theorem 67, we obtain the following rates in terms of data tradeoffs:

• Idealized-feedback and required high-/low-level feedback: the overall rate comes out
to O(N−1/4l + N

−1/2
h). While high level trajectories provide additional coverage, it also

incurs bias linear in Nh of the bias of the low-level trajectories, thus slowing down the rate
(Lemma 80).

• Current-feedback and required high-/low-level feedback: the overall rate comes out to
O(N

−1/2
l +N

−1/2
h). The current-feedback is unbiased and results in more efficient reward

learning with ∥θ∗ − θ̂∥Σ̂hNh
= O(1) [317].

• Only low-level feedback is required due to sufficiency in coverage: the overall rate comes
out toO(N−1/2l). In a nutshell, this is because we can explore with justNl low-level samples
which is unbiased, resulting in ∥θ∗ − θ̂∥Σ̂lNl

= O(1). Hence, both exploration and reward
learning is efficient.

11.5 Discussion

Our work considers scalable oversight in the context of goal-conditioned HRL, in which we show
that one can efficiently use hierarchical structure to learn from bounded human feedback.

Limitations & Future Work: In goal-conditioned HRL, our regret guarantees are with respect
to the return of the optimal, hierarchical policy, whose performance is dependent on the usefulness
of goal function g. Further research is needed to understand on how to learn good goal functions,
using limited supervised or unsupervised learning. Additionally, under current-feedback, the

370

labeler providing high-level feedback is somehow made aware of sub-policy performance. An
exciting research direction is how one may provide such knowledge through AI-assistance.

11.6 More Related Works

Scalable Oversight: Scalable oversight is a nascent but important topic in the area of AI
alignment [11, 50, 71, 180], wherein the goal is to boost the labeler’s ability to provide feedback
to complex models. Proposed approaches include (recursive) self-critique, summarization, debate,
plain model Interaction and market-making, all of which aim to have the model (or auxiliary
models) generate interpretable and/or lower-dimensional forms of outputs for the human to
parse [50, 147, 151, 180, 247, 267, 296]. Our work studies how one may leverage hierarchical
structure as one approach to scaling up feedback.

Goal-conditioned RL: Further afield, there has been a lot of work demonstrating the
promise/success of goal-conditioned RL with examples from the likes of [60, 130, 185, 210].
The sub-MDP reward is often set to incentivize only goal state reachability, as oftentimes the
MDP of interest has sparse rewards, making intermediate returns zero. In our setting, rewards
need not be sparse, thus bringing into consideration the tradeoff between intermediate return and
goal-reachability. This work initiates the study of scalable oversight in goal-oriented HRL, and
owing to the success of goal-oriented HRL in practice, it is our hope that it can be stepping stone
towards developing practical scalable oversight techniques.

11.7 Concrete Hierarchical MDP Example

The prototypical example in HRL is the maze, as studied in for instance [210, 241]. A maze
consists of rooms with doors. The goal is to get to the exit in as few steps as possible. The MDP
may be defined as follows:

• For the global MDP, S = Sh × Sl where sh denotes the index of the current room, and sl

denotes the position of the agent in the room. Action set A consists of moving (L, R, U, D,
Stay).

• For the High-level MDP, high-level action Ah consists of moving to the (N, S, E, W) door
of the room. s is the current location of the agent, and g(s, ah) maps the goal (door) to its
location.

• For the Low-level MDP, it has state space Sls,a ⊂ S and the action set A is the same moving
(U, D, L, R, Stay).

As noted in the previous section, HRL algorithms can achieve superior statistical sample
complexity when there is lots of repeated sub-MDP structure (there are many isomoprhic rooms)
and each room has small state-space size [291].

371

Notation
M(s, a) sub-MDP at state s with high level action a
πis,a policy used by sub-MDP M(s, a)’s no-regret algorithm during the i-th visit
π∗s,a optimal policy in sub-MDP M(s, a)
r(πis,a) expected reward of policy πis,a in sub-MDP M(s, a)
rl,h sub-MDP reward definition.
r̂(πis,a) observed reward of policy π in sub-MDP M(s, a)
r̄n(s, a) average observed policy reward r̄n(s, a) = 1

n

∑n
i=1 r̂(π

i
s,a)

Rn(s, a) sub-MDP M(s, a) cumulative regret across n steps,Rn(s, a) =
∑n

i=1 r(π
∗
s,a)− r(πis,a)

Nk,h(s, a) number of times M(s, a) has been visited up until episode k, horizon h
P π(· | s, a) distribution over states of policy π after going through subMDP M(s, a)

ψn a factor such that ψn = Õ(
√
n), where the Õ omits up to log dependence on K

Table 11.1: Table of notation used in this section.

11.8 Proofs for Section 11.3

11.8.1 Sub-MDP Bonus Construction

Sub-MDP Reward Definition: Define the reward in sub-MDP M(s, a) at time step h to be:
rl,h(s

′, a′) = r(s′, a′) + κ1(h = Hl ∧ s′ = g(s, a)).
Firstly, since by definition π∗s,a ∈ argmaxπ∈Πs,a r(π) + C · Pr(sπHl = g(s, a)), we have that

π∗s,a ∈ argmaxπ∈Πs,a r(π) + κ · Pr(sπHl = g(s, a)).
Indeed,

r(π∗s,a) + κPr(s
π∗
s,a

Hl
= g(s, a))

= [r(π∗s,a) + C · Pr(sπ
∗
s,a

Hl
= g(s, a))] + (κ− C) Pr(sπ

∗
s,a

Hl
= g(s, a))

≥ [r(π) + C · Pr(sπHl = g(s, a))] + (κ− C) Pr(sπHl = g(s, a))

(Pr(s
π∗
s,a

Hl
= g(s, a)) = 1 ≥ Pr(sπHl = g(s, a)) ∀π)

Secondly, using the definition of rl, we have that:

rl(π
∗
s,a)− rl(πis,a) = r(π∗s,a) + κP (s

π∗
s,a

Hl
= g(s, a))− r(πis,a)− κP (s

πis,a
Hl

= g(s, a))

By the reachability assumption, P (s
π∗
s,a

Hl
= g(s, a)) = 1, this implies that

rl(π
∗
s,a)− rl(πis,a) = r(π∗s,a)− r(πis,a) + κP (s

πis,a
Hl
̸= g(s, a))

Therefore, summing this across n visits to M(s, a), we have:

372

Rn(s, a)

=
n∑
i=1

rl(π
∗
s,a)− rl(πis,a)

=
n∑
i=1

r(π∗s,a)− r(πis,a) + κ

n∑
i=1

P (s
πis,a
Hl
̸= g(s, a))

This statement is useful because we can compute an UCB on
∑n

i=1 r(π
∗
s,a) and, implicitly, a

LCB on
∑n

i=1 r(π
i
s,a) (provided we do not boundRn(s, a)).

Lemma 83 (Bonus with “penalty” for non-reachability). Let UB(Rn(s, a)) be any upper bound
on the sub-MDP regret, then if we define:

bs,ar (n) =
UB(Rn(s, a)) + (κ+Hl)2 log(

|C(S,Ah)|HhK
δ

)
√
n

n
− κ

n

n∑
i=1

1(s
πis,a
Hl
̸= g(s, a))

Then, r̄n(s, a) + bs,ar (n) is an UCB for r(π∗s,a) with probability ≥ 1− δ
3|C(S,Ah)|HhK

.
Let the event that the above holds be Ens,a.

Proof.

n∑
i=1

r(π∗s,a)

= Rn(s, a)− κ
n∑
i=1

P (s
πis,a
Hl
̸= g(s, a)) +

n∑
i=1

r(πis,a)

≤ Rn(s, a)− κ(
n∑
i=1

1(s
πis,a
Hl
̸= g(s, a))− ψn) +

n∑
i=1

r(πis,a) (⋄)

= Rn(s, a)− κ
n∑
i=1

1(s
πis,a
Hl
̸= g(s, a)) + κψn +

n∑
i=1

r̂(πis,a) + (
n∑
i=1

r(πis,a)−
n∑
i=1

r̂(πis,a))

≤ UB(Rn(s, a)) + (κ+Hl)ψn − κ
n∑
i=1

1(s
πis,a
Hl
̸= g(s, a)) +

n∑
i=1

r̂(πis,a) (κ′ = κ+Hl)

(⋄) : Here we use two applications of Azuma-Hoeffding:

• With probability higher than 1− δ:

|
n∑
i=1

P (s
πis,a
Hl
̸= g(s, a))−

n∑
i=1

1(s
πis,a
Hl
̸= g(s, a))| ≤ ψn = 2

√
n

373

We have that E[P (sπ
i
s,a

Hl
̸= g(s, a))− 1(s

πis,a
Hl
̸= g(s, a))|Fi−1] = 0.

This is true because P (s
πis,a
Hl
̸= g(s, a)) and 1(s

πis,a
Hl
̸= g(s, a) are a function of only the

transition probability of the MDP at the ith step conditioned on Fi−1. Thus, P (s
πis,a
Hl
̸=

g(s, a))− 1(s
πis,a
Hl
̸= g(s, a)) is a martingale difference. And we can use Azuma-Hoeffding.

• With probability higher than 1− δ:

|
n∑
i=1

r(πis,a)−
n∑
i=1

r̂(πis,a)| ≤ Hlψn ≤ Hl2
√
n

This again follows from Azuma-Hoeffding on martingale difference r(πis,a)− r̂(πis,a), as
E[r(πis,a)− r̂(πis,a)|Fi−1] = 0. And |r(πis,a)− r̂(πis,a)| ≤ Hl.

Thus,

r(π∗s,a) ≤
1

n

n∑
i=1

r̂(πis,a) + bs,ar (n)⇒ r(π∗s,a)− r̄n(s, a) ≤ bs,ar (n)

Remark 26. One choice for UB(Rn(s, a)) = H
3/2
l

√
|Sls,a||A|n if we let As,a be the standard

UCB-VI algorithm [18].

11.8.2 Optimism Lemma

Lemma 84 (Optimism). Let V k
h be the V value as in Algorithm 26 at episode k. Let π∗ be the

optimal hierarchical policy. For a fixed k and h, if ∀s, a, n, Ens,a holds, then:

V k
h (s) ≥ V π∗

h (s) ∀s

Proof. Fix some episode k. We will prove this lemma via induction on h = Hh + 1, ..., 1.
Base case: At h = Hh + 1, V k

h (s) ≥ 0 = V π∗

h (s) for all s.
Induction Step: Suppose this is true for up until h = Hh + 1, ..., h′ + 1. Now at time step h′

and any s, a.
Firstly, if Qk

h′(s, a) = HhHl (e.g. if s, a ̸∈ Dk), then Qk
h′(s, a) ≥ Q∗h′(s, a). Otherwise,

Qk
h′(s, a) < HhHl and we have that:

Qk
h′(s, a)−Q∗h′(s, a) = [r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) + V k

h′+1(g(s, a))]− (r(π∗s,a) + Ph′V
π∗

h′+1(s, a))

(Qk
h′ definition as in Equation 7)

≥ V k
h′+1(g(s, a))− Ph′V π∗

h′+1(s, a)
(r̄Nk,h(s,a)(s, a) + bs,ar (Nk,h(s, a)) is an UCB of r(π∗s,a))

= V k
h′+1(g(s, a))− V π∗

h′+1(g(s, a))
(π∗s,a reaches goal state w.p 1, so Ph′(g(s, a)|s, a) = 1)

≥ 0 (induction hypothesis)

374

Thus, V k
h′(s) = maxaQ

k
h′(s, a) ≥ maxaQ

∗
h′(s, a) = V π∗

h′ (s).

Corollary 11.

K∑
k=1

V π∗

1 (s1)− V πk

1 (s1) ≤
K∑
k=1

V k
1 (s1)− V πk

1 (s1)

11.8.3 Supporting results needed for regret analysis

Proposition 57.
K∑
k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑
k=1

Hh∑
h=1

ζkh + γkh + σkh + ρkh

Proof. For any k and h, we consider bounding V k
h (s

k
h)− V

πk
h (skh), which is equal to:

V k
h (s

k
h)− V

πk
h (skh) = (Qk

h −Q
πk
h)(skh, a

k
h)

≤ (r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

+ V k
h+1(g(s

k
h, a

k
h))− P πk,hV πk

h+1(s
k
h, a

k
h) (due to the min)

= ρkh + [V k
h+1(g(s

k
h, a

k
h))− P πk,hV πk

h+1(s
k
h, a

k
h)]

where we set ρkh = r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

).
Continuing with the original proof and focusing on the second term:

V k
h+1(g(s

k
h, a

k
h))− P πk,hV πk

h+1(s
k
h, a

k
h)

= V k
h+1(g(s

k
h, a

k
h))− P πk,hV k

h+1(s
k
h, a

k
h) + P πk,h(V k

h+1 − V
πk
h+1)(s

k
h, a

k
h)

= (Ph − P πk,h)V k
h+1(s

k
h, a

k
h) + P πk,h(V k

h+1 − V
πk
h+1)(s

k
h, a

k
h)

(P h is the transition under optimal sub MDP policy so it takes skh, a
k
h to g(skh, a

k
h) deterministically)

= (Ph − P πk,h)V π∗

h+1(s
k
h, a

k
h) + (Ph − P πk,h)(V k

h+1 − V π∗

h+1)(s
k
h, a

k
h) + P πk,h(V k

h+1 − V
πk
h+1)(s

k
h, a

k
h)

= γkh + σkh + P πk,h(V k
h+1 − V

πk
h+1)(s

k
h, a

k
h)

where

• γkh = (Ph − P πk,h)V π∗

h+1(s
k
h, a

k
h)

• σkh = (Ph − P πk,h)(V k
h+1 − V π∗

h+1)(s
k
h, a

k
h)

In summary,

375

V k
h (s

k
h)− V

πk
h (skh)

≤ ρkh + γkh + σkh + P πk,h(V k
h+1 − V

πk
h+1)(s

k
h, a

k
h)

= (V k
h+1 − V

πk
h+1)(s

k
h+1) + ζkh + γkh + σkh + ρkh,

where we introduce the notation ζkh = P πk,h(V k
h+1 − V

πk
h+1)(s

k
h, a

k
h)− (V k

h+1 − V
πk
h+1)(s

k
h+1).

Unrolling the recursion starting at h = 1:

V k
1 (s

k
h)− V

πk
1 (skh)

≤ 1(ζkh + γkh + σkh + ρkh) + ...+ (1)Hh(ζkHh + γkHh + σkHh + ρkHh)

= 1 · (
Hh∑
h=1

ζkh + γkh + σkh + ρkh)

Summing across k ∈ [K], it suffices to bound:

K∑
k=1

V k
1 (s1)− V πk

1 (s1) ≤
K∑
k=1

Hh∑
h=1

ζkh + γkh + σkh + ρkh

Remark 27. We note that there are two sources of sub-optimality in the bound. One is the
sub-optimality while executing the sub-MDP policies. This is covered by the per-step high level
reward bonus (which is also the UCB on the return of the sub-MDP’s return) in ρkh. The other is the
sub-optimality of not landing on g(skh, a

k
h), there is covered by γkh, σ

k
h, which affects future reward.

The martingale difference ζkh is zero in expectation, so it is not some measure of suboptimality.
We first bound the ζ’s, whose sum is dominated by

∑K
k=1

∑Hh
h=1 ρ

k
h + γkh + σkh.

Lemma 85. With probability ≥ 1− δ/3:

K∑
k=1

Hh∑
h=1

ζkh ≤ Õ(HhH l
√
HhK)

Let the event that the above inequality hold be Eζ .

Proof. The concentration of ζkh follows from Azuma Hoeffding, as the following is a martingale
difference.

ζkh = P πk,h(V k
h+1 − V

πk
h+1)(s

k
h, a

k
h)− (V k

h+1 − V
πk
h+1)(s

k
h+1)

with E[ζkh |Fk,h] = 0, since the expectation is only wrt randomness in skh+1. Moreover, this
martingale difference is bounded by 4HhH l

376

Next, we simplify the sum of remaining terms.
Lemma 86. We have that:

K∑
k=1

Hh∑
h=1

γkh ≤ HhH l

K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))

and

K∑
k=1

Hh∑
h=1

σkh ≤ HhH l

K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))

Proof.

K∑
k=1

Hh∑
h=1

γkh

=
K∑
k=1

Hh∑
h=1

(Ph − P πk,h)V π∗

h+1(s
k
h, a

k
h)

=
K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))(V

π∗

h+1(g(s
k
h, a

k
h))− V π∗

h+1(s
k
h+1))

≤ HhH l

K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))

Similarly,

K∑
k=1

Hh∑
h=1

σkh

=
K∑
k=1

Hh∑
h=1

(Ph − P πk,h)(V k
h+1 − V π∗

h+1)(s
k
h, a

k
h)

=
K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))[(V

k
h+1 − V π∗

h+1)(g(s
k
h, a

k
h))− (V k

h+1 − V π∗

h+1)(s
k
h+1)]

≤ HhH l

K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))

377

Next, we will show the following upper bound and let Eρ be the event that it holds.
Lemma 87. With probability ≥ 1− δ/3:

K∑
k=1

Hh∑
h=1

ρkh ≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗s,a)−r(πis,a)+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi
i

Proof. We first expand the ρkh sum:

K∑
k=1

Hh∑
h=1

ρkh

=
K∑
k=1

Hh∑
h=1

r̄Nk,h(skh,a
k
h)
(skh, a

k
h) + b

skh,a
k
h

r (Nk,h(skh, a
k
h)))− r(π

Nk,h(skh,a
k
h)

skh,a
k
h

)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r̄i(s, a) + bs,ar (i)− r(πis,a)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r̂(πjs,a) +
UB(Ri(s, a)) + κ′ψi − κ

∑i
j=1 1(s

πjs,a
Hl
̸= g(s, a))

i
− r(πis,a)

(using definition of bonus)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i

i∑
j=1

r(πjs,a) +
Hlψi
i

+
UB(Ri(s, a)) + κ′ψi − κ

∑i
j=1 1(s

πjs,a
Hl
̸= g(s, a))

i
− r(πis,a)

(Azume-Hoeffding for concentration of r̂ around r)

Using the two-sided concentration bound we had before (the other way):
∑i

j=1 1(s
πjs,a
Hl
̸=

g(s, a)) + ψi ≥
∑i

j=1 P (s
πjs,a
Hl
̸= g(s, a)) w.h.p:

i∑
j=1

r(π∗s,a)− r(πjs,a) ≥ Ri(s, a)− κ(
i∑

j=1

1(s
πjs,a
Hl
̸= g(s, a)) + ψi)

⇒
i∑

j=1

r(π∗s,a)−Ri(s, a) + κψi ≥
i∑

j=1

r(πjs,a)− κ
i∑

j=1

1(s
πjs,a
Hl
̸= g(s, a))

We continue our derivation:

378

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
(

i∑
j=1

r(πjs,a) + UB(Ri(s, a)) + κ′′ψi − κ
i∑

j=1

1(s
πj
Hl
̸= g(s, a)))− r(πis,a)

(κ′′ = κ′ +Hl)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

1

i
[
i∑

j=1

r(π∗s,a)−Ri(s, a) + κψi]− r(πis,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a)) + κ′′ψi
i

(using the identity above)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗s,a)− r(πis,a) +
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + (κ′′ + κ)ψi
i

11.8.3.1 Overall Regret Bound

Theorem 68. Under events
⋂
s,a,n Ens,a ∩ Eζ ∩ Eρ, we have that:

∑K
k=1

∑Hh
h=1 ρ

k
h + γkh + σkh ≤∑

s,a∈C(S,Ah)(log(N
K,Hh(s, a)) + 1)UB(RNK,Hh (s,a)) +O(HhH l

√
NK,Hh(s, a)).

Proof.

K∑
k=1

Hh∑
h=1

ρkh + γkh + σkh

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗s,a)− r(πis,a)+

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi
i

+ 2HhH l

K∑
k=1

Hh∑
h=1

P πk,h(skh+1 ̸= g(skh, a
k
h))

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi
i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗s,a)− r(πis,a) + 2HhH l
∑

s,a∈C(S,Ah)

[

NK,Hh (s,a)∑
i=1

P (s
πis,a
Hl
̸= g(skh, a

k
h))]

(group third sum by s, a)

379

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi
i

+
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

r(π∗s,a)− r(πis,a) + κ

NK,Hh (s,a)∑
i=1

P (s
πis,a
Hl
̸= g(skh, a

k
h)) (κ ≥ 2HhHl)

=
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))−Ri(s, a) + κψi
i

+
∑

s,a∈C(S,Ah)

RNK,Hh (s,a)

(using the definition for sub-MDP regret)

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+RNK,Hh (s,a) +

∑
s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

κψi
i

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(Ri(s, a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(κ
√
NK,Hh(s, a))

(since Azuma-Hoeffding is s.t ψi = O(
√
i))

≤
∑

s,a∈C(S,Ah)

NK,Hh (s,a)∑
i=1

UB(RNK,Hh (s,a))

i
+ UB(RNK,Hh (s,a)) +

∑
s,a∈C(S,Ah)

O(HhH l
√
NK,Hh(s, a))

(using monotonicity of upper bound UB(Ri(s, a)) in i, assumption that C = O(HhHl))

=
∑

s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)UB(RNK,Hh (s,a)) +O(HhH l
√
NK,Hh(s, a))

Corollary 12 (Regret under |C(S,Ah)| clusters of isomorphic sub-MDPs [291]). Let us set
UCB-VI to be the sub-MDP learning algorithm, then we have the following regret bound:

∑
s,a∈C(S,Ah)

(log(NK,Hh(s, a)) + 1)RNK,Hh (s,a) +O(HhH l
√
NK,Hh(s, a))

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

RNK,Hh (s,a) +O(HhH l
√
|C(S,Ah)| ·HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

≤ (logHhK + 1)
∑

s,a∈C(S,Ah)

H
3/2
l

√
|Sls,a||A|NK,Hh(s, a) +O(HhH l

√
|C(S,Ah)| ·HhK)

(plug in UCB-VI guarantees)

≤ Õ(H
3/2
l

√
max
s,a
|Sls,a||A|

√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

(
∑

s,a∈C(S,Ah)N
K,Hh(s, a) = HhK)

380

where we use UCB-VI’s guarantee that upper boundUB(RNK,Hh (s,a)) = H
3/2
l

√
|Sls,a||A|NK,Hh(s, a).

Remark 28 (High Probability Bound). For completeness, we show that the regret bound holds
with probability greater than 1− δ. The regret bound holds under

⋂
s,a,n Ens,a ∩ Eζ ∩ Eρ, by union

bound:

Pr(
⋂
s,a,n

Ens,a ∩ Eζ ∩ Eρ)

≥ 1−
∑
s,a,n

Pr(¬Ens,a)− Pr(¬Eζ)− Pr(¬Eρ))

≥ 1− (|C(S,Ah)|HhK)
δ

3|C(S,Ah)|HhK
− δ/3− δ/3

= 1− δ

11.9 Proofs for Section 11.4

11.9.1 Low-level Feedback is insufficient for learning

To prove the results below, our approach is to construct two MDP instances with identifical low
level feedback such that any deterministic learning algorithm picks the arbitrarily worse high level
policy.
Proposition 58 (Non-identifiability of ranking among sub-MDP returns). For any deterministic
high-level policy learning algorithm with Nl samples of low-level feedback, there exists a MDP
instance that induces regret constant in Nl.

Proof. Consider two-horizon MDP with starting state s1 with Hh = 1, Hl = 2. There are two
possible high-level actions a1 and a2 at s1.

For any policy π1 in sub-MDPM(s1, a1), let it have feature expectation ϕ(π1) = [ϕ′(π1), 1, 0],
and for any π2 in sub-MDP M(s1, a2), ϕ(π2) = [ϕ′(π2), 0, 1].

Now, we consider two MDP instances with θ∗ = [0, 0, C ′] and θ∗ = [0, C ′, 0] for some positive
constant C ′.

Under both instances, we observe identical low-level feedback for trajectories τ, τ ′ in sub-
MDPs M(s1, aj), j ∈ [2]: the feedback is Bernoulli with parameter σ(⟨ϕ′(τ)− ϕ′(τ), θ′⟩).

Consider any deterministic learning algorithm. WLOG it outputs high level policy πh(s1) = a1
with some set of Nl samples of low-level feedback.

Then, it follows that its regret under θ∗ = [ϵ1, 0, C ′] is C ′, since the reward (and return since
Hh = 1) of π∗s1,a1 is 0, while the reward of the optimal policy which visits M(s1, a2) is C ′.

381

11.9.2 Hierarchical Experiment Design via REGIME [317]

11.9.2.1 MLE Definition:

We first define the MLE expression; note that the MLE is in terms of trajectories only. Define:

f({yi}ni=1 , {xi}
n
i=1) = −

n∑
i=1

log(1 {yi = 1}σ(θTxi) + 1 {yi = 0} (1− σ(θTxi))

ℓD(θ) = f({yi}Nhi=1 , {xi}
n
i=1) +

∑
s,a

f(
{
ys,ai
}Nl
i=1

,
{
xs,ai
}Nl
i=1

)

• High-level trajectories: has realized features,

xi = ϕπ
Nl ,P (τ i1)− ϕπ

Nl ,P (τ i2) =

Hh∑
j=1

ϕP (πNl(s
τ i1
j , a

τ i1
j))−

Hh∑
j=1

ϕP (πNl(s
τ i2
j , a

τ i2
j))

where ϕπ
Nl ,P (τ ij) is the feature of the high-level trajectory under sub-policy πNl and transi-

tion P (since trajectories are collected from roll-outs in the actual MDP as in [317]).
On the other hand, under idealized-feedback, the labeler assumes that each goal-conditioned
sub-MDP has been executed perfectly (i.e. by π∗s,a) and so the features correspond to:

x∗i = ϕπ
∗,P (τ i1)− ϕπ

∗,P (τ i2) =

Hh∑
j=1

ϕP (π∗(s
τ i1
j , a

τ i1
j))−

Hh∑
j=1

ϕP (π∗(s
τ i2
j , a

τ i2
j))

• Comparison y of high level trajectories follows Bernoulli distribution yi = σ(θ∗ · x∗i).
• Low-level trajectories: has realized features,

xs,ai = ϕ(τ i1)− ϕ(τ i2) =
Hh∑
j=1

ϕ(s
τ i1
j , a

τ i1
j)−

Hh∑
j=1

ϕ(s
τ i2
j , a

τ i2
j)

Note that unlike the high level features, low-level features data are always unbiased. Thus,
using high level and low-level comparisons has the same bias from the high level.

• Comparison y of low level trajectories follows Bernoulli distribution yi = σ(θ∗ · xs,ai).

11.9.2.2 Requisite Lemmas

Lemma 88 (Lemma 5 of [317]). Let oracle P ϵ′ be such that with probability 1−δ/5, the following
holds. Let dπh(s, a) and d̂πh(s, a) be the visitation measure of policy π under P and P ϵ′ , we have
for all h ∈ [H] and π ∈ Π:∑

s,a

|dπh(s, a)− d̂πh(s, a)| =
∑
s

|dπh(s)− d̂πh(s)| ≤ hϵ′

382

This applies across all sub-MDPs M(s, a). Let the event that this expression hold be Es,a.
Lemma 89 (Low-level MLE Bound, Lemma 2 of [317]). With probability at least 1− δ/5:

∥θ∗ − θt∥Σ̃ln ≤ Õ(1)

Let the event that this holds for learning from sub-MDP trajectories be E l1.
Lemma 90 (Lemma 3 of [317]). If low-leve trajectories τ 1,2i ∼ πi, P ϵ′ , then with probability at
least 1− δ/5:

∥θ∗ − θt∥Σ̂ln ≤
√
2∥θ∗ − θt∥Σ̃ln +O(B

√
d log 4n/δW)

Let the event that this holds for learning from sub-MDP trajectories be E l2.

11.9.2.3 Bias when using idealized-feedback, high level trajectory data in MLE

Proposition 59 (sub-MDP REGIME guarantee of [317]). For sub-MDP M(s, a), under Es,a ∩
E l1 ∩ E l2:

⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1(δ)√
Nl

+O(ϵ′)

where C1(δ) = O(
√

log(1/δ)).
Note that for estimation and bias, we have to have both an upper bound and a lower bound

(see PbRL example). This requires two-sided bound, where lower bound comes from ϕ∗ having
higher reward than ϕ and upper bound comes from no-regret. Due to optimality of π∗, we have
the lower bound as well:

0 ≤ ⟨ϕP (π∗), θ∗⟩ − ⟨ϕP (πNl), θ∗⟩ ≤ C1√
Nl

+O(ϵ′)

Additionally, we have that:
Lemma 91 (Lemma 6 of [317]). For any sh, ah, ∥vi∥ ≤ 2B, θ ∈ Rd and ∥ϕ∥ ≤ R under
Es,a ∩ E l1 ∩ E l2:

|⟨ϕP ϵ
′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′

With this,

|⟨ϕP (π∗), θ∗⟩ − ϕP ϵ
′

(πNl), θ∗| ≤ (
C1√
Nl

+O(ϵ′)) +BRd2ϵ′ =
C1√
Nl

+ C2ϵ
′

Now, we can analyze the bias of including high level trajectory data in the MLE computation:
Lemma 92. Suppose there are Nh, Nl high, low-level trajectories, bias b is such that, under⋂
s,a Es,a ∩ E l1 ∩ E l2:

∥b∥2 =
T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)

383

Proof.

T∑
t=1

|⟨θ∗, x∗i ⟩ − ⟨θ∗, xi⟩|2

≤ 2
T∑
t=1

|⟨
∑
s,a∈τ t1

ϕP (π∗(s, a))−
∑
s,a∈τ t1

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2 + |⟨
∑
s,a∈τ t2

ϕP (π∗(s, a))−
∑
s,a∈τ t2

ϕP
ϵ′

(πNl(s, a)), θ∗⟩|2

≤ 2Hh

T∑
t=1

∑
s,a∈τ t1

|⟨ϕP (π∗(s, a))− ϕP ϵ
′

(πNl(s, a)), θ∗⟩|2 +
∑
s,a∈τ t2

|⟨ϕP (π∗(s, a))− ϕP ϵ
′

(πNl(s, a)), θ∗⟩|2

≤ 2HhT (2Hh(
C1√
Nl

+ C2ϵ
′)2)

Thus,

∥b∥ =

√√√√ T∑
t=1

|⟨θ∗, xi⟩ − ⟨θ∗, x∗i ⟩|2 ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
T

11.9.2.4 MLE Analysis

Under current-feedback, following Lemma 2 of [317], ∥∆∥Σhn+λI ≤ Õ(1). Now, we consider the
bias in learned reward under idealized-feedback.
Proposition 60. Let θMLE = argminθ ℓD(θ) and let Cb ≥ ∥b∥. Then with probability at least
1− δ/5:

∥∆∥Σn+λI ≤ O

√ Cb
γ2
√
n
+
C2
b + d+ log(1/δ)

γ2n
+ λB2


where Σn = 1

n

∑n
i=1 xix

T
i + λI .

Proof. Define ∆ = θMLE − θ∗. As in [325], we have the same convexity result due to
⟨θ, xi⟩ ∈ [−2LB, 2LB]. Suppose we let maxx ∥x∥ ≤ L and maxθ∈Θ ∥θ∥ ≤ B, then with
γ = 1

2+exp(−2LB)+exp(2LB)
, we have that:

ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≥ γ∥∆∥2Σ
And so,

ℓ(θMLE) ≤ ℓ(θ∗)⇒ ℓ(θ∗ +∆)− ℓ(θ∗)− ⟨∇ℓ(θ∗),∆⟩ ≤ −⟨∇ℓ(θ∗),∆⟩

Thus,

γ∥∆∥2Σ ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI)

384

The key part is bounding ∥∇ℓ(θ∗)∥(Σ+λI)−1 . We have that:

∇ℓ(θ∗) = − 1

n

n∑
i=1

[1 {yi = 1}σ(⟨θ∗, xi⟩)− 1 {yi = 0} (1− σ(⟨θ∗, xi⟩)]xi

= − 1

n
XT (V + b)

where vi = σ(⟨θ∗, x∗i ⟩) w.p 1 − σ(⟨θ∗, x∗i ⟩) and −(1 − σ(⟨θ∗, x∗i ⟩)) w.p σ(⟨θ∗, x∗i ⟩). And
so, entry-wise V is such that E[Vi] = 0 and |Vi| ≤ 1. Note that Vi are independent due to the
independence of the random variables Yi.

Extra term bias is defined as:

bi = 1 {yi = 1} (σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩))− 1 {yi = 0} (1− σ(⟨θ∗, xi⟩ − (1− σ(⟨θ∗, x∗i ⟩))
= σ(⟨θ∗, xi⟩)− σ(⟨θ∗, x∗i ⟩)

By definition, Cb is such that: ∥b∥ ≤ Cb. As before, define M = 1
n2X(Σ+ λI)−1XT . We use

the fact that ∥M∥op ≤ 1/n. Then, we have that:

∥∇ℓ(θ∗)∥2(Σ+λI)−1 = (V + b)TM(V + b)

= V TMV + 2V TMb+ bTMb

≤ C
d+ log(1/δ)

n
+ 2∥V ∥∥Mb∥+ bTMb

(by Matrix Bernstein, V TMV ≤ C d+log(10/δ)
n

w.p. ≥ 1− δ/10)

≤ C
d+ log(1/δ)

n
+ 2∥V ∥ 1

n
∥b∥+ C2

b

n
(using that ∥M∥op ≤ 1/n)

≤ C
d+ log(1/δ)

n
+ 2(C2

√
n
1

n
)Cb +

C2
b

n
(by Hoeffding ∥V ∥ ≤ O(log(10/δ)

√
n) w.p. ≥ 1− δ/10.)

≤ O(
Cb√
n
+
C2
b + d+ log(1/δ)

n
)

γ∥∆∥2Σ+λI ≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + λ(γ∥∆∥2)
≤ ∥∇ℓ(θ∗)∥(Σ+λI)−1∥∆∥(Σ+λI) + 4λγB2

This implies that with probability ≥ 1− δ:

∥∆∥Σ+λI ≤ C

√
Cb

γ2
√
n
+
C2
b + d+ log(1/δ)

γ2n
+ λB2

385

Corollary 13. Let θMLE = argminθ ℓD(θ), then under
⋂
s,a Es,a, with probability ≥ 1− δ/5:

∥θ∗ − θMLE∥Σ̃h
Nh

+λI ≤ C

√
1

γ2
√
Nl

+
1

γ2Nl

+
d+ log(1/δ)

γ2Nh

+ λB2

where ΣNh =
1
Nh

∑Nh
i=1 xix

T
i .

Let the event that this holds for learning from sub-MDP trajectories be Eh1 .

Proof. Firstly,

∥b∥ ≤ 2Hh(
C1√
Nl

+ C2ϵ
′)
√
Nh = O(

√
Nh√
Nl

+
√
Nhϵ

′)

With this, we have that:

∥∆∥Σ̃Nh+λI

= O

√ Cb

γ2
√
Nh

+
C2
b + d+ log(1/δ)

γ2Nh

+ λB2)


= O

√√Nh/Nl +
√
Nhϵ′

γ2
√
Nh

+
Nh/Nl +Nhϵ′2 + d+ log(1/δ)

γ2Nh

+ λB2



Hence by choosing λ = λ/Nh:

∥∆∥Σ̃Nh+λI ≤ O

(
N

1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′

11.9.2.5 Relating ∥θ∗ − θn∥Σ̂n to ∥θ∗ − θn∥Σ̃n
Define:

1. Σn = λI +
∑n

i=1(ϕ
πNl ,P (πi1)− ϕπ

Nl ,P (πi2))(ϕ
πNl ,P (πi1)− ϕπ

Nl ,P (πi2))
T

2. Σ̃n = λI +
∑n

i=1(ϕ(τ
i
1)− ϕ(τ i2))(ϕ(τ i1)− ϕ(τ i2))T , where τ 1,2i ∼ πi1, π

Nl , P .

3. Σ̂n = λI +
∑n

i=1(ϕ
πNl ,P ϵ

′
(πi1)− ϕπ

Nl ,P ϵ
′
(πi2))(ϕ

πNl ,P ϵ
′
(πi1)− ϕπ

Nl ,P ϵ
′
(πi2))

T

We wish to relate ∥θ∗ − θn∥Σ̂n to ∥θ∗ − θn∥Σ̃n .
Lemma 93 (Lemma 3 of [317]). If τ 1,2i ∼ πi1, π

Nl , P ϵ′ , then with probability at least 1− δ/5:

∥θ∗ − θt∥Σ̂hn ≤
√
2∥θ∗ − θt∥Σ̃hn + Õ(B

√
d log 4n/δW)

Let the event that this holds for learning from sub-MDP trajectories be Eh2 .

386

Lemma 94. We have that under
⋂
s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 :

∥θ∗ − θn∥Σ̂n ≤ 2∥θ∗ − θn∥Σ̃n +O(B
√
d log n/δW) +

√
8nC(ϵ′, δ)

Proof. Under event Eh2 , as trajectories are sampled from P , we have that:

∥θ∗ − θn∥Σn ≤
√
2∥θ∗ − θn∥Σ̃n +O(B

√
d log n/δW)

It remains to upper bound ∥θ∗ − θn∥Σ̂n by ∥θ∗ − θn∥Σn
We have that under

⋂
s,a Es,a ∩ E l1 ∩ E l2:

|⟨ϕπNl ,P (π)− ϕπNl ,P ϵ
′

(π), v⟩| ≤ C(ϵ′, δ)

⇒ |⟨ϕπNl ,P ϵ
′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2), v⟩| ≤ |⟨ϕπ
Nl ,P (πi1)− ϕπ

Nl ,P (πi2), v⟩|+ 2C(ϵ′, δ)

⇒ |⟨ϕπNl ,P ϵ
′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2), v⟩|2 ≤ 2|⟨ϕπNl ,P (πi1)− ϕπ
Nl ,P (πi2), v⟩|2 + 2(2C(ϵ′, δ))2

Thus,

∥v∥2
Σ̂n

= vT (λI +
n∑
i=1

(ϕπ
Nl ,P ϵ

′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2))(ϕ
πNl ,P ϵ

′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2))
T)v

= λ∥v∥2 +
n∑
i=1

|⟨ϕπNl ,P ϵ
′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2), v⟩|2

≤ λ∥v∥2 +
n∑
i=1

2|⟨ϕπNl ,P (πi1)− ϕπ
Nl ,P (πi2), v⟩|2 + 8C(ϵ′, δ)2

≤ 2∥v∥2Σn + 8nC(ϵ′, δ)2

Plugging in v = θ∗ − θn, we have that:

∥θ∗ − θn∥Σ̂n
≤
√
2∥θ∗ − θn∥Σn +

√
8nC(ϵ′, δ)

≤ 2∥θ∗ − θn∥Σ̃n +O(B
√
d log n/δW) +

√
8nC(ϵ′, δ)

11.9.2.6 High-level policy regret bound

Lemma 95. For any π, under event
⋂
s,a Es,a ∩ E l1 ∩ E l2:

⟨ϕπ∗,P (π)− ϕπNl ,P (π), θ∗⟩ ≤ Hh(
C1√
Nl

+ C2ϵ
′)

387

Proof.

⟨ϕπ∗,P (π)− ϕπNl ,P (π), θ∗⟩

=

Hh∑
h=1

Esh,ah∼π,πNl ,PEsh+1∼πNl (sh,ah),P [r(π
∗(sh, ah)) + V π,π∗

h+1 (g(sh, ah))− (r(πNl(sh, ah)) + V π,πNl
h+1 (sh+1))]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))(V
π,π∗

h+1 (g(sh, ah))− V π,πNl
h+1 (sh+1))]

≤
Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah))− r(πNl(sh, ah)) + P (sπ

Nl

h+1 ̸= g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [r(π
∗(sh, ah)) + P (sπ

∗

h+1 = g(sh, ah))κHhHl − r(πNl(sh, ah))− P (sπ
Nl

h+1 = g(sh, ah))κHhHl]

=

Hh∑
h=1

Esh,ah∼π,πNl ,P [⟨ϕ(π
∗(sh, ah)), θ

∗⟩ − ⟨ϕ(πNl(sh, ah)), θ∗⟩]

≤ Hh(
C1√
Nl

+ C2ϵ
′)

Because for any sh, ah, ⟨ϕ(π∗(sh, ah)), θ∗⟩ − ⟨ϕ(πNl(sh, ah)), θ∗⟩ ≤ C1√
Nl

+ C2ϵ
′.

Lemma 96 (Lower bound on Reachability Probability). We have that under event
⋂
s,a Es,a ∩

E l1 ∩ E l2:

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh

+
C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

and

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh

+
C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

+Hlϵ
′

Proof. Due to the regret guarantee, we have that:

C1√
Nl

+ C2ϵ
′

≥ ⟨ϕP (π∗)− ϕP (πNl), θ∗⟩
= r(π∗) + κHhHl · 1− r(πNl)− κHhHl · P (sπ

Nl

Hl
= g(s, a))

≥ 0−Hl + κHhHl · P (sπ
Nl

Hl
̸= g(s, a))

Thus, we have that:

388

P (sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh

+
C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

Additionally, we have that from Lemma 5.1:

|dπNlHl
(g(s, a))− d̂πNlHl

(g(s, a))| = |P (sπNlHl
̸= g(s, a))− P ϵ′(sπ

Nl

Hl
̸= g(s, a))| ≤ Hlϵ

′

Thus,

P ϵ′(sπ
Nl

Hl
̸= g(s, a)) ≤ 1

κHh

+
C1

κHhHl

√
Nl

+
C2ϵ

′

κHhHl

+Hlϵ
′

Lemma 97 (use of the Elliptical Lemma).

⟨ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗ − θ̂⟩ ≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

Proof.

⟨ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂)∥Σ̂−1
Nh

∥θ∗ − θ̂∥Σ̂Nh

≤ 1

Nh

Nh∑
i=1

∥ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂)∥Σ̂−1
i
∥θ∗ − θ̂∥Σ̂Nh (Σ̂−1Nh ⪯ Σ̂−1i)

≤ 1

Nh

Nh∑
i=1

∥ϕπNl ,P ϵ
′

(πi1)− ϕπ
Nl ,P ϵ

′

(πi2)∥Σ̂−1
i
∥θ∗ − θ̂∥Σ̂Nh (definition of πi1,2)

≤ 1√
Nh

√√√√ Nh∑
i=1

∥ϕπNl ,P ϵ′ (πi1)− ϕπ
Nl ,P ϵ′ (πi2)∥2Σ̂−1

i

∥θ∗ − θ̂∥Σ̂Nh

≤ 1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh (Elliptical Lemma)

Define goal non-reachability probability to be: δ = 1
κHh

+ C1

κHhHl
√
Nl

+ C2ϵ′

κHhHl
+Hlϵ

′.

Lemma 98. Let ΦπNl ,P ϵ
′
(π) denote the feature expectation under high level policy π, sub-MDP

policies πNl and MDP transitions P ϵ′ . Under event
⋂
s,a Es,a ∩E l1 ∩E l2, we have that, for any high

level policy π: |⟨ϕπNl ,P (π)− ϕπNl ,P ϵ
′
(π), θ∗⟩| ≤ 2HhBRd

2ϵ′ + 8H3
hHlδ.

389

Proof. Let Ereach denote the event that roll-out τ ∼ π, πNl , P is such that all high level goals are
reached, and similarly event E ′reach for roll-out τ ′ ∼ π, πNl , P ϵ′ .

By union bound, Pr(¬Ereach) = Pr(∃si, ai, sπ
Nl (si,ai)
Hl

̸= g(si, ai)) ≤
∑Hh

i=1 Pr(s
πNl (si,ai)
Hl

̸=
g(si, ai)))) ≤ Hhδ, and similarly Pr(¬E ′reach) ≤ Hhδ.

|⟨ϕπNl ,P (π)− ϕπNl ,P ϵ
′

(π), θ∗⟩|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|
+ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|¬E ′reach] Pr(¬E ′reach)|
≤ |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|Ereach] Pr(Ereach)− Eτ∼π,πNl ,P ϵ′ [⟨ϕ(τ), θ∗⟩|E ′reach] Pr(E ′reach)|+ 2(Hhδ)(HhHl)

(since |Eτ∼π,πNl ,P [⟨ϕ(τ), θ∗⟩|¬Ereach] Pr(¬Ereach)| ≤ (Hhδ)(HhHl) and likewise the other term)

= |Pr(Ereach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Ereach]

− Pr(E ′reach)
Hh∑
h=1

∑
sh,ah

d(sh, ah)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

(under goal reachability, high-level state visitation measure d(sh, ah) is the same)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Ereach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′reach]|+ 2H2

hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|Pr(Ereach)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]

− Pr(E ′reach)E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|+ 2H2

hHlδ

(Esh,ahreach is the event that g(sh, ah) is reached under πNl , P)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah) Pr(Ereach)|E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]− E[⟨ϕP ϵ
′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|

+ |(Pr(Ereach)− Pr(E ′reach))E[⟨ϕP
ϵ′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|+ 2H2

hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)(|E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]− E[⟨ϕP ϵ
′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|

+ (Hhδ)(HhHl)) + 2H2
hHlδ (since Pr(E ′reach),Pr(Ereach) ∈ [1−Hhδ, 1])

To finish, we will relate the expression to |⟨ϕP ϵ
′
(πNl(sh, ah))− ϕ(πNl(sh, ah)), θ∗⟩|.

390

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)|E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]− E[⟨ϕP ϵ
′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|+ 3H3

hHlδ

=

Hh∑
h=1

∑
sh,ah

d(sh, ah)|
1

Pr(Esh,ahreach)
Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]

− 1

Pr(E ′sh,ahreach)
Pr(E ′sh,ahreach)E[⟨ϕ

P ϵ
′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|+ 3H3

hHlδ

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

Pr(Esh,ahreach)
|Pr(Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|Esh,ahreach]

− Pr(E ′sh,ahreach)E[⟨ϕ
P ϵ

′

(πNl(sh, ah)), θ
∗⟩|E ′sh,ahreach]|+Hh

(
(

1

1− δ
− 1)HhHl

)
+ 3H3

hHlδ

(⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
|Pr(¬Esh,ahreach)E[⟨ϕP (πNl(sh, ah)), θ∗⟩|¬Esh,ahreach]

− Pr(¬E ′sh,ahreach)E[⟨ϕ
P ϵ

′

(πNl(sh, ah)), θ
∗⟩|¬E ′sh,ahreach]|+

|E[⟨ϕP ϵ
′

(πNl(sh, ah))− ϕP (πNl(sh, ah)), θ∗⟩]|+ 4H3
hHlδ (using that 1

1−δ − 1 ≤ 1)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)
1

1− δ
(
2(δ)(HhHl) +BRd2ϵ′

)
+ 4H3

hHlδ (⋄⋄)

≤
Hh∑
h=1

∑
sh,ah

d(sh, ah)2
(
2HhHlδ +BRd2ϵ′

)
+ 4H3

hHlδ (1
1−δ ≤ 2)

≤ 2HhBRd
2ϵ′ + 8H3

hHlδ = C(ϵ′, δ)

(⋄) : |
Pr(E ′sh,ahreach)
Pr(Esh,ahreach)

− 1| ≤ max(1− (1− δ) 1
1−δ − 1) since Pr(E ′sh,ahreach),Pr(Esh,ahreach) ∈

[1− δ, 1].

(⋄⋄) : |⟨ϕP ϵ
′
(πNl(sh, ah))−ϕP (πNl(sh, ah)), v⟩| ≤ BRd2ϵ′ and Pr(¬Esh,ahreach),Pr(¬E ′sh,ahreach) ∈

[0, δ]

Theorem 69 (Main regret bound). We have that under event
⋂
s,a Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2 and

Nh > 0: V π∗,π∗ − V π̂,πNl ≤ Õ
(
N
−1/2
l +N

−1/2
h ∥θ∗ − θ̂∥Σ̂Nh

)
.

391

Proof.

V π∗,π∗ − V π̂,πNl

= ⟨ϕπ∗,P (π∗)− ϕπNl ,P (π̂), θ∗⟩
= ⟨ϕπ∗,P (π∗)− ϕπNl ,P (π∗), θ∗⟩+ ⟨ϕπNl ,P (π∗)− ϕπNl ,P (π̂), θ∗⟩

(first term = sub-MDP sub-optimality; second term = high-level policy sub-optimality)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπNl ,P (π∗)− ϕπNl ,P (π̂), θ∗⟩

≤ Hh(
C1√
Nl

+ C2ϵ
′) + ⟨ϕπNl ,P ϵ

′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗⟩

+ |⟨ϕπNl ,P (π∗)− ϕπNl ,P ϵ
′

(π∗), θ∗⟩|+ |⟨ϕπNl ,P ϵ
′

(π̂)− ϕπNl ,P (π̂), θ∗⟩|

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπNl ,P ϵ

′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗ − θ̂⟩+ ⟨ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ̂⟩

(expand out the second term)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) + ⟨ϕπNl ,P ϵ

′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗ − θ̂⟩

(definition of π̂: ⟨ϕπNl ,P ϵ
′
(π∗)− ϕπNl ,P ϵ

′
(π̂), θ̂⟩ ≤ 0)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

(use of Elliptical lemma)

Data Tradeoff: Using the above bound, we can derive the following rates:

• Under idealized-feedback and requiring both high- and low-level feedback, the overall rate
comes out to O(N−1/4l +N

−1/2
h).

This is because Σ̂Nh = O

(
N

1/2
h

N
1/4
l

+ 1

)
. Thus, the dominating factor is the bias of the reward

learning.
• Under current-feedback and requiring both high- and low-level feedback, the overall rate

comes out to O(N−1/2l +N
−1/2
h).

This is because ∥θ∗ − θ̂∥Σ̂Nh = O(1).

• Under only low-level feedback (due to sufficiency in coverage), the overall rate comes out
to O(N−1/2l).
We have that:

392

⟨ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂), θ∗ − θ̂⟩

≤ ∥ϕπNl ,P ϵ
′

(π∗)− ϕπNl ,P ϵ
′

(π̂)∥Σ̂−1
Nl

∥θ∗ − θ̂∥Σ̂Nl (Σ̂−1Nh ⪯ Σ̂−1i)

≤ 1

Nh

Nh∑
i=1

∥ϕP ϵ
′

(πi1)− ϕP
ϵ′

(πi2)∥Σ̂−1
i
∥θ∗ − θ̂∥Σ̂Nl (⋄)

≤ 1√
Nl

(2d log(1 +
Nl

d
))∥θ∗ − θ̂∥Σ̂Nl

(⋄) : since low-level policy feature expectation is a superset of high-level policy expecta-
tion, it follows that by choice of low-level policies πi1, π

i
2: ∥ϕP

ϵ′
(πi1) − ϕP

ϵ′
(πi2)∥Σ̂−1

i
≥

∥ϕπNl ,P ϵ
′
(π∗)− ϕπNl ,P ϵ

′
(π̂)∥Σ̂−1

Nl

Moreover, since low-level feedback is always unbiased, ∥θ∗ − θ̂∥Σ̂Nl = O(1). Thus, the

overall rate comes out to O(N−1/2l).

Remark 29 (High Probability Guarantee). For completeness, we show that the theorem statement
holds with probability at least 1− δ:

Pr(
⋂
s,a

Es,a ∩ E l1 ∩ E l2 ∩ Eh1 ∩ Eh2)

≥ 1− Pr(¬
⋂
s,a

Es,a)− Pr(¬E l1)− Pr(¬E l2)− Pr(¬Eh1)− Pr(¬Eh2)

≥ 1− δ/5− δ/5− δ/5− δ/5− δ/5
= 1− δ

11.9.2.7 Additional Guarantees

In addition, we derive requisite conditions on the constants for idealized-feedback (the most
interesting case).

Necessary Auxiliary Parameters Bound: We have that,

393

Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +

1√
Nh

(2d log(1 +
Nh

d
))∥θ∗ − θ̂∥Σ̂Nh

≤ Hh(
C1√
Nl

+ C2ϵ
′) + 2C(ϵ′, δ) +N

−1/2
h 2d

(
2∥θ∗ − θNh∥Σ̃Nh +O(B

√
d logNh/δW) +

√
8NhC(ϵ

′, δ)
)

≤ Hh(
C1√
Nl

+ C2ϵ
′) + (8d+ 2)C(ϵ′, δ) +N

−1/2
h 2d

(N1/2
h

N
1/4
l

+ (Nhϵ
′)1/2

)
+ C ′ +O(B

√
d logNh/δW)


≤ (HhC1)N

−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9dC(ϵ′, δ) + 2dC ′′N
−1/2
h

= (HhC1)N
−1/2
l + 2dN

−1/4
l + C2Hhϵ

′ + dϵ′1/2 + 9d
(
2HhBRd

2ϵ′ + 8H3
hHlδ

)
+ 2dC ′′N

−1/2
h

≤ (2d+HhC1)N
−1/4
l + (C2Hh + 18d3HhBR)ϵ

′ + 72dH3
hHlδ + 2dC ′′N

−1/2
h

Setting the upper bound to be below ϵ, or each term to be below ϵ/4, we obtain the following
bounds:

• Nl ≥ O((d+HhC1)4

ϵ4
).

• Nh ≥ O(d
2

ϵ2
).

• κ ≥ O(
dH2

hHl
ϵ

):
72dH3

hHlδ ≤ ϵ/4⇒ δ ≤ O(ϵ
dH3

hHl
).

Recall δ = 1
κHh

+ C1

κHhHl
√
Nl

+ C2ϵ′

κHhHl
+Hlϵ

′.

This implies that κ ≥ O(
dH2

hHl
ϵ

) and ϵ ≤ O(ϵ
dH3

hH
2
l
).

• ϵ′ ≤ O(min(ϵ
dH3

hH
2
l
, ϵ
d3HhBR

):

Finally, we also require that (C2Hh + 18d3HhBR)ϵ
′ ≤ ϵ/4⇒ ϵ′ ≤ O(ϵ

d3HhBR
). Thus, we

need that ϵ′ ≤ O(min(ϵ
dH3

hH
2
l
, ϵ
d3HhBR

).

11.10 Statistical Efficiency of HRL

An useful sanity check for hierarchical RL algorithms is that it achieves improved statisical
sample complexity in settings with repeated sub-MDP structure [291]. As in [291], we examine if
Algorithm 26 also improves upon algorithms that do not leverage hierarchical structure. We make
this comparison with vanilla UCB-VI under the same isomophism assumption.
Corollary 14. Setting As,a to be the standard UCB-VI algorithm with UB(RNK,Hh (s,a)) =

O(H
3/2
l

√
|Sls,a||A|NHh,K(s, a)), we have the following bound:

∑
s,a∈C(S,A)

UB(RNK,Hh (s,a)) +HhH l
√
NK,Hh(s, a)

≤ Õ(H
3/2
l

√
max
s,a
|Sls,a||A|

√
|C(S,Ah)|(HhK) +HhHl

√
|C(S,Ah)|HhK)

394

Comparison with vanilla UCB-VI: Standard application of UCB-VI yields the follow-
ing rate: Õ((HhHl)

3/2
√
|S||A|K). Hier-UCB-VI compares favorably to vanilla UCB-VI, if

maxs,a |Sls,a||C(S,Ah)| << |S|. Or in words, there are a lot of repeated/identical sub-MDPs and
sub-MDPs have small state space size.

395

396

Chapter 12

Discussion and Future Directions

This thesis is devoted towards better understanding the multi-agents in our present world and in
our future world. In the first half of this thesis, we study how to design ML models to account for
other agents, who are affected by the model’s output. In the second half of this thesis, we study
how machine learning can facilitate the design of multi-agent systems in both the decentralized
and centralized setting. Most of these problems are motivated by contemporary problems in
our present multi-agent world involving incentives and/or capabilities, which transpired during
the course of thesis. Looking to the future, multi-agent based problems abound. This section
touches on some prominent problems on the horizon, which I believe to be important in our future
multi-agentic world.

First, while LLMs have demonstrated tremendous capabilities, much of the present focus has
been on enhancing their capabilities in a vacuum. But with the rise of LLMs and the growing
promise of agents, we will soon see models interfacing even more closely and frequently with
humans and other models (for example representing other businesses). This raises a number of
salient problems:

1. Alignment: How can we ensure that the model is aligned and not unaligned by bad human
actors and/or models [16]? How can we develop comprehensive safeguards?

2. Incentives: A less studied topic in current LLM literature is how LLM agents interface
with each other. For example, can they soundly do business on the part of the human users
just as we humans can do business?

Second, there is an enormous number of problems that we have yet to understand regarding
agents. Some key problems are:

1. Training and Inference: How can we build better harnesses for orchestrating multiple
agents [249]? Multi-agents are now known to be better than single agents in various settings
and are verily used in frontier labs [15]. How can we train multiple agents to form a more
capable, performant and aligned multi-agent system? How can we develop harnesses for
unleashing multi-agent benefits during inference? These are key questions in order to realize
AI organizations, as targeted by AGI roadmaps of frontier labs [10].
Furthermore, with ever growing compute, it seems that data will be the key bottleneck in
future ML scaling. A (once) popular belief is that forms of self-play where another agent

397

plays with the agent being trained can generate sufficient synthetic data to enable such
scaling [36]. How can we realize this immense possibility?

2. Decentralized MAS: Soon, we will have agents carrying out tasks on our behalf on the
internet. This means any and every consideration in Responsible AI will need to also have a
“multi-agent” counterpart [16].
For example, how can we ensure multi-agent alignment over the course of multi-turns when
the agents have not been trained together? How can we facilitate easy coordination? And,
when decentralized agents do collaborate, how will multi-turn attribution work?

In sum, I believe there is a fast growing set of multi-agent problems that we have yet to
address! Our present world is inherently multi-agentic, and will soon be populated by more AI
agents that interact with us and each other. This makes me ever more bullish about the multi-agent
research agenda in our future world, which is growing more multi-agentic over time. Thank you
very much for reading and I hope you the reader will join me in pursuing this rich and important
research agenda!

398

400

Chapter 13

Bibliography

[1] AP English Literature Scoring Rubrics. https:
//apcentral.collegeboard.org/media/pdf/
ap-english-literature-and-composition-frqs-1-2-3-scoring-rubrics.
pdf. Accessed: 2024-05-15. 11.1.1

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
21st, pages 1–8, 2004. 10.1, 10.2, 10.3, 10.3, 10.7.1, 64

[3] Jayadev Acharya, Sourbh Bhadane, Arnab Bhattacharyya, Saravanan Kandasamy, and
Ziteng Sun. Sample complexity of distinguishing cause from effect. In International
Conference on Artificial Intelligence and Statistics, pages 10487–10504. PMLR, 2023. 5.7

[4] A. Agarwal, M. A. Dahleh, and T. Sarkar. A marketplace for data: An algorithmic solution.
In 20th, pages 701–726, 2019. 8.1

[5] Philippe Aghion and Richard Holden. Incomplete contracts and the theory of the firm:
What have we learned over the past 25 years? Journal of Economic Perspectives, 25(2):
181–197, 2011. 9.2.2

[6] Raj Agrawal, Chandler Squires, Karren Yang, Karthikeyan Shanmugam, and Caroline
Uhler. Abcd-strategy: Budgeted experimental design for targeted causal structure discovery.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 3400–
3409. PMLR, 2019. 5.7

[7] Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. The strategic percep-
tron. In Proceedings of the 22nd ACM Conference on Economics and Computation, pages
6–25, 2021. 4.1

[8] Ulrich Aïvodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, and Alain
Tapp. Fairwashing: the risk of rationalization. In International Conference on Machine
Learning, pages 161–170. PMLR, 2019. 3.10

[9] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online
set cover problem. SIAM Journal on Computing, 39(2):361–370, 2009. 6.3.2

[10] Sam Altman. The intelligence age, sep 2024. URL https://ia.samaltman.com/.
Outlines OpenAI’s vision for the evolution of AI into personal teams and organizations.

401

https://apcentral.collegeboard.org/media/pdf/ap-english-literature-and-composition-frqs-1-2-3-scoring-rubrics.pdf
https://apcentral.collegeboard.org/media/pdf/ap-english-literature-and-composition-frqs-1-2-3-scoring-rubrics.pdf
https://apcentral.collegeboard.org/media/pdf/ap-english-literature-and-composition-frqs-1-2-3-scoring-rubrics.pdf
https://apcentral.collegeboard.org/media/pdf/ap-english-literature-and-composition-frqs-1-2-3-scoring-rubrics.pdf
https://ia.samaltman.com/

Accessed: 2025-12-06. 1

[11] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016. 4.4, 11.1,
11.6

[12] Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller,
and Pan Kessel. Fairwashing explanations with off-manifold detergent. In International
Conference on Machine Learning, pages 314–323. PMLR, 2020. 3.10

[13] Dana Angluin. Queries and concept learning. Machine learning, 2:319–342, 1988. 2.1.1,
2.6, 6.1.1, 6.2

[14] Anthropic. Developing a computer use model, 2024. URL https://www.anthropic.
com/news/developing-computer-use. 9.2.2, 9.7

[15] Anthropic. How we built our multi-agent research system, jun 2025. URL https://www.
anthropic.com/engineering/multi-agent-research-system. Ac-
cessed: 2025-12-06. 1

[16] Anthropic Alignment Science Team. Recommendations for technical AI safety re-
search directions, 2025. URL https://alignment.anthropic.com/2025/
recommended-directions/. Accessed: 2025-12-06. 1, 2

[17] Patrick Assouad. Densité et dimension. In Annales de l’Institut Fourier, volume 33, pages
233–282, 1983. 3.5

[18] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International conference on machine learning, pages 263–272.
PMLR, 2017. 9.10.1, 9.10.2, 11.3.1, 26

[19] M. Babeş-Vroman, V. Marivate, K. Subramanian, and M. L. Littman. Apprenticeship
learning about multiple intentions. In 28th, pages 897–904, 2011. 10.1

[20] Y. Bachrach and J. S. Rosenschein. Coalitional skills games. In 7th, pages 1023–1030,
2008. 8.1.2

[21] Yoram Bachrach, Evangelos Markakis, Ariel D Procaccia, Jeffrey S Rosenschein, and
Amin Saberi. Approximating power indices. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems-Volume 2, pages 943–950, 2008.
7.9

[22] Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procaccia, Jeffrey S Rosen-
schein, and Amin Saberi. Approximating power indices: theoretical and empirical analysis.
Autonomous Agents and Multi-Agent Systems, 20(2):105–122, 2010. 8.4

[23] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with
knapsacks. Journal of the ACM (JACM), 65(3):1–55, 2018. 5.6, 5.11, 5.11.2

[24] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebric decision diagrams and their applications. Formal
methods in system design, 10(2-3):171–206, 1997. 7.2

[25] Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning.

402

https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://alignment.anthropic.com/2025/recommended-directions/
https://alignment.anthropic.com/2025/recommended-directions/

In International conference on machine learning, pages 551–560. PMLR, 2020. 9.5

[26] Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg
equilibria in general-sum games. Advances in Neural Information Processing Systems, 34:
25799–25811, 2021. 9.3, 9.11

[27] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022. 11.2

[28] M.-F. Balcan, A. D. Procaccia, and Y. Zick. Learning cooperative games. In 24th, pages
475–482, 2015. 8.1.2

[29] Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
793–802, 2011. 7.4.2, 7.8.2

[30] Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under
log-concave distributions. In Conference on Learning Theory, pages 288–316. PMLR,
2013. 6.1

[31] Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 21–30.
IEEE, 2012. 6.5, 6.8.4

[32] Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D Procaccia. Commitment
without regrets: Online learning in stackelberg security games. In Proceedings of the
sixteenth ACM conference on economics and computation, pages 61–78, 2015. 9.12

[33] Maria Florina Balcan, Ariel D Procaccia, and Yair Zick. Learning cooperative games. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. 7.2

[34] E. Balkanski, U. Syed, and S. Vassilvitskii. Statistical cost sharing. In 31st, pages 6221–
6230, 2017. 8.1.2, 8.3.1, 8.4, 8.7, 8.8

[35] Eric Balkanski, Umar Syed, and Sergei Vassilvitskii. Statistical cost sharing. In Advances
in Neural Information Processing Systems, pages 6221–6230, 2017. 7.2, 7.8.2, 7.8.7

[36] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emer-
gent complexity via multi-agent competition. In International Conference on Learning
Representations, 2018. URL https://arxiv.org/abs/1710.03748. 1

[37] Sylvain Béal, Mihai Manea, Eric Rémila, and Philippe Solal. Games with identical shapley
values. Handbook of the Shapley Value, pages 93–110, 2019. 7.8.3

[38] Yahav Bechavod, Katrina Ligett, Zhiwei Steven Wu, and Juba Ziani. Causal feature
discovery through strategic modification. arXiv preprint arXiv:2002.07024, 3, 2020. 4.1

[39] Gary S Becker. Crime and punishment: An economic approach. In The economic
dimensions of crime, pages 13–68. Springer, 1968. 3.3

[40] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In COLT,
volume 3, page 1, 2009. 6.3.2

403

https://arxiv.org/abs/1710.03748

[41] Omer Ben-Porat, Yishay Mansour, Michal Moshkovitz, and Boaz Taitler. Principal-agent
reward shaping in mdps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 9502–9510, 2024. 9.1, 9.3, 9.12

[42] Thor Benson. Your boss’s spyware could train ai to replace you. Wired, 2023. URL https:
//www.wired.com/story/corporate-surveillance-train-ai/. 2.1

[43] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
Journal of the ACM (JACM), 51(4):540–556, 2004. 6.3.2

[44] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M. F. Moura,
and P. Eckersley. Explainable machine learning in deployment. arXiv:1909.06342, 2019.
8.4

[45] Eric Blais, Renato Ferreira Pinto Jr, and Nathaniel Harms. Vc dimension and distribution-
free sample-based testing. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 504–517, 2021. 6.5

[46] Guy Blanc, Neha Gupta, Jane Lange, and Li-Yang Tan. Estimating decision tree learnability
with polylogarithmic sample complexity. Advances in Neural Information Processing
Systems, 33, 2020. 6.5

[47] Avrim Blum and Lunjia Hu. Active tolerant testing. In Conference On Learning Theory,
pages 474–497. PMLR, 2018. 6.5

[48] Matteo Bollini, Francesco Bacchiocchi, Matteo Castiglioni, Alberto Marchesi, and Nicola
Gatti. Contracting with a reinforcement learning agent by playing trick or treat. arXiv
preprint arXiv:2410.13520, 2024. 9.1, 9.3, 9.12

[49] Boston Consulting Group. Rethinking B2B software pricing in the agentic AI era.
BCG Publications, 2025. URL https://www.bcg.com/publications/2025/
rethinking-b2b-software-pricing-in-the-era-of-ai. 9.2.2

[50] Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner,
Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress
on scalable oversight for large language models. arXiv preprint arXiv:2211.03540, 2022.
11.1, 11.6

[51] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. 11.4.1

[52] Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world.
In International Conference on Artificial Intelligence and Statistics, pages 6045–6061.
PMLR, 2022. 4.1

[53] James N Brown and Robert W Rosenthal. Testing the minimax hypothesis: A re-
examination of o’neill’s game experiment. Econometrica: Journal of the Econometric
Society, pages 1065–1081, 1990. 2.11

[54] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018. 7.7

[55] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction prob-
lems. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge

404

https://www.wired.com/story/corporate-surveillance-train-ai/
https://www.wired.com/story/corporate-surveillance-train-ai/
https://www.bcg.com/publications/2025/rethinking-b2b-software-pricing-in-the-era-of-ai
https://www.bcg.com/publications/2025/rethinking-b2b-software-pricing-in-the-era-of-ai

discovery and data mining, pages 547–555, 2011. 4.1

[56] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer,
Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open
problems and fundamental limitations of reinforcement learning from human feedback.
arXiv preprint arXiv:2307.15217, 2023. 4.1.1

[57] Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions
on Information Theory, 54(5):2339–2353, 2008. 2.4.2, 2.11.2, 2.14.1

[58] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative
Game Theory. Morgan & Claypool, 2011. 8.1.2

[59] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational aspects
of cooperative game theory. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 5(6):1–168, 2011. 7.9

[60] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement
learning with imagined subgoals. In International Conference on Machine Learning, pages
1430–1440. PMLR, 2021. 11.6

[61] J. Chen, L. Song, M. J. Wainwright, and M I. Jordan. L-Shapley and C-Shapley: Efficient
model interpretation for structured data. In 7th, 2019. 8.1, 8.4

[62] Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley:
Efficient model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018.
7.5

[63] Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, and Zhaoran Wang.
Adaptive model design for markov decision process. In International Conference on
Machine Learning, pages 3679–3700. PMLR, 2022. 9.3

[64] Siyu Chen, Mengdi Wang, and Zhuoran Yang. Actions speak what you want: Prov-
ably sample-efficient reinforcement learning of the quantal stackelberg equilibrium from
strategic feedbacks. arXiv preprint arXiv:2307.14085, 2023. 9.12

[65] Yiling Chen, Chara Podimata, Ariel D Procaccia, and Nisarg Shah. Strategyproof linear
regression in high dimensions. In Proceedings of the 2018 ACM Conference on Economics
and Computation, pages 9–26, 2018. 2.14.1, 3.2

[66] Yiling Chen, Yang Liu, and Chara Podimata. Learning strategy-aware linear classifiers.
Advances in Neural Information Processing Systems, 33:15265–15276, 2020. 4.1

[67] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mcmc sampling
algorithms on polytopes. The Journal of Machine Learning Research, 19(1):2146–2231,
2018. 3.6.1

[68] J. Choi and K.-E. Kim. Nonparametric Bayesian inverse reinforcement learning for multiple
reward functions. In 25th, pages 314–322, 2012. 10.1

[69] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965. 10.1

[70] Davin Choo, Kirankumar Shiragur, and Arnab Bhattacharyya. Verification and search
algorithms for causal dags. Advances in Neural Information Processing Systems, 35:

405

12787–12799, 2022. 5.1, 5.2, 5.7, 5.11

[71] Paul Christiano, Buck Shlegeris, and Dario Amodei. Supervising strong learners by
amplifying weak experts. arXiv preprint arXiv:1810.08575, 2018. 11.1, 11.6

[72] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30, 2017. 11.2

[73] S. Cohen, G. Dror, and E. Ruppin. Feature selection via coalitional game theory. Neural
Computation, 19(7):1939–1961, 2007. 8.1, 8.4

[74] Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coalitional game theory.
Neural Computation, 19(7):1939–1961, 2007. 7.5

[75] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.
Machine learning, 15(2):201–221, 1994. 6.1.1, 6.3.1.1

[76] V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence, 170(6–7):607–619, 2006. 8.1.2

[77] Vincent Conitzer and Tuomas Sandholm. Computing shapley values, manipulating value
division schemes, and checking core membership in multi-issue domains. 2004. 7.9

[78] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM conference on Electronic commerce, pages 82–90, 2006. 9.3,
9.4, 9.4.1, 9.8

[79] T.M. Cover and E. Ordentlich. Universal portfolios with side information. IEEE Transac-
tions on Information Theory, 42(2):348–363, 1996. 5

[80] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex
Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al.
Underspecification presents challenges for credibility in modern machine learning. arXiv
preprint arXiv:2011.03395, 2020. 3.6.2, 3.10

[81] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. Advances in neural
information processing systems, 17, 2004. 2.6, 2.7.1, 2.14.1

[82] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, vol-
ume 18, pages 235–242, 2005. 6.1, 6.3.1.1

[83] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-
based active learning. In International conference on computational learning theory, pages
249–263. Springer, 2005. 2.6, 6.2

[84] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning
algorithm. Advances in neural information processing systems, 20, 2007. 2.3.1, 6.1, 6.3.2

[85] Sanjoy Dasgupta, Daniel Hsu, Stefanos Poulis, and Xiaojin Zhu. Teaching a black-box
learner. In International Conference on Machine Learning, pages 1547–1555. PMLR,
2019. 6.2, 6.3.2, 13, 6.3.2, 6.8.5.2, 2, 6.8.5.2, 6.8.5.2, 6.8.5.2

[86] A. Datta, A. Datta, A. D. Procaccia, and Y. Zick. Influence in classification via cooperative
game theory. In 24th, pages 511–517, 2015. 8.1

406

[87] A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In 37th, pages 598–617, 2016. 8.1, 8.4

[88] Amit Datta, Anupam Datta, Ariel D Procaccia, and Yair Zick. Influence in classification
via cooperative game theory. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015. 7.5

[89] Ofer Dekel, Felix Fischer, and Ariel D Procaccia. Incentive compatible regression learning.
Journal of Computer and System Sciences, 76(8):759–777, 2010. 2.14.1

[90] Stephan Dempe and Alain B Zemkoho. On the karush–kuhn–tucker reformulation of the
bilevel optimization problem. Nonlinear Analysis: Theory, Methods & Applications, 75(3):
1202–1218, 2012. 9.12

[91] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19(2):257–266, 1994. 8.1.2

[92] Xiaotie Deng and Christos H Papadimitriou. On the complexity of cooperative solution
concepts. Mathematics of Operations Research, 19(2):257–266, 1994. 7.1, 7.2, 7.8.7

[93] Lee H Dicker. Variance estimation in high-dimensional linear models. Biometrika, 101(2):
269–284, 2014. 6.2

[94] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu.
Strategic classification from revealed preferences. In Proceedings of the 2018 ACM
Conference on Economics and Computation, pages 55–70, 2018. 3.2, 4.1

[95] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml. 8.5.1

[96] Paul Dutting, Tim Roughgarden, and Inbal Talgam-Cohen. The complexity of contracts.
SIAM Journal on Computing, 50(1):211–254, 2021. 9.2.2

[97] Frederick Eberhardt. Causation and intervention. Unpublished doctoral dissertation,
Carnegie Mellon University, page 93, 2007. 5.1, 5.2

[98] Lilian Edwards and Michael Veale. Slave to the algorithm: Why a right to an explanation
is probably not the remedy you are looking for. Duke L. & Tech. Rev., 16:18, 2017. 3.1

[99] E. Elkind and D. B. Pasechnik. Computing the nucleolus of weighted voting games. In
20th, pages 327–335, 2009. 8.1.2

[100] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. J. Wooldridge. On the computational
complexity of weighted voting games. Annals of Mathematics and Artificial Intelligence,
56:109–131, 2009. 8.1.2

[101] T. Everitt, V. Krakovna, L. Orseau, and S. Legg. Reinforcement learning with a corrupted
reward channel. In 26th, pages 4705–4713, 2017. 10.1

[102] Tom Everitt, Ryan Carey, Eric D Langlois, Pedro A Ortega, and Shane Legg. Agent
incentives: A causal perspective. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11487–11495, 2021. 4.4

[103] Tom Everitt, Esra Kürüm, and Marcus Hutter. Reward tampering. In Proceedings of the
2021 International Conference on Autonomous Agents and Multiagent Systems, pages

407

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

413–421, 2021. 4.4

[104] B. Fain, K. Munagala, and N. Shah. Fair allocation of indivisible public goods. In 19th,
pages 575–592, 2018. 10.17

[105] Sebastian Farquhar, Ryan Carey, and Tom Everitt. Path-specific objectives for safer agent
incentives. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 9529–9538, 2022. 4.4

[106] Shaheen S Fatima, Michael Wooldridge, and Nicholas R Jennings. A linear approximation
method for the shapley value. Artificial Intelligence, 172(14):1673–1699, 2008. 7.9

[107] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998. 6.8.4, 5

[108] Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, and Vasilis
Syrgkanis. A unifying hierarchy of valuations with complements and substitutes. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. 7.2

[109] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using
the query by committee algorithm. Machine learning, 28:133–168, 1997. 2.6

[110] Drew Fudenberg and Luis Rayo. Training and effort dynamics in apprenticeship. American
Economic Review, 109(11):3780–3812, 2019. 2.14.1

[111] Luis Garicano and Luis Rayo. Relational knowledge transfers. American Economic Review,
107(9):2695–2730, 2017. 2.1.1, 2.14.1

[112] Matthias Gerstgrasser and David C Parkes. Oracles & followers: Stackelberg equilibria
in deep multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 11213–11236. PMLR, 2023. 9.12

[113] Ganesh Ghalme, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic
classification in the dark. In International Conference on Machine Learning, pages 3672–
3681. PMLR, 2021. 4.1

[114] AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Elias Bareinboim. Bud-
geted experiment design for causal structure learning. In International Conference on
Machine Learning, pages 1724–1733. PMLR, 2018. 5.1, 5.2

[115] A. Ghorbani and J. Zou. Data Shapley: Equitable valuation of data for machine learning.
In 36th, pages 2242–2251, 2019. 8.1, 8.4, 8.5.2, 8.5.2, 8.5.2

[116] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine
learning. In International conference on machine learning, pages 2242–2251. PMLR, 2019.
7.5

[117] D. B. Gillies. 3. solutions to general non-zero-sum games. 1959. 7.8.7

[118] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect information
games. Journal of the ACM (JACM), 54(5):25–es, 2007. 7.1

[119] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision processes. Artificial
Intelligence, 122(1–2):71–109, 2000. 10.1

[120] Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based

408

on graphical models. Frontiers in genetics, 10:524, 2019. 5.7

[121] Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal of
Computer and System Sciences, 50(1):20–31, 1995. 6.2, 6.3.2

[122] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998. 6.5

[123] Shafi Goldwasser, Guy N Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. 6.2

[124] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active
learning and stochastic optimization. In COLT, pages 333–345, 2010. 2.14.1

[125] Kristjan Greenewald, Dmitriy Katz, Karthikeyan Shanmugam, Sara Magliacane, Murat
Kocaoglu, Enric Boix Adsera, and Guy Bresler. Sample efficient active learning of causal
trees. Advances in Neural Information Processing Systems, 32, 2019. 5.1, 5.2, 5.7

[126] Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine.
Unpacking reward shaping: Understanding the benefits of reward engineering on sample
complexity. Advances in Neural Information Processing Systems, 35:15281–15295, 2022.
9.3

[127] Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017. 7.5

[128] Guru Guruganesh, Yoav Kolumbus, Jon Schneider, Inbal Talgam-Cohen, Emmanouil-
Vasileios Vlatakis-Gkaragkounis, Joshua Wang, and S Weinberg. Contracting with a
learning agent. Advances in Neural Information Processing Systems, 37:77366–77408,
2024. 9.12

[129] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. D. Dragan. Cooperative inverse
reinforcement learning. In 30th, pages 3909–3917, 2016. 10.1

[130] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical
planning from pixels. Advances in Neural Information Processing Systems, 35:26091–
26104, 2022. 11.1, 11.6

[131] Steve Hanneke. The cost complexity of interactive learning. Unpublished manuscript,
2006. 2.3, 2.14.1, 6.2, 6.3.1

[132] Steve Hanneke. Teaching dimension and the complexity of active learning. In International
Conference on Computational Learning Theory, pages 66–81. Springer, 2007. 6.2, 6.3.2,
6.6, 6.8.5.1

[133] Steve Hanneke. Theoretical foundations of active learning. Carnegie Mellon University,
2009. 2.6

[134] Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics, pages
333–361, 2011. 6.3.2

[135] Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and
Trends® in Machine Learning, 7(2-3):131–309, 2014. 2.1.1, 6.1, 6.1.1, 6.3.1.1, 6.8.3

409

[136] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic
classification. In Proceedings of the 2016 ACM conference on innovations in theoretical
computer science, pages 111–122, 2016. 2.14.1, 3.2, 3.3, 4.1

[137] Oliver Hart and John Moore. Incomplete contracts and renegotiation. Econometrica:
Journal of the Econometric Society, pages 755–785, 1988. 9.2.2

[138] Tibor Hegedűs. Generalized teaching dimensions and the query complexity of learning.
In Proceedings of the eighth annual conference on Computational learning theory, pages
108–117, 1995. 2.1.1, 2.6, 6.2, 6.3.2, 6.8.5.1

[139] J. L. Hodges Jr and E. L. Lehmann. Some problems in minimax point estimation. The
Annals of Mathematical Statistics, pages 182–197, 1950. 10.4.2

[140] Russell Hotten. Volkswagen: The scandal explained. BBC News, 2015. URL https:
//www.bbc.com/news/business-34324772. 6.1

[141] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf.
Nonlinear causal discovery with additive noise models. Advances in neural information
processing systems, 2008. 4.6, 4.6, 2, 5.7

[142] Daniel Joseph Hsu. Algorithms for active learning. PhD thesis, UC San Diego, 2010.
6.3.1.1, 6.8.3

[143] Huining Hu, Zhentao Li, and Adrian R Vetta. Randomized experimental design for causal
graph discovery. Advances in neural information processing systems, 27, 2014. 5.1, 5.2

[144] Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation
learning for linear bandits and linear rl. In International Conference on Machine Learning,
pages 4349–4358. PMLR, 2021. 11.3.2

[145] Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire.
Efficient and parsimonious agnostic active learning. Advances in Neural Information
Processing Systems, 28, 2015. 6.3.2

[146] Tzu-Kuo Huang, Lihong Li, Ara Vartanian, Saleema Amershi, and Jerry Zhu. Active
learning with oracle epiphany. Advances in neural information processing systems, 29,
2016. 2.3.2, 2.6, 2.10.4

[147] Evan Hubinger. Ai safety via market making. https://www.alignmentforum.
org/posts/YWwzccGbcHMJMpT45/ai-safety-via-market-making. Ac-
cessed: 2024-05-15. 11.6

[148] Antti Hyttinen, Frederick Eberhardt, and Patrik O Hoyer. Experiment selection for causal
discovery. Journal of Machine Learning Research, 14:3041–3071, 2013. 5.1, 5.2

[149] Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact representation
scheme for coalitional games. In Proceedings of the 6th ACM conference on Electronic
commerce, pages 193–202. ACM, 2005. 7.2

[150] Intercom. Pricing AI agents: What does value-based pricing really mean for AI?, May 2025.
URL https://www.intercom.com/blog/pricing-ai-agents/. 9.2.2

[151] Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. arXiv preprint

410

https://www.bbc.com/news/business-34324772
https://www.bbc.com/news/business-34324772
https://www.alignmentforum.org/posts/YWwzccGbcHMJMpT45/ai-safety-via-market-making
https://www.alignmentforum.org/posts/YWwzccGbcHMJMpT45/ai-safety-via-market-making
https://www.intercom.com/blog/pricing-ai-agents/

arXiv:1805.00899, 2018. 11.6

[152] Dima Ivanov, Paul Dütting, Inbal Talgam-Cohen, Tonghan Wang, and David C Parkes.
Principal-agent reinforcement learning: Orchestrating ai agents with contracts. arXiv
preprint arXiv:2407.18074, 2024. 9.1, 9.3, 9.12

[153] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot.
High accuracy and high fidelity extraction of neural networks. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pages 1345–1362, 2020. 3.6.2, 3.10

[154] Kevin G Jamieson and Lalit Jain. A bandit approach to sequential experimental design with
false discovery control. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, 2018. 5.7

[155] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava.
How can i explain this to you? an empirical study of deep neural network explanation
methods. Advances in Neural Information Processing Systems, 33, 2020. 3.1

[156] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, D. Song,
and C. Spanos. Towards efficient data valuation based on the Shapley value. In 22nd, pages
1167–1176, 2019. 8.1, 8.4, 8.5.2

[157] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, C. Spanos,
and D. Song. Efficient task-specific data valuation for nearest neighbor algorithms. Pro-
ceedings of the VLDB Endowment, 12(11):1610–1623, 2019. 8.1

[158] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gurel,
Bo Li, Ce Zhang, Dawn Song, and Costas Spanos. Towards efficient data valuation based
on the shapley value. arXiv preprint arXiv:1902.10275, 2019. 7.3, 7.6.1

[159] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free ex-
ploration for reinforcement learning. In International Conference on Machine Learning,
pages 4870–4879. PMLR, 2020. 9.6.2

[160] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under
risk. In Handbook of the fundamentals of financial decision making: Part I, pages 99–127.
World Scientific, 2013. 3.3

[161] Hsu Kao, Chen-Yu Wei, and Vijay Subramanian. Decentralized cooperative reinforce-
ment learning with hierarchical information structure. In International Conference on
Algorithmic Learning Theory, pages 573–605. PMLR, 2022. 9.12

[162] Been Kim, Oluwasanmi Koyejo, Rajiv Khanna, et al. Examples are not enough, learn to
criticize! criticism for interpretability. In NIPS, pages 2280–2288, 2016. 3.1, 3.6, 3.6.2

[163] Jon Kleinberg and Manish Raghavan. How do classifiers induce agents to invest effort
strategically? ACM Transactions on Economics and Computation (TEAC), 8(4):1–23, 2020.
3.2, 4.1

[164] Murat Kocaoglu, Alex Dimakis, and Sriram Vishwanath. Cost-optimal learning of causal
graphs. In International Conference on Machine Learning, pages 1875–1884. PMLR, 2017.
5.1, 5.2

411

[165] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006. 10.11.1

[166] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In International conference on machine learning, pages 1885–1894. PMLR,
2017. 3.6, 8.5.2, 8.5.2

[167] Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime.
Advances in Neural Information Processing Systems, 31:5455–5464, 2018. 6.2

[168] A. Kopelowitz. Computation of the kernels of simple games and the nucleolus of N -person
games. RM 31, Department of Mathematics, the Hebrew University of Jerusalem, 1967.
8.3

[169] Christian Kroer and Tuomas Sandholm. Extensive-form game abstraction with bounds.
In Proceedings of the fifteenth ACM conference on Economics and computation, pages
621–638. ACM, 2014. 7.2

[170] Christian Kroer and Tuomas Sandholm. Imperfect-recall abstractions with bounds in
games. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 459–476. ACM, 2016. 7.2

[171] David Krueger, Tegan Maharaj, and Jan Leike. Causal confusion in reinforcement learning.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
5547–5557. PMLR, 13–18 Jul 2020. 4.4

[172] I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle Friedler.
Problems with shapley-value-based explanations as feature importance measures. In 37th,
2020. 8.4, 8.6

[173] Eduardo S Laber and Loana Tito Nogueira. On the hardness of the minimum height
decision tree problem. Discrete Applied Mathematics, 144(1-2):209–212, 2004. 6.3.1.2,
6.8.4, 6.8.4

[174] Jean-Jacques Laffont and David Martimort. The theory of incentives: the principal-agent
model. Princeton university press, 2002. 9.2.2

[175] Cassidy Laidlaw, Aditi Singla, and Anca D. Dragan. Correlated proxies: A new definition
and improved mitigation for reward hacking. arXiv preprint arXiv:2403.03185, 2024. 4.9

[176] Marc Lanctot, Richard Gibson, Neil Burch, Martin Zinkevich, and Michael Bowling.
No-regret learning in extensive-form games with imperfect recall. In Proceedings of the
29th International Coference on International Conference on Machine Learning, pages
1035–1042. Omnipress, 2012. 7.2

[177] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls,
Julien Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to
multiagent reinforcement learning. In Advances in Neural Information Processing Systems,
pages 4190–4203, 2017. 7.7

[178] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation
and the emergence of (natural) language. arXiv preprint arXiv:1612.07182, 2016. 7.7

412

[179] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021. 11.2

[180] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg.
Scalable agent alignment via reward modeling: a research direction. arXiv preprint
arXiv:1811.07871, 2018. 11.1, 11.1.2, 11.6

[181] Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social
dilemmas using deep reinforcement learning. arXiv preprint arXiv:1707.01068, 2017. 7.7

[182] Joshua Letchford and Vincent Conitzer. Computing optimal strategies to commit to in
extensive-form games. In Proceedings of the 11th ACM conference on Electronic commerce,
pages 83–92, 2010. 9.3

[183] Joshua Letchford, Liam MacDermed, Vincent Conitzer, Ronald Parr, and Charles Isbell.
Computing optimal strategies to commit to in stochastic games. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 26, pages 1380–1386, 2012. 9.3

[184] Sagi Levanon and Nir Rosenfeld. Generalized strategic classification and the case of
aligned incentives. arXiv preprint arXiv:2202.04357, 2022. 4.1

[185] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level
hierarchies with hindsight. arXiv preprint arXiv:1712.00948, 2017. 11.1, 11.6

[186] Yao Li, Minhao Cheng, Kevin Fujii, Fushing Hsieh, and Cho-Jui Hsieh. Learning from
group comparisons: exploiting higher order interactions. In Advances in Neural Information
Processing Systems, pages 4981–4990, 2018. 7.1, 7.2, 7.8.8

[187] David Liben-Nowell, Alexa Sharp, Tom Wexler, and Kevin Woods. Computing shapley
value in supermodular coalitional games. In International Computing and Combinatorics
Conference, pages 568–579. Springer, 2012. 7.9

[188] Erik Lindgren, Murat Kocaoglu, Alexandros G Dimakis, and Sriram Vishwanath. Experi-
mental design for cost-aware learning of causal graphs. Advances in Neural Information
Processing Systems, 31, 2018. 5.1, 5.2

[189] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285–318, 1988. 6.3.2

[190] Tianqi Liu, Zhaowei Tang, et al. Rrm: Robust reward model training mitigates reward
hacking. arXiv preprint arXiv:2409.13156, 2024. 4.4

[191] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Neural Information
Processing Systems (NIPS), 2017. 7.6.1

[192] Zhaozhi Lu, Saptarshi Kumar, Aditya Parnami, Moshe Tennenholtz, and Animesh Kumar.
Quantifying and mitigating causal influences in reinforcement learning. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 14541–14562. PMLR, 17–23 Jul
2022. 4.4

413

[193] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In
30th, pages 4768–4777, 2017. 8.1, 8.4

[194] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, pages 4765–4774, 2017. 7.3, 7.5

[195] Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers. Bounding
the estimation error of sampling-based shapley value approximation. arXiv preprint
arXiv:1306.4265, 2013. 7.9

[196] Charles Marx, Flavio Calmon, and Berk Ustun. Predictive multiplicity in classification. In
International Conference on Machine Learning, pages 6765–6774. PMLR, 2020. 3.6.2,
3.10

[197] M. Maschler, B. Peleg, and L. S. Shapley. Geometric properties of the kernel, nucleolus,
and related solution concepts. Mathematics of Operations Research, 4(4):303–338, 1979.
8.2

[198] Dan McCarthy. To regulate ai, try playing in a sandbox. Emerging Tech Brew,
2021. URL https://www.morningbrew.com/emerging-tech/stories/
2021/05/26/regulate-ai-just-play-sandbox. 6.1

[199] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6–38, 1995. 9.5

[200] Christopher Meek. Causal inference and causal explanation with background knowledge.
arXiv preprint arXiv:1302.4972, 2013. 2

[201] Celestine Mendler-Dünner, Frances Ding, and Yixin Wang. Anticipating performativity by
predicting from predictions. In Advances in Neural Information Processing Systems. 4.1

[202] Tomasz P Michalak, Karthik V Aadithya, Piotr L Szczepanski, Balaraman Ravindran,
and Nicholas R Jennings. Efficient computation of the shapley value for game-theoretic
network centrality. Journal of Artificial Intelligence Research, 46:607–650, 2013. 7.9

[203] J. Mikhail. Elements of Moral Cognition: Rawls’ Linguistic Analogy and the Cognitive
Science of Moral and Legal Judgment. Cambridge University Press, 2011. 10.1

[204] John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in
disguise. In International Conference on Machine Learning, pages 6917–6926. PMLR,
2020. 3.10, 4.1

[205] Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. Model reconstruction
from model explanations. In Proceedings of the Conference on Fairness, Accountability,
and Transparency, pages 1–9, 2019. 3.10

[206] Tom M Mitchell. Version spaces: A candidate elimination approach to rule learning. In
Proceedings of the 5th international joint conference on Artificial intelligence-Volume 1,
pages 305–310, 1977. 3.10

[207] Tom M Mitchell. Generalization as search. Artificial intelligence, 18(2):203–226, 1982.
2.2.1, 6.1

[208] Hervé Moulin. Fair division and collective welfare. MIT press, 2004. 7.1

414

https://www.morningbrew.com/emerging-tech/stories/2021/05/26/regulate-ai-just-play-sandbox
https://www.morningbrew.com/emerging-tech/stories/2021/05/26/regulate-ai-just-play-sandbox

[209] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Defi-
nitions, methods, and applications in interpretable machine learning. Proceedings of the
National Academy of Sciences, 116(44):22071–22080, 2019. 3.1

[210] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. Advances in neural information processing systems,
31, 2018. 11.1, 11.6, 11.7

[211] Roi Naveiro and David Ríos Insua. Gradient methods for solving stackelberg games. In
International conference on algorithmic decision theory, pages 126–140. Springer, 2019.
9.12

[212] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In 17th, pages
663–670, 2000. 10.1

[213] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287.
Citeseer, 1999. 9.3

[214] Ta Duy Nguyen and Yair Zick. Resource based cooperative games: Optimization, fairness
and stability. In International Symposium on Algorithmic Game Theory, pages 239–244.
Springer, 2018. 7.3

[215] R. Noothigattu, S. S. Gaikwad, E. Awad, S. Dsouza, I. Rahwan, P. Ravikumar, and A. D.
Procaccia. A voting-based system for ethical decision making. In 32nd, pages 1587–1594,
2018. 10.3

[216] Ritesh Noothigattu, Tom Yan, and Ariel D Procaccia. Inverse reinforcement learning from
like-minded teachers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 9197–9204, 2021. 1.2.2

[217] Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior
sampling for preference-based reinforcement learning. In Conference on Uncertainty in
Artificial Intelligence, pages 1029–1038. PMLR, 2020. 11.2

[218] O. Ohrimenko, S. Tople, and S. Tschiatschek. Collaborative machine learning markets
with data-replication-robust payments. arXiv:1911.09052, 2019. 8.1

[219] OpenSCHUFA. Openschufa project. 2019. URL https://openschufa.de/. 3.1

[220] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022. 4.1.1, 11.2

[221] Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning
with trajectory preferences. arXiv preprint arXiv:2111.04850, 2021. 11.4.1

[222] Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification:
Mapping and mitigating misaligned models. arXiv preprint arXiv:2201.03544, 2022. 4.1.1,
4.3.1, 4.9

[223] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts.
Effective diversity in population based reinforcement learning. Advances in Neural Infor-

415

https://openschufa.de/

mation Processing Systems, 33:18050–18062, 2020. 11.4.1

[224] Judea Pearl. Causality. Cambridge university press, 2009. 4.1, 5.1

[225] B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games. Springer, 2nd
edition, 2007. 8.1

[226] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR,
2020. 4.1

[227] Javier Perote and Juan Perote-Pena. Strategy-proof estimators for simple regression.
Mathematical Social Sciences, 47(2):153–176, 2004. 2.14.1

[228] F. Perron and E. Marchand. On the minimax estimator of a bounded normal mean. Statistics
and Probability Letters, 58:327–333, 2002. 10.4.2

[229] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery
with continuous additive noise models. 2014. 4.6, 4.6, 2

[230] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using
invariant prediction: identification and confidence intervals. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(5):947–1012, 2016. 4.5.1

[231] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference:
foundations and learning algorithms. The MIT Press, 2017. 4.1.1, 4.2.1

[232] Vibhor Porwal, Piyush Srivastava, and Gaurav Sinha. Almost optimal universal lower
bound for learning causal dags with atomic interventions. In International Conference on
Artificial Intelligence and Statistics, pages 5583–5603. PMLR, 2022. 5.7, 5.11

[233] Nikita Puchkin and Nikita Zhivotovskiy. Exponential savings in agnostic active learning
through abstention. In Conference on Learning Theory, pages 3806–3832. PMLR, 2021.
2.14.1

[234] Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter Koolen. Admissible
anytime-valid sequential inference must rely on nonnegative martingales. arXiv preprint
arXiv:2009.03167, 2020. 5.7, 5.8.2, 4

[235] Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic
statistics and safe anytime-valid inference. Statistical Science (forthcoming), 2023. 5.1

[236] Bashir Rastegarpanah, Krishna Gummadi, and Mark Crovella. Auditing black-box predic-
tion models for data minimization compliance. Advances in Neural Information Processing
Systems, 34, 2021. 6.5

[237] J. Rawls. A Theory of Justice. Harvard University Press, 1971. 10.1

[238] Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re going?: Inferring
beliefs about dynamics from behavior. Advances in Neural Information Processing Systems,
31, 2018. 9.5

[239] K. Regan and C. Boutilier. Regret-based reward elicitation for Markov decision processes.
In 25th, pages 444–451, 2009. 10.1

[240] K. Regan and C. Boutilier. Robust policy computation in reward-uncertain MDPs using

416

nondominated policies. In 24th, pages 1127–1133, 2010. 10.1

[241] Arnaud Robert, Ciara Pike-Burke, and Aldo A Faisal. Sample complexity of goal-
conditioned hierarchical reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. 11.1.1.2, 11.2, 11.7

[242] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,
2010. 7.1

[243] Dana Ron. Property testing: A learning theory perspective. Now Publishers Inc, 2008. 6.5

[244] S. Russell, D. Dewey, and M. Tegmark. Research priorities for robust and beneficial
artificial intelligence. AI Magazine, 36(4):105–114, 2015. 10.1

[245] Sivan Sabato, Anand D Sarwate, and Nathan Srebro. Auditing: active learning with
outcome-dependent query costs. In Proceedings of the 26th International Conference on
Neural Information Processing Systems-Volume 1, pages 512–520, 2013. 2.14.1, 6.5

[246] Eduardo Salas, Dana E Sims, and C Shawn Burke. Is there a ?big five? in teamwork?
Small group research, 36(5):555–599, 2005. 7.1

[247] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward,
and Jan Leike. Self-critiquing models for assisting human evaluators. arXiv preprint
arXiv:2206.05802, 2022. 11.1, 11.6

[248] Antoine Scheid, Daniil Tiapkin, Etienne Boursier, Aymeric Capitaine, El Mahdi El Mhamdi,
Éric Moulines, Michael I Jordan, and Alain Durmus. Incentivized learning in principal-
agent bandit games. arXiv preprint arXiv:2403.03811, 2024. 9.1, 9.3, 9.7, 9.10, 9.12,
9.13

[249] Erik Schluntz and Barry Zhang. Building effective agents, dec 2024. URL https://www.
anthropic.com/engineering/building-effective-agents. Accessed:
2025-12-06. 1

[250] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics, 17(6):1163–1170, 1969. 8.2

[251] Andrew Selbst and Julia Powles. “meaningful information” and the right to explanation. In
Conference on Fairness, Accountability and Transparency, pages 48–48. PMLR, 2018. 3.1

[252] Lesia Semenova, Cynthia Rudin, and Ronald Parr. A study in rashomon curves and
volumes: A new perspective on generalization and model simplicity in machine learning.
arXiv preprint arXiv:1908.01755, 2019. 3.6.2, 3.10

[253] Sequoia Capital. Pricing in the AI era: From inputs to out-
comes, with Paid CEO Manny Medina. Sequoia Capital Pod-
cast, 2025. URL https://sequoiacap.com/podcast/
pricing-in-the-ai-era-from-inputs-to-outcomes-with-paid-ceo-manny-medina/.
9.2.2

[254] Arjun Seshadri, Alexander Peysakhovich, and Johan Ugander. Discovering context effects
from raw choice data. ICML 2019, 2019. 7.4.2, 7.8.2, 7.8.8

[255] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to

417

https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://sequoiacap.com/podcast/pricing-in-the-ai-era-from-inputs-to-outcomes-with-paid-ceo-manny-medina/
https://sequoiacap.com/podcast/pricing-in-the-ai-era-from-inputs-to-outcomes-with-paid-ceo-manny-medina/

Algorithms. Cambridge University Press, 2014. 8.7, 8.8

[256] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014. 7.8.2

[257] Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G Dimakis, and Sriram Vish-
wanath. Learning causal graphs with small interventions. Advances in Neural Information
Processing Systems, 28, 2015. 5.1, 5.2

[258] Yonadav Shavit, Benjamin Edelman, and Brian Axelrod. Causal strategic linear regression.
In International Conference on Machine Learning, pages 8676–8686. PMLR, 2020. 4.1

[259] Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel
reinforcement learning and rlhf. arXiv preprint arXiv:2402.06886, 2024. 9.4.2, 9.8.2.2,
9.8.2.2, 9.12

[260] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan.
A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning
Research, 7(10), 2006. 5.7

[261] Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is the answer,
what is the question? Artificial intelligence, 171(7):365–377, 2007. 7.7

[262] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward gaming. Advances in Neural Information Processing Systems, 35:
9460–9471, 2022. 4.9

[263] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling
lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020. 3.10

[264] Ruike Song, Jiawen Li, Zhenlian Niu, and Yixin Gu. Causal reward adjustment: Mit-
igating reward hacking in external reasoning via backdoor correction. arXiv preprint
arXiv:2508.04216, 2024. 4.4

[265] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation,
prediction, and search. MIT press, 2000. 4.6, 2, 5.1, 5.2

[266] Chandler Squires, Sara Magliacane, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu,
and Karthikeyan Shanmugam. Active structure learning of causal dags via directed clique
trees. Advances in Neural Information Processing Systems, 33:21500–21511, 2020. 5.7,
5.11

[267] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss,
Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. Advances in Neural Information Processing Systems, 33:3008–3021, 2020. 11.1,
11.6

[268] Stripe. Outcome-based pricing: A guide for businesses. Stripe Re-
sources, 2025. URL https://stripe.com/en-br/resources/more/
outcome-based-pricing. 9.2.2

[269] E. Štrumbelj and I. Kononenko. An efficient explanation of individual classifications using
game theory. Journal of Machine Learning Research, 11:1–18, 2010. 8.1, 8.4

418

https://stripe.com/en-br/resources/more/outcome-based-pricing
https://stripe.com/en-br/resources/more/outcome-based-pricing

[270] Theodore Sumers, Raj Agarwal, Nathan Bailey, Tim Belonax, Brian Clarke, Jasmine Deng,
Evan Frondorf, Kyla Guru, Keegan Hankes, Jacob Klein, Lynx Lean, Kevin Lin, Linda
Petrini, Madeleine Tucker, Ethan Perez, Mrinank Sharma, and Nikhil Saxena. Monitor-
ing computer use via hierarchical summarization, 2025. URL https://alignment.
anthropic.com/2025/summarization-for-monitoring. 9.7

[271] Ravi Sundaram, Anil Vullikanti, Haifeng Xu, and Fan Yao. Pac-learning for strategic
classification. In International Conference on Machine Learning, pages 9978–9988. PMLR,
2021. 4.1

[272] U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. In 21st,
pages 1449–1456, 2008. 10.6

[273] X Tan and TT Lie. Application of the shapley value on transmission cost allocation in the
competitive power market environment. IEE Proceedings-Generation, Transmission and
Distribution, 149(1):15–20, 2002. 7.3

[274] Yufei Tao, Hao Wu, and Shiyuan Deng. Cross-space active learning on graph convolutional
networks. In International Conference on Machine Learning, pages 21133–21145. PMLR,
2022. 1, 2.14.1

[275] Vinzenz Thoma, Barna Pásztor, Andreas Krause, Giorgia Ramponi, and Yifan Hu. Contex-
tual bilevel reinforcement learning for incentive alignment. Advances in Neural Information
Processing Systems, 37:127369–127435, 2024. 9.12

[276] Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown.
Causal confusion and reward misidentification in preference-based reward learning. arXiv
preprint arXiv:2204.06601, 2022. 4.1.1, 4.4

[277] Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin Gal, and
Stefan Bauer. Interventions, where and how? experimental design for causal models at
scale. Advances in Neural Information Processing Systems, 35:24130–24143, 2022. 5.7

[278] Simon Tong and Daphne Koller. Support vector machine active learning with applications to
text classification. Journal of machine learning research, 2(Nov):45–66, 2001. (document),
2.3.1, 2.2

[279] Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert
Peharz, and Julius Von Kügelgen. Active bayesian causal inference. Advances in Neural
Information Processing Systems, 35:16261–16275, 2022. 5.7

[280] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 601–618, 2016. 3.10

[281] Stratis Tsirtsis and Manuel Gomez-Rodriguez. Decisions, counterfactual explanations and
strategic behavior. arXiv preprint arXiv:2002.04333, 2020. 3.2

[282] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. 2.10.4, 6.1

[283] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999. 2.4.1, 2.11.1

419

https://alignment.anthropic.com/2025/summarization-for-monitoring
https://alignment.anthropic.com/2025/summarization-for-monitoring

[284] Jean Ville. Étude critique de la notion de collectif. 1939. 3

[285] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944. 4.2.3

[286] Sandra Wachter, Brent Mittelstadt, and Luciano Floridi. Why a right to explanation
of automated decision-making does not exist in the general data protection regulation.
International Data Privacy Law, 7(2):76–99, 2017. 3.1

[287] Samir Wadhwa and Roy Dong. On the sample complexity of causal discovery and the
value of domain expertise. arXiv preprint arXiv:2102.03274, 2021. 5.7

[288] M. J. Wainwright. High-dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
University Press, 2019. 10.9

[289] Chaoqi Wang, Zhuokai Zhao, Yifeng Chen, Yiting Li, Yang Yuan, Hao Peng, Heng Ji,
et al. Beyond reward hacking: Causal rewards for large language model alignment. arXiv
preprint arXiv:2501.09620, 2025. 4.4

[290] Francis Rhys Ward, Matt MacDermott, Francesco Belardinelli, Francesca Toni, and Tom
Everitt. The reasons that agents act: Intention and instrumental goals. arXiv preprint
arXiv:2402.07221, 2024. 4.4

[291] Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre Barreto, Benjamin Van Roy, and
Satinder Singh. On efficiency in hierarchical reinforcement learning. Advances in Neural
Information Processing Systems, 33:6708–6718, 2020. 11.2, 46, 11.7, 12, 11.10

[292] WGA. Wga negotiations—status as of may 1, 2023. Writers Guild of Amer-
ica, 2023. URL https://www.wga.org/uploadedfiles/members/member_
info/contract-2023/WGA_proposals.pdf. 2.1

[293] Maranke Wieringa. What to account for when accounting for algorithms: A systematic
literature review on algorithmic accountability. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pages 1–18, 2020. 3.1

[294] M. A Williams. An empirical test of cooperative game solution concepts. Behavioral
Science, 33(3):224–237, 1988. 8.4

[295] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research,
18(136):1–46, 2017. 11.2

[296] Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and
Paul Christiano. Recursively summarizing books with human feedback. arXiv preprint
arXiv:2109.10862, 2021. 11.1, 11.1.1.2, 11.6

[297] Jibang Wu, Siyu Chen, Mengdi Wang, Huazheng Wang, and Haifeng Xu. Contractual rein-
forcement learning: Pulling arms with invisible hands. arXiv preprint arXiv:2407.01458,
2024. 9.1, 9.3, 9.12

[298] Yueh-Hua Wu and Shou-De Lin. A low-cost ethics shaping approach for designing
reinforcement learning agents. In 32nd, pages 1687–1694, 2018. 10.11.1

[299] Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-

420

https://www.wga.org/uploadedfiles/members/member_info/contract-2023/WGA_proposals.pdf
https://www.wga.org/uploadedfiles/members/member_info/contract-2023/WGA_proposals.pdf

based reinforcement learning with finite-time guarantees. Advances in Neural Information
Processing Systems, 33:18784–18794, 2020. 11.2

[300] Zelai Xu, Tiancheng Yu, and Suvrit Sra. Towards efficient evaluation of risk via herding.
Negative Dependence: Theory and Applications in Machine Learning, 2019. 6.5

[301] Ziyu Xu, Ruodu Wang, and Aaditya Ramdas. A unified framework for bandit multiple
testing. In Neural Information Processing Systems, 2021. 5.7

[302] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from noisy and
abstention feedback. In 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1352–1357. IEEE, 2015. 2.6

[303] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from imperfect labelers.
Advances in Neural Information Processing Systems, 29, 2016. 2.4.2, 2.6, 2.11.2

[304] Tom Yan and Zachary Lipton. A theoretical case-study of scalable oversight in hierarchical
reinforcement learning. Advances in Neural Information Processing Systems, 37:27295–
27339, 2024. 1.2.2

[305] Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core. 7.8.2

[306] Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 5751–5759, 2021.
1.2.1

[307] Tom Yan and Chicheng Zhang. The human-ai substitution game: active learning from a
strategic labeler. In The Twelfth International Conference on Learning Representations.
1.1

[308] Tom Yan and Chicheng Zhang. Active fairness auditing. In International Conference on
Machine Learning, pages 24929–24962. PMLR, 2022. 1.1

[309] Tom Yan and Chicheng Zhang. Margin-distancing for safe model explanation. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 5104–5134. PMLR, 2022.
1.1, 4.1

[310] Tom Yan and Chicheng Zhang. Stackelberg learning with outcome-based payment. 2025.
1.2.1

[311] Tom Yan, Ziyu Xu, and Zachary Chase Lipton. Foundations of testing for finite-sample
causal discovery. In Forty-first International Conference on Machine Learning. 1.1

[312] Tom Yan, Christian Kroer, and Alexander Peysakhovich. Evaluating and rewarding team-
work using cooperative game abstractions. Advances in Neural Information Processing
Systems, 33:6925–6935, 2020. 1.2.1

[313] Tom Yan, Shantanu Gupta, and Zachary Lipton. Discovering optimal scoring mechanisms
in causal strategic prediction. arXiv preprint arXiv:2302.06804, 2023. 1.1

[314] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Expert Systems with
Applications, 36(2):2473–2480, 2009. 3.6.1

[315] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhut-

421

dinov, and Alexander J Smola. Deep sets. In Advances in neural information processing
systems, pages 3391–3401, 2017. 7.6.1

[316] Zendesk. Zendesk first in CX industry to offer outcome-based pricing for AI
agents. Zendesk Newsroom, 2025. URL https://www.zendesk.com/newsroom/
articles/zendesk-outcome-based-pricing/. 9.2.2

[317] Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Provable reward-agnostic
preference-based reinforcement learning. arXiv preprint arXiv:2305.18505, 2023. (docu-
ment), 11.1.2, 11.2, 11.4.1, 11.4.2, 81, 10, 11.9.2, 11.9.2.1, 88, 89, 90, 59, 91, 11.9.2.4,
93

[318] Chicheng Zhang and Kamalika Chaudhuri. Beyond disagreement-based agnostic active
learning. Advances in Neural Information Processing Systems, 27, 2014. 6.3.1.1

[319] Hanrui Zhang and Vincent Conitzer. Incentive-aware pac learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 5797–5804, 2021. 4.1

[320] Jiaqi Zhang, Chandler Squires, and Caroline Uhler. Matching a desired causal state via
shift interventions. Advances in Neural Information Processing Systems, 34:19923–19934,
2021. 4.6, 1

[321] Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear causal model.
arXiv preprint arXiv:1205.2599, 2012. 5.7

[322] Geng Zhao, Banghua Zhu, Jiantao Jiao, and Michael Jordan. Online learning in stackelberg
games with an omniscient follower. In International Conference on Machine Learning,
pages 42304–42316. PMLR, 2023. 9.3

[323] J. Zheng, S. Liu, and L. M. Ni. Robust Bayesian inverse reinforcement learning with sparse
behavior noise. In 28th, pages 2198–2205, 2014. 10.1

[324] Han Zhong, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Can reinforcement
learning find stackelberg-nash equilibria in general-sum markov games with myopically
rational followers? Journal of Machine Learning Research, 24(35):1–52, 2023. 9.12

[325] Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with
human feedback from pairwise or k-wise comparisons. arXiv preprint arXiv:2301.11270,
2023. 11.2, 11.4.1, 11.9.2.4

[326] Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. arXiv preprint
arXiv:2204.00043, 2022. 2.14.1

[327] Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned ai. Advances in
Neural Information Processing Systems, 33:15763–15773, 2020. 4.2.3

[328] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Ph.D. thesis, Carnegie Mellon University, 2010. 9.5, 10.7.2

[329] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse
reinforcement learning. In 23rd, pages 1433–1438, 2008. 10.1, 10.3, 10.7.2, 65

[330] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.

422

https://www.zendesk.com/newsroom/articles/zendesk-outcome-based-pricing/
https://www.zendesk.com/newsroom/articles/zendesk-outcome-based-pricing/

arXiv preprint arXiv:1909.08593, 2019. 11.2

423

	1 Overview
	1.1 Adapting ML for Multi-Agent settings
	1.2 ML for and of Multi-agent Systems
	1.2.1 Coordination in Decentralized Multi-agent Systems
	1.2.2 Training in Centralized Multi-agent Systems

	I Adapting Machine Learning for Multi-Agent settings
	2 Strategic Data Collection
	2.1 Introduction
	2.1.1 Active learning with a simple twist

	2.2 The Minimax Learning Game
	2.2.1 Representation of the learning game state
	2.2.2 The minimax learning game

	2.3 E-VS Bisection Algorithm Analysis
	2.3.1 Accessing the E-VS
	2.3.2 Comparing with the VS bisection algorithm

	2.4 Extensions to Other Learning Settings
	2.4.1 Approximate Identifiability
	2.4.2 Noised labeling
	2.4.3 Arbitrary labeling

	2.5 Multi-Task learning from a Strategic Labeler
	2.5.1 Upper Bound
	2.5.2 Lower Bound

	2.6 Related Works
	2.7 Proofs for Section 2.1
	2.7.1 Technical Results

	2.8 Proofs for Section 2.2
	2.8.1 The Minimax Learning Game
	2.8.2 Preliminaries
	2.8.3 Technical Results

	2.9 Proofs for Section 2.3
	2.9.1 Example-dependent Cost Setting: Definitions
	2.9.2 Main Results

	2.10 Proofs for Subsections 2.3.1 and 2.3.2
	2.10.1 Comparing VS versus E-VS
	2.10.2 E-VS Membership Check
	2.10.3 Contrasting E-VS bisection Algorithm with VS bisection
	2.10.4 Comparison with EPI-CAL

	2.11 Additional Material on Section 2.4
	2.11.1 Relaxed Learning Goal
	2.11.2 Noised labeling
	2.11.3 Myopic labeling

	2.12 Proofs for Section 2.5
	2.12.1 Lemmas used
	2.12.2 Upper Bound
	2.12.3 Lower Bound
	2.12.4 Multi-task Active Learning without Abstention

	2.13 Miscellaneous
	2.13.1 Data-based Game Representation

	2.14 Discussions on Additional Related Works and Formulation
	2.14.1 Additional Related Works

	2.15 Experiments

	3 Strategic Prediction
	3.1 Introduction
	3.2 Related Works
	3.3 Problem Formulation
	3.4 Homogeneous Linear Models
	3.5 General Models
	3.6 Experiments
	3.6.1 Linear Models
	3.6.2 Neural Network Models
	3.6.3 Fair accessibility to explanations

	3.7 Proofs
	3.7.1 Deferred Proofs from Section 3.4
	3.7.2 Deferred Proofs from Section 3.5

	3.8 Additional Experiments
	3.8.1 Fair accessibility to explanations
	3.8.2 MMD Explanations
	3.8.3 Effects of Larger Models
	3.8.4 Monotonicity Tables

	3.9 Additional Modeling Discussion
	3.10 Additional Related Works

	4 Causal Strategic Modeling
	4.1 Introduction
	4.1.1 The general problem of Reward Design

	4.2 Preliminaries
	4.2.1 World Model
	4.2.2 Reward Model
	4.2.3 Agent Optimization of Reward Model f

	4.3 Reward Hacking
	4.3.1 Analytical Examples of Reward Model Optimization in Linear Graphs

	4.4 Related Works
	4.5 Characterization of Reward Hacking in Learned Reward Models
	4.5.1 Causal Invariant Predictor
	4.5.2 A Closer Look at Proxy Rewards

	4.6 Leveraging Reward Hacking for Causal Discovery
	4.7 Discussion
	4.8 All Deferred Proofs
	4.9 Additional Related Works

	5 Finite-Sample Causal Discovery
	5.1 Introduction
	5.2 Problem Setup
	5.3 Anytime-valid testing via e-processes
	5.3.1 A general approach for constructing anytime-valid partially oriented graphs
	5.3.2 Construction of per-edge base e-processes
	5.3.3 Growth rate of e-processes
	5.3.4 Robust Testing

	5.4 Combining edge e-processes according to propagation rules
	5.4.1 Enumeration of implications of an edge orientation
	5.4.2 Conversion of expanded hypothesis into an e-process
	5.4.3 Additional power in combined test statistics

	5.5 Experiments on fixed-time versus anytime methods
	5.6 Optimizing test statistic for causal verification
	5.6.1 Construction of test statistic for causal verification
	5.6.2 Reduction to multi-constraint bandit optimization

	5.7 More Related Works
	5.8 Deferred Proofs from sec:baseeprocess
	5.8.1 Deferred Proofs from subsec:edgewisetest
	5.8.2 Deferred Results from subsec:basensm
	5.8.3 Deferred Results from subsec:growrate

	5.9 Deferred Proofs from sec:propeprocess
	5.9.1 Deferred Results from subsec:enumerationimplication
	5.9.2 Deferred Proofs from subsec:hypothesistoeprocess
	5.9.3 Time complexity analysis of algorithms

	5.10 Experiments
	5.10.1 Fixed-time test statistic construction
	5.10.2 Comparing fixed-time vs anytime test statistics
	5.10.3 Understanding the effectiveness of combining test statistics
	5.10.4 Evaluating Derived Upper Bounds on Stopping Time useful for Robust Testing

	5.11 Multi-constraint Bandit Optimization
	5.11.1 Problem Statement
	5.11.2 Reducing causal verification to multi-constraint bandits
	5.11.3 Algorithm Guarantee:
	5.11.4 Algorithm Analysis under Known Arm Means

	5.12 Worked through Examples

	6 Strategic Auditing
	6.1 Introduction
	6.1.1 Additional Notations

	6.2 Related Work
	6.3 Manipulation-Proof Algorithms
	6.3.1 Optimal Deterministic Algorithm
	6.3.2 Efficient Randomized Algorithm with Competitive Guarantees

	6.4 Statistical Limits of Estimation
	6.4.1 Separation between Estimation with and without Manipulation-proofness
	6.4.2 Randomized Algorithms for Direct Estimation
	6.4.3 Case Study: Non-homogeneous Linear Classifiers under Gaussian Populations
	6.4.4 General Distribution-Free Lower Bounds

	6.5 Additional Related Works
	6.6 A General Lemma on Deterministic Query Learning
	6.7 Deferred Materials from Section 6.1
	6.8 Deferred Materials from Section 6.3
	6.8.1 Proof of Theorems 26 and 27
	6.8.2 Proof Sketch of Proposition 35
	6.8.3 Proof of Proposition 36
	6.8.4 Proof of Proposition 37
	6.8.5 Deferred Materials for Section 6.3.2

	6.9 Deferred Materials from Section 6.4
	6.9.1 Distribution-free Query Complexity Lower Bounds for Auditing with VC classes
	6.9.2 Query Complexity for Auditing Non-homogeneous Halfspaces under Gaussian Subpopulations
	6.9.3 Auxiliary Lemmas for Query Learning Lower Bounds

	II Machine Learning for and of Multi-Agent Systems
	7 Multi-agent Attribution via the Shapley Value
	7.1 Introduction
	7.2 Related Work
	7.3 Cooperative Game Theory Preliminaries
	7.4 Cooperative Game Abstractions
	7.4.1 Motivation
	7.4.2 Learning a CGA

	7.5 Approximate Shapley Values
	7.6 Experiments
	7.6.1 Virtual Teams
	7.6.2 Real World Sports Teams

	7.7 Conclusion
	7.8 Appendix
	7.8.1 Identification Theorem Proofs
	7.8.2 PAC Analysis
	7.8.3 Shapley Noise Bound Theorem Proofs
	7.8.4 Discussion about CGA-Specific Errors:
	7.8.5 For Practitioners: How to choose the order of the CGA Model
	7.8.6 Proofs of Facts
	7.8.7 Relationship to the Core
	7.8.8 Experiments Hyper Parameter Search

	7.9 Additional Related Works in Cooperative Game Theory

	8 Multi-agent Attribution via the Core
	8.1 Introduction
	8.1.1 Our Results
	8.1.2 Related Work

	8.2 Preliminaries
	8.3 Theoretical Results
	8.3.1 Computing the Least Core
	8.3.2 Computing the Nucleolus

	8.4 Interlude: A Comparison of the Core and the Shapley Value
	8.5 Empirical Results
	8.5.1 Feature Valuation
	8.5.2 Data Valuation

	8.6 Discussion
	8.7 Proof of Theorem 45
	8.8 Proof of Theorem 46
	8.9 Proof of Theorem 47
	8.10 Approximate Least Core Implementation
	8.11 Additional Experimental Results
	8.11.1 Feature Valuation
	8.11.2 Data Valuation

	9 Decentralized Coordination via Outcome-based Payment
	9.1 Introduction
	9.2 Formulation
	9.2.1 Stackelberg Markov Game
	9.2.2 Payment Settings

	9.3 Related Works
	9.4 Planning in General-sum Games
	9.4.1 Hardness Results
	9.4.2 Positive Results

	9.5 Learning in Cooperative Games without Payment
	9.6 Learning in Cooperative Games with Payment
	9.6.1 Regret Guarantees in Cooperative Games
	9.6.2 Contrasting Trajectory Payment with Upfront Payment

	9.7 Discussion
	9.8 Proofs for Planning Results in General-sum Games
	9.8.1 Hardness Results
	9.8.2 Positive Results

	9.9 Proofs for Learning Results in Cooperative Games without Payment
	9.10 Proofs for Learning Results in Cooperative Games with Payment
	9.10.1 General regret guarantees
	9.10.2 Contrasting Trajectory Payment with Upfront Payment

	9.11 Experiments
	9.12 Additional Related Works
	9.13 Incentive Effects when Follower Reward is Unobservable

	10 Multi-agent Policy Aggregation via IRL
	10.1 Introduction
	10.2 MDP Terminology
	10.3 Approximating the Uniform Mixture
	10.4 How Good is the Uniform Mixture?
	10.4.1 The Uniform Mixture Approximates the Optimal Policy
	10.4.2 It is Impossible to Outperform the Uniform Mixture in the Worst Case

	10.5 The Inverse Multi-Armed Bandit Problem
	10.5.1 Identifying the Optimal Arm
	10.5.2 Experiments

	10.6 Discussion
	10.7 IRL Algorithms
	10.7.1 Apprenticeship Learning
	10.7.2 Max Entropy

	10.8 Proof of Theorem 60
	10.9 Proof of Theorem 61
	10.10 Example for the Tightness of Theorem 61
	10.11 Empirical Results for the MDP setting
	10.11.1 Methodology
	10.11.2 Results

	10.12 Proof of Lemma 77
	10.12.1 Simpler Example
	10.12.2 Completing the Proof

	10.13 Proof of Theorem 62
	10.14 Proof of Theorem 63
	10.15 Gradient Calculation
	10.16 Additional Empirical Results for Inverse Bandits
	10.16.1 Varying parameter
	10.16.2 Varying noise parameter

	10.17 Relationship to Social Choice/Welfare

	11 Learning Multi-agent Hierarchical Systems
	11.1 Introduction
	11.1.1 Preliminaries
	11.1.2 Takeaways

	11.2 Related Works
	11.3 Learning from Cardinal Feedback
	11.3.1 Sub-MDP reward design for Hier-UCB-VI
	11.3.2 Regret Analysis of Hier-UCB-VI

	11.4 Learning from Preference Feedback
	11.4.1 Labeler Feedback and Consequences for Reward Modeling
	11.4.2 Hierarchical Preference Learning
	11.4.3 Hier-REGIME Analysis

	11.5 Discussion
	11.6 More Related Works
	11.7 Concrete Hierarchical MDP Example
	11.8 Proofs for Section 11.3
	11.8.1 Sub-MDP Bonus Construction
	11.8.2 Optimism Lemma
	11.8.3 Supporting results needed for regret analysis

	11.9 Proofs for Section 11.4
	11.9.1 Low-level Feedback is insufficient for learning
	11.9.2 Hierarchical Experiment Design via REGIME zhan2023provable

	11.10 Statistical Efficiency of HRL

	12 Discussion and Future Directions
	13 Bibliography

