Building Situated Agents

DOCTORAL DISSERTATION

Machine Learning Department
CARNEGIE MELLON UNIVERSITY
Pittsburgh, Pennsylvania, 15213
June 2025
CMU-ML-25-106

By
So Yeon MIN

Thesis committee

Ruslan Salakhutdinov, Chair
Yonatan Bisk, Chair
Katerina Fragkiadaki

Daniel Fried
Joyce Chai, University of Michigan

Submitted in partial fulfillment of the requirements of
for the degree of Doctor of Philosophy (PhD) in Machine Learning

Copyright (©) So Yeon Min. All rights reserved.

This research was funded by: Defense Advanced Research Projects Agency award HR00112490375; Office
of Naval Research awards N000141812861 and N000142312368; grants from Amazon, Apple and
Singapore’s Defence Science and Technology Agency; and a graduate fellowship from Apple.

https://www.ml.cmu.edu/
https://www.ml.cmu.edu/

Keywords: Embodied Al, AT Agents, Situated Cognition, Metacognitive Intelligence

Acknowledgements

Completing this thesis was a remarkable journey made possible through the unwavering
support, guidance, and friendship of numerous people, and I am profoundly grateful to

each of them.

First and foremost, I extend my deepest gratitude to my advisors, Professors Ruslan
Salakhutdinov and Yonatan Bisk. The day Ruslan accepted me as his student remains
vividly joyful in my memory; his mentorship has shaped me profoundly, both intellec-
tually and personally, guiding me with fatherly wisdom and deep kindness. Yonatan
fundamentally transformed my understanding of research, teaching me to rigorously
approach unsolved problems and refine my perspectives. His philosophical insights and
thoughtful mentorship have greatly enriched my academic journey. Together, they have
supported me through every challenge. Throughout my PhD journey, they have been

like second parents to me, and I will always hold them in the highest regard.

I would like to express my sincere appreciation to my thesis committee members, Pro-
fessor Daniel Fried, Professor Katerina Fragkiadaki, and Professor Joyce Chai, for their
invaluable feedback, thoughtful questions, and guidance throughout this process. Their

diverse perspectives and expertise significantly strengthened this work.

I am deeply grateful for the support of the Apple AI/ML Fellowship, which provided

invaluable resources for this research.

My heartfelt thanks go to the wonderful colleagues and friends I have made in both labs. 1
am especially thankful to Devendra Chaplot for being my mentor and giving me numerous
learnings, Hubert Yaohung Tsai and Jian Zhang for invaluable internship opportunities
and support at Apple, and my amazing labmates including Shrimai Prabhumoye, Ben
Eysenbach, Ruosong Wang, Kelly He, Brandon Trabucco, Murtaza Dalal, Paul Liang,
Minji Yoon, J. Y. Koh, Fahim Tajwar, Hao Zhu, Jared Fernandez, Yingshan Chang, Leena
Mathur, Abhitha Thankaraj, Rosa Vitellio, Quanting Xie, Jimin Sun, and Vidhi Jain.
Paul’s friendship provided emotional grounding during challenging moments. Minji’s
insightful advice and infectious laughter brightened many days, making even routine lab
meetings genuinely enjoyable. J.Y. Koh helped me navigate web agents with unwavering
support, while Fahim introduced me to the exciting intricacies of reinforcement learning.
Hao’s encouragement and help in my embodied dialogue project and emotional solidarity
were irreplaceable. Jared infused our lab with delightful humor, Yingshan’s candidness
always brought refreshing honesty and laughter, and Leena’s amusing memes and humble

nature kept spirits high. I deeply thank Quanting for collaborating with me on the
ii

iii

groundbreaking embodied-RAG project and teaching me multiple aspects of research. 1
thank Jimin Sun for offering me the opportunity to collaborate on her project. I fondly
recall and miss our many spontaneous video calls during the summer of 2022, where we

enthusiastically exchanged numerous ideas.

I am grateful to my officemates Jacob Springer, Gaurav Ghosal, Christina Baek, Charvi
Rastogi, and Chi-Kuan Yeh, who have consistently provided a welcoming environment

and stimulating discussions.

My PhD life was tremendously enriched by close friendships beyond the academic
environment. Sanket Mehta’s presence marked a joyful turning point in my graduate
journey, filling my life with positivity and laughter through our deep mutual understanding.
I regret that our friendship blossomed relatively late, despite attending the same group
meetings for so long. Emily Byun, my roommate and closest confidante, turned daily
campus life into memorable experiences with endless fun and camaraderie. Jimin Sun’s
charisma and insightfulness brought immense joy and valuable perspectives into my
life. Kundan Krishna’s genuine warmth, constant readiness to lift my spirits through
badminton, and humble generosity have been a continuous source of comfort. Jimin Mun’s
kindness and warmth provided me strength in difficult times. I thank Hwijeen Ahn for his
delicious food, uplifting words, and positivity, all of which have consistently brightened
my days and kept my spirits vibrant. Xuhui Zhou’s infectious humor and fascinating
personality made every moment we spent together truly enjoyable - he is not only a
great researcher but also someone whose company brought so much joy, and I deeply
regret that we never had the opportunity to collaborate academically. Li-Wei Chen’s
exceptionally considerate nature and thoughtful personality made our time together
genuinely delightful. Daye Nam’s remarkable maturity and warmth have greatly inspired
and comforted me, while Sang Keun Choe’s thoughtful advice and deep conversations
have been instrumental in my personal growth. Finally, I thank Jae Yeon (Jane) Pyo, a

kindred spirit who provided intellectually stimulating discussions and genuine friendship.

Outside CMU, I am deeply indebted to my dear friend Jihyun Min, whose emotional
support, exceptional social insight, and exemplary approach to life have guided and
uplifted me profoundly. Hyung Won Chung’s intellectual brilliance and visionary advice
ignited my passion for research. I am deeply grateful for his invaluable guidance and

wish him continued success at the forefront of innovation.

Finally, I express profound gratitude to my family, whose unwavering love and support
have been my foundational strength. My father’s visionary passion for AI and his
encouragement, despite his medical background, deeply motivated my pursuit of this field.

My mother’s selfless dedication to my education and happiness has been a constant source

iv

of strength, a realization that grows deeper with each passing year. Words cannot fully
capture the depth of my appreciation for the sacrifices and unconditional love they have
continuously provided. My younger brother, despite our limited time together due to my
early departure for boarding school and later to the U.S., has shown exceptional maturity
and dedication, fulfilling family responsibilities that I could not perform from afar. I
deeply admire his commitment as he embarks on his journey through medical school and
military service in Korea, and eagerly look forward to cherishing more moments together

in the future.

ABSTRACT

In this thesis, we outline how agents can leverage their pretrained knowledge to effec-
tively operate within their specific environments, focusing on perception, cognition, and
metacognition. Chapter 1 introduces the topic and establishes the concept of situated

agent operation.

Chapters 2 and 3 explore the perceptual capabilities of agents. In Chapter 2, we examine
how an agent can utilize common sense to interpret and make sense of incomplete or
ambiguous sensory data, enabling intelligent navigation and exploration. Chapter 3
delves into how an agent can apply physical common sense to adapt their perceptual

strategies when introduced to new environmental context.

Chapters 4 and 5 assess the cognitive abilities of agents in understanding and executing
situated language instructions. Chapter 4 explores embodied dialogue, focusing on how
agents built from different training mechanisms process and respond to instructions given
in dynamic dialogue settings. Chapter 5 investigates the challenges agents face in following

situated instructions, particularly when human intent is ambiguous or incomplete.

Chapter 6 addresses metacognition by developing a framework for training agents to
recognize their limitations and request assistance judiciously. We formulate metacognitive
help-requesting as a reinforcement learning problem that simultaneously optimizes both

the reward function and the help-requesting policy itself.

Contents

Acknowledgements ii
Abstract v
Contents vi
List of Figures X
List of Tables Xiv
1 Introduction 1
2 FILM: Following Instructions in Language with Modular Methods 3
2.1 Introduction e 3
2.2 Prior Work e 4
2.3 Task Expxlantion L 6
2.4 Methods e e e 7
2.4.1 Language Processing (LP) 7

2.4.2 Semantic Mapping Module L. 8

2.4.3 Semantic Search Policy 9

2.4.4 Deterministic Policy 10

2.5 Experiments and Results. o oo 10
2.5.1 Results 12

2.5.2 Ablations Studies and Error Analysis. 12

2.5.3 Effects of the Semantic Search Policy 15

2.6 Conclusion and Next Steps 16

3 Self-Supervised Object Goal Navigation with In-Situ Finetuning 18
3.1 Imtroduction 18
3.2 Prior Work e 20
3.3 Task Explanation o 22
3.4 Methods 24
3.4.1 Location Consistency for Visual Perception 24

3.4.2 A Navigation Policy from Self-Labeled Scenes 25

V1

Contents vii

6

3.5 Experiments and Results. oo 26
3.5.1 Real World o 26
3.5.1.1 Real World ObjectNav 27

3.5.1.2 Self-Supervised In-Situ Training of Visual Perception . . 28

3.5.2 Simulation 29
3.5.2.1 ObjectNav in simulation 29

3.5.2.2 ErrorModes 29

3.5.2.3 Full. vs Self. Semantic Segmentation 30

3.5.3 Full. vs Self. Nav Policy 31

3.6 Conclusion and Next Steps 32
Data and Model challenges in Embodied Dialogue 34
4.1 Introduction L 34
4.2 Piror Work e 35
4.3 Tasks Explanation oo 37
4.4 Methods 37
4.5 Experiments and Results., 38
4.5.1 Explanation of Metrics oL 38
4.5.2 Challenges in Evaluation. 38
4.5.3 Challenges in Training 40

4.6 Conclusion and Next Steps o oL 42
Situated Instruction Following 43
5.1 Introduction L e 43
5.2 Prior Work 46
5.3 Task Expalantion L 48
5.3.1 Assumptions and Scopeo 48
5.3.2 Tasks 48
5.3.3 Dataset Construction 50

5.4 Methods 52
5.4.1 Reasonero 52
5.4.2 PROMPTER ittt ittt it e 54

5.5 Experiments and Results. 55
5.5.1 Results e 56
5.5.2 Ablations and Analysis oo 56

5.6 Conclusion and Next Steps 0. 58

Training LLM Agents to Request Interventions under Budget Con-

straints 60
6.1 Introduction 61
6.2 Related Work oL o 62
6.3 Task and Setup 64
6.4 Method: Requesting Targeted Interventions 66

6.4.1 Method Overview 66

6.4.2 Algorithm 68

6.4.3 Extension to Multiple Interventions 70

Contents viii

6.5 Results. e 71
6.5.1 Main Results 72

6.5.2 Analysis 73

6.6 Conclusion, Limitations, and Broader Impacts 74

7 Conclusions 76
71 Summary 76
7.2 Takeaways 77
7.3 Looking Forward 80

A Appendix for Chapter 2 86
A.1 Task Definition 86
A.2 Semantic Mapping Module oL 86
A.3 Semantic Search Policy Module 87
A.4 Tmpact of Grid Size on the Effectiveness of the Semantic Search Policy . . 87
A.5 Details on the Deterministic Policy 88
A.6 More Explanationson Table 3. 88
A.7 Assignments of Rooms into “Large” and “Small” in Valid Unseen 89
A.8 Protocols for Reproducing the Semantic Policy 89
A.9 A Language Processing module without the template assumption 90

B Appendix for Chapter 4 92
B.1 More Discussion of Symbiote 0oL 92
B.2 How the Statistics of Section 5 were Obtained 92
B.3 TEACh Prefiltering 94

C Appendix for Chapter 5 95
C.1 Task Details o e 95
C.1.1 Task Filtering 95

C.1.2 Details on Language Directives 95

C.2 Prompt Examples e 96
C.2.1 REASONER prompt examples 96

C.2.2 PROMPTER prompt examples 99

C.3 Execution Details 100
C.3.1 Map Update e 100

C.3.2 Execution Tools 101

C.3.3 Following and Anticipating the Human 101

C.4 Detailed Results 102
C.4.1 OracleBaseline 102

C.4.2 Full Results with Success Rate 102

D Appendix for Chapter 6 103
D.1 MCTS Implementation Details 103
D.2 Detailed Explanation of Section 5.1 103

D.2.1 Explanation of “Strategy Clash” 103

Contents ix
D.2.1.1 Divergent Exploration Strategies 104

D.2.1.2 The Single Intervention Convergence 104

D.2.2 Explanations of Table 4 105

D.2.3 Failure modes of thresholding-based baseline 105

D.3 Detailed Derivation of Usage/Policy Iteration 106
D.3.1 Part I: Decomposing Value Function into Success and Usage . 106

D.3.2 Part II: Arriving at Piecewise Definition of Usage 107

D.3.3 Part III: Arriving at Optimal Policy and Usage 109

D.4 Proof of Convergence L e 110
D.5 Details on Extensions to Multiple Interventions 111
D.5.1 Formulation and Reward Regime 111

D.5.2 Derivation of Usage/Policy Iteration for Multiple Interventions . . 112

D.5.3 Algorithm o 113

D.6 Table 3 Results Detail o 114
Bibliography 116

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

An Embodied Instruction Following (EIF) task consists of multiple subtasks. (a)
FILM method overview: The agent receives the language instruction and the
egocentric vision of the frame. At every time step, a semantic top-down map of
the scene is updated from predicted depth and instance segmentation. Until the
subgoal object is observed, a search goal (blue dot) is sampled from the semantic
search policy. (b) Example trajectories: Trajectory of an existing model
(HITUT [190]) is plotted in a straight green line, and that of FILM is in dotted
red. While HiTUT’s agent travels repeatedly over a path of closed loop (thick
green line, arrow pointing in the direction of travel), FILM’s semantic search
allows better exploration and the agent sufficiently explores the environment and
completes all subtasks.o
FILM method overview. The “grouping” in blue, green, and yellow denote
the coarseness of time scale (blue: at the beginning of the episode, green: at every
time step, yellow: at a coarser time scale of every 25 steps). At the beginning
of the episode, the Language Processing module processes the instruction into
subtasks. At every time step, Semantic Mapping converts egocentric into RGB
a top-down semantic map. The semantic search policy outputs the search goal
at a coarse time scale. Finally, the Deterministic Policy decides the next action.
Modules in bright green are learned; the deterministic policy (grey) is not.

The Language Processing module. (a): Two BERT models respectively
predict the “type” and the “arguments” of the instruction. (b): The predicted
“type” from (a) is matched with a template, and the “arguments” of the template
is filled with the predicted “argument.”o
Example visualization of semantic search policy outputs. In each of
(a), (b), Top left: map built from ground truth depth/ segmentation, Top right:
map from learned depth/ segmentation, Bottom left: ground truth “coarse”
distribution, Bottom right: predicted “coarse” distribution. (a): While the true
location of the “bowl” was on the upper left coffee table, the policy distributes
mass over all furniture likely to have it on. (b): The true location of the faucet is
on the sink and at the end of the bathtub. While the policy puts more mass near
the sink, it also allocates some to the end of the bathtub.
Average number of subtasks completed until failure, by task type (light green/
light blue respectively for valid seen/ unseen). Dark green/ blue: average number
of total subtasks in valid seen/ unseen. L oL
Example trajectories of FILM with and without semantic search
policy. Paths near the subgoals that were traveled 3 times or more are
in straight red. The goal (which can be the search goal or an observed
instance of a subgoal object) isin blue.. L.

X

List of Figures

xi

3.1

3.2

3.3

3.4

3.5

4.1

Real World ObjectNav and in-Situ Training (a) Picture of our robot
in one of the airbnbs rented for ObjectNav experiments. (b) Example
ObjectNav (real-world) failure mode and its remedy with in-situ self-
supervised (location consistency) training. The agent starts at the living
room and wrongly detects a small patch of a black object as “TV.” The
segmentation model avoids this distractor after in-situ location consistency
training. e e e
Fine-tuning visual perception using self-supervision: First, we
produce a 3D voxel grid of the scene from depth sensors of a robot. We
randomly select a location and put 50cm?® cube, and make the robot
view it from 8 different angles and 40 different poses. If the ray reflects
back from this cube to the robot’s camera, we save the corresponding
egocentric RGB frame. These collected images are labeled with “location
consistency” pseudo-labels in a self-supervised manner. We also show
examples of collected “location consistent” images. The ResNet backbone
of pre-trained semantic segmentation models can be fine-tuned with our
data using contrastive loss. Lo
ObjectNav policy training and pipeline. (a) Self-supervised Object-
Nav policy training: The agent constructs self-labeled semantic maps of
the environment using the segmentation model trained in Stage I. Then,
we create a partial map out of full maps, and compute potential functions
upon the partial map from the unexplored areas and locations of goal
objects. Finally, we apply PONI policy training with the self-labeled
potential functions. (b) ObjectNav agent pipeline: Following previous
work [ogn, 119, 98], we equip our ObjectNav agent with the semantic
mapper and the Object Nav policy. The learned components are colored
L 0= < 0
Example ObjectNav task in a real house. The goal object is toilet.
Visual perception, semantic mapping, and the ObjecNav policy were all
accurate enough to lead to a task success.
Data challenges: bad rendering and annotations.

Examples of suboptimal demonstrations that can be harmful for training
and evaluation. (a: no-op) The driver grabs a knife, looks up and down,
and put its down, although nowhere in the dialogue indicates to do these
actions, nor do they facilitate the high-level goal. (b: unaligned intent)
In EDH sessions 1 and 2, the commander asks for an item (a slice of
tomato) and provides the location of the knife, but the driver performs
unaligned actions. In session 3, the driver suddenly asks ”knife?”, but
performs a long sequence of implied but not stated actions.

List of Figures

xii

5.1

5.2

5.3

6.1

6.2

6.3

Situated Instruction Following. The tasks in SIF consist of two phases:
an exploration phase (phase 1) and a task phase (phase 2). PNP represents
a conventional static Pick-and-Place task used for comparison, wherein the
environment remains unchanged after the exploration phase. Sy, and
Sep; introduce two novel types of situated instruction following tasks. In
these tasks, the objects and human subjects move during the task phase.
Nuanced communication regarding these movements is provided, neces-
sitating reasoning about ambiguous, temporally evolving, and dynamic
human intent.o
Reasoner: (a) The semantic mapper is updated at every timestep, whereas the
prompt generator and planner are activated either upon completion of the last
high-level action or when a new decision is required. (b) The prompt consists of
system prompt, environment prompt, format prompt. L.
Text Prompt Generation of Human Trajectory: The white regions in
the maps are possible regions that the human might walk towards; rooms with
more than half of the area included in the white region are included in the text
prompt. The red triangle is the agent position/direction, green star and dot are
respectively current observed human position, anticipated human position in 10
steps. The text prompt at every 20 timesteps is given to REASONER (and at time
step 0 to PROMPTER which is open-loop), to decide if there is enough evidence
for the clarity of the human’s intent.

Unreliable agents and training challenges. (a) An unreliable agent does
not communicate its inability in advance, causing surprise and catastrophe. (b)
A “helper”, a state-wise classifier, can decide when are optimal timings to request
interventions under budget constraints. (c) With budget C' on interventions, chal-
lenge lies in determining a reward function that guides appropriate help-requesting.
Concurrently, we have to find the optimal help-requesting policy /demonstration.
(a) A SIF task requires the agent to locate objects, interact with humans, and
perform household tasks in a sequence of discrete actions. Relevant segment is
highlighted in orange; states are represented in text. (b) Example task progression
with base actor only and helper with base actor/intervention (MCTS); the helper
triggered two interventions and salvaged the agent to success.
Method Overview. Our method is composed of reward/policy search and
one-pass helper training. (a): Reward/policy search is implemented with a quick
inner loop of policy search that outputs E[U], expected usage of interventions
under optimal policy (7*) with r. The outer loop (reward search) is binary search
that compares E[U] with the budget constraint C' and adjusts r. (b): Policy
search generates annotation (optimal tabular policy 7*) on train tasks as well as
E[U]. (c): Helper model is trained once at the end, with supervised fintuening,
using the annotation 7). oL

61

List of Figures

xiii

6.4

6.5

Al

A2

A3

D.1

Policy search process. Our method involves: (a) Collecting state dynamics
by rolling out trajectories with base actors and randomly triggered interventions.
(b) Caching success probabilities pheip(s) and pnonelp(s) for each state using
separate LLM scorers from intervention and base actor rollouts. (c) Performing
tabular reinforcement learning through alternating usage and policy computation
until convergence, outputting the optimal policy 7* and expected intervention
usage E[U]. Right panels show the key mathematical formulations guiding these
computations. L oL oL o e e e e
Seen vs. unseen states in the training data of the helper. The orange region
highlights all states collected in Phase I, each labeled with 7* (Nohelp or Help).
The green arrow shows rollout from so.

ALFRED overview. The goal is given in high level and low level
language instructions. For and agent to achieve “success” of the goal, it
needs to complete a sequence of interactions (as in the explanations in the
bottom of the figure) and the entailed navigation between interactions. . .
Semantic mapping module. Figure was partially taken from chap-
lot20200bjecto
Semantic search policy.,

Prohelp(s) measured by the PRM across the task. Interventions on PRM-
chosen states (red line and stars) cause repeated toggling that traps the
agent in low-pponelp () regions, resulting in worse outcomes than random

87

interventions (blue line and stars), which ends at step 10 with task success.106

List of Tables

2.1

2.2
2.3
24
2.5

2.6
2.7

3.1

3.2
3.3
3.5

3.4

3.6

3.7

3.8

Test results. Top section uses step-by-step instructions; bottom section
does not. Bold numbers are top scores in each section. Blue numbers are

the top SR on Tests Unseen (by which the leaderboard is ranked). 13
Ablation results on validation splits. Base Method is FILM with semantic

search policy. e 14
Error Modes. Table showing percentage of errors due to each failure

mode for FILM on the Valset. 14
Performance by task type of base model on validation. 14
Dev set results (valid unseen) of FILM with/ without semantic search policy. 15
Performance with and without semantic search policy, by room size. 15
Performance with and without semantic search policy, by task type. 16

Comparison of self-supervised ObjectNav methods. Our work (1)
employs end-to-end self-supervised training both for the visual perception
and navigation policy, and (2) demonstrates the sim2real transfer of both

components to the real world.! L 21
ObjectNav Results Success rate of 18 tasks in 3 AirBnBs. 27
Semantic segmentation gains from real-world in-situ LocCon finetuning. . 28

Error modes of Gibson-1 ObjectNav. *: Error modes unique to
stmulation. . .. Lo 29
ObjectNav validation results in Simulation (Gibson-1 and -2). We
compare fully supervised, partially self-supervised, and fully self-supervised
methods with our approach. We perform competitively with SOTA fully
supervised methods on Gibson-1 and significantly outperforms end-to-
end self supervised methods on Gibson-2. Cells with N.A. are due to
gaps in the literature; ZER and ZSON only report results on Gibson-2,
while the other methods only do so on Gibson-1. % stands for our own
implementation of these methods, since the original code of [119] that
reports results of SemExp and PONI on Gibson-1 was not fully available. 30
Semantic segmentation results on simulated data. Results are on
the 6 goal objects (IOUs of all 15 objects are in Table 3.7); Self-Seg and
Full-Seg are denoted Self. and Full. 31
Semantic segmentation by object category. We provide a category
level IOU breakdown of results in Table 3.6. Self. shows a significant
boost over O-t-S. for Toilet, Bed, and Oven; Full. can hurt performance

sometimes (e.g. Book, Cup, TV'). 32
ObjectNav “Success Rate/ SPL” on Gibson-1 for segmentation models
with different navigation policy models. 32

X1v

List of Tables XV

4.1

4.2

4.3

4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

5.9

6.1

6.2

6.3

Al

Representative state changes that do not have direct correspondence with
the dialogue, and the percentage of human demonstrations that contain
these actions. The action types listed here bring “state changes” that are
counted during EDH evaluation. For example, an agent would “fail” an
EDH task if the human annotator of the task left coffee machine off at
the end, although the task (e.g. “Make coffee”) or dialogue itself does not
mention that it belefton.o 39
Representative unnecessary action types that do not have associations with
the high level goal or the dialogue, and the percentage of demonstrations
that contain these action types in train/ valid seen/ valid unseen splits. . 39
EDH and TfD performances of E.T., Symbiote, and FILM. While the
SR on TfD is very low for all models, E.T.’s performance on TfD drops
significnatly due to replication of errors and lack of grounding of high-level
semantics. L. 40
Percentage of tasks in which a model exhibited replication of No Op actions. 41
We consider a task as involving “query utterances”, if in its demonstration,
a relevant object inside an originally closed receptacle was picked up.
SR/GC measure the vanilla task success on tasks with “query utterances”;
SR/GC w. Query measure if the success was achieved using information

in the “query utterances.” L Lo oo 42
Comparison of Embodied Instruction Following Datasets. 46
Dataset stats. Data statistics across splits and conditions. 49
Template Instructions (1) 50
Template Relocations (C) 50
Execution tools for REASONER; details in Tab. C.3. 54

SPL performance of PROMPTER and REASONER across splits. In each sectioned-
row, the top row assumes oracle perception (semantic segmentation and manipu-
lation); the bottom row assumes learned semantic segmentation and heuristic
manipulation. To minimize the burden on API costs and time, we have lim-
ited LLM API calls for plan generation to 15 times for both PROMPTER and

REASONER. SR performance is shown in Table D.4. 55
Ablation SR with Oracle plan, for visual and execution errors on Val Seen &
Unseen combined.o 0oL e e 56
Reasoning Error Modes. Percentage of failed tasks for each error (w/
oracle perception) on Val Seen & Unseen combined. 57
Ambiguous vs Clear tasks. SPL and SR of REASONER and PROMPTER with
G.T./learned vision and manipulation on Val seen & unseen combined. o8

Performance and intervention usage comparison of our method and baselines,
across task types. A more powerful model was used as the intervention. 70
Performance and usage comparison across intervention types on S_obj tasks. Our
method achieves near-100% intervention performance while using significantly
fewer interventions. Lo L Lo e e e e e 71

Performance and Intervention Usage Comparison (S_obj only). 72

Results of FILM reproduced across different starting seeds of the semantic policy.
The =+ error bar in the AvG. row denotes the sample variance. 90

List of Tables xvi

A.1 Complete list of arguments ([ObjectCat], [Recep], [RoomFunction]) for

language directives I and C' (Sec. 5.3.2) 96
A.2 Human Activity, by each room function 96
C.3 Execution tools for REASONER/PROMPTER and their working details/af-

fordance.o 101

D.4 SR performance of PROMPTER and REASONER across splits. In each
sectioned-row, the top row assumes oracle perception (semantic segmen-
tation and manipulation); the bottom row assumes learned semantic
segmentation and heuristic manipulation. L. 102

B.1 Task outcome prediction performance with pnoheip(s)e « « « « « « v v 104

Chapter 1

Introduction

The rapid advancement of artificial intelligence has produced systems of remarkable capa-
bility, yet their deployment in real-world environments continues to reveal fundamental
limitations. These limitations are not merely a matter of computational power or model
scale, but rather stem from a deeper challenge: the gap between artificial intelligence
trained on static datasets and the dynamic, contextual demands of situated environments.
While large language models and computer vision systems demonstrate impressive perfor-
mance on benchmark tasks, they often struggle when faced with the nuanced, ambiguous,
and incomplete information that characterizes real-world scenarios. Effective embodied
intelligence requires more than powerful pretrained models—it demands the ability to

operate situatedly.

This thesis explores situated intelligence through three interconnected dimensions that
emerge when artificial agents must operate in real-world environments. At the perceptual
level, agents must construct coherent understanding from fragmentary and sometimes
contradictory sensory data. Unlike controlled datasets, real environments present partial
observability, sensor noise, and dynamic changes that require agents to leverage common
sense and physical consistency to maintain accurate world models. At the cognitive
level, agents must interpret human communication that is inherently contextual and
often underspecified. Real instructions rely on shared understanding, environmental
context, and pragmatic inference that extends far beyond literal semantic parsing. At
the metacognitive level, agents must recognize the boundaries of their own knowledge

and capabilities, knowing when to act confidently and when to seek assistance.

Each of these dimensions presents distinct technical challenges that this thesis addresses
through novel computational approaches. Rather than treating these as separate problems,
we demonstrate how they form an integrated framework for situated intelligence, where
perceptual robustness enables cognitive understanding, and metacognitive awareness

guides appropriate action selection.

Chapter 1. Introduction 2

Perceptual Challenges Chapters 2 and 3 address perceptual challenges in situated en-
vironments. Chapter 2 introduces a modular approach to embodied instruction following,
demonstrating how pretrained components can be integrated with semantic search policies
that leverage common sense to navigate incomplete sensory data. This work reveals that
explicit spatial memory coupled with semantic reasoning can significantly outperform
end-to-end approaches, particularly in unseen environments. Chapter 3 extends this
foundation by developing self-supervised methods for adapting visual perception to new
environments. Through location consistency as a source of self-supervision, we show
how agents can adapt both their visual understanding and navigation policies without

requiring expensive labeled data, enabling practical deployment in novel environments.

Situated Instructions Chapters 4 and 5 examine the cognitive challenges of inter-
preting and executing situated language instructions. Chapter 4 analyzes embodied
dialogue through the lens of training methodology, comparing modular approaches with
end-to-end behavior cloning. Our analysis reveals that agents trained via behavior
cloning are particularly vulnerable to replicating errors and struggling with pragmatic
grounding, while both approaches face fundamental challenges in handling the inherent
ambiguity of natural dialogue. Chapter 5 introduces the Situated Instruction Follow-
ing (SIF) benchmark to systematically evaluate agents’ ability to handle ambiguous,
temporally evolving, and dynamic human intent. Through comprehensive evaluation of
state-of-the-art models, including GPT-4, we demonstrate that current approaches excel
at common-sense reasoning but struggle significantly when faced with uncertainty that

requires active disambiguation.

Requesting Interventions Chapter 6 develops a framework for metacognitive aware-
ness in Al agents. We formulate the problem of knowing when to request help as a
reinforcement learning challenge that simultaneously optimizes both the reward structure
and the help-requesting policy. Our key insight is to predict expected intervention
usage before training the policy, enabling efficient identification of optimal configurations
without repeated retraining. By integrating LLM-based scoring with tabular reinforce-
ment learning, we achieve systems that match the performance of always-intervening
approaches while using only a fraction of the interventions, demonstrating principled

approaches to confidence calibration and help-seeking behavior.

Together, these contributions establish a comprehensive framework for situated intelli-
gence that moves beyond the limitations of purely data-driven approaches. By addressing
perception, cognition, and metacognition as interconnected challenges, this thesis pro-
vides both theoretical insights and practical solutions for developing Al systems that can
operate effectively in the complex, dynamic environments where human-Al collaboration

ultimately takes place.

Chapter 2

FILM: Following Instructions in
Language with Modular Methods

In this chapter, we introduce FILM [98], a modular agent that operates in the ALFRED
framework [133]. I discuss the integration of pretrained components into a fully embodied
agent and how it utilizes common sense to navigate environments with incomplete or
ambiguous sensory data. The commensense is implemented by a learned semantic search

policy module that augments the agent’s imperfect perception.

2.1 Introduction

Human intelligence simultaneously processes data of multiple modalities, including but
not limited to natural language and egocentric vision, in an embodied environment.
Powered by the success of machine learning models in individual modalities [bert, 58,
149, 4], there has been growing interest to build multimodal embodied agents that
perform complex tasks. An incipient pursuit of such interest was to solve the task of
Vision Language Navigation (VLN), for which the agent is required to navigate to the

goal area given a language instruction [6, 46, 197].

Embodied instruction following (EIF) presents a more complex and human-like setting
than VLN or Object Goal Navigation [57, 23, 41]; beyond just navigation, agents are
required to execute sequences of sub-tasks that entail both navigation and interaction
actions from a language instruction (Fig. 2.1). The additional challenges posed by EIF
are threefold - the agent has to understand compositional instructions of multiple types
and subtasks, choose actions from a large action space and execute them for longer

horizons, and localize objects in a fine-grained manner for interaction [105].

Chapter 2. FILM: Following Instructions in Language with Modular Methods 4

Most existing methods [190, 70, 106] for EIF have relied on neural memory of various types
(transformer embeddings, LSTM state), trained end-to-end with expert trajectories upon
raw or pre-processed language/visual inputs. However, EIF remains a very challenging
task for end-to-end methods as they require the neural net to simultaneously learn
state-tracking, building spatial memory, exploration, long-term planning, and low-level

control.

In this work, we propose FILM (Following Instructions in Language with Modular
methods). FILM consists of several modular components that each (1) processes language
instructions into structured forms (Language Processing), (2) converts egocentric visual
input into a semantic metric map (Semantic Mapping), (3) predicts a search goal location
(Semantic Search Policy), and (4) outputs subsequent navigation,/ interaction actions
(Deterministic Policy). FILM overcomes some of the shortcomings of previous methods
by leveraging a modular design with structured spatial components. Unlike many of the
existing methods for EIF, FILM does not require any input that provides sequential
guidance, namely expert trajectories or low-level language instructions. While [11]
recently introduced a method that uses a structured spatial memory, it comes with
some limitations from the lack of explicit semantic search and the reliance on expert

trajectories.

On the ALFRED [133] benchmark, FILM achieves State-of-the-Art performance (24.46%)
with a large margin (8% absolute) from the previous SOTA [11]. Most approaches rely
on low-level instructions, and we too find that including them leads to an additional
2% improvement in success rate (26.49%). FILM’s strong performance and our analysis
indicate that an explicit structured spatial memory coupled with a semantic search
policy can provide better state-tracking and exploration, even in the absence of expert

trajectories or low-level instructions.

2.2 Prior Work

A plethora of works have been published on embodied vision and language tasks, such
as VLN [6, 46, 197], Embodied Question Answering [35, 54], and topics of multimodal
representation learning [154, 10], such as Embodied Language Grounding [111]. For Visual
Language Navigation, which is the most comparable to the setting of our work, methods
with impressive performances [68, 157, 87] have been proposed since the introduction of
R2R [6]. While far from conquering VLN, these methods have shown up to 61% success

rate on unseen test environments [68].

For the more challenging task of Embodied Instruction Following (EIF), multiple methods
have been proposed with differing levels of modularity in the model structure. As a

baseline, [133] has presented a Seq2Seq model with an attention mechanism and a progress

Chapter 2. FILM: Following Instructions in Language with Modular Methods 5

(@) Instruction: Put a heated apple on a counter.

Semantic Search Appl
Policy ppie
< ©.Sink
t N—

Semantic Mapping l
' Module ' r W Counterto

(b) Subtask: Pick Up Apple Subtask: Microwave Apple Subtask: Put Apple on Countertop
.

-rp— - *L- " . - -rp— - *L-
c gl]

FIGURE 2.1: An Embodied Instruction Following (EIF) task consists of multiple
subtasks. (a) FILM method overview: The agent receives the language instruction
and the egocentric vision of the frame. At every time step, a semantic top-down map of
the scene is updated from predicted depth and instance segmentation. Until the subgoal
object is observed, a search goal (blue dot) is sampled from the semantic search policy.
(b) Example trajectories: Trajectory of an existing model (HiTUT [190]) is plotted
in a straight green line, and that of FILM is in dotted red. While HiITUT’s agent travels
repeatedly over a path of closed loop (thick green line, arrow pointing in the direction
of travel), FILM’s semantic search allows better exploration and the agent sufficiently
explores the environment and completes all subtasks.

I
AY
1l
>

monitor, while [110] proposed to replace to seq2seq model with an episodic transformer.
These methods take the concatenation of language features, visual features, and past
trajectories as input and predict the subsequent action end-to-end. On the other hand,
[70, 190, 105] modularly process raw language and visual inputs into structured forms,
while keeping a separate “action prediction module” that outputs low-level actions given
processed language outputs. Their “action taking module” itself is trained end-to-end
and relies on neural memory that “implicitly” tracks all of spatial, progressive, and states
of the agent. Unlike these methods, FILM’s structured language/ spatial representations
make reasons for failure transparent and elucidates directions to improve individual

components.

Recently, [11] has proposed a more modular method with a persistent and structured
spatial memory. Language and visual input are transformed into respectively high-level
actions and the 3D map. With the 3D map and high-level actions as input, low-level
actions are predicted with a value-iteration network (VIN). Navigation goals for the VIN
are sampled from a model trained on interaction pose labels from expert trajectories.
Among all proposed methods for EIF, FILM necessitates the least information (neither

low-level instructions nor expert trajectories are needed, although the former can be

Chapter 2. FILM: Following Instructions in Language with Modular Methods 6

taken as an additional input). Furthermore, FILM addresses the problem of search/

exploration of goal objects.

Various works in visual navigation with semantic mapping are also relevant. Simultaneous
Localization and Mapping (SLAM) methods, which build 2D or 3D obstacle maps, have
been widely used [47, 65, 138]. In contrast to these works, recent methods [23, 22]
build semantic maps with differentiable projection operations, which restrain egocentric
prediction errors amplifying in the map. The task of [23, 22] is object goal navigation,
a much simpler task compared to EIF. Furthermore, while [23] employs a semantic
exploration policy, our and their semantic policies serve fundamentally different purposes;
while their policy guides a general sense of direction among multiple rooms in the search
for large objects (e.g. fridge), ours guides the search for potential locations of small and
flat objects which have little chance of detection at a distance. Also, our semantic policy
is conditioned on language instructions. [12, 13] also successfully utilized semantic 2D
maps in grounded language navigation tasks. These works are for quadcopters, whose
fields of view almost entirely cover the scene and the need for “search” or “exploration”
is less crucial than for pedestrian agents. Moreover, their settings only involve navigation

with a single subtask.

2.3 Task Expxlantion

We utilize the ALFRED benchmark. The agent has to complete household tasks given only
natural language instructions and egocentric vision (Fig. 2.1). For example, the instruction
may be given as “Put a heated apple on the counter,” with low-level instructions (which
FILM does not use by default) further explaining step-by-step lower level actions. In this
case, one way to “succeed” in this episode is to sequentially (1) pick up the apple, (2)
put the apple in the microwave, (3) toggle the microwave on/off, (4) pick up the apple
again, and (4) place it on the countertop. Episodes run for a significantly longer number
of steps compared to benchmarks with only single subgoals; even expert trajectories,
which are maximally efficient and perform only the strictly necessary actions (without

any steps to search for an object), are often longer than 70 steps.

There are seven types of tasks (§A.1), from relatively simple types (e.g. Pick & Place) to
more complex ones (e.g. Heat & Place). Furthermore, the instruction may require that
an object is “sliced” (e.g. Slice bread, cook it in the microwave, put it on the counter).
An episode is deemed “success” if the agent completes all sub-tasks within 10 failed

low-level actions and 1000 max steps.

Chapter 2. FILM: Following Instructions in Language with Modular Methods 7

[_semantic
Language Search Policy

(Pan, PickUp), (SinkBasin, Put), (Faucet, ToggleOn),

Drop a clean pan

= :
on the table bl (Faucet, ToggleOff), (Pan, PickUp), (Table, Put) 17
| Search Goal |
Egocentric RGB | Semantic Map I {. oot

Semantic 1
| eterministic
Policy

el s e '
RotateRight

F1GURE 2.2: FILM method overview. The “grouping” in blue, green, and yellow
denote the coarseness of time scale (blue: at the beginning of the episode, green: at
every time step, yellow: at a coarser time scale of every 25 steps). At the beginning of
the episode, the Language Processing module processes the instruction into subtasks. At
every time step, Semantic Mapping converts egocentric into RGB a top-down semantic
map. The semantic search policy outputs the search goal at a coarse time scale. Finally,
the Deterministic Policy decides the next action. Modules in bright green are learned;
the deterministic policy (grey) is not.

2.4 Methods

FILM consists of three learned modules: (1) Language Processing (LP), (2) Semantic
Mapping, and (3) Semantic Search Policy; and one purely deterministic navigation/
interaction policy module (Fig. 2.2). At the start of an episode, the LP module processes
the language instruction into a sequence of subtasks. Every time step, the semantic
mapping module receives the egocentric RGB frame and updates the semantic map. If
the goal object of the current subtask is not yet observed, the semantic search policy
predicts a “search goal” at a coarse time scale; until the next search goal is predicted,
the agent navigates to the current search goal with the deterministic policy. If the goal
is observed, the deterministic policy decides low-level controls for interaction actions (e.g.
“Pick Up” object).

2.4.1 Language Processing (LP)

The language processing (LP) module transforms high-level instructions into a structured
sequence of subtasks (Fig. 2.3). It consists of two BERT [37] submodules that receive the
instruction as an input at the beginning of the episode. The first submodule (BERT type
classification) receives the instruction and predicts the “type” of the instruction - one of
the seven types stated in §A.1. The second submodule (BERT argument classification)
receives both the instruction and the predicted type as input and predicts the “arguments”

- (1) “obj” for the object to be picked up, (2) “recep” for the receptacle where “obj”

Chapter 2. FILM: Following Instructions in Language with Modular Methods 8

should be ultimately placed, (3) “sliced” for whether “obj” should be sliced, and (4)
“parent” for tasks with intermediate movable receptacles (e.g. “cup” in “Put a knife in a
cup on the table” of §A.1). An object in ALFRED is always an instance of either “obj”
or “recep”; “parent” objects are a subset of “recep” objects that are movable. We train
a separate BERT model for each argument predictor. The two submodules are easily
trainable with supervised learning since the type and the four arguments are provided in
the training set. Models use only the CLS token for classification, and they do not share

parameters; all layers of “bert-base-uncased” were fine-tuned.

Due to the patterned nature of instructions, we can match the predicted “type” of the
instruction to a “type template” with blank arguments. For example, if the instruction
is classified as the “clean & place” type, it is matched to the template “(0bj, PickUp),
(SinkBasin, Put), (Faucet, ToggleOn), (Faucet, ToggleOff), (Obj, PickUp), (Recep, Put)”.
If the “sliced” argument is predicted to be true from argument classification, subtasks
of “(Knife, PickUp), (Obj, Slice), (Sink, PutObject)” will be added at the beginning of
the template (with the (Sink, PutObject) to make the agent drop the knife). Filling in
the “type template” with predictions of the second model, we obtain a list of subtasks
(bottom of Fig. 2.3b) to be completed in the current episode. The “type templates” were
designed by hand in less than 20 minutes. In §2.5.2, we discuss the effect of using a LP
module without the template assumption, for fair comparison with other works. §A.9

contains more details.

2.4.2 Semantic Mapping Module

We designed the semantic mapping module (§A.2) with inspirations from prior work
[23]. Egocentric RGB is first processed into depth map and instance segmentation, with
MaskRCNN [59] (and its implementation by [134]) and the depth prediction method of
[11]; details of the training are explained in §2.5 1 . These pre-trained, off-the-shelf models
were finetuned on the training scenes of ALFRED. Once processed, the depth observation
is transformed to a point cloud, of which each point is associated with the predicted
semantic categories. Finally, the point cloud is binned into a voxel representation; this
summed over height is the semantic map. The map is locally updated and aggregated

over time.

The resulting semantic map is an allocentric (C' + 2) x M x M binary grid, where C
is the number of object categories and each of the M x M cells represents a bem x
5cm space of the scene. The C channels each represent whether a particular object of
interest was observed; the two extra channels denote whether obstacle exists and whether
exploration happened in a particular 5cm x 5cm space. Thus, the C' + 2 channels are a

semantic/spatial summary of the corresponding space. We use M = 240 (12 meters in the

!We use the publicly released code of [134, 11].

Chapter 2. FILM: Following Instructions in Language with Modular Methods 9

A
@ BERT |
Drop a clean pan on the table > type Subtask template | : (1 for each of the 7 types)
classification Obj, PickUp), (SinkBasin, Put), (Faucet, ToggleOn),
\4
I (Faucet, ToggleOff), (Obj, PickUp), (Recep, Put)
BERT
argument - Instruction Type |: 1 of 7 types
\classification Clean & Place
v |Subtasks |
I Instruction Arauments | Object: Pan, Recep: Table, (Pan, PickUp), (SinkBasin, Put_), (Faucet, ToggleOn),
9 Parent: None, Sliced: False (Faucet, ToggleOff), (Pan, PickUp), (Table, Put)

FIGURE 2.3: The Language Processing module. (a): Two BERT models respec-

tively predict the “type” and the “arguments” of the instruction. (b): The predicted

“type” from (a) is matched with a template, and the “arguments” of the template is
filled with the predicted “argument.”

physical world) and C' = 28+ (number of additional subgoal objects in the current task).
“28” is the number of “receptacle” objects (e.g. “Table”, “Bathtub”), which are usually
large and easily detected; in the example of Fig. 2.1, there is one additional subgoal

object (“Apple”). Please see §A.2 on details of the dynamic handling of C.

2.4.3 Semantic Search Policy

The semantic search policy outputs a coarse 2D distribution for potential locations of a
small subgoal object (Fig. 2.4), given a semantic map with the 28 receptacle objects only
(e.g. “Countertop”, “Shelf”). The discovery of a small object is difficult in ALFRED due
to three reasons - (1) many objects are tiny (some instances of “pencil” occupies less
than 200 pixels even at a very close view), (2) the field of view is small due to the camera
horizon mostly being downward?, (3) semantic segmentation, despite being fine-tuned,
cannot detect small objects at certain angles. The role of the semantic search policy is
to predict search locations for small objects, upon the observed spatial configuration
of larger ones. While existing works surmise the “implicit” learning of search locations

from expert trajectories, we directly learn an explicit policy without expert trajectories.

The policy is trained via supervised learning. For data collection, we deploy the agent
without the policy in the training set and gather the (1) semantic map with only receptacle
objects and (2) the ground truth location of the subgoal object after every 25 steps. A
model of 15 layers of CNN with max-pooling in between (details in §A.3) outputs an
N x N grid, where N is smaller than the original map size M; this is a 2D distribution
for the potential location of the subgoal object. Finally, the KL divergence between this
and a pseudo-ground truth “coarse” distribution whose mass is uniformly distributed
over all cells with the true location of the subgoal object is minimized (min, K L(p||q)

where p is the coarse ground truth and ¢ is the coarse prediction). At deployment, the

2The agent mostly looks down 450.1em in FILM for correct depth prediction. Looking down is
common in existing models as well [70, 190, 11].

Chapter 2. FILM: Following Instructions in Language with Modular Methods 10

“search goal” is sampled from the predicted distribution, resized to match the original
map size of M x M (e.g. 240 x 240), with mass in the coarse N x N (e.g. 8 x 8) grid
uniformly spread out to the L%j X L%J area centered on it. Because arriving at the
search goal requires time, the policy operates at a “coarse” time scale of 25 steps; the
agent navigates towards the current search goal until the next goal is sampled or the

subgoal object is found (more details in §2.4.4).

Fig. 2.4 shows a visualization of the semantic search policy’s outputs. The policy provides
a reasonably close estimate of the true distribution; the predicted mass of “bowl” is
shared around observed furniture that it can appear on, and that of “faucet” peaks
around the sink/ the end of the bathtub. While we chose N = 8 as the grid size, §A.4

provides a general bound for choosing N.

2.4.4 Deterministic Policy

Given (1) the predicted subtasks, (2) the most recent semantic map, and (3) the search
goal sampled at a coarse time scale, the deterministic policy outputs a navigation or

interaction action (Fig. 2.2).

Let [(obj1, actiony), ... , (obji, actiony)] be the list of subtasks and the current subtask
be (obj;, action;). If obj; is observed in the current semantic map, the closest obj; is
selected as the goal; otherwise, the sample from the semantic search policy is chosen
as the goal (§2.4.3). The agent then navigates towards the goal via the Fast Marching
Method [129] and performs the required interaction actions. While this “low-level” policy
could be learned with imitation or reinforcement learning, we used a deterministic one
based on the findings of earlier work that observed that the Fast Marching Method
performs as well as a learned local navigation policy [23]. When the agent successfully
executes the required interaction action; (which can be determined by the change in the
egocentric RGB), the pointer of subtasks is advanced to i + 1 or the task is completed.
More details are provided in §A.5.

2.5 Experiments and Results

We explain the metrics, evaluation splits, and baselines against which FILM is compared.

Furthermore, we describe training details of each of the learned components of FILM.

Metrics Success Rate (SR) is a binary indicator of whether all subtasks were completed.
The goal-condition success (GC) of a model is the ratio of goal-conditions completed
at the end of an episode. For example, in the example of Fig. 2.1, there are three

goal-conditions - a pan must be “cleaned”, a pan should rest on a countertop, and a

Chapter 2. FILM: Following Instructions in Language with Modular Methods 11

(a) . _Coffee (b)
_ +— Side Table

Bowl ¢ Table Faucet Bathtub

Toilet —

~ Shelf / /
Sinl
+— Sofa z
Faucet

!

Shelf

il k5

FIGURE 2.4: Example visualization of semantic search policy outputs. In each
of (a), (b), Top left: map built from ground truth depth/ segmentation, Top right: map
from learned depth/ segmentation, Bottom left: ground truth “coarse” distribution,
Bottom right: predicted “coarse” distribution. (a): While the true location of the “bowl”
was on the upper left coffee table, the policy distributes mass over all furniture likely
to have it on. (b): The true location of the faucet is on the sink and at the end of the
bathtub. While the policy puts more mass near the sink, it also allocates some to the
end of the bathtub.

“clean” pan should rest on a countertop. Both SR and GC can be weighted by (path
length of the expert trajectory)/ (path length taken by the agent); these are called path
length weighted SR (PLWSR) and path length weighted GC (PLWGC).

Evaluation Splits The test set consists of “Tests Seen” (1533 epsiodes) and “Tests
unseen” (1529 episodes); the scenes of the latter entirely consist of rooms that do not
appear in the training set, while those of the former only consist of scenes seen during
training. Similarly, the validation set is partitioned into “Valid Seen” (820 epsiodes) and
“Valid Unseen” (821 epsiodes). The official leaderboard ranks all entries by the SR on

Tests Unseen.

Baselines There are two kinds of baselines: those that use low-level sequential in-
structions [70, 190, 105, 110] and those that do not [106, 11]. While FILM does not
necessitate low-level instructions, we report results with and without them and compare

them against methods of both kinds.

Training Details of Learned Components In the LP module, BERT type classi-
fication and argument classification were trained with AdamW from the Transformer
[164] package; learning rates are le-6 for type classification and {le-4,1e-5,5e-5,5¢e-5} for
each of “object”, “parent”, “recep”, “sliced” argument classification. In the Semantic
Mapping module, separate depth models for camera horizons of 45nd Oere fine-tuned from
an existing model of HLSM [11], both with learning rate le-3 and the AdamW optimizer

(epsilon le-6, weight decay le-2). Similarly, separate instance segmentation models for

Chapter 2. FILM: Following Instructions in Language with Modular Methods 12

small and large objects were fine-tuned, starting from their respective parameters released
by [134], with learning rate le-3 and the SGD optimizer (momentum 0.9, weight decay
5e-4). Finally, the semantic search policy was trained with learning rate 5e-4 and the
AdamW optimizer (epsilon le-6). §A.2 and §A.3 discuss more details on the architectures
of semantic mapping/ semantic search policy modules. The readme of our code states

protocols and commands so that readers can reproduce all expriments.

2.5.1 Results

Table 2.1 shows test results. FILM achieves state-of-the-art performance across both seen
and unseen scenes in the setting where only high-level instructions are given. It achieves
8.17% absolute (50.15% relative) gain in SR on Tests Unseen, and 0.66% absolute (2.63%
relative) gain in SR on Tests Seen over HLSM, the previous SOTA.

FILM performs competitively even compared to methods that require low-level step-
by-step instructions. They can be used as additional inputs to the LP module, with
the low-level instruction appended to the high-level instruction for both BERT type
classification and BERT argument classification. Under this setting, FILM achieves
11.06% absolute (71.68% relative) gain in SR on Tests Unseen compared to ABP. Notably,
FILM performs similarly across Tests Seen and Tests Unseen, which implies FILM’s strong
generalizability. This is in contrast to that methods that require low-level instructions,
such as ABP, E.T., LWIT, MOCA, perform very well on Tests Seen but much less so
on unseen scenes. In a Sim2Real situation, these methods will excel if the agent can be
trained in the exact household it will be deployed in, with multiple low-level instructions
and expert trajectories. In the more realistic and cost-efficient setting where the agent is
trained in a centralized manner and has to generalize to new scenes, FILM will be more

adequate.

It is also notable that the semantic search policy significantly increases not only SR and
GC, but also their path-length weighted versions. On Tests Seen, the gap of PLWSR
between FILM with/ without semantic search is larger than the corresponding gap of SR
(for both with/ without low-level instructions). This suggests that the semantic policy
boosts the efficiency of trajectories. The results in §A.8 show that the improvement by
the semantic policy is reproduced across multiple seeds; the protocols for reproduction

are explained along with the result.

2.5.2 Ablations Studies and Error Analysis

Errors due to perception and language processing. To understand the importance
of FILM’s individual modules, we consider ablations on the base method, the base method

with low-level language, and with ground truth visual/ language inputs. Table 2.2 shows

Chapter 2. FILM: Following Instructions in Language with Modular Methods

13

TABLE 2.1: Test results. Top section uses step-by-step instructions; bottom section
does not. Bold numbers are top scores in each section. Blue numbers are the top SR
on Tests Unseen (by which the leaderboard is ranked).

Method Tests Seen Tests Unseen
PLWGC GC PLWSR SR PLWGC GC PLWSR SR
Low-level Sequential Instructions 4+ High-level Goal Instruction
SEQ2SEQ [133] 6.27 9.42 2.02 3.98 4.26 7.03 0.08 3.9
MOCA [137] 22.05 28.29 15.10 22.05 9.99 14.28 2.72 5.30
E.T. [110] - 36.47 - 28.77 - 15.01 - 5.04
E.T. + synth. data [110] 34.93 45.44 27.78 38.42 11.46 18.56 4.10 8.57
LWIT [105] 23.10 40.53 43.10 30.92 16.34 20.91 5.60 9.42
HiTUT [190] 17.41 29.97 11.10 21.27 11.51 20.31 5.86 13.87
ABP [70] 4.92 51.13 3.88 44.55 2.22 24.76 1.08 15.43
FILM w.0. SEMANTIC SEARCH 13.10 35.59 9.43 25.90 13.37 35.51 10.17 23.94
FILM 15.06 38.51 11.23 27.67 14.30 36.37 10.55 26.49
High-level Goal Instruction Only
LAV [106] 13.18 23.21 6.31 13.35 10.47 17.27 3.12 6.38
HITUT G-only [190] - 21.11 - 13.63 - 17.89 - 11.12
HLSM [11] 11.53 35.79 6.69 25.11 8.45 27.24 4.34 16.29
FILM w.0. SEMANTIC SEARCH 12.22 34.41 8.65 24.72 12.69 34.00 9.44 22.56
FILM 14.17 36.15 10.39 25.77 13.13 34.75 9.67 24.46

ablations on the development sets. While the improvement from gt depth is large in
unseen scenes (10.64%), it is incremental on seen scenes (1.48%); on the other hand, gt
segmentation significantly boosts performances in both cases (9.26% / 9.26%). Thus,
among visual perception, segmentation is a bottleneck in both seen/ unseen scenes,
and depth is a bottleneck only in the latter. On the other hand, while a large gain
in SR comes from using ground truth language (7.43 % / 4.22 %), that from adding
low-level language as input is rather incremental. We additionally analyze the effect of
the template assumption (explained in the second paragraph of §2.4.1), by reporting the
performance with a Language Processing module without this assumption. The results
drop without the templates but not by a large margin. §A.9 explains the details of this

auxiliary Language Processing module.

Error modes. Table 2.3 shows common error modes of FILM; the metric is the percent
of episodes that failed (in SR) from a particular error out of all failed episodes. The
main failures in valid unseen scenes are due to failures in (1) locating the subgoal object
(due to the small field of view, imperfect segmentation, ineffective exploration), (2)
locating the subgoal object because it is in a closed receptacle (cabinet, drawer, etc), (3)
interaction (due to object being too far or not in field of view, bad segmentation mask),
(4) navigation (collisions), (5) correctly processing language instructions, (6) others, such
as the deterministic policy repeating a loop of actions from depth/ segmentation failures
and 10 failed actions accruing from a mixture of different errors. A failed episode is
classified to the error type that occurs “earlier” (e.g. If the subtasks were processed
incorrectly and also there were 10 consecutive collisions, this episode is classified as (5)
(failure in incorrectly processsing language instructions) since the LP module comes
“earlier” than the collisions). More details are in §A.6. As seen in Table 2.3, goal object

not found is the most common error mode, typically due to objects being small and not

Chapter 2. FILM: Following Instructions in Language with Modular Methods 14

TABLE 2.2: Ablation results on validation TABLE 2'3:. Error Modes.
splits. Base Method Table showing percentage of
errors due to each failure

is FILM with semantic search policy.
mode for FILM on the Val

Val Seen Val Unseen set.
Method
ernoe GC SR GC SR
Error mode Seen Unseen
Base Method 37.20 24.63 32.45 20.10
Goal object not found 23.30 26.07
+ low-level language 38.54 25.24 32.89 20.61 Interaction failures 6.96 8.54
+ gt seg. 45.46 34.02 42.88 29.35 Collisions 6.96 11.00
+ gt depth 38.21 26.59 42,91 30.73 Object in closed receptacle 18.44 16.16
+ gt depth, gt seg. 55.54 43.22 64.31 55.05 Language processing error 18.53 24.54
+ gt depth, gt seg., gt lang. 59.47 47.44 69.13 62.48 Others 25.81 13.69
- template assumption 31.46 20.37 31.14 18.03
12 .
m= - valid unseen TABLE 2.4: Performance by
W valid seen task type of base model on
validation.
: Task Type Val Seen Val Unseen
1 GC SR GC SR
Examine Stack& Pick& Clean& Heat& Cool& Pick2& Overall 37.20 24.63 3245 20.10
in Light Place Place Place Place Place Place Examine 50.00 34.41 45.06 29.65
. Pick & Place 27.46 26.92 16.67 16.03
FIGURE 2.5: Average number of subtasks Stack & Place 23.74 10.71 9.90 1.08
completed until failure, by task type (light Clean & Place 58.56 44.04 48.89 33.63
. . . Cool & Place 27.04 12.61 27.41 14.04
green/ hght blue respectlvely for valid Seen/ Heat & Place 40.21 22.02 37.77 23.02
unseen). Dark green/ blue: average number Pick 2 & Place 40.37 23.77 ~ 29.28 11.84

of total subtasks in valid seen/ unseen.

visible from a distance or certain viewpoints. Results of the next subsection show that

this error is alleviated by the semantic search policy in certain cases.

Performance over different task types. To understand FILM’s strengths/ weaknesses
across different types of tasks, we further ablate validation results by task type in Table 2.4.
Figure 2.5 shows the average number of subtasks completed for failed episodes, by task
type. First, the SR and GC for “Stack & Place” is remarkably low. Second, the number
of the subtasks entailed with the task type does not strongly correlate with performance.
While “Heat & Place” usually involves three more subtasks than “Pick & Place”, the
metrics for the former are much higher than those of the latter. Since task types inevitably
occur in different kinds of scenes (e.g. “Heat & Place” only occurs in kitchens) and
therefore involve different kinds of objects (e.g. “Heat & Place” involves food only), the
results suggest that the success of the first PickUp action largely depends on the kinds

of the scene and size and type of the subgoal objects rather than number of subtasks.

While the above error analysis is specific to FILM, its implications regarding visual
perception may generally represent the weaknesses of existing methods for EIF, since most
recent methods (ABP, HLSM, HiTUT, LWIT, E.T.) use the same family of segmentation/
detection models as FILM, such as Mask-RCNN and Fast-RCNN [156]. Specifically,
it could be that the inability to find a subgoal object is a major failure mode in the

mentioned existing methods as well. On the other hand, FILM is not designed to search

Chapter 2. FILM: Following Instructions in Language with Modular Methods 15

inside closed receptacles (e.g. cabinets), although subgoal objects dwell in receptacles
quite frequently (Table 2.3); a future work to extend FILM should learn to perform a

more active search.

2.5.3 Effects of the Semantic Search Policy
TABLE 2.5: Dev set results
(valid unseen) of FILM with/

With Valid Unseen as the development set, we ob- without semantic search pol-
served that the semantic search policy significantly icy.

helps to find small objects (Table 2.5); we use the method % 1st Goal Found SR
percent of episodes in which the first goal object HLSM [11] N/A 11.8
was found (%1st Goal Found) as a proxy, since it Eix xlzh SZ:;ZE 872;1 21&23

can be picked up (e.g. “Apple”, “Pen”) and thus is
usually small. Thus, we use FILM with semantic search as the “base method” (default)

for all experiments/ ablations.

To further analyze when the semantic search policy especially helps, we ablate on room
sizes and task types. Table 2.6 shows the SR and %1st Goal Found with and without
search, by room size (details on the assignment of Room Size are in §A.7). As expected,
the semantic policy increases both metrics, especially so in large scenes. This is desirable
since the policy makes the agent less disoriented in difficult scenarios (large scenes);
the model without it is more susceptible to failing even the first subtask. Figure 2.6
is consistent with the trend of Table 2.6; it shows example trajectories of FILM with
and without the semantic search policy in a large kitchen scene. Since the countertop
appears in the bottom right quadrant of the map, it is desirable that the agent travels
there to search for a “knife”. While FILM travels to this area frequently (straight red
line in Fig. 2.6), FILM without semantic search mostly wanders in irrelevant locations

(e.g. the bottom left quadrant).

Table 2.7 further shows the performance with and without search by task type. Notably,
the gap of performance for the “clean & place” type is very large. In the large kitchen
scene of “Valid Unseen” (Fig. 2.6), the “Sink” looks very flat from a distance and is
hardly detected. The semantic policy induces the agent to travel near the countertop
area and improves the localization of the 1st Recep (“Sink”) for the “clean & place” type
(Table 2.7). In conclusion, the semantic policy improves the localization of small and flat

objects in large scenes.

TABLE 2.6: Performance with and without semantic search policy, by room size.

Room Size Small Large
FILM FILM FILM FILM
w.0. Search w.o. Search
SR 26.70 26.63 15.17 14.74

% 1st Goal Found 79.32 81.02 80.13 73.72

Instruction: Put a large clean knife on the counter

Go to/ Put "Knife"
Search for "Knife" Pick up "Knife" Go to "SinkBasin" Wash "Knife" Pick up "Knife" on "Countertop”

Egocentric i
RGB 2

FILM
with
Search

FILM
w.0.
Search

FIGURE 2.6: Example trajectories of FILM with and without semantic search

policy. Paths near the subgoals that were traveled 3 times or more are in straight red.

The goal (which can be the search goal or an observed instance of a subgoal object) is
in blue.

TABLE 2.7: Performance with and without semantic search policy, by task type.

Clean & Place Other Types

Task Type
FILM FILM FILM FILM
w.o. Search w.0. Search
SR 33.63 14.16 17.94 20.16

% 1st Goal Found 87.61 79.65 79.38 75.56
% 1st Recep Found 80.53 69.03 58.05 55.93

2.6 Conclusion and Next Steps

We presented FILM, a new modular method for embodied instruction following which
(1) processes language instructions into structured forms (Language Processing), (2)
converts egocentric vision into a semantic metric map (Semantic Mapping), (3) predicts
a likely goal location (Semantic Search Policy), and (4) outputs subsequent navigation/
interaction actions (Algorithmic Planning). FILM achieves the state of the art on the

ALFRED benchmark without any sequential supervision.

In this chapter, we identify two primary bottlenecks. The first challenge is maintaining
consistent visual perception over time and across various viewpoints. Despite imple-
menting a semantic policy that incorporates common sense, achieving consistent visual
perception remains a significant hurdle. This consistency is crucial as it forms the
foundation for reliable memory and serves as the cornerstone for all subsequent planning

activities.

The second bottleneck involves interactions with those located within closed receptacles,
which pose unique challenges for situated planning. For instance, if commonsense suggests

a salt shaker should be present but it is not visible, the agent may need to deduce that

Chapter 2. FILM: Following Instructions in Language with Modular Methods 17

it should search inside closed compartments. This level of inferential reasoning and

environmental interaction goes beyond simple common sense and requires sophisticated

decision-making capabilities.

Chapter 3

Self-Supervised Object Goal
Navigation with In-Situ

Finetuning

In the previous chapter, we identified visual perception as a critical bottleneck for
embodied agents. In this chapter, we explore the application of physical common sense,
particularly through location consistency, to refine an agent’s perceptual strategies. This
approach not only improves visual perception but also bolsters downstream exploration

policies, adapting an agent effectively to new environmental contexts.

3.1 Introduction

In practical deployment scenarios where a robot is delivered to a customer’s house, it
should quickly generalize and adapt to new objects and layouts. For the task of object
goal navigation (ObjectNav), this means that the robot should adapt both 1) its visual
perception (which pizel is which object?) to the objects and 2) the navigation policy
(where to look next?) to the house layout in the deployment setting. Because this should
happen automatically, without the user annotating data, we propose in-situ learning (i.e.
learning in the deployed real-world setting) of ObjectNav agents. Our proposed in-situ
adaptation is not applicable to existing approaches [23, 119] as they depend on expensive
labeled semantic 3D meshes of scanned and reconstructed houses to train their agents

and perception stacks.

For this purpose, we introduce a novel and strong source of self-supervision (Location
Consistency - LocCon), and propose a method to train all components of an ObjectNav

agent without labeled 3D meshes. At a high level, our approach is composed of two
18

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 19

",

e

(a) ObjectNav Robot
on a jackal base

Self-Supervised
‘ﬁl In Situ Training -»>

Non-Failure

FIGURE 3.1: Real World ObjectNav and in-Situ Training (a) Picture of our robot

in one of the airbnbs rented for ObjectNav experiments. (b) Example ObjectNav (real-

world) failure mode and its remedy with in-situ self-supervised (location consistency)

training. The agent starts at the living room and wrongly detects a small patch of

a black object as “T'V.” The segmentation model avoids this distractor after in-situ
location consistency training.

stages: Stage I (visual perception) utilizes the embodiment of an agent to train a
semantic segmentation model, and then Stage II (Nav Policy) uses the trained semantic
segmentation model to self-label the 3D mesh, which then can be used to train an
ObjectNav policy. In particular, in Stage I, we use location consistency as a self-
supervision signal: an agent collects images from different views/angles for a given
location. We scale the location-consistency collection to 100 unlabeled houses and apply
contrastive training to fine-tune the backbone of a pretrained semantic segmentation
model [27] (LocCon training). In Stage II, we train a navigation policy inspired by
PONTI [119], which learns potential functions over map frontiers (analytic functions of
unexplored area and geodesic distances to goal locations), with self-labeled semantic

maps.

Our analysis finds that (1) our fully self-supervised ObjectNav agent can perform
competitively in the real world, (2) in-situ training with LocCon further improves visual
perception performance at deployment, and (3) despite the presence of noisy artifacts in
simulation, our self-supervised training can learn useful semantics for sim2real transfer.
We present a comprehensive set of experiments in real houses and simulation (Gibson
ObjectNav datasets [23, 169, 3]).

First, we perform a sim2real experiment that shows our agent trained in simulation
can be directly run in the real world for object goal navigation, demonstrating the
robustness of our approach. We find that the largest error mode of real-world ObjectNav
is visual perception errors, which often nullifies the need to adopt a better ObjectNav
policy. This analysis, together with evidence from previous work [23] that the Nav
Policy, captures abstract knowledge of house layouts which transfers to the real world,
shows that in-situ training is most needed for updating visual perception. Second, we
perform self-supervised location-consistency training directly in the real houses — a step

towards agents learning on their own. In particular, with location consistency data

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 20

Robotic Platform
Moving Trajectory

ooy View2 supervise
with Location Consister

RGB-Image
Backbone (ResNet)

Semantic Segmentation
Head (DeeplLabv2)

\ Location Fixed ¥
Robotic Platform View 3 View 4

Moving Trajectory _— —_—
Voxelized 3D Space .

FIGURE 3.2: Fine-tuning visual perception using self-supervision: First, we
produce a 3D voxel grid of the scene from depth sensors of a robot. We randomly select
a location and put 50cm?® cube, and make the robot view it from 8 different angles and
40 different poses. If the ray reflects back from this cube to the robot’s camera, we
save the corresponding egocentric RGB frame. These collected images are labeled with
“location consistency” pseudo-labels in a self-supervised manner. We also show examples
of collected “location consistent” images. The ResNet backbone of pre-trained semantic
segmentation models can be fine-tuned with our data using contrastive loss.

collected from a real robot from 4 AirBnB houses, we show that segmentation models
can be improved with our training scheme. Finally, within simulation, we compare our
self-supervision pipeline against training with annotations (FullSup agent). We find that
FullSup’s segmentation model learns the visual noise from simulation - which is irrelevant
and harmful for real-world transfer. This causes FullSup to perform worse and makes it

a harmful initialization in the real world.

Our first-of-a-kind full stack system for self-supervised ObjectNav enables us to investigate
where simulation is most helpful or harmful in training real world ObjectNav agents.
The primary approach in the literature has been to focus on collecting scans of houses for
reconstruction and training in simulation; however, our results indicate that simulated
data often introduces both reconstruction and annotation noise, thereby inhibiting real
world transfer. Where supervised learning incentives models to overfit to such artifacts, we
find that our self-supervised training is robust to reconstruction errors and help real world
transfer. This disparity begs the question - What data collection and annotation efforts
are most effective in the real world and simulation? We argue, that while simulation
holds promise, in the absence of high-quality annotations or renderings, researchers
should adopt our self-supervised approach which can be applied directly in the real world

for in-situ training with raw, unannotated, images that can be easily collected.

3.2 Prior Work

We enumerate related work for visual perception learning and policy learning. We will
transition the discussions from supervised learning, which requires a lot of annotated

labels, to self-supervised learning, which avoids labels.

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 21

TABLE 3.1: Comparison of self-supervised ObjectNav methods. Our work (1)
employs end-to-end self-supervised training both for the visual perception and navigation
policy, and (2) demonstrates the sim2real transfer of both components to the real world.?

SSL Visual SSL Nav Real Robot Real

Method Perception Policy Transfer World SSL
SEAL [24] v X X* X
OVRL [174] v X X X
ZER 3] v v X X
CoW, ZSON [49, 90] v v X X
Ours v v v v

Visual Representation Learning. In ObjectNav, ground truth 3D semantic labels
are often given in the dataset and simulators, such as Matterport3D [21], Replica [140],
Habitat [125], Gibson [169], iGibson [76], and Habitat-Matterport3D [118]. Existing
methods often leverage the ground truth semantic 3D labels as strong supervision signals
for ObjectNav [23, 119]. Nonetheless, because of lacking real-world semantic labels, it is

unclear if the methods will generalize well from the simulator to the real world.

To avoid the need for ground truth 3D semantic labels, previous work has proposed
workarounds: Mimic behaviors from a large collection of human demonstrations [120],
gather large-scale image collections from 3D mesh and apply SSL techniques for static
images [174], or leverage the embodiment of a moving agent for self-supervised learning
by taking the action of the agent and the interaction with the environment into account
when building their representations [42, 24, 177].! For example, in SEAL [24] an agent
roams in an environment, records predictions from an initial semantic segmentation
model, propagates the predictions from high-confidence to low-confidence regions, and
finally uses the predictions to fine-tune the semantic segmentation model. The resulting
model is then used for navigation. In principle, SEAL and LocCon could be used together;
however, LocCon is more general as, unlike SEAL, it does not assume a pre-defined
category of objects for training. In CRL [42], the agent learns a policy to search for
images that are deemed helpful for contrastive learning. In both SEAL and CRL, self-
supervisedly collecting data requires a new training/calibration of policies - which can
be a hindrance to real-world transfer; our method, on the other hand, uses algorithmic
data collection upon a 3D map, which is simpler and does not require learning. The
simplicity and independence of our method allows for easy transfer of our self-supervised

learning scheme in the real world (§3.5.1.2).

“While [23], a closely related work of [24], shows real world transfer of their semantic mapper and
semantic nav policy, [24] itself does not show real world transfer results of its self-supervised components.

"Most self-supervised learning approaches leverage only static images without considering the embodi-
ment of an agent. SimCLR[28], MoCo [60], DINO [19], and InfoMax[107] build consistent representations
for augmented variants of an same image and maximize their difference to other images.

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 22

Policy Learning. In ObjectNav, policies fall into two categories: end-to-end and
modular approaches. End-to-end methods [91, 101, 179, 40, 36, 69] directly predict
low-level actions (e.g. “move forward”, “turn left”) from input RGB-D images and the
camera pose. Modular methods [ogn, 119, 90, 174, 57] consist of a pipeline of components
- semantic mapping (persistent semantic and spatial memory), a high-level semantic
policy (decides the general direction to move towards the predicted goal location), and
low-level navigation modules (a low-level planner for navigating to the high-level goal
chosen by the semantic policy). Learning is typically constrained to 1) the semantic
(instance) segmentation model inside the semantic mapper and 2) the high-level semantic

policy; our method is modular.

Existing methods for semantic policy training often use the object goal’s ground truth
location, either to define reward functions for reinforcement learning [ogn, 174] or
potential functions for supervised learning [119] - these are expensive requirements that
make these approaches difficult to train in the real world. To avoid the need for ground
truth object goal locations, ZER, ZSON, and CoW [3, 90, 49] perform image goal
navigation (navigating to a target image rather than a category). These images are
converted to goal embeddings via CLIP [116] or ResNet[58]-based encoders, allowing
for object categories to be mapped to scenes in service of performing ObjectNav. In
lieu of web-scale pretraining, given an object goal our method learns to find the object
in our self-supervised semantic 3D map without the use of any ground truth location

information.

Other Related Work. While not related to self-supervision, [36] uses data at scale
to improve performances in ObjectNav. More specifically, it trains EmbCLIP [69] on
10K diverse houses procedurally generated. While we use more homogenous scenes from
Gibson [169] and HM3D [118], the implication of our work well agrees with [36] in that
scaling brings gains. [83] introduced a framework for lifelong learning for navigation, to
prevent policy forgetting after adaptation; our work addresses test-time self-adaptation
of both visual perception and policy. [52], a concurrent work, presents large-scale
comparisons of ObjectNav methods when transferred to the real world. However, the
focus of [52] and our work are different in that we focus on the need of/method for

self-supervised real-world in-situ training.

3.3 Task Explanation

An ObjectNav [5, 126] agent aims to navigate to an instance of the given object category
such as “table” or “sofa” as efficiently as possible, with its perception of the world
and semantic priors. The agent is placed at a random location in the environment and
receives the goal object category (e.g. “table”). With each action (a;) the agent takes, it

records visual observations (V;) and pose information ().

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 23

(@ (b) [Goal Object | prr
[= y > jectNav
gEEE= & 5 PONI oot
: : ObjectNav Policy RGBD / v
< l

M [High Level Goal]

Semantic ~.
\ M e
4 F’-& \; Robot (Low-level)
) A . 2 Pose Planner

Goal: “Toilet” 4 f AS— 5 IAS—
(X, ¥, 0)
RotateRight

= : potential intensity

FIGURE 3.3: ObjectNav policy training and pipeline. (a) Self-supervised Object-
Nav policy training: The agent constructs self-labeled semantic maps of the environment
using the segmentation model trained in Stage I. Then, we create a partial map out of
full maps, and compute potential functions upon the partial map from the unexplored
areas and locations of goal objects. Finally, we apply PONI policy training with the
self-labeled potential functions. (b) ObjectNav agent pipeline: Following previous
work [ogn, 119, 98], we equip our ObjectNav agent with the semantic mapper and the
Object Nav policy. The learned components are colored in green.

In this work, we perform ObjectNav both on real robots and within simulation. This leads
to several key changes in the action space, and sensor noise in both visual observations
and pose information. In both conditions, visual observations will consist of first-person
RGB-D images.

Simulation Within simulation, we have an idealized action space A that contains four
actions: forward (0.25 meters), left (30°), right (30°), and stop. The agent takes the
stop action when it believes it has reached the goal. The episode is considered successful,
if the agent’s final location is within a distance 1m of the goal. Additionally, we set a

maximum number of timesteps (500).

Robot Platform For the real-world Object Nav, we rented three AirBnB’s in North
America, using the same set of object categories used in simulation. Using the fast-
marching method, the robot plans collision-free paths connecting its position to the
desired goal location; then, using the ROS move_base package, it regulates velocities
and yaw rates to follow the planned paths. Since 0.25 meters and 30 degrees are too
small for velocity/yaw rate control, we directly use (z,y,0) (where z,y are the “forward”
and “left” positions from the starting pose in meters and o is the orientation in radian)
as the action space. After each time step, we pass the next desired global pose to
move_base. To account for velocity control and the body radius, the task is considered
successful if the robot stops within 1.5 meters of the desired goal. Since the action
space is no longer discrete, we set a maximum duration of time (7 minutes) instead of
timesteps. Furthermore, to account for localization errors, we allow up to two trials per

task. Additional robot hardware specifications are in §3.5.1.1.

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 24

While we explain the details of a static ObjectNav task above, we further note that we

also present results for in-situ test-time adaptation (§3.4.1).

3.4 Methods

Our agent is composed of a semantic mapper and a navigation policy (Fig. 3.3 (b)),
following previous work [ogn, 119]. Mapping converts egocentric RGB-D and robot
pose information to a 5cm? voxel representation of the scene, with labels for occupancy,
explored areas, and semantic categories for each voxel [ogn]. Core to mapping, is
learning semantic (instance) segmentation, which enables object category labeling. The
navigation policy (Fig. 3.3 (a)) is responsible for spatial understanding and deciding

where to look/move next.

3.4.1 Location Consistency for Visual Perception

The self-supervised finetuning of the semantic segmentation model is composed of two
steps (Fig. 3.2). First, we algorithmically program a robot to navigate around objects to
link images with location consistency. Second, we train the model in an off-line manner,

using a contrastive loss.

Location consistency data collection In a given scene, we initiate an agent and
create a 3D occupancy map (O) of the environment with frontier-based exploration [175];
the robot continues to move to unexplored areas of the map until there is no unexplored
area left. Once complete, we use O to sample the (next) location that the agent will
observe from multiple views (Fig. 3.2). First, we sample a point (x,y) among the occupied
regions (O summed across height). Second, from Olz,y], we sample z (height) among
occupied voxels. Third, we place a 50 cm® cube C centered around (z,y, z) and have the
agent move around this cube at increment angles of 45° (i.e. 0, 45, 90, ...) and distances
0f 0.3,0.6,0.9, 1.2 meters from (z,y, z). “Intermediate stop” poses (where the agent stops
temporarily to stare at C') are placed in navigable regions of O. When the agent pauses
at an “intermediate stop”, it ray casts and if it hits C the current egocentric RGB view
R is recorded as an image of C'. When the agent has visited all “intermediate stops” for
the current C, it saves all the views as a “location-consistent” datum. The agent then
repeats the entire process by sampling and collecting data from a new location (z,y)

from O until 70% of the map is covered or the agent has moved 7,000 steps.

We conduct the same data collection process in multiple real houses to obtain a collection
of images. We only consider images from the same cube C' as location-consistent. In the

physical environment, there are additional complications as agents cannot achieve perfect

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 25

angles and distances, but the procedure still succeeds and is not adversely affected by
these minor perceptual changes. We enumerate factors that could influence the data
collection result, such as camera extrinsics, architectural choices, and robot morphology;

we hope future work explores these questions.

Contrastive training (LocCon) As with previous work, we initialize our backbone
with a pre-trained semantic segmentation model, but training then commences using the
aforementioned location consistency data and contrastive training. The location serves

as the label tieing together images from disparate views (Fig. 3.2).

We denote a model under training as M (backbone and segmentation head), and its

backbone as M. We denote I as an image, {Ilff

n .
os.i i1 as 1 images collected from the same

k-th cube C}, or augmented variants of these images, { };”:1 as m images not collected

Ir]fegvj
from Cy, sim(u,v) = My(u)" My(v)/||Mp(u)]|||My(v)|| as the cosine similarity between
two embedding vectors My (u) and Mp(v), and 7 as a temperature hyper-parameter. We

consider the popular contrastive loss as in prior work [60, 28]:

sim(I,1pos,i)/T

K n
e
fn= —log 5 ~ : 3.1
B kZ:l ; 2 esSim(LIpos,i) /T 4 Z;n:l S Ineg) /7 (3.1)

To synchronize the segmentation head with the pretrained backbone, we experimented
with the addition of a regularizer, but we found no effect on downstream performance.
For each minibatch, the loss is therefore simply £5. We select 64 different locations in
an environment, and for each location we sample four images from different views and
apply image augmentations to obtain two augmented variants of each of the four images.
This construction, with a mini-batch of 512 images, results in each image having seven
positively-paired images (n = 7) and 504 negatively-paired image (m = 504). We are
interested in the semantic segmentation of 15 semantic categories Table 3.7), following
previous work [ogn, 119]. Since the pre-trained model comes with a segmentation head
for more than 15 classes, we treat the rest as “background.” Adam optimizer with
weight decay le — 4 and the learning rate € {le — 6, 1le — 5, 1e — 4} that outputs the best

validation accuracy (le — 5) was used.

3.4.2 A Navigation Policy from Self-Labeled Scenes

The ObjectNav policy determines the next intermediate stop to find the goal, based
on the partial observations of the agent (Fig. 3.3 (a)). Unlike in prior work [119], we

demonstrate how training can be done without a labeled navigation mesh.

We follow a process similar to the pre-mapping of §3.4.1, but now also record semantic

information. We equip an agent with the semantic segmentation model trained in §3.4.1,

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 26

Object Goal: Toilet

FiGURE 3.4: Example ObjectNav task in a real house. The goal object is toilet.
Visual perception, semantic mapping, and the ObjecNav policy were all accurate enough
to lead to a task success.

and enforce frontier-based exploration; this creates a semantic map of the scenes, self-
labeled by the visual perception model. Then, we learn the “potential functions” over the
frontiers of partial maps; a high potential function at a point in the map indicates that
the point is worth visiting. The total potential function is a sum of the “area potential
function” (high intensity means that the point is where the agent should “explore” to
gain a more complete map) and the “object potential function” (high intensity means
that the point is likely to be close to the object being looked for). The area and object
potentials can be directly calculated from the geodesic distances obtained from the “full
map”, and the policy network learns the potentials given a “partial map,” similar to one

that the agent will create during a task.

3.5 Experiments and Results

3.5.1 Real World

In §3.5.1.1, we first show that our agent, trained with self-supervision only, can perform
ObjectNav competitively in the real world and in simulation; in §3.5.1.2, we show that
self-supervised training of visual perception results in good real world transfer, and

real-world in-situ training can further remedy ObjectNav error modes.

The structure of our ObjectNav agent is shown in Fig. 3.3 (b). The agent relies on
our self-supervised segmentation model (Self-Seg) and ObjectNav Policy (Self-Pol).
Self-Seg is trained by taking an “off-the-shelf” model (aka deeplabv2[27] pre-trained
with COCO-things 164k[81]) and applying LocCon (§3.4.1) with data sampled from 100
houses, randomly selected from a pool of 25 houses from the training split of Gibson-mini
and 720 houses from HM3D [118]. We again highlight that no labeled 3d mesh was used

in this training, since they are expensive and mostly unavailable for HM3D. Self-Pol is

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 27

trained using the method of §3.4.2, from semantic maps created and self-labeled (with

Self-Seg) from frontier-based exploration in the 25 Gibson houses.

We define notations used in the remaining sections. We denote the “off-the-shelf” seg-
mentation model (aka deeplabv2 [27] pre-trained with COCO-things 164k [81]) as O-t-S.
We replace Self-Seg and Self-Pol with their fully supervised (using all the available
simulator annotations) counterparts; we call this agent “FullSup agent” (and its compo-
nents Full-Seg and Full-Pol) and our self-supervised agent “SelfSup agent.” Full-Seg,
initialized with O-¢-S., is trained with fully supervised training from 75K randomly
sampled, labeled images from the 25 Gibson houses, and Full-Pol is trained with PONI
using the ground-truth labeled 3d mesh of the 25 houses. We follow the same protocols of
[27] and [119] (e.g. the pool of hyperparameters to optimize within, output dimensions)
to train Full-Seg and Full-Pol, respectively.

3.5.1.1 Real World ObjectNav

To show the transfer of our ObjectNav agent (§3.4.2, §3.5.2.1) to real houses, we built a
robot from a Jackal base that has similar specifications to the simulation settings (§3.3).
Perception is performed with an Intel Realsense D435 RGB-D camera mounted at 0.88

meters from the floor and all computation was run locally in real-time on an Nvidia Orin

(Fig, 3.4 ().
For localization, we pre-map the environment with the TABLE 3.2: ObjectNav
ROS RTAB-map package when first entering a new house. Results Success rate of

When executing a policy, the robot receives its pose from 18 tasks in 3 AirBnBs.

the ROS SLAM package and uses the existing map only Category Success
for its occupancy map instead of that from the semantic Total 66.6%
. . hai .

mapper; all other outputs of the semantic mapper, includ- g Oifh 13(3;.8%
ing mapping of explored areas and semantic categories, Potted Plant 66.6%
T _ Bed 100.0%

are as in simulation. Toilet 100.0%
TV 33.3%

Experiments were performed in three rented AirBnBs

where we set up three tasks for each of the 6 goal objects.

Because a Jackal base is larger than the agent radius in simulation, we start the agent in
areas that are wider than 1.5 meters, which is usually in the living room or the kitchen.
An example experiment is shown in Figure 3.4. Across 18 tasks, we obtain success rate
of 66.6%. We show two example runs in the supplementary video. Out of 6 failures, 4
were due to misrecognition of goal objects (e.g. recognizing a “white couch” as “bed”),

and 1 was due to depth/ segmentation misalignment, 1 was due to localization failure.

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 28

TABLE 3.3: Semantic segmentation gains from real-world in-situ LocCon finetuning.

Off-the-Shelf. Self. Full.

Initial 61.1 61.9 58.8
with In-Situ 62.2 62.8 61.7
Performance A 1.11 091 2.91

3.5.1.2 Self-Supervised In-Situ Training of Visual Perception

In §3.5.1.1, we saw that a major error mode in real world ObjectNav is visual perception;
the robot stops at wrong goal objects or goal objects are seen but misrecognized. Since we
find that visual perception generalization failures somewhat nullify efficient exploration/
nav policy, we focus on in-situ learning for visual perception. We show that LocCon

training of semantic segmentation can remedy these issues.

To replicate applying LocCon in a the real world, we collected location consistency images
from 4 airbnbs, of which three are disjoint from the ones in §3.5.1.1. We replicate the
sampling procedure of §3.4.1 as follows; we use a pre-map of the environment to sample
an (x,y) and then pick z as in §3.4.1. We place a tripod with Intel Realsense D435 RGBD
camera mounted at 0.88 meters at 5 to 10 locations around the picked (z,y, z) among
navigable points from which (x,y, z) is visible, mimicking the “intermediate stops” of
§3.4.1. We collected a total of 479 images and 70 (z,y, z)’s. For validation, we annotate
five images (and exclude them from the training set) from the AirBnB that was used in
§3.5.1.1, so that all goal object classes appear at least once. We show examples of train/

val images in the supplementary video.

In Table 3.3, we show the Mean IOU of Off-the-Shelf., Self-Seg (Self.), and Full-Seg
(Full.), when evaluated and in-situ trained on real world data with LocCon. First, we
find that Full. gives the worst and Self. gives the best initialization in the real world.
This suggests that our LocCon training makes simulation training useful for Sim2Real
transfer, despite the data challenges shown in §3.5.2. Second, we find that our LocCon
training gives performance boost for all models. While we do not include plots due
to space limmitations, we found that as we increase the number of training images for

LocCon training, the IOU increases, in both simulation and the real world.

We retrofit Self-Seg trained with In-Situ (Table 3.3) to real world ObjectNav (§3.5.1.1)
and examine if this adapted model can change any failures to non-failures (Fig. 3.1).
More specifically, we replicate the same trajectory the agent took in each of the failed
tasks, but use Self-Seg trained with In-Situ (Table 3.3) in the semantic mapper. We

observe that this turns one out of six failed tasks as a non-failure (Fig. 3.1).

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 29

3.5.2 Simulation

In §3.5.2.1, we present ObjectNav results in simulation. In §3.5.2.2, we analyze navigation
error modes, with special attention to those caused by simulation artifacts (Fig.3.5). In
§3.5.2.3, we provide an in-depth analysis of self-supervision vs. full supervision (with
annotations) for visual perception, and conclude that the latter tends to learn artifacts
from bad rendering and annotations. In §3.5.3, we analyze the performance and behavior

of a self-supervised nav policy.

3.5.2.1 ObjectNav in simulation

While our focus is on the deployable real-world system, we also evaluate our agent in
simulation (two validation sets of Gibson ObjectNav) for fair comparison to both existing
supervised models [23] (Gibson-1) and fully self-supervised approaches [3] (Gibson-2).
Table 3.4 shows ObjectNav results of our approach, compared with other fully supervised
and partially (visual perception is self-supervised while policy was trained with annotated
mesh) /fully self-supervised methods. Succ. denotes task success rate across all validation
tasks, SPL the Succ. weighted by path length, and DTS the average distance to the
1 meter (stop threshold) radius of the true goal. Our method outperforms fully self-
supervised methods on Gibson-2 and performs as competitively as methods with more

supervision on Gibson-1.

From Table 3.4, we do observe that directly training with simulation annotations gives
advantages; however, we find that this in-domain advantage is due to adapting to the
artifacts and noise of simulation, not learning the indoor semantics that is transferrable
to the real world (Fig. 3.5). In §3.5.2.2, §3.5.2.3, §3.5.3, we provide in-depth analyses of

the challenges of supervised training with simulation artifacts.

3.5.2.2 Error Modes

Table 3.5 shows the breakdown of the error TABLE 3.5: Error modes of Gibson-
modes of FullSup agent (denoted Full.) and 1 ObjectNav. *: Error modes unique
SelfSup agent (denoted Self.). We find that o simulation.

simulation reconstruction and annotation Error Modes Self. Full.

can be very noisy from certain views and can Misrecognition 13.2% 16.0%
produce RGB that are highly unlikely in the Bad Rendering” 8.0% 1.2%

real world (Fig. 3.5), and first enumerate ?Qﬁfy“f;fm 3.6% 2.4%

the errors that are unique to simulation, ﬁ?ﬁi;ﬁi? Coal* §j2§§‘j g;iZj
highlighted with * in Table 3.5. These errors Depth Mender Bxror 1é:g§; 1g:§;‘j

are Bad Rendering (Fig. 3.5(a); deformed

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 30

TABLE 3.4: ObjectNav validation results in Simulation (Gibson-1 and -2). We
compare fully supervised, partially self-supervised, and fully self-supervised methods
with our approach. We perform competitively with SOTA fully supervised methods on
Gibson-1 and significantly outperforms end-to-end self supervised methods on Gibson-2.
Cells with N.A. are due to gaps in the literature; ZER and ZSON only report results
on Gibson-2, while the other methods only do so on Gibson-1. * stands for our own
implementation of these methods, since the original code of [119] that reports results of
SemExp and PONI on Gibson-1 was not fully available.

Gibson - 1 [5] Gibson - 2[3]
Method Succ. T SPL 1 DTS | Succ. T SPL 1T
Fully Supervised w. Annotations
DD-PPO [163] 15.0 10.7 3.24 N.A. N.A.
SemExp [ogn] 65.5" 36.5" 1.45" 42.8 20.8"
PONI [119] 66.2* 36.8* 1.41* 34.9" 20.3"

Partially Self-Supervised
SemExp + SEAL [24] 62.7 33.1 N.A. N.A. N.A.

Fully Self-Supervised

ZER [3] N.A N.A N.A 11.3 N.A
ZSO0N [90] N.A N.A N.A 31.3 12.0
Ours 60.0 31.2 1.89 36.0 19.2

rendering causes Self. to incorrectly detect

goal objects and incorrectly terminate Nav task) and Mislabeled Goal (Fig. 3.5(b); the
goal objects are incorrectly labeled). We find that Self. is more susceptible to these errors,
with especially Bad Rendering happening ~7 times more in Self. than Full. While this
gap essentially explains the performance gap between SelfSup agent and fully supervised
methods (Table 3.4), we note that these errors are caused by simulation artifacts. This

agrees with our result in §3.5.1.2, that adapting to these errors harm real-world transfer.

Among errors not caused by reconstruction/ annotation challenges, the most common
error mode for both agents is misrecognition - goal objects not recognized even though
an instance of it was seen or misrecognized (e.g. “couch” as “bed”); surprisingly, Self. is
more robust to this error. The other errors consist of policy error (bad exploration led to
not finding a goal object), mapping/ planning error (agent goes out of the map and gets

lost), and depth render error (agent stops outside the 1m radius due to depth error).

3.5.2.3 Full. vs Self. Semantic Segmentation

We further analyze the behavior of Self-Seg (denoted Self.) and Full-Seg (denoted Full.),
to better understand the results of Table 3.5. We present results on two test sets,
which each consist of 500 images from 5 validation houses of Gibson. We realize that
simply randomly teleporting agents and collecting images (Test with Sim Noise) results

in many images with bad rendering (that will not appear in the real world) and bad

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 31

(a) Bad Rendering: Office space with deformed textures and large void
RGB

Wrong detection of bed Learns to ignore
bad reconstruction

(b) Bad Annotation: Missing label for television

correctly labels TV learns to mislabel TV
FI1GURE 3.5: Data challenges: bad rendering and annotations.
TABLE 3.6: Semantic segmentation results on simulated data. Results are on

the 6 goal objects (IOUs of all 15 objects are in Table 3.7); Self-Seg and Full-Seg are
denoted Self. and Full.

Test with Sim Noise Test w.o. Sim Noise

Metric

O-t-S. Self. Full. O-t-S. Self. Full.
Mean IOU 38.3 44.1 52.7 44.2 53.1 53.1
Freq. IOU 922 93.0 94.0 94.9 95.6 95.6
Pixel Acc. 95.1 95.9 96.5 96.8 97.4 97.4

annotations (Fig. 3.5). Thus, we further evaluate on a test set of 500 images with obvious

reconstruction/ annotation errors filtered by the authors (Test without Sim Noise).

Table 3.6 shows that Self-Seg (Self.) yields performance on par with Full-Seg (Full.)
across all metrics, when evaluated without simulation noise. However, on Test with Sim
Noise, the performance of Self. sharply drops while that of Full. nearly stays the same.
This leads to the conclusion that supervised training with reconstruction noise leads to
learning simulation noise and artifacts; in Fig 3.5, we observe that Full. learns to both
ignore bad renderings and adapt to the bad annotations of simulation. This explains
the ~7x gap in the Bad Rendering error in Table 3.5 and the result that Full. harms

real-world transfer, presented in §3.5.1.2.

Table 3.7 shows the class IOU of the three models across object categories. Interesting
cases are bolded, but we draw the reader’s attention in particular to cases where full
supervision has hurt performance. This appears to happen with small objects (e.g. Cup
and Book); we find these objects are often mislabeled. Because Self. does not use labels,
we are unaffected by this noise — a good sign for more realistic scenarios. However, at

present, small objects pose a major challenge for all models regardless of their supervision.

3.5.3 Full. vs Self. Nav Policy

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 32

TABLE 3.7: Semantic segmentation by object category. We provide a category
level IOU breakdown of results in Table 3.6. Self. shows a significant boost over O-¢-S.
for Toilet, Bed, and Oven; Full. can hurt performance sometimes (e.g. Book, Cup,

TV).
Category O-t-S. Self Full Category O-t-S. Self Full
Chair 41.9 40.3 42.6 Sink 17.6 25.7 34.8
Couch 57.7 60.7 62.4 Refrigerator 25.3 36.7 45.2
Potted Plant 25.0 29.6 30.1 Vase 0.88 1.79 4.93
Bed 49.0 64.8 75.8 Bottle 0.00 0.22 0.00
Toilet 5.53 37.1 48.7 Clock 0.00 0.00 0.00
TV 92.7 41.5 14.5 Cup 28.4 33.2 0.00
Dining Table 11.0 119 19.6 Book 11.2 5.33 1.18
Oven 17.6 35.1 54.4 Total Mean 27.4 32.5 33.2

First, we investigate if the gap of policy error TABLE 3.8: ObjectNav “Success Rate/

in Table 3.5 is meaningful. In Table 3.8, we SPL” on Gibson-1 for segmentation

. . dels with diff t igati i
compare ObjectNav performance on Gibson roacts WILHL GEICTent navgation poncy

models.
- 1 with a cross product of two segmentation
models and three ObjectNav policy models; Segmentation Models
the former are Self-Seg and Full-Seg, and Nav Policy Self-Seg Full-Seg
Self-Pol 60.0/ 31.2 64.4/ 33.2
the latter are Self-Pol, Full-Pol, and Sem- Full-Pol® 56.3/ 28.0 58.8/ 28.8
Exp [23] trained with ground truth locations SemExp 59.0/ 323 63.4/ 32.2

from labeled 3d meshes. Table 3.8 shows

that Self-Pol performs as well as Full-Pol across segmentation models, implying that
existing expensive methods that train the Nav policy with self-supervision, such as using
ground truth locations of objects, collecting demonstrations, or using ImageNav (in which

the goal location comes for free as mentioned in [90]) are not needed.

Furthermore, this result implies that policy training is fairly agnostic to noise; in Table 3.5,
we see that Self-Seg introduces more noise to the self-labeled semantic map (from Bad
Rendering) than the mislabeling in the mesh (from Mislabeled Goal). Still, Self-Pol,
while trained with more noisy data, performs on par with (even slightly better than) its
counterparts trained with mesh annotations. We hypothesize that this is because the
Nav Policy is trained to capture abstract knowledge on house layouts (as mentioned in
[23, 119]) and thus is fairly robust to both noises in Fig. 3.5.

3.6 Conclusion and Next Steps

We present a self-supervised method to train all components of an ObjectNav agent that
works in the real world. We find that our method can provide robust transfer to the real

world, while supervised training with simulation annotations can actually harm transfer

3The lower performance of Full-Sup PONI may be because of misalignment between the pre-trained
model provided by [119] and our reimplementation of the navigation components which we could not
reproduce with the provided code. We also compare against Full-Sup SemExp.

Chapter 3. Self-Supervised Object Goal Navigation with In-Situ Finetuning 33

performances. Most importantly, we show that our method can work for in-situ training
to further improve ObjectNav performance, which encourages future research efforts on

in-situ training.

However, we also find in our results that the improvement through self-supervision
alone has its limits. Ideally, if the system could adapt through manageable human
interactions—recognizing what it knows and doesn’t know and requesting information
through dialogue—it would significantly enhance its functionality. On the other hand, it
can adapt to a partitcular environment by observing human activity. For instance, a
robot might learn about object locations and their contexts by observing human actions
and listening to instructions like ”Put it on the short table,” followed by observing
where humans actually place items. To this end, we explore embodied dialogue in
Chapter 4, investigate understanding human activity and language in Chapter 5, and
propose initiatives in metacognition in Chapter 6. These discussions aim to equip robots

with better tools for learning from and interacting.

Chapter 4

Data and Model challenges in
Embodied Dialogue

This chapter examines embodied dialogue, with the lens of evaluation and training.
For evaluation, we observe that imitation learning and related low-level metrics do not
effectively meet the objectives of embodied dialogue research, leading to significant
challenges during both the training and evaluation stages. For training, we compare how
agents developed via modular approaches and those trained through end-to-end behavior
cloning respond to instructions within a human dialogue context. Our findings indicate
that agents trained end-to-end are particularly vulnerable to issues such as misaligned
intent and incorrect demonstrations in the training data. Additionally, we find that
existing models struggle to effectively ground dialogues, highlighting a key area for future

improvement.

4.1 Introduction

Dialogue is key to how humans collaborate; through dialogue, we query information,
confirm our understanding, or banter in a friendly manner. Since communication helps
us work more efficiently and successfully, it is only natural to imbue for collaborative
agents with this same ability. Most work has focused on grounded dialogues for embodied
navigation [145, 32, 123] or limited interaction [141], which are narrower domains than
the larger instruction following literature [144, 142, 133, 13, 11, 98].

The first step towards engaging in a dialogue, is being able to understand and learn from
it. Picture a child watching their parents with the goal to learn by imitation. They
witness instructions, clarifications, mistakes, and banter. Begging the question: What
should one learn from noisy natural dialogues?

34

Chapter 4. Data and Model challenges in Embodied Dialogue 35

Unlike in alinguistic tasks where modeling humans has recently proved helpful for search
strategies [36], we focus on language based tasks that require learning lexical-visual-action
correspondences. We discuss and compare three paradigms: Instruction Following (IF),
actions from Entire Dialogue History (EDH) and Trajectory from Dialogue (TfD). The
novel TEACh dataset [109] proposes EDH as the primary metric and uses the Episodic
Transformer (ET) [110] trained with behavior cloning as their baseline. We also include
comparisons to the EDH competitive Symbiote! system and we adapt FILM [98], a recent
method for general IF, to dialog instruction following (DIF) on TEACH. FILM and
Symbiote belong to a different family of models, focusing on abstract planning trained
at a higher semantic level than behavior cloning. This approach appears crucial for

generalization and TfD evaluations.

Most importantly, we analyze the human behaviors in TEACH and the corresponding
effect on ET, Symbiote, and FILM, as representatives of existing model classes. From
our findings, we suggest there are three major challenges the community must tackle to

move forward in the nascent field of Dialogue based Instruction Following:

Recognizing mistakes Behavior cloning encourages replication of low-level errors,
but not high-level intentions. Agents should learn to construe high-level intentions of

demonstrations and to deviate from demonstration errors.

Grounding queries No approaches correctly ground “queries” requesting information.

Evaluation Agent evaluation should focus on achieving goals rather than immitating

procedures.

4.2 Piror Work

Instruction Following A plethora of works have been introduced for instruction
following without dialogue [25, 94]; an agent is expected to perform a task given a
language instruction at the beginning and visual inputs at every time step. Representative
tasks are Visual Language Navigation [6, 46, 197] and instruction following (IF) [133, 137],
which demands both navigation and manipulation. Popular methods rely on imitation
learning [110, 137] and modularly trained components [11, 98] (e.g. for mapping and
depth).

'Model outputs provided by correspondence with the team.

Chapter 4. Data and Model challenges in Embodied Dialogue 36

(a) Interaction No Op
tVe need 3 slices of lettuce on a plate.

Could you find lettuce first?

Yes, where do | place it? i [
ey

fCom)

(b) Dialogue/ demo actions unaligned
EDH Session 1

| What can i do for you‘j

lice of tomato please.

EDH Session 2
Q,(nife is on the round table.]

[
feon

158

EDH Session 3

| Knife? I

A
L

Driver demo

- put tomato on dining table

2 el

. state changes: - pick up knife
I br 3 - slice tomato

Driver demo Driver demo - put knife on dining table
state changes: toggled faucet off state changes: grabbed tomato - pick up plate

F1GURE 4.1: Examples of suboptimal demonstrations that can be harmful for training

and evaluation. (a: no-op) The driver grabs a knife, looks up and down, and put

its down, although nowhere in the dialogue indicates to do these actions, nor do they

facilitate the high-level goal. (b: unaligned intent) In EDH sessions 1 and 2, the

commander asks for an item (a slice of tomato) and provides the location of the knife,

but the driver performs unaligned actions. In session 3, the driver suddenly asks ”knife?”,
but performs a long sequence of implied but not stated actions.

Dialogue Instruction Following Instruction Following with Dialogue [131] has
mostly addressed navigation. [145, 141] built navigation agents that ground human-human
dialogues, while [32, 104] showed that obtaining clarification via simulated interactions
can improve navigation. Manipulation introduces grounding query utterances that involve
more complex reasoning than in navigation-only scenarios [143]; for example, the agent
may hear that the object of interest (e.g. “apple”) is inside “the third cabinet to the

right of the fridge.”

Imitation Learning vs Higher semantics While behavior cloning (BC) is a popular
method used to train IF agents, it assumes that expert demonstration is optimal [189,
168]. TEACh demonstrations are more “ecologically valid” [150] but correspondingly
suboptimal, frequently containing mistakes and unnecessary actions. Popular methods
that deal with suboptimal demonstrations involve annotated scoring labels or rankings
for the quality of demonstrations [168, 14]. Such additional annotations are not available
in existing IF and DIF benchmarks. In this work, we empirically demonstrate the effect

of noisy demonstrations on an episodic trained with BC for DIF.

Chapter 4. Data and Model challenges in Embodied Dialogue 37

4.3 Tasks Explanation

TEACh focuses on two tasks: Entire Dialogue History and Trajectory from Dialogue.
Despite what the name implies, EDH is an evaluation over partial dialogues (e.g. from
state S; begin execution to St). TfD starts an agent at Sy and asks for a complete task

completion provided the full dialogue.

In both settings, the agent (driver) completes household tasks conditioned on text,
egocentric RGB observations, and the current view. An instance of a dialogue will take
the form of a command: Prepare coffee in a clean mug. Mugs are in the microwave.,
the agent response How many do I need?, and commander’s answer: One, together with
a sequence of RGB frames and actions that the agent performed during the dialogue.
As in this example, the agent has to achieve multiple subtasks (e.g. find mug in the

microwave, clean mug in the sink, turn on the coffee machine, etc) to succeed.

In TfD, the full dialogue history is given, and the agents succeeds if it completes the full
task itself (e.g. make coffee). In EDH, the dialog history is partitioned into “sessions”
(e.g. Fig. 4.1) with the corresponding action/vision/dialogue history until the first
utterance of the commander (Prepare ~ microwave.) being the first session and those
after it being the second. In EDH evaluation, the agent takes one session as input and
predicts actions until the next session. An agent succeeds if it realizes all state changes
(e.g. Mug: picked up) that the human annotator performed. Succinctly, TfD measures

the full dialogue while EDH evaluates subsequences.

4.4 Methods

TEACh is an important new task for the community. We explain the models used
for the analysis in this chapter. We analyze the provided baseline (ET), retrofit the
ALFRED FILM model, and requested outputs from the authors of Symbiote on the EDH
leaderboard.

ET is a transformer for direct sequence imitation approach, that produces low-level
actions conditioned on the accumulated visual and linguistic contexts. In contrast, FILM
consists of four submodules - semantic mapping, language processing, semantic policy,
and deterministic policy modules. For the adaptation, we refactored the original code of
FILM to the TEACH API, retrained the learned components of the semantic mapping
module for the change in height and camera horizon, and retrained /rewrote the language
processing module to take a dialogue history as input. The language processing (LP)
module of FILM maps an instruction to a task type and instruction-specific arguments.

For TfD this maps a dialogue to a sequence of tasks, while for EDH only the subsequence

Chapter 4. Data and Model challenges in Embodied Dialogue 38

is mapped to an immediate action. Symbiote is a competitive modular method for EDH

whose language understanding component is designed for dialogues (§B.1).

4.5 Experiments and Results

First we present how TEACh and, by extension, future embodied dialogue settings
present novel training and evaluation challenges as the data, by virtue of its authenticity,
includes substantial noise in both the training and evaluation (despite filtering by the
authors, as explained in §B.3). See §B.2 for how statistics were computed, for those not

explained in this section.

4.5.1 Explanation of Metrics

Evaluation for both EDH and TFD is done by SR (success rate), GC (goal condition
success rate), and their path-length-weighted versions. Success Rate (SR) is a binary
indicator of whether all subtasks were completed. The definition of “subtasks” is different
for EDH and TfD; for the former, they are all tasks required to realize state changes
done by the human demonstration that are relevant to the ultimate task (e.g. The
demo state changes in each session of Fig.4.1 (b)). Thus, the state changes brought by
the human is considered ground truth in EDH evaluation; this brings multiple challenges
further discussed in §4.5.2. On the other hand, for TfD, the subtasks are independent of
what was done in the demo; for example, as long as an agent “slices the tomato” correctly
for the task of Fig.4.1 (b), its SR will be 1 for this task. 2

The goal-condition success (GC) of a model is the ratio of goal-conditions completed at
the end of an episode. Both SR and GC can be weighted by (path length of the expert
trajectory)/ (path length taken by the agent); these are called path length weighted SR
(PLWSR) and path length weighted GC (PLWGC). Higher is better for all metrics.

4.5.2 Challenges in Evaluation

Irrelevant Actions Humans often explore the environment, or simply play around in
the middle of a task. This means they may flip a switch completely unrelated to the goal.
Table 4.1 are representative state changes that do not have direct correspondence with

the dialogue, and the percentage of human demonstrations that contain these actions.

*While the github repository https://github.com/alexa/teach#downloading-the-dataset men-
tions that the EDH tasks were filtered so that “the state changes checked for to evaluate success are only
those that contribute towards task success in the main task of the gameplay session the EDH instance
is created from”, we find that even after this filtering, there exist many EDH tasks with subotpimal
demonstrations as in Fig.4.1.

https://github.com/alexa/teach#downloading-the-dataset

Chapter 4. Data and Model challenges in Embodied Dialogue 39

TABLE 4.1: Representative state changes that do not have direct correspondence

with the dialogue, and the percentage of human demonstrations that contain these

actions. The action types listed here bring “state changes” that are counted during EDH

evaluation. For example, an agent would “fail” an EDH task if the human annotator of

the task left coffee machine off at the end, although the task (e.g. “Make coffee”) or
dialogue itself does not mention that it be left on.

Unnecessary State Changes Val Seen Val Unseen

Coffee Machine on/off 47.73 47.54
Picked up and not placed 25.49 23.41
Faucet on/off 12.68 10.59
Stove/ Microwave on/off 35.61 28.31
= Total 38.98 35.60

It is not always clear if this behavior is because of misunderstandings, boredom, or
curiosity. For example, we can classify a large number of navigation and interaction
"No Op”s, or action sequences that return to the original state (e.g. turning around in
place). In principle, these might be information seeking, to build a better map of the
environment, but in practice, many of the demonstrations do not seem to exhibit those
properties, particularly in extreme cases like repeatedly picking up and putting down the
same object. The percentages of prevalence of these unnecessary actions in both training
and validation are shown in Table 4.2.
TABLE 4.2: Representative unnecessary action types that do not have associations with

the high level goal or the dialogue, and the percentage of demonstrations that contain
these action types in train/ valid seen/ valid unseen splits.

Suboptimal Actions Train V. Seen V. Un
Navigation No Op

Turn Left/ Right x 4 3.07 2.30 2.33
Forward + Backward 4.80 7.57 4.23
Pan Right + Pan Left 5.83 4.77 8.10
Turn Right + Turn Left 13.13 13.49 10.89
= Total 22.41 23.03 21.36
Interaction No Op

Toggle off + on same obj 1.39 1.81 1.58
Open + Close same obj 1.46 1.80 1.30
Place + Pick up same obj 25.06 27.80 28.34
= Total 26.76 30.10 30.57
Interaction w. unrelated obj. 14.10 16.61 13.59
Demo unaligned w. dialog 25.25 22.49 23.40

The prevalence of these actions can be viewed as a positive for realism and even helpful

if teaching how to search, but pose a challenge for evaluation.

Chapter 4. Data and Model challenges in Embodied Dialogue 40

TABLE 4.3: EDH and TfD performances of E.T., Symbiote, and FILM. While the SR
on TfD is very low for all models, E.T.’s performance on TfD drops significnatly due to
replication of errors and lack of grounding of high-level semantics.

Valid Seen Valid Unseen
GC SR GC SR
Entire Dialogue History (EDH)
E.T. 15.7 [4.1] 10.2 [1.7] 9.1[1.7] 7.8[0.9]
SYMBIOTE ~ 25.9 [5.3] 16.1 [2.6] 17.2 [2.9] 10.1 [1.2]
FILM 26.4 [5.6] 14.3[2.1] 18.3 [2.7] 10.2 [1.0]
Trajectory from Dialogue (TfD)
E.T. 1448 1.0]0.2] 0.4[0.6] 0.5]0.1]
FILM 5.8 [11.6] 5.5 [2.6] 6.1 [2.5] 2.9 [1.0]

Penalizing Agents for Accuracy Using a human’s action trace as the ground truth,
means agents are penalized for skipping erroneous actions. This leads to a misleading
mismatch in performance between EDH and TfD. Additionally, EDH inflates model
performance as it includes subsequences which are nearly deterministic (e.g. all but the
last “placing” action). Table 4.3 contains EDH scores for our three comparison models
and TfD for ET/FILM. As suggested by authors of related papers, we treat Unseen

Success Rate as the most important metric (seen in blue).

)

Note, that an ideal evaluation would capture both “actions in context” and “task success.’
In the following section breakdown the overall numbers presented here to understand if

models more carefully.

4.5.3 Challenges in Training

Behavior Cloning with Suboptimal Demonstrations We find that ET trained
with behavior cloning repeats the same mistakes in novel scenes that are frequent in
demonstrations. We examine two kinds of mistakes in demonstrations - (1) No Op
interactions, in which consecutive interactions produces futile state changes (e.g. Placing
and immediately picking up the same object) and (2) Interactions with unrelated objects
(e.g. picking up “saltshaker” while making coffee). In Table 4.4 we compare what percent

of model predictions in seen and unseen scenes replicate the no-op behavior.

While hard to quantify, we also note that the higher intention of seemingly unnecessary
human demonstrations (e.g. to explore, to understand, etc) are not replicated by ET.
This is backed by our observation that ET tends to be stuck in many (10 or more)
repetitions of the same No Op/ unnecessary actions, until the end of the task or before

resuming to perform other actions.

Chapter 4. Data and Model challenges in Embodied Dialogue 41

TABLE 4.4: Percentage of tasks in which a model exhibited replication of No Op actions.

ET Symbiote FILM
S U S U S U

Suboptimal Actions

No Op (same obj)

Toggle off + on 0.0 01 02 01 0.0 0.0
Open + Close 25 1.5 00 02 0.0 0.0
Place 4+ Pick up 45.1 471 49 25 0.0 0.0
= Total 46.2 48.1 5.1 28 0.0 0.0
Unrelated obj. 24.0 20.3 27.5 30.6 15.9 12.10

Note that even Symbiote is exhibiting some no-op behaviors, but as the model supervi-
sion/structure becomes more abstract (ET vs FILM) this disappears, leaving only object

choice errors.

Grounding Queries Key to dialogue is language based information seeking. A target
object may be located in a closed receptacle (cabinet, etc); in this case, the agent has to
query the commander for its location, as a human would. We examine whether models
ground query utterances into meaning and accurate actions, since this is one essential
aspect of dialog grounding. While there are utterances with other essential intents, such
as confirmation, we focus on query utterances since these are relatively easy to extract

mechanically.

In Table 4.5 we consider a subset of tasks that involve “query utterances” that can be
detected automatically. Specifically, we present the performance of models in terms of
success rate and goal condition success on tasks that require opening a receptacle based
on the answer to a question — and then measure if the models leverage the query. Not all
query utterances will be of this type, but these tasks necessarily involve grounding query

utterances for task success.

Queries are present in 23.05% and 25.31% of valid seen and unseen splits, respectively.
This is a key challenge as it demonstrates a clear use case for dialogue and limitation of

current models.

Given a statement like “the fork is in the cabinet left to the refrigerator”, the evaluation
mismatch occurs if an agent grabs a different fork on a table. This allows them to
succeed, as measured by SR/GC, but not in SR/GC with Query. Notably, all models fail
at query grounding, indicating they are simply ignoring the language instructions. This
shows that enabling complex dialogue grounding is an important open problem for DIF.
Especially, for the ultimate goal of two-agent task completion (TaTC), it is necessary

that models can ground query and other essential utterances in a dialogue.

Chapter 4. Data and Model challenges in Embodied Dialogue 42

TABLE 4.5: We consider a task as involving “query utterances”, if in its demonstration,

a relevant object inside an originally closed receptacle was picked up. SR/GC measure

the vanilla task success on tasks with “query utterances”; SR/GC w. Query measure if
the success was achieved using information in the “query utterances.”

Method SR GC SR w. Query GC w. Query

Validation Seen

ET 8.97 14.13 0.00 0.00

Symbiote 0.00 11.76 0.00 0.00

FILM 9.59 20.26 0.00 0.00
Validation Unseen

ET 2.39 8.69 0.00 0.49

Symbiote 0.00 0.00 0.00 0.00

FILM 1.29 9.79 0.00 0.00

4.6 Conclusion and Next Steps

This chapter is not an indictment of TEACh, nor an endorsement of a particular model,
rather it seeks to lay out important questions and challenges that NLP will need to tackle
as it moves into embodied dialogue. Unlike existing work in dialogue that looks to model
human satisfaction [53] or state-tracking, DIF has the advantage of explicit and verifiable
semantic goals. We pose a challenge to the community: How can we build agents where
success is not tied to specific actions yet language understanding and production are

accurate and fluent? As a first step, we posit that imitation learning should be avoided.

The intersection of human activity and language often occurs in contexts that are
inherently ambiguous, a topic we have not explored in depth in this chapter. In the
forthcoming chapter, we will introduce a dataset specifically designed to address these
ambiguities and examine the performance of LLM-based modular models in interpreting
and acting within such complex scenarios. This investigation aims to shed light on
the capabilities of these models in real-world, dynamic environments where clarity and

precision in understanding human instructions are critical.

Chapter 5
Situated Instruction Following

This chapter delves into the challenges agents face when tasked with following instructions
under conditions where human intent is ambiguous or incomplete. Human intent is often
ambiguous in real world scenario, since humans speak situated language. Our analysis
reveals that agents demonstrate efficiency in planning and execution when the locations of
objects or humans are explicitly known. However, they encounter substantial difficulties
in uncertain environments where critical information may be obscured or missing. This
is evident even in advanced models, such as GPT-4, which struggle to interpret and act

on instructions without clear contextual cues.

5.1 Introduction

Humans naturally engage in communication that is contextually situated, providing
just enough information as necessary. This is because our use of language is predicated
on an assumed common ground [20], which encompasses our shared history, actions,
and environment. For instance, the instruction “Can you bring me a cup?” can vary
in meaning depending on the context. If spoken while the speaker is donning rubber
gloves by the kitchen sink, it likely refers to a dirty cup located on the living room table.
Conversely, the same request made in front of the bathroom sink typically implies a
need for a clean cup. While it is possible to seek clarification, humans generally interpret
and respond to such requests accurately without additional information. This capability
demonstrates how humans skillfully use environmental and action cues to interpret

ambiguous language, crafting meanings that are intricately nuanced and context-specific.

As robotic agents increasingly become integral to our daily lives, their effectiveness
and utility critically depend on their ability to comprehend and respond to situated
language— natural language spoken by humans. Without this capability, agents may

prove more of a hindrance than a help, foriiﬁlg users to perform tasks themselves rather

Chapter 5. Situated Instruction Following 44

Phase I: Exploration

Let’s see
where the
human last

placed objects.

Phase 2: Task Starts!
Task Type: PNP Task Type: Sobj Task Type: S hum

Bring me a cup. Bring me a cup;

| moved it while

Bring me a cup;
| will be washing
my hand.

FIGURE 5.1: Situated Instruction Following. The tasks in SIF consist of two
phases: an exploration phase (phase 1) and a task phase (phase 2). PNP represents a
conventional static Pick-and-Place task used for comparison, wherein the environment
remains unchanged after the exploration phase. Spum and Sy introduce two novel types
of situated instruction following tasks. In these tasks, the objects and human subjects
move during the task phase. Nuanced communication regarding these movements is
provided, necessitating reasoning about ambiguous, temporally evolving, and dynamic
human intent.

than entrusting them to an assistant. As discussed in the field of agent alignment [74],
it is often difficult for users to precisely define or articulate ideal task specifications.
Consequently, an agent that demands detailed explanations might render manual task

execution by humans more attractive.

Current instruction-following tasks prioritize accurate low-level instruction interpreta-
tion [133, 6, 109, 56] or use commonsense to achieve underspecified goals like object
navigation [23, 35]. In contrast, our work SIF aims to generalize Embodied Instruction
Following to Situated Instruction Following, with instructions closer to the language
naturally spoken by humans. Specifically, we focus on three dimensions of situated

reasoning:

1. Ambiguity: As in the cup example above, there is ambiguity in the instruction

given by the speaker.

2. Temporal: A speaker’s actions change how their instruction should be interpreted

(e.g., clarifying an underspecified reference).

3. Dynamic: When the environment changes, the agent needs to decide what actions

will reduce their uncertainty (e.g., following the human).

Chapter 5. Situated Instruction Following 45

We implement our tasks in Habitat 3.0[112] as it includes simulated human agents. To
ensure a fair comparison to prior work we include tasks where the environment is static
(prior work) and dynamic (this work) — Fig. 5.1. The static task is a classic pick-and-place
(PNP) paradigm. Formally, the instructor tells the agent to Put [0bj] in/on [Recep].
While prior work extends this paradigm with linguistic complexity [133, 161, 109], the
baselines used for such tasks can be fairly evaluated here. We introduce a simplifying
assumption and allow the agent to explore the environment to minimize the role of
mapping on the performance in our reasoning benchmark — we will return to this in the

ablations.

The focus of our benchmark is dynamic tasks where the agent must combine their
understanding of the instruction with the human’s movements to determine the correct
action. The two domains (Figure 5.1) are either where the human has moved the object
(Sop;) or where the moving human is the receptacle (Spym). In these tasks, the agent
receives a goal instruction (e.g., “Bring me a mug” for Spy,, or “Put the mug in the
bathroom” for Sy;;), accompanied by hints on relocation (e.g., “I will be taking a bath”
for Spum or “I have moved the cup next to the be” for S,p;). Furthermore, in Sy, tasks,
the human begins to walk at the start of the task, embedding the intent of relocation in
both verbal directives and observable movement. The goal of the agent is to adhere to
the instructions with an efficient path, accurately identifying and retrieving the specified
object, and then placing it in the correct receptacle (which is “human” for Sy, tasks).
Note, these are incredibly simple tasks that will prove very difficult for current models.
If someone asks you to retrieve a mug from the kitchen and bring it to the bedroom, you
intuitively wait just long enough to see which room they enter before searching for the
mug. These types of ambiguity reduction strategies will elude the models, exposing their
over-reliance on commonsense. Moreover, if informed that a mug has been moved to a
bedroom, you would thoroughly search each bedroom, ensuring no area is overlooked.
Our findings show that reasoning in ambiguous situations often confuses models, posing

more challenges than simple commonsense reasoning.

We specifically target evaluation of state-of-the-art Embodied Instruction Following (EIF)
baselines. We implement two such systems inspired by papers on related tasks. The
first baseline, which we refer to as REASONER, is a closed-loop system incorporating a
semantic map, a prompt generator, and a Large Language Model (LLM) planner. For
the prompt generator, we integrated components from Voyager[151], LLMPlanner[139],
and ReAct[181], tailoring them to suit our dataset’s specific requirements. The second
baseline, PROMPTER/[64], was very successful at executing ALFRED [133] tasks despite
being open-loop. We see the desired result that our static scenarios match those from
existing EIF datasets [139, 64], and these LLM based approaches perform very well in
tasks requiring common sense. However, their performance significantly declines when

faced with situations that require reasoning about the human’s behavior.

Chapter 5. Situated Instruction Following 46

TABLE 5.1: Comparison of Embodied Instruction Following Datasets.

Task Specification Env. Dynamics Intent Change
Abstract Over- Middle- Ego Ego + Language Intent
specified ground + Human Change Unfolding
ObjectNav [5] 4 X X v X X X
ImageNav [199, 71] v X X v X X X
Course-grained VLN [113, 56] v X X v X X X
Fine-grained VLN [72, 6] X v X v X X X
Embodied QA [35] v v X v X X X
Excalibur [198] X X 4 v X X X
ALFRED [133] v v X v X X X
TEAChH [109], DIALFRED [50] v v X v v v X
SIF v v/ v v v v v

5.2 Prior Work

SIF builds on instruction following, agent alignment, and situated reasoning. Instruction
Following. We contextualize our baselines models and benchmark, in terms of both
text-only and embodied research. The recent trend is to factor the task into a planner
(often an LLM), memory (e.g., a map), perception, and implement tools for taking
actions. Papers then often decide which components to be learned or implemented
heuristically [152].

Embodied Instruction Following (EIF) We focus on tasks involving high-level task
planning and navigation, excluding those with low-level (joints and end effector) motion
control [176, 78, 191]. Relevant tasks are summarized in Table 5.1.

Modular models with the structure of planner (e.g. LLM), memory (e.g. semantic
mapping), and perception/execution tools have shown much success in the tasks of
our interest. In semantic navigation, ESC [194] and 13vm[184] have achieved SOTA
performance in ObjectNav[23, 99, 5] and ImageNav[96, 199, 71] by leveraging LLMs for
frontier selection based on common sense. [192, 26, 130] have used LLM for planning
and tracking in Visual Language Navigation [56]. In mobile manipulation, FILM[98,
97], PROMPTER [64], and LLMPlanner[139] have used language models for planning and
semantic search in ALFREDI[133]. In real-robot domains, code-as policies [79], inner
monologue [63], and ProgPrompt[135] have shown success in using LLMs for generating

abstracted manipulation plans.

The effectiveness of decoupled LLM reasoners largely stems from existing benchmarks
focusing on abstract common-sense reasoning [133, 23, 35, 113] or detailed, sequential
guidance [56, 6, 72, 109]. These modular models tackle visual grounding and navigation
through separate semantic memory modules [194, 98, 23, 130]. Thus, the learning
challenges posed by either abstract instructions or detailed guidance boil down to

common-sense object search and visually grounded tracking. Yet, these foundational

Chapter 5. Situated Instruction Following 47

skills fall short of meeting real-world needs and utility. Real-world instructions often
exist in a middle ground: not overly abstract yet not excessively detailed, with both
explicit statements and implied expectations. Thus, we introduce SIF, aiming to surpass
the limitations of basic reasoning and literal planning by bridging the gap to real-world

applicability.

Text-only agents Modularly chained models of planner[15, 1, 147], memory (in text)
[166], meta-reasoner[183], and refiner[89] have shown much success in code generation[187],
playing games[167], web navigation[195], and text-only embodied agents[181]. While
most efforts have concentrated on enhancing agent reasoning through tool-use [181, 128]
and self-evaluation (reflection[89, 132] and tree-of-thought [183]), less attention has been
paid to navigating the complexities of real-world instructions. [75, 188, 85] have explored
eliciting clarifications when human intent is ambiguous. Clarification is necessary at
times, but it also comes at a cost; the focus of SIF is understanding ambiguous intent
that is clear upon holistic understanding of the environment and speaker. [85, 45, 141]
have studied when instruction intent changes and is communicated with language; SIF
instead infers changes to intent from the human’s actions. Unlike prior work focusing
on agent-centric challenges in dynamic settings (e.g. moving zombies)[167, 151], SIF

explores understanding dynamically evolving human intent.

Agent Alignment. Traditional agent alignment research[74, 2, 92] recognizes the
difficulty in articulating real-world task specifications, and has primarily focused on
learning reward functions from underspecified specification. Recent works on LLM and
LLM agents[151, 167, 195] have delved into alignment for real-world applications, focusing
on understanding intent[108], value alignment with social norms [77] and individual
preference [180], and guaranteeing safety[146]. Despite these advancements, the ability
of agents to interpret instructions characterized by ambiguity, evolving intent, and the
interplay between agent actions and environmental dynamics is still underexplored. We
introduce SIF, aiming to push the boundaries of agent alignment closer to real-world

complexity.

Situated Reasoning. Environments evolve when there is another agent other than
oneself; reasoning about action and change requires situated logical reasoning. While early
work [95, 121] and STARJ[165] employed formal logic and scene-hypergraphs for abstract
reasoning, SIF focuses on fostering holistic understanding and temporal awareness in

uncertain contexts.

Chapter 5. Situated Instruction Following 48

5.3 Task Expalantion

SIF extends previous work that primarily focus on abstract, decontextualized, common-
sense reasoning [50, 23, 109] by evaluating reasoning scenarios constructed in situ. Below,

we explain the dataset design choices and guiding philosophy.

5.3.1 Assumptions and Scope

While real-world assistance could take many forms—including teleoperation, natural
language hints, visual clarifications, or contextual corrections—this work focuses specif-
ically on high-level action guidance as the primary form of intervention. This choice
allows us to isolate the core challenge of temporal reasoning and ambiguity resolution
while maintaining experimental tractability. Future work should explore the rich space

of multimodal assistance types.

5.3.2 Tasks

Overview. Our tasks are structured into two distinct phases: (1) the exploration phase
and (2) the task phase. During the exploration phase, the agent is allotted N steps to
navigate around a static house environment where object assets are positioned. The
value of N is determined to ensure the agent has sufficient steps to thoroughly scan the
environment; specifically, N = 1.5 x (the number of steps required to achieve a complete
map using frontier-based exploration techniques). Following the exploration phase, some
objects are repositioned without the agent’s knowledge. As the task phase commences,
the agent receives an instruction (e.g., “Bring me a cup,” “Put the cup in the sink”),
accompanied by either direct or ambiguous information regarding which objects have
been moved (e.g., “I took a cup with me. I'll be getting ready for bed”). If the task
involves delivering an object to a human, the human walks into the agent’s field of view
as the task begins, simultaneously providing hints about their intended location (“I
will be in the bathroom washing my face”). These elements, along with other strategic
design decisions, ensure that the exploration phase effectively contextualizes the language

directives, rendering tasks sufficiently solvable.

Note that these tasks, while challenging for current Al systems, represent basic pragmatic
reasoning that humans handle effortlessly in daily interactions. For instance, when
someone says “Bring me a cup; I will be washing my face” while there are multiple
bathrooms, humans naturally wait to observe which bathroom the person enters before
searching for the cup. This type of situated, contextual interpretation demonstrates

the fundamental gap between human pragmatic competence and current Al capabilities,

Chapter 5. Situated Instruction Following 49

making SIF an important benchmark for evaluating progress toward human-level situated
understanding.

TABLE 5.2: Dataset stats. Data
statistics across splits and conditions.

Task Format. A task is defined by
(H,I,C,P.,P;,P;). A task is embedded

in the House, with starting Poses of as- Axis PoP Soy; Shum
sets during , agent, and the human for the =~ Dynamic
exploration (P,), task (P;) phases and goal Object X v X
Human X X J/
state (P,), the goal Instruction, and hu-
Tasks

mans C'ommunication about which objects
Valid Seen/Unseen 40/40 40/40 40/40

were moved where after exploration phase.
Test Seen/Unseen 40/40 40/40 40/40

Agent Specs & Predefined Skills. The agent in our simulation is modeled after
the Spot robot[44], equipped with an odometry sensor and RGB and Depth cameras
mounted on its arm at a height of 0.73 meters; this setup follows the specifications of
640x480 resolution and a 79-degree horizontal field of view by previous work [23]. At
each timestep, the agent is capable of executing one of several actions: moving forward
by 0.17 meters, rotating left or right by 10 degrees, grabbing an object, or placing an
object. The “grab object” action allows the agent to pick up the nearest graspable object
within a 2-meter radius, whereas the “put object” action enables it to place the held

item onto the nearest suitable receptacle within the same distance.

Task Types. There are three types of tasks - static (PNP), situated-object (Sg;), and
situated-human (Spy,). For all three types, the overarching goal for the agent is to pick
[0bj] and place it in/on [Recep]. In the Syy; tasks, the [0bj] of interest is relocated
between the exploration and task phases; in the Sy, tasks, the [Recep] (human) begins
to move at the start of the task phase. In the PNP task type, both [0BJ] and [RECEP]
remain stationary; although other objects may be moved to introduce variability, the
[0BJ] relevant to the instruction (I) is not displaced. This setup is analogous to tasks
found in existing research [133, 23] and serves as a means for sanity checking and ensuring

a fair comparison across models. Examples of PNP, Syp;, Spum tasks are in Fig. 5.1b.

Three dimensions of situated reasoning We explain how the aspects of ambiguous,

temporal, and dynamic are implemented below:

¢ Ambiguous: Ambiguity in S tasks arises when multiple potential locations exist
for searching an object, as informed by communication cues. For instance, if a
human says, “I took the cup and moved it with me. I am washing my face,” but
there are multiple bathrooms in the house, the task becomes ambiguous. Likewise,
ambiguous Spqm tasks arise when the human could potentially be in several different

locations. The ambiguity in these tasks was annotated by human reviewers.

Chapter 5. Situated Instruction Following 50

TABLE 5.3: Template Instructions TABLE 5.4: Template Relocations
(1) ©)

Task Descriptions I moved the object with me; I am ...
Static Receptacle: next to the [Recepl]
Put a [ObjectCat] on the [Recep] next to the [Recep1], [Recep2], [Recep3]
Put a [ObjectCat] in the [RoomFunction] in [RoomFunction]
Dynamic Receptacle: in [RoomFunction] [WithObjects]
Bring a [0bjectCat] to me doing [RoomFunctionActivity]

e Temporal: For example, if a human says, “Bring me the cup. I will be in the
bathroom,” and there are multiple bathrooms, the intent (the exact location of
which bathroom) unfolds and becomes more clear real-time, with the human walking

towards one of the bathrooms (Fig. 5.3).

e Dynamic: In both S,; and Spy.,, tasks, an agent can decide which location
to search or whether to follow the human or decide, to decrease ambiguity or

understand temporally unfolding intent.

Two axes of difficulty Our tasks incorporate commonsense related to room functions
and human activities, based on object placement (Tables 5.3,5.4). We add two layers of
difficulty to this foundation:

Holistic understanding of language instructions: We designed and filtered tasks
to avoid being trivial or solvable solely through commonsense, yet not so ambiguous as
to require exhaustive search. Phase 1 exists so that the agent can scan the layout of the

house, and tasks are solvable with targeted reasoning rather than comprehensive searching.

Resolving ambiguity: Tasks necessitate methodical reasoning under ambiguous intent
(ambiguous tasks of Sp; and Spym), with designs that favor agents taking actions to
resolve ambiguity (intent probing), rather than comprehensively searching later. At the
same time, unambiguous tasks should be solved without intent probing. Evaluation
details in Sec. 6.5.

5.3.3 Dataset Construction

We explain how the tuple (H,I,C, P, P;, Py) is constructed. In a total of 10 houses,
each with human-annotated room metadata (which includes details such as the top-down
(x,y) coordinates corresponding to each room, the function of the room (e.g., bedroom),
and grounding details (e.g., a bedroom with a yellow wall)), we place four to ten assets
in [ObjectCat]!. Assets are from YCB[17], Google Scanned Objects[39], and ABO

basket, book, bowl, cup, hat, plate, shoe, stuffed_toy

Chapter 5. Situated Instruction Following 51

[34] datasets. We sample P,, P; of assets so that they are initialized in a visible space

and graspable. More details on filtering trivial and unsolvable tasks are in Appendix C.1.1.

Language Directives. We explain the generation of I and C. The Instruction carries
information about P, which is the desired location of an object necessary for task success.
We first sample P, by sampling a room in the scene, a receptacle in the room, and then
a puttable point on the receptacle. Then, we use templated language (Table 5.3) to
express this information. For PNP and S,;; tasks, we use “Put a [ObjectCat] on the
[Recep]” or “Put a [ObjectCat] in the [RoomFunction]”; for Sy, tasks, we use “Bring
a [ObjectCat] to me”. The list of possible [ObjectCat], [Recep], [RoomFunction] is
shown in Table A.1.

The Communication on movement describes P; of objects whose poses are changed from
P,.. For each object that was moved, C' is given with the templates in Table 5.4. In
addition, for Spym types, C also contains where the human will be after walking during the
task phase; this also follows the template of Table 5.4, with “I am” replaced by “I will be”
(e.g., I: ‘Bring a cup to me’. C: ‘I will be organizing my bed’). [RoomFunctionActivity]
describes common human activities in each room (e.g., kitchen - washing vegetables,
bedroom - preparing to sleep); the complete list is presented in Table A.2. C'is presented
together with I at the start of the task phase. Although we use templated language, the
diverse combination with the scene layout and object/human poses introduces substantial

reasoning challenges.

Human Trajectories. For PNP and S.; tasks, the human is stationary. In Spym,
tasks, the human trajectory is deterministically determined given the human’s P; and
P,. The human moves naturally at a speed of 0.08m per time step. Human appearance

and motion is naturally implemented as explained in [112].

Statistics and Splits The specifics of the dataset are outlined in Table 5.2. For
validation and testing, the dataset comprises 40 seen and 40 unseen tasks across each
type, resulting in 240 validation and 240 testing tasks in total. Additionally, we provide
code to facilitate further data and trajectory generation for training purposes. The seen
subsets (both validation and test) incorporate the same six houses used in the training,
allowing for evaluation in familiar environments. Conversely, the unseen subsets employ
four new houses to test generalization across different settings, bringing the total to ten

unique houses for evaluation.

Chapter 5. Situated Instruction Following 52

| Egocentric RGB | | Instruction | > ' Planner ’
Bring e washing > >

(a)

| will be washin Generator You are an =
my face o assistive. .. High-level Tool

Follow Human

Semantic Map * 1
-
Egocentric Depth Map - . iy 4 ’ {]

3 4 B — e,
T Sl v
} ‘} (Execution Policy)

| Action | RotateLeft
Output

System Prompt: You are an assistance robot in a house, and a Reasoning:

human in the house has walked around, moving objects... There are two bathrooms and
Env. Prompt: You have seen the layout of the house. In room 0, | —p _> there is no clear evidence yet
there is couch, shoe on the couch, ...

Format Prompt: Please answer in the format of Reasoning: ,
Answer: , ...

(b)

Answer: Follow Human

FIGURE 5.2: Reasoner: (a) The semantic mapper is updated at every timestep,

whereas the prompt generator and planner are activated either upon completion of the

last high-level action or when a new decision is required. (b) The prompt consists of
system prompt, environment prompt, format prompt.

5.4 Methods

As discussed in Sec. 5.2, many recent state-of-the-art EIF agents are modular models
with an LLM planner, connected to learned/engineered episodic memory, perception,
and execution tools. We present two baselines within this high-performing family. The
first is REASONER, a closed-loop baseline that adapts FILM[98] and the prompts of
llm-planner[139], and ReAct [181], and prompter [64], an open-loop SOTA agent built
for ALFRED [133].

5.4.1 Reasoner

We adopt the modular structure of FILM [98]. REASONER operates through three main
components: (1) a semantic mapper that updates an allocentric map from egocentric
RGB and depth inputs, (2) a prompt generator, and (3) the planner (GPT-40[1]) that
generates high-level actions (Fig. 5.2).

Semantic Mapper. The semantic mapper creates a global representation for visual
observation. As in previous work|[23, 98], we process egocentric RGB and depth into an
allocentric top-down map of obstacles and semantic categories using Detic[196]. The
semantic categories of interest are [ObjectCat], [Recep], and “human.” In contrast to

previous works[23, 98], the most recent human and object positions are refreshed post

Chapter 5. Situated Instruction Following 53

Allocentric
map

+
Algorithmic
Human path
Anticipation

T At timestep 0, you saw At timestep 20, you saw At timestep 60, you saw
ext . . .
Prompt the human is in room 0, the human in room 0, the human in room 1

P walking towards rooms 1, 2, 3, 4 walking towards rooms 1, 2

FI1cURE 5.3: Text Prompt Generation of Human Trajectory: The white regions
in the maps are possible regions that the human might walk towards; rooms with more
than half of the area included in the white region are included in the text prompt. The
red triangle is the agent position/direction, green star and dot are respectively current
observed human position, anticipated human position in 10 steps. The text prompt at
every 20 timesteps is given to REASONER (and at time step 0 to PROMPTER which is
open-loop), to decide if there is enough evidence for the clarity of the human’s intent.

new observations and pick/place actions, ensuring a dynamic and accurate representation

of the environment (Sec. C.3.1).

Text representation generator. The semantic map and other contexts are converted
into prompts. It is a concatenation of three components: the system prompt, environment

prompt, and the format prompt:

e System: The system prompt outlines the agent’s role and and encourages it to
account for uncertainty. It is presented as “You are an assistive robot in a house,

aiding a human. Your observations may be incomplete or wrong.”

e Environment: The environment prompt is a conversion of the episodic memory
into text format, and contains information of the agent’s current state and previously
completed /failed actions. It is given in the following sequence: (1) observation of
P, during exploration phase, based on the semantic map, (2) C, regarding object/
human movements, (3) the goal instruction I, (4) the high-level action executed by
agents at timesteps and their observed consequences (success/fail), (5) the agent’s
latest observation, based on the latest semantic map (example in Appendix C.2).
Every observation is given with the caveat that it can be incorrect or missing. Past

actions are interleaved with observations as in ReAct.

Chapter 5. Situated Instruction Following 54

e Format: The format prompt explains action affordance and a format for chain of
thought [160]. It also explains the desired effect of actions (e.g. “If you want to
keep searching for object(s) or human that might exist (but you have not detected)

in the current room, choose ‘Explore Room X’ (Table C.3).”)

A complete example of the prompt is given in Appendix C.2. For Sy, tasks, every 20
steps, we ask whether the planner has enough evidence about the human’s goal location,
based on the system prompt, the current observation of human trajectory (Fig. 5.3), and
the human’s utterance (e.g. “I will be organizing my bed”). Example prompts about the
observed human trajectory are in Fig. 5.3. If the planner answers “Enough Evidence,”
we proceed to ask for a high-level action (e.g. “Grab [Obj]”), providing the concatenation
of the system prompt, environment prompt, and the format prompt above. On the
other hand, if it answers “Not Enough Evidence,” we call “follow human.” We ask this
question every 20 steps, until the “follow human” execution tool deems that either the

agent lost track of the human or the human has stopped. Details are in Appendix C.3.3.

Execution Tools Upon receiving the

prompt, the planner is prompted to choose a TABLE 5.5: Execution tools for REA-

high-level action (Tab. 5.5); then correspond- SONER; details in Tab. C.3.

ing execution tools are called. A complete
list of tools are listed in Table C.3. When

the execution is done, the tool sends this mes-

Navigation Manipulation

Go to Room X Grab Obj
Explore Room X Put Obj

d th t t t
sage, an e prompt generator creates a new o oo Give Obj to Human.

prompt and the planner calls a new tool.

5.4.2 Prompter

PROMPTER employs an open-loop planner.

We utilize GPT 3.5 for planning and search in lieu of BERT[37] (as in the original
work[64]), tailored to our dataset’s requirements. Its operational logic is straightforward:
if an object has been identified on the map, PROMPTER interacts with it; otherwise,
it initiates a search based on object and receptacle relationships. The planning phase
utilizes a template that is populated with specific details, executed once at the task’s
outset. For instance, in response to a command like “Put a shoe on the couch,” GPT 3.5
is prompted to formulate a high-level plan adhering to a structured format (e.g. “[Pick
up 0BJ, Put on the RECEP]).” This ensures GPT 3.5 primarily focuses on filling in
the template’s variables. For Sp,,,, tasks, we ask if there is enough evidence about the

human goal location, based on the layout of the house and the human utterance; due to

Chapter 5. Situated Instruction Following 55

TABLE 5.6: SPL performance of PROMPTER and REASONER across splits. In each

sectioned-row, the top row assumes oracle perception (semantic segmentation and

manipulation); the bottom row assumes learned semantic segmentation and heuristic

manipulation. To minimize the burden on API costs and time, we have limited LLM

APIT calls for plan generation to 15 times for both PROMPTER and REASONER. SR
performance is shown in Table D.4.

Model Val Seen Val Unseen Test Seen Test Unseen
3 . g . g g

. 2 s 2 %2 5 : 2 5 % 35 =
Planning Perception A~ n wn ol n 5} A ! o A W)
Oracle Oracle 98 100 95 100 100 100 98 93 98 95 100 98

Learned 46 46 59 41 30 54 52 30 69 44 47 46

Prompter[64] Oracle 66 27 25 67 38 28 61 25 23 52 30 19
Learned 16 10 11 19 8 10 24 3 8 18 7 6

Reasoner Oracle 82 61 23 78 49 39 73 58 29 81 49 34
Learned 21 8 12 24 11 12 29 2 15 18 14 15

open-loop planning, we ask this only at the beginning of the task. If the planner answers
“Not enough evidence”, then we add “Follow Human” as the first high-level action (so

the plan becomes e.g. [Follow Human, Pick up 0OBJ, Give OBJ to Human]).

For the search phase, PROMPTER, in the original work, determines where to look by
sampling from the logit values from a text query akin to “Something you find at [MASK]
is apple.” Instead of sampling directly, we query the LLM, by integrating the latest
map’s text representation into a search prompt (e.g., “In which room is the shoe likely to
be? Please answer in the format of Room X.”). This caters to our dataset’s complexity,
featuring multiple smaller rooms. Since object search happens multiple times, this has

the same effect as sampling.?

5.5 Experiments and Results

We evaluate the baseline models against the validation and test splits of SIF.

Oracle: The oracle baseline replaces the learned planner of REASONER with ground-
truth plans like [“Go to Room X7, “Grab Obj X”]. Its purpose is to demonstrate
the most reasonable path length achievable with optimal reasoning strategies. Further

information is in Appendix C.4.1.

Evaluation Metrics: Task Success is determined by whether the object is correctly
placed in or on the intended receptacle—or the right room—within 600 timesteps. A

clear task in Sy, is deemed unsuccessful if it necessitates following the human for over

2We grid-search the LLM’s hyperparameters — temperature and top_p, by trying temperature
€ {0.1,0.3,0.5} and top_p € {0.1,0.3,0.5} in the validation set.

Chapter 5. Situated Instruction Following 56

50 timesteps, since unconditional probing should not is a behavior that reduces the utility
of the robot. The Success Rate is calculated as the average of individual task successes
across the dataset. The SPL (Success weighted by Path Length) [5] is calculated using

the formula:

L*

SPL = Ejgepsls—————
tasks |3 mazx (L, L*)

I

where s is task success, L is path-length outputted by the model for a task, and L* is
the path given by the oracle baseline. SPL is the primary metric of evaluation, because

it tests correct reasoning strategies.
5.5.1 Results

Results from our experiments are presented in Table 5.6. This table notably shows the
following facts about our dataset and baselines. First, the gap of model performance
(both REASONER and PROMPTER) across PNP versus Spym, Sop; shows that PNP can be
solved with commonsense and mechanistic combination, and the rest two tasks cannot.
PROMPTER shows SPL of ~20% (~ 60% with oracle perception) on PNP tasks, showing
that these tasks are on par with existing tasks like ALFRED. Conversely, on S,; and
Shum tasks, it shows much lower performance (~ 30% with reasoning alone); this shows
that these tasks have challenges beyond common sense and progress tracking. The
reasoning challenges of S,; and Spy.,, are backed by the performance of REASONER
with oracle perception/manipulation; it shows a stark contrast in PNP tasks (~ 80%)
and Sepj, Shum tasks (~ 45%). Overall, REASONER shows a better performance than
PROMPTER, with and without GT perception/manipulation.

Second, it shows that perception is still a bottleneck, as found in works on previous
datasets[98, 97, 23]. Even the oracle baseline, which has perfect reasoning, suffers with
learned semantic segmentation and manipulation. When combined with learned reasoning,
the drop tends to be larger (oracle perception vs. learned perception of PROMPTER and

REASONER), since the planner faces a further uncertainty from perception error.

5.5.2 Ablations and Analysis

To analyze the impact of non-reasoning compo- TABLE 5.7: Ablation SR with
Oracle plan, for visual and exe-

cution errors on Val Seen & Un-
performance, Table 5.7 shows the effect of using seen combined.

nents (visual perception, manipulation) on task

heuristic manipulation and learned segmentation

across our three settings. Our findings align with Method PnP Soby Shum

previous studies [98, 64, 99], further emphasizing G-T- Oracle 99 100 98

that segmentation continues to be a significant + heuristic man. 88 [88
+ learned seg. 60 58 7

obstacle to progress. + both 49 49 64

Chapter 5. Situated Instruction Following 57

The focal point of our study is reasoning. To this

end, Table 5.8 analyzes the failure modes of REASONER and PROMPTER when they
leverage accurate semantic segmentation and manipulation. This table enumerates the
proportions of various reasoning error modes that we observed in unsuccessful tasks.
It categorizes these errors as follows: parsing errors, where the format of the LLM’s
response deviates from expectations; planning errors, which include inadequate tracking
of progress and incorrect actions; strategic errors in locating humans, objects, or rooms;
and actuation errors, such as mismanaging object interactions. The table lists these errors
chronologically, noting that early errors like parsing mistakes can preclude later ones.
Notably, strategic errors often manifest as unnecessary repetitive movements—more than
five high-level navigational or exploratory actions—or as overly confident yet inaccurate

predictions about a human’s location.

This table reveals several key insights. First,

PNP tasks exhibit fewer strategy errors com- TABLE 5.8: Reasoning Error Modes.
Percentage of failed tasks for each error
(w/ oracle perception) on Val Seen &
pens primarily due to room grounding is- Unseen combined.

pared to the other two tasks, which hap-

sues with less obvious rooms when placing

objects—for instance, identifying a “study Error REASONER PROMPTER
.. . . £ g€
room.” This implies that PNP tasks re- ﬁ:-. s 3 QE g 3
. At w®m A ®w wn
volve around more common-sense reasoning,
such as inferring room functions from ob- L8 -2 630 -
g Planning 20 9 7 - - -
jects and familiar human activities typically Strategy 40 82 88 46 43 100
associated with those rooms. In contrast, ©PJ -5 -3 -
. . Room 40 27 - 46 27 -
Sopj and Spy, tasks exhibit higher rates of gy an . . 88 .~ 100
strategy errors due to their need for a more Actuation 20 5 5 8 9 -

situated understanding of human motion

and activity. Second, PROMPTER’S open-loop planning leaves it more susceptible to
parsing errors. Notably, PROMPTER often fails to generate a plan for instructions that,
while atypical, are feasible (e.g., “Put a shoe on the couch”), responding with “I’'m
sorry, but I can’t comply with that request.” In contrast, REASONER exhibits fewer
fundamental errors (those that precede strategy errors) and records a higher count of
strategy errors. However, this does not imply that REASONER commits more strategic
mistakes than PROMPTER; from Table 5.6, it achieves a higher number of successful

tasks with correct strategic execution.

Table 5.9 examines model performance on clear versus ambiguous tasks. Ambiguity in
Sopj tasks emerges when multiple potential locations exist for an object, as indicated by
communicative cues (Sec. 5.3.2). For example, the statement “I am washing my face”
becomes ambiguous when multiple bathrooms are available. Similarly, ambiguous S,
tasks occur when the human could be in several different locations. Ambiguous S,

tasks require a systematic search of possible locations; common failures include models

Chapter 5. Situated Instruction Following 58

TABLE 5.9: Ambiguous vs Clear tasks. SPL and SR of REASONER and PROMPTER
with G.T./learned vision and manipulation on Val seen & unseen combined.

Model Metric G.T. Vis. & Man. Learned Vis. & Man.

Sobj Shum Sobj Shum
Clear Amb. Clear Amb. Clear Amb. Clear Amb.

SPL 62 52 13 42 9 11 3 17
REASONER

SR 76 71 14 67 15 14 6 26
PROMPTER SPL 38 29 3 42 11 8 0 17
SR 54 36 4 66 18 10 0 27

fixating on the incorrect room across multiple attempts or missing a potential room
altogether. Clear and ambiguous Spy,, tasks also demand careful interpretation of the
ambiguity of instructions (e.g., deciding whether to follow the human), informed by both

contextual clues and observations of the environment and human movement (Fig. 5.3).

For Sp; tasks, PROMPTER displays significant performance discrepancies across clear and
ambiguous tasks, struggling particularly with ambiguous scenarios. On the other hand,
REASONER exhibits a more consistent performance across both conditions, demonstrating
its capability to navigate between rooms and conduct systematic searches. In Spyum
tasks, both models underperform in clear tasks due to a tendency to conservatively
judge that there is insufficient evidence of the human’s destination, even when only one
plausible location exists. PROMPTER notably has an almost zero success rate in clear
tasks, consistently concluding insufficient evidence and choosing to follow the human.
Conversely, REASONER attempts some calibration but generally leans towards following
the human. Qualitative analysis reveals that in ambiguous tasks, REASONER often

disengages prematurely, assuming it has accumulated enough evidence.

5.6 Conclusion and Next Steps

We present Situated Instruction Following (SIF), a new dataset to evaluate situated and
holistic understanding of language instructions. Our dataset reflects aspects of real-world
instruction following: (1) ambiguous task specification, (2) evolving intent over time, and
(3) dynamic interpretation influenced by agent action. SIF is carefully crafted to assess
language comprehension and reasoning in situ. We show that current state-of-the-art
models struggle with this level of understanding, further highlighting the complexity and

uniqueness of our dataset.

In this chapter, we did not delve into methods for training models or LLMs to better
manage uncertain states or to seek assistance proactively when faced with problems be-

yond their resolution capabilities. We address these strategies and propose methodologies

Chapter 5. Situated Instruction Following 59

to enhance model responsiveness and adaptability in uncertain environments in the next

chapter.

Chapter 6

Training LLM Agents to Request
Interventions under Budget

Constraints

We have outlined a progression from perception to cognition in the previous chapters.
Chapters 2 and 3 explored how agents can leverage common sense and physical consistency
to navigate perceptual challenges. Chapters 4 and 5 examined cognitive abilities in
understanding and executing situated language instructions, revealing that agents struggle
particularly when human intent is ambiguous or incomplete. This brings us to the next
critical step: the development of agents that are self-aware—capable of understanding
their own uncertainties and recognizing their limitations. This level of metacognition
is crucial for agents to effectively evaluate their actions and adapt their strategies in

complex environments.

Human intelligence involves metacognitive abilities to recognize limitations and seek
assistance only when needed. While LLM agents excel in many domains, they often lack
this awareness. Overconfident agents risk catastrophic failures, while those that seek help
excessively hinder efficiency. In this chapter, we formulate metacognitive help-requesting
as a reinforcement learning problem in which we simultaneously optimize both the reward
function (the penalty for requesting help) and the help-requesting policy itself. To
avoid the cost of repeated retraining, we predict the expected intervention usage of a
reward configuration before training the help-requesting policy; this enables efficient and
autonomous identification of the optimal reward—policy pair, followed by a single pass
of helper model training. To balance both robustness and computational efficiency, our
method is implemented with integrating LLM-based scoring with tabular reinforcement
learning. We empirically find that our method delivers optimal help-requesting behavior
on Situated Instruction Following tasks.
60

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints6l

(a) An Unrellable Agent (b) Vanilla Agent Agent Requesting Intervention

Bnng Help!

amug w m State - 'ﬁ' - @ State —>m @
N

LLM Agent

MAE
Where Q) T Help! 'ﬁ' ~>
K 3 &

: Test-time compute, more powerful model, ...

Intervention
(c) Challenges in Training the Helper
Challenge 1: What is a good reward? T=1 T=2 T=8 T=4 T=5 T=6 Success
e Success
Help! ? What reward /ﬁ — B
SR — @oo induces 2 & & Fail
R +11 budget C? ﬁ
T
= f’ Fail

FIGURE 6.1: Unreliable agents and training challenges. (a) An unreliable agent

does not communicate its inability in advance, causing surprise and catastrophe. (b) A

“helper”, a state-wise classifier, can decide when are optimal timings to request interven-

tions under budget constraints. (c) With budget C on interventions, challenge lies in

determining a reward function that guides appropriate help-requesting. Concurrently,
we have to find the optimal help-requesting policy /demonstration.

6.1 Introduction

Human intelligence is distinguished by metacognitive abilities — particularly the capacity
to monitor limitations and requesting targeted assistance only when needed (Fig 6.1). By
recognizing and communicating uncertainties, individuals can delegate tasks or seek help
before failure becomes inevitable. This approach prevents costly mistakes and fosters

trust, as admitting uncertainty and asking for help at the right time is reassuring.

Despite advancements in Large Language Models (LLMs), current Al agents often lack
metacognitive awareness. Overconfident agents risk catastrophic errors, while those
seeking help excessively are inefficient. Ideally, an Al agent should gauge uncertainty
and selectively request assistance, ensuring reliability and efficient use of human effort.
While existing Al safety research addresses unintended and malicious behaviors [48, 33,
9], reliability with true agency also requires the ability to recognize and communicate

limitations.

A core problem in training an intervention-requesting agent within a limited intervention
budget C is determining when to request assistance. Under a reinforcement learning
regime, it is unclear how to appropriately penalize the agent for intervention requests;
excessively incentivizing help requests prematurely exhausts the budget, while insufficient
incentives may lead to avoiding necessary interventions altogether. On the other hand,
under a supervised fine-tuning regime, generating annotated trajectories under budget
constraints is resource-intensive (Fig. 6.1(c)), as the trajectory space grows exponentially,
and even human annotators can struggle to identify optimal intervention timing for each

budget constraint. For instance, human annotators may find it challenging to determine

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints62

precisely when it is most beneficial to use a specific type of test-time compute given a

particular budget C.

We introduce a framework for training a “helper” — a state-wise classifier that decides
when an agent should invoke a costly intervention under a fixed budget (Fig 6.1 b). We
formulate budget-constrained asking as a reinforcement learning problem that involves
simultaneous reward and policy search; unlike the conventional RL paradigm, which
assumes a fixed reward function and searches only for the policy, our core challenge is
automatically identifying the appropriate reward (or penalty) that aligns help-seeking
behaviors with a given intervention budget C, while concurrently optimizing the help-
requesting policy under that reward (Fig. 6.1 ¢, d). A straightforward solution might
involve repeatedly setting the penalty, training the help-requesting policy, evaluating
whether the policy meets the budget constraints, and readjusting the penalty. However,
this iterative retraining is inefficient as it repeatedly incurs the computational overhead
of training and evaluating the policy with each new candidate penalty. To address this,
we propose predicting the expected intervention usage of a reward configuration before
training the help-requesting policy. By decoupling the evaluation of whether a reward
meets the budget constraint from the actual policy training (Fig. 6.3 a, b), the expensive
policy training occurs only once—after identifying the optimal reward—rather than

repeatedly for each budget adjustment.

Concretely, our method combines tabular reinforcement learning with LLM-based scor-
ing, enhancing robustness while avoiding deep RL inefficiencies (Sec.6.4). Empirical
results on Situated Instruction Following tasks show that our approach achieves perfor-
mance comparable to systems using interventions at every step, yet requires far fewer
interventions—often just one per task versus eight (Sec.6.5). We first introduce task
settings (Sec. 6.3) before presenting methods and results. By training LLM agents to
request assistance judiciously, we advance reliable and efficient deployment of LLM-based

systems.

6.2 Related Work

LLM agents Recent breakthroughs in LLM agents [182, 178, 132] have allowed the
creation of Al systems which can complete a range of real-world tasks in an open-ended
environment [102, 127, 159]. Most work on training LLM agents focuses on SFT for
tool-use [127], prompting closed-source LLMs [178, 158, 159], or applying RL in domains
with a clear objective such as code generation or math [43, 30]. Instead, we focus on
applying RL techniques to an environment with ambiguous instructions [100]. Although
previous works target such environments [186, 51], they do not address how to request

intervention, which is the central focus of our work.

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints63

@ Instruction Text State | LLM ﬂ / » (0) Instruction: (Ambiguous descriptions of human activity regarding objects)...
Put a bowl in the kitchen; You are an assistive Agent > Q Put a bowl in the kitchen
| have moved it while robot in a house, and * \ Base Explore Explore Explore Explore Explore
washing my face ... a human has moved A Room3 Room3 Room3 Room3 Room 3
objects, .. ctor e A 7 4 g
E i orpY ing: Failure
gocentric G tor > Timestep 15: In room Reasoning:
RGBD enera 0, you sgw a‘ T There are some potentiall : | . { | | .
] shoeon ... IO ey MCTS Explore Go to Explore Grab _ Putbowlonthe
- JAction: Go to Room 1 with - Room3 Room1 Room 1 Bowl Dining Table
Semantic Choose which next Helper g v .
Mapping action to take among & ﬁ A g ‘
P ¢ /‘ = Success!
| [Go to Room 1, {ops® m
Explore Room 2, ..] Y. o ﬂ -] } ¥l : _'-»

FIGURE 6.2: (a) A SIF task requires the agent to locate objects, interact with humans,

and perform household tasks in a sequence of discrete actions. Relevant segment is

highlighted in orange; states are represented in text. (b) Example task progression with

base actor only and helper with base actor/intervention (MCTS); the helper triggered
two interventions and salvaged the agent to success.

Safe and Trustworthy Al safety often focuses on value alignment—ensuring Al systems
follow human values [48, 33, 9]—and AI security—ensuring robustness to adversarial
attacks [61, 16]. However, these may not guarantee safety in high-stakes contexts, where
an agent’s limited capabilities can lead to harmful failures (e.g., prescribing the wrong
medicine [124]). We therefore situate our work under the more expansive concept of
Trustworthy AI [38], which includes the requirement that agents pursue tasks robustly

without unintended failures.

Self-improvement for LLMs Previous work in self-improvement has explored the
potential of enhancing LLM responses. Environmental feedback [55, 114, 86, 29, 7] and
model-generated critiques [88, 155, 162, 82, 115] have enabled models to perform better
in subsequent iterations. Reward models combined with search algorithms further guide
decoding toward better answers [102, 148, 185, 172, 80]. However, most such methods
assume the model can inherently solve the task, with the challenge lying in eliciting
that capability. When a task exceeds the model’s ability, intervention of more capable

models/augmented compute is needed.

Prompting vs Reinforcement Learning-based Optimization Prompting ap-
proaches for uncertainty expression and help-seeking exist [173, 93, 8], and they offer
several attractive qualities including simplicity, rapid deployment, and interpretable
decision-making processes. An alternative to our reinforcement learning framework
might involve heavily prompting large models with explicit budget constraints and help-
seeking instructions. Such approaches could potentially leverage the natural language
understanding capabilities of large models for flexible help-seeking behaviors. However,
prompting-based methods would likely face several challenges in budget-constrained
scenarios: (1) they typically lack systematic budget optimization and principled timing
strategies, focusing instead on binary confidence estimation or unlimited help-seeking
rather than the constrained optimization problem we address; (2) difficulty in precise
budget calibration without extensive trial-and-error; (3) potential inconsistency in help-

requesting behavior across different contexts; and (4) lack of principled optimization

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints64

for the exploration-exploitation trade-off inherent in budget-constrained scenarios. Our
systematic optimization framework provides more reliable and controllable intervention

timing through principled reward and policy search.

Calibration & Meta-cognition Meta-cognitive agents that recognize their own lim-
itations can guide human trust and seek external knowledge to improve accuracy [93,
8]. Previous work estimates confidence via semantic entropy [73], logit values [66, 67],
direct questioning [193, 82, 173], or conformal prediction [122]. Although these methods
can help decide when to intervene, their estimates are calculated from logits, and may
be biased by training data and fail out-of-distribution [170, 193]. Another approach is
learning an RL policy that treats assistance seeking as an action [31, 103, 84, 136, 171,
62]. In contrast, we use a process reward model with tabular RL to adapt to budget

constraints without additional training.

6.3 Task and Setup

Task We use the Situated Instruction Following (SIF) task [100], which requires finding
objects, interacting with humans, and performing household tasks in highly uncertain
and dynamic environments (Fig.6.2). To the best of our knowledge, SIF is among the
most suitable benchmarks for evaluating how well LLM-driven agents handle nuanced
and uncertain instructions. The environment provides textual descriptions at each step,

with agents issuing discrete commands like Go to Room X in a multi-turn setting.

Tasks are challenging because speaker intent is often ambiguous, and humans may
dynamically alter the scene (e.g., placing objects in different rooms), forcing agents to
decide when to gather more evidence or clarify instructions. Even advanced models like
GPT-4o struggle with these inherent ambiguities[100].

Following SIF, we use two task types. PnP is a vanilla pick-and-place scenario. S_obj is
more challenging, with ambiguous human hints, partial observability, and the possibility
of objects being moved. We use 1,000 training tasks and 40 validation/test tasks per
split. Also following SIF, we adopt Success Rate (SR) and Success weighted by Path
Length (SPL) as our primary evaluation metrics. SR measures the percentage of tasks
successfully completed, while SPL additionally rewards efficiency by penalizing long

paths to task completion.

State Representation In our framework, a state s consists of a textual description
that bundles the agent’s observational history (rooms visited, objects seen, human
locations) and action history (navigation and manipulation attempts). This text-based
state representation enables tractable tabular RL while capturing the essential context

needed for intervention decisions. We following the same state formulation as SIF,

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints6d

but we utilize ground truth vision through ground truth semantic segmentation masks,
which corresponds to the orange component shown in Figure 6.2(a). This allows us to
focus on the core decision-making challenges while abstracting away visual perception

complexities.

Base Actors and Interventions The base actor (the robot of Fig. 6.2 b) is the default
decision-making actor—a LLaMA 3B [43] that outputs actions given text states. The
base actor operates as the default decision-making component, outputting high-level
actions (e.g., "Go to Room X”, ”Grab Object”) based on textual state descriptions. It
handles the full pipeline from state interpretation to action selection, but with limited

reasoning capabilities compared to the interventions.

While the original SIF dataset used GPT-40, we train LLaMA models on GPT-4o [1]
and GPT-4o-mini trajectories for S_obj and PnP tasks respectively, to save costs for
generating rollouts to train our helper. Interventions (the firefighter of Fig. 6.2 b) are the
costly, powerful aids that the helper can invoke under budget constraints. We consider

two types of interventions:

Depth-1 MCTS: A simple Monte Carlo Tree Search approach that, guided by a process
reward model, generates up to five candidate actions and selects the best. Details on

MCTS implementation are in Appendix D.1.

More Powerful Models: For a GPT-4o-mini base actor, we invoke GPT-40. For a
LLaMA 3B base actor, we use a LLaMA 3B with a better performance, that has been

fine-tuned on oracle-agent trajectories for the train tasks.

Helper The helper (Fig. 6.2 b) is a LLM-based binary classifier built on a LLaMA 3B
with a scalar head. Crucially, this helper is designed to recognize potential failure states
in advance—much like a child asking for help to reach candy on a high shelf before
attempting and failing. This proactive help-seeking behavior (Fig. 6.1) contrasts with
reactive approaches that only request assistance after encountering failures, enabling

more efficient and less frustrating human-AT collaboration.

At each step it consumes a textual state—which bundles the agent’s observations and
action history— as input and outputs a single score indicating whether to request help.
Through our reinforcement learning framework, the helper learns to become an evaluator
of the base actor’s certainty and success likelihood at each state, effectively developing
an instinct for when intervention will be most beneficial. The helper can be trained
with a standard cross-entropy loss so that its output probability aligns with the optimal
help/no-help decisions. Sec.6.4 details our reinforcement learning-based approach to
generate optimal state-wise intervention labels for training the helper under varying
budget constraints. We formulate this as a combined reward and policy search problem
that accounts for how interventions affect future trajectory paths. Throughout this

chapter, “policy” refers exclusively to the helper’s intervention-requesting

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints66

strategy. Our method is devoted to training this helper policy under an intervention
budget, while the base actors and interventions remain pre-specified and are not updated

during training.
6.4 Method: Requesting Targeted Interventions

A straightforward approach of the helper (Fig. 6.1 b) is to model state difficulty and
threshold it, to request help for the most challenging states within budget C. However,
as we later demonstrate (Sec. 6.5), we find simply thresholding on state difficulty largely
insufficient for optimal intervention timing. The core challenge is that effective help-
requesting requires accounting for how interventions affect future state trajectories—a
property not captured by isolated state difficulty scores. To address this, we formulate
help-requesting as a combined reward and policy search problem within the reinforce-
ment learning paradigm. In this section, we first discuss our reward regime to ground
our discussion within reinforcement learning. Then, we provide our proposed method
overview(Sec. 6.4.1) and algorithm (Sec. 6.4.2).

Reward Regime At any non-terminal state s, the help-requesting policy m can choose
between requesting help (help) or not requesting (nohelp). The reward regime that

governs w can be given by:

e Intermediate states:
— help: incurs an immediate penalty of —r
— nohelp: incurs no immediate penalty (0)

e Terminal states: success yields a reward of +1 and failure 0

This formulation creates a direct trade-off between help-requesting and performance.
The reward (penalty parameter) r indirectly controls the intervention budget—Tlarger
values of r discourage intervention requests, resulting in lower usage. Given intervention
budget C, the challenge lies in finding the optimal value of r, such that}, the optimal
help-requesting policy under r, yields (exactly) the desired budget C.

Notations We define the success probabilities under different intervention choices as:
Pnohelp ($) = Pr(success | state = s, action = nohelp),

Phelp(s) = Pr(success | state = s, action = help).

State transition dynamics are denoted as Pheip(s' | 5) and Pyonelp(s’ | s) for the probability

of transitioning from state s to s’ when choosing not to help or to help, respectively.

6.4.1 Method Overview

Given the reward regime defined above, our goal is to find both: (1) The optimal reward
parameter r that enforces budget constraint C, and (2) The optimal help-requesting
policy 7* under this reward. A straightforward approach would involve:

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints67

(a) . (b) Train Task: “Bring me State transition (C)
Reward Search for 7" : binary search a cup; | will be ...” probability F;j

LLaMA

W.

Quick! h
uicl Scalar Head

Traianasks " | Policy Search Under 7" | ,-\

Policy Search
Under 1

" Annotation .
T
Tabular RL with Generation / \]E[[7] Train ;r:fks,
& State| Action : expected

(Train Tasks, 77, E[U]) -
S0 § @usage

Compare [E[U]| with C' 51 lﬁl e der T

FIGURE 6.3: Method Overview. Our method is composed of reward/policy search

and one-pass helper training. (a): Reward/policy search is implemented with a quick

inner loop of policy search that outputs E[U], expected usage of interventions under

optimal policy (7*) with r. The outer loop (reward search) is binary search that

compares E[U] with the budget constraint C' and adjusts r. (b): Policy search generates

annotation (optimal tabular policy 7*) on train tasks as well as E[U]. (c): Helper model
is trained once at the end, with supervised fintuening, using the annotation 7*).

Select an initial penalty value r
Train a help-requesting policy 7 through reinforcement learning
Evaluate how many interventions 7 uses on a validation set

If usage exceeds C, increase r to discourage interventions; if usage is below C, decrease r

DA

Repeat steps 2—4 until converging on a policy that meets budget C

This naive approach is computationally prohibitive—each iteration requires extensive
data collection, model training, and evaluation. For example, one iteration of training 7
can require thousands of environment interactions and rollouts without multiple GPU

hours, multiplied by the number of reward adjustments needed to find the correct r.

Our key insight is to decouple the expensive policy training step from the reward
parameter (r) search. As illustrated in Fig. 6.3, our method consists of two main
components: (1) an efficient reward/policy search procedure and (2) a one-pass helper
training stage. For the reward/policy search, we implement a nested loop structure
where the inner loop (Fig. 6.3a) performs quick policy search using tabular RL (dynamic
programming) to calculate the expected intervention usage E[U] under the optimal policy
7* for a given r. The outer loop then employs binary search to adjust r by comparing
E[U] against the budget constraint C'. During this process, the policy search (Fig. 6.3b)
generates annotations representing the optimal tabular policy 7* for each training task.
Finally, once the optimal reward parameter r is identified, we train the helper model
exactly once (Fig. 6.3c) via supervised fine-tuning on these annotations—whether to call

help or nohelp given state s.

This approach offers significant advantages for automated reward/policy search: (1) the
tabular policy calculation is extremely fast (we outline how we make it fast in Sec. 6.4.2),

completing in minutes; (2) we can rapidly explore different reward parameters without

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints68

repeatedly training neural network policies; (3) we only incur the computational cost of

training the actual helper model once, after finding the optimal 7.

6.4.2 Algorithm

The implementation of our method consists of prerequisites (Phase I), reward/policy
search (Phase II), and SFT (Phase III). We explain the algorithmic implementation of

each Phase.

Phase I: Prerequisites: Building State Dynamics and Success Probability
Cache To enable quick reward/policy search (Phase II) as described in Sec. 6.4.1, we

collect the state dynamics]5(3’ | s,a) and success probability cache—cached values of

Phelp (S) and Pnohelp (5) .

We collect transitions by randomly triggering interventions using the base actor on
training tasks. For each transition, we update the count with count[s][a][s'|++. Specif-
ically, we perform three randomly seeded repetitions of rollouts where interventions
are triggered with probabilities of 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0 for each task
(Fig.6.4 a). For scenarios involving multiple interventions (see Table 6.2), we collect
transitions for each intervention individually and additionally for combinations of in-
tervention probabilities, with 0.1/0.1, 0.3/0.3, 0.1/0.3, and 0.3/0.1 per intervention.
Finally, raw counts are normalized into transition probabilities, where a € {help, nohelp}:

P(s'|s,a) = count][s][a][s'] / 3, count][s][a][z].

To build the success probability cache, we train two separate LLaMA 3B classifiers
(LLaMA 3B with scalar head) to estimate success probabilities under different conditions.
For each state s in our collected transitions, we compute and store both pheip(s) and
Prohelp(s) (Fig. 6.4 b). We define these as the probability of successfully completing the
task from state s when using intervention (help) or the base actor (nohelp) respectively.
To estimate these probabilities, we collect training data by rolling out trajectories
from each state s using either the base actor or intervention, giving us state-outcome
pairs (s;,O(s;)), where O(s;) indicates whether the trajectory starting from state s;
eventually succeeded. Each classifier is trained through supervised finetuning using
binary cross-entropy loss:
£(0) ==Y _[O(si) npg(si) + (1 = O(s:)) (1 = fo(s2))]

i=1
where O(s;) is the binary outcome label. By caching these values for all states in our

transition table 15(3’ | s,a), we eliminate any GPU usage during the policy search loop
of Phase II, enabling rapid dynamic programming calculations. This pre-computation
is crucial for efficiency—it provides immediate access to values needed to determine
optimal intervention points without requiring additional rollouts or inference during

policy optimization.

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints69

" @8
E Y
l Starting M
50 Starting 7T
WM@ . Tabular RL

— Usage computation Usage computation
— Policy computation

e P(s]s, 1)
M*

1+’12P‘h1(| 8)Mi(s), ifm(s)=1,
* M(s)

7219 ohelp(s' | 8) My(s'), otherwise.

Primary
Roll-out % State Dynamlcs * EEE—

State |Puy(s) Pnayls) |7 :Tableof (s,a) E[U] = My, (r) Sucg:;:’;ob- as p(s)

0 o | o Nopelp : Expected Help ~ Ap(s)

et g & &° usageor 7°) =1 < ol
® | osr om elp Nt%em Aps = Phelp(8) — Puohelp(s)
@ |os o so @ a€ {hf’lpﬁ nohelp Y| 53060 = s A0 pon1E0)

FIGURE 6.4: Policy search process. Our method involves: (a) Collecting state dy-

namics by rolling out trajectories with base actors and randomly triggered interventions.

(b) Caching success probabilities pheip(s) and pnoneip(s) for each state using separate

LLM scorers from intervention and base actor rollouts. (c¢) Performing tabular rein-

forcement learning through alternating usage and policy computation until convergence,

outputting the optimal policy 7* and expected intervention usage E[U]. Right panels
show the key mathematical formulations guiding these computations.

Phase II: Offline DP for Iterative Reward/Policy Search In this phase, we
efficiently search for both the optimal reward parameter r that enforces budget constraint
C and the corresponding optimal help-requesting policy 7. We implement this search

through a nested loop approach (Fig. 6.3a):

The outer loop performs binary search over possible r values, while the inner loop uses
fast offline dynamic programming (DP) to compute the expected intervention usage E[U]
and the optimal policy for each candidate r. This structure allows us to efficiently find

the reward parameter that yields exactly the desired budget C.

For the inner loop DP algorithm (Fig. 6.4c), we initialize usage estimates Mﬁo)(s) =0

for all states and then iteratively perform:

1. Usage Computation: For each state s, we compute the expected future interven-
tions:

M;lelp(s) (7 1+Z Phelp(sl | 5) M’Siter—l) (S,), M;lohelp(s) (7 ZPnohelp(S/ | S) M’,giter—l) (S,).

/ ’

S S

2. Policy Computation: We calculate the benefit-to-cost ratio of requesting help:

Ap(s) Dhelp(S) — Pnohelp(s) (extra success)
AM,(s) Phelp (s s)MPeP () — pnohelp(s)MQOhelp(s) (extra usage)

ratio =

and set the policy to request help if the ratio exceeds penalty r:
help . .
Ap(s) 7 (iter) (5) = My""(s), if r <ratio
AM,(s) MPP(5) | otherwise.
We repeat these steps until convergence (]M(lter)() — M,Siter*l)(sﬂ < ¢ for all s), as

in Fig. 6.4c. The expected intervention usage of the converged policy 7 is given by
E[U] = M,(so). If E[U] differs from budget C, r is adjusted with binary search in the

m(s) = Iir <

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints70

TABLE 6.1: Performance and intervention usage comparison of our method and baselines,
across task types. A more powerful model was used as the intervention.

S_Obj Pick N Place

SR+ SPLt L] U] E[U] SRT SPL1 L| U E[U]
0% Interv. 30.0 26.6 123 0.0 - 350 30.1 80 0.0 -
100% Interv. 67.5 65 7.8 7.8 - 60.0 520 4.6 4.6 -
Random
10% 475 38 105 1.1 - 375 329 6.8 0.6 -
30% 50 44.1 89 29 - 50 426 58 1.5 -
State-wise Difficulty Thresholding
10% 42,5 355 11.8 1.0 - 325 271 70 0.6 -
30% 42,5 355 11.1 1.8 - 575 393 48 32 -
Our Method
r high 475 393 114 04 04 475 36.6 6.0 1.2 0.7
r mid 62.5 57.5 9.1 1.0 0.8 60.0 49.7 57 1.6 0.9
r low 60.0 54.5 87 22 1.1 64.9 58.9 52 29 1.8

outer loop. The entire process is extremely efficient (within minutes, not hours) with

computations purely tabular and reusing cached transition and success probabilities from
Phase 1.

The equations are derived by combining the Bellman equations with our reward regime.
The iterative usage/policy computation provably converges to a unique fixed point of
optimal intervention policies; see Appendices D.3 and D.4 for the full derivation and

convergence proof.

Phase III: Final Policy Training via SFT After deriving tabular « for all states
s € S collected in Phase 1, we train the helper model using standard supervised finetuning
(SET). Concretely, the helper model learns to replicate the DP policy ’s help/nohelp
decisions from the train tasks for downstream deployment. This helper is plugged in as
in Fig. 6.2(b) and is evaluated on the test set.

6.4.3 Extension to Multiple Interventions

Our algorithm extends to multiple intervention types, each with its own budget. The
same framework in Sec. 6.4.2 can be applied, with individual budget constraints for
intervention types, each with a different cost and expected usage (e.g. r1, M, (s) for
help1 and ra, M,,(s) for help2). We can adapt Phase II to select the action with minimal
combined cost 11 M, (s) + ro M;,(s). Details are in Appendix D.5 and results are in
Tab. 6.2.

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints7l

TABLE 6.2: Performance and usage comparison across intervention types on S_obj tasks.
Our method achieves near-100% intervention performance while using significantly fewer

interventions.

A More Powerful Model MCTS Multiple Interventions

SRt SPLt L| Ul E[U] SRt SPLt L] U/ E[U] SRt SPLT L| Uyl Uzl E[U;] E[Us]
0% Interv. 30 27 123 0 - 30 27 123 0 - 0% Interv. 30 27 123 0 - - -
100% Interv. 68 65 7.8 78 — 63 52 94 94 -~ - - - - - - - -
Random
10% 48 38 105 1.1 43 37 113 14 10%, 10% 43 33 113 1.1 0.8
30% 50 4 89 29 - 48 38 11.2 3.7 - 30%, 30% 48 40 99 32 26 - -
State-wise Difficulty Thresholding
10% 43 36 11.8 1.0 - 40 31 121 1.1 — 20% & random 40 29 124 0.6 0.9 - -
30% 43 36 11.1 1.8 - 38 30 116 25 — 50% & random 48 39 10.8 2.0 22 -
Our Method
r high 48 39 114 04 04 38 27 123 0.5 0.7 ry high, rp high 38 34 115 01 12 03 0.8
r mid 63 58 9.1 1.0 0.8 45 37 116 14 1.0 r1 high, 7o mid 43 35 107 01 1.8 04 1.0
r low 60 55 8.7 22 1.1 50 36 10.3 3.2 1.3 r1 mid, 7o high 48 42 99 2.0 0.6 1.0 0.7

6.5 Results

We provide results for our method, with the LLaMA base actor and better model/MCTS
interventions. We plug in our trained helper from Sec. 6.4, as in Fig. 6.2(b), to call
intervention(s) when the helper chooses help. We implement two baseline approaches for

help-requesting under budget constraints:

Difficulty-based Thresholding This approach models state difficulty and requests
help for the most challenging states within budget C'. We define the difficulty of a state s
as 1 — p(terminal success | s), representing the probability of failing to complete the task
from state s. To estimate this probability, we leverage the phohelp(s) classifier from Phase
I of Sec. 6.4.2, which was trained on base actor rollouts only. This is the appropriate
classifier since we want to identify states where the base actor struggles most. State
difficulty is defined as 1 — pyohelp(Si), Where prohelp(si) estimates the probability of the
base actor successfully completing the task from state s;. For intervention decisions, we
apply a simple thresholding mechanism: we request help at state s; if pronerp(si) < 7,

with threshold 7 calibrated on a held-out validation set to match budget constraint C'

N

1

N Z 1{pnohelp(3i) < T} =C.
=1

Random Selection As a simple baseline, we randomly select states for intervention
with probability set to match the desired budget constraint C. For example, with budget
C = 0.1 (10% intervention rate), each state has a 10% chance of triggering an intervention

independent of state features or trajectory history.

We compare our method to both baselines under equivalent budget constraints.

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraintsi2

Unseen states Seen states only TABLE 6.3: Performance and Interven-
Nohel . . .
NP e ®" er tion Usage Comparison (S_obj only).
Hg & . 3 g p] y
e €
Nohelp Nohelp Nohelp Nohelp
50 o e ® 50 e o o Unseen Seen E[U] Overall
elp Nghelp elp Nghelp SR U SR U Train SR Test SR
Nohel .
ol Y :a_pb.? Hoig " Our Method (All States)
b rhigh 26 0.25 55 046 0.49 46 48
FIGURE 6.5: Seen vs. unseen states in rmid 49 078 63 092 045 36 63
rlow 52 1.81 60 1.86 0.92 60 60

the training data of the helper. The
orange region highlights all states col-

Trained on Trajectory Only

i - rhigh 16 1.82 62 219 0.18 43 43
lected in Phase I, each labeled with rmid 29 3.35 60 3.33 045 48 50
7* (Nohelp or Help). The green arrow rlow 37 586 64 492 0.76 54 60

shows rollout from sg.

6.5.1 Main Results

Results across tasks Table 6.1 compares our method to baselines in terms of success
rate (SR), path-length weighted success (SPL), task execution length (L), observed
intervention usage (U), and expected intervention usage (E[U]). We compute E[U] by
averaging M (sg) under 7%, across starting states sp of train tasks. Note that E[U] is
only applicable to our method; it is not straightforward to know this for other methods.
We train our approach using different reward scale values (r high, mid, low), inducing

varying intervention frequencies.

With just a fraction of the interventions used by a policy that always intervenes (7.8
and 4.5 times on average), our method nearly matches that policy’s performance. For
example, in S_obj, we achieve a 62.5% success rate using only 1.0 intervention on average,
outperforming baselines with similar or higher usage. Moreover, E[U] closely matches
observed usage, especially for smaller U (e.g. U is 0.4 and E[U] is also 0.4). They
tend to diverge more with higher r’s, but E[U] still provides good expectations of the
model’s intervention usage, allowing us to select r based on training data alone, without
exhaustive training and evaluation. For the performance drop at (7) high, we find this is
caused by the base actor encountering out-of-distribution states after interventions—not
by any limitation in our helper training method. The base actor, having been trained
only on its own trajectories, struggles with the new state distribution created by frequent
interventions, producing invalid actions in approximately 75% of these failure cases; see

Appendix D.6 for detailed analysis.

Results across interventions Table 6.2 compares our method and baselines on the
more challenging S_obj split, evaluating three intervention setups: a better model, MCTS,
or both. For multiple interventions, we use the Phase 3 extension from Sec. 6.4.3 to assign
individual budgets. Consequently, we present results with different (71, r2) configurations,
where r; controls usage of the better model and 7y controls MCTS. For baselines for
multiple interventions, we randomly select states (10% or 30%) for each intervention,
resulting, for example, in 10%,10% and 30%,30%. In the state-wise PRM thresholding

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraints73

baseline, we calibrate thresholds for 20% and 50% of states and trigger each intervention
randomly half of the times. For single interventions, we follow the same protocols as in
Table 6.1.

In general, the trends from Table 6.1 hold here as well. First, our method optimally
calls interventions, whether MCTS or both, achieving higher performance than baselines
while using fewer interventions (e.g., with only 0.5 MCTS calls on average, we match the
success rate of a 30% thresholding baseline that uses 2.5 calls). Second, using multiple
interventions does not yield substantially better results than a single intervention under
similar usage constraints, likely due to strategy clashes (See App. D.2.1). Nevertheless,
our method still outperforms multi-intervention baselines. Finally, we find that E[U]
remains a reliable predictor of actual usage U, especially at higher r values, providing a

useful guide for choosing budgets in advance.

Qualitative example Figure 6.2 (b) shows an S_obj task execution comparing the base
actor to our helper approach, which applies MCTS-based interventions with » = 0.5 (see
Table 6.2). The primary challenge is locating a stuffed toy in a cluttered environment,
where ambiguous descriptions can point to multiple potential locations. The base
actor begins by visiting different rooms but soon becomes stuck, repeatedly exploring
Room 3. In contrast, our helper detects this stall point and calls for just two well-timed
interventions, enabling a shift toward a more effective strategy and resulting in successful

task completion.

Ineffectiveness of thresholding Before discussing full results, we verified that our
Pnohelp effectively learns state difficulty. Using minimum pponelp(s:) values (values of the
most “difficult” states) from trajectories to predict task success/failure, we observed high
accuracy (88-90%), precision (70-88%), and recall (83-100%), confirming the premise
(see Tab B.1).

However, as we observe in Tab. 6.1, 6.2, when thredholsindg pponer, for intervention
decisions (Pnonelp(si) < 7), we found a counterintuitive result: difficulty-based threshold-
ing consistently underperforms random intervention selection despite identical budget
constraints. While we list detailed analysis of failure modes in App. D.2.1), these results
reveal that optimal intervention timing does not simply correspond to state difficulty;
thresholding does not account for how interventions affect future state trajectories. There
exist critical decision points in state trajectories where timely intervention yields greater
benefits, even though these states may not register as the “most difficult”, and our

method successfully finds these points.
6.5.2 Analysis

A key concern of off-line and tabular state collection is coverage and robustness to unseen

states. Table 6.3 investigates how different training data selections (selecting different

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraintsi4

outcomes from the DP process) influence the helper model’s performance and intervention
usage. We compare two strategies for using the outcomes of the DP (Phase 2) as training
data for the helper (Fig. 6.5):

All States — Includes every (s, a) pair of 7*, for all s collected in Phase I (the primary
approach in Tables 6.2 and 6.1).

Trajectory Only — Starting from sg, follow 7* (green arrow of Fig. 6.5) and use the
(s,a) pair from this trajectory (the red states only); if 7* encounters an unseen state, do

not include this task/trajectory for training the helper.

We then evaluate them under splits of the train set (Fig. 6.5):
Seen tasks — The task terminates following 7*.

Unseen tasks — Unseen state encountered while rolling 7*.

Note that we do not have 7* on val/test sets (since DP searches for trajectories), and this
splitting is only applicable to train tasks. Under Trajectory Only method, the helper
policy struggles in Unseen tasks — showing high intervention usage (U), low success rates
(SR), and a large discrepancy between realized and expected usage (e.g., 5.4 vs. 1.14). By
contrast, All States maintains better alignment between U and E[U] alongside higher

SR. Broader sampling in Phase I could further improve performance for Unseen tasks.

6.6 Conclusion, Limitations, and Broader Impacts

We introduce a framework for LLM agents to request interventions under budget con-
straints, formulating metacognitive help-requesting as a simultaneous reward and policy
search problem. Our key innovation—decoupling reward optimization from policy train-
ing—enables efficient identification of optimal intervention timing without repeated
retraining. By combining tabular RL with LLM-based scoring, our approach achieves
performance comparable to always-intervening systems while using only a fraction of

interventions.

Limitations include scaling challenges with tabular RL in large state spaces and resource-
intensive data collection (scalability and state coverage). Our tabular approach relies
on comprehensive state coverage from base actor rollouts, which becomes challenging
in larger state spaces such as software engineering domains. For scalable deployment,
two complementary strategies emerge: (1) state abstraction techniques like clustering
could reduce the effective state space while preserving the efficiency of our tabular
optimization, and (2) traditional deep RL approaches could replace our tabular method,
using reward adjustment (r) to iteratively match intervention frequency with budget
constraints, though this sacrifices the theoretical guarantees and efficiency of our current

approach. While our neural helper training already performs implicit state clustering,

Chapter 6. Training LLM Agents to Request Interventions under Budget Constraintsid

explicit clustering during the tabular RL phase would ensure convergence and high-quality
annotations for helper training across vastly larger state spaces. Future work could
leverage function approximation and state abstraction techniques such as clustering

similar states or compact embeddings.

Furthermore, this work assumes uniform intervention costs and known budget constraints.
However, real-world deployment would benefit from more nuanced cost models that
account for contextual factors—for example, avoiding help requests when humans are
sleeping, busy, or stressed. Such adaptive cost functions could be learned from user
feedback or inferred from environmental context, extending our framework to more

sophisticated utility models that balance task completion with human convenience.

Another key challenge for scaling help-seeking research is the difficulty of building realistic
human simulators for training and evaluation. Similar to the sim-to-real gap in robotics,
human behavioral modeling presents fundamental challenges. Thus, realistic directions
of future work should continue to exlore effective success-based heuristics, learned reward
functions, or other training paradigms that can operate effectively without perfect human

simulation while still producing helpful and non-intrusive help-seeking behaviors.

Finally, there is the challenge of temporal granularity in real-world deployment. Our
simulation-based evaluation abstracts away critical timing considerations essential for
real-world collaboration. Physical robot deployment introduces complex temporal dy-
namics—human response times, travel costs, attention switching overhead, and context-
dependent availability—that significantly impact intervention utility. Rather than dis-
crete, instantaneous help at the subgoal level, real systems require fine-grained temporal
reasoning about when human assistance becomes available, how long interventions take,
and the opportunity costs of interrupting human activities. Future work should incor-
porate richer cost models that account for these temporal factors, potentially learning
dynamic cost functions that adapt to human schedules, current activities, and environ-
mental context. This temporal sophistication is crucial for achieving truly collaborative

human-AI systems that respect human cognitive load and workflow patterns.

This work represents a meaningful step toward reliable Al agents that recognize their
limitations and judiciously request assistance, enhancing both safety and efficiency in real-
world deployments. Beyond potential implications for LLM agent safety and reliability,

we have not identified additional societal consequences requiring discussion.

Chapter 7

Conclusions

7.1 Summary

In this thesis, we have developed a comprehensive framework for building situated agents
that can effectively operate in real-world environments through the integration of per-
ception, cognition, and metacognition. Our central thesis is that effective embodied
intelligence requires more than powerful pretrained models—it demands the ability to op-
erate situatedly, interpreting ambiguous instructions, adapting to dynamic environments,
and recognizing one’s own limitations. Through six chapters of technical contributions,
we have demonstrated how these three dimensions can be addressed through novel

computational approaches that move beyond purely data-driven methods.

We began by exploring how agents can leverage common sense and modular architec-
tures to navigate perceptual challenges. In Chapter 2, we introduced FILM, a modular
method that processes language instructions into structured forms, maintains semantic
maps, and employs semantic search policies to handle incomplete sensory data. This
work demonstrated that explicit spatial memory coupled with semantic reasoning signifi-
cantly outperforms end-to-end approaches, achieving state-of-the-art performance on the
ALFRED benchmark.

Building on these perceptual foundations, in Chapter 3, we developed self-supervised
methods for adapting visual perception to new environments through location consistency.
This approach enables agents to adapt both their visual understanding and navigation
policies without expensive labeled data, demonstrating successful sim-to-real transfer

and in-situ learning capabilities in real-world settings.

We then turned to cognitive challenges in Chapters 4 and 5. Our analysis of embodied
dialogue revealed that agents trained via behavior cloning are particularly vulnerable

to replicating errors and struggle with pragmatic grounding. Through the Situated
76

Chapter 7. Conclusions 77

Instruction Following (SIF) benchmark, we systematically evaluated agents’ abilities
to handle ambiguous, temporally evolving, and dynamic human intent, revealing that
even advanced models like GPT-4 struggle when faced with uncertainty requiring active

disambiguation.

Finally, in Chapter 6, we addressed metacognition by developing a framework for training
LLM agents to request interventions under budget constraints. By formulating help-
requesting as a reinforcement learning problem that simultaneously optimizes reward
functions and policies, we achieved systems that match always-intervening performance

while using only a fraction of the interventions.

7.2 Takeaways

This thesis encompasses a broad investigation into the fundamental challenges of building
agents that can operate effectively in situated, real-world environments. Through our
work spanning perception, cognition, and metacognition, we have identified several
core principles that can guide future research and development in embodied artificial
intelligence. We distill our key insights into three overarching takeaways that capture

the essential lessons learned from this comprehensive investigation.

Leveraging pretrained knowledge through modular integration accelerates
learning. A central theme throughout this thesis is that connecting pretrained compo-
nents in a modular fashion provides significant advantages over training from scratch, even
though it introduces its own challenges. This principle manifests across multiple domains
and scales. In Chapter 2, our modular FILM architecture leverages pretrained BERT for
language understanding and pretrained visual models for perception, connecting them
through learned semantic reasoning modules. While this approach requires training
additional components like the semantic search policy to bridge between modules, it
achieves state-of-the-art results by building upon existing knowledge rather than learning

everything from scratch.

This advantage of leveraging pretrained knowledge becomes particularly evident in Chap-
ter 4. In Chapter 4, we extend our FILM modular framework to the embodied dialogue
setting of the TEACh benchmark. Here, pretrained semantic mapping, dialogue-aware
language processing, and semantic search modules combine to disentangle perception,
language understanding, and planning into distinct components. This decomposition not
only yields robust performance but also surfaces critical failure modes: behavior cloning
baselines tend to replicate noisy or misaligned human demonstration errors—such as
unnecessary ‘“no-op” interactions—and even our pretrained modules alone fail to ground

essential query utterances required for task success.

Chapter 7. Conclusions 78

However, we also acknowledge the challenges this introduces—maintaining consistency
between modules during adaptation and determining how to propagate learning signals
through the modular structure remain open problems. The comparison between modular
and end-to-end approaches reveals a fundamental trade-off: modularity enables leveraging
existing knowledge and provides interpretability, but may sacrifice the seamless integration

that end-to-end learning can achieve when sufficient data is available.

The practical implications are nuanced. For practitioners building embodied Al systems,
starting with pretrained components and connecting them through learned interfaces
often provides a faster path to working systems than training from scratch. However, this
approach requires careful consideration of how to train the connecting modules (like our
semantic search policy) and how to enable end-to-end fine-tuning when needed. Future
work should explore hybrid approaches that can leverage the benefits of pretrained modu-
lar components while still enabling end-to-end optimization for task-specific performance.
This might involve techniques like differentiable module interfaces, careful initialization

strategies, or staged training procedures that gradually relax module boundaries.

Design agents for environmental adaptation through self-supervision and
contextual learning. A fundamental insight from this thesis is that agents must be
designed from the ground up to adapt to their deployment environments rather than
assuming that training distributions will generalize effectively. This principle challenges
the common paradigm of training once and deploying everywhere, instead advocating for
systems that can continuously learn and adapt through interaction with their specific

operational contexts.

Our work on location consistency in Chapter 3 exemplifies this principle in action. Rather
than relying solely on pre-collected datasets, our approach enables agents to improve their
visual understanding through self-supervised learning from their own sensory experiences.
The location consistency signal—the observation that objects maintain spatial coherence
across viewpoints—provides a rich source of supervisory information that requires no
human annotation yet enables significant performance improvements. Critically, this
approach proves more robust to domain shift than fully supervised alternatives, as
demonstrated by our finding that supervised training on simulation data can actually

harm real-world performance by encouraging overfitting to simulation artifacts.

This adaptation principle extends beyond visual perception to language understanding and
reasoning. In Chapter 5, we demonstrate that agents must learn to interpret contextual,
underspecified instructions through interaction with their specific environments and users.
The Situated Instruction Following benchmark reveals that static training approaches,
even those using state-of-the-art models like GPT-4, struggle with the dynamic, context-

dependent nature of real-world instructions. Effective agents must develop strategies

Chapter 7. Conclusions 79

for active disambiguation, environmental exploration, and contextual inference that are

tailored to their specific deployment scenarios.

The implications for system design are profound. Rather than viewing adaptation as
a post-deployment optimization, our work suggests that adaptation capabilities should
be core architectural components. This includes designing reward signals that can
be extracted from environmental interaction, developing memory systems that can
accumulate and leverage experience over time, and creating learning algorithms that
can operate safely and efficiently in live deployment scenarios. For the broader field,
this suggests moving away from static benchmarks toward evaluation frameworks that

explicitly test adaptation capabilities and environmental sensitivity.

Incorporate metacognitive help-requesting as an integral component for reli-
able agent deployment. A key contribution of this thesis, detailed in Chapter 6, is
formulating a principled reinforcement learning framework that trains agents to judi-
ciously recognize their limitations and proactively request assistance under intervention
budget constraints. Unlike conventional approaches that rely on manually tuned confi-
dence thresholds or expect uncertainty estimates to naturally arise during training, our
method systematically optimizes both the reward function and the help-requesting policy
simultaneously. This structured approach ensures intervention policies align precisely

with specific operational constraints, enhancing both reliability and efficiency.

Our technical innovation lies in predicting expected intervention usage before policy
training, enabling efficient exploration of trade-offs between autonomy and intervention
frequency. This approach allows us to calibrate the agent’s help-seeking behaviors to
meet practical deployment constraints effectively, demonstrating that agents can achieve
near-optimal performance with significantly fewer interventions compared to always-
intervening baselines. This resolution of the efficiency-reliability trade-off represents a

substantial advancement toward practical, dependable autonomous systems.

Furthermore, this metacognitive capability has broader implications for Al safety and
human-AlI collaboration. By providing agents with a rigorous mechanism to identify and
communicate their uncertainties, we enable more robust and effective interactions where
human intervention is leveraged strategically. This capability is especially crucial in

domains where oversight is costly or limited, yet catastrophic failures must be mitigated.

For future research, our findings underscore the importance of explicitly incorporating
uncertainty quantification, calibrated confidence estimation, and proactive help-requesting
into the core design of Al systems intended for complex, real-world applications. The
technical frameworks and principles established in this thesis serve as foundational tools
for integrating these capabilities across diverse domains, paving the way for safer, more

reliable, and more collaborative Al deployments.

Chapter 7. Conclusions 80

7.3 Looking Forward

This thesis establishes foundational techniques for situated intelligence across perception,
cognition, and metacognition, yet the path toward truly capable embodied agents
remains rich with opportunities and challenges. The techniques we have developed
provide important building blocks, but scaling these approaches to the full complexity of
real-world deployment will require addressing several critical areas that extend beyond
the scope of this thesis. We outline these key research directions and propose concrete

steps for advancing the field.

Continual learning for lifelong deployment. Our current paradigm of train-then-
deploy is fundamentally limited for real-world applications. Robots operating in homes,
factories, or hospitals will encounter new objects, receive updated instructions, and
need to adapt to changing environments continuously. The location consistency work
in Chapter 3 showed that in-situ adaptation is possible for perception, but extending
this to full behavioral adaptation remains an open challenge. Future systems will need
to balance multiple objectives: improving on new tasks while maintaining performance
on old ones, learning from limited data without overfitting, and ensuring safety during
adaptation. This may require new architectures designed for continual learning, such as
modular networks that can add new capabilities without interfering with existing ones,
or memory systems that can store and retrieve relevant past experiences. Additionally,
we need theoretical frameworks for understanding when and how continual learning is
possible—which types of distribution shifts can be handled through adaptation versus

requiring retraining from scratch.

Scaling situated learning to complex, multi-agent environments Future research
should explore hierarchical approaches that can decompose complex multi-agent environ-
ments into more manageable subproblems. This might involve learning social models
that predict how different agents will behave, developing coordination protocols that
enable effective collaboration without explicit communication, or creating meta-learning
frameworks that can quickly adapt to new social contexts. Additionally, we need theoret-
ical frameworks for understanding when and how situated learning can remain stable in
multi-agent settings, potentially drawing from game theory and multi-agent reinforcement

learning.

Furthermore, true agency in Al systems requires more than environmental action-
taking—it demands the wisdom to know when to ask questions. While larger language
and vision models continue to improve performance on many tasks, feal-world language
is inherently underspecified—including formal specifications themselves—but rather than
viewing this as a limitation, we should recognize it as an opportunity for meaningful inter-
action. Consider a simple coding request: ”write a function to sort a list.” While the task

outcome seems clear, the language specification leaves critical details unresolved—which

Chapter 7. Conclusions 81

sorting algorithm, what data types, how to handle edge cases, performance requirements,
or whether to sort in-place. An effective Al coding assistant should recognize these
ambiguities and ask clarifying questions rather than making assumptions that may not
align with the user’s intent. This pattern extends across domains where natural language
instructions, no matter how carefully crafted, often contain less information than the

task outcomes require.

The most useful Al agents will be those that humans can confidently delegate to while
attending to other responsibilities or managing broader objectives. This requires agents
that proactively communicate their uncertainties, seek clarification when needed, and
demonstrate metacognitive awareness about their own limitations. Just as effective human
collaborators know when to work independently and when to consult with teammates,
AT systems must develop similar social and metacognitive competencies. Future Al
development may benefit more from this kind of interactive intelligence—principled
uncertainty quantification, strategic help-seeking, and collaborative communication—than

from simply increasing model parameters.

Another critical direction involves extending our metacognitive framework to multi-agent
settings. When should an agent seek help from a human versus consulting another Al
system? How can agents coordinate their help-seeking behavior to avoid overwhelming
human supervisors? These questions require new theoretical foundations and empirical
evaluation frameworks that can capture the full complexity of multi-agent situated

intelligence.

Developing unified architectures for cross-modal situated reasoning Our thesis
treats perception, cognition, and metacognition as distinct levels that must be integrated,
but effective situated intelligence likely requires much deeper integration between these
components than current approaches achieve. The modular architectures we have
developed provide clear benefits in terms of interpretability and targeted improvement, but
they may also impose artificial boundaries that limit the emergence of more sophisticated

reasoning capabilities.

Consider how perceptual uncertainty should inform cognitive reasoning strategies: when
visual perception is uncertain about object identity, language understanding modules
should weight alternative interpretations differently and reasoning processes should
explore multiple hypotheses rather than committing to single interpretations. Similarly,
metacognitive assessments of task difficulty should influence both perceptual attention
(focusing sensing resources on task-critical elements) and cognitive processing (allocating
more reasoning time to difficult decisions). Current architectures handle these interactions
through simple interfaces, but truly effective situated intelligence may require much more

intimate coupling between components.

Chapter 7. Conclusions 82

An important design question emerges regarding whether different types of uncer-
tainty—ambiguous instructions, failure risk, personalization needs—require separate
handling mechanisms or can be unified under a general framework. Following human cog-
nition patterns, where individuals first sense that “something is wrong” before diagnosing
specific issues, Al agents could develop a general success instinct learned from success
probabilities and similar heuristics. This overarching uncertainty awareness could then
trigger more specific diagnostic processes to identify and address particular uncertainty
types. Architecturally, this could be implemented through uncertainty wrappers that
preserve existing modular designs (like FILM) while adding metacognitive capabilities,
or through end-to-end architectures where such instincts emerge naturally within the

learned representations.

A fundamental tension exists between modular architectures that provide clean interfaces
and theoretical guarantees, and end-to-end systems that enable seamless information flow
but sacrifice interpretability and robustness. Modular approaches excel at propagating
explicit uncertainty estimates and maintaining behavioral guarantees, but struggle to
share nuanced uncertainty information across API boundaries. Conversely, end-to-end
architectures can naturally integrate uncertainty across components but lose the ability
to provide systematic guarantees about behavior or failure modes. Future research
should explore hybrid architectures that achieve selective permeability—maintaining
module boundaries for core functionalities while enabling uncertainty and confidence
information to flow freely across components. This might involve differentiable interfaces
with uncertainty-aware information passing, or hierarchical architectures where high-level

uncertainty coordination operates above well-defined modular components.

The challenge extends to temporal integration as well. Situated agents must maintain
coherent beliefs and intentions over extended time horizons while continuously updating
their understanding based on new information. This requires memory architectures
that can store and retrieve relevant experiences, belief updating mechanisms that can
handle contradictory information gracefully, and planning systems that can revise their
strategies as situations evolve. Current approaches handle these challenges through
separate modules, but more integrated approaches might enable more robust and adaptive

behavior.

Building robust evaluation frameworks for situated intelligence One of the
most significant limitations revealed by our work is the inadequacy of current evaluation
frameworks for assessing situated intelligence capabilities. The benchmarks we have
developed, including the Situated Instruction Following dataset, capture important
aspects of situated reasoning but remain limited in scope and realism compared to the
full complexity of real-world deployment scenarios. The field urgently needs evaluation
frameworks that can systematically assess agents’ abilities to handle the multifaceted

challenges of real-world operation.

Chapter 7. Conclusions 83

Current benchmarks typically focus on task-specific performance metrics that may not
reflect transferable capabilities. An agent that achieves high performance on navigation
tasks may still fail catastrophically when deployed in environments with different lighting
conditions, object arrangements, or social contexts. We need evaluation frameworks that
explicitly test adaptation capabilities, robustness to distribution shift, and appropriate

help-seeking behavior across diverse domains and conditions.

The evaluation challenge extends beyond individual agent capabilities to system-level
properties that emerge from long-term operation. How do agents maintain performance
as their environments evolve over weeks or months? How do they handle gradual drift
in user preferences or environmental conditions? How do they recover from occasional
failures without losing accumulated knowledge? These questions require longitudinal
evaluation frameworks that can assess agent behavior over extended time periods under

realistic conditions.

Future research should develop standardized evaluation protocols that span multiple
dimensions of situated intelligence. This includes creating environments with controllable
complexity parameters, developing metrics that capture both task performance and
process quality (such as appropriate uncertainty expression and help-seeking), and
establishing benchmarks that test transfer capabilities across domains. We also need
evaluation frameworks that can handle the inherent subjectivity of many real-world tasks,

where success depends on user satisfaction rather than objective task completion.

Additionally, the field needs better methods for evaluating safety and robustness in
situated agents. Current approaches often rely on worst-case analysis or adversarial
testing, but situated agents must handle the much more subtle challenges of graceful
degradation, appropriate conservatism, and effective communication of limitations. Devel-
oping evaluation frameworks that can assess these capabilities will be crucial for enabling

real-world deployment.

Incorporating social and ethical considerations into situated agent architec-
tures As situated agents become more capable and are deployed in human environ-
ments, questions of social appropriateness, privacy, fairness, and ethical behavior become
paramount. Our current work focuses primarily on task performance and basic safety
considerations, but real-world deployment requires agents that can navigate complex
social norms, respect diverse human values, and operate safely in shared spaces where

their actions affect multiple stakeholders.

The challenge of social appropriateness is particularly complex because social norms
are highly context-dependent, culturally specific, and constantly evolving. An agent
that learns appropriate behavior in one social context may violate important norms

when deployed in a different setting. Furthermore, social norms often involve implicit

Chapter 7. Conclusions 84

understanding and unstated expectations that are difficult to communicate explicitly or

learn through observation alone.

Future research should explore how situated learning techniques can be extended to
social and ethical domains. This might involve learning social models from multi-modal
observation (including verbal and non-verbal cues), developing value alignment techniques
that can accommodate diverse and potentially conflicting human preferences, or creating
participatory design approaches that involve human stakeholders directly in the agent

development process.

The privacy implications of situated agents are also significant and under-explored. Agents
that can adapt to their environments necessarily collect and process information about
human behavior, preferences, and activities. Ensuring that this information is handled
appropriately requires technical solutions for differential privacy, federated learning, and
secure multi-party computation, as well as governance frameworks that can balance the

benefits of personalization with protection of individual privacy.

Additionally, the deployment of situated agents raises questions about economic impact,
technological dependence, and social equity. How do we ensure that the benefits of
situated Al are distributed fairly across different communities and economic classes? How
do we maintain human agency and decision-making authority in environments increasingly
mediated by Al systems? These questions require interdisciplinary collaboration between

technologists, ethicists, policymakers, and affected communities.

Advancing theoretical foundations for situated intelligence While this thesis
provides empirical demonstrations of situated intelligence capabilities, the field still lacks
strong theoretical foundations for understanding when and why these approaches work.
Developing such foundations is crucial for moving beyond trial-and-error development

toward principled design of situated agent architectures.

Key theoretical questions include: What are the fundamental limits of self-supervised
adaptation in situated environments? Under what conditions can situated learning
remain stable and avoid catastrophic forgetting? How do we characterize the trade-offs
between adaptation speed, robustness, and generalization in situated agents? What
theoretical guarantees can we provide about metacognitive calibration and help-seeking

behavior?

Addressing these questions will require drawing from multiple disciplines including
learning theory, cognitive science, control theory, and information theory. We need
theoretical frameworks that can model the dynamics of situated learning, characterize
the complexity of different types of environmental adaptation, and provide guidance for
designing learning algorithms that can operate safely and effectively in non-stationary

environments.

Chapter 7. Conclusions 85

The path toward truly situated intelligence remains challenging and multifaceted, but
this thesis provides both theoretical foundations and practical techniques for making
meaningful progress. By addressing perception, cognition, and metacognition as in-
terconnected challenges rather than isolated problems, and by maintaining focus on
real-world deployment requirements throughout the research process, we can build agents
that are not only capable but also safe, interpretable, and appropriate for the complex,
dynamic environments where human-AlT collaboration will ultimately flourish. The future
of embodied Al lies not in building ever-more-powerful individual components, but in
understanding how to create systems that can adapt, learn, and grow alongside the

humans and environments they serve.

Appendix A

Appendix for Chapter 2

A.1 Task Definition

High and low-level instructions are both available to agents. There are 7 types of tasks

(Fig 7. b) and the sequence of subtasks is templated according to the task type.

(a) Instruction Goal: Drop a clean pan on the table.

Low Level Goal: Move forward towards the gas, pick up the pan. Turn around and head to the sink, ...

. o

Step 0 Step t_1 Step t_2 Step t_3 Step t_4 Stept 5 Stept 6 Step t_7
. . . w . Put"pan”in Toggle on Toggle off Pick up "Pan” Put "pan” on
Navigate and find "pan Pick up "pan "sink™ "Faucet” "Faucet” & navigate to "Table” "Table"
b
(®) Pick Stack Pick Two Clean Heat Cool Examine
& Place & Place & Place & Place & Place & Place in Light
Put a candle Pil'lnt: :Slfe Put two remote Put two remote Place a heated Plagtztao C;Tig::d F:tar?; "I.:ehat g;eaylgﬁ_lm
on the toilet P on the couch on the couch apple in a sink. P 9 P

on the table in the garbage.

FiGURE A.1: ALFRED overview. The goal is given in high level and low level

language instructions. For and agent to achieve “success” of the goal, it needs to

complete a sequence of interactions (as in the explanations in the bottom of the figure)
and the entailed navigation between interactions.

A.2 Semantic Mapping Module

Figure 8 is an illustration of the semantic mapping module. A depth map and instance
segmentation is predicted from Egocentric RGB. Then the first and the later are respec-
tively transformed into a point cloud and a semantic label of each point in the cloud,

together producing voxels. The voxels are summed across height to produce the semantic
86

Appendix A. 87

map. Partial maps obtained at particular time steps are aggregated to the global map

simply via “sum/ logical or.”

Projection Map (K X M X M)

- Semantic :
. — E 2 > b _ Allobstacles --=> Obstacles
-] i Labels cros s Explred Avea

across
§ Peht i

™| Semantic
. - B categories (C)

‘ Category-wise
> > H-’ Point Cloud Voxel Denoising Network

Semantic Map Prediction (K X M x M)

FIGURE A.2: Semantic mapping module. Figure was partially taken from chap-
lot20200bject

We dynamically control the number of objects C for efficiency (because there are more
than 100 objects in total). All receptacle objects (for input to the semantic policy) and
all non-receptacle objects that appear in the subtasks are counted in C. For example,
in an episode with the subtask [(Pan, PickUp), (SinkBasin, Put), (Faucet, ToggleOn),
(Faucet, ToggleOff), (Pan, PickUp), (Table, Put)], all receptacle objects and ”Pan”,
"Faucet” will be the C' objects indicated on the map.

A.3 Semantic Search Policy Module

The map from the previous subsection is passed into 7 layers of convolutional nets, each
with kernel size 3 and stride 1. There is maxpooling between any two conv nets, and
after the last layer, there is softmax over the 64 (8 x 8) categories, for each of the C,
(73) channels.

At deployment/ validation, if the agent is currently searching for the cth object, then a

search location is sampled from the cth channel of the outputted 8 x 8 x C, grid.

™ 3 7 Layers of ConvNets
' o o 5 -
> = > c = .
g > 5 IS S IS T +E >
Projection Map (K x M x M) (&] o (&) o] o =]
o o [55]
A1 osiacis ~Onstaces

-+ Explonsd Area

i :
< £ Somansc:
catngors €)

g

§

5

£
-"'-.

FIGURE A.3: Semantic search policy.

A.4 Impact of Grid Size on the Effectiveness of the Seman-
tic Search Policy

While we chose N =8, L%J = 30 for the size of the “coarse” cell of the semantic search

policy, the desirable choice of N may be different if a practitioner attempts to transfer

Appendix A. 88

FILM to different scenes/ tasks. While a “too fine” semantic policy will be hard to train
due to sparseness of labels, a “too coarse” one will spread the mass of the distribution to

widely.

Let us examine the “coarse” and “actual” ground truth distributions just in one direction
(e.g. the horizontal direction). Let Fx(z),Cx(z) be the “actual” and “coarse” ground
truth CDF's in the horizontal direction. Also, let L = L%J If the goal object occurs “k”

times in the horizontal direction, then,

sup [P (¢) = Ox(@)] < 21— 7).

A similar result holds in the vertical direction. The bound above suggests that if the goal
object occurs more frequently (smaller %), then a coarser L (larger 1 — %) is tolerable.
On the other hand, if the goal object occurs very infrequently (larger %), then a coarse
M (larger 1 — %) will result in Fxy and Cx becoming too different in the worst case.
Thus, it is desirable that practitioners choose L (and in turn, V) based on the frequency
of their goal objects, on average. Furthermore, a search policy with adaptive grid sizing

should be explored as future work.

A.5 Details on the Deterministic Policy

Following the discussion of Section 4.4, let [(obj1, actiony), ... , (objk, actiony)] be the
list of subtasks, where the current subtask is (0bj;, action;). If obj; is observed in the
current semantic map, the closest obj; is selected as the goal to navigate; otherwise, the
sample from the semantic search policy is chosen as the goal (Section 2.4.3). The agent
then navigates towards the closest obj; via the Fast Marching Method Sethian1591. Once
the stop distance is reached, the agent rotates 8 times to the left (at camera horizon 0,
45, 90,...) until obj; is detected in egocentric vision. Once obj; is in the current frame,
the agents decides to take action; if two criteria are met: whether obj; is in the “center”
of the frame, or whether the minimum depth towards obj; is in visibility distance of 1.5
meters). Otherwise, the agent “sidesteps” to keep obj; in the center frame or continue
rotating to the left with horizon 0/45 until obj; is seen within visibility distance. If the

agent executes action; and fails, the agent “moves backwards” and the map gets updated.

A.6 More Explanations on Table 3

Table 3 shows common error modes and the percentage they take out of all failed episodes,
with regards to SR. More specifically, it is showing the distribution of episodes into

exactly one error mode, out of the 79.9% of all “Val Unseen” episodes that have failed

Appendix A. 89

(the episodes not in the 20.10% of Table 2). The common error modes are failures in
(1) locating the subgoal object (due to the small field of view, imperfect segmentation,
ineffective exploration), (2) locating the subgoal object because it is in a closed receptacle
(cabinet, drawer, etc), (3) interaction (due to object being too far or not in field of view,
bad segmentation mask), (4) navigation (collisions), (5) correctly processing language
instructions, (6) others, such as the deterministic policy repeating a loop of actions from
depth/ segmentation failures and 10 failed actions accruing from a mixture of different
errors. These errors occur in the order of (5), (1)/ (2), (3), (4) in an episode, since the LP
module operates in the beginning and the object has to be first localized to be interacted
with, etc. If an episode ended with errors in multiple categories, it was classified as an
example of an ”earlier” error in making Table 3. For example, if the language processing
module made an error and later there were also 10 collisions, this episode shown as a

case of error (5) in Table 3.

A.7 Assignments of Rooms into “Large” and “Small” in
Valid Unseen

There are 4 distinct scenes in Valid Unseen (one kitchen scene, one living room, one bed
room, one bathroom). The kitchen (Large) has a significantly larger area than all the
others (Small).

A.8 Protocols for Reproducing the Semantic Policy

The primary result in Table 1 is from architecture tuning of the language processing, the
semantic mapping, and the semantic search policy modules on the development data
(validation unseen). Reviewers correctly noted that it is possible random seeds will also
effect performance so the model was retrained four additional times and test results are
reported here. Since components of the language processing and the semantic mapping
module were trained from pre-trained weights, we report the performance of FILM with

semantic search policy trained from different seeds.

The improvement by the semantic policy as shown in Table 1 is reproducible across
multiple seeds. Table 8 shows results on Tests Unseen with semantic policy trained
with different starting seeds (where SEED 1 denotes that the policy was trained with
torch.manual seed(1)). With learning rate of 0.001 and evaluation of every 50 steps,
the model with the lowest test loss subject to train loss < 0.62 was chosen. The
exact code and commands can be found here: https://github.com/soyeonm/FILM#

train-the-semantic-policy.

https://github.com/soyeonm/FILM#train-the-semantic-policy
https://github.com/soyeonm/FILM#train-the-semantic-policy

Appendix A. 90

TABLE A.1: Results of FILM reproduced across different starting seeds of the semantic
policy. The + error bar in the AvG. row denotes the sample variance.

Method Tests Unseen
PIWGC GC PLWSR SR

Low-level 4+ High-level Instructions

TABLE 1 15.06 36.37 10.55 26.49

SEED 1 15.12 38.55 11.34 27.86

SEED 2 13.82 36.58 10.13 25.96

SEED 3 10.47 37.12 14.05 25.64

SEED 4 14.22 37.37 10.69 26.62

Ava. 13.74 37.20 11.352 26.51 £ 0.58
High-level Instruction Only

TABLE 1 13.13 34.75 9.67 24.46

SEED 1 14.05 36.75 10.47 25.51

SEED 2 12.60 34.59 9.07 23.48

SEED 3 12.86 35.02 9.23 23.68

SEED 4 13.61 36.10 10.10 25.18

Ava. 13.25 3544 9.71 24.87 £ 0.64

A.9 A Language Processing module without the template

assumption

The second paragraph of section 2.4.1 explains the template assumption, with the tasks
belonging to one of the 7 types. For direct comparison with existing methods that do
not take direct advantage of this assumption, we trained a new Language Processing
module that does not make use of templates but makes use of the subtasks sequences
annotations ALFRED provides.! Fine-tuning a pre-trained BART lewis-etal-2020-bart
model, we directly learned a mapping from a high-level instruction to a sequence of
subtasks (e.g. “Drop a clean pan on the table” — “(PickupObject, Pan), (PutObject,
Sink), ...”). Without any assumption on the structure of the input and the output,
this model takes a sequence of tokens as input and outputs a sequence of tokens. With
the new LP module, we obtained SR of 18.03% on valid unseen, which is a slight drop
compared to our original 20.10%, indicating that templates are only marginally helpful

in performance.

For future research, we believe templates should be used instead of subtasks annotations,
since they are much cheaper to obtain in naturalistic settings. In this work, we created the
7 templates (one for each type) by writing down an intuitive canonical set of interactions
to successfully perform the task. To do so, we looked at just 7 episodes in the training
set and spent less than 20 minutes creating them; these cheaply obtained templates cover
all 20,000 training episodes. Even to train an agent to perform more complex tasks, it is

more realistic to use templates than assume sub-task annotations.

!Existing worksblukis2021persistent, abp, hitut, episodictransformer use subtask sequence annotations
(or expert trajectories that contain the subtask annotations) as well.

Appendix A. 91

On the other hand, our findings simultaneously suggest the need for a better program
synthesis method from instructions to subtask sequences, for general purpose instruction

following not bound to certain “types” of instructions.

Appendix B

Appendix for Chapter 4

B.1 More Discussion of Symbiote

Symbiote has a modular structure, which consists of language understanding, mapping,
and low-level planning components. It is not trained with imitation learning of low-level
demonstrations (e.g. move right, move left, etc.). Demonstrations are used only in the
sense that they provide subgoals that suervise the training of the language understanding

component.

More specifically, a pretrained T5 model [117] fine-tuned with the ground truth subgoals
(edh_instance[‘future_subgoals’]), serves as the language understanding component.
The model takes the driver and commander’s dialogue and previous actions as input; it
is trained to output a sequence of subgoals of the form “{action} {obj}”, where {action}
is either “navigate” or any of the primitive interactions commands ”pickup”, ”cut”,

"toggle”, etc, and {obj} is any of the object classes in ai2thor.

For the mapping component, a DETR detector [18] was finetuned on the train set scenes
of TEACh and the depth prediction model from FILM was used off-the-shelf. Frontier
based exploration is used for environment exploration. Similarly as in FILM, the agent

navigates to object goals in the map using the fast marching method.

B.2 How the Statistics of Section 5 were Obtained

We explain how the statistics that appear in each table of Section 4 were obtained. All
analyses, except for TfD results in Penalizing Agents for Accuracy, were done on
EDH tasks.

92

Appendix B. 93

Irrelevant Actions The first table shows some representative unnecessary state
changes that EDH tasks require for “task success’ in evaluation. For example, in our
common sense, it is not necessary that we leave the coffee machine on to successfully
make coffee (indeed, it is better to turn it off after use). However, since EDH evaluation
requires that the agent exactly follows state changes done in the demonstration, the
agent will have to leave coffee machine turned on for a particular validation task, if this

was done in its corresponding demonstration.

Each row shows unnecessary state changes that are exemplary and the average frequency

of these noises across relevant tasks. More specifically,

Coffee Machine on/ off: ‘Coffee’ tasks

Picked up and not placed: all tasks

Faucet on/ off: all tasks that may involve using the faucet (‘Coffee’, ‘Clean All
X', ‘Boil X’,*Water Plant’,‘Sandwich’, ‘Breakfast’, ‘Plate Of Toast’, ‘Salad’)

Stove/ Microwave on/off: all tasks that may involve using a heating appliance
(‘Boil X’,‘N Cooked Slices Of X In Y”)

“Total” accounts for the percentage of EDH tasks that fall into any of the above criteria.
Please refer to [109] for the possible types (e.g. ‘Coffee’) of tasks.

While the first table shows statistics of irrelevant state changes of “relevant objects”,
the second table shows those of more random actions, at a lower level. Navigation No
Op, the first kind, was simply obtained by detecting the existence of consecutive Turn
Lef/Right x 4, Forward + Backward, Pan Right + Pan Left, Turn Right + Turn Left.
The second kind, interaction No Op, was similarly detected. Whether an consecutive
and opposite interactions were done on the same “object” was detected by replaying the
pred_actions in the model outputs. Interaction w. unrelated objects denotes whether
the demonstration an object that is completely unrelated from task type (e.g. picking up
saltshaker for a task whose type is ‘Coffee’). Demonstrations unaligned with dialogue

were counted manually since there is no automatic way to filter these.

Penalizing Agents for Accuracy The statistics in this subsection were straightfor-
wardly obtained by averaging over the evaluation outputs (whose formats follow that of
the original ET code from TEACh) of each task.

Behavior Cloning with Suboptimal Demonstrations The same procedures for

the second table in Irrelevant Actions were used.

Appendix B. 94

B.3 TEACh Prefiltering

Only necessary state changes are checked in EDH evaluation, but all are present in training.
https://github.com/alexa/teach#downloading-the-dataset mentions that the au-
thors filtered the EDH tasks so that “the state changes checked for to evaluate success
are only those that contribute towards task success in the main task of the gameplay
session the EDH instance is created from.” Our analysis is on data that has already been

filtered and cleaned and yet still exhibits these problems.

https://github.com/alexa/teach#downloading-the-dataset

Appendix C

Appendix for Chapter 5

C.1 Task Detalils

C.1.1 Task Filtering

Tasks that are invalid or trivial are filtered, using the oracle agent (Section 6.5). First, a
task is invalid if, for the goal ([0bj]) asset, its P. is not findable or P; is not reachable.
To filter tasks with invalid P, we check whether [0bj] was detected in the oracle
agent’s semantic map during the exploration phase; to filter tasks with invalid P;, we
run the oracle agent for task phase, and filter tasks where “Grab Obj” was unsuccessful.
Furthermore, a task is trivial if, for the goal ([0bj]) asset, one of < P, P, > or < P, Py >
are very close or within the same receptacle. This makes the task trivial because there
is not much change between exploration and task phase, or between the initial state at
task phase and the goal state. We use simulator data to access the parent receptacle of
[0bj] asset for P, P;, P, and filter the task if any of these belong to the same parent

receptacle.

C.1.2 Details on Language Directives

The complete list of arguments (Sec. 5.3.2) for language directives are shown in Tab.A.1
The full list of [RoomFunctionActivity| is shown in Table A.2.

95

N =

W

Appendix C. 96
TABLE A.1: Complete list of arguments ([ObjectCat], [Recep], [RoomFunction]) for
language directives I and C' (Sec. 5.3.2)
[ObjectCat] [Recep] [RoomFunction]
basket chair living room
book shelves bedroom
bowl bed kitchen
cup toilet dining room
hat bench bathroom
plate bathtub garage
shoe couch empty room
stuffed_toy counter dressing room
table study room
TABLE A.2: Human Activity, by each room function
Room Activities
living room watching TV; hanging out near the couch; vaccuming the living room
bedroom preparing to sleep; organizing my bed; reading on my bed
kitchen washing vegetables; preparing my meal; sorting groceries
dining room setting up the table; eating dinner
bathroom washing my face; washing my hand; taking a bath;
brushing my teeth; shaving
garage washing my car; fixing my car
empty room meditating in the empty room; stretching in the exercise room
dressing room choosing on my outfit; trying on clothes; organizing my clothes
study room studying; cleaning my desk

C.2 Prompt Examples

C.2.1 Reasoner prompt examples

We show an example prompt for a Sy; task (Prompt 1). Furthermore, we show an

example ambiguity calibration prompt for a Spy,, task (Prompt 2).

% System Prompt
You are an assistive robot in a house, helping a human. Your observations

may be incomplete or wrong.

While premapping, you saw the layout of the house; you saw that Room 0 has

chair, shoe on a chair, couch, book on a couch, table; Room 1 has:
fridge , counter, cabinet; Room 2 has: chair, bed, table. Room 3 has:
chair , stuffed_toy on a chair, bench, table, stuffed_toy on a table.
Room 4 has: toilet. Your observations (and the map) can be stale/
incorrect/ missing, because the human moved objects since you had

premapped the house, or your vision system is imperfect.

Appendix C. 97

6 Then, a little after that, the human said "I took a shoe and moved it with
me. I put it in the livingroom '. A little after that, the human said ‘I
took a book and moved it with me. I put it in the livingroom '. A
little after that, the human said ‘I took a stuffed_toy and moved it
with me. I put it in the livingroom '. A little after that, the human
said "I put a book in the livingroom '. A little after that, the human

said ‘I moved a shoe. I put it in the livingroom '. After all of this,
the human finally commanded to you: 'Put a book in bedroom.' ”

7

8 % Environment Prompt

9 Timestep 12 : You further explored another location in room 2. Based on the
preamap and the parts of the rooms that you scanned just now, in map
12 (at time step 12), you saw that Room 2 has: chair, bed, table; Your
observations (and the map) can be stale/ incorrect/ missing, because
the human moved objects since you had premapped the house, or your
vision system 1is imperfect.

10 Timestep 24 : You further explored another location in room 2. Based on the
preamap and the parts of the rooms that you scanned just now, in map
24 (at time step 24), you saw that Room 2 has: chair, bed, table; Your
observations (and the map) can be stale/ incorrect/ missing, because
the human moved objects since you had premapped the house, or your
vision system is imperfect.

11 Timestep 125 : You checked room 0; you scanned some parts of it (and did
not scan other parts). Based on the preamap and the parts of the rooms
that you scanned just now, in map 125 (at time step 125), you saw that
Room 0 has: chair, shoe on a chair, couch, book on a couch, table, shoe
on a table; Your observations (and the map) can be stale/ incorrect/
missing , because the human moved objects since you had premapped the
house, or your vision system is imperfect.

12

13 Combining your latest observations, In map 125 (at time step 125), you saw
that Room 0 has: chair, shoe on a chair, couch, book on a couch, table,
shoe on a table; Room 1 has: fridge, counter, cabinet, human; Room 2
has: chair, bed, table. Room 3 has: chair, stuffed_toy on a chair,
bench, table, stuffed_toy on a table. Room 4 has: toilet. Your
observations (and the map) can be stale/ incorrect/ missing, because
the human moved objects since you had premapped the house, or your

vision system 1is imperfect.

14

15 % Format Prompt

16 The human said your goal is to '‘Put a book in bedroom''. The human may be
nuanced or ambiguous. To achieve the goal, choose the next action among
Available Actions: [® Explore Room 0', “Go to Room 1', “Go to Room 2',
*Go to Room 3', "Go to Room 4', *Pick up shoe', "Pick up book', Pick
up shoe', “Done!']"'

17

18 You are in room 0 and you can ONLY grab/ put objects inside Room 0. If you
want to keep searching for object(s) or human that might exist (but you
have not detected) in the current room, choose Explore Room 0'. To go

to another room, choose ""Go to Room 'another room number''"'.

19

20

© 00 N O Ot

10

12
13
14
15

16
17

18
19

Appendix C. 98

Please ONLY respond in the format: RESPONSE FORMAT: Reasoning: reason

about the next action. Action: one of Available Actions (e.g.Explore

Room 0). If task is complete, answer Action: Done!

Now, which action should you take? RESPONSE FORMAT:

LisTiING C.1: Prompt 1: Example prompt for REASONER for a S,; task at timestep
125.

% System Prompt

You are an assistive robot in a house, helping a human. Your observations

may be incomplete or wrong.

While premapping, you saw the layout of the house; you saw that Room 0 has

chair, stuffed_toy on a chair, bed, stuffed_toy on a bed, bench,
couch, stuffed_toy on a couch, table; Room 1 has: chair, bed, couch,
table, cabinet; Room 2 has: chair, bathtub, table, cabinet; Room 3 has:
bed, fridge, cabinet. Room 4 has: chair, bed, fridge, table, cabinet.
Room 5 has: chair, toilet , plate on a toilet , couch, book on some
receptacle , bowl on some receptacle . Room 6 has: bed, toilet , fridge,
cabinet. Room 7 has: toilet , bathtub, cabinet. Your observations (and
the map) can be stale/ incorrect/ missing, because the human moved
objects since you had premapped the house, or your vision system is

imperfect .

Then, After all of this, the human finally commanded to you: "Bring a shoe

to me. I will be washing vegetables.' Right after the human said this
, you saw the human in room 1, starting to walk towards somewhere. When
you last saw the human, the human was in room 4, walking towards rooms
0, 2, 3, 6, 7.

% Environment Prompt

Timestep 2 You were following the human;the human was in room 1.

Timestep 22 You were following the human;the human was in room 1.

Timestep 42 You were following the human;the human was in room 1.

Timestep 62 You were following the human;the human was in room 1.

Timestep 82 You were following the human;the human was in room 4, walking
towards rooms 0, 2, 3, 4, 6, 7.

Timestep 102

You were following the human;the human was in room 4,

walking towards rooms 0, 2,

% Format Prompt

3, 6

7.

Appendix C. 99

20 Combining your latest observations, In map 102 (at time step 102), you saw

21 The

that Room 0 has: chair, book on a chair, stuffed_-toy on a chair, bed,
book on a bed, stuffed_toy on a bed, bench, couch, stuffed_toy on a
couch, table, book on a table; Room 1 has: chair, book on a chair, shoe
on a chair, stuffed_toy on a chair, bed, shoe on a bed, couch, book on
a couch, shoe on a couch, stuffed_toy on a couch, table, book on a
table, shoe on a table, cabinet, book on a cabinet; Room 2 has: chair,
hat on a chair, bathtub, book on a bathtub, table, cabinet, book on a
cabinet , hat on a cabinet; Room 3 has: bed, fridge, book on a fridge,
cabinet , book on a cabinet. Room 4 has: chair, book on a chair, bed,
book on a bed, bench, fridge, couch, book on a couch, table, book on a
table, cabinet; Room 5 has: chair, book on a chair, bowl on a chair,
shoe on a chair, toilet , couch, book on a couch, bowl on a couch,
stuffed_toy on a couch. Room 6 has: bed, toilet , fridge , book on a
fridge , cabinet, book on a cabinet. Room 7 has: toilet , book on a
toilet , bathtub, book on a bathtub, cabinet, book on a cabinet. Your
observations (and the map) can be stale/ incorrect/ missing, because
the human moved objects since you had premapped the house, or your
vision system 1is imperfect.

human said your goal is to °'Bring a shoe to me. I will be washing

vegetables ''.

The human may be nuanced or ambiguous.Now, from the human
's utterance (Bring a shoe to me. I will be washing vegetables) and
your observations of the human (When you last saw the human, the human
was in room 4, walking towards rooms 0, 2, 3, 6, 7.), do you have
enough evidence which room (among roomsO, 1, 2, 3, 4, 5, 6, 7) the
human is walking towards and will stop in?Please ONLY respond in the
format : RESPONSE FORMAT: Reasoning: reason about ‘Enough Evidence'/ °
Not Enough Evidence'. Action: choose among [Enough Evidence', “Not
Enough Evidence ']. RESPONSE FORMAT:

Listing C.2: Prompt 2: Example ambiguity calibration prompt for REASONER for a
Shum task at timestep 103.

C.2.2 Prompter prompt examples

We

show an example planning prompt (Prompt 3) and search prompt (Prompt 4) for a

Sob; task. Furthermore, we show ambiguity calibration prompt for a Sp,m, task (Prompt

5).

1 The

human commanded to you: “Put a hat in bathroom.' Please make a high
level plan. Please answer in the format of °“[Pick up OBJ, Put in the
ROOM] ''. For example, °‘[Pick up saltshaker, Put in the bedroom]'"'.

LisTING C.3: Prompt 3: Example planning prompt for PROMPTER for a Sg; task at
timestep 0.

Appendix C. 100

1 You are an assistive robot in a house, helping a human. Your observations

may be incomplete or wrong.While premapping, you saw the layout of the

house; Room 0 has: chair, bench, couch, counter, table, ; Room 1 has:
chair, bed, table, ; Room 2 has: fridge , counter, cabinet, . Room 3 has
chair, bed, . Room 4 has: chair, bed, counter, . Room 6 has: bathtub,
table, cabinet, . Room 7 has: fridge, . Room 8 has: chair, toilet ,
cabinet. The human had said "I took a shoe and moved it with me. I put
it in the kitchen '.; "I took a basket and moved it with me. I put it in
the livingroom '.; "I took a stuffed_toy and moved it with me. I put it
in the bedroom'.; "I took a basket and moved it with me. I put it in

the livingroom '.\n In which room, is the basket likely to be in? Please
answer in the format of Room X. For example, Room 1. Please ONLY

respond in the format: Answer: Room X.

LisTING C.4: Prompt 4: Example search prompt for PROMPTER for a S.;; task at
timestep 154.

1 You are an assistive robot in a house, helping a human. Your observations

may be incomplete or wrong.While premapping, you saw the layout of the

house; Room 0 has: shelves, bathtub, fridge, couch, table, ; Room 1
has: bed, table, ; Room 2 has: shelves, fridge, cabinet, . Room 3 has:
fridge , . Room 4 has: chair, shelves, table, . Room 5 has: toilet ,
bathtub, . The human commanded to you: "“Bring a stuffed_toy to me. I

will be in study room.' Right after the human said this, you saw the
human in room None. Now, from the human's utterance (Bring a
stuffed_toy to me. I will be in study room) and your observations of
the human, do you have enough evidence which room (among rooms0O, 1, 2,
3, 4, 5) the human is walking towards and will stop in? Please choose

among [Enough Evidence', *Not Enough Evidence'].

Listing C.5: Prompt 5: Example ambiguity calibration prompt for PROMPTER in a
Shum task at time step 0.

C.3 Execution Details

C.3.1 Map Update

In the semantic map, position of objects and humans are algorithmically updated. There
are channels for the latest position of the human and the entire human trajectory. The
latest human position channel is updated to the projection from the current semantic
segmentation mask, upon detecting a human. A dedicated human trajectory channel
tracks all observed movements; the latest timestep is inputted to the projected area from
the semantic segmentation mask of the human. For grabbable objects, updates occur
upon Grab Obj/Put Obj actions. When a Grab Obj action is executed and the grasper is

closed, the closest target object is removed from the map, reflecting the agent’s changed

Appendix C. 101

perception. When Put Obj is executed and the object is detected in the agent’s view,

the projection of the object is put back on its corresponding channel.

C.3.2 Execution Tools

Execution tools for REASONER/PROMPTER and their working details/affordance are in
Table C.3.

Execution Tool Description & Affordance

Navigation

Go to Room X FMM Planner navigates to a random point in Room X.

Explore Room X FMM Planner navigates to a random point in Room X; then, agent
turns 15 times to the right to look around.

Follow Human The last observed position of the human is given as the goal, to

the human-following wrapper (more explanation is Sec. C.3.3) on
top of FMM Planner.

Manipulation

Grab Obj The closest object within 2 meters of the grasper is grabbed, and
agent’s grasper is closed.

Put Obj Grasped object is put on the closest receptacle within 2 meters of

the grasper is grabbed, and agent’s grasper is opened.
Give Obj to Human The agent goes within 1 meter of the human and gives grasped
object to human, if human is visible from current view.

TABLE C.3: Execution tools for REASONER/PROMPTER and their working details/af-
fordance.

C.3.3 Following and Anticipating the Human

When the “Follow Human” skill is called (Table C.3), REASONER and PROMPTER uses an
algorithmic execution tool to follow the human. First, the latest position of the human
is set as the goal, and the FMM Planner navigates until agent is within 1m. of the goal.
When the goal is reached, the agent rotates 40 times to get a full 360° view, to scan the
last location of the human. If the human is visible in a new location, this location is set
as the new goal for the FMM Planner. Otherwise, stop is declared; in the prompt, it is
stated that “the agent either lost track of the human or the human stopped.”

To describe human motion in prompts (illustrated in the bottom row of Fig. 5.3), we use
the following process. If the human has been visible for over 30 timesteps, we estimate
their expected position by extending a vector from their position 30 timesteps prior to
their last observed position, scaled to represent 10 future timesteps. The end point of
this vector is the expected human position (the green star in the middle row of Fig. 5.3).

We then create a plane orthogonal to this vector, selecting the side opposite to the most

Appendix C. 102

recent human position (the depicted white side in the middle row of Fig. 5.3). Rooms
covered more than 50% by this white area are included in the ”walking towards” section
of the prompt (e.g. rooms 1 and 2 at 7' = 20 in Fig. 5.3). If no room meets this criterion,
”walking towards” is omitted, and the prompt only mentions the current room with the

human (e.g. human seen in room 1 at 7' = 60 in Fig. 5.3).

C.4 Detailed Results

C.4.1 Oracle Baseline

The oracle baseline is established by supplying the reasoner with the ground truth plan
and adding exploration as required. For S,,; and PNP tasks, the protocol is to activate
explore_room when the target object is not immediately found. For Sp..,, tasks, we
employ a trajectory that avoids following, as this approach is consistently more efficient
than those involving following, regardless of whether the tasks are clear or ambiguous.
These trajectories are considered the optimal paths for computing the SPL (Success
weighted by Path Length). However, there are a small number of instances when the
oracle trajectory might fail, as documented in Table 5.6. In these cases, we default to
using the maximum permitted task duration of 600 timesteps as the optimal path length

for SPL calculation.

C.4.2 Full Results with Success Rate

Results on success rate, that correspond to the SPL results of Table 5.6 are shown in
Table D.4 below.

Model Val Seen Val Unseen Test Seen Test Unseen
o .fa o : A . fon .t

g s 2 A 3 2 g § 2 ¥ T 3

Planning Perception A n w0 A n n n n A n wn
Oracle Oracle 98 100 95 100 100 100 98 93 98 95 100 98
Learned 53 60 68 45 38 60 60 35 75 48 53 53

Prompter[64] Oracle 68 38 40 68 50 43 63 33 33 53 38 38
Learned 18 13 18 23 13 15 25 3 15 18 8 10

Reasoner Oracle 95 78 35 93 68 58 85 80 43 93 60 50

Learned 23 13 18 33 15 20 38 3 23 23 20 25

TABLE D.4: SR performance of PROMPTER and REASONER across splits. In each

sectioned-row, the top row assumes oracle perception (semantic segmentation and

manipulation); the bottom row assumes learned semantic segmentation and heuristic
manipulation.

Appendix D

Appendix for Chapter 6

D.1 MCTS Implementation Details

UCT = Q(s,a) + ¢ x

We train a separate LLaMA 3B with a scalar head as a process reward model (PRM) to
get Q(s,a) (Phelp(5), Prohelp(s) in Sec. 6.4.2 Phase I takes only s as input) to judge the
compatibility of action a with state s. Q(s,a) is the value function of the “goodness” of
action a at state s. The training is done with the same procedure as [153]; rollouts are
collected and each state s; is paired with the binary terminal outcome (success/failure)

of the rollout, to train cross entropy loss simiarly as in Sec. 6.4.2 Phase 1.

The UCT score ¢ x ljr\lfg(;)) is calculated from N(s) and N(s,a) that count the number

of times state s has been visited and (s, a) has been proposed in the current task.

We propose five actions a from a the base actor but with temperature 1.0 (we use 0.0
without MCTS), and we use ¢ = 0.25. In steps where MCTS is not used (in case wehre
it is applied to selected states as in Tab. 6.2), we update the chosen N(s) and N(s,a) by

multiplying the chosen count by five times.

D.2 Detailed Explanation of Section 5.1

D.2.1 Explanation of “Strategy Clash”

As noted in Section 6.5.1, our experiments reveal an intriguing phenomenon when multiple

interventions are available: despite offering diverse strategic approaches, agents tend

103

Appendix D. 104

TABLE B.1: Task outcome prediction performance with pnoneip(s)-

GPT 40-mini LLaMA
Pnp S_Obj Pnp S_Obj

Accuracy 90% 90% 88% 90%
Precision 88% 70% 88% 83%
Recall 100% 100% 100% 83%

to converge on using a single intervention type, and combining multiple interventions
does not yield significantly better performance than dedicating resources to a single
intervention. We explain the underlying “strategy clash” among interventions that cause

this issue.

D.2.1.1 Divergent Exploration Strategies

The core issue stems from fundamental differences in how MCTS and more powerful

models approach exploration and decision-making:

MCTS Strategy: MCTS employs a systematic exploration approach, spending con-
siderable time searching within a promising region before the UCT score (exploration
benefit) incentivizes exploration of alternative paths. This depth-first tendency means
MCTS commits to thoroughly investigating local neighborhoods before broadening its

search.

Powerful Model Strategy: In contrast, more powerful models leverage their superior
pattern recognition to identify informative clues early in the trajectory. This allows
them to make exploratory decisions sooner, often switching between different regions
of the state space based on learned heuristics rather than explicit exploration bonuses.
These contrasting approaches create situations where each intervention type excels under
different circumstances. MCTS performs better in scenarios requiring deep, systematic
search within constrained regions, while powerful models excel when early recognition of

subtle patterns can guide efficient exploration across broader state spaces.

D.2.1.2 The Single Intervention Convergence

Due to these strategic differences, we observe that agents naturally converge to using
predominantly one intervention type rather than mixing them. Table 6.2 demonstrates
this empirically: when offered both MCTS and a more powerful model as interventions,
the optimal allocation tends to heavily favor one over the other, even when we explicitly
encourage diversification through our multi-intervention budget allocation in Phase 3.

This convergence occurs because:

Appendix D. 105

1. Strategic Interference: Switching between interventions mid-trajectory can
disrupt the coherent strategy each intervention type is pursuing. For instance, an
MCTS intervention’s deep local search may be rendered ineffective if a powerful

model intervention subsequently redirects exploration based on different criteria.

2. Temporal Misalignment: The optimal timing for each intervention type differs.
MCTS benefits from early deployment to build comprehensive search trees, while
powerful models can effectively intervene later by quickly recognizing critical

decision points. This temporal mismatch makes simultaneous usage suboptimal.

3. State-Dependent Effectiveness: Certain trajectory states inherently favor
one intervention type. Rather than benefiting from diversity, using multiple
interventions often means applying suboptimal strategies to states where a single,

well-chosen intervention would suffice.

D.2.2 Explanations of Table 4

Before evaluating our primary intervention rule (pponelp(s) < 7), we first verify whether
Pnohelp($) reliably captures state easiness. For this sanity check, we assess if our model
can predict task success/failure at test time. Specifically, we identify the minimum
Prohelp(Si) encountered in each trajectory and set a prediction threshold (separate from
our intervention threshold 7) to optimize accuracy in predicting trajectory outcomes.
Table B.1 shows that binary classification with minimum ppopelp(s;) delivers high accuracy,
precision, and recall across both base actors (See Sec. 6.3), confirming that phonelp(s)

effectively estimates state easiness.

D.2.3 Failure modes of thresholding-based baseline

We analyze two primary failure modes behind the counterintuitive finding, that often the
thresholding-based baseline performs worse than random selection under similar budget.
The major failure modes are: (1) The thresholding rule often identifies difficult states too
late in the trajectory when they’re beyond salvaging, even with powerful interventions;
(2) The approach suffers from “toggling” behavior - once an intervention moves the agent
to an “easier” state, the thresholding rule no longer triggers, allowing the base actor to

potentially return to difficult states, creating inefficient oscillation patterns.

We show an example of the toggling behavior. As illustrated in Figure D.1, once
an intervention briefly reduces the difficulty (and increases pnonelp(s)), the base actor
immediately takes control. Before long, the difficulty surpasses the threshold again,
prompting another intervention. This repeated ”"toggling” between the intervention and

the base actor leads to suboptimal performance and illustrates the pitfalls of using only

Appendix D. 106

Pnohelp(s) Scores Across Task Progression

—e— Random Intervention Trajectory
0.71 ¥ Intervention Called for Random State
—e— Pnohelp(5)-Thresholded Intervention Trajectory
¥ Intervention Called for ppohelp(5)-thresholded State |
0.5 e Proheip(s) Score Threshold

Timestep

FIGURE D.1: ppohelp(s) measured by the PRM across the task. Interventions on

PRM-chosen states (red line and stars) cause repeated toggling that traps the agent in

low-pronelp () regions, resulting in worse outcomes than random interventions (blue line
and stars), which ends at step 10 with task success.

difficulty-based thresholds without accounting for sequential dependencies. Consequently,
we cannot rely on the same measure (1 — pponelp(s)) used in self-regulation without
explicitly incorporating transition dynamics (Pheip(s’ | 5), Paonelp(s’ | 8)) to identify
states that need intervention in this more granular setting.

These findings reveal a fundamental limitation: optimal intervention timing does not
simply correspond to state difficulty; thresholding does not account for how interven-
tions affect future state trajectories. There exist critical decision points in state
trajectories where timely intervention yields greater benefits, even though
these states may not register as the “most difficult”.

D.3 Detailed Derivation of Usage/Policy Iteration

D.3.1 Part I: Decomposing Value Function into Success and Usage

If 7 is any policy, then the value under 7 is the expected sum:

o0

t
V;,W(S) = E, Z Y (1success at timet — T 1help at time t) ‘ S0 = 5] .
t=0

Appendix D. 107

Rewriting,
oo
V;“ﬂ-(s) - EW[Z 7t 1{success at t}]
t=0
(discounted successes)
oo
- T EW[Z 7t 1{help at t}:| : (Dl)
t=0
(discounted helps)
Hence,

V7(s) = S™(s) — rMI(s).

where we denote
00 00
Sﬂ—(s) = E; [Z 7t lsuccess at time t] s MZF(S) = E, [Z 'Yt 1help at time t | -
t=0 t=0

When taking the max over all policies 7, we get V,.(s) = S*(s) — r M,(s), where S*(s)

and M, (s) come from the optimal policy.

Thus, we can decompose the value function into

(expected discounted success) — r (expected discounted helps),

5(s) M:(s)

D.3.2 Part II: Arriving at Piecewise Definition of Usage

Now, let’s substitute V;.(s) = S(s) — r M,.(s) into the Bellman Equation of Section 6.4:

’YZS/ Pnohelp(sl | 5) VT‘(Sl)a if nohelp at s,
Vi(s) = (D.2)
- + 725/ Phelp(‘sl ‘ S) ‘/7"(5,)3 if help at s,

and

1, if task success,
‘/r(sterm) =
0, if task failure.

for terminal states.

Appendix D. 108

As we plug in V,.(s) = S(s) — r M,(s) to each case

1. if nohelp at s

S(s) —rM.(s) = ’yZPmOhelp(s’ | s) <S(s/) - ’I“MT(S/)>.

S,

From the piecewise definition of S(s) (eq. D.5), we have S(s) = 7. Puohelp(s’ | s) S(s),.
Thus,

—’I“MT(S) = _T’YZPnohelp(sl | S) MT‘(S/)'

S/

Dividing through by —r (assuming r > 0) gives

MT(S) =7 Z Pnohelp(sl ‘ S) MT’(SI)’

S

for the nohelp branch.

2. The help branch.

S(s) =T My(s) = =1 + 7D Preip(s’ | 8) (S(5) =7 My(s)).

s

Again using the piecewise definition of eq. D.5 that ~ Z Pheip(s” | s) S(s'), we can isolate

S/

the usage terms:

—r M (s) = —r — T’YZPhelp(Sl | s) Mr(sl)’

S/

= r (1 - 'yZPhelp(s’ | s) Mr(s')> = r M,(s).

S

Dividing through by r and rearranging yields

MT(S) =1+ ’YZPhelp(Sl ‘ S) Mr(sl)'

S/

Thus, in the help branch, we add 1 for the immediate usage plus the (discounted) future

usages under help transitions.

Thus, we get

Appendix D. 109

g Z Poohelp(s” | s) M, (s") if nohelp,

M.(s)={ (D.3)
1 + ’YZPhelp(Sl | s) M,.(s") if help.

S/

D.3.3 Part III: Arriving at Optimal Policy and Usage

First, let’s derive the threshold condition. From the value function Bellman Equation
(eq. D.2), help is chosen iff:

—r + ’YZ Pheip(s” | 5) Vo (s') > ’YZ Prohetp(s” | 8) Vi(s")

S S

Rewriting V,.(s) = S(s)—r M,(s) and isolating the cost component —r yields the threshold

condition:
Ap(s)

TS AM(s)

where we denote

Ap(s) = phelp<3> - pnoh61p(8)7

AM,(s) = Phelp(s) [1 + ’yZPhe1p(s’ | 5) Mr(s/)}

S

help_val at s

— Pnohelp($) [’sznohelp(sl | 5) Mr(sﬂ-

nohelp_val at s

Intuitively, Ap(s) and AM,(s) capture how much additional success probability vs. usage

we get by choosing help over nohelp at s.

Hence, we arrive at

help, if r < %,

mr(s) = (D.4)
nohelp, otherwise.

Now, combining eq. D.3 and eq. D.4, we get

vty] MO T P 9N, it ()=l
r\8)=
M;mhelp(s)zyzs/thelp(s’|S)Mr(s’), otherwise.

Ap(s)
AM,(s)

*
T

(s)=help <=r<

e

Appendix D. 110

Lemma: Piecewise Definition of S(s) (Help vs. Nohelp). If S(s) is interpreted
as the discounted probability of eventually reaching success under a policy 7w that may

choose either help or nohelp, we can write
oo
SW(S) = Ex [Z ’yt 1{state at time ¢ is success} ‘ 50 = 5} .
t=0
In an MDP setting with two possible actions, help or nohelp, the policy 7 dictates which

action to take at each state s. Correspondingly, the recursion for S7(s) becomes:

1, if s is a terminal success state,
0, if s is a terminal failure state,

’yZPnohelp(s' | s) S™(s'), if m chooses nohelp at s,
S/
’yZPhelp(s’ | s) S7(s"), if 7 chooses help at s.

S

o If s is success: We set S™(s) = 1. This means that if you start in a success state,

the probability of “having achieved success” (discounted or not) is exactly 1.

e If s is nonterminal: Then there is no immediate success contribution at s itself,
and we simply recurse to the next state via either Phopelp(- | $) or Phep(- | 5),
multiplied by the factor v. Thus, no explicit 1{s is success} is needed inside the
sum, because we have already distinguished the success case in the first line of the

piecewise definition.

Thus, under a given policy m, each nonterminal state s follows whichever transition
probabilities (nohelp or help) 7 prescribes at that state. The boundary condition

S™(sterm) = 1 applies to all terminal success states.

D.4 Proof of Convergence

In Appendix D.3, we showed that the boxed equation

[T O= TR P 19, i) e

M,.(s)=

M ()=, Puoap(<8)M; (), otherwise.
A

Wf(s):help<:>T<MZ%o

Appendix D. 111

is equivalent to the standard Bellman recursion for

Yo Pronhelp(s” | s) V7 (s'), if nohelp,

-r + ’VZS’ Phelp(sl ‘ 3) V;jr(sl), if help.

where

1, if task success,

V;jr(sterm) -
0, if task failure.

Because solving value iteration for the above V7 (s) converges to a unique fixed point
V,(s) and the corresponding policy 7}, we know that the iteration of the boxed equation

also converges to a unique fixed point M(s) and 7.

D.5 Details on Extensions to Multiple Interventions

Our algorithm naturally extends to multiple intervention types, as explained in Sec. 6.4.3.

We explain the details.

D.5.1 Formulation and Reward Regime

We consider a stochastic process with states s € S and transition probabilities P(s’ |
s). At any non-terminal state s, the agent may choose from multiple interventions
{helpl, help2, ... helpK} or nohelp. Each intervention help, can improve the probability
of success at the cost of incurring usage. Conversely, nohelp avoids usage costs but may
have a lower chance of success. We aim to maximize the task success rate while keeping
the expected discounted number of each intervention (or total usage) below a certain
budget C.

Concretely, let v € (0,1) be the discount factor. Suppose from an initial state sg, we

want
E[(Success)]
[o¢]
subject to E[Z v #(helps at time)| < C.
t=0
One can equivalently encode this via a cost (r1,79,...,7x) for each intervention helpz,

or treat it via a usage-based dynamic programming approach. Below, we use a reward
regime that translates each help call into a negative reward. This allows standard

value-iteration (VI) or usage-based iteration for an MDP with multiple interventions.

Appendix D. 112

Reward Regime. At each non-terminal state s, the agent chooses among:
Actions = {nohelp, help,, ... helpy}.
The immediate reward is:

e help;: a reward of —r;.
e nohelp: a reward of 0.

e Terminal States: success yields a reward of 41, failure yields 0.

Hence, if an agent eventually succeeds, it gains +1 minus the sum of costs), r; times

the discounted number of times each help, was used.

Notation for Success Probabilities. When analyzing usage or success, we often use
a probability-of-success model:

Pnohelp($) = Pr(success | s, nohelp),

Phelp, (§) = Pr(success | s, help;).

We likewise denote state transition kernels Pyohelp(s'|s) or Pelp, (s'|s) to capture the

distribution over next states under each chosen action.

D.5.2 Derivation of Usage/Policy Iteration for Multiple Interventions

Overview. We start from value iteration, as in Sec. 77. The value function is:
V(s) = maX{O 9 Paonenn(s']5) V(5)),
S/

[+ 7D Phetpi(s'15) V() }.

with V (Sguccess) = 1 and V (Sgailure) = 0 for terminal states. Now, we derive a usage-based
DP from this:

M]:Z(s) = expected discounted # of times we use intervention i,

starting from s.

If we pick help; in state s, then

MT‘ZZ (S)(helpl) =]' + VZ Phelpi (S,|S) MT’ZZ (S/)7

S/

Appendix D. 113

Mg] (5)(help2) =0+ /VZ Phelpi (S/|5) Mg] (5/)7

S

for j # 4. If we pick nohelp,

Mgi(s)(nOhelp) = 'YZ Pnohelp(5/|5) M;:i(‘s/)a Vi=1,..., K.
S/

Threshold Conditions for Multiple Interventions. In the single-intervention case,

. . Asuccess . .
we derived ratio = ——— . For multiple interventions, each help, has:
usage

Api(s) = phelpi(s) - pnohelp(s);

AM (5) = Pheip, (s) [M}. (s)(help;)] — Duoneip(s) [M;, (s)(nohelp)].

We say help; is cost-effective (vs. nohelp) if

Apt
ratio;(s) = A]\Z’(Z) > 1y

If ratio;(s) < r; for all 4, we choose nohelp. If exactly one help, is cost-effective, we
pick help,. If multiple helps pass the ratio test, we pick whichever yields the smallest

combined cost

K
(r1 M} (s), o M2(S), ..., Tk Mg((s)) => minimize Z Ti Mﬁi(s)(helpi).
i=1

These local decisions define a policy update at each state s. Iterating the usage functions
{M} (s)} and reselecting among {help;, nohelp} converges to a stable fixed point. This
final stable policy is 7*. This 7* is exactly the same solution a standard value iteration

approach (with reward {—r;}) would find, with arguments similar to Appendix D.4.

D.5.3 Algorithm

The algorithm for the multiple intervention setting are in three main phases:

Phase 1: Data Collection and Transition Model.

e Collect transitions offline by running partial-rollouts with {helpé, nohelp} chosen ran-
domly or by partial heuristics.

e Maintain counts count[s][a][s] for each action a € {helpl,... helpK, nohelp}.

e Estimate P(s|s,a) = count[s][a][s']/ 3", count[s][a][z], for a € {nohelp, helpy, ..., helpy}

Appendix D. 114

Phase 2: Offline Usage/Policy Iteration (Multiple Interventions). First, initial-

ize usage counters {M/ (s)}X, to zero (or any guess). Then, Repeat until convergence:

1. Compute usage for each action:

1+ 75>y Phepi(s's) My (s'), ifi=j,
V2 Paerp (s']5) M (), if i # 7,
M; (s)(nohelp) = 7Y Paoneip(s']5) M;.(s').

s/

M} (s) (helpj) =

2. Compute Ap'(s) and AM;. (s), then check the ratio test ratio;(s) >r;.
3. Policy update:
K .
7 (s) = arg min {Z Ti Mﬁl(s)(a)}

a€{helpl,...,helpK nohelp} P

subject to ratio; > r;.

4. Update counters: M. (s) <+ M. (s)(m(s)).

r

5. Check convergence: if maxg ;| M. (s) — oldu < g, stop.

Finally, we output the stable usage counters {M;Z(S) K | and the final policy 7*.

Phase 3: Final Policy Representation (SFT or Other).

e We store the final help/nohelp decisions in a table 7*(s).

e For states s in the training data, we know exactly which action the usage-based DP

prescribes.

e Train the actual “helper” model (e.g. a neural policy or large language model) via

supervised finetuning to mimic 7*(s) on the collected states s.

Relation to Single-Intervention Case. If K =1, the above steps reduce exactly to
the single-intervention usage-based iteration. If r; =r9 = --- = rx = r, then each help

has the same cost, and we can unify them if needed.

D.6 Table 3 Results Detail

We find that performance drops at 7hign are driven by the base LLaMA actor encountering
out-of-distribution (OOD) states, not by limitations of our method. This phenomenon

stems from a fundamental training—inference mismatch in our experimental setup.

Appendix D. 115

Training Distribution Mismatch Crucially, the base actor was trained exclusively
on rollout trajectories where no interventions occurred (intervention rate = 0). During
training data collection, the base actor followed its own decision-making process through-
out entire episodes, creating a self-consistent behavioral distribution. However, during
evaluation under our intervention framework, the base actor encounters states that arise

after intervention actions—states it has never seen during training.

Intervention Frequency and OOD Exposure The intervention penalty parameter
r directly controls intervention frequency: 7y leads to frequent interventions (high
trigger rate), rmiq produces moderate intervention frequency, and rpiep results in rare
interventions (low trigger rate). When interventions occur frequently (at rj.y), the
base actor is repeatedly placed into post-intervention states that lie outside its training
distribution. These OOD states cause the base actor to produce invalid actions, such as

actions not in the allowed action set or contextually inappropriate responses.

Quantitative Impact This training—inference distribution shift explains approximately
75% of failures at 7w, where interventions are most frequent and OOD exposure is
highest. Conversely, at 7pign, interventions rarely occur, keeping the base actor largely
within its familiar training distribution, resulting in under 5% of failures being attributed
to this cause. The intermediate case of rpy;q shows 15% of failures from this source,

consistent with moderate intervention frequency.

Comparison with Other Methods We do not observe these anomalies for PnP tasks
or other intervention types (Table 6.2). This is likely because the strategies employed by
MCTS or stronger intervention models produce state transitions that remain closer to

the base actor’s original training distribution, even when interventions occur.

Training vs. Test Task Performance Notably, this behavior does not appear in
training tasks, where success rates at rhijgn exceed those at rmiq or 76w (Tab. 6.3). This
supports our hypothesis: on training tasks, the base actor has effectively memorized
successful behavior patterns, so even repeated interventions on the same task types keep
the resulting states within the actor’s familiar distribution. However, on novel test tasks,
any deviation from the base actor’s self-generated trajectory creates genuinely unfamiliar

states.

Bibliography

Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2308.08774
(2023).

Rishabh Agarwal et al. “Learning to generalize from sparse and underspecified
rewards”. In: International conference on machine learning. PMLR. 2019, pp. 130—

140.

Ziad Al-Halah, Santhosh Kumar Ramakrishnan, and Kristen Grauman. “Zero
experience required: Plug & play modular transfer learning for semantic visual
navigation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 17031-17041.

Peter Anderson et al. “On Evaluation of Embodied Navigation Agents”. In: arXiv
preprint arXiv:1807.06757 (2018).

Peter Anderson et al. “On evaluation of embodied navigation agents”. In: arXiv

(2018).

Peter Anderson et al. “Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2018, pp. 3674—-3683.

Anonymous. “LiveCodeBench: Holistic and Contamination Free Evaluation of
Large Language Models for Code”. In: The Thirteenth International Conference
on Learning Representations. 2025. URL: https://openreview.net/forum?id=
chfJJYC3iL.

Akari Asai et al. “Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection”. In: The Twelfth International Conference on Learning Represen-

tations. 2024. URL: https://openreview.net/forum?id=hSyW5go0v8.

Yuntao Bai et al. “Constitutional ai: Harmlessness from ai feedback”. In: arXiwv
preprint arXiv:2212.08073 (2022).

Yonatan Bisk et al. “Experience Grounds Language”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
2020.

116

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=hSyW5go0v8

Bibliography 117

[11]

[12]

[20]

[21]

[22]

Valts Blukis et al. “A Persistent Spatial Semantic Representation for High-level
Natural Language Instruction Execution”. In: Proceedings of the Conference on
Robot Learning (CoRL). 2021.

Valts Blukis et al. “Following high-level navigation instructions on a simulated
quadcopter with imitation learning”. In: Robotics: Science and Systems (RSS).
2018.

Valts Blukis et al. “Mapping navigation instructions to continuous control actions
with position-visitation prediction”. In: Conference on Robot Learning. PMLR.
2018, pp. 505-518.

Daniel Brown et al. “Extrapolating beyond suboptimal demonstrations via inverse
reinforcement learning from observations”. In: International conference on machine
learning. PMLR. 2019, pp. 783-792.

Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural

information processing systems 33 (2020), pp. 1877-1901.

Miles Brundage et al. “The malicious use of artificial intelligence: Forecasting,

prevention, and mitigation”. In: arXiv preprint arXiv:1802.07228 (2018).

Berk Calli et al. “Yale-CMU-Berkeley dataset for robotic manipulation research”.
In: The International Journal of Robotics Research 36.3 (2017), pp. 261-268.

Nicolas Carion et al. “End-to-end object detection with transformers”. In: Euro-

pean conference on computer vision. Springer. 2020, pp. 213-229.

Mathilde Caron et al. “Emerging properties in self-supervised vision transformers”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 9650-9660.

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W Black. “Grounding ‘Ground-
ing’ in NLP”. In: Findings of The 2021 Conference of the Association for Compu-
tational Linguistics. 2021. URL: https://arxiv.org/abs/2106.02192.

Angel Chang et al. “Matterport3d: Learning from rgbh-d data in indoor environ-
ments”. In: arXiv preprint arXiv:1709.06158 (2017).

Devendra Singh Chaplot et al. “Learning to explore using active neural slam”. In:
arXiv preprint arXiw:2004.05155 (2020).

Devendra Singh Chaplot et al. “Object goal navigation using goal-oriented se-
mantic exploration”. In: Advances in Neural Information Processing Systems 33
(2020).

Devendra Singh Chaplot et al. “SEAL: Self-supervised embodied active learn-
ing using exploration and 3d consistency”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 13086-13098.

https://arxiv.org/abs/2106.02192

Bibliography 118

[25]

[26]

[27]

28]

[29]

David Chen and Raymond J Mooney. “Learning to interpret natural language nav-
igation instructions from observations”. In: Proceedings of the National Conference
on Artificial Intelligence. 2011.

Jiaqi Chen et al. “MapGPT: Map-Guided Prompting for Unified Vision-and-
Language Navigation”. In: arXiv preprint arXiv:2401.07314 (2024).

Liang-Chieh Chen et al. “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs”. In: IEFE transactions

on pattern analysis and machine intelligence 40.4 (2017), pp. 834-848.

Ting Chen et al. “A simple framework for contrastive learning of visual rep-
resentations”. In: International conference on machine learning. PMLR. 2020,
pp. 1597-1607.

Xinyun Chen et al. “Teaching Large Language Models to Self-Debug”. In: The
Twelfth International Conference on Learning Representations. 2024. URL: https:

//openreview.net/forum?id=KuPixIqgPigq.

Zixiang Chen et al. “Self-play fine-tuning converts weak language models to strong
language models”. In: arXiv preprint arXiv:2401.01335 (2024).

Ta-Chung Chi et al. “Just Ask: An Interactive Learning Framework for Vision
and Language Navigation”. In: AAAI Conference on Artificial Intelligence. 2019.
URL: https://api.semanticscholar.org/CorpusID:208527038.

Ta-Chung Chi et al. Just Ask:An Interactive Learning Framework for Vision and
Language Navigation. 2019. DOI: 10 .48550/ARXIV.1912.00915. URL: https:
//arxiv.org/abs/1912.00915.

Paul F Christiano et al. “Deep reinforcement learning from human preferences”.

In: Advances in neural information processing systems 30 (2017).

Jasmine Collins et al. “ABO: Dataset and Benchmarks for Real-World 3D Object
Understanding”. In: CVPR (2022).

Abhishek Das et al. “Embodied question answering”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 1-10.

Matt Deitke et al. ProcTHOR: Large-Scale Embodied Al Using Procedural Gener-
ation. 2022. DOIL: 10.48550/ARXIV.2206.06994. URL: https://arxiv.org/abs/
2206.06994.

Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

Natalia Diaz-Rodriguez et al. “Connecting the dots in trustworthy Artificial
Intelligence: From Al principles, ethics, and key requirements to responsible Al

systems and regulation”. In: Information Fusion 99 (2023), p. 101896.

https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://api.semanticscholar.org/CorpusID:208527038
https://doi.org/10.48550/ARXIV.1912.00915
https://arxiv.org/abs/1912.00915
https://arxiv.org/abs/1912.00915
https://doi.org/10.48550/ARXIV.2206.06994
https://arxiv.org/abs/2206.06994
https://arxiv.org/abs/2206.06994

Bibliography 119

[39]

[40]

Laura Downs et al. “Google scanned objects: A high-quality dataset of 3d scanned
household items”. In: 2022 International Conference on Robotics and Automation

(ICRA). IEEE. 2022, pp. 2553-2560.

Raphael Druon et al. “Visual object search by learning spatial context”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 1279-1286.

Heming Du, Xin Yu, and Liang Zheng. “VTNet: Visual Transformer Network for
Object Goal Navigation”. In: arXiv preprint arXiv:2105.09447 (2021).

Yilun Du, Chuang Gan, and Phillip Isola. Curious Representation Learning for
Embodied Intelligence. 2021. DOI: 10.48550/ARXIV.2105.01060. URL: https:
//arxiv.org/abs/2105.01060.

Abhimanyu Dubey et al. “The llama 3 herd of models”. In: arXiv preprint
arXiv:2407.21783 (2024).

Boston Dynamics. Spot - The Agile Mobile Robot. Available online: https://
bostondynamics.com/products/spot/ (accessed on March 6, 2024). 2023.

Anna Effenberger et al. “Analysis of language change in collaborative instruction
following”. In: arXiv preprint arXiv:2109.04452 (2021).

Daniel Fried et al. “Speaker-Follower Models for Vision-and-Language Navigation”.

In: Advances in Neural Information Processing Systems. 2018.

Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendén-Mancha.
“Visual simultaneous localization and mapping: a survey”. In: Artificial intelligence
review 43.1 (2015), pp. 55-81.

Tason Gabriel. “Artificial intelligence, values, and alignment”. In: Minds and
machines 30.3 (2020), pp. 411-437.

Samir Yitzhak Gadre et al. “CLIP on Wheels: Zero-Shot Object Navigation
as Object Localization and Exploration”. In: arXiv preprint arXiv:2203.10421
(2022).

Xiaofeng Gao et al. “Dialfred: Dialogue-enabled agents for embodied instruction
following”. In: IEEFE Robotics and Automation Letters 7.4 (2022), pp. 10049—
10056.

Jonas Gehring et al. “Rlef: Grounding code llms in execution feedback with
reinforcement learning”. In: arXiv preprint arXiv:2410.02089 (2024).

Theophile Gervet et al. “Navigating to Objects in the Real World”. In: arXiv
preprint arXiv:2212.00922 (2022).

Asma Ghandeharioun et al. “Approximating Interactive Human Evaluation with
Self-Play for Open-Domain Dialog Systems”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc., 2019. URL: https ://proceedings . neurips . cc/paper /2019 /file/
£c9812127b£09c7bd29ad6723c683fb5-Paper . pdf.

https://doi.org/10.48550/ARXIV.2105.01060
https://arxiv.org/abs/2105.01060
https://arxiv.org/abs/2105.01060
https://bostondynamics.com/products/spot/
https://bostondynamics.com/products/spot/
https://proceedings.neurips.cc/paper/2019/file/fc9812127bf09c7bd29ad6723c683fb5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fc9812127bf09c7bd29ad6723c683fb5-Paper.pdf

Bibliography 120

[54]

[55]

Daniel Gordon et al. “Iqa: Visual question answering in interactive environments”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4089-4098.

Zhibin Gou et al. “CRITIC: Large Language Models Can Self-Correct with Tool-
Interactive Critiquing”. In: International Conference on Learning Representations.
2024.

Jing Gu et al. “Vision-and-language navigation: A survey of tasks, methods, and
future directions”. In: arXiv preprint arXiv:2205.12667 (2022).

Saurabh Gupta et al. “Cognitive mapping and planning for visual navigation”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 2616-2625.

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770—
T78.

Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEFE international
conference on computer vision. 2017, pp. 2961-2969.

Kaiming He et al. “Momentum contrast for unsupervised visual representation
learning”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 9729-9738.

Dan Hendrycks et al. “Unsolved problems in ml safety”. In: arXiv preprint
arXiv:2109.13916 (2021).

Zhiyuan Hu et al. “Uncertainty of Thoughts: Uncertainty-Aware Planning En-
hances Information Seeking in LLMs”. In: The Thirty-eighth Annual Conference
on Neural Information Processing Systems. 2024. URL: https://openreview.
net/forum?id=CVpuVe1N22.

Wenlong Huang et al. “Inner monologue: Embodied reasoning through planning
with language models”. In: arXiv preprint arXiv:2207.05608 (2022).

Yuki Inoue and Hiroki Ohashi. “Prompter: Utilizing large language model prompt-
ing for a data efficient embodied instruction following”. In: arXiv preprint
arXiv:2211.08267 (2022).

Shahram Izadi et al. “KinectFusion: real-time 3D reconstruction and interaction
using a moving depth camera”. In: Proceedings of the 24th annual ACM symposium

on User interface software and technology. 2011, pp. 559-568.
Zhengbao Jiang et al. “How Can We Know When Language Models Know? On

the Calibration of Language Models for Question Answering”. In: Transactions
of the Association for Computational Linguistics 9 (2021). Ed. by Brian Roark
and Ani Nenkova, pp. 962-977. DOI: 10.1162/tacl_a_00407. URL: https:
//aclanthology.org/2021.tacl-1.57/.

https://openreview.net/forum?id=CVpuVe1N22
https://openreview.net/forum?id=CVpuVe1N22
https://doi.org/10.1162/tacl_a_00407
https://aclanthology.org/2021.tacl-1.57/
https://aclanthology.org/2021.tacl-1.57/

Bibliography 121

[67]

[76]

[77]

[78]

Saurav Kadavath et al. “Language Models (Mostly) Know What They Know”.
In: ArXiv abs/2207.05221 (2022). URL: https://api.semanticscholar.org/
CorpusID:250451161.

Liyiming Ke et al. “Tactical rewind: Self-correction via backtracking in vision-and-
language navigation”. In: Proceedings of the IEEE/CVF Conference on Computer
Viston and Pattern Recognition. 2019, pp. 6741-6749.

Apoorv Khandelwal et al. “Simple but effective: Clip embeddings for embodied ai”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 14829-14838.

Byeonghwi Kim et al. “Agent with the Big Picture: Perceiving Surroundings for
Interactive Instruction Following”. In: Embodied A1 Workshop CVPR. 2021.

Jacob Krantz et al. “Instance-Specific Image Goal Navigation: Training Embodied
Agents to Find Object Instances”. In: arXiv preprint arXiv:2211.15876 (2022).

Alexander Ku et al. “Room-across-room: Multilingual vision-and-language naviga-
tion with dense spatiotemporal grounding”. In: arXiv preprint arXiv:2010.07954
(2020).

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. “Semantic Uncertainty: Lin-
guistic Invariances for Uncertainty Estimation in Natural Language Generation”.
In: The Eleventh International Conference on Learning Representations. 2023.
URL: https://openreview.net/forum?id=VD-AYtPOdve.

Jan Leike et al. “Scalable agent alignment via reward modeling: a research
direction”. In: arXiv preprint arXiv:1811.07871 (2018).

Belinda 7 Li et al. “Eliciting human preferences with language models”. In: arXiv
preprint arXiv:2310.11589 (2023).

Chengshu Li et al. “Igibson 2.0: Object-centric simulation for robot learning of
everyday household tasks”. In: arXiv preprint arXiv:2108.03272 (2021).

Shimin Li, Tianxiang Sun, and Xipeng Qiu. “Agent Alignment in Evolving Social
Norms”. In: arXiv preprint arXiv:2401.04620 (2024).

Wenzhao Lian et al. “Benchmarking off-the-shelf solutions to robotic assembly
tasks”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2021, pp. 1046-1053.

Jacky Liang et al. “Code as policies: Language model programs for embodied
control”. In: 2023 IEEE International Conference on Robotics and Automation

(ICRA). IEEE. 2023, pp. 9493-9500.
Hunter Lightman et al. “Let’s Verify Step by Step”. In: The Twelfth International

Conference on Learning Representations. 2024. URL: https://openreview.net/
forum?id=v8LOpN6EO1.

https://api.semanticscholar.org/CorpusID:250451161
https://api.semanticscholar.org/CorpusID:250451161
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

Bibliography 122

[81]

[82]

[85]

[36]

[33]

[89]

[90]

[91]

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Furopean

conference on computer vision. Springer. 2014, pp. 740-755.
Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. “Generating with Confidence:

Uncertainty Quantification for Black-box Large Language Models”. In: Trans-
actions on Machine Learning Research (2024). 1SSN: 2835-8856. URL: https :
//openreview.net/forum?id=DWkJCSxKUS5.

Bo Liu, Xuesu Xiao, and Peter Stone. A Lifelong Learning Approach to Mobile
Robot Navigation. 2021. arXiv: 2007.14486 [cs.RO].

Iou-Jen Liu et al. “Asking for knowledge (afk): Training rl agents to query external
knowledge using language”. In: International Conference on Machine Learning.
PMLR. 2022, pp. 14073-14093.

Jijia Liu et al. LLM-Powered Hierarchical Language Agent for Real-time Human-Al
Coordination. 2024. arXiv: 2312.15224 [cs.AI].

Xiao Liu et al. “AgentBench: Evaluating LLMs as Agents”. In: The Twelfth
International Conference on Learning Representations. 2024. URL: https://

openreview.net/forum?id=zAdUB0aCTQ.

Chih-Yao Ma et al. “The regretful agent: Heuristic-aided navigation through
progress estimation”. In: Proceedings of the IEEE/CVFE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 6732-6740.

Aman Madaan et al. “Self-Refine: Iterative Refinement with Self-Feedback”. In:
Thirty-seventh Conference on Neural Information Processing Systems. 2023. URL:
https://openreview.net/forum?id=S37h0erQLB.

Aman Madaan et al. “Self-refine: Iterative refinement with self-feedback”. In:

Advances in Neural Information Processing Systems 36 (2024).

Arjun Majumdar et al. “Zson: Zero-shot object-goal navigation using multimodal
goal embeddings”. In: arXiv preprint arXiv:2206.12403 (2022).

Oleksandr Maksymets et al. “THDA: Treasure hunt data augmentation for se-
mantic navigation”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 15374-15383.

Shehryar Malik et al. “Inverse constrained reinforcement learning”. In: Interna-
tional conference on machine learning. PMLR. 2021, pp. 7390-7399.

Alex Mallen et al. “When Not to Trust Language Models: Investigating Effective-
ness of Parametric and Non-Parametric Memories”. In: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto,
Canada: Association for Computational Linguistics, July 2023, pp. 9802-9822.
DOI: 10.18653/v1/2023.acl-1long.546. URL: https://aclanthology.org/
2023.acl-long.546/.

https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://arxiv.org/abs/2007.14486
https://arxiv.org/abs/2312.15224
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.18653/v1/2023.acl-long.546
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/

Bibliography 123

[94]

[95]

[96]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Cynthia Matuszek et al. “Learning to Parse Natural Language Commands to
a Robot Control System”. In: Proc. of the 13th International Symposium on
Ezperimental Robotics (ISER). Québec City, Quebec, Canada, 2012.

John McCarthy et al. Situations, actions, and causal laws. Comtex Scientific,
1963.

Lina Mezghan et al. “Memory-augmented reinforcement learning for image-goal
navigation”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2022, pp. 3316-3323.

So Yeon Min et al. “Don’t Copy the Teacher: Data and Model Challenges in
Embodied Dialogue”. In: arXiv preprint arXiv:2210.04443 (2022).

So Yeon Min et al. “Film: Following instructions in language with modular
methods”. In: arXiv preprint arXiv:2110.07342 (2021).

So Yeon Min et al. “Self-Supervised Object Goal Navigation with In-Situ Fine-
tuning”. In: 2028 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2023, pp. 7119-7126.

So Yeon Min et al. “Situated instruction following”. In: Furopean Conference on

Computer Vision. Springer. 2025, pp. 202-228.

Arsalan Mousavian et al. “Visual representations for semantic target driven
navigation”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 8846-8852.

Reiichiro Nakano et al. “Webgpt: Browser-assisted question-answering with human
feedback”. In: arXiv preprint arXiv:2112.09332 (2021).

Khanh Nguyen, Yonatan Bisk, and Hal Daum’e. “Learning When and What to Ask:
a Hierarchical Reinforcement Learning Framework”. In: ArXiv abs/2110.08258
(2021). URL: https://api.semanticscholar.org/CorpusID:239016703.

Khanh Nguyen and Hal Daumé III. “Help, Anna! Visual Navigation with Nat-
ural Multimodal Assistance via Retrospective Curiosity-Encouraging Imitation
Learning”. In: Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 684-695. DoI: 10.18653/v1/D19-1063.
URL: https://aclanthology.org/D19-1063.

Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. “Look Wide
and Interpret Twice: Improving Performance on Interactive Instruction-following
Tasks”. In: arXiv preprint arXiv:2106.00596 (2021).

Kolby Nottingham et al. LAV. 2021. URL: https://leaderboard.allenai.org/

alfred/submission/c2cm7erangs9pufuvijg.

https://api.semanticscholar.org/CorpusID:239016703
https://doi.org/10.18653/v1/D19-1063
https://aclanthology.org/D19-1063
https://leaderboard.allenai.org/alfred/submission/c2cm7eranqs9puf9uvjg
https://leaderboard.allenai.org/alfred/submission/c2cm7eranqs9puf9uvjg

Bibliography 124

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with
contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

Long Ouyang et al. “Training language models to follow instructions with human
feedback”. In: Advances in Neural Information Processing Systems 35 (2022),
pp. 27730-27744.

Aishwarya Padmakumar et al. TEACh: Task-driven Embodied Agents that Chat.
2021. URL: https://arxiv.org/abs/2110.00534.

Alexander Pashevich, Cordelia Schmid, and Chen Sun. “Episodic Transformer for
Vision-and-Language Navigation”. In: arXiv preprint arXiv:2105.06453 (2021).

Mihir Prabhudesai et al. “Embodied language grounding with 3d visual feature
representations”. In: Proceedings of the IEEE/CVF Conference on Computer
Viston and Pattern Recognition. 2020, pp. 2220-2229.

Xavier Puig et al. “Habitat 3.0: A co-habitat for humans, avatars and robots”. In:
arXiv preprint arXiw:2310.13724 (2023).

Yuankai Qi et al. “Reverie: Remote embodied visual referring expression in real
indoor environments”. In: Proceedings of the IEEE/CVF Conference on Computer
Viston and Pattern Recognition. 2020, pp. 9982-9991.

Shuofei Qiao et al. “Making Language Models Better Tool Learners with Execution
Feedback”. In: Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers). Ed. by Kevin Duh, Helena Gomez, and Steven Bethard.
Mexico City, Mexico: Association for Computational Linguistics, June 2024,
pp. 3550-3568. DOI: 10.18653/v1 /2024 .naacl-long.195. URL: https://
aclanthology.org/2024.naacl-long.195/.

Yuxiao Qu et al. “Recursive introspection: Teaching language model agents how to
self-improve”. In: Advances in Neural Information Processing Systems 37 (2024),
pp. 55249-55285.

Alec Radford et al. “Learning transferable visual models from natural language
supervision”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 8748-8763.

Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-
text transformer.” In: J. Mach. Learn. Res. 21.140 (2020), pp. 1-67.

Santhosh K Ramakrishnan et al. “Habitat-matterport 3D dataset (HM3D): 1000
large-scale 3D environments for embodied AI”. In: arXiv preprint arXiv:2109.08238
(2021).

Santhosh K. Ramakrishnan et al. “PONI: Potential Functions for ObjectGoal

Navigation with Interaction-free Learning”. In: Computer Vision and Pattern
Recognition (CVPR), 2022 IEEE Conference on. IEEE. 2022.

https://arxiv.org/abs/2110.00534
https://doi.org/10.18653/v1/2024.naacl-long.195
https://aclanthology.org/2024.naacl-long.195/
https://aclanthology.org/2024.naacl-long.195/

Bibliography 125

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Ram Ramrakhya et al. “Habitat-Web: Learning Embodied Object-Search Strate-
gies from Human Demonstrations at Scale”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 5173-5183.

Raymond Reiter. “The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression.” In: Artificial and
Mathematical Theory of Computation 3 (1991).

Allen Z. Ren et al. “Robots That Ask For Help: Uncertainty Alignment for Large
Language Model Planners”. In: 7th Annual Conference on Robot Learning. 2023.
URL: https://openreview.net/forum?id=4ZK80DNyFXx.

Homero Roman Roman et al. “RMM: A Recursive Mental Model for Dialog
Navigation”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: Findings. 2020. URL: https://arxiv.org/abs/
2005.00728.

Yangjun Ruan et al. “Identifying the Risks of LM Agents with an LM-Emulated
Sandbox”. In: The Twelfth International Conference on Learning Representations.
2024. URL: https://openreview.net/forum?id=GEcwtMk1luA.

Manolis Savva et al. “Habitat: A platform for embodied ai research”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp- 9339-9347.

Manolis Savva et al. “MINOS: Multimodal indoor simulator for navigation in

complex environments”. In: arXiv preprint arXiv:1712.03931 (2017).

Timo Schick et al. “Toolformer: Language models can teach themselves to
use tools”. In: Advances in Neural Information Processing Systems 36 (2023),
pp- 68539-68551.

Timo Schick et al. “Toolformer: Language models can teach themselves to use

tools”. In: Advances in Neural Information Processing Systems 36 (2024).

J A Sethian. “A fast marching level set method for monotonically advancing fronts”.
In: Proceedings of the National Academy of Sciences 93.4 (1996), pp. 1591-1595.
1SSN: 0027-8424. DOI: 10.1073/pnas.93.4.1591. eprint: https://www.pnas.
org/content/93/4/1591.full.pdf. URL: https://www.pnas.org/content/
93/4/1591.

Dhruv Shah, Blazej Osinski, Sergey Levine, et al. “Lim-nav: Robotic navigation
with large pre-trained models of language, vision, and action”. In: Conference on
Robot Learning. PMLR. 2023, pp. 492-504.

https://openreview.net/forum?id=4ZK8ODNyFXx
https://arxiv.org/abs/2005.00728
https://arxiv.org/abs/2005.00728
https://openreview.net/forum?id=GEcwtMk1uA
https://doi.org/10.1073/pnas.93.4.1591
https://www.pnas.org/content/93/4/1591.full.pdf
https://www.pnas.org/content/93/4/1591.full.pdf
https://www.pnas.org/content/93/4/1591
https://www.pnas.org/content/93/4/1591

Bibliography 126

[131]

[132]

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Lanbo She et al. “Back to the Blocks World: Learning New Actions through
Situated Human-Robot Dialogue”. In: Proceedings of the 15th Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIGDIAL). Philadelphia,
PA, U.S.A.: Association for Computational Linguistics, June 2014, pp. 89-97. DOLI:
10.3115/v1/W14-4313. URL: https://aclanthology.org/Wi4-4313.

Noah Shinn et al. “Reflexion: Language agents with verbal reinforcement learning”.

In: Advances in Neural Information Processing Systems 36 (2024).

Mohit Shridhar et al. “ALFRED: A Benchmark for Interpreting Grounded In-
structions for Everyday Tasks”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, pp. 10740-10749.

Mohit Shridhar et al. “ALFWorld: Aligning text and embodied environments for
interactive learning”. In: Proceedings of the International Conference on Learning
Representations (ICLR). 2021.

Ishika Singh et al. “Progprompt: Generating situated robot task plans using
large language models”. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2023, pp. 11523-11530.

Kunal Pratap Singh et al. “Ask4Help: Learning to Leverage an Expert for Em-
bodied Tasks”. In: Advances in Neural Information Processing Systems. Ed. by
Alice H. Oh et al. 2022. URL: https://openreview.net/forum?id=_bqtjfpj8h.

Kunal Pratap Singh et al. “Moca: A modular object-centric approach for interactive
instruction following”. In: arXiv preprint arXiv:2012.03208 (2020).

Noah Snavely, Steven M Seitz, and Richard Szeliski. “Modeling the world from
internet photo collections”. In: International journal of computer vision 80.2
(2008), pp. 189-210.

Chan Hee Song et al. “Llm-planner: Few-shot grounded planning for embodied
agents with large language models”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2023, pp. 2998-3009.

Julian Straub et al. “The Replica dataset: A digital replica of indoor spaces”. In:
arXiv preprint arXiv:1906.05797 (2019).

Alane Suhr et al. “Executing instructions in situated collaborative interactions”.
In: arXiv preprint arXiv:1910.03655 (2019).

Stefanie Tellex et al. “Robots That Use Language”. In: Annual Review of Control,
Robotics, and Autonomous Systems 3.1 (2020), null. DOI: 10. 1146/ annurev-
control-101119-071628. URL: https://doi.org/10.1146/annurev-control-
101119-071628.

Stefanie Tellex et al. “Toward information theoretic human-robot dialog”. In:
Robotics: Science and Systems. 2013.

https://doi.org/10.3115/v1/W14-4313
https://aclanthology.org/W14-4313
https://openreview.net/forum?id=_bqtjfpj8h
https://doi.org/10.1146/annurev-control-101119-071628
https://doi.org/10.1146/annurev-control-101119-071628
https://doi.org/10.1146/annurev-control-101119-071628
https://doi.org/10.1146/annurev-control-101119-071628

Bibliography 127

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

158]

Stefanie Tellex et al. “Understanding natural language commands for robotic
navigation and mobile manipulation”. In: Proceedings of the National Conference
on Artificial Intelligence. 2011.

Jesse Thomason et al. “Vision-and-dialog navigation”. In: Conference on Robot
Learning. PMLR. 2020, pp. 394—406.

Yu Tian et al. “Evil geniuses: Delving into the safety of llm-based agents”. In:
arXiv preprint arXi:2311.11855 (2023).

Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In:
arXiv preprint arXiw:2302.13971 (2023).

Jonathan Uesato et al. Solving math word problems with process- and outcome-
based feedback. 2022. arXiv: 2211.14275 [cs.LG]. URL: https://arxiv.org/
abs/2211.14275.

Athanasios Voulodimos et al. “Deep learning for computer vision: A brief review”.

In: Computational intelligence and neuroscience 2018 ().

Harm de Vries, Dzmitry Bahdanau, and Christopher Manning. “Towards Ecologi-
cally Valid Research on Language User Interfaces”. In: arXiv:2007.14435 (July
2020). URL: https://arxiv.org/abs/2007.14435.

Guanzhi Wang et al. “Voyager: An open-ended embodied agent with large language
models”. In: arXiv preprint arXiv:2305.16291 (2023).

Lei Wang et al. “A survey on large language model based autonomous agents”.
In: arXiv preprint arXiv:2308.11432 (2023).

Peiyi Wang et al. “Math-shepherd: Verify and reinforce llms step-by-step without
human annotations”. In: Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2024, pp. 9426-9439.

Ruocheng Wang et al. “Language-Mediated, Object-Centric Representation Learn-
ing”. In: arXiv preprint arXiv:2012.15814 (2020).

Tianlu Wang et al. Shepherd: A Critic for Language Model Generation. 2023.
arXiv: 2308.04592 [cs.CL]. URL: https://arxiv.org/abs/2308.04592.

Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. “A-fast-rcnn: Hard
positive generation via adversary for object detection”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2017, pp. 2606-2615.

Xin Wang et al. “Reinforced cross-modal matching and self-supervised imita-
tion learning for vision-language navigation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 6629-6638.

Xingyao Wang et al. “Executable code actions elicit better llm agents”. In: arXiv
preprint arXiv:2402.01030 (2024).

https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2007.14435
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2308.04592

Bibliography 128

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

Xingyao Wang et al. OpenHands: An Open Platform for AI Software Developers
as Generalist Agents. 2024. arXiv: 2407.16741 [cs.SE]. URL: https://arxiv.
org/abs/2407.16741.

Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language
models”. In: Advances in Neural Information Processing Systems 35 (2022),
pp- 24824-24837.

Luca Weihs et al. “Visual room rearrangement”. In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2021, pp. 5922-5931.

Sean Welleck et al. “Generating Sequences by Learning to Self-Correct”. In:

International Conference on Learning Representations. 2023.

Erik Wijmans et al. “Dd-ppo: Learning near-perfect pointgoal navigators from
2.5 billion frames”. In: arXiv preprint arXiv:1911.00357 (2019).

Thomas Wolf et al. “Huggingface’s transformers: State-of-the-art natural language
processing”. In: arXiv preprint arXiv:1910.03771 (2019).

Bo Wu et al. “Star: A benchmark for situated reasoning in real-world videos”. In:
Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2). 2021.

Yue Wu et al. “Plan, Eliminate, and Track-Language Models are Good Teachers
for Embodied Agents”. In: arXiv preprint arXiv:2305.02412 (2023).

Yue Wu et al. “SPRING: Studying Papers and Reasoning to play Games”. In:
Advances in Neural Information Processing Systems 36 (2024).

Yueh-Hua Wu et al. “Imitation learning from imperfect demonstration”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 6818-6827.

Fei Xia et al. “Gibson Env: Real-World Perception for Embodied Agents”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,
pp. 9068-9079. DOL: 10.1109/CVPR.2018.00945.

Yuxin Xiao et al. “Uncertainty Quantification with Pre-trained Language Models:
A Large-Scale Empirical Analysis”. In: Conference on Empirical Methods in
Natural Language Processing. 2022. URL: https://api.semanticscholar.org/
CorpusID:247613322.

Annie Xie et al. “When to Ask for Help: Proactive Interventions in Autonomous
Reinforcement Learning”. In: Advances in Neural Information Processing Systems.
Ed. by Alice H. Oh et al. 2022. URL: https://openreview.net/forum?id=
L9EXtg7h6XE.

Yuxi Xie et al. “Self-Evaluation Guided Beam Search for Reasoning”. In: Thirty-
seventh Conference on Neural Information Processing Systems. 2023. URL: https:
//openreview.net/forum?id=Bw82hwg5Q3.

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.org/10.1109/CVPR.2018.00945
https://api.semanticscholar.org/CorpusID:247613322
https://api.semanticscholar.org/CorpusID:247613322
https://openreview.net/forum?id=L9EXtg7h6XE
https://openreview.net/forum?id=L9EXtg7h6XE
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=Bw82hwg5Q3

Bibliography 129

[173] Miao Xiong et al. “Can LLMs Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs”. In: The Twelfth International Conference
on Learning Representations. 2024. URL: https://openreview.net/forum?id=
gjeQKFxFpZ.

[174] Karmesh Yadav et al. “Offline Visual Representation Learning for Embodied
Navigation”. In: arXiv preprint arXiv:2204.13226 (2022).

[175] Brian Yamauchi. “A frontier-based approach for autonomous exploration”. In:
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA’97. Towards New Computational Principles
for Robotics and Automation’. IEEE. 1997, pp. 146-151.

[176] Boling Yang et al. “Benchmarking robot manipulation with the rubik’s cube”. In:
IEEE Robotics and Automation Letters 5.2 (2020), pp. 2094-2099.

[177] Jianwei Yang et al. “Embodied visual recognition”. In: arXiv preprint arXiv:1904.0440/
(2019).

[178] John Yang et al. “SWE-agent: Agent-Computer Interfaces Enable Automated
Software Engineering”. In: The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems. 2024. URL: https://arxiv.org/abs/2405.15793.

[179] Wei Yang et al. “Visual semantic navigation using scene priors”. In: arXiv preprint
arXiv:1810.06543 (2018).

[180] Zonghan Yang et al. “Towards Unified Alignment Between Agents, Humans, and
Environment”. In: arXiv preprint arXiv:2402.07744 (2024).

[181] Shunyu Yao et al. “React: Synergizing reasoning and acting in language models”.

In: arXiv preprint arXiv:2210.03629 (2022).

[182] Shunyu Yao et al. “ReAct: Synergizing Reasoning and Acting in Language Models”.
In: International Conference on Learning Representations (ICLR). 2023.

[183] Shunyu Yao et al. “Tree of thoughts: Deliberate problem solving with large
language models”. In: Advances in Neural Information Processing Systems 36
(2024).

[184] Bangguo Yu, Hamidreza Kasaei, and Ming Cao. “L3MVN: Leveraging Large Lan-
guage Models for Visual Target Navigation”. In: arXiv preprint arXiv:2304.05501
(2023).

[185] Eric Zelikman et al. “STaR: Bootstrapping Reasoning With Reasoning”. In:
Advances in Neural Information Processing Systems. Ed. by Alice H. Oh et al.
2022. URL: https://openreview.net/forum?id=_3ELRdg2sgI.

[186] Yuexiang Zhai et al. “Fine-Tuning Large Vision-Language Models as Decision-
Making Agents via Reinforcement Learning”. In: The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems. 2024. URL: https://openreview.
net/forum?id=nBjmMF2IZU.

https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://arxiv.org/abs/2405.15793
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU

Bibliography 130

187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

198

Kechi Zhang et al. “CodeAgent: Enhancing Code Generation with Tool-Integrated
Agent Systems for Real-World Repo-level Coding Challenges”. In: arXiv preprint
arXiv:2401.07339 (2024).

Michael JQ Zhang and Eunsol Choi. “Clarify When Necessary: Resolving Am-
biguity Through Interaction with LMs”. In: arXiv preprint arXiv:2311.09469
(2023).

Songyuan Zhang et al. “Confidence-Aware Imitation Learning from Demonstra-
tions with Varying Optimality”. In: Advances in Neural Information Processing
Systems 34 (2021).

Yichi Zhang and Joyce Chai. “Hierarchical Task Learning from Language In-
structions with Unified Transformers and Self-Monitoring”. In: arXiv preprint
arXiv:2106.03427 (2021).

Gaoyue Zhou et al. “Train Offline, Test Online: A Real Robot Learning Bench-
mark”. In: arXiv preprint arXiv:2306.00942 (2023).

Gengze Zhou, Yicong Hong, and Qi Wu. “NavGPT: Explicit Reasoning in Vision-
and-Language Navigation with Large Language Models”. In: arXiv preprint
arXiv:2305.16986 (2023).

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. “Navigating the Grey Area:
How Expressions of Uncertainty and Overconfidence Affect Language Models”. In:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 5506-5524. DOI: 10.
18653/v1/2023 . emnlp-main . 335. URL: https://aclanthology . org/2023.
emnlp-main.335/.

Kaiwen Zhou et al. “Esc: Exploration with soft commonsense constraints for
zero-shot object navigation”. In: arXiv preprint arXiv:2301.13166 (2023).

Shuyan Zhou et al. “Webarena: A realistic web environment for building au-
tonomous agents”. In: arXiv preprint arXiv:2307.13854 (2023).

Xingyi Zhou et al. “Detecting twenty-thousand classes using image-level super-
vision”. In: Furopean Conference on Computer Vision. Springer. 2022, pp. 350—
368.

Fengda Zhu et al. “Vision-language navigation with self-supervised auxiliary
reasoning tasks”. In: Proceedings of the IEEE/CVFE Conference on Computer
Viston and Pattern Recognition. 2020, pp. 10012-10022.

Hao Zhu et al. “EXCALIBUR: Encouraging and Evaluating Embodied Explo-
ration”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023, pp. 14931-14942.

https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://aclanthology.org/2023.emnlp-main.335/
https://aclanthology.org/2023.emnlp-main.335/

Bibliography 131

[199] Yuke Zhu et al. “Target-driven visual navigation in indoor scenes using deep

reinforcement learning”. In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE. 2017, pp. 3357-3364.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 FILM: Following Instructions in Language with Modular Methods
	2.1 Introduction
	2.2 Prior Work
	2.3 Task Expxlantion
	2.4 Methods
	2.4.1 Language Processing (LP)
	2.4.2 Semantic Mapping Module
	2.4.3 Semantic Search Policy
	2.4.4 Deterministic Policy

	2.5 Experiments and Results
	2.5.1 Results
	2.5.2 Ablations Studies and Error Analysis
	2.5.3 Effects of the Semantic Search Policy

	2.6 Conclusion and Next Steps

	3 Self-Supervised Object Goal Navigation with In-Situ Finetuning
	3.1 Introduction
	3.2 Prior Work
	3.3 Task Explanation
	3.4 Methods
	3.4.1 Location Consistency for Visual Perception
	3.4.2 A Navigation Policy from Self-Labeled Scenes

	3.5 Experiments and Results
	3.5.1 Real World
	3.5.1.1 Real World ObjectNav
	3.5.1.2 Self-Supervised In-Situ Training of Visual Perception

	3.5.2 Simulation
	3.5.2.1 ObjectNav in simulation
	3.5.2.2 Error Modes
	3.5.2.3 Full. vs Self. Semantic Segmentation

	3.5.3 Full. vs Self. Nav Policy

	3.6 Conclusion and Next Steps

	4 Data and Model challenges in Embodied Dialogue
	4.1 Introduction
	4.2 Piror Work
	4.3 Tasks Explanation
	4.4 Methods
	4.5 Experiments and Results
	4.5.1 Explanation of Metrics
	4.5.2 Challenges in Evaluation
	4.5.3 Challenges in Training

	4.6 Conclusion and Next Steps

	5 Situated Instruction Following
	5.1 Introduction
	5.2 Prior Work
	5.3 Task Expalantion
	5.3.1 Assumptions and Scope
	5.3.2 Tasks
	5.3.3 Dataset Construction

	5.4 Methods
	5.4.1 Reasoner
	5.4.2 Prompter

	5.5 Experiments and Results
	5.5.1 Results
	5.5.2 Ablations and Analysis

	5.6 Conclusion and Next Steps

	6 Training LLM Agents to Request Interventions under Budget Constraints
	6.1 Introduction
	6.2 Related Work
	6.3 Task and Setup
	6.4 Method: Requesting Targeted Interventions
	6.4.1 Method Overview
	6.4.2 Algorithm
	6.4.3 Extension to Multiple Interventions

	6.5 Results
	6.5.1 Main Results
	6.5.2 Analysis

	6.6 Conclusion, Limitations, and Broader Impacts

	7 Conclusions
	7.1 Summary
	7.2 Takeaways
	7.3 Looking Forward

	A Appendix for Chapter 2
	A.1 Task Definition
	A.2 Semantic Mapping Module
	A.3 Semantic Search Policy Module
	A.4 Impact of Grid Size on the Effectiveness of the Semantic Search Policy
	A.5 Details on the Deterministic Policy
	A.6 More Explanations on Table 3
	A.7 Assignments of Rooms into ``Large'' and ``Small'' in Valid Unseen
	A.8 Protocols for Reproducing the Semantic Policy
	A.9 A Language Processing module without the template assumption

	B Appendix for Chapter 4
	B.1 More Discussion of Symbiote
	B.2 How the Statistics of Section 5 were Obtained
	B.3 TEACh Prefiltering

	C Appendix for Chapter 5
	C.1 Task Details
	C.1.1 Task Filtering
	C.1.2 Details on Language Directives

	C.2 Prompt Examples
	C.2.1 Reasoner prompt examples
	C.2.2 Prompter prompt examples

	C.3 Execution Details
	C.3.1 Map Update
	C.3.2 Execution Tools
	C.3.3 Following and Anticipating the Human

	C.4 Detailed Results
	C.4.1 Oracle Baseline
	C.4.2 Full Results with Success Rate

	D Appendix for Chapter 6
	D.1 MCTS Implementation Details
	D.2 Detailed Explanation of Section 5.1
	D.2.1 Explanation of ``Strategy Clash''
	D.2.1.1 Divergent Exploration Strategies
	D.2.1.2 The Single Intervention Convergence

	D.2.2 Explanations of Table 4
	D.2.3 Failure modes of thresholding-based baseline

	D.3 Detailed Derivation of Usage/Policy Iteration
	D.3.1 Part I: Decomposing Value Function into Success and Usage
	D.3.2 Part II: Arriving at Piecewise Definition of Usage
	D.3.3 Part III: Arriving at Optimal Policy and Usage

	D.4 Proof of Convergence
	D.5 Details on Extensions to Multiple Interventions
	D.5.1 Formulation and Reward Regime
	D.5.2 Derivation of Usage/Policy Iteration for Multiple Interventions
	D.5.3 Algorithm

	D.6 Table 3 Results Detail

	Bibliography

