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Abstract

This thesis studies aspects of regularization in a high-dimensional regime in which the feature
size grows proportionally with the sample size. Several commonly used prediction procedures,
such as ridge and lasso, exhibit peculiar risk behavior in this regime: no explicit regularization
can be optimal for (random-X) test error, the risk can be non-monotonic in the sample size,
and the risk curve can exhibit double or multiple descents in the feature size, treated as a
complexity measure. In this thesis, we present results on cross-validation, risk monotonization,
and model complexity along these angles.

Cross-validation. We show strong uniform consistency of generalized and leave-one-out
cross-validation (GCV and LOOCV) for estimating the squared test error of ridge regression.
Consequently, we show that ridge tuning via GCV or LOOCV almost surely delivers the optimal
regularization, be it positive, negative, or zero. Furthermore, by suitably extending GCV and
LOOCV, we construct consistent estimators of the entire test error distribution and a broad class
of its linear and nonlinear functionals. Our results require only minimal moment assumptions
on the data distribution and are model-agnostic.

Risk monotonization. We develop a framework that modifies any generic prediction proce-
dure such that its risk is asymptotically monotonic in the sample size. As part of our framework,
we propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging
and boosting, respectively, and show that under very mild assumptions they achieve monotonic
asymptotic risk behavior. Our results are applicable to a wide class of prediction procedures
and loss functions, and do not assume a well-specified model. We exemplify our framework with
concrete analyses of the ridgeless and lassoless procedures.

Model complexity. We revisit model complexity through the lens of model optimism and
degrees of freedom. By re-interpreting degrees of freedom in the fixed-X prediction setting, we
extend this concept to the random-X prediction setting. We then define a family of complexity
measures, whose two extreme ends we call the emergent and intrinsic degrees of freedom of a
prediction model. Through linear and nonlinear example models, we illustrate how the proposed
measures may prove useful to align the subtle multiple descents behavior with the typical single
descent behavior observed in classical statistical prediction.

Key words: Proportional asymptotics, overparameterized learning, random matrix theory,
deterministic equivalents, asymptotic equivalents, ridge regression, lasso, minimum ℓ2-, ℓ1-
norm interpolators, double descent, optimal regularization, risk monotonicity, cross-validation,
bagging, boosting, divide-and-conquer, model optimism, degrees of freedom, model complexity.
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Chapter 0

Overview

Modern machine learning models employ a large number of parameters relative to the number of observations.
Such overparameterized models typically have the capacity to (nearly) interpolate noisy training data.
Despite fitting the models until the training error is nearly zero, they often generalize well on unseen test
data in practice (Zhang et al., 2017, 2021). The striking and widespread successes of interpolating models
has been a topic of growing interest in the recent mathematical statistics literature (see, e.g., Belkin et al.,
2019a, 2018a, 2019b; Bartlett et al., 2020), as it seemingly defies the widely-accepted statistical wisdom that
interpolation will generally lead to over-fitting and poor generalization (Hastie et al., 2009, Figure 2.11). A
body of recent work has both empirically and theoretically investigated this surprising phenomenon for
different models, including linear regression (Hastie et al., 2022; Muthukumar et al., 2020; Belkin et al.,
2020; Bartlett et al., 2020), kernel regression (Liang and Rakhlin, 2020), random features regression (Mei
and Montanari, 2022), logistic regression (Deng et al., 2022), nearest neighbor methods (Xing et al., 2018,
2022), boosting algorithms (Liang and Sur, 2020a), among others. See the survey papers by Bartlett et al.
(2021), Belkin (2021), and Dar et al. (2021) for more related references on overparameterized learning.

In this thesis, we take an “operational” point of view on generalization in overparameterized learning.
Specifically, we study three aspects related to regularization in overparameterized models: cross-validation,
risk monotonization, and model complexity. Our focus on these aspects is partly motivated by the following
three broad questions:

(Q1) Cross-validation. Cross-validation is a widely used method for assessing the generalization perfor-
mance of a learning method. The first question this thesis asks is whether cross-validation still “works”
in the overparameterized regime, especially when the optimal regularization and the train error can
be zero. Apart from understanding the theoretical properties of cross-validation in overparameterized
regime, this is of interest as (near) interpolators can be optimal for (random-X) test error under
certain data geometries.

(Q2) Risk monotonization. The generalization error of overparameterized models can be non-monotonic
in the sample size, suggesting that increasing the sample size might actually yield a worse generalization
error. The second question this thesis asks is whether it is possible to modify any given prediction
procedure to achieve a monotonic risk behavior. This is of interest because it is highly desirable
to rely on prediction procedures that are guaranteed to deliver a risk profile that is monotonically
decreasing in the sample size.

(Q3) Model complexity. Overparameterized models often exhibit the so-called “double/multiple descent”
behavior in the generalization error in the raw number of model parameters. The third question this
thesis asks is whether there is a more principled measure of model complexity for overparameterized
models. Besides comparing complexity of different interpolating models, this is of interest to attempt
to “reconcile” the multiple descents behavior in such models with the common single descent behavior
in classical learning.

1



The thesis provides results related to (Q1)–(Q3). We summarize the main highlights below.

(A1) In Chapter 1, we examine generalized and leave-one-out cross-validation for ridge regression in a
proportional asymptotic framework where the dimension of the feature space grows proportionally
with the number of observations. Given i.i.d. samples from a linear model with an arbitrary feature
covariance and a signal vector that is bounded in ℓ2 norm, we show that generalized cross-validation
for ridge regression converges almost surely to the expected out-of-sample prediction error, uniformly
over a range of ridge regularization parameters that includes zero (and even negative values). We
prove the analogous result for leave-one-out cross-validation. As a consequence, we show that ridge
tuning via minimization of generalized or leave-one-out cross-validation asymptotically almost surely
delivers the optimal level of regularization for predictive accuracy, whether it be positive, negative,
or zero. In Chapter 2, we study the problem of estimating the distribution of the out-of-sample
prediction error associated with ridge regression. We show that both generalized and leave-one-out
cross-validation (GCV and LOOCV) for ridge regression can be suitably extended to estimate the full
error distribution. This is still possible in a high-dimensional setting where the ridge regularization
parameter is zero. In an asymptotic framework in which the feature dimension and sample size
grow proportionally, we prove that almost surely, with respect to the training data, our estimators
(extensions of GCV and LOOCV) converge weakly to the true out-of-sample error distribution. This
result requires mild assumptions on the response and feature distributions. We also establish a more
general result that allows us to estimate certain functionals of the error distribution, both linear and
nonlinear. This yields various applications, including consistent estimation of the quantiles of the
out-of-sample error distribution, which gives rise to prediction intervals with asymptotically exact
coverage conditional on the training data.

(A2) In Chapter 3, we develop a general framework for risk monotonization based on cross-validation that
takes as input a generic prediction procedure and returns a modified procedure whose out-of-sample
prediction risk is, asymptotically, monotonic in the limiting aspect ratio. As part of our framework,
we propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and
boosting, respectively, and show that, under very mild assumptions, they provably achieve monotonic
asymptotic risk behavior. Our results are applicable to a broad variety of prediction procedures and
loss functions, and do not require a well-specified (parametric) model. We exemplify our framework
with concrete analyses of the minimum ℓ2, ℓ1-norm least squares prediction procedures. As one of
the ingredients in our analysis, we also derive novel additive and multiplicative forms of oracle risk
inequalities for split cross-validation that are of independent interest. In Chapter 4, we study the
prediction risk of variants of bagged predictors in the proportional asymptotics regime, in which the
ratio of the number of features to the number of observations converges to a constant. Specifically,
we propose a general strategy to analyze prediction risk under squared error loss of bagged predictors
using classical results on simple random sampling. Specializing the strategy, we derive the exact
asymptotic risk of the bagged ridge and ridgeless predictors with an arbitrary number of bags under a
well-specified linear model with arbitrary feature covariance matrices and signal vectors. Furthermore,
we prescribe a generic cross-validation procedure to select the optimal subsample size for bagging
and discuss its utility to mitigate the non-monotonic behavior of the limiting risk in the sample size
(i.e., double or multiple descents). In demonstrating the proposed procedure for bagged ridge and
ridgeless predictors, we thoroughly investigate oracle properties of the optimal subsample size, and
provide an in-depth comparison between different bagging variants.

(A3) In Chapter 5, we revisit model complexity through the lens of model optimism and degrees of freedom.
In particular, we first re-interpret degrees of freedom (a classical notion of complexity in statistics) in
the fixed-X prediction setting, which allows us to extend this concept to the random-X prediction
setting. We then define a family of complexity measures, whose two extreme ends we call the emergent
and intrinsic degrees of freedom of a prediction model. We show the utility of our proposed measures
through several example models, both linear and nonlinear, and illustrate how the proposed measures
may prove useful to align the subtle multiple descents behavior in modern machine learning with the
typical single descent behavior observed in traditional statistical prediction.

2



A word on organization and notation: Each chapter in the thesis is self-contained and can be read
independently. The notation for each chapter is also self-contained. As a result, there may be some
repetition in the definitions. The overall dissertation is an essuni1 of the following (some finished, some
ongoing) works of the author on the theme of this thesis, in primary capacity:

(W1) Uniform consistency of cross-validation estimators for high-dimensional ridge regression by Pratik
Patil, Yuting Wei, Alessandro Rinaldo, Ryan J. Tibshirani.

(W2) Estimating functionals of the out-of-sample error distribution in high-dimensional ridge regression by
Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani.

(W3) Mitigating multiple descents: A model-agnostic framework for risk monotonization by Pratik Patil,
Arun K. Kuchibhotla, Yuting Wei, Alessandro Rinaldo.

(W4) Bagging in overparameterized learning: Risk characterization and risk monotonization by Pratik
Patil, Jin-Hong Du, Arun K. Kuchibhotla.

(W5) Revisiting model complexity in the wake of overparameterized learning by Pratik Patil, Ryan J.
Tibshirani.

1This stands for essential union. And before you start googling, no, this is not a standard term. It is an attempt at some
comedic relief through mathematical humor early on before we get serious from this point on, much to the author’s dislike.
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Chapter 1

Uniform consistency of
cross-validation estimators

1.1 Introduction
Fitting high-dimensional statistical models typically requires some form of regularization, both for com-
putational and statistical reasons. For optimization-based models, this can be achieved by adding to
the data fitting objective function a tunable regularization term. The optimal level of regularization
usually depends on unknown characteristics of the data generating distribution. In practice, one performs
regularization tuning based on the observed data. Proper calibration of regularization can significantly
affect the performance of the fitted model, and consequently proper data-dependent tuning is one of the
core tasks in statistical learning.

Cross-validation (e.g., Allen, 1974; Stone, 1974; Geisser, 1975) is a widely used method for regularization
tuning. While it has many variants, the most common variant is arguably k-fold cross-validation (e.g.,
Hastie et al., 2009; Györfi et al., 2006). Here we split the data into k “folds”, leave out the first fold for
model fitting so that we can use it to assess the out-of-sample performance of the fitted model, then we
leave out the second fold, and so on. By aggregating the errors made across the k folds, we produce a final
estimate of the expected out-of-sample error profile as a function of regularization level, and select the
tuned regularization level by minimizing the cross-validated error profile.

While a typical choice of k is 5 or 10, such a choice of can suffer from high bias in high-dimensional
problems. Setting k = n, the number of observations, leads to a variant called leave-one-out cross-validation
(LOOCV). This alleviates the bias issues but it is computationally expensive in general, requiring n model
fits. Despite recent important advances in the theoretical study of LOOCV and its various approximations
in high dimensions (including Kale et al., 2011; Kumar et al., 2013; Meijer and Goeman, 2013; Obuchi
and Kabashima, 2016; Miolane and Montanari, 2021; Wang et al., 2018a; Xu et al., 2019; Stephenson
and Broderick, 2020a; Wilson et al., 2020; Celentano et al., 2020), the theoretical understanding of these
methods, especially statistical properties of the tuned estimators under general distributional assumptions,
is still incomplete.

In this work, we focus on ridge regression (Hoerl and Kennard, 1970b), a widely-used estimator in
statistics that entails fitting linear regression with ℓ2 regularization. We consider two commonly used
cross-validation procedures, LOOCV and an approximation to LOOCV called generalized cross-validation
(GCV) (Golub et al., 1979; Wahba, 1980, 1990). For ridge regression, both procedures can be computed
efficiently—in a manner that requires no model refitting whatsoever—and are popular choices in practice.
Our main goal is to investigate the theoretical behavior of ridge regression when tuned using one of these
cross-validation methods.

For our theoretical analysis, we adopt a proportional asymptotic framework in which the number of
features grows linearly with the number of observations (that is, their ratio converges to a constant). We
show that both the GCV and LOOCV error curves, as functions of the ridge regularization parameter,

5
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Figure 1.1: Comparison of the GCV and LOOCV estimates of the expected out-of-sample prediction error
for ridge regression as a function of the regularization parameter λ. We consider an overparametrized
regime where the number of observations is n = 6000 and the number of features is p = 12000. The features
are random with a ρ-autoregressive covariance Σ (such that Σij = ρ|i−j| for all i, j) with ρ = 0.25. The
response is generated from a linear model with a nonrandom signal vector β0. In the left figure, the signal
is aligned with the eigenvector corresponding to the largest eigenvalue of Σ, while in the right figure, the
signal is aligned with the eigenvector corresponding to the smallest eigenvalue. The effective signal-to-noise
ratio is set to βT0 Σβ0 = 60 to illustrate that, in the overparametrized regime, the optimal regularization
could be negative or positive depending on how the signal aligns with the covariance eigenstructure. Note
that in both the cases, the GCV and LOOCV curves track the prediction error over the whole range of λ
very closely. The optimal regularization is recovered very well by the GCV and LOOCV estimates in both
cases.

converge uniformly almost surely to the expected out-of-sample prediction error curve. Our results hold
under weaker assumptions on the data generating distribution compared to others in the literature thus far,
and provide a rigorous theoretical justification for the use of both GCV and LOOCV for regularization
tuning for ridge regression in high dimensions. Below we summarize our main contributions, and illustrate
key points with a numerical example in Figure 1.1.

1. GCV pointwise convergence. Given n i.i.d. samples from a standard linear model y = xTβ0 + ε,
where x is p-dimensional feature such that x = Σ1/2z for a covariance matrix Σ, and z contains
i.i.d. entries, we establish limiting equivalence of the GCV estimator and the expected out-of-sample
prediction error for ridge regression, under proportional asymptotics (p/n converging to a constant).
This result holds for an arbitrary sequence of covariance matrices Σ with eigenvalues bounded away
from zero and infinity, and an arbitrary sequence of signal vectors β0 with bounded ℓ2 norm.

2. GCV uniform convergence. Moreover, we show that this GCV convergence holds uniformly over
compact intervals of the regularization parameter λ that include zero and negative regularization.

3. LOOCV convergences. We establish the analogous properties (pointwise and uniform convergence)
for the LOOCV estimator by relating it to GCV.

4. Optimal tuning. As a direct consequence of uniform convergence, we demonstrate that the level
of regularization chosen based on either of the GCV or LOOCV estimators almost surely delivers a
limiting prediction accuracy that an oracle with full knowledge of the out-of-sample prediction error
curve would achieve. Thus, in this sense, both methods are asymptotically optimal for tuning the
prediction error of ridge regression.
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1.2 Related work
Ridge error analysis. The predictive performance of ridge regression has been studied comprehensively
in various settings, both asymptotic and non-asymptotic; see, e.g., Hsu et al. (2012); Karoui (2013); Dicker
(2016); Dobriban and Wager (2018). More recently, there has been a surge of interest in understanding
its prediction error driven by the successes of interpolating models in high dimensions; e.g., Hastie et al.
(2022); Mei and Montanari (2022); Wu and Xu (2020); Richards et al. (2020); Tsigler and Bartlett (2020).
Interestingly, Wu and Xu (2020); Richards et al. (2020) study the nature of optimal regularization and
provide conditions on the feature covariance and signal structure that result in a positive or negative level
of optimal regularization.

Ridge cross-validation. In the low-dimensional setting, the consistency of LOOCV and GCV for ridge
regression error estimation and regularization tuning has been established in Stone (1974, 1977); Craven
and Wahba (1979); Li (1985, 1986, 1987); Dudoit and van der Laan (2005), among others. More recently,
statistical and computational aspects of cross-validation for regularized estimators in high dimensions have
also been thoroughly studied; see, e.g., Beirami et al. (2017); Rad and Maleki (2020); Wang et al. (2018a);
Xu et al. (2019); Rad et al. (2020); Austern and Zhou (2020).

Most similar to our work is probably the result of Hastie et al. (2022) on the asymptotic optimality of
LOOCV and GCV tuning for ridge regression in high dimensions. These authors also adopt a proportional
asymptotic model, but use stronger assumptions on the data generating distribution: they assume Σ = I
(independent features) and that the signal β0 is drawn from a spherical prior (taking a Bayesian view).
Under these conditions, the optimal level of regularization is always positive. We significantly generalize the
scope of this analysis by allowing for arbitrary Σ and nonrandom β0, in which case the optimal regularization
level can be positive, negative, or zero.

Our work. We highlight the main contributions of our work below.

• Analyzing differences. We do not seek to characterize the limiting risk (we will use the terms risk
and prediction error interchangeably), but instead, we analyze the limiting differences between the
LOOCV and GCV estimators and the risk, and show that these differences tend to zero. As such, we
are able to work in a general regime where it may not even be possible to precisely characterize the
limiting risk in the first place.

• Conditional statements. Our theory is all conditional on the training data {(xi, yi)}ni=1 (results
hold almost surely with respect to the draws from the training distribution). Most other papers
provide cross-validation results that hold in an integrated sense over the training data. Our conditional
setup allows for stronger statements about tuning based on the observed data rather than in an
average sense.

• Direct analysis of GCV. Most previous papers rely on the stability of estimator in question to
establish the properties of LOOCV, while we directly tackle the explicit forms of prediction error and
GCV, and derive a crucial empirical equivalence lemma to first tie the risk to GCV, and then GCV
to LOOCV.

• Uniform convergence. To analyze the cross-validation-tuned risks, we establish uniform convergence
results, by leveraging the explicit form of the ridge estimator. This aspect has not been focused on in
previous cross-validation work to the best of our knowledge, except Hastie et al. (2022).

• Proof technique. To reiterate what was mentioned earlier, in comparison to Hastie et al. (2022)
(who take Σ = I and β0 drawn from a prior), we allow Σ and β0 to be essentially arbitrary, only
requiring Σ to have bounded eigenvalues and β0 to have bounded ℓ2 norm. While the flavor of
final results is similar to those in Hastie et al. (2022), the proof techniques are different. We isolate
the individual equivalences for the bias- and variance-like components in the GCV and LOOCV
estimators, which helps shed light into the structure underlying the overall combined equivalence.
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Further, we derive (and rely extensively on) an equivalence that relates certain functionals involving
the sample covariance Σ̂ and population covariance Σ, in a proportional asymptotic setup. This is in
a sense much simpler than the approach taken in Hastie et al. (2022), which relies on equating certain
limiting formulae that arise from studying GCV, LOOCV, and ridge risk (equating such formulae
involves difficult and unintuitive manipulations with Stieltjes transforms).

• Result utility. Recently, it has been observed that models with very small or even zero regularization
can generalize well in certain overparametrized settings (e.g., Zhang et al., 2017; Belkin et al., 2019a).
This is also the case with ridge regression where the optimal level of regularization can be zero or even
negative (Kobak et al., 2020; Richards et al., 2020; Wu and Xu, 2020). Certain nontrivial interactions
between the properties of the signal and feature distributions is what leads to these recent surprises.
Our framework automatically accommodates these cases and affirms that that GCV and LOOCV
can indeed pick risk-optimal interpolators when they need to.

1.3 Problem setup
We consider the standard regression setting in which we observe n i.i.d. pairs {(xi, yi)}ni=1, where xi ∈ Rp is
the ith feature vector and yi ∈ R is the corresponding response variable. In matrix notation, we denote by
X ∈ Rn×p the feature matrix whose ith row is xTi and by y ∈ Rn the response vector whose ith entry is yi.

Extended ridge regression. For a regularization parameter λ > 0, the ridge regression estimate β̂λ ∈ Rp
based on features X and response y can be formulated as the solution to the convex optimization problem

minimize
β∈p

1
n

∥y −Xβ∥2
2 + λ∥β∥2

2.

The can be explicitly written as
β̂λ = (XTX/n+ λIp)−1XT y/n,

where Ip ∈ Rp×p is the identity matrix. To allow for an extended range of λ (including λ = 0), we simply
define the extended ridge regression estimate as

β̂λ = (XTX/n+ λIp)+XT y/n. (1.1)

Here A+ denotes the Moore-Penrose pseudoinverse of a matrix A. Note this definition allows for any λ ∈ R.
For λ > 0, there is no difference between (1.1) and the usual definition of ridge (second to last display). For
λ = 0, we can see that (1.1) reduces to the least squares solution that lies in the row space of X, and hence
has minimum ℓ2 norm among all least squares solutions. Of particular interest is when rank(X) = n ≤ p:
then it reduces to the least squares solution that interpolates the data (Xβ̂λ = y), and has minimum ℓ2
norm among all such interpolators.

Prediction error. The expected out-of-sample prediction error (or risk) of the ridge model β̂λ is defined
as

Err(β̂λ) = Ex0,y0

[
(xT0 β̂λ − y0)2 | X, y

]
. (1.2)

Here the expectation is taken with respect to the distribution of a new test pair (x0, y0) sampled from the
same distribution as the training data {(xi, yi)}ni=1, and independent of the training data. The prediction
error is a random variable (it is conditional on—and thus a function of—X, y) that quantifies how well a
given fitted ridge model β̂λ performs in the task of predicting the response.

The prediction error as a function of the regularization parameter λ yields an error curve that we denote
by

err(λ) = Err(β̂λ).

As far as we are concerned in this work, the optimal regularization parameter is defined as the value that
minimizes the risk curve err(λ). This is the value of λ that an oracle with knowledge of the risk curve would
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pick. We seek to construct a faithful estimate of the risk curve err(λ) based on the available data X and y,
uniformly over λ, in order to select the regularization level that leads to prediction error close to that of
the oracle prediction error. To do so, we will consider LOOCV and GCV whose definitions we recall next.

LOOCV and GCV. The LOOCV estimate for the risk of a given ridge model β̂λ is defined as

loo(λ) = 1
n

n∑
i=1

(
yi − xTi β̂−i,λ

)2
,

where β̂−i,λ = (XT
−iX−i/n+ λIp)+XT

−iy−i/n denotes the ridge estimate with the ith observation pair (xi, yi)
excluded from the training set. Computing the LOOCV estimate with this definition requires (re)fitting
ridge model n times. Recall that ridge regression is a linear smoother, Xβ̂λ = Lλ y, where the smoothing
matrix Lλ ∈ Rn×n is

Lλ = X(XTX/n+ λIp)+XT /n. (1.3)

Fortunately, there is a so-called shortcut formula for the LOOCV estimate (see, e.g., chapter 7 of Hastie
et al., 2009):

loo(λ) = 1
n

n∑
i=1

(
yi − xTi β̂λ
1 − [Lλ]ii

)2
, (1.4)

where [Lλ]ii denotes the ith diagonal element of Lλ.
The GCV estimate is a further convenient approximation to the LOOCV shortcut formula (1.4) given

by

gcv(λ) = 1
n

n∑
i=1

(
yi − xTi β̂λ

1 − tr[Lλ]/n

)2
, (1.5)

where tr[A] denotes the trace of a matrix A.
Caution needs to be taken when the smoothing matrix Lλ reduces to the identity matrix In, or in other

words, ridge regression is an interpolator, with Xβ̂λ = y. This happens when λ = 0 and X has rank n. In
this case, both the numerators and denominators of loo(λ) and gcv(λ) are 0, however, we can define the
corresponding LOOCV and GCV estimates as their respective limits as λ → 0; see Hastie et al. (2022) for
details.

Goal of this work. Our main goal is to analyze the differences between the cross-validation estimators
of risk and the risk itself, loo(λ) − err(λ) and gcv(λ) − err(λ). Let λ⋆I denote the optimal oracle ride tuning
parameter that minimizes err(λ) over an interval I ⊆ R,

λ⋆I = arg min
λ∈I

err(λ).

(If there are multiple minimizers, simply let λ⋆I denote one of them.) Similarly, let λ̂gcv
I and λ̂loo

I be the
corresponding tuning parameters that minimize GCV and LOOCV over λ ∈ I. We seek to compare the
prediction errors of the models tuned using GCV and LOOCV, Err(β̂

λ̂gcv
I

) and Err(β̂
λ̂loo

I

), against the
prediction error under oracle tuning, Err(β̂λ⋆

I
).

1.4 Main results
In this section, we state and discuss our main results. We first list the required assumptions in Section 1.4.1.
In Section 1.4.2, we state the limiting equivalence between the GCV estimator and prediction risk, followed
by the limiting equivalence between the LOOCV and GCV estimators in Section 1.4.3.
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1.4.1 Assumptions
We begin by stating the assumptions we impose on the structure of response and feature distributions.

Assumption 1.1 (Response distribution). There exists a signal vector β0 ∈ Rp such that y = Xβ0 + ε,
where the noise vector ε = (ε1, . . . , εn) ∈ Rn is independent of X, and its components are i.i.d. with mean
0, variance σ2, and finite 4 + η moment for some η > 0.

Assumption 1.2 (Feature distribution). The feature vectors (rows of X) can be decomposed as x = Σ1/2z,
where Σ ∈ Rp×p is a deterministic positive definite matrix, and z ∈ Rp is a random vector whose components
are i.i.d. with mean zero 0, variance 1, and finite 4 + η moment for some η > 0.

We consider a proportional asymptotic framework in which the number of features p grows with the
number of observations n in such a way that their ratio p/n approaches a constant γ ∈ (0,∞). Accordingly,
in our asymptotic analysis, we must deal with a sequence of feature covariance matrices Σ and signal
vectors β0. (For ease of readability, we do not make the dependence of these quantities and many others
on p explicit in our notation.) We make the following assumptions on the eigenvalues of Σ and the signal
energy.

Assumption 1.3 (Extreme eigenvalues of Σ). The maximum and minimum eigenvalues of Σ are upper
and lower bounded by constants rmax < ∞ and rmin > 0, respectively, independent of p.

The lower bound rmin on the minimal eigenvalue of Σ will determine, asymptotically, the smallest possible
value of the regularization parameter for which our results hold. We denote it by λmin = −(√γ − 1)2rmin.

Assumption 1.4 (Signal energy). The signal energy ∥β0∥2
2 is upper bounded by a constant τ < ∞

independent of p.

We note that it should be possible to relax the assumptions on the maximum and minimum eigenvalues
of Σ, to allow a certain fraction of eigenvalues to diverge and others to accumulate near zero. We leave
such an extension to future work.

1.4.2 GCV versus prediction error
We are ready to state our first result comparing the GCV estimator to prediction error of ridge regression.

Theorem 1.4.1 (GCV equals prediction error in limit). Under Assumptions 1.1 to 1.4, for every λ ∈
(λmin,∞), it holds that

gcv(λ) − err(λ) a.s.−−→ 0
as n, p → ∞ with p/n → γ ∈ (0,∞). Furthermore, the convergence is uniform in λ over compact subintervals
I ⊆ (λmin,∞); consequently, for any such interval I,

Err(β̂
λ̂gcv

I

) − Err(β̂λ⋆
I
) a.s.−−→ 0,

where λ̂gcv
I and λ⋆I are the corresponding optimal GCV and prediction error tuning parameters, respectively.

We note that in this and in all the other asymptotic statements in this work, the almost sure qualification
refers to the randomness in both X and y.

Range of λ. The lower limit λmin in Theorem 1.4.1 is used to ensure that the resulting smoothing matrix
Lλ stays positive semidefinite; this is simply a function of the behavior of the minimum non-zero eigenvalue
of the sample covariance matrix Σ̂ (see Bai and Silverstein, 1998).

Note that this range of λ allows for potentially negative regularization (when γ ̸= 1), including zero; the
latter case, in particular, results in the least squares interpolator when p > n. The fact that GCV works
in this case is interesting because both the numerator and denominator in the expression (1.5) for gcv(λ)
are 0—implying the particular form of the ridge estimator somehow preserves the information about the
predictive performance in the GCV limit even when the training error is 0.
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The statement in Theorem 1.4.1 does not cover the behavior of GCV at the endpoints λ = λmin and
λ → ∞. In fact, it is easy to check that the limiting behavior of GCV and prediction error matches at
these endpoints as well. In particular, under the same assumptions as the theorem, if rmin is the limit
inferior of minimum eigenvalues of the Σ sequence, then indeed both

gcv(λmin) → ∞ and err(λmin) → ∞

as n, p → ∞ with p/n → γ. Similarly, both

gcv(λ) → c2 and err(λ) → c2

as λ → ∞ and n, p → ∞ with p/n → γ, where c2 = E[y2
0 ] is the prediction error of the null estimator. In

this regard, the pointwise equivalence between GCV and prediction error extends to the entire range of λ.

1.4.3 LOOCV versus GCV
As a byproduct of our analysis, we establish a limiting equivalence between the LOOCV and GCV estimators.
This implies a limiting equivalence between LOOCV and prediction error.

Theorem 1.4.2 (LOOCV equals GCV in limit). If the components of the response vector y ∈ Rn have
mean zero and finite second moment, and Assumptions 1.2 to 1.3 hold, then for every λ ∈ (λmin,∞),

loo(λ) − gcv(λ) a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞). Furthermore, the convergence is uniform in λ over compact subintervals
I ⊆ (λmin,∞).

It is worth pointing out that, compared to Theorem 1.4.1, the last guarantee only requires that the
response variables have a finite second moment. In particular, it does not postulate a linear model. So the
equivalence between the GCV and LOOCV estimators holds even when the model is misspecified.

In general, the analysis of LOOCV is challenging because of complex dependencies between its summands.
Fortunately, for ridge regression, the equivalent shortcut expression given in (1.4) for the LOOCV estimate
simplifies such dependence. Unlike GCV in (1.5), which weights training errors by 1− tr[Lλ]/n, the shortcut
expression for LOOCV weights the ith training error by 1 − [Lλ]ii. Theorem 1.4.1 effectively shows that this
different reweighting does not affect the limiting behavior, providing a way to directly tie GCV to LOOCV.

An important consequence of the last theorem is the following.

Corollary 1.4.3 (LOOCV equals prediction error in limit). Under the assumptions as Theorem 1.4.1, the
same results hold but for LOOCV in place of GCV.

(The same remarks about the range of λ that were made following the GCV theorem also apply here.)
In light of this corollary, we conclude that both the GCV and the LOOCV estimators are uniformly

close to the true risk in the limit. Thus regularization tuning using either method will be asymptotically
optimal for ridge regression.

1.5 Proof outlines
In this section, we outline the main ideas behind the proofs of Theorem 1.4.1 and Theorem 1.4.2. The
complete proofs are provided in the supplement.

1.5.1 GCV versus prediction error
The proof of Theorem 1.4.2 involves two steps. In the first step, we decompose both the prediction error
and the GCV estimator into asymptotic bias- and variance-like components as summarized in Lemma 1.5.1
and Lemma 1.5.2. In the second step, we establish limiting equivalences for both the bias and variance
components as summarized in Lemma 1.5.3 and Lemma 1.5.4. The key reason why the limiting bias-variance
equivalences hold is a certain property obeyed by the denominator of GCV as elucidated in Lemma 1.5.5.
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Prediction error decomposition. We begin with a familiar asymptotic bias-variance decomposition
for the prediction risk. For convenience, let Σ̂ = XTX/n denote the sample covariance matrix. Also, define
bias- and variance-like components as follows:

errb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Ip − Σ̂(Σ̂ + λIp)+)β0,

errv(λ) = εT√
n

(
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT

n

)
ε√
n

+ σ2.

The decomposition of the prediction error can now be summarized as follows.

Lemma 1.5.1 (Error bias-variance decomposition). Under Assumptions 1.1 to 1.4, for every λ ∈ (λmin,∞),

err(λ) − errb(λ) − errv(λ) a.s.−−→ 0

as n, p → ∞ and n/p → γ ∈ (0,∞).

GCV decomposition. We decompose GCV into terms that mimic the bias- and variance-like terms in
the decomposition for the risk. For λ ̸= 0, define GCV bias- and variance-like components as follows:

gcvb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)β0,

gcvv(λ) = εT√
n

(
In − X(Σ̂ + λIp)+XT

n

)2
ε√
n
.

Additionally, write the GCV denominator as:

gcvd(λ) =
(
1 − tr[Σ̂(Σ̂ + λIp)+]/n

)2
.

When λ = 0, the corresponding quantities after taking the limit λ → 0 take the form:

gcvb(0) = βT0 Σ̂+β0,

gcvv(0) = εT√
n

(
Σ̂+)2 ε√

n
,

gcvd(0) =
(

tr[Σ̂+]/n
)2
.

(We remark that the limiting expressions for the bias- and variance-like components and the denominator
for the λ = 0 case can alternately be written in terms of the gram matrix XXT /n. The representation in
terms of the sample covariance matrix Σ̂ is for consistency with the λ ̸= 0 case.)

Next we establish the decomposition of GCV into bias- and variance-like quantities.

Lemma 1.5.2 (GCV bias-variance decomposition). Under Assumptions 1.1 to 1.4, for every λ ∈ (λmin,∞),

gcv(λ) − gcvb(λ) + gcvv(λ)
gcvd(λ)

a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞).

Bias-variance equivalences. The two bias terms errb(λ) and gcvb(λ) differ in the sense that the latter
has the unknown Σ replaced by its natural plug-in estimator Σ̂ and a rescaling by the denominator gcvd(λ).
The difference between the variance terms is analogous, albeit slightly more involved. For both, the
denominator adjustment, which can be thought of as a correction for optimism in the training error by the
number of effective degrees of freedom, turns out to be critical. Indeed, it is only through this normalization
that gcvb(λ) and gcvv(λ) become consistent estimators of their population counterparts, as summarized
next and illustrated in Figure 1.2.
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Figure 1.2: Comparison of the bias and variance decompositions of the GCV estimate and the prediction
error. Similar to Figure 1.1, the features are random from a ρ-autoregressive covariance matrix Σ with
ρ = 0.25. The response is generated from a linear model where the signal is nonrandom and aligned
with the principal eigenvector of Σ. The effective signal-to-noise ratio is βT0 Σβ0 = 25. The left figure
illustrates an underparametrized regime (with n = 6000 and p = 3000 such that γ = 0.5) while the right
illustrates an overparametrized regime (with n = 6000 and p = 12000 such that γ = 2). In both cases,
the bias-variance-like components of the GCV risk estimate track the bias-variance components in the
prediction risk over the entire range of λ very well. In the underparametrized regime, the bias of the
prediction risk is 0 at λ = 0 and increases on either sides when λ ≠ 0, while the variance always decreases
as λ increases (from the most negative allowed λ), resulting in a positive optimal regularization. On the
other hand, in the overparametrized regime, the bias is no longer minimized at λ = 0, but at a negative λ,
while the variance is again a decreasing function of λ. Since the bias dominates the total prediction risk, it
results in negative optimal regularization.

Lemma 1.5.3 (Bias equivalence). Under Assumptions 1.2 to 1.4, for λ ∈ (λmin,∞),

errb(λ) − gcvb(λ)
gcvd(λ)

a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞).

Lemma 1.5.4 (Variance equivalence). Under Assumptions 1.1 to 1.3, for λ ∈ (λmin,∞),

errv(λ) − gcvv(λ)
gcvd(λ)

a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞).

Basic GCV equivalence. At the heart of why the rescaling in the GCV bias and variance-like terms
yields consistency is a certain asymptotic equivalence of random matrices as summarized below.

Lemma 1.5.5 (Basic GCV equivalence). Under Assumption 1.2 and Assumption 1.3, for any sequence of
matrices Bp ∈ Rp×p that are bounded in trace norm (independent of p), and for λ ∈ (λmin,∞) \ {0}, it
holds that

tr
[
Bp
(
Ip − Σ̂(Σ̂ + λIp)+)Σ]−

tr
[
Bp
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂]

1 − tr[(Σ̂ + λIp)+Σ̂]/n
a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞). When λ = 0,

tr
[
Bp(Ip − Σ̂Σ̂+)Σ

]
−

tr
[
BpΣ̂+Σ̂

]
tr[Σ̂+]/n

a.s.−−→ 0
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as n, p → ∞ with p/n → γ ∈ (0,∞).

Finally, to prove uniform convergence in λ, we show that both the prediction risk err(λ) and the GCV
estimator gcv(λ), and their derivatives, as functions of λ, are uniformly bounded over compact subintervals
of (λmin,∞). This yields equicontinuity of the family of functions λ → err(λ) and λ → gcv(λ) almost surely
and the result then follows from an application of the Arzela-Ascoli theorem. The uniform convergence
subsequently leads to the convergence of the tuned errors.

1.5.2 LOOCV versus GCV
There are two steps involved in establishing the limiting equivalence between LOOCV and GCV. The first
is to show that the LOOCV estimator in the limit is equal to a scalar corrected factor of the training error.
The second is that the correction happens to match with the factor that appears in the GCV estimator in
the limit. The following lemma provides the LOOCV limit.

Lemma 1.5.6 (LOOCV limit as rescaled train error). If the components of the response y ∈ Rn have
mean zero and finite second moment, and Assumptions 1.2 to 1.3 hold, then for every λ ∈ (λmin,∞),

loo(λ) −
(

1 + tr[(Σ̂ + λIp)+Σ]/n
)2 1
n

n∑
i=1

(yi − xTi β̂λ)2 a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞).

The limiting equivalence then follows by tying the scale factor in the GCV estimator to the scale factor
in the limiting LOOCV using an instantiation of Lemma 1.5.5.

1.6 Discussion
In this work, we established uniform consistency of the GCV and LOOCV estimators for ridge regression
prediction error under a proportional asymptotic framework. At a high level, the key reason why the
limiting equivalences hold is a certain asymptotic equivalence of random matrices, where on one side we
have a quantity that involves both the feature covariance Σ and the sample covariance Σ̂, while on the
other side, we have a quantity that only involves Σ̂, appropriately normalized. That is,

(Σ̂ + λIp)+Σ ≍ (Σ̂ + λIp)+Σ̂
1 − tr[(Σ̂ + λIp)+Σ̂]/n

where for two sequences of matrices Ap and Bp, Ap ≍ Bp is used to mean that limn→∞ tr[CpAp]−tr[CpBp] =
0 almost surely for any sequence of deterministic matrices Cp of bounded trace norm.

A similar notion of equivalence has appeared in the random matrix theory literature (e.g., Serdobolskii,
1983; Silverstein and Choi, 1995; Hachem et al., 2007; Ledoit and Péché, 2011; Rubio and Mestre, 2011;
Couillet and Debbah, 2011), and recently, has been utilized and developed further in Dobriban and Sheng
(2021, 2020). Our work takes a slightly differently approach in that, instead of expressing the resolvents in
terms of limits of unknown population quantities (which has been called a deterministic equivalence), we
relate two sets of resolvents, neither of which needs to have a computable asymptotic limit in the first place.

For statistical applications, we believe this could have broad utility because it allows to tie potentially
interesting out-of-sample quantities to purely data-dependent quantities. For example, it should be possible
to asymptotically equate more general functionals involving Σ and Σ̂ in terms of Σ̂ alone. Exploring
such connections for both a wider class of statistical problems and for metrics other than the expected
out-of-sample error is a future direction.

Beyond asymptotics, it is also of interest to carry out a finite sample analysis that explicitly reveals how
the interaction between the signal vector and the feature covariance affects rates of convergence. This may,
for example, facilitate constructions of confidence intervals for the tuned parameters. It may also reveal
that GCV and LOOCV—though consistent across a very broad set of problem settings, as demonstrated in
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this work—can struggle in terms of their speed of convergence for certain problems, like (say) when the
optimal regularization parameter is around zero. Finally, the assumptions on the feature and response
distribution should be able to be relaxed; pursuing minimal assumptions that allow for equivalences is of
general interest.
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Chapter 2

Estimating functionals of
out-of-sample error distribution

2.1 Introduction
The out-of-sample error associated with a predictive model is the difference between the true (unobserved)
response and the predicted response at a new draw from the feature distribution. Being able to accurately
estimate functionals of the out-of-sample error distribution is of critical importance in practice, both for
model assessment and model selection purposes. By far the most common functional considered is the
uncentered second moment of this error distribution—the mean squared error of the predictive model.
Estimating this quantity has been the focus of many decades of research in the statistics and machine
learning communities, which has yielded numerous advances in both theory and methodology. A central
method in practice for estimating the mean squared prediction error is cross-validation (CV), which comes
in many variants, including generalized and leave-one-out cross-validation (GCV and LOOCV, respectively).
Classic references on CV include Allen (1974); Stone (1974, 1977); Geisser (1975); Golub et al. (1979);
Wahba (1980, 1990); Li (1985, 1986, 1987). See Arlot and Celisse (2010) for a general review of CV.

In this work, we study the problem of estimating the entire out-of-sample error distribution. Part
of reason why so much past work in risk estimation has focused on mean squared out-of-sample error is
undoubtedly the special analytical structure that it affords and the associated bias-variance decomposition.
A main goal of this work is to understand what other functionals of the out-of-sample error distribution
can be reliably estimated using cross-validation. Such an understanding is useful for not only theoretical
purposes (necessitating novel proof techniques to analyze generic functionals), but practical ones as well,
since cross-validation estimators that work under such general settings then open up the possibility of
employing a wider range of metrics for model evaluation and selection, which may be informative for the
data analyst in any given problem setting at hand.

Throughout, we will focus on ridge regression (Hoerl and Kennard, 1970b,a) for the predictive model, a
special form of Tikhonov regularization (Tikhonov, 1943, 1963), which is very widely used in statistics and
machine learning. We choose to focus on ridge regression because GCV and LOOCV admit special forms
for this estimator, and also because ridge has recently attracted much attention—especially in the limiting
case of zero regularization, often called the “ridgeless” limit—due to its somewhat exotic behavior in the
overparametrized regime (see, e.g., Bartlett et al., 2020; Belkin et al., 2020; Hastie et al., 2022; Muthukumar
et al., 2020, and references therein). Importantly, it has been recently shown that the ridgeless (minimum
ℓ2 norm) interpolator can be optimal for mean squared out-of-sample error, among all ridge models, for
well-specified linear models with certain data geometries and high signal-to-noise ratios (Wu and Xu, 2020;
Richards et al., 2020). This has been corroborated empirically using real data sets for ridge regression
(Kobak et al., 2020) and kernel ridge regression (Liang and Rakhlin, 2020). Thus, providing theory that
covers that ridgeless case is both of foundational and practical importance.

Before summarizing our main contributions, we give some empirical examples in Figure 2.1 to motivate
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our study.
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Figure 2.1: A simulation with n = 2500 samples and p ∈ {100, 2000, 5000} features (a different p per
panel above). In each setting, we generated the feature vectors xi to have independent components from
a t-distribution with 5 degrees of freedom, and generated the responses yi by adding t-distributed noise
with 5 degrees of freedom to a nonlinear (quadratic) function of xi. We then fit the minimum ℓ2 norm
least squares solution, as in (1.1) with λ = 0. The blue curve in each panel is a histogram of the true
prediction error distribution, computed from 105 independent test samples. The red curve is a histogram
of the training errors; when p > n, this is just a point mass at zero. The yellow curve is a histogram of
GCV-reweighted training errors, as in (2.11) (for p < n, in the first two panels) and (2.13) (for p > n, in
the last panel). This tracks the blue curve very well in all settings. Empirical results for LOOCV are given
in the supplement.

2.1.1 Summary of contributions
An overview of our main contributions is as follows.

• We define natural extensions of GCV and LOOCV in order to estimate the out-of-sample prediction
error distribution associated with ridge regression. These are empirical distributions over reweighted
training errors (where the reweighting is tied to GCV or LOOCV).

• Under an asymptotic framework where the feature dimension p and sample size n grow proportionally,
p/n → γ ∈ (0,∞), we prove that, almost surely with respect to the training data, these extensions of
GCV and LOOCV converge weakly to the true out-of-sample error distribution of ridge regression.
This result requires mild assumptions; we do not need the true regression model to be linear.

• The GCV and LOOCV extensions and the theory we prove about them all accommodate the choice
of zero (or even negative) ridge regularization in high dimensions, where p > n.

• For certain linear functionals of the error distribution P , which take the form
∫
t dP for a function t,

we prove that suitable plug-in estimators (based on the GCV and LOOCV estimators of the entire
error distribution) are asymptotically consistent, almost surely. This result requires t to satisfy certain
continuity and growth conditions, but it can be unbounded.

• Finally, we use a uniform convergence argument to handle certain nonlinear functionals of the error
distribution (that can be written in a variational form involving linear functionals). This allows us to
consistently estimate, as an application, quantiles of the ridge error distribution.

2.1.2 Related work
Among the different CV variants to assess prediction accuracy, k-fold CV is widely used in practice (Györfi
et al., 2006; Hastie et al., 2009). However, in a high-dimensional regime where the feature dimension p is
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comparable to the sample size n, small values of k (such as k = 5 or 10) lead to bias in error estimation
(see, e.g., Rad and Maleki, 2020). LOOCV (where k = n) mitigates these bias issues, and consequently
LOOCV and various approximations to it (that circumvent its computational burden) have been of interest
in recent work, including Meijer and Goeman (2013); Liu et al. (2014); Obuchi and Kabashima (2016);
Beirami et al. (2017); Wang et al. (2018b); Stephenson and Broderick (2020a); Giordano et al. (2019);
Wilson et al. (2020); Rad et al. (2020); Xu et al. (2021). For recent results on ridge regression in particular,
where LOOCV can be done efficiently via a “shortcut” formula, see Patil et al. (2021).

On the inferential side, Bayle et al. (2020) prove central limit theorems for CV error and a derive a
consistent estimator of its asymptotic variance under certain stability assumptions, similar to Kale et al.
(2011); Kumar et al. (2013); Celisse and Guedj (2016). Their results yield asymptotic confidence intervals
for the prediction error and apply to k-fold CV (for a fixed k) as well as LOOCV. See also Austern and
Zhou (2020) for similar guarantees. A prominent and distinctive aspect of our work compared to these
works and others is the focus on properties of the entire empirical distribution of the CV errors, rather
than specific functionals such as the mean squared CV error.

In a contribution that is quite relevant to this work, Steinberger and Leeb (2016, 2018) construct
prediction intervals from quantiles of the empirical distribution of the LOOCV errors and provide conditional
coverage guarantees, which hold in expectation. Their key assumptions are algorithmic stability, as in
Bousquet and Elisseeff (2002), along with a bound in probability on the prediction error at a new test
point. Under a more restrictive asymptotic regime in which p/n → γ < 1, they show that the Kolmogorov-
Smirnov distance between the empirical distribution of LOOCV errors and the conditional prediction error
distribution vanishes in expectation. This general result is then applied to yield corollaries for various
predictive models, including ridge regression, by leveraging model-specific stability and error results from
the literature.

In comparison, our work focuses on ridge regression alone, but we deliver stronger and broader guarantees.
To be specific, our results (1) accommodate the high-dimensional regime, p/n → γ ≥ 1; (2) assume quite
weak conditions on the data (e.g., we do not require a well-specified linear model); (3) hold uniformly over
the choice of regularization parameter (which includes no regularization—the ridgeless limit); (4) yield not
only consistent estimation of the prediction error distribution itself, but of a broad class of functionals of
this distribution (which includes unbounded and nonlinear ones); and (5) produces guarantees that hold
almost surely—rather than in expectation or in probability—with respect to the training data.

2.2 Preliminaries
We adopt a standard regression setting, with i.i.d. samples (xi, yi), for i = 1, . . . , n, where each xi ∈ Rp is a
feature vector and yi ∈ R is its corresponding response value. We will denote by X ∈ Rn×p the feature
matrix whose ith row is x⊤

i , and by y ∈ Rn the response vector whose ith entry is yi.

2.2.1 Ridge regression
The ridge regression estimator β̂λ ∈ Rp, based on X, y, is defined as the solution to the following problem:

minimize
β∈Rp

1
n

∥y −Xβ∥2
2 + λ∥β∥2

2.

Here λ is a regularization parameter. When λ > 0, the above optimization problem is strictly convex and
has a unique solution:

β̂λ = (X⊤X/n+ λIp)−1X⊤y/n.

When λ = 0, and X⊤X is rank deficient (which will always be the case when p > n), there will be infinitely
many solutions, and we focus on the solution with the minimum ℓ2 norm, which we refer to as the min-norm
solution for short. By defining the ridge estimator as

β̂λ = (X⊤X/n+ λIp)†X⊤y/n, (2.1)

19



where A† denotes the Moore-Penrose pseudoinverse of a matrix A, we simultaneously accommodate the
case of λ > 0, in which case (2.1) reduces to the second to last display, and the case of λ = 0, in which case
(2.1) becomes the min-norm solution (it lies in the column space of (X⊤X)†, i.e., the row space of X, so it
has the minimum ℓ2 norm among all least squares solutions). In fact, the above display even accommodates
the case of λ < 0, in which case (2.1) remains well-defined.

The case of zero regularization is of particular interest when rank(X) = n, because then any least
squares solution interpolates the training data, and the min-norm solution β̂0 (by construction) has the
minimum ℓ2 norm among all such interpolators.

2.2.2 Out-of-sample error
Let (x0, y0) denote a test point drawn independently from the same distribution as the training data (xi, yi),
i = 1, . . . , n, and denote the out-of-sample prediction error of ridge regression at tuning parameter λ by

eλ = y0 − x⊤
0 β̂λ. (2.2)

This is a scalar random variable, and we denote by Pλ its distribution conditional the training data:1

Pλ = L
(
eλ | X, y

)
. (2.3)

We are interested in estimating Pλ using the training data. A naive estimator would be to use the empirical
distribution over the training errors expressed as

P̂λ = 1
n

n∑
i=1

δ
(
yi − x⊤

i β̂λ
)
. (2.4)

Here we use δ(z) for a point mass at z. Of course, this can be very inaccurate in high dimensions (as we saw
in Figure 2.1); at the extreme case of rank(X) = n and λ = 0, the naive estimator P̂λ trivially places all
mass at zero. In the next subsection, we will introduce more sensible estimators based on cross-validation.

Aside from estimating Pλ itself, we may be interested in estimating a particular functional of Pλ,
denoted by ψ(Pλ). Recall, a functional ψ acting on distributions is such that P 7→ ψ(P ) ∈ R for all
distributions P .

In the context of the out-of-sample error distribution Pλ, the most common functional of interest is its
uncentered second moment,

ψ(Pλ) =
∫
z2 dPλ(z) = E

[
e2
λ | X, y

]
,

which is simply the mean squared prediction error. We will consider general linear functionals of the form

ψ(Pλ) =
∫
t(z) dPλ(z) = E

[
t(eλ) | X, y

]
, (2.5)

for functions t (possibly nonlinear and unbounded, but subject to certain continuity and growth conditions).
We will also consider certain nonlinear functionals such as the level-τ quantile, for τ ∈ (0, 1):

ψ(Pλ) = Quantile(Pλ; τ) = inf{z : Fλ(z) ≥ τ}, (2.6)

where Fλ denotes the cumulative distribution function (CDF) of Pλ.

2.2.3 Cross-validation
GCV and LOOCV are two popular versions of cross-validation that are used to estimate the mean squared
prediction error. GCV is traditionally defined for linear smoothers only, but LOOCV is fully general: it

1To be clear, Pλ is itself a random quantity, because it depends on the training data X, y. However, we suppress this
dependence notationally, for simplicity.
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applies to any predictive model. In order to describe the details for ridge regression, we introduce the
notation:

Lλ = X(X⊤X/n+ λIp)†X⊤/n, (2.7)
for the ridge smoother matrix at regularization level λ. Thus, by definition, we can express the fitted values
(predicted values at the training points xi, i = 1, . . . , n) from ridge regression as Xβ̂λ = Lλ y.

The LOOCV estimate for the mean squared prediction error of a given ridge model β̂λ can now be
written as

1
n

n∑
i=1

(
yi − xTi β̂−i,λ

)2
= 1
n

n∑
i=1

(
yi − xTi β̂λ
1 − [Lλ]ii

)2
, (2.8)

where β̂−i,λ denotes the ridge estimate when the ith pair (xi, yi) is excluded from the training data set, and
[Lλ]ii denotes the ith diagonal element of Lλ. The left-hand side in (2.8) is the usual definition of LOOCV
for any predictive model; the right-hand side is a so-called “shortcut” formula that holds for ridge (and a
handful of other special linear smoothers; see, e.g., Chapter 7 of Hastie et al., 2009).

The GCV estimate for the mean squared error of β̂λ is given by

1
n

n∑
i=1

(
yi − xTi β̂λ

1 − tr[Lλ]/n

)2
, (2.9)

where tr[A] denotes the trace of a matrix A.
Caution needs to be taken in (2.8) and (2.9) when λ = 0 and rank(X) = n, in which case Lλ = In, and

both of the numerators and denominators in every summand of (2.8), (2.9) are zero. To avoid this problem
we redefine them by their respective limits as λ → 0, which gives (see the supplement for details):

1
n

n∑
i=1

(
[(XX⊤)†y]i
[(XX⊤)†]ii

)2
and 1

n

n∑
i=1

(
[(XX⊤)†y]i

tr[(XX⊤)†]/n

)2
, (2.10)

for LOOCV and GCV, respectively.

2.2.4 Proposed estimators
We propose estimators for the out-of-sample prediction error distribution Pλ in (2.3), building off the
empirical distributions of reweighted training errors, inspired by GCV in (2.9) and LOOCV in (2.8).
Precisely, we define

P̂ gcv
λ = 1

n

n∑
i=1

δ

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
, (2.11)

which we refer to as the GCV estimate of the out-of-sample error distribution, and

P̂ loo
λ = 1

n

n∑
i=1

δ

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)
, (2.12)

which we refer to as the LOOCV estimate of the out-of-sample error distribution.
When λ = 0 and rank(X) = n, the above expressions are ill-defined, and we redefine them based on the

forms of GCV and LOOCV in (2.10):

P̂ gcv
0 = 1

n

n∑
i=1

δ

(
[(XX⊤)†y]i

tr[(XX⊤)†]/n

)
, (2.13)

P̂ loo
0 = 1

n

n∑
i=1

δ

(
[(XX⊤)†y]i
[(XX⊤)†]ii

)
. (2.14)

To estimate a generic functional of ψ(Pλ) of the error distribution, we simply use

ψ̂gcv
λ = ψ(P̂ gcv

λ ) and ψ̂loo
λ = ψ(P̂ gcv

λ ). (2.15)
For ψ(Pλ) =

∫
z2 dPλ(z), the plug-in estimates above reduce to the standard GCV and LOOCV estimates

of the mean squared prediction error.
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2.3 Distribution estimation
We first cover distributional convergence results. We impose the following mild structural and moment
assumptions on the feature and response distributions.

Assumption 2.1 (Feature distribution). Each feature vector can be decomposed as xi = Σ1/2zi, for a
deterministic symmetric matrix Σ ∈ Rp×p whose maximum eigenvalue is bounded above by rmax < ∞, and
minimum eigenvalue is bounded below by rmin > 0, where rmax and rmin are constants, and for a random
vector zi ∈ Rp whose entries are i.i.d. with mean zero, unit variance, and E[|zij |4+µ] ≤ Mz < ∞, where
µ > 0 and Mz are constants.

The maximum eigenvalue bound for the feature covariance matrix Σ is used to control the magnitude
of ridge predictions; the minimum eigenvalue bound is used in the analysis of the min-norm interpolator.
Both of these can be relaxed further for some of our results, but we do not pursue such refinements here.

Assumption 2.2 (Response distribution). Each yi has mean zero and satisfies E[|yi|4+ν ] ≤ My < ∞,
where ν > 0 and My are constants.

The condition that each yi is centered is only used for simplicity. When yi does not have mean zero,
we would simply include an intercept in the model defined in (2.1), and all of our results would translate
accordingly.

We work in an asymptotic regime where the number the samples n and the number of features
p both diverge to ∞, and yet their ratio p/n converges to γ ∈ (0,∞). Such asymptotic regime has
received considerable attention recently in high-dimensional statistics and machine learning theory, which
is commonly referred to as proportional asymptotics. The range of regularization parameter values λ over
which our results will hold is a function of γ and rmin. In preparation for the coming theorem statements,
we define λmin = −(1 − √

γ)2rmin.
We are now ready to state the result concerning weak convergence of the empirical distributions

(2.11)–(2.14) to the true out-of-sample error distribution (2.3).

Theorem 2.3.1 (Distribution estimation). Suppose Assumptions 2.1 and 2.2 hold. Then, for λ > λmin,

P̂ gcv
λ

d−→ Pλ and P̂ loo
λ

d−→ Pλ, (2.16)

almost surely (which means, here and henceforth, almost surely with respect to the distribution of X, y), as
n, p → ∞ and p/n → γ ∈ (0,∞).

In (2.16), note the left- and right-hand sides both depend on n, p. To explain what we mean by
convergence in distribution here: if P̂n and Pn are univariate distributions depending on n (where we make
the notational dependence explicit for concreteness), and their CDFs are F̂n and Fn respectively, then we
write P̂n

d−→ Pn as n → ∞ to mean that |F̂n(z) − Fn(z)| → 0 for every z that is a continuity point of Fn
for all n large enough.

We remark that if we make the stronger assumption that Pλ converges weakly to a continuous distribution,
then Theorem 2.3.1 can be strengthened from pointwise to uniform convergence in the following sense: in
place of (2.16), we have supz∈R |F̂ gcv

λ (z) − Fλ(z)| → 0, where Fλ and F̂ gcv
λ are the distribution functions

associated with Pλ and P̂ gcv
λ , respectively. The analogous result holds for LOOCV as well. This follows

from standard arguments (e.g., Chapter 3 of Durrett, 2019), and we omit the details.
An extension (resembling the continuous mapping theorem) of Theorem 2.3.1 is given next.

Corollary 2.3.2. Let h : R → R be a continuous function, and Hλ denote the distribution of the transformed
error h(eλ) conditional on the training data. Let Ĥgcv

λ and Ĥ loo
λ denote the empirical distributions as in

(2.11)–(2.14), but where the point mass in each summand is evaluated at h of its argument. Then, under
Assumptions 2.1 and 2.2, for λ > λmin,

Ĥgcv
λ

d−→ Hλ and Ĥ loo
λ

d−→ Hλ, (2.17)

almost surely as n, p → ∞ and p/n → γ ∈ (0,∞).
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Figure 2.2: An example with n = 2500, p = 5000. We generated each xi according to a Bernoulli
distribution, and yi by adding Bernoulli noise to a nonlinear (quadratic) function of xi. The ridge tuning
parameter was fixed at λ = 1. Each panel above examines weak convergence per (2.17) for a different
function h of the error variable (identity, absolute value, and square, from left to right). In each case, the
GCV estimate (yellow) tracks the true distribution (blue) closely. Empirical results for LOOCV are given
in the supplement.

Some remarks on the above results are in order. The assumptions required on the distributions of
response and features are very weak. Notably, we do not require that the response comes from a well-
specified model. Further, the distributions of the response and feature components could be arbitrary so
long as they satisfy the moment bounds. As an illustration, we consider examples with binary features and
noise in Figure 2.2. Finally, since λmin < 0, the results cover the case of the min-norm interpolator (except
when γ = 1).

We next provide some intuition as to why the above results are true. Consider the special case of an
underlying linear model y0 = x⊤

0 β0 + ε0, where β0 ∈ Rp is deterministic unknown parameter vector and ε0
is independent of x0. In this case, the out-of-sample prediction error simplifies to eλ = x⊤

0 (β0 − β̂λ) + ε0,
and

Pλ = L
(
x⊤

0 (β0 − β̂λ)
)
⋆ L(ε0),

where ⋆ denotes convolution. Further assuming that the features x0 are Gaussian, as is the noise ε0, with
mean zero and variance σ2, this law will be Gaussian with mean zero and variance ∥β0 − β̂λ∥2

Σ + σ2, where
∥a∥2

Σ = a⊤Σa. The variance here is the same as the mean squared prediction error of β̂λ. As LOOCV
and GCV (in their usual forms (2.8) and (2.9)) track this variance term, Theorem 2.3.1 can be viewed as
establishing asymptotic normality of the empirical distributions of LOOCV and GCV errors, in this special
case.

However, Theorem 2.3.1 is considerably more general and applies even when L(x⊤
0 (β0 − β̂λ)) does not

have an analytically known asymptotic limit (and to reiterate, applies even when E[y0 | x0] is not linear in
x0). In fact, Theorem 2.3.1 is itself a consequence of a more general result on the convergence of certain
functionals of the error distribution, which is covered next.

2.4 Functional estimation
Now we derive convergence theory on the estimation of linear functionals (2.5) of the out-of-sample
prediction error distribution. In addition to serving as the main ingredient for proving Theorem 2.3.1, it
forms a building block for establishing convergence results that apply to certain nonlinear functionals of
the error distribution, discussed in the next section.

2.4.1 Pointwise convergence
We impose the following assumption on the error function t in (2.5).
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Assumption 2.3 (Growth rate for the error function). There are constants a, b, c > 0 such that |t(z)| ≤
az2 + b|z| + c for any z ∈ R.

The quadratic growth condition on the error function t in Assumption 2.3 is tied to the moment
conditions in Assumptions 2.1 and 2.2. In particular, both assumptions together let us bound E[|t(eλ)|2+ξ],
where ξ > 0. One can thus relax the requirement on the growth rate by assuming higher moments in
Assumptions 2.1 and 2.2.

Henceforth, let Tλ denote the linear functional in (2.5) corresponding to an error function t, and let
T̂ gcv
λ , T̂ loo

λ denote the associated plug-in estimators in (2.15). Next we give the first functional convergence
result.

Theorem 2.4.1 (Linear functional estimation). Suppose Assumptions 2.1 and 2.2 hold, and the function t
is continuous and satisfies Assumption 2.3. Then, for λ > λmin,

T̂ gcv
λ − Tλ → 0 and T̂ loo

λ − Tλ → 0, (2.18)

almost surely as n, p → ∞ and p/n → γ ∈ (0,∞).

Several remarks on the above result follow. As before, the allowed range of tuning parameter values
includes the min-norm estimator, since λmin < 0 (except when γ = 1). Moreover, the convergence result in
(2.18) holds almost surely (with respect to the training data X, y). This is stronger than many previous
results for CV that hold either in probability or expectation over the training data. Lastly, the error
function t can be any arbitrary continuous, subquadratic function. In particular, it does not need to be
bounded (which, by the Portmanteau theorem, would be equivalent to the weak convergence result in
Theorem 2.3.1).

A special case of the last result was recently given in Patil et al. (2021) for squared error, t(e) = e2, who
assume a much more restricted setting of a well-specified linear model. The current result greatly extends
this last one, by allowing for general error functions as well as nonlinear models. The proofs in Patil et al.
(2021) exploit the bias-variance decomposition that accompanies squared error, analyze the asymptotic
behavior of GCV first, and then tie this to LOOCV. Our approach in this work is completely different (as
it must be, due to the general lack of bias-variance decompositions for non-squared error functions). Below
we highlight key steps involved in the proof of Theorem 2.4.1.

Proof overview. Our strategy is to study LOOCV first, and then connect it to GCV. It helps to
introduce an intermediate quantity:

T̃λ = 1
n

n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ) | X−i, y−i
]
, (2.19)

where we use X−i and y−i for the feature matrix and response vector with the ith row and element removed,
respectively, and β̂−i,λ for the ridge estimator trained on X−i and y−i. One can interpret (2.19) as the
average of the functionals of the leave-one-out estimators β̂−i,λ, i = 1, . . . , n. The result then follows from
establishing that: (i) Tλ − T̃λ

a.s.−−→ 0, (ii) T̃λ − T̂ loo
λ

a.s.−−→ 0, and (iii) T̂ loo
λ − T̂ gcv

λ
a.s.−−→ 0. In step (i), we use

the modulus of continuity of a suitably truncated error function and the stability of the ridge regression
estimator. Step (ii) is based on identifying a martingale difference sequence and applying the Burkholder
concentration inequality. In step (iii), we use a key lemma from Patil et al. (2021) on the asymptotic
equivalence of certain functionals of sample covariance matrices. The full proof is deferred to the supplement
(as with all others in this work).

2.4.2 Uniform convergence
The result in Theorem 2.4.1, which is pointwise in λ, can be made uniform in λ under a stronger assumption
on the error function t.

Assumption 2.4 (Growth rate for the derivative of the error function). There are constants g, h > 0 such
that |t′(z)| ≤ g|z| + h for any z ∈ R.
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Theorem 2.4.2 (Linear functional estimation, uniform in λ). Assume the conditions of Theorem 2.4.1,
and that t is differentiable and satisfies Assumption 2.4. Then, for any compact Λ ⊆ (λmin,∞),

sup
λ∈Λ

∣∣T̂ gcv
λ − Tλ

∣∣ → 0 and sup
λ∈Λ

∣∣T̂ loo
λ − Tλ

∣∣ → 0, (2.20)

almost surely as n, p → ∞ and p/n → γ ∈ (0,∞).
We remark that it is not essential that the error function t be differentiable. We can prove a similar result

assuming that the error function t is Lipschitz continuous. We assume a global Lipschitz error function t to
simplify the proof, but it should be possible to further relax this to a locally Lipschitz assumption, where
we have control over the average Lipschitz constant. We do not pursue this in the current work.
Theorem 2.4.3 (Linear functional estimation, uniform in λ, nonsmooth t). Assume the conditions of
Theorem 2.4.1, and that t is Lipschitz continuous. Then, for any compact Λ ⊆ (λmin,∞), the same result
as in (2.20) holds, almost surely as n, p → ∞ and p/n → γ ∈ (0,∞).

Such uniform convergence will come in handy in the applications discussed next.

2.5 Other applications
The main application of Theorem 2.4.1 discussed thus far is the weak convergence in Theorem 2.3.1. Several
other applications are possible, as detailed in this section.

2.5.1 Variational functional estimation
We consider estimation of certain nonlinear functionals that can be represented in variational form as
minimizers of parametrized linear functionals over a sufficiently “nice” family of error functions. The main
idea behind such an approach is to exploit uniform convergence of the plug-in estimators over the family.

Let TV = {t(·, v) : R → R : v ∈ V} denote a family of functions indexed by a set V ⊆ R. Corresponding
to each error function t(·, v) in TV , let Tλ(v) denote the linear functional (2.5) associated with β̂λ. A
variational error functional, denoted by Vλ, is defined as

Vλ = arg min
v∈V

Tλ(v). (2.21)

This is assumed to be unique.2 Meanwhile, denoting by T̂ gcv
λ (v) and T̂ loo

λ (v) the plug-in estimators (2.15)
associated with the error function t(·, v), for v ∈ V, we can then define:

V̂ gcv
λ ∈ arg min

v∈V
T̂ gcv
λ (v), (2.22)

V̂ loo
λ ∈ arg min

v∈V
T̂ loo
λ (v). (2.23)

Note that we do not assume that these are unique (as is reflected by the element notation above). Our
main result in the variational setting is as follows.
Theorem 2.5.1 (Variational functional estimation). Suppose Assumptions 2.1 and 2.2 hold. Let TV be a
pointwise equicontinuous family of functions, where V is compact, and each t(·, v) satisfies Assumption 2.3.
For λ > λmin,

V̂ gcv
λ − Vλ → 0 and V̂ loo

λ − Vλ → 0, (2.24)
almost surely as n, p → ∞ with p/n → γ ∈ (0,∞).

The proof of Theorem 2.5.1 builds on the previous results. We apply Theorem 2.4.1 on t(·, v) to establish
the convergence of T̂ gcv

λ (v) to Tλ(v) for each v ∈ V . The pointwise equicontinuity of functions in TV leads to
stochastic equicontinuity of T̂ gcv

λ (v) − Tλ(v), which then provides GCV part of (2.24). Similar arguments
hold for LOOCV.

2This is done for simplicity, so we do not have to appeal to set-theoretic notation for convergence of minimizers in the
statements that follow. More general formulations that do not assume uniqueness, via variational analysis, should be possible.
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2.5.2 Quantile estimation
To illustrate the use of Theorem 2.5.1, we consider estimating quantiles of the out-of-sample prediction
error distribution. For τ ∈ (0, 1), let Qλ(τ) denote the level-τ conditional quantile (2.6), assumed unique
for simplicity. While this is a nonlinear functional of Pλ, we will exploit the fact that (2.6) can expressed
in an equivalent variational form (Koenker and Bassett Jr., 1978):

Qλ(τ) = arg min
u∈U

E
[
tτ
(
y0 − x⊤

0 β̂λ − u
)

| X, y
]
, (2.25)

where tτ (u) = u(τ − I(u < 0)), sometimes called the pinball or tilted ℓ1 loss. If U is any set containing the
true quantile, we can recognize Qλ(τ) as being in the form (2.21), for the family TU = {tτ (·, u) : u ∈ U}.
We can then define plug-in estimators Q̂gcv

λ (τ) and Q̂loo
λ (τ) as in (2.22) and (2.23), or to be fully explicit:

Q̂gcv
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x⊤

i β̂λ

1 − tr[Lλ]
n

− u

)
, (2.26)

Q̂loo
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

− u

)
, (2.27)

with suitable adaptations based on (2.13), (2.14) if λ = 0. These are essentially just the sample quantiles of
GCV and LOOCV residuals, up to discretization issues (the sample quantiles not being unique for integral
τn).

Corollary 2.5.2 (Quantile estimation). Suppose Assumptions 2.1 and 2.2 hold. Given τ ∈ (0, 1), assume
the level-τ quantile Qλ(τ) of Pλ is unique, and assume U in (2.26), (2.27) is any compact set that contains
the true quantile. For any λ > λmin,

Q̂gcv
λ (τ) −Qλ(τ) → 0 and Q̂loo

λ (τ) −Qλ(τ) → 0, (2.28)

almost surely as n, p → ∞ with p/n → γ ∈ (0,∞).

Thanks to the general result in Theorem 2.5.1, the proof of (2.28) reduces to verifying the pointwise
equicontinuity of the family of pinball loss functions.

Estimating quantiles gives us a way to construct prediction intervals for the out-of-sample response y0,
of the form:

Igcv
λ =

[
x⊤

0 β̂λ − Q̂gcv
λ (τl), x⊤

0 β̂λ + Q̂gcv
λ (τu)

]
, (2.29)

I loo
λ =

[
x⊤

0 β̂λ − Q̂loo
λ (τl), x⊤

0 β̂λ + Q̂loo
λ (τu)

]
, (2.30)

where τl < τu are appropriate lower and upper quantile levels chosen to provide the desired coverage.
These intervals have asymptotically exact coverage conditional on the training set, as a consequence of
Corollary 2.5.2. See Figure 2.3 for empirical results.

2.5.3 Regularization tuning
One important application of convergence results that are uniform in λ, for given functionals, is that we
can tune the amount of regularization according to those functionals, and uniformity will imply that any
minimizer of the plug-in estimator converges to a minimizer of the population functional. A typical strategy
is to tune by minimizing the mean squared GCV or LOOCV error; but we can also tune via more robust
measures such as absolute error, Huber error, or the length of the prediction intervals.

The next corollary certifies that the the level of regularization tuned by using the plug-in GCV and
LOOCV estimators is almost surely optimal for a wide range of error functions.

Corollary 2.5.3 (Convergence of tuned errors). Suppose Assumptions 2.1 and 2.2 hold. Suppose the error
function t satisfies Assumption 2.3, and furthermore, it is either differentiable and satisfies Assumption 2.4,
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Figure 2.3: Illustration of empirical coverage and length of GCV prediction intervals (2.29) against nominal
coverage, where n = 2500, p = 5000. The data model has a latent structure with autoregressive feature
covariance and true signal aligned with the principal eigenvector, similar to that in Kobak et al. (2020) (the
supplement gives details), who investigated the empirical optimality of the min-norm interpolator. Here we
see that intervals for any λ have excellent finite-sample coverage (left), and the case of λ = 0 provides the
smallest interval lengths (right).

or else it is Lipschitz. Let Λ ⊆ (λmin,∞) be compact, and let λ⋆ be a minimizer of Tλ over Λ. Similarly,
let λ̂gcv and λ̂loo denote minimizers of T̂ gcv

λ and T̂ loo
λ over Λ, respectively. Then,

T
λ̂gcv − Tλ⋆ → 0 and T

λ̂loo − Tλ⋆ → 0, (2.31)

almost surely as n, p → ∞ with p/n → γ ∈ (0,∞).

2.6 Discussion
In this work, we investigate the distribution of errors arising from both generalized and leave-one-out
cross-validation in the context of ridge regression. We show that these distributions converge to the
out-of-sample prediction error distribution, under generic conditions. A core result in our work is on
consistent estimation of linear functionals of the error distribution, yielding wide implications, including
an extension to estimating certain nonlinear functionals which has applications in conditional predictive
inference.

Amazingly (and surprisingly, even to us), these results continue to hold in an high-dimensional setting
when p > n. LOOCV for ridge regression takes on a special form, based on the beautiful “shortcut” relation:

yi − x⊤
i β̂−i,λ = yi − x⊤

i β̂λ
1 − [Lλ]ii

≈ yi − x⊤
i β̂λ

1 − tr[Lλ]/n.

When p > n and λ = 0, the numerator and denominator in both fractions here are zero. However, as λ → 0
the numerator and denominator (in each fraction) tend to zero at exactly the same rate, allowing us to
“cancel” the dependence on λ infinitesimally, leading to:

yi − x⊤
i β̂−i,0 = [(XX⊤)†y]i

[(XX⊤)†]ii
≈ [(XX⊤)†y]i

tr[(XX⊤)†]/n.

This fact was first derived in Hastie et al. (2022), and it is key for our results.

27



The most immediate next direction is to study kernel ridge regression, which yields a similar “shortcut”
formula (Hastie, 2020) where XX⊤ gets replaced by the kernel gram matrix. For other predictive models
that do not yield exact leave-one-out formulae (in terms of training errors), examining to what degree
similar results hold true is an interesting direction for future study. This is especially interesting for
“benign” interpolators, now an active area of research, which decompose into a “simple” component useful
for prediction and a “spiky” component that interpolates the training data (Bartlett et al., 2021). As
interpolators gain a central role in modern machine learning, adapting CV methods to work seamlessly
with them is becoming of foundational importance. This current work serves as a step in that direction.
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Chapter 3

Mitigating multiple descents

3.1 Introduction
A striking feature of overparameterized models is the so-called “double/multiple descent” behavior in the
generalization error curve when plotted against the number of parameters or as a function of the aspect
ratio of the number of parameters to the sample size (Belkin et al., 2019a). In a typical double descent
scenario, the generalization or test error initially increases as a function of the aspect ratio. It peaks and in
some cases explodes as this ratio crosses the interpolation threshold, where the learning algorithm achieves a
degree of complexity that allows for perfect interpolation of the data. Past the interpolation threshold, the
test error tapers down as the complexity of the algorithm increases relative to the sample size. Furthermore,
for some algorithms and settings, e.g., the lasso and the minimum ℓ1-norm least square (e.g., Li and Wei,
2021) or various structures of the design matrix (Adlam and Pennington, 2020; Chen et al., 2020), multiple
descents may occur. Double and multiple descent phenomena have been first demonstrated empirically, e.g.,
for decision trees, random features and two-layer and deep neural networks, and some of these findings have
now been corroborated by rigorous theories in a growing body of work: see, e.g., Neyshabur et al. (2014);
Nakkiran et al. (2019); Belkin et al. (2018b, 2019a); Mei and Montanari (2022); Adlam and Pennington
(2020); Chen et al. (2020); Li and Wei (2021), among others. However, in general, the shape and number
of local minima associated with a non-monotonic risk profile due to double descent depend non-trivially
on the learning problem, the algorithm deployed, and to an extent, the properties of the data generating
distribution in ways that are only partially understood.

The non-monotonic behavior of the generalization error as a function of the aspect ratio in the over-
parameterized settings suggests the jarring conclusion that, in high dimensions, increasing the sample size
might actually yield a worse generalization error. In contrast, it is highly desirable to rely on prediction
procedures that are guaranteed to deliver, at least asymptotically, a risk profile that is monotonically
increasing in the aspect ratio, over a large class of data generating distributions. (Note that increasing
in aspect ratio is same as decreasing in sample size for a given number of features.) To that effect, some
authors have considered ridge-regularized estimators; see Nakkiran et al. (2021); Hastie et al. (2022). In
those cases, under fairly restrictive settings and distributional assumptions, a monotonic risk profile can be
assured. However, in general settings and for any given procedure, it is unclear how to determine whether
the associated risk profile is at least approximately non-monotonic and, if so, how to mitigate it. The
ubiquity of the double and multiple descent phenomenon in over-parameterized settings begs the question:

Is it possible to modify any given prediction procedure in order to achieve a monotonic risk behavior?

In this work, we answer this question in the affirmative. More specifically, we develop a simple, general-
purpose framework that takes as input an arbitrary learning algorithm and returns a modified version whose
out-of-sample risk will be asymptotically no larger than the smallest risk achievable beyond the aspect
ratio for the problem at hand. In particular, the asymptotic risk of the returned procedure, as a function
of the aspect ratio, will stay below the “monotonized” asymptotic risk profile of the original procedure
corresponding to its largest non-decreasing minorant (see Figure 3.1 for an illustration). As a result,
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when the risk function of the original procedure exhibits double or multiple descents, our modification
will guarantee, asymptotically, a far smaller out-of-sample risk near the peaks of the risk function. Our
approach is applicable to a large class of data generating distributions and learning problems, with mild to
no assumptions on the learning algorithm of choice.

To illustrate the type of guarantees obtained in this work, we provide a preview of one of our main results
from Section 3.3.3.1 and comment on its implication. Adopting a standard regression framework, we assume
that the data Dn = {(X1, Y1), . . . , (Xn, Yn)} are comprised of n i.i.d. pairs of a p-dimensional covariate and
a response variable from an unknown distribution. Using Dn, suppose one fits a predictor f̂ — a random
function that maps x ∈ Rp 7→ f̂(x) ∈ R. Given a loss function ℓ : R×R → R≥0, we evaluate the performance
of f̂ by its conditional predictive risk given the data, defined by R(f̂ ; Dn) = E[ℓ(Y0, f̂(X0)) | Dn], where
(X0, Y0) is an unseen data point, drawn independently from the data generating distribution. Note the risk
is a random variable, as it depends on the data Dn. We are interested in the limiting behavior of the risk
under the proportional asymptotic regime in which n, p → ∞ with the aspect ratio p/n converging to a
constant γ ∈ (0,∞). As noted above, in such regime the asymptotic risk profile of f̂ has been recently
shown to be non-monotonic for a wide variety of problems and procedures. In order to mitigate such
behavior, we devise a modification of the original procedure f̂ that results into a new procedure f̂ zs, called
zero-step procedure (described in Algorithm 2), whose asymptotic risk profile is provably monotonic in γ.
The following informal result can be derived as a consequence of results in Section 3.3.3.1.

Theorem 3.1.1 (Informal monotonization result). Suppose there exists a deterministic function Rdet(·; f̂) :
(0,∞] → [0,∞] such that for any ϕ ∈ (0,∞] for any dataset D consisting of m i.i.d. observations with pm
features, R(f̂ ; D) p−→ Rdet(ϕ; f̂), whenever m, pm → ∞ and pm/m → ϕ. Then, under mild assumptions on
Rdet, the loss function ℓ, and the data generating distribution, the zero-step procedure f̂ zs satisfies∣∣∣R(f̂ zs; Dn) − min

ζ≥γ
Rdet(ζ; f̂)

∣∣∣ p−→ 0

as n, p → ∞ and p/n → γ ∈ (0,∞).

Figure 3.1 illustrates the above result for the minimum ℓ2-norm least squares estimator (Hastie et al.,
2022) and the minimum ℓ1-norm least squares estimator (Li and Wei, 2021). The light-blue lines show the
asymptotic risk profiles of the two procedures, which are non-monotonic as they diverge to infinity around
the interpolation threshold of 1, at which the sample size and the number of features are equal. The red
lines depict the risk profiles of the zero-step procedure f̂ zs, which corresponds to the map

γ ∈ (0,∞) 7→ min
ζ≥γ

Rdet(ζ; f̂). (3.1)

The function (3.1) is a monotonically non-decreasing function of γ, regardless of whether γ 7→ Rdet(γ; f̂) is
non-monotonic. Furthermore, since

min
ζ≥γ

Rdet(ζ; f̂) ≤ Rdet(γ; f̂), for all γ > 0,

the asymptotic risk of f̂ zs is no worse than that of f̂ . We refer to the function described in (3.1) as the
monotonized risk of the base procedure f̂ .

The assumptions required in Theorem 3.1.1 are very mild, and apply to a broad range of procedures
and settings. Indeed, as remarked above, the risk profile Rdet(·; f̂) of several estimators have been recently
identified under proportional asymptotics regime; see Remark 3.3.16. The requirements on the loss functions
are also mild and can be verified for common loss functions. In fact, our results do not require proportional
asymptotics and hold more generally.

We also develop a more sophisticated methodology whose asymptotic risk profile is not only monotonic
in the aspect ratio but can be strictly smaller than the monotonized risk profile (3.1), a fact that we again
verify for the minimum ℓ2, ℓ1-norm least squares procedures. See Section 3.4.
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Figure 3.1: Monotonized asymptotic conditional prediction risk of the zero-step procedure (described in
Algorithm 2) and one-step procedure (described in Algorithm 3) for the minimum ℓ2-norm and ℓ1-norm
least squares procedures. The figure in the left panel follows the setup of Figure 2 of Hastie et al. (2022),
and the figure in the right panel follows the setup of Figure 3 of Li and Wei (2021) (at sparsity level =
0.1). Both settings assume isotropic features and a linear model with noise variance σ2 = 1 and linear
coefficients of squared Euclidean norm ρ2 = 4. Note that the risk is lower bounded by σ2 = 1 and the risk
of the null predictor (null risk) is ρ2 + σ2 = 5.

Core idea: the zero-step procedure. Our methodology is conceptually straightforward, as it relies
on a combination of sample splitting, sub-sampling, and cross-validation. The core principle is as follows.
Starting off with an aspect ratio of p/n, if the risk were to be lower at, say, twice this aspect ratio 2p/n,
then we could just use half the data to evaluate the predictor, enjoying a smaller risk than the one obtained
when training with the entire data. To decide whether the out-of-sample error is lower at any larger aspect
ratio, we use cross-validation to “glean at” the values of the risk function at all aspect ratios larger than
the one for the full data. To elaborate, we next give an informal description of one of our main methods,
the zero-step procedure that we study in Section 3.3.

We initially split the data into a training and a validation set in such a way that the size of the
validation set is a vanishing proportion of that of the training set. In the first step, we compute a collection
of predictors, each resulting from applying the same base prediction procedure on a sub-sample of size
kn varying over a grid of values in Kn. Depending on the size of the sub-sample, we are able to mimic
the behavior of the risk at larger aspect ratios (p/kn, kn ∈ Kn). In the second step, we estimate the
out-of-sample risk of each of these predictors using the validation set. With {p/kn : kn ∈ Kn} approximating
the set [p/n,∞], these estimated out-of-sample risks act as proxies for the true generalization error at
larger aspect ratios. In the final step, we perform model selection by minimizing the estimated test error
across the candidate aspect ratios. In order to make full use of the data, one can use more than one
sub-sample for each kn ∈ Kn, a practice that closely resembles bagging. To prove the “correctness” of the
split-sample cross-validation, we develop novel oracle inequalities in additive and multiplicative forms that
are of independent interest.

Because the core components of our approach are sub-sampling and cross-validation, our methodology
is applicable to virtually any algorithm – even the black-box type – and its validity holds under minimal
assumptions on the data generating distribution.

3.1.1 Summary of results
Below we summarize the main contributions of this work.
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• Novel guarantees for split-sample cross-validation. At its core, our methodology performs
model selection of arbitrary learning procedures built over sub-samples of different sizes, with the size
of the sub-samples treated as a tuning parameter to optimize. Towards that goal, we rely on split-
sample cross-validation, which we analyze in Section 3.2. In Proposition 3.2.1, we provide deterministic
inequalities for the risk of split cross-validated predictors in both additive and multiplicative form.
We remark that multiplicative oracle inequalities allow for the possibility of unbounded oracle risk
values, and are therefore well suited to incorporate prediction procedures exhibiting the double
descent phenomena around the interpolating threshold. Leveraging concentration inequalities for
both the mean estimator of the prediction risk and the median-of-means estimator, in Section 3.2.3,
we show how these bounds imply finite-sample oracle inequalities for split-sample cross-validation
that are applicable to a broad range of loss functions and under minimal assumptions on the learning
procedure. In particular, our results do not require well-specified (parametric) models. We exemplify
our bounds on various loss functions for both regression and classification, and in Theorem 3.2.22, we
give a general multiplicative oracle inequality for arbitrary linear predictors under mild distributional
assumptions.

• Zero-step procedure. Using oracle inequalities for split-sample cross-validation, we put forth
a general methodology that takes as input an arbitrary prediction procedure and minimizes the
prediction risk of its bagged version over a grid of sub-sample sizes. We call this the “zero-step”
prediction procedure. We analyze the asymptotic risk behavior of the zero-step procedure under
proportional asymptotics, in which the number of features grows proportionally with the number
of observations. In Theorem 3.3.11, we prove that the risk of predictor returned by the zero-step
procedure is upper bounded by the monotonized risk given in (3.1). Unlike most contributions in the
literature on over-parameterized learning, our results do not depend on well-specified (parametric)
models and only require the existence of a sufficiently well-behaved asymptotic risk profile.

• One-step procedure. In Section 3.4, we further generalize the zero-step procedure by considering
an adjustment of the original predictor that is inspired by the one-step estimation method used in
parametric statistics to improve efficiency (Van der Vaart, 2000, Section 5.7). This modification,
which can be thought of as a single-iterate boosting of the baseline procedure, is shown, both in theory
and in simulations, to produce an asymptotic monotonized risk that is smaller than the monotonized
risk of the zero-step procedure; see Theorem 3.4.4. We derive explicit expressions of the asymptotic
risk profile of the one-step procedure for the minimum ℓ2, ℓ1-norm least squares prediction procedures.
The main insight we draw from the minimum ℓ2-norm least squares example is that the one-step
procedure in addition to changing the aspect ratio of the predictor also reduces the signal energy
leading to a smaller asymptotic risk; see Remark 3.4.12.

• Risk profiles. In our study of the performance of the zero-step and one-step procedures, we derive
several auxiliary results that might of independent interest. Specifically, we provide a systematic
way to certify the continuity or lower semicontinuity of the asymptotic risk profile of any prediction
procedure, assuming only point-wise convergence of the conditional prediction risk under proportional
asymptotics; see Proposition 3.3.10. This is often hard to prove directly from the asymptotic risk
profiles as they are usually defined implicitly via one or more fixed-point equations. Also of independent
interest is a representation that we prove, for the conditional prediction risk of an arbitrary linear
predictor with a one-iterate boosting with minimum ℓ2-norm least squares, using the recent tools
from random matrix theory. This, in particular, involves deriving deterministic equivalents for
the generalized bias and variance of the ridgeless predictor which may be of independent interest;
see Lemmas 3.4.8 and C.5.3.

We corroborate our theoretical results with several illustrative simulations. An intriguing finding
emerging from our numerical studies is the fact that bagging, i.e., aggregation over sub-sample, appears to
have a significant positive impact on the asymptotic risk profile of both the zero- and one-step procedure:
averaging over an increasing number of sub-samples results in a downward shift of the risk asymptotic profile,
especially around the interpolation threshold: see, e.g., Figures 3.3 and 3.4. Though we do not provide a
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theoretical justification for this interesting phenomenon, we offer some conjectures in the discussion section;
see Section 3.5.

3.1.2 Other related work
In this section, we review some related work on risk non-monotonicity, cross-validation, as well as exact
asymptotic risk characterization. Explicit references to these works, when appropriate, are also made in
the main sections.

Non-monotonicity of generalization performance. The study of non-monotone risk behavior is
largely motivated by empirical evidence in standard statistical learning tasks such as classification and
prediction, where instances of non-monotonic risk profiles were originally discovered and reported. See
Trunk (1979); Duin (1995); Opper and Kinzel (1996) and Loog et al. (2020) for some earlier findings on the
double descent risk behavior. Recently, it has garnered growing interest due to the remarkable successes of
neural networks where similar non-monotonic behavior has also been observed; see LeCun et al. (1990);
Geiger et al. (2019); Zhang et al. (2017, 2021) and references therein. The non-monotonic behavior of the
test error as a function of the model size in general context was brought up by Belkin et al. (2019a) and
has since been theoretically established for many other classical estimators such as linear/kernel regression,
ridge regression, logistic regression, and under stylized models such as linear model or random features
model. Besides the work discussed in our main sections, see also Kini and Thrampoulidis (2020); Mei and
Montanari (2022); Mitra (2019); Derezinski et al. (2020); Frei et al. (2022) and the survey work Bartlett
et al. (2021). When it comes to the sample-wise non-monotonic performances, a recent line of work asks
and provides partial answers to the question: given additional observation points, when and to what extend
will the generalization performance improve (Viering et al., 2019; Nakkiran, 2019; Nakkiran et al., 2021;
Mhammedi, 2021). In particular, Nakkiran et al. (2021) investigates the role of optimal tuning in the
context of ridge regression, and for a class of linear models, demonstrated that the optimally-tuned ℓ2
regularization achieves monotonic generalization performance.

Data-splitting and cross-validation. The framework developed in the current work crucially depends
on split-sample cross-validation, which compares different predictors trained on one part of the sample using
out-of-sample risk estimates from the remaining part. The split-sample cross-validation is a well-known
methodology studied in several works (e.g., Stone (1974); Györfi et al. (2006); Yang (2007); Arlot and
Celisse (2010)). Split-sample cross-validation is theoretically easier to analyze compared to the k-fold
cross-validation and is shown to yield optimal rates in the context of non-parametric regression (Yang,
2007; Van der Laan et al., 2007; Van der Vaart et al., 2006). These works have derived oracle inequalities
that show that split-sample cross-validation based predictor has asymptotically the smallest risk among
the collection of predictors up to an additive error (that converges to zero). The oracle inequalities are
either called exact or inexact depending on whether the constant multiplying the smallest risk is 1 or
1 + δ (for an arbitrarily δ); see, e.g., Lecué and Mendelson (2012). All these works have used split-sample
cross-validation for the purpose of choosing predictors with good prediction risk, and the existing oracle
inequalities are all additive in nature.

Application of cross-validation for over-parameterized learning is more recent and here special care
is required in choosing the split sizes because splitting in half would change the aspect ratios in the
proportional asymptotics regime. In contrast to the low dimensional or non-parametric setting, it is
well-known that the classical k-fold cross-validation framework suffers from severe bias and thus requires
careful modification or a diverging choice of k (see, e.g., Mücke et al. (2022); Rad and Maleki (2020)). In
particular, when k is taken to be n, the resulting procedure is also known as leave-one-out cross-validation
(LOOCV), which mitigates these bias issue and has proven to be effective in a variety of settings; see
Beirami et al. (2017); Wang et al. (2018b); Giordano et al. (2019); Stephenson and Broderick (2020b);
Wilson et al. (2020); Austern and Zhou (2020); Xu et al. (2021); Patil et al. (2021, 2022b) and references
therein.

Our use of cross-validation is slightly different: the goal is to choose the “optimal” sub-sample size for a
single prediction procedure. Furthermore, supplementing the existing oracle inequalities for cross-validation,
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we also provide a multiplicative oracle inequality which shows that the split-sample cross-validated predictor
attains the smallest risk in the collection up to a factor converging to 1 with the sample size. This
multiplicative version is crucial for our study, allowing us to consider ingredient predictors whose risk might
diverge with sample size.

Risk characterization. In developing our zero-step and one-step procedures, we assume existence of a
deterministic risk profile function for every aspect ratio. As discussed, the exact formulas for the risk profile
functions have been obtained for various estimators in both classification and regression settings. In the past
decade, several distinct techniques and tools have been developed to explicitly describe and analyze these
risk functions. Prominent examples include the leave-one-out type perturbation analysis (e.g., Karoui (2013,
2018)), the approximate message passing machinery (e.g., Donoho et al. (2009); Donoho and Montanari
(2016); Bayati and Montanari (2011)), and the convex Gaussian min-max theorem (e.g., Stojnic (2013);
Thrampoulidis et al. (2015, 2018)). These techniques rely critically upon a well-specified model, as well as
the assumption that the entries of the design matrix are drawn i.i.d. from standard normal distribution,
while some restricted universality results are developed in Bayati et al. (2015); Montanari and Nguyen
(2017); Chen and Lam (2021); Hu and Lu (2020). In this work, however, we take a more direct approach
and develop some non-asymptotic oracle risk inequalities. Leveraging upon these oracle inequalities, our
results do not require well-specified models, and only assume the existence of a relatively well-behaved risk
profile, which presumably allows for weaker distributional assumptions.

3.1.3 Organization and notation
Organization.

• In Section 3.2, we describe the general cross-validation and model selection algorithm, derive associated
oracle risk inequalities, and provide probabilistic bounds on the error terms. We then obtain concrete
results for a variety of classification and regression loss functions.

• In Section 3.3, we describe the zero-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify the related assumptions for the ridgeless and lassoless prediction
procedures, and show corresponding numerical illustrations.

• In Section 3.4, we describe the one-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify assumptions for arbitrary linear predictors, the special cases of
ridgeless and lassoless prediction procedures, and show corresponding numerical illustrations.

• In Section 3.5, we conclude and provide three concrete directions for future work.

Nearly all the proofs are deferred to the supplement.

Notation. We use N to denote the set of natural numbers, R to denote the set of real numbers, R≥0 to
denote the set of non-negative real numbers, R>0 to denote the set of positive real numbers, and R to denote
the extended real number system, i.e., R = R ∪ {−∞,+∞}. For a real number a, (a)+ denotes its positive
part, ⌊a⌋ denotes its floor, ⌈a⌉ denotes its ceiling. For a set A, we use IA to denote its indicator function.
We denote convergence in probability by p−→, almost sure convergence by a.s.−−→, and weak convergence by d−→.
We use generic letters C,C1, C2, . . . to denote constants whose values may change from line to line.

For a comprehensive list of notation used in this work, see Appendix C.9.

3.2 General cross-validation and model selection
The primary focus of this work is to develop a framework to improve upon prediction procedures in the
overparameterized regime in which the number of features p is comparable to and often exceeds the number
of observations n, and where the predictive risk may be non-monotonic in the aspect ratio p/n. As discussed
in Section 3.1, a fundamental component of our methodology is the selection of an optimal size of the
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sub-samples through cross-validation. To that effect, we begin by deriving some general, non-asymptotic
oracle risk inequalities for split-sample cross-validation, as described in Algorithm 1, that hold under
minimal assumptions. While our bounds apply to a wide range of learning problems and may be of
independent interest, they are crucial in demonstrating the risk monotonization properties of the procedures
presented in Sections 3.3 and 3.4.

Though cross-validation is a well-known and well-studied procedure (see, e.g., Van der Laan et al.,
2007; Györfi et al., 2006; Yang, 2007), our work extends the previous results on cross-validation in a couple
of ways: (1) We derive two forms of oracle risk inequalities: the additive form that is better suited for
bounded loss functions (especially classification losses), and the multiplicative form that is better suited
unbounded loss functions (especially regression losses); (2) In addition to common sample mean based
estimation of the prediction risk, we also analyze the median-of-means based estimation of the prediction
risk that proves to be useful in relaxing strong moment assumption on the predictors.

3.2.1 Oracle risk inequalities
Setting the stage, suppose we are given n samples of labeled data Dn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)},
where Xi ∈ Rp is a p-dimensional feature vector and Yi ∈ R is a scalar response variable for i = 1, . . . , n.
Let f̂ be a prediction procedure that maps Dn to a predictor f̂(·; Dn) : Rp → R (a measurable function of
the data Dn). For any predictor f̂(·; Dn), trained on the data set Dn, that takes in a feature vector x ∈ Rp

and outputs a real-valued prediction f̂(x; Dn), we measure its predictive accuracy via a non-negative loss
function ℓ : R × R → R≥0. Given a new feature vector X0 ∈ Rp with associated response variable Y0 ∈ R
so that (X0, Y0) is independent of Dn,1 the prediction error or out-of-sample error incurred by f̂(·; Dn) is
ℓ(Y0, f̂(X0; Dn)). Note that the prediction error ℓ(Y0, f̂(X0; Dn)) is a random variable that is a function of
both Dn and (X0, Y0).

We will quantify the performance of f̂(·; Dn) using the conditional expected prediction loss. The
conditional expected prediction loss given the data Dn, or the conditional prediction risk for short, of
f̂(·; Dn) is defined as

R(f̂(·; Dn)) := EX0,Y0 [ℓ(Y0, f̂(X0; Dn)) | Dn] =
∫
ℓ(y, f̂(x; Dn)) dP (x, y), (3.5)

where P denotes the joint probability distribution of (X0, Y0). Note that R(f̂(·; Dn)) is a random variable
that depends on Dn. An empirical estimator of R(f̂(·; Dn)) is denoted by R̂(f̂(·; Dn)). In this work, we
mainly consider two such estimators: the average estimator and the median-of-means estimator as defined
in (3.2) and (3.3), respectively.

Consider any prescribed index set Ξ, where each ξ ∈ Ξ corresponds to a specific model that will be clear
from the context. Based on the training data, a predictor f̂ξ(·; Dtr) is fitted for each model ξ and estimated
risks of f̂ξ, ξ ∈ Ξ are compared on a validation data set as described in Algorithm 1. Let f̂ cv(·; Dn) be
the final predictor returned by Algorithm 1. We shall consider two types of oracle inequalities: one in an
additive form and the other in a multiplicative form. More specifically, for any prescribed model set Ξ,
define the additive error term and multiplicative error term respectively as follows:

∆add
n := max

ξ∈Ξ

∣∣∣R̂(f̂ξ(·; Dtr)) −R(f̂ξ(·; Dtr))
∣∣∣, (3.6a)

∆mul
n := max

ξ∈Ξ

∣∣∣ R̂(f̂ξ(·; Dtr))
R(f̂ξ(·; Dtr))

− 1
∣∣∣. (3.6b)

The following proposition relates the performance of f̂ cv(·; Dn) to the “oracle” prediction risk in terms of
these errors terms.

Proposition 3.2.1 (Deterministic oracle risk inequalities). The prediction risk of f̂ cv(·; Dn) satisfies the
following deterministic oracle inequalities:

1We will reserve the notation (X0, Y0) to denote a random variable that is drawn independent of Dn.
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Algorithm 1 General cross-validation and model selection procedure
Inputs:

– a dataset Dn = {(Xi, Yi) ∈ Rp × R : 1 ≤ i ≤ n};
– a positive integer nte < n;
– an index set Ξ;
– a set of prediction procedures {f̂ξ: ξ ∈ Ξ};
– a loss function ℓ : R × R → R≥0;
– a centering procedure CEN ∈ {AVG, MOM};
– a real number η > 0 if CEN is MOM.

Output:

– a predictor f̂ cv(·; Dn) : Rp → R.

Procedure:

1. Randomly split the index set In = {1, . . . , n} into two disjoint sets Itr and Ite such that |Itr| = n−nte
(which we denote by ntr), |Ite| = nte. Denote the corresponding splitting of the dataset Dn by
Dtr = {(Xi, Yi) : i ∈ Itr} (for training) and Dte = {(Xj , Yj) : j ∈ Ite} (for testing).

2. For each ξ ∈ Ξ, fit the prediction procedure f̂ξ on Dtr to obtain the predictor f̂ξ(·; Dtr) : Rp → R.

3. For each ξ ∈ Ξ,

• if CEN = AVG, estimate the conditional prediction risk of f̂ξ using

R̂(f̂ξ(·; Dtr)) = 1
|Dte|

∑
j∈Ite

ℓ(Yj , f̂ξ(Xj ; Dtr)). (3.2)

• if CEN = MOM, estimate the conditional prediction risk of f̂ξ using

R̂(f̂ξ(·; Dtr)) = MOM
({
ℓ(Yj , f̂ξ(Xj ; Dtr)), j ∈ Ite

}
, η
)
. (3.3)

See discussion after Lemma C.8.2 for the definition of MOM(·, ·).

4. Set ξ̂ ∈ Ξ to be the index that minimizes the estimated prediction risk using

ξ̂ ∈ arg min
ξ∈Ξ

R̂(f̂ξ(·; Dtr)). (3.4)

Note that ξ̂ need not be unique (hence the set notation) and any choice that leads to the minimum
estimated risk enjoys the subsequent theoretical guarantees.

5. Return the predictor f̂ cv(·; Dn) = f̂ ξ̂(·; Dtr).
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1. additive form:

R(f̂ cv(·; Dn)) ≤ min
ξ∈Ξ

R(f̂ξ(·; Dtr) + 2∆add
n ,

E[R(f̂ cv(·; Dn))] ≤ min
ξ∈Ξ

E[R(f̂ξ(·; Dtr)] + 2E[∆add
n ].

(3.7)

2. multiplicative form:

R(f̂ cv(·; Dn)) ≤ 1 + ∆mul
n

(1 − ∆mul
n )+

· min
ξ∈Ξ

R(f̂ξ(·; Dtr). (3.8)

Proposition 3.2.1 provides oracle bounds on the prediction risk of f̂ cv(·; Dn) in terms of the error terms
∆add
n and ∆mul

n . Note that Proposition 3.2.1 does not make any assumptions about the underlying model
of the data or the dependence structure between the observations. Under some general conditions on the
data, one can show that ∆add

n and/or ∆mul
n converge to zero in probability as n → ∞. The exact rate of

convergence depends on the number of observations nte in the test data and also on the tail behavior of
ℓ(Y0, f̂

ξ(X0; Dtr)) conditional on f̂ξ(·; Dtr). For notational convenience, from now, we will write f̂ cv and
f̂ξ to denote f̂ cv(·; Dn) and f̂ξ(·; Dtr), respectively.

Remark 3.2.2 (Lower bound on R(f̂ cv)). Proposition 3.2.1 provides upper bounds on the (conditional)
prediction risk of f̂ cv in terms of the minimum risk of f̂ξ. It can be readily seen that the risk of f̂ cv is
always lower bounded by the minimum risk. More formally, note that f̂ cv =

∑
ξ∈Ξ f̂

ξI
ξ̂=ξ, and, therefore,

R(f̂ cv) =
∑
ξ∈Ξ

R(f̂ξ)I
ξ̂=ξ ≥ min

ξ∈Ξ
R(f̂ξ)

∑
ξ∈Ξ

I
ξ̂=ξ = min

ξ∈Ξ
R(f̂ξ).

Combined with Proposition 3.2.1, we conclude that

min
ξ∈Ξ

R(f̂ξ) ≤ R(f̂ cv) ≤

{
minξ∈Ξ R(f̂ξ) + ∆add

n

minξ∈Ξ R(f̂ξ) · (1 + ∆mul
n )/(1 − ∆mul

n )+.

Thus, convergence (in probability) of either ∆add
n or ∆mul

n to 0 implies that the risk of f̂ cv is asymptotically
the same as the minimum risk of f̂ξ, ξ ∈ Ξ in either additive or multiplicative sense, respectively.

The additive and multiplicative form of oracle inequalities have their own advantages. Traditionally,
the additive form is more common. The additive oracle inequality for the prediction risk readily implies
the additive oracle inequality on the excess risk. In other words,

R(f̂ cv) −R(f⋆) ≤ min
ξ∈Ξ

R(f̂ξ) −R(f⋆) + ∆add
n ,

for any predictor f⋆. In particular, this will hold for the best (oracle) predictor for the prediction risk. This
is not true of the multiplicative oracle inequality, which instead only implies the bound

R(f̂ cv) −R(f⋆) ≤ cn
{

min
ξ∈Ξ

R(f̂ξ) −R(f⋆)
}

+ (cn − 1)R(f⋆),

where f⋆ is any predictor (in particular, the one with the best prediction risk) and

cn = 1 + ∆mul
n

(1 − ∆mul
n )+

, cn − 1 = 2∆mul
n

(1 − ∆mul
n )+

.

In terms of claiming that f̂ cv has prediction risk close to the best in the collection of predictors
{f̂ξ, ξ ∈ Ξ}, the multiplicative form has certain advantages compared to the additive form. In the case
that minξ∈Ξ R(f̂ξ) converges to 0, the additive oracle inequality (3.7) implies that the risk of the selected
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predictor f̂ cv asymptotically matches the risk of the best predictor among the collection {f̂ξ, ξ ∈ Ξ} only
if ∆add

n converges to zero faster than minξ∈Ξ R(f̂ξ). If, however, ∆add
n converges to zero slower than the

minimum risk in the collection, then the additive oracle inequality does not imply a favorable result. In
this case, a multiplicative oracle inequality helps. As long as ∆mul

n converges to 0, the multiplicative
oracle inequality implies that f̂ cv matches in risk with the best predictor in the collection, irrespective of
whether the minimum risk converges to zero or not. Note that ∆add

n only controls the additive error of
the risk estimator R̂(f̂ξ), which is easier to control than the multiplicative error; think of controlling the
error of sample mean of Bernoulli(p) random variables with p = pn → 0; See Remark 3.2.12 for a more
mathematical discussion. Even when minξ∈Ξ R(f̂ξ) does not converge to zero, the multiplicative form
might be advantageous compared to the additive form. Indeed, suppose that f̂ξ0 is in the collection and its
risk diverges as n → ∞. Then, it may not be true that∣∣R̂(f̂ξ0) −R(f̂ξ0)

∣∣ p→ 0,

because both R̂(f̂ξ0) and R(f̂ξ0) are diverging. This implies that ∆add
n does not converge to 0 and in

fact, might diverge. However, the minimum risk in the collection could still be finite, and the additive
oracle inequality fails to capture this. On the other hand, R̂(f̂ξ0)/R(f̂ξ0) can still converge to 1 as n → ∞
even if R(f̂ξ0) diverges to ∞. In our applications in overparameterized learning, we will encounter this
situation where the number of features (p) is close to the number of observations (n), i.e., p/n ≈ 1. See
Remark 3.2.23 for more details.

Remark 3.2.3 (From multiplicative to additive oracle inequality). Note that if ∆mul
n = op(1), then

(1 + ∆mul
n )/(1 − ∆mul

n )+ = 1 +Op(1)∆mul
n = 1 + op(1), then the multiplicative oracle inequality (3.8) yields

R(f̂ cv) ≤ (1 +Op(1)∆mul
n ) min

ξ∈Ξ
R(f̂ξ) = (1 + op(1)) min

ξ∈Ξ
R(f̂ξ).

Observe that this multiplicative form can be converted into an additive form as

R(f̂ cv) ≤ min
ξ∈Ξ

R(f̂ξ) + Op(1)∆mul
n min

ξ∈Ξ
R(f̂ξ),

where the second term on the right hand side is always smaller order compared to the first term as long as
∆mul
n converges in probability to zero.

From this discussion, it follows that one can choose a predictor with the best prediction risk in a
collection if either ∆add

n or ∆mul
n converges in probability to zero. The application of Algorithm 1 for risk

monotonizing procedures will be discussed in the next three sections. In the next two subsections, we
provide some general sufficient conditions to verify ∆add

n = op(1) and ∆mul
n = op(1) for independent data.

We also provide examples of common loss functions and show that under some mild moment assumptions,
they satisfy ∆add

n = op(1) and ∆mul
n = op(1).

3.2.2 Control of ∆add
n and ∆mul

n

In order to characterize R(f̂ cv), by Proposition 3.2.1 it is sufficient to control ∆add
n and ∆mul

n . In this
section, we demonstrate that under certain assumptions on the loss function ℓ, the error terms are small
both in probability and in expectation, which in turn yields optimality of f̂ cv among the predictors in
{f̂ξ, ξ ∈ Ξ}.

To facilitate our discussion, for each ξ ∈ Ξ, define the conditional ψ1-Orlicz norm of ℓ(Y0, f̂
ξ(X0)) given

Dn as
∥ℓ(Y0, f̂

ξ(X0))∥ψ1|Dn
:= inf

{
C > 0 : E

[
exp

(
|ℓ(Y0, f̂

ξ(X0))|/C
)

| Dn

]
≤ 2
}
. (3.9)

Similarly, for r ≥ 1, define the conditional Lr-norm as

∥ℓ(Y0, f̂
ξ(X0))∥Lr|Dn

:=
(
E
[∣∣ℓ(Y0, f̂

ξ(X0))
∣∣r ∣∣ Dn

])1/r
. (3.10)
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It is well-known (Vershynin, 2018, Proposition 2.7.1) that

∥ℓ(Y0, f̂
ξ(X0))∥ψ1|Dn

≍ sup
r≥1

r−1∥ℓ(Y0, f̂
ξ(X0))∥Lr|Dn

,

i.e., there are absolute constants Cl and Cu such that

0 < Cl ≤
∥ℓ(Y0, f̂

ξ(X0))∥ψ1|D

supr≥1 r
−1∥ℓ(Y0, f̂ξ(X0))∥Lr|Dn

≤ Cu < ∞.

3.2.2.1 Control of ∆add
n

Let f̂ξ, nte, and CEN be as defined in Algorithm 1, and ∆add
n be as defined in (3.6a).

Lemma 3.2.4 (Control of ∆add
n and its expectation for losses with bounded conditional ψ1 norm). Suppose

(Xi, Yi), i ∈ Ite are sampled i.i.d. from P . Suppose the loss function ℓ is such that

∥ℓ(Y0, f̂
ξ(X0))∥ψ1|Dn

≤ σ̂ξ

for (X0, Y0) ∼ P and set σ̂Ξ := maxξ∈Ξ σ̂ξ. Fix any 0 < A < ∞. Then, for CEN = AVG, or CEN = MOM with
η = n−A/|Ξ|, 2 there exists an absolute constant C1 > 0 such that

P

∆add
n ≥ C1σ̂Ξ max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte


 ≤ n−A.

Additionally, if for some A > 0, there exists a C2 > 0 such that P(σ̂Ξ ≥ C2) ≤ n−A, then there exists an
absolute constant C3 > 0 such that

E[∆add
n ] ≤ C1C2 max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte

+ C3n
−A/r|Ξ|1/t max

{√
t

nte
,
t

nte

}
max
ξ∈Ξ

∥σ̂ξ∥Lt

(3.11)

for every r, t ≥ 2 and 1/r + 1/t = 1.

Lemma 3.2.5 (Control of ∆add
n and its expectation for losses with bounded conditional L2 norm). Suppose

(Xi, Yi), i ∈ Ite are sampled i.i.d. from P . Suppose the loss function ℓ is such that

∥ℓ(Y0, f̂
ξ(X0))∥L2|Dn

≤ σ̂ξ

for (X0, Y0) ∼ P and set σ̂Ξ := maxξ∈Ξ σ̂ξ. Fix any 0 < A < ∞. Then, for CEN = MOM with η = n−A/|Ξ|,
there exists an absolute constant C1 > 0 such that

P

∆add
n ≥ C1σ̂Ξ

√
log(|Ξ|nA)

nte

 ≤ n−A. (3.12)

Additionally, if for some A > 0 there exists a C2 > 0 such that P(σ̂Ξ ≥ C2) ≤ n−A, then for CEN = MOM,

E
[
∆add
n

]
≤ C1C2

√
log(|Ξ|nA)

nte
+ C3n

−A/2|Ξ|1/2

√
log2(|Ξ|nA)

nte
max
ξ∈Ξ

∥σ̂ξ∥L2 (3.13)

for some absolute constant C3 > 0.
2See Remark 3.2.7.
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Remark 3.2.6 (Comparison of assumptions for CEN = AVG and CEN = MOM.). Comparing Lemmas 3.2.4
and 3.2.5, we note that the median-of-means method of risk estimation only requires control of the L2
moments of the loss function compared to the ψ1 (exponential) moments of the loss function. This is
not surprising given that the median-of-means was developed as a sub-Gaussian estimator of the mean,
only assuming finite variance (Lemma C.8.2). The L2 moment assumption in Lemma 3.2.5 can be further
relaxed to an L1+α moment assumption for α ∈ (0, 1] (Lugosi and Mendelson, 2019, Theorem 3) at the
cost of weaker rate of convergence of ∆add

n . One can, of course, replace the median-of-means estimator
with any other sub-Gaussian or sub-exponential mean estimator (Catoni, 2012; Minsker, 2015; Fan et al.,
2017) and obtain a similar weakening of the moment assumptions. Same remark continues to hold for ∆mul

n

discussed in Section 3.2.2.2.

Remark 3.2.7 (Restriction on A for CEN = MOM). In Lemmas 3.2.4 and 3.2.5, we allow for a free parameter
A. However, in order for the choice of η to be feasible in the MOM construction (see, e.g., Lemma C.8.2 in
Appendix C.8), we need B = ⌈8 log(1/η)⌉ ≤ nte, which puts the following constraint on A:

8 log(nA|Ξ|) ≤ nte ⇐⇒ A logn ≤ nte

8 − log(|Ξ|) ⇐⇒ A ≤ nte

8 logn − log(|Ξ|)
logn .

For a large enough n, this allows for a large range of A. In addition, the right hand side is large enough to
imply exponentially small probability bound for the event that ∆add

n is large. The same remark holds for
Lemmas 3.2.9 and 3.2.10 below.

The key quantities that drive the tail probability and expectation bound on ∆add
n in both Lemmas 3.2.4

and 3.2.5 are σ̂Ξ and |Ξ|. The following remark specifies the permissible growth rates on σ̂Ξ and |Ξ| to
ensure that ∆add

n is asymptotically small in probability.

Remark 3.2.8 (Tolerable growth rates on σ̂Ξ for ∆add
n = op(1)). Suppose |Ξ| ≤ nS for some constant

S > 0 independent of n, p. If
σ̂Ξ = op

(√
nte

logn

)
,

then under the setting of Lemmas 3.2.4 and 3.2.5, ∆add
n = op(1) as n → ∞. The remark follows simply by

noting that the dominating term in the probabilistic bound on ∆add
n in (3.12) is of order

σ̂Ξ

√
log(|Ξ|nA)

nte
≤ σ̂Ξ

√
(S +A) logn

nte
= O

(
σ̂Ξ

√
logn
nte

)
.

See Appendix C.6.9 for feasible rates for σ̂Ξ to ensure that E[∆add
n ] = o(1).

3.2.2.2 Control of ∆mul
n

Moving on to ∆mul
n , analogously to Lemmas 3.2.4 and 3.2.5, the following results provide high probability

bounds on ∆mul
n in terms of a coefficient of variation parameter κ which is the relative standard deviation

of ℓ(Y0, f̂
ξ(X0)) conditional on Dn. Let f̂ξ, nte, CEN be as defined Algorithm 1, and ∆mul

n be as in (3.6b).

Lemma 3.2.9 (Control of ∆mul
n for losses with bounded conditional ψ1 norm). Suppose (Xj , Yj), j ∈ Ite

are sampled i.i.d. from P . Suppose the loss function ℓ is such that

∥ℓ(Y0, f̂
ξ(X0))∥ψ1|Dn

≤ σ̂ξ for (X0, Y0) ∼ P.

Define κ̂ξ = σ̂ξ/R(f̂ξ) and κ̂Ξ = maxξ∈Ξ κ̂ξ. Fix any 0 < A < ∞. Then, for CEN = AVG, or CEN = MOM with
η = n−A/|Ξ|,

P

∆mul
n ≥ Cκ̂Ξ max


√

log(|Ξ|nA)
nte

,
log(|Ξ|nA)

nte


 ≤ n−A

for a positive constant C.
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Lemma 3.2.10 (Control of ∆mul
n for losses with bounded conditional L2 norm). Suppose (Xj , Yj), j ∈ Ite

are sampled i.i.d. from P . Suppose the loss function ℓ is such that

∥ℓ(Y0, f̂
ξ(X0))∥L2|Dn

≤ σ̂ξ for (X0, Y0) ∼ P.

Define κ̂ξ := σ̂ξ/R(f̂ξ) and κ̂Ξ := maxξ∈Ξ κ̂ξ. Fix any 0 < A < ∞. Then, for CEN = MOM with η = n−A/|Ξ|,

P

∆mul
n ≥ Cκ̂Ξ

√
log(|Ξ|nA)

nte

 ≤ n−A

for a positive constant C.

Remark 3.2.11 (Tolerable growth rate on κ̂Ξ for probabilistic bound). Suppose |Ξ| ≤ nS for some S < ∞.
If

κ̂Ξ = op

(√
nte

logn

)
,

then under the setting of Lemmas 3.2.9 and 3.2.10, ∆mul
n = op(1) as n → ∞.

Remark 3.2.12 (Comparing the control of ∆add
n versus ∆mul

n ). Note that from Lemmas 3.2.4 and 3.2.9,
controlling ∆add

n requires controlling σ̂Ξ, while controlling ∆mul
n requires controlling κ̂Ξ. The former is on

the scale of the standard deviation of the loss, while the latter is normalized standard deviation (where the
normalization is with respect to the expectation of the loss). The advantage of the latter is that, even if
the standard deviation diverges, the normalized standard deviation can be finite. This, in fact, happens
for the case of minimum ℓ2-norm least squares predictor when γ ≈ 1, in which case the control of ∆mul

n is
feasible. See also the discussion in Remark 3.2.23.

Remark 3.2.13 (Choice of nte). The above results hold true as long as nte → ∞. Of course, the choice
nte restricts the allowable growth rate of σ̂Ξ and κ̂Ξ as discussed in Remarks 3.2.8 and 3.2.11. In our
later applications in overparameterized learning, we adopt the proportional asymptotics framework in
which the number of covariates to the number of observations converges to a non-zero constant. For this
reason, we restrict ourselves to the choices of nte such that nte/n → 0 as n → ∞; for example, one can
take nte = nν for some ν < 1. This allows us to have training models with the same limiting aspect ratio
(dimension/sample size) as that of the original data without splitting. However, the larger the nte, the
more accurate our estimator of the prediction risk. For this reason, we suggest nte = O(n/ logn) rather
than nte = nν .

3.2.3 Applications to loss functions
Below we consider several examples of common predictors and loss functions, and bound the corresponding
conditional σ̂ parameters used in Lemmas 3.2.4 and 3.2.5, and conditional κ̂ parameters used in Lemmas 3.2.9
and 3.2.10. Recall the conditional ψ1 and Lr norms from (3.9) and (3.10), respectively. In addition, let ψ2
denote the ψ2-Orlicz norm.

Recall that the quantity σ̂Ξ is the maximum of either of the two conditional norms ∥ℓ(Y0, f̂
ξ(X0))∥ψ1|Dn

or
∥ℓ(Y0, f̂

ξ(X0))∥L2|Dn
over ξ ∈ Ξ. Also recall that the quantity κ̂Ξ is the maximum of either of the two ratios

of conditional norms ∥ℓ(Y0, f̂
ξ(X0))∥ψ1|Dn

/∥ℓ(Y0, f̂
ξ(X0))∥L1|Dn

or ∥ℓ(Y0, f̂
ξ(X0))∥L2|Dn

/∥ℓ(Y0, f̂
ξ(X0))∥L1|Dn

over ξ ∈ Ξ. In the following, we control each of these quantities for one of the predictors f̂ξ, ξ ∈ Ξ, which
we denote simply by f̂ for brevity.

3.2.3.1 Bounded classification loss functions

Proposition 3.2.14 (Generic classifier and 0-1 loss and hinge loss). Let f̂ be any predictor.

1. Suppose ℓ(Y0, f̂(X0)) = max
{

0, 1 − Y0f̂(X0)
}

is the hinge loss. Assume |Y0| ≤ 1 and |f̂(X0)| ≤ 1.
Then,

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ 2, and ∥ℓ(Y0, f̂(X0))∥L2|Dn

≤ 2.
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2. Suppose ℓ(Y0, f̂(X0)) = 1{Y0 ̸= f̂(X0)} is the 0-1 loss. Then,

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ 1, and ∥ℓ(Y0, f̂(X0))∥L2|Dn

≤ 1. (3.14)

More generally, any loss function that is bounded by 1 satisfies (3.14).

Proposition 3.2.14 implies that the parameter σ̂Ξ is bounded by 1 (with probability 1) for any collection
of bounded classifiers {f̂ξ, ξ ∈ Ξ}. Hence, Lemmas 3.2.4 and 3.2.5 imply that ∆add

n = Op(
√

log(|Ξ|)/nte).
Therefore, the additive form of oracle inequality from Proposition 3.2.1 can be used to conclude the following
result.

Theorem 3.2.15 (Oracle inequality for arbitrary classifiers). For any collection of classifiers {f̂ξ, ξ ∈ Ξ}
with log(|Ξ|) = o(nte) and the loss being the mis-classification or hinge loss with bounded response and
predictor, ∣∣∣R(f̂ cv) − min

ξ∈Ξ
R(f̂ξ)

∣∣∣ = Op

√ log(|Ξ|)
nte

 .

Theorem 3.2.15 can be used to argue that tuning of hyperparameters in an arbitrary classifier using
Algorithm 1 leads to an “optimal” classifier under the 0 − 1 or hinge loss. Moreover, Proposition 3.2.14
extends to arbitrary bounded loss functions.

For logistic or the cross-entropy loss, being unbounded, is not covered by Proposition 3.2.14. However,
we can use the multiplicative form of the oracle risk inequality (3.8) as done in the next section in
Proposition 3.2.18.

3.2.3.2 Unbounded regression loss functions

Proposition 3.2.16 (Linear predictor and square loss). Let f̂ be a linear predictor, i.e., for any x0 ∈ Rp,
f̂(x0) = x⊤

0 β̂ for some estimator β̂ ∈ Rp fitted on Dn. Suppose ℓ(Y0, f̂(X0)) = (Y0 − f̂(X0))2 is the square
loss. Let (X0, Y0) ∼ P . Assume E[X0] = 0p and let Σ := E[X0X

⊤
0 ]. Then, the following statements hold:

1. If (X0, Y0) ∈ Rp × R satisfies ψ2 − L2 equivalence, i.e., ∥aY0 + b⊤X0∥ψ2 ≤ τ∥aY0 + b⊤X0∥L2 for all
a ∈ R and b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ τ2 inf

β∈Rp
(∥Y0 −X⊤

0 β∥ψ2 + ∥β̂ − β∥Σ)2, and
∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ τ2.

(3.15)

2. If (X0, Y0) satisfies the L4 − L2 equivalence, i.e., ∥aY0 + b⊤X0∥L4 ≤ τ∥aY0 + b⊤X0∥L2 for all a ∈ R
and b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥L2|Dn
≤ τ2 inf

β∈Rp
(∥Y0 −X⊤

0 β∥L2 + ∥β̂ − β∥Σ)2, and
∥ℓ(Y0, f̂(X0))∥L2|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ τ2.

(3.16)

Proposition 3.2.17 (Linear predictor and absolute loss). Let f̂ be a linear predictor corresponding to
estimator β̂ fitted on Dn. Suppose ℓ(Y0, f̂(X0)) = |Y0 − X⊤

0 β̂| is the absolute loss. Let (X0, Y0) ∼ P .
Assume E[X0] = 0p and let Σ := E[X0X

⊤
0 ]. Then, the following statements hold:

1. If (X0, Y0) ∈ Rp × R satisfies ψ1 − L1 equivalence, i.e., ∥aY0 + b⊤X0∥ψ1 ≤ τ∥aY0 + b⊤X0∥L1 for all
a ∈ R and b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ τ inf

β∈Rp
(∥Y0 −X⊤

0 β∥L1 + ∥X⊤
0 (β̂ − β)∥L1|Dn

),
∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ τ.

(3.17)
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2. If (X0, Y0) satisfies L2 − L1 equivalence, i.e., ∥aY0 + b⊤X0∥L2 ≤ τ∥aY0 + b⊤X0∥L1 , for all a ∈ Rp
and b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥L2|Dn
≤ τ inf

β∈Rp
(∥Y0 −X⊤

0 β∥L1 + ∥X⊤
0 (β̂ − β)∥L1|Dn

),
∥ℓ(Y0, f̂(X0))∥L2|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ τ.

(3.18)

Proposition 3.2.18 (Linear predictor and logistic loss). Let Y0 ∈ [0, 1] almost surely. Let f̂ be a linear
predictor corresponding to an estimator β̂ fitted on Dn. Suppose ℓ(Y0, f̂(X0)) is the logistic or cross-entropy
loss:

ℓ(Y0, f̂(X0)) = −Y0 log
(

1
1 + e−X⊤

0 β̂

)
− (1 − Y0) log

(
1 − 1

1 + e−X⊤
0 β̂

)
.

Assume there exists pmin ∈ (0, 1) such that pmin ≤ E[Y0 | X0 = x] ≤ 1 − pmin for all x. Then, the following
statements hold:

1. If X0 ∈ Rp satisfies ψ1 − L1 equivalence, i.e., ∥b⊤X0∥ψ1 ≤ τ∥b⊤X0∥L1 for all b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ 2τp−1

min.

2. If X0 ∈ Rp satisfies L2 − L1 equivalence, i.e., ∥b⊤X0∥L2 ≤ τ∥b⊤X0∥L1 for all b ∈ Rp, then

∥ℓ(Y0, f̂(X0))∥L2|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤ 2τp−1

min.

In the remarks that follow we offer a discussion of the different types of norm equivalences assumed in
Propositions 3.2.16 to 3.2.18.

Remark 3.2.19 (Discussion of ψ2 − L2 and L4 − L2 equivalences). A centered random vector Z ∈ Rp is
said to be τ -sub-Gaussian if

sup
a∈Rp

∥a⊤Z∥ψ2

∥a∥ΣZ

≤ τ < ∞ where ΣZ := Cov(Z). (3.19)

See for instance Definition 1.2 and Remark 1.3 of Mendelson and Zhivotovskiy (2020) for more details. The
L4 − L2 equivalence assumption is popular in robust estimation of covariance matrices. See, for example,
Minsker and Wei (2020); Minsker (2018); Mendelson and Zhivotovskiy (2020). This is weaker than the
sub-Gaussianity assumption in (3.19) in the sense that ψ2 − L2 equivalence implies L4 − L2 equivalence.
This follows from the well-known fact that

Cl ≤ ∥W∥ψ2

supr≥1 r
−1/2∥W∥Lr

≤ Cu

for some universal constants Cl and Cu; see Vershynin (2018, Proposition 2.5.2). The L4 − L2 equivalence
assumption is also weaker than a commonly used assumption in the random matrix theory (RMT) literature.
In RMT, one typically assumes features of the form Σ1/2Z, where Z have i.i.d. entries and Σ is feature
covariance matrix. If the components of Z are independent and have bounded kurtosis, then this typical
RMT assumption implies L4 − L2 equivalence.

Remark 3.2.20 (Discussion of ψ1 − L1 and L2 − L1 equivalences). In Remark 3.2.19, we have given
examples of distributions that satisfy ψ2 − L2 and/or L4 − L2 equivalence. From the fact that, for any
random variable W , the function r 7→ logE[|W |r] (r ≥ 1) is convex (Loeve, 2017, Section 9, inequality
(b)), we can conclude that ψ2 − L2 equivalence implies ψ1 − L1 equivalence, and L4 − L2 equivalence
implies L2 − L1 equivalence; see Proposition C.6.21. We further note that distributions satisfying ψ1 − L2
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equivalence also satisfy ψ1 − L1 and L2 − L1 equivalence. See Figure C.7 for a visual summary of these
equivalences and their proofs in Appendix C.6.10.

We will now discuss other distributions that satisfy ψ1 − L2 equivalence (which implies ψ1 − L1
equivalence). A random vector Z ∈ Rq is log-concave if for any two measurable subsets A and B of Rq,
and for any θ ∈ [0, 1],

logP(Z ∈ θA+ (1 − θ)B) ≥ θ · P(Z ∈ A) + (1 − θ) · P(Z ∈ B),

whenever the set θA + (1 − θ)B = {θx1 + (1 − θ)x2 : x1 ∈ A, x2 ∈ B} is measurable; see Definition 2.2
of Adamczak et al. (2010). There exist a universal constant C such that all log-concave random vectors
Z ∈ Rq with mean 0 satisfy

∥a⊤Z∥ψ1 ≤ C∥a⊤Z∥L1

for all a ∈ Rq. This follows from the results of Adamczak et al. (2010) and Latała (1999); see also Nayar
and Oleszkiewicz (2012, Corollary 3), Proposition 2.1.1 of Warsaw (2003), and Proposition 2.14 of Ledoux
(2001). In particular, Lemma 2.3 of Adamczak et al. (2010) implies that there exists a universal constant C
such that for all a ∈ Rq

∥a⊤Z∥ψ1 ≤ C∥a⊤Z∥L2 .

Finally, note that since L4 −L2 equivalence implies L2 −L1 equivalence, and the RMT features as described
in Remark 3.2.19 satisfy L4 − L2 equivalence, they in turn satisfy L2 − L1 equivalence.

Remark 3.2.21 (Model-free nature of assumptions). It is worth emphasizing that we do not require a
well-specified linear model for Propositions 3.2.16 and 3.2.17. Hence, our results are model agnostic.

Propositions 3.2.16 to 3.2.18 imply that, under the stated assumptions, for any collection of predic-
tors {f̂ξ : f̂ξ(x) = x⊤β̂ξ, ξ ∈ Ξ}, κ̂Ξ is bounded if (X0, Y0) satisfies a requisite moment equivalence
assumption. On the other hand, the control of σ̂Ξ depends crucially on behavior of maxξ∈Ξ ∥β̂ξ − β0∥Σ.
Because κ̂Ξ is bounded with probability 1, Lemmas 3.2.9 and 3.2.10 can be used to conclude ∆mul

n =
Op(KX,Y

√
log(|Ξ|)/nte), where KX,Y is the constant in the moment equivalence. Hence, the multiplicative

form of the oracle inequality from Proposition 3.2.1 can used to conclude the following general result for an
arbitrary collection of linear predictors.

Theorem 3.2.22 (Oracle inequality for arbitrary linear predictors). Fix any collection of predictors
{f̂ξ : f̂ξ(x) = x⊤β̂ξ, ξ ∈ Ξ}. Let f̂ cv be the output of Algorithm 1 with f̂ξ, ξ ∈ Ξ as the ingredient predictors.
Suppose one of the following conditions hold:

1. The loss is squared error, (X0, Y0) satisfies ψ2 − L2 equivalence when CEN = AVE and L4 − L2
equivalence when CEN = MOM.

2. The loss is absolute error, (X0, Y0) satisfies ψ1 − L2 equivalence when CEN = AVE and L2 − L1
equivalence when CEN = MOM.

3. The loss is logistic error and pmin ≤ E[Y0 | X = x] ≤ 1 − pmin for some pmin ∈ (0, 1), X0 satisfies
ψ1 − L1 equivalence when CEN = AVE and L2 − L1 equivalence when CEN = MOM.

Then, there exists a constant C depending only on the moment equivalence condition such that for any
A > 0 and for f̂ cv returned by Algorithm 1, we have with probability at least 1 − n−A,∣∣∣∣∣ R(f̂ cv)

minξ∈Ξ R(f̂ξ)
− 1
∣∣∣∣∣ ≤ C

√
log(|Ξ|nA)

nte
.

Here, for CEN = AVE, there are no restrictions on A. For CEN = MOM, we need η to be n−A/|Ξ| in Algorithm 1.

Theorem 3.2.22 implies that a multiplicative form of oracle inequality holds true for any collection of
linear predictors with three commonly used loss functions – square, absolute, or logistic loss – under certain
moment equivalence conditions on the underlying data. It is worth stressing that Theorem 3.2.22 does not
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require any parametric model assumption on the data. The moment equivalence conditions required are
quite mild as indicated in Remarks 3.2.19 and 3.2.20. Theorem 3.2.22 can be used to argue that tuning of
hyperparameters for an arbitrary linear predictor using Algorithm 1 leads to an “optimal” linear predictor.
In particular, this includes variable selection in linear regression, and penalty selection in ridge regression
or lasso.
Remark 3.2.23 (Divergence of ∆add

n ). As mentioned above, control of σ̂Ξ for a collection of linear predictors
depends crucially on maxξ∈Ξ ∥β̂ξ −β0∥Σ. Controlling this maximum is not difficult in the “low-dimensional”
regime, where the number of features is asymptotically negligible compared to the number of observations.
If, however, the collection of linear predictors involves the least squares estimator with the number of
features approximately same as the number of observations, then Corollaries 1 and 3 of Hastie et al. (2022)
implies that maxξ∈Ξ ∥β̂ξ − β0∥Σ → ∞ almost surely under some regularity assumptions. The case of
number of features approximately the same as the number of observations can be seen in the problem of
tuning the number of basis functions in series regression (see also Mei and Montanari (2022); Bartlett et al.
(2021) for similar results on random features regression and kernel regression). In this case, ∆add

n diverges
while ∆mul

n is bounded hinting the advantages of the multiplicative form of the oracle inequality over the
additive form.

3.2.4 Illustrative prediction procedures
In the following two sections, we provide concrete applications of the results from this section in the context
of overparameterized learning. The main motivation of our applications is to synthesize a predictor whose
prediction risk is approximately monotonically non-increasing in the sample size. Although this represents
the basic idea of “more data does not hurt,” many commonly studied predictors such as minimum ℓ2-norm
least squares, minimum ℓ1-norm least squares in the overparameterized regime do not satisfy this property.
In the following sections, we will provide two different ways to synthesize a predictor with this property
starting from any given base prediction procedure.
Definition 3.2.24 (Prediction procedure). A prediction procedure, denoted by f̃ is a real-valued map,
with two arguments: (1) a feature vector; and (2) a dataset. If Dm = {(Xi, Yi) : 1 ≤ i ≤ m} represents a
dataset of size m, then f̃(x; Dm) represents prediction at x of the prediction procedure f̃ trained on the
dataset Dm.
Example 3.2.25 (Minimum ℓ2-norm least squares prediction procedure). Suppose Dm = {(Xi, Yi) ∈
Rp × R : 1 ≤ i ≤ m}. The minimum ℓ2-norm least squares (MN2LS) estimator trained on Dm is defined as

β̃mn2(Dm) := arg min
β∈Rp

{
∥β∥2 : β is a minimizer of the function θ 7→

m∑
i=1

(Yi −X⊤
i θ)2

}
.

The estimator can be written explicitly in terms of (Xi, Yi), i = 1, . . . ,m as

β̃mn2(Dm) =
(

1
m

m∑
i=1

XiX
⊤
i

)†(
1
m

m∑
i=1

XiYi

)
, (3.20)

where A† denotes the Moore-Penrose inverse of A. It is also the “ridgeless" least squares estimator
because of the fact that β̃mn2(Dm) = limλ→0+ β̃ridge,λ(Dm), where β̃ridge,λ(Dm) is the ridge estimator at a
regularization parameter λ > 0 trained on Dm:

β̃ridge,λ(Dm) := arg min
θ∈Rp

{
1
m

m∑
i=1

(Yi −X⊤
i θ)2 + λ∥θ∥2

2

}
. (3.21)

The MN2LS estimator has been attracted attention in the last few years and its risk behavior has been
studied by Bartlett et al. (2020); Belkin et al. (2020); Hastie et al. (2022); Muthukumar et al. (2020),
among others. The MN2LS predictor is now defined as

f̃mn2(x; D) := x⊤β̃mn2(D), (3.22)
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for any vector x ∈ Rp and dataset D containing random vectors from Rp × R.

Example 3.2.26 (Minimum ℓ1-norm least squares prediction procedure). Suppose Dm = {(Xi, Yi) ∈
Rp × R : 1 ≤ i ≤ m}. The minimum ℓ1-norm least squares (MN1LS) estimator trained on Dm is defined as

β̃mn1(Dm) = arg min
β∈Rp

{
∥β∥1 : β is a minimizer of the function θ 7→

m∑
i=1

(Yi −X⊤
i θ)2

}
. (3.23)

It is also the “lassoless" least squares estimator because of the fact that β̃mn1(Dm) = limλ→0+ β̃lasso,λ, where
β̃lasso,λ(Dm) is the lasso estimator at a regularization parameter λ > 0 trained on Dm:

β̃lasso,λ(Dm) := arg min
θ∈Rp

{
1

2m

m∑
i=1

(Yi −X⊤
i θ)2 + λ∥θ∥1

}
. (3.24)

The MN1LS estimator connects naturally to the basis pursuit estimator in compressed sensing literature
(e.g. Candes and Tao (2006); Donoho (2006)) and its risk in the proportional regime has been recently
analyzed in Mitra (2019); Li and Wei (2021). The MN1LS predictor is now defined as

f̃mn1(x; D) := x⊤β̃mn1(D), (3.25)

for any vector x ∈ Rp and dataset D containing random vectors from Rp × R.

Note that the MN2LS and MN1LS estimators coincide when there is a unique minimizer of the function
θ 7→

∑m
i=1(Yi −X⊤

i θ)2, in which case both the estimators become the least squares estimator.
We focus mostly on the case of linear predictors and squared error loss, although all our results are

easily extendable to general predictors and loss functions. (See Remark 3.3.16 for more details.)

3.3 Application 1: Zero-step prediction procedure

3.3.1 Motivation

Figure 3.2: Illustration of risk monotonization.

Suppose Rn represents the prediction risk of a given
prediction procedure f̃ on a dataset containing n
i.i.d. observations. It is desirable that Rn as a
function of n ≥ 1 is non-increasing. As described
above, this however may not hold for an arbitrary
procedure f̃ . If we have access to Rk for 1 ≤ k ≤ n,
then one could just return the predictor obtained
by applying the prediction procedure f̃ on a subset
of k⋆n i.i.d. observations where k⋆n = arg min{Rk :
1 ≤ k ≤ n}. This procedure, (denoted by, say)
f̃ zs⋆, essentially returns a predictor whose risk is
the largest non-increasing function that is below
the risk of f̃ ; see Figure 3.2 for an illustration.

It is trivially true that the risk of the prediction procedure f̃ zs⋆ as a function of n ≥ 1 is non-decreasing
and its risk at the sample size n is given by mink≤nRk. This procedure f̃ zs⋆ is, however, not actionable in
practice because one seldom has access to the true risk Rn of f̃ .

The goal of this section is to develop a prediction procedure f̂ zs starting with the base prediction
procedure f̃ such that the risk of f̂ zs is the largest non-increasing function that is below the risk of f̃
(asymptotically). We achieve this goal by applying Algorithm 1 with the ingredient predictors being the
prediction procedure f̃ applied on the subsets of the original data of varying sample sizes.
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Remark 3.3.1 (Conditional versus unconditional risk). There are two versions of the prediction risk Rn
that one can consider: conditional (on the dataset Dn) and unconditional/non-stochastic. The conditional
risk is not just a function of sample size, but also of the data Dn. Hence, the conditional risk Rk, for
k ≤ n, is ill-defined as just a function of the sample size k. Therefore, the motivation above should be
considered with respect to a non-stochastic approximation of the conditional risk. See Section 3.3.3 for a
precise definition of a non-stochastic approximation of the conditional risk which respect to which we talk
of risk monotonization in the sample size.

3.3.2 Formal description
Formally, let the original dataset be denoted by Dn = {(X1, Y1), . . . , (Xn, Yn)}. As in Algorithm 1, consider
the training and testing datasets Dtr and Dte, respectively. Note that our choice of nte as described in
Remark 3.2.13 satisfies nte = o(n), and hence, the risk of f̃ trained on Dtr is expected to be asymptotically
the same as the risk of f̃ trained on Dn.

To achieve the goal described in Section 3.3.1, one can define the ingredient predictors required in
Algorithm 1 as follows: Let Dk

tr denote a subset of Dtr with ntr − k observations for 1 ≤ k ≤ ntr. For
Ξn = {1, 2, . . . , ntr − 1} and ξ ∈ Ξn, define f̃ξ(x) = f̃(x; Dξ

tr) as the predictor obtained by training f̃ on
Dξ

tr. Proposition 3.2.1 along with Lemmas 3.2.4 and 3.2.5 and Lemmas 3.2.9 and 3.2.10 can be used to
imply that f̂ cv thus obtained has a non-increasing risk as a function of the sample size.

There are two important points to note here:

1. The external randomness of choosing a subset Dξ
tr ⊆ Dn of size ξ. Observe that there are

(
ntr
ξ

)
different subsets each with ntr − ξ i.i.d. observations. Asymptotically, the prediction risk of f̃ trained
on any of these subsets would be the same. To reduce such external randomness and make use of
many different subsets of the same size, we take the ingredient predictor f̂ξ to be:

f̂ξ(x) = 1
M

M∑
j=1

f̃(x; Dξ,j
tr ), (3.26)

where Dξ,j
tr , 1 ≤ j ≤ M are M sets drawn independently (with replacement) from the collection of(

ntr
ξ

) 3 subsets of Dtr of size ntr − ξ. With M = ∞, f̂ξ becomes the average of f̃ trained on all
possible subsets of Dtr of size ntr − ξ. This choice of M removes any potential external randomness
in defining f̂ξ. The choice of M = 1 has the largest amount of external randomness. Based on the
theory of U -statistics (Serfling, 2009, Chapter 5), we expect the choice M = ∞ to yield a predictor
with the smallest variance; see (3.63). Observe that the expected value f̂ξ(x) remains constant as M
changes because the distribution of Dξ,j

tr remains identical across j ≥ 1. However, the computation of
f̂ξ with M = ∞ is infeasible, and hence, we use a finite M ≥ 1.

2. In the description above, we have ntr predictors to use in Algorithm 1. Note that the risk of a predictor
trained on m+ 1 observations is asymptotically no different from that of a predictor trained on m
observations. The same comment holds true for predictors trained on m+ o(m) and m observations.
For this reason, we can replace Ξn = {1, 2, . . . , ntr − 1} with

Ξn =
{

1, 2, . . . ,
⌈
ntr

⌊nν⌋
− 2
⌉}

4, for some ν ∈ (0, 1), (3.27)

and consider predictors obtained by training f̃ on subsets of sizes ntr − ξ⌊nν⌋ for ξ ∈ Ξn. This helps
in reducing the computational cost of obtaining f̂ cv using Algorithm 1. This further helps in the
theoretical properties of f̂ cv in our application of union bound in the results of Section 3.2.

3Here,
(

n
r

)
denotes the binomial coefficient representing the number of distinct ways to pick r elements from a set of n

elements for positive integers n and r.
4The subtraction of 2 in right end point in the definition (3.27) of Ξn is for technical reasons.
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Taking into account the remarks above, with Ξ as in (3.27), for ξ ∈ Ξn, we define f̂ξ as in (3.26), but
with an important change that Dξ,j

tr , 1 ≤ j ≤ M , now represent randomly drawn subsets of Dtr of size
nξ = ntr − ξ⌊nν⌋. The ingredient predictors used in Algorithm 1 are given by f̂ξ, ξ ∈ Ξn. We call the
resulting predictor obtained from Algorithm 1 as the zero-step predictor based on f̃ and we denote the
corresponding prediction procedure to be f̂ zs. The zero-step procedure is summarized in Algorithm 2.

Algorithm 2 Zero-step procedure
Inputs:

– all inputs of Algorithm 1 other than the index set Ξ;
– a positive integer M .

Output:

– a predictor f̂ zs

Procedure:

1. Let ntr = n− nte. Construct an index set Ξn per (3.27).

2. Construct train and test sets Dtr and Dte per Step 1 of Algorithm 1.

3. Let nξ = ntr − ξ⌊nν⌋. For each ξ ∈ Ξn and j = 1, . . . ,M , draw random subsets Dξ,j
tr of size nξ from

Dtr. For each ξ ∈ Ξ, fit predictors f̂ξ per (3.26) using prediction procedure f̃ and {Dξ,j
tr : 1 ≤ j ≤ M}.

4. Run Steps 3–5 of Algorithm 1 using index set Ξ = Ξn and set of predictors {f̂ξ, ξ ∈ Ξ}.

5. Return f̂ zs as the resulting f̂ cv from Algorithm 1.

3.3.3 Risk behavior of f̂ zs

As alluded to before, in order to talk about risk monotonization, one needs to consider a non-stochastic
approximation to the conditional risk that depends only on the prediction procedure, the sample size, and
properties of the data distribution. The definition below makes this precise.

Definition 3.3.2 (Deterministic approximation of conditional prediction risk). For any prediction procedure
f̃ , we call a map Rdet(·; f̃) : N → R≥0 a deterministic (or non-stochastic) approximation of the conditional
risk of f̃ if for all datasets Dm of m i.i.d. random vectors,

|R(f̃(·; Dm)) −Rdet(m; f̃)|
Rdet(m; f̃)

= op(1), (3.28)

as m → ∞. (Recall that R(f̃(·,Dm)) =
∫
ℓ(y; f̃(x; Dm))dP (x, y).)

It is important to recognize that Rdet(m; f̂) is only a function of the sample size m, the prediction
procedure f̃ , and the underlying distribution P , and not the dataset Dm. Note that we do not necessarily
require Rdet(m; f̃) to be the expected value of R(f̃(·; Dm)). Furthermore, a non-asymptotic approximation
Rdet(·; f̃) of the conditional risk may not be unique.

Remark 3.3.3 (Relative convergence in Definition 3.3.2). In (3.28), the division by Rdet(m; f̃) ensures
that the deterministic approximation to the conditional risk of f̃(·; Dm) is non-trivial (i.e., non-zero) even
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if the conditional risk converges in probability to zero. If the conditional risk is bounded away from zero,
asymptotically, then (3.28) is trivially implied by

|R(f̃(·; Dm)) −Rdet(m; f̃)| = op(1),

as m → ∞. In most settings of overparameterized learning, the conditional prediction risk is asymptotically
bounded away from zero (see (3.36), for example).

Because |Ξn| ≤ n, the results of Section 3.2 imply that with appropriate choices of CEN and η in
Algorithm 1 we obtain f̂ zs that satisfies the following risk bound:

R(f̂ zs) =
{

minξ∈Ξn R(f̂ξ) +Op(1)
√

logn/nte if σ̂Ξ = Op(1)
minξ∈Ξn

R(f̂ξ)
(
1 +Op(1)

√
logn/nte

)
if κ̂ξ = Op(1).

(3.29)

Assume now there exists a function Rdet : N → R≥0 such that the following holds:

lim
n→∞

sup
ξn∈Ξn

P

(
|R(f̃(·; Dξn,j

tr )) −Rdet(nξn ; f̃)|
Rdet(nξn

; f̃)
> ϵ

)
= 0 for all ϵ > 0. (DET)

Recall that Dξn,j
tr for 1 ≤ j ≤ n are identically distributed, and hence, f̃(·,Dξn,j

tr ) are also identically
distributed predictors. This implies that assuming (DET) for j = 1 is the same as assuming it for all
1 ≤ j ≤ M . Note that (DET) is essentially the same as (3.28), but with a different sequence of sample sizes
{nξn}n≥1 with ξn ∈ Ξn. In accordance with our goal of monotonizing the non-stochastic approximation
Rdet(·; f̃) of the prediction procedure f̃ , we aim to show that the zero-step prediction procedure f̂ zs has its
conditional prediction risk approximated by minξ∈Ξn

Rdet(nξ; f̃). For notational convenience, set

Rdet
↗ (n; f̃) := min

ξ∈Ξn

Rdet(nξ; f̃) and ξ⋆n ∈ arg min
ξ∈Ξn

Rdet(nξ; f̃). (3.30)

Note the notation above is meant to reflect that the index ξ⋆n can be chosen to be any element of the
minimizing set. If Ξn = {1, . . . , ntr − 1}, and ν = 0, then Rdet

↗ (n; f̃) = min{Rdet(k; f̃) : 1 ≤ k ≤ ntr − 1}.
Although it might be tempting to take Ξn = {1, . . . , ntr − 1} and ν = 0, instead of the one in (3.27),
assumption (DET) for all non-stochastic sequences {nξn

}n≥1 with ξn ∈ Ξn becomes almost certainly
unreasonable. To see this, observe that ξn = ntr − 1 belongs to Ξn for every n, and for this choice, nξn = 1.
Hence, the predictor f̃(·; Dξ,j

tr ) is computed based on one observation, and cannot satisfy (DET). In the
following calculations, however, we only require assumption (DET) for the non-stochastic sequence {ξ⋆n}n≥1.
If nξ⋆

n
is known to diverge to ∞ and the distribution of the data stays constant, then assumption (DET) is

reasonable and is exactly the same as the existence of a deterministic approximation to the conditional
risk of f̃ in the sense of Definition 3.3.2. In this favorable case of nξ⋆

n
diverging to ∞ with n, one can take

Ξn = {1, . . . , ntr − 1}, and ν = 0. Note that with Ξn as defined in (3.27), nξn
→ ∞ for all ξn ∈ Ξn, and

thus in particular nξ⋆
n

→ ∞ as n → ∞.
It should be stressed that (DET) is an assumption on the base prediction procedure f̃ and not on the

ingredient predictors f̂ξ. In general, the risk behavior of f̃ does not necessarily imply that of f̂ξ which is
an average of M predictors obtained from f̃ . However, the risk of f̂ξ can be bounded in terms of the risk f̃
for loss functions ℓ(·, ·) that are convex in the second argument. Observe that

R(f̂ξ) = R

 1
M

M∑
j=1

f̃(·; Dξ,j
tr )

 ≤ 1
M

M∑
j=1

R(f̃(·; Dξ,j
tr )). (3.31)

The inequality (3.31) follows from Jensen’s inequality. It becomes an equality if M = 1 without the
requirement that the loss function is convex.
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Inequality (3.31) along with the non-stochastic risk approximation (DET) can be used to control
minξ∈Ξn

R(f̂ξ) in (3.29). From (3.30), we obtain

min
ξ∈Ξn

R(f̂ξ)
(a)
≤ min

ξ∈Ξn

1
M

M∑
j=1

R(f̃(·; Dξ,j
tr ))

(b)
≤ 1
M

M∑
j=1

R(f̃(·; Dξ⋆
n,j

tr ))

= Rdet(nξ⋆
n
; f̃)

1 + 1
M

M∑
j=1

R(f̃(·,Dξ⋆
n,j

tr )) −Rdet(nξ⋆
n
; f̃)

Rdet(nξ⋆
n
; f̃)


(c)= min

ξ∈Ξn

Rdet(nξ; f̃)(1 + op(1))

= Rdet
↗ (n; f̃)(1 + op(1)).

(3.32)

Inequality (a) in (3.32) follows from using Jensen’s inequality. Inequality (b) follows because ξ⋆n ∈ Ξn.
Equality (c) follows for any fixed M ≥ 1 from the non-stochastic risk approximation (DET); this can be
seen from the fact that the sum of a finite number of op(1) random variables is op(1).

All the inequalities in (3.32) can be made equalities for M = 1, if instead of (DET) we make the
stronger assumption that

lim
n→∞

P

(
sup
ξn∈Ξn

|R(f̃(·; Dξn,j
tr )) −Rdet(nξn

; f̃)|
Rdet(nξn

; f̃)
> ϵ

)
= 0 for all ϵ > 0. (DET*)

This is clearly a stronger assumption than required for (3.32), where we only required such relative
convergence for a specific ξ⋆n ∈ Ξn. Under (DET*), we can write

min
ξ∈Ξn

1
M

M∑
j=1

R(f̃(·; Dξ,j
tr )) = min

ξ∈Ξn

Rdet(nξ; f̃)

1 + 1
M

M∑
j=1

R(f̃(·; Dξ,j
tr )) −Rdet(nξ; f̃)
Rdet(nξ; f̃)


≶ Rdet

↗ (n; f̃)

1 ± 1
M

M∑
j=1

sup
ξ∈Ξn

∣∣∣∣∣R(f̃(·; Dξ,j
tr )) −Rdet(nξ; f̃)
Rdet(nξ; f̃)

∣∣∣∣∣


= Rdet
↗ (n; f̃)(1 + op(1)).

We now conclude that for M = 1,

min
ξ∈Ξn

R(f̂ξ) = min
ξ∈Ξn

R(f̃(·; Dξ,1
tr )) = Rdet

↗ (n; f̃)(1 + op(1)). (3.33)

This proves that all the inequalities in (3.32) can be made equalities for M = 1 under the stronger
assumption (DET*). Combined with (3.29), this implies that

R(f̂ zs) =
{
Rdet

↗ (n; f̃)(1 + op(1)) +Op(1)
√

logn/nte if σ̂Ξ = Op(1)
Rdet

↗ (n; f̃)(1 + op(1)) if κ̂Ξ = Op(1)

= Rdet
↗ (n; f̃)

{
1 + op(1) +

√
logn/nte/R

det
↗ (n; f̃) if σ̂Ξ = Op(1)

1 + op(1) if κ̂Ξ = Op(1).

(3.34)

As mentioned before, assumption (DET*) is significantly stronger than (DET). In the absence of (DET*),
inequality (3.32) combined with (3.29) implies that (3.34) holds with inequalities instead of equalities. For
simplicity, denote:

(O1) σ̂Ξ = Op(1) and Rdet
↗ (n; f̃)

√
nte/ logn → ∞.

50



(O2) κ̂Ξ = Op(1).

Hence, we have proved the following result:

Theorem 3.3.4 (Monotonization by zero-step procedure). For M = 1, if assumption (DET*) and either
(O1) or (O2) hold true, then Rdet

↗ (·; f̃) is a deterministic approximation of the prediction procedure f̂ zs, i.e.,

|R(f̂ zs) −Rdet
↗ (n; f̃)|

Rdet
↗ (n; f̃)

= op(1).

For M ≥ 1, if ℓ(·, ·) is convex in the second argument, assumption (DET), and either (O1) or (O2) hold
true, then

(R(f̂ zs) −Rdet
↗ (n; f̃))+

Rdet
↗ (n; f̃)

= op(1).

Remark 3.3.5 (Choice of Ξn). All the calculations presented in this section hold for any set Ξn with
|Ξn| ≤ n. As long as either (DET) (for ξn = ξ⋆n in (3.30)) or (DET*) holds true, then one can use
Ξn = {1, 2, . . . , ntr − 1} and ν = 0. For this choice, Rdet

↗ (·; f̂) is the monotonized risk as illustrated
in Figure 3.2. With the choice of Ξn mentioned in (3.27), Rdet

↗ (·; f̂) is not a complete monotonization but
it serves as an approximate monotone risk.

Remark 3.3.6 (Exact risk f̂ zs). For M = 1 (under (DET*)), Theorem 3.3.4 essentially implies that
the risk of the zero-step procedure closely tracks the monotonized deterministic approximation to the
conditional prediction risk of f̃ trained on Dtr. For M ≥ 1 (under (DET)), Theorem 3.3.4 does not imply
the risk of the zero-step predictor is monotonic or even that that a non-stochastic approximation of the risk
exists in the sense of Definition 3.3.2. However, our simulations in limited settings presented in Section 3.3.4
suggest that the risk of the zero-step prediction procedure is monotone even for M ≥ 1.

Remark 3.3.7 (Verification of assumptions in Theorem 3.3.4). The bound on σ̂Ξ and κ̂Ξ in Assumptions
(O1) and (O2) can be verified for some common loss functions and predictors as discussed in Section 3.2.3.
The verification of assumption (DET) or (DET*) is very much tied to the exact prediction procedure. We
verify (DET) in a specific setting in Section 3.3.3.1.

3.3.3.1 Risk behavior of f̂ zs under proportional asymptotics

In the discussion leading up to Theorem 3.3.4, we have not made a specific reference to the growth or
non-growth of the dimension of the features. Technically, Theorem 3.3.4 does allow for the dimension p of
the features to change with the sample size n, i.e., one can have p = pn.

Risk monotonization is an interesting phenomenon to study in light of the double (or multiple) descent
results in the overparameterized setting where pn/n → γ as n → ∞. In our previous discussion of
non-stochastic approximation of the conditional prediction risk, we did not stress the dependence on the
dimension of features. In the following, we consider the implications of Theorem 3.3.4 in the context of
overparameterized learning and hence consider the following setting.

Recall that the original dataset Dn consists of n i.i.d. observations (Xi, Yi) ∈ Rp × R, 1 ≤ i ≤ n from
distribution P . In the following as we allow the dimension p of the features to change with the sample size
n and assume that p = pn satisfies

(PA(γ)) pn/n → γ ∈ (0,∞) as n → ∞.

The above asymptotic regime, which is standard in random matrix theory (Bai and Silverstein, 2010), is
used in the overparameterized learning literature, where it has been referred to as proportional asymptotics
(see e.g., Dobriban and Wager (2018); Hastie et al. (2022); Mei and Montanari (2022); Bartlett et al. (2021)).
Note that under assumption (PA(γ)) the underlying distribution P of the observations in Dn should be
indexed by the sample size n. We suppress this dependence for convenience. Under the proportional
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asymptotics regime for commonly studied prediction procedures, a deterministic approximation to the
conditional prediction risk of a subset Dm ⊆ Dn depends not on m but on pn/m, among other properties of
the distribution P . For this reason, in any discussion of the deterministic approximation of the conditional
prediction risk, we write Rdet(pn/m; f̃) instead of Rdet(m; f̃). Now the goal of this subsection is to derive
the deterministic approximation of the conditional risk of the zero-step predictor under (PA(γ)).

Recall that from the crucial calculation in (3.32) leading to the risk of zero-step predictor, we require

R(f̃(·,Dξ⋆
n,j

tr )) −Rdet(nξ⋆
n
; f̃)

Rdet(nξ⋆
n
; f̃)

= op(1), (3.35)

with ξ⋆n defined as in (3.30). Except for (3.35), all the remaining steps in (3.32) hold true even in the
overparameterized setting. In the following, we will provide simple sufficient condition for verification of
(3.35) under (PA(γ)). As mentioned above, the deterministic risk under (PA(γ)) often depends not only on
the sample size alone, but also on the ratio of the number of features to the sample size. Therefore, we find
it helpful to rewrite (3.35) as

R(f̃(·; Dξ⋆
n,j

tr )) −Rdet(pn/nξ⋆
n
; f̃)

Rdet(pn/nξ⋆
n
; f̃)

= op(1), where ξ⋆n ∈ arg min
ξ∈Ξn

Rdet(pn/nξ; f̃). (DETPA-0)

Note that assumption (PA(γ)) does not imply that pn/nξ⋆
n

converges to a fixed limit as n → ∞.
Under assumption (DETPA-0), Theorem 3.3.4 readily implies the risk behavior of f̂ zs. However, the

possibility that pn/nξ⋆
n

does not converge to a fixed limit necessitates a closer examination of assumption
(DETPA-0). We provide a two-fold reduction of assumption (DETPA-0). Firstly, it suffices to verify
that the absolute difference between R(f̃(·; Dξ⋆

n,j
tr )) and Rdet(pn/nξ⋆

n
; f̃) converges to 0 when Rdet(·; f̃) is

uniformly bounded away from 0. This is a reasonable assumption in practice because several loss functions
under mild conditions on the response have risk lower bounded by the unavoidable error which is strictly
positive. For example, assuming the loss ℓ is the squared loss and that E[(Y0 − E[Y0 | X0])2] > 0, we have
for any prediction procedure f̃ and any training dataset Dm containing m observation,

R(f̃(·; Dm)) = E[(Y0 − f̃(X0; Dm))2∣∣Dm] ≥ E[(Y0 − E[Y0|X0])2] > 0. (3.36)

Hence, in this case, if there exists a deterministic function Rdet : (0,∞] → [0,∞] such that under (PA(γ)),
as n → ∞,

R(f̃(·; Dξ⋆
n,j

tr )) −Rdet(pn/nξ⋆
n
; f̃) = op(1), where ξ⋆n ∈ arg min

ξ∈Ξn

Rdet(pn/nξ; f̃), (3.37)

then (DETPA-0) is satisfied. Secondly, the following lemma shows that under (PA(γ)), (3.37) is satisfied if
there exists a deterministic approximation for the conditional risk with datasets having a converging aspect
ratio (i.e., datasets for which the ratio of the number of features to the sample size converges to a constant).

For any γ > 0, define
Mzs

γ := arg min
ζ:ζ≥γ

Rdet(ζ; f̃).

Lemma 3.3.8 (Reduction of (DETPA-0)). Let Dkm
be a dataset with km observations and pm features.

Consider a prediction procedure f̃ trained on Dkm
. Assume the loss function ℓ is such that R(f̃(·; Dkm

))
is uniformly bounded from below by 0. Let γ > 0 be a real number. Suppose there exists a proper, lower
semicontinuous function Rdet(·; f̃) : [γ,∞] → [0,∞] such that

R(f̃(·; Dkm
)) p−→ Rdet(ϕ; f̃), (DETPAR-0)

as km, pm → ∞ and pm/km → ϕ ∈ Mzs
γ . Further suppose that Rdet(·; f̃) is continuous on the set Mzs

γ .
Then, (DETPA-0) is satisfied.
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We prove Lemma 3.3.8 using the real analysis fact that a sequence {an}n≥1 converges to 0 if and only
if for any subsequence {ank

}k≥1, there exists a further subsequence {ankl
}l≥1 that converges to 0 (see, for

example, Problem 12 of Royden (1988); also see Lemma C.6.3 for a self-contained proof). We apply this
fact to the sequence

an(ϵ) = P
(∣∣∣R(f̃(·; Dξ⋆

n,j
tr )) −Rdet(pn/nξ⋆

n
; f̃)
∣∣∣ ≥ ϵ

)
,

for every ϵ > 0. A crucial component in applying this technique is to first produce a subsequence {nkl
}l≥1

such that pnkl
/nξ⋆

nkl

converges to a point in arg minζ∈[γ,∞] R
det(ζ; f̃). A few remarks on the assumptions

of Lemma 3.3.8 are in order.

• In most cases, the set of minimizers of Rdet(·; f̃) is a singleton set. For such a scenario, Lemma 3.3.8
only requires the deterministic approximation of the conditional prediction risk for a single limiting
aspect ratio (i.e., (DETPAR-0) is only required for a single ϕ). Several commonly studied predictors
satisfy (DETPAR-0) as discussed below.

• Assuming lower semicontinuity of Rdet(·; f̃) is a mild assumption. In particular, it does not preclude
the possibility that Rdet diverges to ∞ at several values in the domain as shown in Proposition 3.3.9.
Such risk diverging behavior is a common occurrence for several popular predictors in overparameterized
learning, for example, MN2LS, MN1LS, etc. The requirement of the lower semicontinuity stems from
the goal of monotonizing Rdet from below.

Proposition 3.3.9 (Verifying lower semicontinuity for diverging risk profiles). Suppose h : [a, c] → R is
continuous on [a, b) ∪ (b, c] and limx→b− h(x) = limx→b+ h(x) = ∞. Then, h is lower semicontinuous on
[a, c].

Proposition 3.3.9 implies that if Rdet is continuous on a set except for a point where it diverges to
∞, then Rdet is lower semicontinuous on that set. In this sense, Proposition 3.3.9 relates the lower
semicontinuity assumption of Lemma 3.3.8 to the continuity assumption of the lemma.

• Continuity assumption on Rdet(·; f̃) at the argmin set arg minζ∈[γ,∞] R
det(ζ; f̃) is also mild. Proposi-

tion 3.3.10 below shows that (DETPAR-0) holding for ϕ in any open set I implies continuity of Rdet on
I. In particular, this implies continuity on the sets of the type I = (a,∞]. If the set of minimizers of
Rdet is a singleton set, then (DETPAR-0) itself does not suffice to guarantee the continuity of Rdet at
the minimizer. Proposition 3.3.10 in such a case requires verifying (DETPAR-0) on an open interval
containing the minimizer.

Proposition 3.3.10 (Certifying continuity from continuous convergence). Let Dkm be a dataset with km
observations and pm features, and consider a prediction procedure f̃ trained on Dkm

. Let I be an open set
in (0,∞). Suppose there exists a function Rdet : (0,∞] → [0,∞] such that

R(f̃(·; Dkm
)) p−→ Rdet(ϕ; f̃) (3.38)

as km, pm → ∞ and pm/km → ϕ ∈ I. Then, Rdet(·; f̃) is continuous on I.

Combining the results and the discussion above, the verification of (DETPA-0) under (PA(γ)) can
proceed with the following two-step program.

(PRG-0-C1) For ϕ such that Rdet(ϕ; f̃) < ∞, verify that for all datasets Dkm
with limiting aspect ratio ϕ,

R(f̃(·; Dkm
)) p−→ Rdet(ϕ; f̃).

(PRG-0-C2) Whenever Rdet(ϕ; f̃) = ∞,

lim
ϕ′→ϕ−

Rdet(ϕ′; f̃) = lim
ϕ′→ϕ+

Rdet(ϕ′; f̃) = ∞.
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The continuity of Rdet at points where it is finite follows from (PRG-0-C1) via Proposition 3.3.10. This kind
of convergence is verified in the literature for several commonly used prediction procedures, such as ridge
regression and MN2LS (Hastie et al., 2022), lasso and MN1LS (Li and Wei, 2021), etc; see Remark 3.3.16
for more details. This combined with (PRG-0-C2) via Proposition 3.3.9 implies lower semicontinuity of
Rdet on [γ,∞]. If there is more than one ϕ at which Rdet is ∞, then Proposition 3.3.9 should be applied
separately by splitting the domain to only contain one point of divergence. A more general result of this
flavour can be found in Proposition 3.4.2 in Section 3.4.3.1.

We will follow these steps to verify (DETPA-0) for the ridge and lasso prediction procedures in
Section 3.3.3.2. But first we will complete the derivation of the deterministic approximation to the
conditional risk of f̂ zs under (DETPA-0) following (3.32). Lemma 3.3.8 combined with Theorem 3.3.4
proves that the zero-step prediction procedure approximately monotonizes the risk of the base prediction
procedure f̃ as shown in the following result:

Theorem 3.3.11 (Asymptotic risk profile of zero-step predictor). For any prediction procedure f̃ , suppose
(PA(γ)), either (O1) or (O2), and the assumptions of Lemma 3.3.8 hold true. In addition, if the loss
function is convex in the second argument, then for any M ≥ 1,(

R(f̂ zs; Dn) − min
ζ≥γ

Rdet(ζ; f̃)
)

+
= op(1).

Remark 3.3.12 (Monotonicity in the limiting aspect ratio and improvement over base procedure). If we
replace assumption (DETPA-0) with the stronger version

sup
ξ∈Ξn

|R(f̃(·; Dξ,j
tr )) −Rdet(pn/nξ; f̃)|
Rdet(pn/nξ; f̃)

= op(1), (DETPA-0*)

as n → ∞, then for M = 1, the conclusion of Theorem 3.3.11 can be strengthened to∣∣∣∣R(f̂ zs; Dn) − min
ζ≥γ

Rdet(ζ; f̃)
∣∣∣∣ = op(1). (3.39)

This implies that the risk of the zero-step procedure is monotonically non-decreasing in γ. Under the
assumptions of Theorem 3.3.11, one can only conclude that the risk of zero-step procedure is asymptotically
bounded above by a monotonically non-decreasing function in γ in general. It is trivially true that
minζ≤γ R

det(ζ; f̃) ≤ Rdet(γ; f̃). Hence, the asymptotic risk of zero-step procedure is no worse than that of
the base procedure.

Remark 3.3.13 (Finiteness of the risk of f̂ zs). Predictors such the MN2LS or MN1LS undergo divergence
in the prediction risk. The zero-step prediction procedure does not have such a divergence in the risk under
general regularity conditions. In particular, as long as E[ℓ(y, 0)] < ∞, then the risk of f̂ zs is asymptotically
bounded by E[ℓ(y, 0)]. Observe that E[ℓ(y, 0)] is the risk of the null predictor which always returns 0 as its
prediction. By including the zero predictor in Algorithm 1, the risk of f̂ zs will always be asymptotically
bounded by this null risk.

3.3.3.2 Verifying deterministic profile assumption (DETPAR-0)

In the following, we will restrict ourselves to the case of linear predictors and squared error loss, and verify
assumption (DETPAR-0) for MN2LS and MN1LS base procedures.

Suppose Dkm
= {(Xi, Yi) ∈ Rpm ×R : 1 ≤ i ≤ km}. Recall the MN2LS and MN1LS predictor procedures

defined in Examples 3.2.25 and 3.2.26. It is now well-known that the MN2LS and MN1LS prediction
procedures has a non-monotone risk as a function of sample size n (Nakkiran et al., 2021; Hastie et al., 2022;
Li and Wei, 2021). The following two results verify assumption (DETPAR-0) for these two procedures
under some regularity conditions stated in Hastie et al. (2022); Li and Wei (2021).

Proposition 3.3.14 (Verification of (DETPAR-0) for MN2LS procedure). Assume the setting of Theorem
3 of Hastie et al. (2022). Then, there exists a function Rdet(·; f̃mn2) : (0,∞] → [0,∞] such that (PRG-0-C1)
holds for all ϕ ̸= 1 and (PRG-0-C2) holds for ϕ = 1.
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Proposition 3.3.15 (Verification of (DETPAR-0) for MN1LS procedure). Assume the setting of Theorem
2 of Li and Wei (2021). Then, there exists a function Rdet(·; f̃mn1) : (0,∞] → [0,∞] such that (PRG-0-C1)
holds for all ϕ ̸= 1 and (PRG-0-C2) holds for ϕ = 1.

Remark 3.3.16 (Extending Propositions 3.3.14 and 3.3.15 to other predictors). Theorem 3 of Hastie
et al. (2022) only provides the asymptotic behavior of the prediction risk computed conditional only on
{Xi, 1 ≤ i ≤ km}. The proof in Appendix C.3 of Proposition 3.3.14 extends the calculations of of Hastie
et al. (2022) for prediction risk conditional on Dkm

. These calculations can be further extended in a
straightforward manner to cover the case of λ > 0, i.e., the ridge regression procedure. See Proposition 3.3.14
for more details. Similar comments apply to Proposition 3.3.15 where the proposition can be easily extended
to cover the case of λ > 0, i.e., the lasso prediction procedure.

Additionally, most results in the literature under (PA(γ)) derive the risk behavior as pm/km → ϕ < ∞.
Propositions 3.3.14 and 3.3.15 also extend the existing results to the case when pm/km → ∞ as m → ∞.

We present Propositions 3.3.14 and 3.3.15 as example results to show the verification of our assumptions
follow rather easily from the existing asymptotic profile results in the literature. In the proportional
asymptotic regime, the risk profiles have been characterized for various other prediction procedures
including, high dimensional robust M -estimator (Karoui, 2013, 2018; Donoho and Montanari, 2016), the
Lasso estimator (Miolane and Montanari, 2021; Celentano et al., 2020), and various classification procedures
(Montanari et al., 2019a; Liang and Sur, 2020a; Sur et al., 2019). Our results can be suitably extended
to verify (DETPA-0) for these other predictors. Note that for our results, we only need to know that the
asymptotic risk exists, which can potentially hold true under weaker assumptions.

3.3.4 Numerical illustrations
In this section, we provide numerical illustration of the risk monotonization of zero-step prediction procedure
in the overparameterized setting, when the base prediction procedures are minimum ℓ2-norm least squares
(MN2LS) and minimum ℓ1-norm least squares (MN1LS). In order to illustrate risk monotonization as in
Theorem 3.3.11, we need to show the risk behavior of f̂ zs at different aspect ratios. We use the following
simulation setups for the two predictors.

Minimum ℓ2-norm least squares (MN2LS). We fix n = 1000 and vary the dimension p of the features
from 100 to 10000 (for a total of 20 values of γ = p/n logarithmically spaced between 0.1 to 10). This will
show the risk behavior of zero-step procedure for aspect ratios between 0.1 to 10. For every pair of sample
size n = 1000 and dimension p, we generate 100 independent datasets each with n i.i.d. observations from
the linear model Yi = X⊤

i β0 + εi, where Xi ∼ N (0p, Ip), β0 ∼ N (0p, ρ2/pIp) and εi ∼ N (0, σ2) drawn
independently of Xi. The model represents a dense signal regime with average signal energy ρ2. We define
the signal-to-noise ratio (SNR) to be ρ2/σ2. On each dataset, we apply the MN2LS baseline procedure as
well as the zero-step procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations
from the same p+ 1 dimensional distribution described above in order to approximate the true risk of the
zero-step and the base prediction procedure. Figure 3.3 shows the risks of the baseline MN2LS procedure
and the zero-step prediction procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes; we
take σ2 = 1 and ρ2 = SNR. We also present the null risk (ρ2 + σ2), i.e., the risk of the zero predictor as a
baseline in both the plots. We observe from the figure that the risk of the zero-step procedure for every
M ≥ 1 is non-decreasing in γ. Theorem 3.3.11 implies that the risk of the zero-step prediction procedure
for every M ≥ 1 is asymptotically bounded by the risk of the base prediction procedure at each aspect
ratio (γ). Although this is somewhat evident from Figure 3.3, it is not satisfied for all γ, especially for
M = 1. This primarily stems from the smaller sample size at hand and the fact that we are comparing
MN2LS trained on full data (n = 1000) to the zero-step predictor computed on the train data (ntr = 900).
With an increased sample size (to say, n = 2500), this finite-sample discrepancy vanishes.

Figure 3.3 shows that the zero-step procedure with M = 1 attains risk monotonization in a precise
sense that its risk is the largest non-increasing function (of γ) below the risk of the MN2LS predictor. For
M > 1, our results do not characterize the risk of zero-step predictor, but Figure 3.3 shows that averaging
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Figure 3.3: Illustration of the zero-step prediction procedure with MN2LS as the base predictor with
varying M . The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR
regime (SNR = 1). Here, n = 1000, ntr = 900, nte = 100, nν = 50. The features are drawn from an
isotropic Gaussian distribution, the response follows a linear model. The figure show averaged risk over 100
dataset repetitions.

has a significant effect in further reducing the risk. As mentioned before, this is expected from the theory
of U -statistics as U -statistics are UMVUE’s of their expectations (see, e.g., Chapter 5 of Serfling (2009)).
All these comments hold for both low and high SNR alike.

Note that the base predictor has unbounded risk near γ = 1. The risk of the zero-step procedure, on
the other hand, is always bounded for all M ≥ 1 and all γ. In this sense, the zero-step procedure can also
be used as a general procedure for mitigating the surprising descent behavior in the prediction risk.

Minimum ℓ1-norm least squares (MN1LS). We fix n = 500 and vary the dimension p of the features
from 50 to 50000 (for a total of 30 values of γ = p/n logarithmically spaced between 0.1 to 100). This
will show risk behavior of zero-step procedure for aspect ratios between 0.1 and 100. For every pair of
sample size n = 500 and dimension p, we generate 250 independent dataset each with n i.i.d. observations
from the linear model Yi = X⊤

i β0 + εi, where Xi ∈ N (0p, Ip), β0 has coordinates generated i.i.d. from the
distribution Bδr/√

pπ + (1 −B)δ0, where B ∼ Bernoulli(π = 0.005) and εi ∼ N (0, σ2) is independent of Xi.
The model represents a sparse signal regime (with linear sparsity level π) with average signal energy ρ2.
We again define SNR to be ρ2/σ2. On each dataset, we apply the MN1LS baseline procedure as well as the
zero-step procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations
from the same p+ 1 dimensional distribution described above in order to approximate the true risk of the
zero-step and the base prediction procedure. Figure 3.4 shows the risks of the baseline MN1LS procedure
and the zero-step procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes. We take
σ2 = 1 and ρ2=SNR. We also present the null risk (ρ2 + σ2), i.e., the risk of the zero predictor as a
baseline in both the plots. We again observe that the risk of the zero-step procedure for every M ≥ 1 is
non-decreasing in γ.

Similar to Figure 3.3, we observe in Figure 3.4 that the zero-step procedure with M = 1 attains precise
risk monotonization while zero-step with M > 1 improves significantly upon the M = 1 when γ is near one.
All these comments hold for both low and high SNR alike.

As with Figure 3.3, note that the base predictor MN2LS has unbounded risk near γ = 1 in Figure 3.4.
The risk of the zero-step procedure, on the other hand, is always bounded for all M ≥ 1 and all γ.
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Figure 3.4: Illustration of the zero-step prediction procedure with MN1LS as the base predictor with
varying M . The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR
regime (SNR = 1). Here, n = 500, ntr = 420, nte = 80, nν = 42. The features are drawn from an isotropic
Gaussian distribution, the response follows a linear model with sparse signal (sparsity level = 0.005). The
risks are averaged over 250 dataset repetitions.

3.4 Application 2: One-step prediction procedure

3.4.1 Motivation

The zero-step procedure introduced in Section 3.3 provides the desired asymptotic monotonization of the
conditional prediction risk under certain regularity conditions. It takes advantage of the fact that we can
train our predictors on a smaller subset of the data when it is appropriate. In addition, it uses repeated
sampling and averaging in order to remove the external randomness in the choice of the subset.

In this section, we introduce a variant of the zero-step procedure motivated by the classical statistical
idea of one-step estimation (see, e.g., Section 5.7 of Van der Vaart, 2000). In the simplest case of linear
regression where the feature dimension is fixed, the idea of one-step estimation is that we can start with
an arbitrary linear predictor and add to it an adjustment computed based on the residuals of the initial
linear predictor. More precisely, starting with any initial estimator β̃init and the associated linear predictor
f̃(x) = x⊤β̃init, we have

X⊤β̃init

︸ ︷︷ ︸
initial predictor

+ X⊤

(
1
n

n∑
i=1

XiX
⊤
i

)−1(
1
n

n∑
i=1

Xi(Yi −X⊤
i β̃

init)
)

︸ ︷︷ ︸
one-step adjustment

= X⊤β̃ols, (3.40)

where the final resulting predictor corresponds to the ordinary least squares (OLS) estimator β̃ols that
enjoys n−1/2 rate and risk optimality under a well-specified linear model.

This idea of one-step estimation is not specific to ordinary least squares. It can be generalized to other
estimators that are solutions to estimating equation Ψn(β) = 0 where Ψn : Rp → Rp. The general idea is to
solve a linear approximation to the estimating equation, i.e., given an initial estimator β̃init, the one-step
estimator is the solution (in β) to the linearized estimating equation (around β̃init)

Ψn(β̃init) + ∇Ψn(β̃init)(β − β̃init) = 0.
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The solution can be expressed as

β̃ = β̃init︸︷︷︸
initial estimator

− (∇Ψ(β̃init))−1Ψ(β̃init)︸ ︷︷ ︸
one-step adjustment

. (3.41)

Here ∇Ψ : Rp → Rp × Rp denotes the Jacobian of Ψ.
One can also view the one-step estimator from the point of view of the Newton’s algorithm. The

classical one-step estimator starts at an initial estimator β̃init and takes a Newton’s step on the empirical
risk minimization problem. For a parametric predictor f(·; β̃init), starting with a base estimator β̃init, we
can define the corresponding one-step predictor as f(·; β̃), where β̃ is the Newton’s step update starting
with β̃init given by

β̃ = β̃init

︸︷︷︸
initial estimator

−

(
1
n

n∑
i=1

∇2ℓ(Yi, f(Xi; β̃init))
)−1(

1
n

n∑
i=1

∇ℓ(Yi, f(Xi; β̃init))
)

︸ ︷︷ ︸
Newton’s step

. (3.42)

Here, for 1 ≤ i ≤ n, ∇ℓ(Yi, f(Xi; ·)) : Rp → Rp denotes the gradient of the prediction loss function
ℓ(Yi, f(Xi;β)) with respect to β, and ∇2ℓ(Yi, f(Xi; ·)) : Rp → Rp×p denotes the Hessian of the prediction
loss function with respect to β. In the special case of a linear predictor, where f(x;β) = xTβ, the one-step
estimator becomes

β̃ = β̃init −

(
1
n

n∑
i=1

XiX
T
i ℓ

′′(Yi, XT
i β̃

init)
)−1(

1
n

n∑
i=1

Xiℓ
′(Yi, XT

i β̃
init)

)
,

where ℓ′ : R × R → R is the first derivative of the loss function ℓ(·, ·) in the second coordinate, and
ℓ′′ : R × R → R is the second derivative of the loss function in the second coordinate.

Our goal in this section is to build upon this idea of one-step estimation towards risk-monotonization
and improve on the zero-step procedure. We will restrict ourselves to one-step adjustment with respect
to the square error loss and linear predictors (per (3.40)). We leave extension to a more general one-step
adjustment (per (3.41) or (3.42)) for future work. For more discussion, see Section 3.5.

There are two points to note when defining (3.40).

1. The inverse of the sample covariance matrix
∑n
i=1 XiX

⊤
i /n in (3.40) need not always exist. In

particular, when the feature dimension p > n, the sample covariance matrix is guaranteed to be rank
deficient.

2. In the overparameterized regime, the residuals Yi −X⊤
i β̃

init for i = 1, . . . , n in (3.40) are identically
zero for several commonly used estimators such MN2LS or MN1LS, if β̃init and the residuals are
computed on the same dataset.

In order to overcome these two limitations, we consider a variant of the idea of one-step estimation, in
which we make the following changes:

1′. We use a Moore-Penrose pseudo-inverse in place of regular matrix inverse. Note that this is the same
as adding a MN2LS component fitted on the residuals Yi −X⊤

i β̃
init.

2′. We split the training data and use one part to compute β̃init and use the other part to compute the
residuals Yi−X⊤

i β̃
init. This ensures that the residuals are not identically zero in the overparameterized

regime.

In summary, to construct the one-step predictor, we start with a base predictor computed on a subset
of data, evaluate the residuals of this predictor on a different subset of data, and add to the base predictor
a MN2LS fit on the residuals. We formalize this construction next.
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3.4.2 Formal description
As before, let the original dataset be denoted by Dn = {(X1, Y1), . . . , (Xn, Yn)} and let f̃ be a base
prediction procedure. As per Algorithm 1, let the train and test datasets be Dtr and Dte, respectively. We
define the ingredient predictors to be used in Algorithm 1 constructed using the one-step methodology as
follows: Define the index set Ξn as

Ξn :=
{

(ξ1, ξ2) : ξ1 ∈ {0, 1, . . . , ntr − 1}, ξ2 ∈ {0, 1, . . . , ξ1 − 1}
}
.

Let Dξ1
tr and Dξ2

tr be disjoint subsets of Dtr with ntr − ξ1 (for 0 ≤ ξ1 ≤ ntr − 1) and ξ2 (for 0 ≤ ξ2 ≤ ξ1)
observations, respectively. Let Iξ1

tr and Iξ2
tr denote the corresponding index sets of Dξ1

tr and Dξ2
tr , respectively.

For each index ξ = (ξ1, ξ2) ∈ Ξn, define the ingredient predictor f̃ξ to be used in Algorithm 1 in three steps:

1. Fit a base prediction procedure f̃ on Dξ1
tr . Call this f̃(·; Dξ1

tr ).

2. Compute the residuals of predictor f̃(·; Dξ1
tr ) on Dξ2

tr , i.e., rj = Yj − f̃(Xj ; Dξ1
tr ) for j ∈ Iξ2

tr .

3. Fit the MN2LS predictor on {(Xj , rj) : j ∈ Iξ2
tr }. This is the one-step adjustment.

The final ingredient predictor f̃ξ is given by

f̃ξ(x; Dξ1
tr ,D

ξ2
tr ) := f̃(x; Dξ1

tr ) + x⊤

 ∑
j∈Iξ2

tr

XjX
⊤
j


† ∑

j∈Iξ2
tr

Xjrj

 .

If ξ2 = 0, then Iξ2
tr is an empty set and there are no residuals rj computed. In this case, we adopt the

convention that there is no one-step adjustment. Therefore, the ingredient predictors for our one-step
procedure includes the ingredient predictors for the zero-step procedure. As with the zero-step procedure,
two remarks are in order:

• There is external randomness in choosing subsets Dξ1
tr and Dξ2

tr of sizes ntr − ξ1 and ξ2, respectively. To
reduce such randomness, we make use of many different subsets of the same sizes and average such
different one-step predictors. More precisely, for each ξ = (ξ1, ξ2) ∈ Ξ, draw m disjoint pairs of sets
(Dξ1,j

tr ,Dξ2,j
tr ), . . . , (Dξ1,j

tr ,Dξ2,j
tr ) from Dtr. Formally, for 1 ≤ j ≤ m, we randomly draw a subset Dξ1,j

tr
from Dtr of size ntr − ξ1 and a subset Dξ2,j

tr from Dtr \ Dξ1,j
tr of size ξ2. We then fit different one-step

predictors f̃(·; Dξi,j
tr ,Dξ2,j

tr ) on (Dξ1,j
tr ,Dξ2,j

tr ) for 1 ≤ j ≤ M , and take the final ingredient predictor f̂ξ to
be the average of M such predictors:

f̂ξ(x) = 1
M

M∑
j=1

f̃(x; Dξ1,j
tr ,Dξ2,j

tr ). (3.43)

As before, when M = ∞, f̂ξ becomes the average of all possible pairs of disjoints subsets Dtr of sizes
ntr − ξ1 and ξ2, while the case of M = 1 has the largest amount of external randomness. Based on the
theory of U -statistics, we again expect the choice of M = ∞ to provide a predictor with the smallest
variance. For computational reasons, we use a finite value of M ≥ 1.

• In the description above, we have ntr(ntr +1)/2 predictors to use in Algorithm 1. Similar to the zero-step
procedure, we replace Ξn with

Ξn :=
{

(ξ1, ξ2) : ξ1 ∈
{

2, . . . ,
⌈
ntr

⌊nν⌋
− 2
⌉}

, ξ2 ∈ {1, . . . , ξ1 − 1}
}
, for some ν ∈ (0, 1), (3.44)

and consider predictors obtained by training components of f̃ on subsets of sizes ntr − ξ1⌊nν⌋ and ξ2⌊nν⌋.
Such a change helps in reducing the cost of computing f̂ cv using Algorithm 1. In addition, this also
helps in the statistical properties of f̂ cv when applying the union bound in the results of Section 3.2.
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With these two modifications, with Ξn as defined in (3.44), for ξ ∈ Ξn, we define f̂ξ as in (3.43) with
the subsets Dξ1,j

tr , Dξ2,j
tr (for 1 ≤ j ≤ M) now representing disjoints subsets of sizes ntr − ξ1⌊nν⌋ and ξ2⌊nν⌋,

respectively. The ingredients predictors to be used in Algorithm 1 are given by f̂ξ, ξ ∈ Ξn. We call the
resulting predictor obtained from Algorithm 1 as the one-step predictor based on f̃ , and we denote the
corresponding prediction procedure to be f̂os. The one-step procedure is summarized in Algorithm 3.

Algorithm 3 One-step procedure
Inputs:

– all inputs of Algorithm 1 other than the index set Ξ;
– a positive integer M .

Output:

– a predictor f̂os

Procedure:

1. Let ntr = n− nte. Construct an index set Ξn per (3.44).

2. Construct train and test sets Dtr and Dte per Step 1 of Algorithm 1.

3. Let n1,ξ1 = ntr − ξ1⌊nν⌋ and n2,ξ2 = ξ2⌊nν⌋. For each (ξ1, ξ2) ∈ Ξn and j = 1, . . . ,M , draw
random pairs of disjoint subsets (Dξ1,j

tr ,Dξ2,j
tr ) of sizes n1,ξ1 and n2,ξ2 from Dtr, respectively. For each

(ξ1, ξ2) ∈ Ξn, fit predictors f̂ξ as described by (3.43) using prediction procedure f̃ and {(Dξ1,j
tr ,Dξ2,j

tr ) :
1 ≤ j ≤ M}.

4. Run Steps 3–5 of Algorithm 1 using index set Ξ = Ξn and set of predictors {f̂ξ, ξ ∈ Ξ}.

5. Return f̂os as the resulting f̂ cv from Algorithm 1.

3.4.3 Risk behavior of f̂ os

In this section, we examine the risk behavior of one-step predictor f̂os. Similar treatment as done for
the zero-step procedure in Section 3.3.3 applies in general. To avoid repetition, we will primarily restrict
ourselves to the proportional asymptotics regime in this section.

3.4.3.1 Risk behavior of f̂os under proportional asymptotics

Define n1,ξ1 = ntr −ξ1⌊nν⌋ and n2,ξ2 = ξ2⌊nν⌋. Assume that there exists a deterministic profile Rdet(·, ·; f̃) :
R × R → R of f̃ such that the following holds:∣∣∣∣∣R(f̃(·; Dξ⋆

1,n,j

tr ,Dξ⋆
2,n,j

tr )
)

−Rdet

(
p

n1,ξ⋆
1,n

,
p

n2,ξ⋆
2,n

; f̃
)∣∣∣∣∣ = op(1)Rdet

(
p

n1,ξ⋆
1,n

,
p

n2,ξ⋆
2,n

; f̃
)
, (DETPA-1)

where (ξ⋆1,n, ξ⋆2,n) are the indices that minimize the deterministic profile Rdet(·, ·; f̃):

(ξ⋆1,n, ξ⋆2,n) ∈ arg min
(ξ1,ξ2)∈Ξn

Rdet
(

p

n1,ξ1

,
p

n2,ξ2

; f̃
)
. (3.45)

Because log(|Ξn|) ≤ 2 log(n), following the arguments in Section 3.3.3, we conclude that if (DETPA-1)
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and either (O1)5 or (O2) hold, then(
R(f̂os) − min

(ξ1,ξ2)∈Ξn

Rdet
(

p

n1,ξ1

,
p

n2,ξ2

; f̃
))

+
= op(1) · min

(ξ1,ξ2)∈Ξn

Rdet
(

p

n1,ξ1

,
p

n2,ξ2

; f̃
)
. (3.46)

Just as we reduced verification of (DETPA-0) to (DETPAR-0), we state below a reduction of the
verification of (DETPA-1) that only considers non-deterministic sequences for which the aspect ratios of
the split datasets for the constituent one-step predictors converge.

For any γ > 0, define
Mos

γ := arg min
(ζ1,ζ2):ζ−1

1 +ζ−1
2 ≤γ−1

Rdet(ζ1, ζ2; f̃).

Lemma 3.4.1 (Reduction of (DETPA-1)). Suppose Dk1,m and Dk2,m are dataset with k1,m and k2,m

observations and pm features. Assume the loss function ℓ is such that R(f̃(·; Dk1,m
,Dk2,m

)) is uniformly
bounded away from 0. Let γ > 0 be a real number. Suppose there exists a proper, lower semicontinuous
function Rdet : [γ,∞] × [γ,∞] → [0,∞] such that the following holds true:

R
(
f̃(·; Dk1,m

,Dk2,m
)
) p−→ Rdet(ϕ1, ϕ2; f̃) (DETPAR-1)

as k1,m, k2,m, pm → ∞ and (pm/k1,m, pm/k2,m) → (ϕ1, ϕ2) ∈ Mos
γ . Furthermore, suppose that Rdet(·, ·; f̃)

is continuous on the set Mos
γ . Then, (DETPA-1) is satisfied.

The proof of Lemma 3.4.1 follows analogously to that of Lemma 3.3.8 where we show that even though
the sequence {Φn = (pn/n1,ξ⋆

1,n
, pn/n2,ξ⋆

2,n
)}n≥1 may not converge, there exists a subsequence {Φnkl

}l≥1
that converges to some (ϕ1, ϕ2) ∈ Mos

γ . Below we provide some commentary on the assumptions of
Lemma 3.4.1.

• We note that assuming lower semicontinuity of Rdet(·, ·; f̃) is a mild assumption. In particular, it
does not preclude the possibility that Rdet diverges to ∞ at several values in the domain as shown in
Proposition 3.4.2. For example, the proposition implies that if Rdet(·, ·; f̃) is continuous on a set except
for when ϕ1 = 1 or ϕ2 = 1, then Rdet is lower semicontinuous, provided Rdet diverges to ∞ when either
ϕ1 or ϕ2 converges to 1. The condition of lower semicontinuous deterministic approximation Rdet(·; ·; f̃)
follows from the continuity of the domain of Rdet(·, ·; f̃) (i.e., points of finite function value). This is
similar to Proposition 3.3.9 discussed in the context of the zero-step predictor. The formal statement for
the one-step predictor is as follows.

Proposition 3.4.2 (Verifying lower semicontinuity for diverging risk profiles). Let (M,d) be a metric space.
Let C be a closed set. Suppose h : M → R is a function such that h(x) < ∞ for x ∈ M \ C, and h(x) = ∞
for x ∈ C. In addition, if h restricted to M \ C (denoted by h|M\C(·)) is continuous, and for any sequence
{xn}n≥1 that converges to a point in C, {h(xn)}n≥1 converges to ∞. Then, h is lower semicontinuous on
M .

• Continuity assumption on Rdet(·, ·; f̃) at the argmin set Mos
γ is also mild. Proposition 3.4.3 below shows

that (DETPAR-0) holding for (ϕ1, ϕ2) in any open set I implies continuity of Rdet on I.

Proposition 3.4.3 (Certifying continuity from continuous convergence). Let Dk1,m
and Dk2,m

be datasets
with k1,m and k2,m observations and pm features, and consider one-step ingredient prediction procedure
f̃ trained on Dk1,m

and Dk2,m
. Fix a open set I ⊆ (0,∞] × (0,∞]. Suppose there exists a function

Rdet : (0,∞] × (0,∞] → [0,∞] such that

R(f̃(·; Dk1,m
,Dk2,m

)) p−→ Rdet(ϕ1, ϕ2; f̃) (3.47)

as k1,m, k2,m, pm → ∞ and (pm/k1,m, pm/k2,m) → (ϕ1, ϕ2) ∈ I. Then, Rdet(·, ·; f̃) is continuous on I.

5Here, we need (O1) with Rdet
↗ (n, f̃) replaced with the minimum appearing in (3.46).
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Combining the results and the discussion above, the verification of (DETPAR-1) under (PA(γ)) can
proceed the following three-point program:
(PRG-1-C1) For (ϕ1, ϕ2) such that Rdet(ϕ1, ϕ2; f̃) < ∞, verify that for all datasets Dk1,m and Dk2,m with

limiting aspect ratios (ϕ1, ϕ2), R(f̃(·, ·; Dk1,m,Dk2,m
)) p−→ Rdet(ϕ1, ϕ2; f̃).

(PRG-1-C2) Whenever Rdet(ϕ1, ϕ2; f̃) = ∞, it obeys that

lim
(ϕ′

1,ϕ
′
2)→(ϕ1,ϕ2)

Rdet(ϕ′
1, ϕ

′
2; f̃) = ∞.

(PRG-1-C3) The set of all points where Rdet(ϕ1, ϕ2; f̃) = ∞ is a closed set.
We will follow these steps to verify (DETPAR-1) for the MN2LS and MN1LS prediction procedures

in Section 3.4.3.2. But we will first complete the derivation of the deterministic approximation to the
conditional risk of f̂os under (DETPAR-1). Following similar arguments as those in Section 3.3.3 for the
zero-step procedure, Lemma 3.4.1 along with (3.46) provides the following monotonization result for the
one-step procedure:
Theorem 3.4.4 (Asymptotic risk profile of one-step predictor). For any prediction procedure f̃ suppose
(PA(γ)), either (O1) or (O2), and the assumptions of Lemma 3.4.1 hold true. In addition, if the loss
function is convex in the second argument, then for any M ≥ 1,(

R(f̂os; Dn) − min
1/ζ1+1/ζ2≤1/γ

Rdet(ζ1, ζ2; f̃)
)

+
= op(1). (3.48)

Theorem 3.4.4 hinges on (DETPA-1) and continuity of Rdet(·, ·; f̃) which we will verify below in a
specific model setting. Before doing that, let us briefly remark about the extensions and implications of
(3.48).
Remark 3.4.5 (Exact risk of f̂os). For M = 1 under (DETPA-1), (3.48) only guarantees that the risk of
f̂os is bounded above by the minimum in (3.48). Considering a stricter version (DETPA-1*) of (DETPA-1)
that requires the op(1) in (DETPA-1) to be uniform over all (ξ1,n, ξ2,n) ∈ Ξn, conclusion (3.48) can be
extended to imply for M = 1 that∣∣∣∣R(f̂os; Dn) − min

1/ζ1+1/ζ2≤1/γ
Rdet(ζ1, ζ2; f̃)

∣∣∣∣ = op(1). (3.49)

This shows that the risk of the one-step procedure with M = 1 under the stricter assumption of (DETPA-1*)
is exactly the same as the minimum in the display above. This is the characterization of the risk of the
one-step procedure in the same vein as (3.39) is the characterization of the risk of the zero-step procedure.
Remark 3.4.6 (Monotonicity in the limiting aspect ratio). Observe that the following map

γ 7→ min
1/ζ1+1/ζ2≤1/γ

Rdet(ζ1, ζ2; f̃)

is non-decreasing in γ. This is because
{(ζ1, ζ2) : 1/ζ1 + 1/ζ2 ≤ 1/γu} ⊆ {(ζ1, ζ2) : 1/ζ1 + 1/ζ2 ≤ 1/γl} for γl ≤ γu,

and hence the minimum can only be larger as γ increases. This implies that the risk of the one-step
procedure in asymptotically bounded above by a monotonically non-decreasing function in γ under the
assumptions of Theorem 3.4.4.
Remark 3.4.7 (Comparison with f̂ zs). Observe that

min
1/ζ1+1/ζ2≤1/γ

Rdet(ζ1, ζ2; f̃) ≤ min
1/ζ1≤1/γ

Rdet(ζ1; f̃), (3.50)

where the left hand side is the asymptotic risk of f̂os (with M = 1 and under (DETPA-1*)), the right
hand side is the asymptotic risk of f̂ zs (with M = 1 under (DETPA-0*)). Hence, under some regularity
conditions, the one-step procedure is as good as the zero-step procedure if not better. See Remark 3.4.12
for more details. For M > 1 such a comparison is not readily plausible from our results.
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3.4.3.2 Verification of (DETPAR-1)

We now verify the assumption (DETPAR-1) in a specific model setting when the base prediction procedure
is either MN2LS or MN1LS. But first, we provide a general result describing the asymptotic risk profile of
R(f̃(·; Dk1,m

,Dk2,m
)) when the base prediction procedure is linear.

Let f̃ be a linear base prediction procedure given by f̃(x; Dk1,m
) = x⊤β̃(Dk1,m

), for some β̃(Dk1,m
) ∈ Rp

computed on Dk1,m
. If Dk2,m

= {(Xi, Yi) : 1 ≤ i ≤ k2,m}, the ingredient predictor f̃(·; Dk1,m
,Dk2,m

) for the
one-step prediction procedure is given by

f̃(x; Dk1,m ,Dk2,m) = x⊤β̃(Dk1,m) + x⊤β̃mn2({(Xi, Yi −X⊤
i β̃(Dk1,m)) : 1 ≤ i ≤ k2,m})). (3.51)

The following result characterizes the conditional prediction risk of f̃(·; Dk1,m
,Dk2,m

) for the squared error
loss in terms of the risk behavior of β̃(Dk1,m). This is possible because the one-step adjustment is fixed
to be the MN2LS prediction procedure and its risk behavior can be completely characterized as done in
Section 3.3.3.1.

Consider the setting of Proposition 3.3.14. Let Σ = WRW⊤ denote the eigenvalue decomposition
of the covariance matrix Σ = Cov(X0), where R ∈ Rpm×pm is a diagonal matrix containing eigenvalues
r1 ≥ r2 ≥ · · · ≥ rpm

≥ 0, and W ∈ Rpm×pm is an orthonormal matrix containing the corresponding
eigenvectors w1, w2, . . . , wpm

∈ Rpm . In preparation for the statement to follow, define the following
(random) probability distribution on R≥0:

Q̂n(r) := 1
R(f̃(·; Dk1,m)) − σ2

pm∑
i=1

((β̃(Dk1,m
) − β0)⊤wi)2riI{ri ≤ r}. (3.52)

Let Hpm
denote the empirical spectral distribution of Σ, whose value at any r ∈ R is given by

Hpm(r) = 1
pm

pm∑
i=1

I{ri≤r}, (3.53)

and let H denote the corresponding limiting spectral distribution, i.e., Hpm

d−→ H as pm → ∞. See (ℓ2A5)
in the proof of Proposition 3.3.14 for more details.

Lemma 3.4.8 (Continuous convergence of squared risk for one-step procedure). Let f̃ be any linear
prediction procedure, and assume the setting of Proposition 3.3.14. Let k1,m, k2,m, pm → ∞ such that
(pm/k1,m, pm/k2,m) → (ϕ1, ϕ2). Suppose there exists a deterministic approximation Rdet(ϕ1; f̃) to the
conditional squared prediction risk of f̃(·; Dk1,m

) such that R(f̃(·; Dk1,m
)) p−→ Rdet(ϕ1; f̃) for ϕ1 that satisfy

Rdet(ϕ1; f̃) < ∞. Assume the distribution Q̂n as defined in (3.52) converges weakly to a fixed distribution
Q, in probability. Then, for ϕ2 ∈ (0, 1) ∪ (1,∞], we have R(f̃(·; Dk1,m

,Dk2,m
)) p−→ Rdet(ϕ1, ϕ2; f̃), where

Rdet(ϕ1, ϕ2; f̃) is given by

Rdet(ϕ1, ϕ2; f̃) =


Rdet(ϕ1; f̃) if ϕ2 = ∞

Rdet(ϕ1; f̃)Υb(ϕ1, ϕ2) + σ2(1 − Υb(ϕ1, ϕ2)) + σ2ṽg(0;ϕ2) if ϕ2 ∈ (1,∞)

σ2
(

1
1 − ϕ2

)
if ϕ2 ∈ (0, 1).

(3.54)

Here, the scalars v(0;ϕ2), ṽ(0;ϕ2), ṽg(0;ϕ2), and Υb(ϕ1, ϕ2), for ϕ2 ∈ (1,∞), are defined as follows:

– v(0;ϕ2) is the unique solution to the fixed-point equation:

v(0;ϕ2) =
(
ϕ2

∫
r

v(0;ϕ2)r + 1 dH(r)
)−1

, (3.55)
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– ṽ(0;ϕ2) is defined in terms of v(0;ϕ2) by the equation:

ṽ(0;ϕ2) =
(

1
v(0;ϕ2)2 − ϕ2

∫
r2

(v(0;ϕ2)r + 1)2 dH(r)
)−1

, (3.56)

– ṽg(0;ϕ2) is defined in terms of v(0;ϕ2) and ṽ(0;ϕ2) by the equation:

ṽg(0;ϕ2) = ṽ(0;ϕ2)ϕ2

∫
r2

(v(0;ϕ2)r + 1)2 dH(r), (3.57)

– Υb(ϕ1, ϕ2) is defined in terms of v(0;ϕ2) and ṽg(0;ϕ2) by the equation:

Υb(ϕ1, ϕ2) = (1 + ṽg(0;ϕ2))
∫ 1

(v(0;ϕ2)r + 1)2 dQ(r). (3.58)

Lemma 3.4.8 provides a deterministic risk approximation for the ingredient one-step predictor f̃(·; Dk1,m
,Dk2,m

)
in terms of the deterministic risk approximation of the base prediction procedure f̃ . In case of isotropic
covariates, i.e., Σ = Ipm

, the distribution H is degenerate at 1, and Rdet(ϕ1, ϕ2; f̃) can be simplified because
Υb(ϕ1, ϕ2) = (1 − 1/ϕ2), and ṽg(0;ϕ2) = 1/(ϕ2 − 1). See the proof of Proposition 3.4.11 for more details.

Note that the assumed limiting distribution Q in general depends on ϕ1, ϕ2, and hence Υb(ϕ1, ϕ2) is
in general a function of ϕ1, ϕ2, and the distribution of the data. On the other hand, v(0;ϕ2) defined in
(3.55), is a function of ϕ2 alone, and hence ṽg(0;ϕ2) is just a function of ϕ2. Furthermore, it can be verified
that ṽg(0; ·) is a continuous function on (1,∞) and limϕ2→1+ ṽg(0;ϕ2) = ∞; see Lemma C.6.13 (4). This
implies that Rdet(ϕ1, ϕ2; f̃) satisfies (PRG-1-C1)–(PRG-1-C3), if the base prediction procedure satisfies
(PRG-0-C2). Hence, any prediction procedure that can be used for zero-step can also be used for one-step
as long as the convergence assumption on Q̂n is satisfied. We make this precise in the following result.
Corollary 3.4.9 (Verification of one-step deterministic profile program). Assume the setting of Lemma 3.4.8.
In addition, suppose Rdet(ϕ1; f̃) satisfies (PRG-0-C2). Then, f̃(·; Dk1,m

,Dk2,m
) satisfies (PRG-1-C1)–(PRG-

1-C3) and hence satisfies (DETPAR-1).
Therefore, the prediction procedures mentioned in Remark 3.3.16 can be easily shown to satisfy

(DETPAR-1). Although we assume that Q̂n converges weakly to Q in probability, we only need in
probability convergence of

∫
f(r) dQ̂n(r) to

∫
f(r) dQ(r) for f(r) = r/(v(0;ϕ2)r + 1)2, which is a weaker

requirement. Intuitively, this assumption comes from the representation of f̃(x; Dk1,m
,Dk2,m

) in (3.51) as
f̃(x; Dk1,m

,Dk2,m
) = x⊤Âβ̃(Dk1,m

) + x⊤β̃mn2(Dk2,m
) for some random matrix Â; see Lemma C.5.1. Hence,

the risk of f̃ can be written in terms of a weighted prediction error of β̃(Dk1,m) with the weights depending
on f(·); see (C.69).
Proposition 3.4.10 (Verification of (DETPAR-1) for the MN2LS base procedure). Assume the setting of
Proposition 3.3.14. Then, the one-step ingredient predictor constructed from the MN2LS base prediction
procedure satisfies (DETPAR-1).
Proposition 3.4.11 (Verification of (DETPAR-1) for the MN1LS base procedure). Assume the setting of
Proposition 3.3.15. Then, the one-step ingredient predictor constructed from the MN1LS base prediction
procedure satisfies (DETPAR-1).
Remark 3.4.12 (Comparison of zero and one-step procedure for isotropic covariance). In order to get
an intuition about the risk of one-step procedure, consider the case of isotropic features. In this case,
Rdet(ϕ1, ϕ2; f̃) simplifies to

Rdet(ϕ1, ϕ2; f̃) =



Rdet(ϕ1; f̃) if ϕ2 = ∞

Rdet(ϕ1; f̃)
(

1 − 1
ϕ2

)
+ σ2

(
1
ϕ2

+ 1
ϕ2 − 1

)
if ϕ2 ∈ (1,∞)

σ2
(

1
1 − ϕ2

)
if ϕ2 ∈ (0, 1).

(3.59)
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Note that ϕ2 = ∞ corresponds to simply using the base predictor without any one-step residual
adjustment. This is the same as the ingredient predictor used in the zero-step prediction procedure. The
one-step prediction procedure would minimize the expression shown in (3.59), over ϕ1 and ϕ2 satisfying
ϕ−1

1 +ϕ−1
2 ≤ γ−1. If the optimal ϕ2 turned out to be ∞, then one-step predictor and the zero-step predictor

become the same, and the resulting limiting risk is Rdet(ϕ1; f̃). From (3.59), the risk for ϕ2 ∈ (1,∞) can
be decomposed as

Rdet(ϕ1; f̃) +
(
σ2

ϕ2
+ σ2

ϕ2 − 1 − Rdet(ϕ1; f̃)
ϕ2

)
.

If the quantity in the parenthesis is negative for some (ϕ1, ϕ2) satisfying the condition ϕ−1
1 +ϕ−1

2 ≤ γ−1, then
the one-step prediction procedure will yield a strictly better risk than the zero-step prediction procedure
(for M = 1).

One can gain more insight into how one-step procedure improves on the zero-step by considering the
case of isotropic covariance and MN2LS base prediction procedure. The intriguing finding in this case is
that the one-step prediction procedure with base MN2LS procedure is effectively the same as applying
MN2LS on new data with reduced signal energy and with a larger limiting aspect ratio.

Formally, under isotropic covariance with MN2LS base procedure, Rdet can be written as follows. Recall
ρ2 denotes the limit of ∥β0∥2

2 and σ2 is the noise variance. Then, one has

Rdet(ϕ1, ϕ2; f̃mn2)

=



[
ρ2
(

1 − 1
ϕ1

)
+ σ2

(
1

ϕ1 − 1

)](
1 − 1

ϕ2

)
+ σ2

(
1

ϕ2 − 1

)
+ σ2 if (ϕ1, ϕ2) ∈ (1,∞] × (1,∞][

σ2
(

ϕ1

1 − ϕ1

)](
1 − 1

ϕ2

)
+ σ2

(
1

ϕ2 − 1

)
+ σ2 if (ϕ1, ϕ2) ∈ (0, 1) × (1,∞)

σ2
(

ϕ2

1 − ϕ2

)
+ σ2 if (ϕ1, ϕ2) ∈ (0,∞) × (0, 1).

Here, we treat 1/x and 1/(x− 1) to be 0 when x = ∞.
Let Rdet

mn2(ϕ; ρ2, σ2) denote the asymptotic risk profile of the MN2LS predictor at aspect ratio ϕ, signal
energy ρ2, and noise energy σ2; from the proof of Proposition 3.3.14 (see also Hastie et al., 2022, Theorem
1), we have

Rdet
mn2(ϕ; ρ2, σ2) =

ρ
2
(

1 − 1
ϕ

)
+ σ2

(
1

ϕ−1

)
+ σ2 if ϕ ∈ (1,∞]

σ2
(

ϕ
1−ϕ

)
+ σ2 if ϕ ∈ (0, 1).

Let Rdet
mn2(ϕ1, ϕ2; ρ2, σ2) denote the asymptotic risk profile of the one-step ingredient predictor with MN2LS

base predictor with signal and noise energy ρ2 and σ2, respectively – which above we have denoted with
Rdet(ϕ1, ϕ2; f̃mn2). Then, we can write

Rdet
mn2(ϕ1, ϕ2; ρ2, σ2) = Rdet

mn2(ϕ2;Rdet
mn2(ϕ1; ρ2, σ2) − σ2, σ2). (3.60)

Thus, the limiting risk of the one-step predictor computed on a data with limiting aspect ratio γ is given by

Rdet
mn2(ϕ2(γ);Rdet

mn2(ϕ1(γ); ρ2, σ2) − σ2, σ2), (3.61)

where (ϕ1(γ), ϕ2(γ)) represents the minimizer of Rdet
mn2(ζ1, ζ2; ρ2, σ2) over ζ−1

1 + ζ−1
2 ≤ γ−1. Now the risk

expression (3.61) can be interpreted as follows: The one-step prediction procedure with base MN2LS
procedure is effectively the same as applying MN2LS on new data with reduced signal energy (because
Rdet

mn2(ϕ1(γ); ρ2, σ2) < ρ2 + σ2) and with a larger limiting aspect ratio ϕ2(γ) > γ. Note that reducing the
signal energy reduces the risk for MN2LS due to a reduction in the estimation bias; see Figure C.6 and
Lemma C.6.18 (5). Recall that the effect of the zero-step procedure would just be applying MN2LS on a
data set with a large limiting aspect ratio, but with the original signal energy ρ2. Hence, the improvement
of the one-step procedure over the zero-step procedure (which only takes place in the overparametrized
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Figure 3.5: Comparison of zero-step and one-step procedures with MN2LS base procedures under isotropic
feature covariance, and low, moderate, and high SNR regimes. Observe that for SNR = 1, zero-step and
one-step both have the same risk profile with M = 1. This holds true even for SNR ≤ 1, as shown in
Theorem C.6.16. For SNR > 1, there exists a range of γ for which one-step is strictly better than zero-step.
See Theorem C.6.16 for more details.

regime) essentially stems from reducing the signal energy and thus the bias, which “boosts” the asymptotic
risk.

In this case, we can also explicitly carry out the optimization of minimizing Rdet(ζ1, ζ2; f̃) subject to
the constraint ζ−1

1 + ζ−1
2 ≤ γ−1. See Appendix C.6.7 for the details. See Figure 3.5 for an illustration of

the comparison the limiting risk of the one-step prediction procedure with the the zero-step prediction
procedure.

Finally, we comment that for base predictors other than the MN2LS, the risk of one-step procedure
may not have as nice an interpretation as “boosting” the asymptotic risk by reducing the signal energy
in addition to increasing aspect ratio. However, the message is that the one-step procedure adds another
knob to the zero-step procedure which leads to an improved risk.

3.4.4 Numerical illustrations
In this section, we provide numerical illustration of the risk monotonization of one-step prediction procedure
in the proportional asymptotic regime, when the base prediction procedures are MN2LS and MN1LS
prediction procedures, and the one-step adjustment is always performed via MN2LS. In order to illustrate
risk monotonization as in Theorem 3.4.4, we need to show the risk behavior of f̂os at different aspect ratios.
We use the same simulation settings used for the illustration of the zero-step procedure in Section 3.3.4.
Figures 3.6 and 3.7 present our simulation results. The conclusions are essentially the same as those stated
for the zero-step procedure in Section 3.3.4.

Minimum ℓ2-norm least squares (MN2LS). Figure 3.6 shows the risks of the baseline MN2LS
procedure and the one-step prediction procedure with MN2LS as the base prediction procedure for high
and low SNR regimes (left: SNR = 4; right: SNR = 1); we take σ2 = 1, so that ρ2=SNR. We also present
the null risk (ρ2 + σ2), i.e., the risk of the zero predictor as a baseline in both the plots.

Similar to the behavior of the zero-step procedure we observe that the risk of the one-step procedure is
non-decreasing in γ for every M ≥ 1. Although the risk of the one-step procedure is close to being below
the risk of the base procedure, Figure 6 shows the effects of working with a finite sample. (The risk of
one-step for M = 1 is sometimes above the risk of the base procedure.)

Figure 3.6 also shows that the one-step prediction procedure can be strictly better than the zero-step
prediction procedure. In particular, the left panel of Figure 6 shows that around the interpolation threshold
of 1, the risk of one-step prediction procedure is not flat. It is strictly increasing. The risk of one-step
procedure for M > 1 is once again seen to be a strict improvement over M = 1.
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Figure 3.6: Illustration of the one-step procedure with the MN2LS as the base predictor and MN2LS
one-step adjustment with varying M . The left panel shows a high SNR setting (SNR = 4), while the right
panel shows a low SNR setting (SNR = 1). The setup has n = 1000, ntr = 900, nte = 100, nν = 50. The
features are drawn from an isotropic Gaussian distribution, the response follows a linear model with dense
signal. The risks are averaged over 100 dataset repetitions.

Minimum ℓ1-norm least squares (MN1LS). Figure 3.7 shows the risks of the baseline MN1LS
procedure and the one-step procedure with MN1LS as the base prediction procedure for high (left, SNR =
4) and low (right, SNR = 1) SNR regimes. We take σ2 = 1 and ρ2 = SNR. We also present the null risk
(ρ2 + σ2), i.e., the risk of the zero predictor as a baseline in both the plots. We again observe that the
risk of the one-step procedure for every M ≥ 1 is non-decreasing in γ. As before, once again we observe in
Figure 3.7 that the one-step procedure with M = 1 attains precise risk monotonization while zero-step
with M > 1 improves significantly upon the M = 1 case when γ is near one. All these comments hold for
both low and high SNR regimes.

3.5 Discussion
In this work, we have proposed a generic cross-validation framework to monotonize any given prediction
procedure in terms of the sample size. We studied two concrete methodologies: zero-step and one-step
prediction procedures. The ingredient predictors for the zero-step prediction procedure is the base procedure
applied on a subset of the data. The ingredient predictor for the one-step prediction procedure can be
thought of as boosting applied to the base procedure learned on a subset of data (Schapire and Freund
(2013)). In both cases, we also introduced averaging over the subsets of the data (via the parameter M).
This particular averaging step can be seen as bagging, which is known to have a variance reduction effect.

We have analyzed the properties of zero-step and one-step prediction procedures in a model-free setting
under mild regularity assumptions. This is in contrast to many other works in this literature that require
strong distributional assumptions. In part this is possible because we assume the existence of the limiting
risk and monotonize it (in a data-driven way) without requiring the knowledge/form of the risk.

Monotonization of asymptotic risk also has implications for minimax risk. If the base prediction
procedure has a finite asymptotic risk R and R, respectively, at the limiting aspect ratios of 0 and ∞,
then both zero-step and one-step prediction procedures applied to such a base procedure yield predictors
whose asymptotic risk lies between [R,R] for all limiting aspect ratios. For example, for the squared error
loss and a linear model, the MN1LS and MN2LS predictors have R = σ2 and R = ∥β0∥2

Σ + σ2, where
σ2 is the noise energy, which is also the unavoidable prediction risk, and ∥β0∥2

Σ is the effective signal
energy. Because σ2 is the unavoidable prediction risk, and hence a minimax lower bound, the zero-step and
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Figure 3.7: Illustration of the one-step procedure with MN1LS as the base procedure and MN2LS one-step
adjustment with varying M . The left panel shows a high SNR setting (SNR = 4), while the right panel
shows a low SNR setting (SNR = 1). In the setup, n = 500, ntr = 420, nte = 80, nν = 42. The features
are drawn from an isotropic Gaussian distribution, the response follows a linear model with sparse signal
(sparsity level = 0.0005). The risks are averaged over 100 dataset repetitions.

one-step predictors based on MN1LS and MN2LS are minimax optimal up to a multiplicative factor of
1 + SNR = 1 + ∥β0∥2

Σ/σ
2 over all aspect ratios ranging from 0 to ∞. Any base prediction procedure

that leads to the null predictor (i.e., f̂(x) = 0 for all x) for the limiting aspect ratio of ∞ also has the same
property. (Most reasonable prediction procedures would yield the null predictor as the limiting aspect
ratio tends to ∞.) Furthermore, for every procedure, there exists another procedure (such as the zero-step)
whose risk is at least as good and is monotone. Thus, the minimax risk is a monotone function of the
limiting aspect ratio. To our knowledge, the minimax risk in the proportional asymptotics regime under
generic signal structure is not available in the literature.

Although the focus of the current work is exclusively on choosing optimal sample size, one could apply
the cross-validation framework proposed for selecting optimal predictors from any collection. In particular,
one can use our methodology to find optimal penalty parameter for ridge regression or lasso. It can
also be used to select the number of random features in random features regression or kernel features in
kernel regression, or more generally, the number of parameters in a neural network. In the latter case, our
procedures will yield model-wise monotonicity (Nakkiran et al., 2019).

There are several interesting future directions that one can pursue. We will discuss three specific
directions below.

Theoretical characterization of the effect of bagging. We have only characterized the risk of the
zero-step and one-step with M = 1 in terms of the limiting risk of the base procedure. In this sense, we did
not fully analyze the effect of bagging (M > 1) for both zero-step and one-step procedures. It is of interest
to characterize the effect of bagging:

What is the limiting risk of the zero-step and one-step procedures when M > 1?

From the theory of U -statistics, it is expected that the risk for M > 1 is non-increasing in M . It is
hard to however argue that the risk of zero/one-step predictors is monotone in the limiting aspect ratio
when M > 1. The main difficulty lies in proving that the ingredient predictors for the zero-step procedure
have an asymptotic risk profile for M ≥ 1. Once this is guaranteed, the theory developed in Section 3.3.3.1
will readily imply that the zero-step procedure with M > 1 has an asymptotic monotonic risk profile. We
now briefly mention the difficulty in proving the existence of the asymptotic risk profile for the ingredient
predictor when M > 1.
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For concreteness, consider the ingredient predictor of the zero-step prediction procedure with M > 1
that uses kn ≤ n observations. This is given by

f̃M (x) = 1
M

M∑
j=1

f̃(x; Dj
tr) with |Dj

tr| = kn.

Note that we take subsets Dj
tr as independent and identically distributed subsets of size kn from the data

and hence for M = ∞, we get

f̃∞(x; Dtr) = 1(
n
kn

) ∑
1≤i1<...<ikn ≤ntr

f̃(x; {(Xij , Yij ) : 1 ≤ j ≤ kn}). (3.62)

This is a U -statistics of order kn for every fixed x in terms of the training data. If R(f̃(·; Dj
tr))

p−→
Rdet(ϕ) whenever p/kn → ϕ, then from the theory developed in Section 3.3.3.1, it follows that R(f̂ zs

M ) p−→
minζ≥γ R

det(ζ) under (PA(γ)). Hence, the main difficulty in characterizing the effect of bagging lies in
proving the existence of limit of R(f̃). For the squared error loss, it can be proved that (see Appendix C.6.11)

R(f̃M ) = R(f̃∞(·; Dtr)) + 1
M

1(
n
kn

) ∑
i1,...,ikn

∫ (
f̃(x; {(Xij , Yij ) : 1 ≤ j ≤ kn}) − f̃∞(x; Dtr)

)2
dPX0(x).

(3.63)
It is interesting to note that the risk of f̃M only depends on M as a linear function of 1/M . If the base
predictor f̃ is non-zero almost surely, then the risk of f̃M is a strictly decreasing function of M . Observe that
(3.63) holds true even for M = 1 and from our results, we know that the right hand side with M = 1 has a
finite deterministic approximation. This implies that each of the components in (3.63) is asymptotically
bounded. Hence, as M → ∞, we can conclude that R(f̃M ) −R(f̃∞) p−→ 0.

Because kn → ∞ and p/kn → ϕ, the second term in (3.63) above could be analyzed using deterministic
representation for f̃(X0; {(Xij , Yij ) : 1 ≤ j ≤ kn}) (e.g., Theorem 1 of Liu and Dobriban (2019) for ridge
regression) and the theory of U -statistics. On the other hand, R(f̃∞) could also be similarly analyzed using
deterministic representations and the theory of U -statistics. We leave this for future work.

Other variants of boosting. In our empirical studies, we found that the one-step predictor (for M = 1)
which is a boosted version of the subsampled predictor has a much better performance than the zero-step
predictor (with M = 1), especially around the interpolation threshold. For reasons unclear to us currently,
the performance of one-step predictor (for M = 1) can be matched, at least in shape, by a zero-step
predictor with some M > 1. In this sense, the effect of one iterate boosting can be matched by the effect of
multi-subsample bagging. Furthermore, as M increases, both zero-step and one-step seem to approach the
same limit in our empirical studies. The interesting aspect is that the work done by M subsample bagging
is achieved by one boosting iterate. This begs the question: is there a better boosting mechanism that can
match zero-step predictors performance at M = ∞. In particular:

What are the other choices of one-step residual adjustments? And what is the “best” choice?

We have only analyzed the one-step residual adjustment done via MN2LS. Other choices are certainly
possible: for instance, one could do MN1LS or minimum ℓp-norm least squares or minimum ℓ2 robust least
squares in the context of linear regression. It seems cumbersome to analyze each one of these residuals
adjustments case-by-case and find the best choice. For general models, one can think of the residuals
adjustment we proposed as a variant of Newton’s step for the squared error loss under homoscedasticity
as mentioned in (3.41). The discussion of the “best” choice of the residual adjustment very much hinges
on the question of what is the best predictor in a given model in the proportional asymptotics regime.
Although we do not know the answer to this question, one can potentially target the question of deriving a
residual adjustment that yields an asymptotic risk performance similar to that of the zero-step predictor
with M = ∞. For any given predictor, is there a one iterate boosted version (i.e., one-step predictor with
M = 1) that achieves the same asymptotic performance as the M -subsample bagging with M = ∞?
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Similar to the one-step predictor one can develop a k-step predictor by splitting the data into potentially
(k + 1) batches and optimizing over the number of observations in each batch. This is analogues to
k-iterate boosting as our one-step procedure (with M = 1) is analogues to the one iterate boosting. This
gets computationally intensive very quickly as k increases. Furthermore, we believe that k-step predictor
combined with bagging would yield the same asymptotic risk profile as the zero- and one-step predictors
with M = ∞. In this sense, it seems a worth problem to investigate a better one iterate booster than to
investigate the k-step predictor precisely.

Comparison with other regularization strategies. On the surface, zero-step and one-step procedures
might seem to use only a subset of the data, and hence might appear sub-optimal. Along the same lines,
one might also wonder why not employ regularization techniques and optimize over the regularization
parameter. To the first point, note that we make use of the whole data in estimating the risk and comparing
predictors at different sample sizes, and hence make use of the full data. To the second point, it is somewhat
surprising to report that optimally-regularized procedures such as ridge regression with optimal choice of
penalty need not have monotone risk (in the limiting aspect ratio); see, for example, Figure 1 of Hastie
et al. (2022). But our procedure will always lead to a monotone risk and hence makes better use of the data
compared to optimum regularization procedures in general. Irrespective, it is still interesting to consider
the relation between zero-step and one-step, and the optimum regularization procedures in cases where the
latter has a monotone risk. In our empirical studies we found that in a well-specified linear model, zero-step
and one-step procedures (with the MN2LS base procedure) with a large enough M have asymptotic risk
very close to the risk of the optimum ridge regression procedure. See the left panel of Figure 3.8. In a
sparse linear regression model, zero-step and one-step procedures (with the MN1LS base procedure) with
a large enough M has asymptotic risk very close to the risk of the optimum lasso regression. It is also
interesting to observe that the risk is monotone for optimally tuned lasso. See the right panel of Figure 3.8.
The effect of both bagging and boosting with large M in this case appears to be similar. In other words,
thinking of the base procedures MN2LS and MN1LS as ridge and lasso, respectively, with zero penalty
parameter, the zero- and one-step predictors with M large attaining the same asymptotic risk as optimum
ridge or lasso can be considered as finding optimal regularization for these procedures. Without explicitly
formalizing the regularization predictor, zero- and one-step perform “optimal” implicit regularization. To
what extent such similarity extends to other settings is an interesting future direction:

Under what conditions, do zero- and one-step predictors with MN2LS/MN1LS base predictor
match the asymptotic risk profile of optimized regularization of ridge/lasso regression? What
other base predictors (and corresponding classes of regularized predictors) does this phenomenon
extend to?
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Figure 3.8: Comparison of different regularization strategies of zero-step, one-step, optimal ridge, and
optimal lasso. The left panel shows a dense signal regime and the right panel shows a sparse signal regime.
The setup has n = 100, SNR = 4. The features are drawn from an isotropic Gaussian distribution, the
response follows a linear model with dense (left panel) and sparse signal (right panel, sparsity level =
0.0005). The risks are averaged over 100 dataset repetitions.
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Chapter 4

Analyzing bagging

4.1 Introduction
Modern machine learning models succeed in various tasks, such as classification and regression, utilizing
numerous parameters compared to the number of observations. Several commonly used estimators in
such regime exhibit peculiar risk behavior, which is referred to as double or multiple descent in the risk
profile (Belkin et al., 2019a; Zhang et al., 2017, 2021). The precise nature of the double or multiple descent
behavior in the generalization error has been studied for various estimators: e.g., linear regression (Belkin
et al., 2020; Muthukumar et al., 2020; Hastie et al., 2022), logistic regression (Deng et al., 2022), random
features regression (Mei and Montanari, 2022), kernel regression (Liu et al., 2021), to name a few. We refer
the readers to a survey paper by Bartlett et al. (2021) for a more comprehensive review. See also Belkin
(2021); Dar et al. (2021) for other related references. In these cases, the asymptotic predictive risk behavior
is often studied as a function of the data aspect ratio (the ratio of the number of parameters/features to
the number of observations). The double descent behavior refers to the phenomenon where a predictor’s
(asymptotic) risk first increases as a function of the aspect ratio, reaches a peak (or blows up to infinity) at
a point, and then decreases as a function of the aspect ratio. From a traditional statistical point of view,
desirable behavior as a function of aspect ratio is not obvious. However, we can reformulate the behavior
as a function of ϕ = p/n in terms of the observation size n with a fixed p; think of a large but fixed p and
n changing from 1 to ∞. In this reformulation, the double descent behavior translates to a pattern in
which the risk first decreases as n increases, then increases, reaches a peak at a point, and then decreases
again with n. This is a rather counter-intuitive and sub-optimal behavior for a prediction procedure. The
least one would expect from a good prediction procedure is that it yields better and better performance
with more information (i.e., more data). The works mentioned above show that many commonly used
predictors may not exhibit such “good” behavior. Simply put, the non-monotonicity of the asymptotic risk
as a function of the number of observations or the limiting aspect ratio implies that more data may hurt
(Nakkiran, 2019).

Several ad hoc regularization techniques have been proposed in the literature to mitigate the dou-
ble/multiple descent behaviors. Most of these methods are trial-and-error in the sense that they do not
directly target monotonizing the asymptotic risk but try a modification and check that it yields monotonic
risk. Recently, Patil et al. (2022a) proposed a generic cross-validation framework that directly addresses the
problem and yields a modification of any given prediction procedure that provably monotonizes the risk. In
a nutshell, the method works by training the predictor on subsets of the full data (with different subset
sizes) and picking the optimal subset size based on the estimated prediction risk computed using testing
data. Intuitively, it is clear that this yields a prediction procedure whose risk is a decreasing function
of the observation size. In the proportional asymptotics regime, where p/n → ϕ as n → ∞, Patil et al.
(2022a) prove that this strategy returns a prediction procedure whose asymptotic risk is monotonically
increasing in ϕ. In that paper, the authors have only analyzed the case where only one subset is used
for each subset size, but illustrated via numerical simulations that using multiple subsets of the data of
the same size (i.e., subsampling) can yield better prediction performance in addition to monotonizing the

73



risk. Note that averaging a predictor computed on M different subsets of the data of the same size is
referred in the literature as subagging, a variant of the classical bagging (bootstrap aggregation) proposed
by Breiman (1996). The focus of the current work is to analyze the properties of bagged predictors in
two directions (in the proportional asymptotics regime): (1) what is the asymptotic predictive risk of the
bagged predictors with M bags as a function of M?, and (2) does the cross-validated bagged predictor
provably yield improvements over the predictor computed on full data and further does it have a monotone
risk profile (i.e., asymptotic predictive risk as a function of ϕ)? These questions are left as an open future
direction in Patil et al. (2022a).

Establishing interesting connections to the simple random sampling results from survey sampling, we
consider different variants of bagging that include subagging as a special case (which is also the variant
considered in Patil et al. (2022a)). The second variant of bagging, which we call splagging (that stands
for split-aggregating), is the same as the divide-and-conquer or the data-splitting approach (Rosenblatt
and Nadler, 2016; Banerjee et al., 2019). The divide-and-conquer approach does not usually appear in the
bagging literature, but is popularly considered in distributed learning (Dobriban and Sheng, 2020, 2021;
Mücke et al., 2022). Formally, splagging is defined as a procedure that splits the data into non-overlapping
parts of equal size and averages the predictors trained on these non-overlapping parts. We refer to the
equal size of each part of the data as subsample size. We use the same terminology for subagging also,
for simplicity. Using classical results from survey sampling and some simple lemmas about almost sure
convergence, we are able to analyze the behavior of subagged and splagged predictors1 with M bags for
arbitrary prediction procedures and general M ≥ 1. In fact, we show that the asymptotic risk of bagged
predictors for general M ≥ 1 (or simply, M -bagged predictor) can be written in terms of the asymptotic
risks of bagged predictors with M = 1 and M = 2. Rather interestingly, we are able to prove that the finite
sample predictive risk of the M -bagged predictor is close to its asymptotic limit uniformly over all M ≥ 1.
These results are proved in a model-agnostic setting and do not require the proportional asymptotics
regime. Deriving the asymptotic risk behavior of bagged predictors with M = 1 and M = 2 has to be
done on a case-by-case basis, which we do for ridge and ridgeless prediction procedures. In the context of
bagging for general predictors, we further analyze the cross-validation procedure with M -bagged predictors
for arbitrary M ≥ 1 to select the “best” subsample size for both subagging and splagging. These results
show that subagging and splagging for any M ≥ 1 are better than the predictor computed on the full
data. We further present conditions under which the cross-validated predictor with M -bagged predictors
has an asymptotic risk monotone in the aspect ratio. Specializing these results to the ridge and ridgeless
predictors, leads to somewhat surprising results connecting subagging to optimal ridge regression as well as
the benefits of interpolation.

Before we proceed to give the summary of main contributions, below we present the two most significant
take-away messages from our work (that hold under a well-specified linear model with an arbitrary covariance
matrix for features and an arbitrary signal vector, subject to certain bounded norm constraints).

(T1) Subagging and splagging (the data-splitting approach) of the ridge and ridgeless predictors, when
properly tuned, can yield significantly better prediction risks than these predictors trained on
the full data. This improvement is most pronounced near the interpolation threshold. Moreover,
subagging always outperforms splagging. See the left panel of Figure 4.1 for a numerical illustration
and Proposition 4.5.6 for a formal statement of this result.

(T2) A model-agnostic algorithm exists to tune the subsample size for subagging that provides a pre-
dictor whose risk matches that of the oracle-tuned subagged predictor. The oracle-tuned subsam-
ple size for the ridgeless predictor is always smaller than the number of features. Consequently,
subagged ridgeless interpolators always outperform subagged least squares, even when the full data
has more observations than the number of features. The same holds true for splagging whenever it
helps. See the right panel of Figure 4.1 for numerical illustrations and Proposition 4.5.7 for formal
statements of this result.

1A note on terminology used in this work: when referring to subagging and splagging together, we use the generic term
bagging. Similarly, when referring to subagged and splagged predictors together, we simply say bagged predictors.
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Figure 4.1: Overview of optimal bagging over both the subsample aspect ratio and the number of bags.
(a) Optimal asymptotic excess risk curves for ridgeless predictors with and without bagging, under model
(M-AR1-LI) when ρar1 = 0.25 and σ2 = 1. The excess risk is the difference between the prediction risk and
the noise level σ2. The risk for the unbagged ridgeless predictor is represented by a blue dash line and the
null risk is marked as a gray dotted line. (b) The corresponding optimal limiting subsample aspect ratio
ϕs = p/k versus the data aspect ratio ϕ = p/n for bagged ridgeless predictors. The line ϕs = ϕ is colored
in green. The optimal subsample aspect ratios are larger than 1 (above the horizontal red dashed line).

Intuitively, even though bagging may induce bias because of subsampling, it can substantially reduce the
prediction risk by deflating the variance for a suitably chosen subsample size that is less than the feature
size. This tradeoff is possible because of the different rates at which the bias and variance of the ridgeless
predictor grow near the interpolation threshold. This advantage of interpolation or overparameterization
is distinct from other benefits noted in the literature, such as self-induced regularization (Bartlett et al.,
2021).

4.1.1 Summary of main results
Below we provide a summary of the main results of this work.

1. General predictors. For the squared error loss, we measure the performance of a predictor by data
conditional risk, which is the expected squared error on a future data point, conditional on the full
data. In Section 4.3, we formulate a generic strategy for analyzing the limiting data conditional risk
of general M -bagged predictors, showing that the existence of the limiting risk for M = 1 and M = 2
implies the existence of the limiting risk for every M ≥ 1. Moreover, we show that the limiting risk
of the M -bagged predictor can be written as a linear combination of the limiting risks of M -bagged
predictors with M = 1 and M = 2. Interestingly, the same strategy also works for analyzing the limit
of the subsample conditional risk, which considers conditioning on both the full data and the randomly
drawn subsamples. See Theorem 4.3.9 for a formal statement. In this general context, Theorem 4.3.9
implies that both the data conditional and subsample conditional risks are asymptotically monotone
in the number of bags M . Additionally, for general strongly convex and smooth loss functions, we
can sandwich the risk between numbers of the form C1 + C2/M , for some fixed random variables C1
and C2 (Proposition 4.3.6).

2. Ridge and ridgeless predictors. In Section 4.4, we specialize the general strategy described above
to characterize the data conditional and subsample conditional risks of M -bagged ridge and ridgeless
predictors. The results are formalized in Theorem 4.4.1 for subagging with and without replacement,
and Theorem 4.4.6 for splagging without replacement. All these results assume a well-specified
linear model, with an arbitrary covariance matrix for the features and an arbitrary signal vector
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(i.e., we assume neither Gaussian features nor isotropic features nor a randomly generated signal).
These results indicate that for the three bagging strategies mentioned above, the bias and variance
components are non-increasing in M .

3. General cross-validation. In Section 4.5, we develop a generic cross-validation strategy to select
the optimal subsample or split size (or equivalently, the subsample aspect ratio) and provide a general
result to understand the limiting risks of cross-validated predictors. The theoretical results serve as a
way to verify monotonicity of the limiting risk of the cross-validated predictor in terms of the limiting
data aspect ratio ϕ (Theorem 4.5.1).

4. Cross-validation for bagged ridge and ridgeless predictors. In Section 4.5.2, we specialize in
the cross-validated ridge and ridgeless predictors to obtain the optimal subsample aspect ratio for every
M (Theorem 4.5.5). Moreover, when optimizing over both the subsample aspect ratio and the number
of bags, we show that optimal subagging is better than optimal splagging (Proposition 4.5.6). Rather
surprisingly, in our investigation of the oracle choice of the subsample size for optimal subagging
with M = ∞, we find that the subsample ratio is always large than 1 (Proposition 4.5.7). For
practical data analysis, this indicates that it is always better to bag a suitably chosen ridgeless
interpolator with a large M , even when the full data has more observations than features and the
ordinary least squares are well-defined (Remark 4.5.8). When considering isotropic features, we find
that optimally subagging the ridgeless predictor yields the same prediction risk as the optimal ridge
predictor (Theorem 4.6.3).

5. Proof techniques. On the technical side, in the course of our risk analysis of the bagged ridge
and ridgeless predictors, we derive novel deterministic equivalents for ridge resolvents with random
Tikhonov-type regularization building on ideas of conditional deterministic equivalents and related
calculus that may be of independent interest. See Appendix D.8 for more details.

4.1.2 Related work
Non-monotonicty of the limiting risk of commonly used predictors has been well documented in the
literature. For example, recent line of work by Belkin et al. (2019a); Viering et al. (2019); Nakkiran
(2019); Loog et al. (2020) exemplify the non-monotonic risk behavior of several prediction procedures.
This being the suboptimal use of the data, several methods have been proposed that modify a given
(class of) prediction procedure(s) so as to construct a new prediction procedure that has a monotonic risk
profile. In particular, Nakkiran et al. (2021) investigates the role of optimal tuning in the context of ridge
regression, and demonstrates that the optimally-tuned ℓ2 regularization achieves monotonic generalization
performance for a class of linear models under isotropic design. Mhammedi (2021) provides an algorithm to
monotonize the risk profile for bounded loss functions. Patil et al. (2022a) propose a general framework to
monotonize the prediction risk for general predictors and for both bounded and unbounded loss functions
by cross-validation. The paper further empirically shows that bagging can further improve the performance
of the predictors, along with monotonizing the risk profile. In this work, we characterize the risk behavior
of bagging, which was left as an open direction in Patil et al. (2022a). Below we provide a brief overview of
the literature related to bagging and its relation to our current work.

Ensemble methods combine several weak predictors to produce one powerful predictor, which is commonly
used in machine learning and statistics. One important class of ensemble methods is bagging (Breiman,
1996; Bühlmann and Yu, 2002) and its variants such as subagging (Bühlmann and Yu, 2002) that average
predictors trained on independent subsamples of the data. Bagging has been found to yield significant
improvements in predictive performance in several empirical studies (Breiman, 1996; Strobl et al., 2009;
Fernández-Delgado et al., 2014). The theoretical study of bagging has been mostly limited to smooth
predictors (predictors that are smooth functions of the empirical data distribution); see Buja and Stuetzle
(2006); Friedman and Hall (2007). For some work on bagging for non-parametric estimators, see Hall
and Samworth (2005); Samworth (2012); Wu et al. (2021); Bühlmann and Yu (2002); Athey et al. (2019).
Besides sample-wise bagging, bagging over linear combinations of features has also been considered in
Lopes et al. (2011); Srivastava et al. (2016); Cannings and Samworth (2017).
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Bagging in the proportional asymptotic regime has also been considered in the literature. LeJeune et al.
(2020) consider subagging of both features and observations, and derive the limiting risk of the resulting
subagged predictor. Dobriban and Sheng (2020, 2021); Mücke et al. (2022) consider the divide-and-conquer
approach, or splagging, and study their properties. These works are set in the context of distributed
learning. Under proportional asymptotics, Dobriban and Sheng (2020) derive the limiting mean squared
error of the distributed ridge estimator in the underparameterized regime, while Mücke et al. (2022) provide
finite-sample upper bounds on the prediction risk for ridgeless regression in the overparameterized regime.

The closest works to ours are that of LeJeune et al. (2020) and Mücke et al. (2022). LeJeune et al.
(2020) consider bagged least squares predictor obtained by subsampling both the observations and features
in a Gaussian isotropic design. The authors restrict subsampling in a way that the final subsampled data
always has more observations than the features (so that ordinary least squares is well-defined). They
also study monotonicity of the asymptotic expected squared risk with respect to the number of bags,
similar to ours. They further study the best subsampling ratios for optimal asymptotic risk, but do not
consider the question of how to pick the best subsample size. The most crucial difference between their
work and ours is that we subsample observations (not features) while they consider feature subsampling
which is not appropriate without isotopic covariance. On the other hand, Mücke et al. (2022) consider
splagging and provide finite-sample upper bounds on the bias and variance components of the squared
prediction risk under the assumption of sub-Gaussian features. In contrast, our results do not assume
sub-Gaussianity for either feature or the noise structure in the response, and only impose minimal bounded
moment assumptions.

4.1.3 Organization
• In Section 4.2, we collect basic background and results from simple random sampling that we use in

our subsequent analysis of bagged predictors.

• In Section 4.3, we provide risk decompositions conditional on both the full dataset and subsampled
datasets for different bagging variants for general predictors. Based on the form of decompositions,
we provide a series of reductions and a generic strategy for analyzing the squared prediction risk of
general bagged predictors.

• In Section 4.4, we give risk characterizations for bagging ridge and ridgeless predictors. We give
results for both subagging with and without replacement, and splagging without replacement, and
show monotonicities of the bias and variance components in the number of bags.

• In Section 4.5, we prescribe a framework for monotonizing the risk profile of any given predictor
based on cross-validation over subsample size. The result is then specialized to the ridge and ridgeless
predictors. Furthermore, we compare the monotonized risk profiles of bagged ridgeless and ridge
predictors.

• In Section 4.6, we specialize our results for isotropic features and provide explicit analytic expressions
for the risks of bagged ridgeless regression. In addition, we present analysis of the optimal subsample
size and the corresponding optimal bagged risk.

• In Section 4.7, we conclude by providing related questions for future work.

In the supplement, we give proofs of all the results, and present additional numerical illustrations. The
organization structure for the Supplement is provided in the first section of the Supplement, which also
gives an overview of the general notations used in this work.

4.2 Background
In Patil et al. (2022a), the authors have proposed a generic algorithm to improve the risk monotonicity
behavior of general predictors using strategies analogous to bagging and boosting. Specifically in the context
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of bagging, they have considered bagged predictors obtained by averaging ingredient predictors trained
on M subsets of the original data. In that paper, the authors have characterized the risk of the bagged
predictor for M = 1, and crudely bounded the risk of M -bagged predictor with that of M = 1. However,
the numerical simulations presented therein indicate that the M -bagged predictor for M > 1 can have
significantly better performance compared that for M = 1, especially around the interpolation threshold.
In this work, our main goal is to develop tools that can help characterize the risk of the M -bagged predictor
for any M ≥ 1, and also to analyze the corresponding risk monotonization procedure. The M -bagged
predictor considered in the aforementioned work is obtained by simple random sampling with replacement.
In this work, we also extend our analysis to other versions of bagged predictors to be described shortly. The
discussion in this section and that follows (Section 4.3) pertains to the development of different versions of
general bagged predictors and their risk characterization.

Because the M -bagged predictor is defined through simple random sampling with replacement, the
well-known results from survey sampling (Chaudhuri, 2014) are insightful for understanding its risk behavior.
They also provide other versions of the bagged predictors that one can consider. For this reason, we find it
useful to collect and summarize some results from survey sampling about simple random sampling with
and without replacement from appropriate finite population. We briefly mention simple random sampling
with replacement (SRSWR) and simple random sampling without replacement (SRSWOR) on an abstract
finite population below.

Sampling with replacement. Suppose we have N numbers N = {a1, a2, . . . , aN}, a finite population.
Let the set of indices be I := {1, . . . , N}, a finite population. An SRSWR of size M from I is an i.i.d.
draw from I with the uniform distribution. An unbiased estimator of the average of elements in the finite
population N is given by

µ̂WR
M,I = 1

M

M∑
ℓ=1

aIℓ
,

where {I1, I2, . . . , IM} is an SRSWR sample of size M from I. It is very important to stress here
that a1, . . . , aN are all fixed numbers and only I1, . . . , IM are random. Standard results from survey
sampling (Chaudhuri, 2014, Section 2.5) imply that

E[µ̂WR
M,I ] = 1

N

N∑
ℓ=1

aℓ =: µ, and Var(µ̂WR
M,I) = 1

M

(
1
N

N∑
ℓ=1

(aℓ − µ)2

)
. (4.1)

Sampling without replacement. An SRSWOR of size M from I is a sample drawn without replacement
from I, i.e., I1 is drawn from I with each element of I being equally likely, I2 is drawn from I \ {I1} with
each element being equally likely, and so on. Define

µ̂WOR
M,I = 1

M

M∑
ℓ=1

aIℓ
,

where I1, . . . , IM are drawn sequentially without replacement from I. Once again the only randomness in
µ̂WOR
M,I stems from the randomness of I1, . . . , IM . The results from Chaudhuri (2014, Section 2.5) imply that

E[µ̂WOR
M,I ] = 1

N

N∑
ℓ=1

aℓ =: µ, and Var(µ̂WOR
M,I) = N −M

N − 1
1
M

(
1
N

N∑
ℓ=1

(aℓ − µ)2

)
. (4.2)

Comparing formulas (4.1) and (4.2), one can note that both the averages are unbiased estimators of the
mean of elements in the finite population, the variance of SRSWOR estimator is smaller than SRSWR
(whenever M > 1)2, and that the variance of SRSWOR estimator becomes zero if M = N . The last fact
can be understood by noting that if we draw N elements without replacement from a set of N elements,

2Note that (N − M)/(N − 1) = 1 − (M − 1)/(N − 1) < 1, if M > 1.
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then we end up with the whole set and there is no randomness left. Note µ̂WOR
M,I is not well-defined if M > N .

This particular restriction of M > N becomes notationally cumbersome in the context of bagging and risk
monotonization to be discussed subsequently. To avoid this, we define µ̂WOR

M,I = µ̂WOR
N,I for M > N . This is

natural in the sense that for M ≥ N , when sampling without replacement, there is no randomness left in
the estimator µ̂WOR

N,I . By definition, the variance of the estimator µ̂WOR
N,I is 0.

4.3 Bagging general predictors
Equipped with the basics from Section 4.2, we are now ready to describe different versions of subagged
predictors. Before this, let us define the index sets relevant for our study. Fix any k ∈ {1, 2, . . . , n} and
any permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}. Define

Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n},

Iπk :=
{

{π((j − 1)k + 1), π((j − 1)k + 2), . . . , π(jk)} : 1 ≤ j ≤
⌊n
k

⌋}
.

(4.3)

The set Ik represents the set of all k subset choices from {1, 2, . . . , n} and there are
(
n
k

)
many of them. The

set Iπk on the other hand represent the set of indices in a non-overlapping split of {1, 2, . . . , n} into blocks
of size k. If we split {1, 2, . . . , n} randomly into different non-overlapping blocks each of size k, then this
corresponds to choosing a permutation π randomly from the set of all permutations and splitting them in
order. Finally, note that Iπk ⊆ Ik for any permutation π and ∪πIπk = Ik.

4.3.1 Conditional risk decompositions
Suppose Dn = {(x1, y1), . . . , (xn, yn)} represents a dataset with random vectors from Rp ×R. A prediction
procedure f̃(·; ·) is defined as a map from Rp × P(Dn) → R, where P(A) for any set A represents the
power set of A. For any I ∈ Ik (or I ∈ Iπk ), let DI and the corresponding subsampled predictor be defined
as

DI = {(xj , yj) : j ∈ I}, and f̂(x; DI) = f̂(x; {(xj , yj) : j ∈ I}).

Given two sets of indices and two types of simple random samplings one can draw, we get four different
versions of subagged predictors, as follows:

f̃WR
M,Ik

(x; {DIℓ
}Mℓ=1) = 1

M

M∑
ℓ=1

f̂(x; DIℓ
), I1, . . . , IM

SRSWR∼ Ik,

f̃WOR
M,Ik

(x; {DIℓ
}Mℓ=1) = 1

M

M∑
ℓ=1

f̂(x; DIℓ
), I1, . . . , IM

SRSWOR∼ Ik,


Subagging (4.4)

f̃WR
M,Iπ

k
(x; {DIℓ

}Mℓ=1) = 1
M

M∑
ℓ=1

f̂(x; DIℓ
), I1, . . . , IM

SRSWR∼ Iπk ,

f̃WOR
M,Iπ

k
(x; {DIℓ

}Mℓ=1) = 1
M

M∑
ℓ=1

f̂(x; DIℓ
), I1, . . . , IM

SRSWOR∼ Iπk .


Splagging (4.5)

Traditionally, bagging (as in bootstrap-aggregating) refers to computing predictors multiple times based
on bootstrapped data (Breiman, 1996), which can involve repeated observations. In this work, we do not
allow for repeated observations and consider only the four versions of bagging mentioned in (4.4)-(4.5).
Bühlmann and Yu (2002, Section 3.2) call f̃WR

M,Ik
as subagging (as in subsample-aggregating). Given that

SRSWOR mean estimator has smaller mean squared error than SRSWR mean estimator, we also consider
the variant f̃WOR

M,Ik
of subagging. Because for any fixed M , the expectation and variance of f̃WR

M,Ik
and f̃WOR

M,Ik

are the same as N → ∞, the asymptotic risk behavior of f̃WR
M,Ik

and f̃WOR
M,Ik

is same if |Ik| =
(
n
k

)
→ ∞ (which

holds, for example, if 1 ≤ k ≤ n−1 and n → ∞). Given this equivalence and relative popularity of subagging
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(i.e., f̃WR
M,Ik

), in Section 4.4.2, we focus our results on f̃WR
M,Ik

although we indicate the implications for f̃WOR
M,Ik

.
In what follows, we refer to f̃WR

M,Ik
and f̃WOR

M,Ik
as subagging with and without replacement, respectively.

In contrast, the predictors f̃WR
M,Iπ

k
and f̃WOR

M,Iπ
k

are not usually considered in the bagging literature. They
often appear in distributed learning where the predictors are trained on different parts of the data and
averaged to obtain a final predictor. We call these versions as “splagging” (as in split-aggregating). In
this case, the without replacement predictor f̃WOR

M,Iπ
k

is more popular (Dobriban and Sheng, 2020; Mücke
et al., 2022). Because of this and also because SRSWOR is superior to SRSWR in general, in Section 4.4.3,
we focus our results on f̃WOR

M,Iπ
k

. In what follows, we refer to f̃WR
M,Iπ

k
and f̃WOR

M,Iπ
k

as splagging with and without
replacement. Recall from our discussion at the end of Section 4.2 that f̃WOR

M,Iπ
k

is defined as f̃WOR
⌊n/k⌋,Iπ

k
if

M > ⌊n/k⌋. Effectively, we are replacing M with min{M, ⌊n/k⌋}.
The results to be discussed below are general and apply to all the four versions of the bagged predictors in

(4.4) and (4.5). Formulas (4.1) and (4.2) provide bias and variance of these subagged predictors conditional
on the data for each x. Here the finite population can be thought of as either {f̂(x; DI) : I ∈ Ik} or
{f̂(x; DI) : I ∈ Iπk }, but with the data Dn treated as fixed (non-stochastic). From the bias formulas, we
know that f̃WR

M,Ik
(x) and f̃WOR

M,Ik
(x) has the same expectation, given by

f̃∞,Ik
(x) = 1

|Ik|
∑
I∈Ik

f̂(x; DI).

But the variance is smaller for f̃WOR
M,Ik

(x). Using bias and variance formulas (4.1)–(4.2), the following result
can be derived for the subagged predictors.

Proposition 4.3.1 (Conditional risk decomposition). Without any assumptions on the data and the
prediction procedure f̂(·; ·), we have for every (x, y) ∈ Rp × R,

E[(y − f̃WR
M,Ik

(x; {DIℓ
}Mℓ=1))2 | Dn] = BIk

(x, y) + 1
M

VIk
(x, y),

E[(y − f̃WOR
M,Ik

(x; {DIℓ
}Mℓ=1))2 | Dn] = BIk

(x, y) + |Ik| −M

|Ik| − 1
1
M

VIk
(x, y),

(4.6)

where
BIk

(x, y) = (y − f̃∞,Ik
(x))2 and VIk

(x, y) = 1
|Ik|

∑
I∈Ik

(
f̂(x; DI) − f̃∞,Ik

(x)
)2
. (4.7)

The results still hold by replacing Ik with Iπk . Here in (4.6) the expectation is with respect to the randomness
of I1, . . . , IM only.

In line with the traditional thinking of prediction, we care about the performance of our predictors
computed on Dn on future data from the same distribution P . Because we only observe one dataset Dn,
we consider the behavior of the predictors in terms of the conditional (on Dn) risk. More specifically, for
a predictor f̂ fitted on Dn and its subagged predictor f̃WR

M,Ik
fitted on {DIℓ

}Mℓ=1, with I1, . . . , IM being M
samples of size k from Ik, the conditional (on Dn) risks are defined as:

R(f̂ ; Dn) :=
∫

(y − f̂(x; Dn))2 dP (x, y),

R(f̃WR
M,Ik

(·; {DIℓ
}Mℓ=1); Dn) :=

∫
E
[(
y − f̃WR

M,Ik
(x; {DIℓ

}Mℓ=1)
)2 ∣∣∣ Dn

]
dP (x, y).

(4.8)

The conditional (on Dn) risk of f̃WOR
M,Ik

(·; {DIℓ
}Mℓ=1) is defined similarly, and so are the conditional risks for

the splagged predictors with and without replacement from Iπk for a fixed permutation π. Observe that the
conditional (on Dn) risk of the subagged predictor f̃WR

M,Ik
(·; {DIℓ

}Mℓ=1) integrates over the randomness of the
future observation (x, y) as well as the randomness due the simple random sampling of Iℓ, ℓ = 1, . . . ,M .
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As with the observation of a single dataset Dn, in practice, one would only draw one simple random sample
Iℓ, ℓ = 1, . . . ,M , and hence, one might also be interested in considering another version of the conditional
risk that ignores the expectation over the simple random sample:

R(f̃WR
M,Ik

(·; {DIℓ
}Mℓ=1); Dn, {Iℓ}Mℓ=1) :=

∫ (
y − f̃WR

M,Ik
(x; {DIℓ

}Mℓ=1)
)2

dP (x, y). (4.9)

We call the former conditional (on Dn) risk data conditional risk and the latter subsample conditional risk
(on Dn and {Iℓ}Mℓ=1).

Proposition 4.3.1 implies that the data conditional risks of the predictors f̃WR
M,Ik

(·) and f̃WOR
M,Ik

(·) can be
written as

R(f̃M ; Dn) =
∫

BIk
(x, y) dP (x, y) +K|Ik|,M

1
M

∫
VIk

(x, y) dP (x, y)

= R(f̃∞; Dn) +
K|Ik|,M

M

∫
VIk

(x, y) dP (x, y)
(4.10)

where for N ≥ 1, KN,M is defined as

KN,M =
{

1 if f̃ = f̃WR
M,Ik

(N −M)+/(N − 1) if f̃ = f̃WOR
M,Ik

.
(4.11)

The advantage of the representation (4.10) for the data conditional risk of f̃WR
M,Ik

(·) and f̃WOR
M,Ik

(·) is that
it allows us to obtain the limiting behavior of their risks for any M ≥ 1 by just studying their limiting
risk behavior for M = 1 and M = 2. This is trivially shown by solving a system of linear equations in two
variables and is formalized in the following result.
Proposition 4.3.2 (Data conditional risk for arbitrary M). For f̃M ∈ {f̃WR

M,Ik
, f̃WOR
M,Ik

, f̃WR
M,Iπ

k
, f̃WOR
M,Iπ

k
},

suppose there exists non-stochastic numbers a1 and a2 such that as n → ∞,

|R(f̃M ; Dn) − aM | a.s.−−→ 0, for M = 1, 2. (4.12)

Then, we have3

sup
M∈N

∣∣∣∣R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]∣∣∣∣ a.s.−−→ 0. (4.13)

Observe that from Proposition 4.3.1, we have a1 ≥ a2, irrespective of what prediction procedure one
uses. In Proposition 4.3.2, if a1 > a2 (instead of just a1 ≥ a2), then the asymptotic approximations of
the conditional risk R(f̃M ; Dn) is strictly decreasing in M . Similarly, we can also derive the asymptotic
subsample conditional risk of subagged predictors with an arbitrary number of bags M if we know the
limiting risk for M = 1 and M = 2, as summarized in Proposition 4.3.3.
Proposition 4.3.3 (Subsample conditional risk for arbitrary M). For f̃M ∈ {f̃WR

M,Ik
, f̃WOR
M,Ik

, f̃WR
M,Iπ

k
, f̃WOR

M,Iπ
k

},
suppose there exist non-stochastic numbers b1 and b2 such that

|R(f̃1; Dn, I) − b1| a.s.−−→ 0, for all I ∈ Ik or Iπk , (4.14)

and

|R(f̃2; Dn, {I1, I2}) − b2| a.s.−−→ 0, for random samples I1, I2
4. (4.15)

For any M ∈ N, suppose {Iℓ}Mℓ=1 is a simple random sample according to the definition of f̃M . Then, we
have

sup
M∈N

∣∣∣∣R(f̃M ; Dn, {Iℓ}Mℓ=1) −
[
(2b2 − b1) + 2(b1 − b2)

M

]∣∣∣∣ p−→ 0. (4.16)

3For SRSWOR, supremum over M ∈ N should be understood as either M ≤ |Ik| or M ≤ |Iπ
k | depending on whether f̃M

is f̃WOR
M,Ik

or f̃WOR
M,Iπ

k
. The same convention is used for all the other results in this section.

4According to (4.4) and (4.5), I1 and I2 are drawn using SRSWR if f̃M ∈ {f̃WR
M,Ik

, f̃WR
M,Iπ

k
} and SRSWOR if f̃M ∈

{f̃WOR
M,Ik

, f̃WOR
M,Iπ

k
}.
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We make a couple of remarks on the assumption of Proposition 4.3.3 below.

Remark 4.3.4 (On the requirement (4.14)). Requirement (4.14) might on surface seem stronger as it
requires almost sure convergence to hold for all I ∈ Ik. However, recall that, for any fixed I ∈ Ik, f̃1,Ik

(·; DI)
is the same as the prediction procedure f̂ computed on the subset DI with cardinality k. This implies
that if the original prediction procedure satisfies almost sure convergence as the sample size on which it is
trained goes to ∞, then as k → ∞, the requirement (4.14) is satisfied for every fixed I ∈ Ik.

Remark 4.3.5 (Role of squared loss). In Propositions 4.3.2 and 4.3.3, we observed that only the limiting
risks for M = 1 and M = 2 matter. This is because the data conditional risk can be decomposed as

R(f̃M,Ik
; Dn) = −

(
1 − 2

M

)
R(f̃1,Ik

; Dn) + 2
(

1 − 1
M

)
R(f̃2,Ik

; Dn).

The subsample conditional risk admits similar decomposition as well. See Appendix D.2 for the derivations
for both of them. Essentially, the interaction of subsampled datasets is only up to order two. For other loss
functions, this may not be true. However, a simple monotonicity property and bounds can be obtained
for a large class of loss functions as shown in the next proposition. It is also worth mentioning that while
Propositions 4.3.2 and 4.3.3 are derived under the assumption that the distribution of the out-of-sample
test point (x, y), P (x, y), is the same as the distribution of the training data, it is not difficult to see that
the same conclusions hold for a test point sampled from any arbitrary distribution.

Proposition 4.3.6 (Convex, strongly-convex, and smooth loss functions). For any loss function L :
R × R → R, every (x, y) ∈ Rp × R, and for f̃M ∈ {f̃WR

M,Ik
, f̃WOR
M,Ik

, f̃WR
M,Iπ

k
, f̃WOR
M,Iπ

k
}, define

R(f̃M ; Dn) =
∫

E[L(y, f̃M (x; {DIℓ
}Mℓ=1)) | Dn] dP (x, y).

If L : R × R → R is convex in the second argument5, then R(f̃M ,Dn) is non-increasing in M ≥ 1, i.e.,
R(f̃M+1; Dn) ≤ R(f̃M ; Dn). Alternatively, if there exists m,m ∈ R such that L(·, ·) is m-strongly convex
and m-smooth in the second argument6, then for f̃M ∈ {f̃WR

M,Ik
, f̃WOR
M,Ik

},

mK|Ik|,M

2M

∫
VIk

(x, y) dP (x, y) ≤ R(f̃M ; Dn) −R(f̃∞; Dn) ≤
mK|Ik|,M

2M

∫
VIk

(x, y) dP (x, y) (4.17)

with KN,M defined in (4.11). The inequalities in (4.17) continue to hold for f̃M ∈ {f̃WR
M,Iπ

k
, f̃WOR
M,Iπ

k
}, with

K|Ik|,M and VIk
replaced with K|Iπ

k
|,M and VIπ

k
, respectively.

Remark 4.3.7 (Comparison with squared risk). In Proposition 4.3.6, R(f̃∞; Dn) is defined with respect
to a general loss function L. Note that the upper and lower bounds of (4.17) do not depend on the loss
function and are of the same form as the second term on the right-hand side of (4.10), except for constant
multiples of m/2 and m/2. Furthermore, even when the loss function is m-smooth but not convex in the
second argument, the data conditional risk of f̃M can be sandwiched between c1 −mc2/M and c1 +mc2/M
for two data-dependent quantities c1 and c2. Beyond the squared error loss, several popular loss functions
used in learning satisfy the conditions of Proposition 4.3.6; for example, the Logistic loss, the Huber loss,
among others.

The next lemma connects the data conditional risk with the subsample conditional risk for M = 1, 2. In
practice, the ingredient predictor is fitted on the subsampled datasets, on which the subsample conditional
risk is evaluated. By Lemma 4.3.8, we are able to infer the data conditional risk based on the subsample
conditional risk for the simple case when M = 1, 2.

5Recall that a function f : R → R is convex if f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) for all x1, x2 ∈ R and t ∈ [0, 1].
6A function g : R → R is said to be λ1-strongly convex if x 7→ f(x) − λ1/2x2 is convex. It is called a λ2-smooth function if

the derivative of f is λ2-Lipschitz (i.e., |f ′(x1) − f ′(x2)| ≤ λ2|x1 − x2| for all x1, x2).
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Lemma 4.3.8 (Transferring from subsample conditional to data conditional risk for M = 1, 2). Suppose
the conditions in Proposition 4.3.3 hold, then (4.12) holds with aM = bM for M = 1, 2. Consequently, the
conclusions of Proposition 4.3.2 hold.

It is worth noting that in the proof of Lemma 4.3.8, we only use the convexity of the square loss
function. Therefore, analogous results can be obtained for other convex loss functions as long as the limiting
subsample conditional risks exist for M = 1, 2.

4.3.2 General reduction strategy
Combining Proposition 4.3.2, Proposition 4.3.3, and Lemma 4.3.8 yields a general strategy to obtain
both limiting subsample and data conditional risks for an arbitrary number of bag M , as presented in
Theorem 4.3.9. Theorem 4.3.9 states that it is sufficient to obtain the limiting subsample conditional risks
for M = 1, 2, as shown in Figure 4.2.

Theorem 4.3.9 (Transferring from subsample conditional to data conditional for general M). Suppose the
conditions (4.14) and (4.15) hold, then the conclusions in Propositions 4.3.2 and 4.3.3 hold.

For general predictors, both the data conditional risk and the subsample conditional risk for M = 1 may
be available from known results. In such cases, it remains to first derive limiting subsample conditional risk
for M = 2 depending on the sampling strategies, and then verify the properties of the limiting conditional
risks required in Theorem 4.3.9. In this work, we specialize the asymptotic risk characterization to the
ridge and ridgeless predictors that we will discuss next.

R(f̃M ; Dn, {Iℓ}Mℓ=1), M = 1, 2 R(f̃M ; Dn, {Iℓ}Mℓ=1), M ∈ N

R(f̃M ; Dn), M = 1, 2 R(f̃M ; Dn), M ∈ N

Proposition 4.3.3

Lemma 4.3.8

Proposition 4.3.2

Theorem 4.3.9

Figure 4.2: General reduction strategy for obtaining limiting risks of subagged predictors with M bags.

4.4 Bagging ridge and ridgeless predictors
In this section, we follow the reduction strategy proposed in Section 4.3 to characterize the risk of subagged
ridge and ridgeless predictors. In Section 4.4.1, we formally define these predictors and state the assumptions
that we impose on the dataset for our results. The risk characterizations for subagging and splagging are
then presented in Section 4.4.2 and Section 4.4.3, respectively.

4.4.1 Predictors and assumptions
Consider a dataset Dn = {(x1, y1), . . . , (xn, yn)} consisting of random vectors in Rp × R. Let X ∈
Rn×p denote the corresponding feature matrix whose j-th row contains x⊤

j , and let y ∈ Rn denote the
corresponding response vector whose j-th entry contains yj . For any index set I ⊆ {1, 2, . . . , n}, let
DI = {(xj , yj) : j ∈ I} be a subsampled dataset, and let L ∈ Rn×n denote a diagonal matrix such that
Ljj = 1 if j ∈ I.

Recall that the ridge estimator with regularization parameter λ > 0 fitted on DI is defined as

β̂λ(DI) = arg min
β∈Rp

1
|I|
∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥2

2
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= (X⊤LX/|DI | + λIp)−1(X⊤Ly/|DI |).

The associated ridge predictor is given by f̂λ(x; DI) = x⊤β̂λ(DI). The ridgeless estimator is the limiting
estimator β̂λ(DI) as λ → 0+. When |DI | ≥ p, and assuming that the p feature vectors are linearly
independent in Rp, it is simply the least squares estimator:

β̂0(DI) = (X⊤LX/|DI |)−1(X⊤LY /|DI |).

When |DI | < p, it is the minimum ℓ2-norm least squares estimator:

β̂0(DI) = arg min
β′∈Rp

∥β′∥2

∣∣∣ β′ ∈ arg min
β∈Rp

∑
j∈I

(yj − x⊤
j β)2


= (X⊤LX/|DI |)+(X⊤Ly/|DI |),

where A+ denotes the Moore-Penrose inverse of matrix A. Assuming that DI has |DI | linearly independent
observation vectors in Rn, this estimator also interpolates the data, i.e., we have yj = x⊤

j β̂0(DI) for j ∈ I,
and has the minimum ℓ2-norm among all interpolators. The associated ridgeless predictor is again given by
f̂0(x; Dn) = x⊤β̂0(Dn).

Given their relevance to the subagged predictors studied in the literature, we will primarily focus on
only two of the four subagged predictors as defined in (4.4) and (4.5), although the implications for the
other two can be trivially obtained. For λ ≥ 0, the subagged and slagged predictors respectively are defined
as

f̃WR
M,Ik

(x; Dn) = x⊤β̃λ,M ({DIℓ
}Mℓ=1), I1, . . . , IM

SRSWR∼ Ik,

f̃WOR
M,Iπ

k
(x; Dn) = x⊤β̃λ,M ({DIℓ

}Mℓ=1), I1, . . . , IM
SRSWOR∼ Iπk ,

(4.18)

where β̃λ,M ({DIℓ
}Mℓ=1) = M−1∑M

ℓ=1 β̂λ(DIℓ
). For M > |Iπk |, the splagged predictor is defined to be the

predictor with M = |Iπk |. When λ = 0, the base predictors become the ridgeless predictors.
We consider Assumptions 4.1-4.5 on the dataset Dn to characterize the risk, which are standard in the

study of ridge and ridgeless regression under proportional asymptotics; see, e.g., Hastie et al. (2022).

Assumption 4.1 (Feature model). The feature vectors xi ∈ Rp, i = 1, . . . , n, multiplicatively decompose
as xi = Σ1/2zi, where Σ ∈ Rp×p is a positive semidefinite matrix and zi ∈ Rp is a random vector containing
i.i.d. entries with mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.

Assumption 4.2 (Response model). The response variables yi ∈ R, i = 1, . . . , n, additively decompose as
yi = x⊤

i β0 + ϵi, where β0 ∈ Rp is an unknown signal vector and ϵi is an unobserved error that is assumed
to be independent of xi with mean 0, variance σ2, and bounded moment of order 4 + δ for some δ > 0.

Assumption 4.3 (Signal norm). The ℓ2-norm of the signal vector ∥β0∥2 is uniformly bounded in p, and
limp→∞ ∥β0∥2

2 = ρ2 < ∞.

Assumption 4.4 (Covariance norm). There exist real numbers rmin and rmax independent of p with
0 < rmin ≤ rmax < ∞ such that rminIp ⪯ Σ ⪯ rmaxIp.

Assumption 4.5 (Limiting covariance and signal-weighted spectrums). Let Σ = W RW ⊤ denote the
eigenvalue decomposition of the covariance matrix Σ, where R ∈ Rp×p is a diagonal matrix containing
eigenvalues (in non-increasing order) r1 ≥ r2 ≥ · · · ≥ rp ≥ 0, and W ∈ Rp×p is an orthonormal matrix
containing the associated eigenvectors w1,w2, . . . ,wp ∈ Rp. Let Hp denote the empirical spectral
distribution of Σ (supposed on R>0) whose value at any r ∈ R is given by

Hp(r) = 1
p

p∑
i=1

1{ri≤r} .
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Let Gp denote a certain distribution (supported on R>0) that encodes the components of the signal
vector β0 in the eigenbasis of Σ via the distribution of (squared) projection of β0 along the eigenvectors
wj , 1 ≤ j ≤ p, whose value at any r ∈ R is given by

Gp(r) = 1
∥β0∥2

2

p∑
i=1

(β⊤
0 wi)2 1{ri≤r} .

Assume there exist fixed distributions H and G (supported on R>0) such that Hp
d−→ H and Gp

d−→ G as
p → ∞.

4.4.2 Subagging with replacement
In this section, we consider the risk asymptotics and properties for subagging. In Section 4.4.2.1, we provide
exact risk characterization of subagged ridge and ridgeless predictors. The monotonicity properties of
asymptotic bias and variance components of the risk are presented in Section 4.4.2.2.

4.4.2.1 Risk characterization

In preparation for our first result on the risk characterization of subagged ridge and ridgeless predictors, let
us introduce some notations. We will analyze the subagged predictors (with M bags) in the proportional
asymptotics regime, where the original data aspect ratio (p/n) converges to ϕ ∈ (0,∞) as n, p → ∞, and
the subsample data aspect ratio (p/k) converges to ϕs as k, p → ∞. Because k ≤ n, ϕs is always no less
than ϕ.

One of the key quantities that appears throughout our analysis of subagged ridge predictors is defined
through a fixed-point equation. Such fixed point equations have appeared in the literature before in the
context of risk analysis of regularized estimators under proportional asymptotics regime; see, e.g., Dobriban
and Wager (2018); Hastie et al. (2022); Mei and Montanari (2022) in the context of ridge regression; and
more generally, for other M -estimators, see Thrampoulidis et al. (2015, 2018), Sur et al. (2019), Karoui
(2013); El Karoui (2018), Miolane and Montanari (2021), among others. For any λ > 0 and θ > 0, define
v(−λ; θ) as the unique nonnegative solution to the fixed-point equation

1
v(−λ; θ) = λ+ θ

∫
r

1 + v(−λ; θ)r dH(r), (4.19)

and for λ = 0, θ > 1, we define

v(0; θ) =
{

lim
λ→0+

v(−λ; θ), if θ > 1

+∞, if θ ∈ (0, 1].
(4.20)

The fact that the fixed-point equation (4.19) has a unique nonnegative solution follows from Patil et al.
(2022a, Lemma S.6.14); for completeness, we also provide a proof in Appendix D.8.3. The existence of
the limit of v(−λ; θ) as λ → 0+ follows because v(−λ; θ) is monotonically decreasing in λ > 0 (Patil et al.,
2022a, Lemma S.6.15 (4)). Further, we define non-negative constants ṽ(−λ;ϑ, θ) and c̃(−λ; θ) via the
following equations:

ṽ(−λ;ϑ, θ) = ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r) , c̃(−λ; θ) =

∫
r

(1 + v(−λ; θ)r)2 dG(r).

(4.21)

Theorem 4.4.1 (Risk characterization of subagged ridge and ridgeless predictors). Let f̃WR
M,Ik

be the
predictor as defined in (4.18) for λ ≥ 0. Suppose Assumptions 4.1-4.5 hold for the dataset Dn. Then,
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as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞] (and ϕs ̸= 1 if λ = 0), there exist
deterministic functions Rsub

λ,M (ϕ, ϕs) for M ∈ N, such that for I1, . . . , IM
SRSWR∼ Ik,

sup
M∈N

|R(f̃WR
M,Ik

; Dn, {Iℓ}Mℓ=1) − Rsub
λ,M (ϕ, ϕs)|

p−→ 0,

sup
M∈N

|R(f̃WR
M,Ik

; Dn) − Rsub
λ,M (ϕ, ϕs)|

a.s.−−→ 0.
(4.22)

The guarantee (4.22) also holds true if f̃WR
M,Ik

is replaced by f̃WOR
M,Ik

. Furthermore, the function Rsub
λ,M (ϕ, ϕs)

decomposes as

Rsub
λ,M (ϕ, ϕs) = σ2 + Bsub

λ,M (ϕ, ϕs) + V sub
λ,M (ϕ, ϕs), (4.23)

where the bias and variance terms are given by

Bsub
λ,M (ϕ, ϕs) = M−1Bλ(ϕs, ϕs) + (1 −M−1)Bλ(ϕ, ϕs), (4.24)

V sub
λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs) + (1 −M−1)Vλ(ϕ, ϕs), (4.25)

and the functions Bλ(·, ·) and Vλ(·, ·) are defined as

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ), θ ∈ (0,∞], ϑ ≤ θ. (4.26)

Theorem 4.4.1 provides exact asymptotics for the data conditional as well as the subsample conditional
risks of subagged ridge and ridgeless predictors. Furthermore, we have derived the bias-variance decomposi-
tion for the asymptotic risk in (4.23). Interestingly, the individual bias term is a convex combination of
Bλ(ϕs, ϕs) and Bλ(ϕ, ϕs), which correspond to the biases for M = 1 and M = ∞, respectively. Analogous
conclusion also holds for the variance term. Even though the risk behavior for M = 1 has been studied by
Patil et al. (2022a), the one for general (data-dependent) M is novel. As we shall see later in Section 4.6,
the risk behavior for M = ∞ is drastically different from the one for M = 1.

Note that when θ > 1, the parameter v(0; θ) defined in (4.20) can also be seen as the unique nonnegative
solution to the following fixed-point equation (Patil et al., 2022a, Lemma S.6.14):

1
v(0; θ) = θ

∫
r

1 + v(0; θ)r dH(r). (4.27)

When θ ∈ (0, 1], since limλ→0+ v(−λ; θ) = ∞, we have that limλ→0+ c̃(−λ; θ) = 0 and limλ→0+ ṽ(−λ;ϑ, θ) =
ϑ(1 − ϑ)−1. Therefore, the bias and variance functions in (4.26) for ϑ ≤ θ reduce to

B0(ϑ, θ) =
{

0 θ ∈ (0, 1]
ρ2(1 + ṽ(0;ϑ, θ))c̃(0; θ) θ ∈ (1,∞]

, V0(ϑ, θ) =


σ2 ϑ

1 − ϑ
θ ∈ (0, 1)

∞ θ = 1
σ2ṽ(0;ϑ, θ) θ ∈ (1,∞].

(4.28)

As a sanity check when ϑ = θ, it is easy to see that the bias and variance components collapse to that of
the minimum ℓ2-norm least squares estimator with limiting aspect ratio θ.

A few additional remarks on Theorem 4.4.1 follow.

Remark 4.4.2 (Data conditional versus subsample conditional risks). Theorem 4.4.1 shows that the
data conditional risk and the subsample conditional risk both converge to the same deterministic limit.
Intuitively, this is expected because the data conditional risk is the average subsample conditional risks
over all subsamples.

Remark 4.4.3 (Extending theorem to negative regularization). For λ < 0, the fixed-point equation (4.19)
may have more than one solution. However, there still exists a solution to (4.19) with which Theorem 4.4.1
holds whenever λ > −(1 −

√
ϕ)2rmin where rmin is the uniform lower bound on the smallest eigenvalue of

Σ. In this work, for simplicity we restrict to the case when λ ≥ 0.
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Remark 4.4.4 (The requirement of ϕs ̸= 1 for λ = 0). When λ = 0, the base predictors are ridgeless
predictors. In this case, the variance function θ 7→ V0,M (ϑ, θ) is unbounded if M is finite and θ → 1 because
V0(θ, θ) in (4.28) diverges as θ → 1. Empirically, this can be explained by the singularity of the empirical
covariance matrices with aspect ratios close to 1. However, the asymptotic risk for M = ∞ is always
bounded.
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Figure 4.3: Asymptotic prediction risk curves in (4.23) for subagged ridgeless predictors (λ = 0), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying subsample sizes k = ⌊p/ϕs⌋ and numbers of
bags M . The null risk is marked as a dotted line. For each value of M , the points denote finite-sample
risks averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left and the right panels
correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
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Figure 4.4: Asymptotic prediction risk curves in (4.23) for subagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying subsample sizes k = ⌊p/ϕs⌋ and numbers of
bags M . The null risk is marked as a dotted line. For each value of M , the points denote finite-sample
risks averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left and the right panels
correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.

Illustration of Theorem 4.4.1. Before we present the proof outline for Theorem 4.4.1, we first provide
some numerical illustrations under the AR(1) data model. The covariance matrix of an auto-regressive
process of order 1 (AR(1)) is given by Σar1, where (Σar1)ij = ρ

|i−j|
ar1 for some parameter ρar1 ∈ (0, 1), and
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the AR(1) data model is defined as

yi = x⊤
i β0 + ϵi, xi ∼ N (0,Σar1), β0 = 1

5

5∑
j=1

w(j), ϵi ∼ N (0, σ2), (M-AR1-LI)

where w(j) is the eigenvector of Σar1 associated with the top jth eigenvalue r(j). From Grenander and
Szegö (1958, pp. 69-70), the top j-th eigenvalue can be written as r(j) = (1 − ρ2

ar1)/(1 − 2ρar1 cos θjp + ρ2
ar1)

for some θjp ∈ ((j − 1)π/(p + 1), jπ/(p + 1)). Then, under model (M-AR1-LI), the signal strength ρ2

defined in Assumption 4.3 is 5−1(1 − ρ2
ar1)/(1 − ρar1)2, which is the limit of 25−1∑5

j=1 r(j). Thus model
(M-AR1-LI) parameterized by two parameters ρar1 and σ2 satisfies Assumption 4.1-4.5. Figures 4.3 and 4.4
show the limiting risk for the subagged ridgeless predictor and subagged ridge predictor, respectively, with
the number of bags M varying from 1 to ∞. In the plots, the limiting aspect ratio ϕ of the full data is
fixed to be either 0.1 or 1.1, corresponding to the cases when n > p and n < p, respectively. For each case,
the limiting aspect ratio ϕs of each bag takes values in (ϕ,∞).

We observe that the empirical risks match the deterministic approximations for both cases, and they
are more concentrated around the deterministic approximations as M increases, which is expected as the
variance of the subagged predictors reduces with M . Furthermore, for any fixed ϕs, the asymptotic risk
decreases as M increases.

Because of the non-monotonic risk behavior of the underlying ridge and ridgeless predictors, Figures 4.3
and 4.4 show that the best subsample aspect ratio (ϕs) in terms of prediction risk might be strictly larger
than ϕ. This is true for any choice of M ≥ 1. The case of M = 1 was already mentioned in Patil et al.
(2022a). This observation is interesting as it indicates it is better to bag predictors that use even less
number of observations than the original data. Similar phenomena are also observed in our simulations with
varying signal-to-noise ratios (see Appendix D.10.1). Finding the optimal choice of ϕs via an actionable
algorithm in practice is discussed in Section 4.5.

Proof outline of Theorem 4.4.1. The proof of Theorem 4.4.1 uses the reduction strategy discussed
in Section 3. In particular, we apply Theorem 4.3.9 (subsample conditional for M = 1 and M = 2 to
subsample and data subsample for any M) to prove the theorem.

1. The deterministic risk approximation to the subsample conditional risk for M = 1 can be obtained
from the results of Patil et al. (2022a) that build on Hastie et al. (2022).

2. Under the linear model, to analyze the subsample conditional risk for M = 2, we first decompose it
as:

R(f̃2; Dn, {I1, I2})

= σ2 + 1
4

2∑
i=1

(β0 − β̂(DIi))⊤Σ(β0 − β̂(DIi)) + 1
2(β0 − β̂(DI1))⊤Σ(β0 − β̂(DI2))

= σ2

2 + R(f̃1; Dn, I1) +R(f̃2; Dn, I2)
4 + (β0 − β̂(DI1))⊤Σ(β0 − β̂(DI2))

2 . (4.29)

The first term in the display above is non-random. The asymptotic risk approximation for the second
term follows from the asymptotics of the subsample conditional risk for M = 1. The challenging
part is the analysis of the final cross term (β0 − β̂(DI1))⊤Σ(β0 − β̂(DI2)), because of the non-trivial
dependence implied by the overlap between DI1 and DI2 . Our strategy to obtain a deterministic
approximation for such a term is to write h(β̂(DI1), β̂(DI2)) = h(β̂(DI′

1
∪ DI0), β̂(DI′

2
∪ DI0)) for

any univariate function h. Here, I0 = I1 ∩ I2 denotes the indices of the overlap and I ′
j = Ij \ I0 for

j = 1, 2 are the indices of non-overlapping observations. Observe that conditioning on DI0 , DI′
1

and
DI′

2
are independent datasets. This conditional independence, along with the closed-form expression

of the ridge predictor, forms a crucial piece in our argument. To carry out this program, we derive
conditional deterministic equivalence results for ridge resolvents.
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3. In order to prove the results for the ridgeless predictor, we essentially take the limit as λ → 0+ of the
deterministic risk approximation for the ridge predictor with regularization λ. This requires appealing
to a uniformity argument in λ (see Appendix D.4 for more details).

4.4.2.2 Monotonicity of bias and variance in number of bags

Monotonicity in the number of bags M for both the data conditional risk R(f̃WR
M,Ik

; Dn) and the subsample
conditional risk R(f̃WR

M,Ik
; Dn, {Iℓ}Mℓ=1) follow from (4.10). In the classical literature of bagging and subagging,

however, it has been of interest to better understand the effect of aggregation on not just the risk, but
also on the bias and variance. In this section, we show for the ridge and ridgeless predictors, subagging
reduces both the bias and the variance. Monotonicity of the risk proved in Theorem 4.4.1, does not imply
the monotonicity of asymptotic bias and variance components. Fortunately, from the risk decomposition
derived in Theorem 4.4.1, both asymptotic bias and variance components are monotonic in M as shown
below.

Proposition 4.4.5 (Improvement due to subagging). For all M = 1, 2, . . . and λ ∈ [0,∞), it holds that

Bsub
λ,∞(ϕ, ϕs) ≤ Bsub

λ,M+1(ϕ, ϕs) ≤ Bsub
λ,M (ϕ, ϕs) (4.30)

V sub
λ,∞(ϕ, ϕs) ≤ V sub

λ,M+1(ϕ, ϕs) ≤ V sub
λ,M (ϕ, ϕs). (4.31)

The inequalities in (4.30) are strict whenever ρ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ≠ 1 when λ = 0), while
the inequalities in (4.31) are strict when σ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when λ = 0). Thus, the
asymptotic risk is monotonically decreasing in M : Rsub

λ,∞(ϕ, ϕs) ≤ Rsub
λ,M+1(ϕ, ϕs) ≤ Rsub

λ,M (ϕ, ϕs).

The monotonicity property mentioned in Proposition 4.4.5 does not immediately follow from the
decomposition of Bsub

λ,M (ϕ, ϕs) and V sub
λ,M (ϕ, ϕs) in (4.24) and (4.25). All that is implied by (4.24) and (4.25)

is that Bsub
λ,M (ϕ, ϕs) and V sub

λ,M (ϕ, ϕs) either monotonically increase or decrease in M ≥ 1. Proposition 4.4.5
confirms that they are both decreasing in M by proving that Bsub

λ,1(ϕ, ϕs) ≥ Bsub
λ,∞(ϕ, ϕs) and V sub

λ,1 (ϕ, ϕs) ≥
V sub
λ,∞(ϕ, ϕs). Further, it explicitly distinguishes the cases of non-increasing and strict decreasing of the bias

and variance components.
We visualize the bias and variance components for subagged ridgeless predictors in Figure 4.5 under

model (M-AR1-LI). Figure 4.5 validates the monotonicity properties claimed in Proposition 4.4.5. For a
similar illustration for subagged ridge predictors, see Figure D.7 in the appendix.
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Figure 4.5: Asymptotic bias and variance curves in (4.26) for subagged ridgeless predictors (λ = 0), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 0.25, for varying subsample aspect ratio ϕs and numbers of
bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1),
respectively. The values of V sub

0,M (ϕ, ϕs) are shown on a log-10 scale.
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4.4.3 Splagging without replacement
In this section, we consider the risk asymptotics and properties for splagging. More formally, we consider
the risk asymptotics of the splagged predictor obtained by averaging the predictors computed on M
non-overlapping subsets of the data each of size k. This is precisely the splagged predictor f̃WOR

M,Iπ
k

. In all
the asymptotics below, we consider the permutation π to be fixed. Because the limiting risk below does
not depend on the permutation π, the conclusions continue to hold true even when the data or subsample
conditional risk is averaged over all permutations π; note that this is not the same as the data conditional
risk of the splagged predictor averaged over all permutations π. In Section 4.4.3.1, we provide exact risk
characterization of splagging without replacement for both ridge and ridgeless predictors. The monotonicity
properties of asymptotic bias and variance are presented in Section 4.4.3.2.

4.4.3.1 Risk characterization

Recall our convention is defining the splagged predictor f̃WOR
M,Iπ

k
as f̃WOR

min{M,⌊n/k⌋},Iπ
k

, so that the splagged
predictor is well defined for all M ∈ N.

Theorem 4.4.6 (Risk characterization for splagged ridge predictor without replacement). Let f̃WOR
M,Iπ

k
be

the predictor as defined in (4.18) for λ ≥ 0. Suppose Assumptions 4.1-4.5 hold for the dataset Dn. Then
as k, n, p → ∞, p/n → ϕ ∈ (0,∞), p/k → ϕs ∈ [ϕ,∞] (and ϕs ̸= 1 for λ = 0), there exist deterministic
functions Rspl

λ,M (ϕ, ϕs) for all M ∈ N, and ϕs ≥ ϕ, such that for I1, . . . , IM
SRSWOR∼ Iπk ,

sup
M∈N

|R(f̃WOR
M,Iπ

k
; Dn, {Iℓ}Mℓ=1) − Rspl

λ,M (ϕ, ϕs)|
p−→ 0,

sup
M∈N

|R(f̃WOR
M,Iπ

k
; Dn) − Rspl

λ,M (ϕ, ϕs)|
a.s.−−→ 0,

where Rspl
λ,M (ϕ, ϕs) = Rspl

λ,⌊ϕs/ϕ⌋(ϕ, ϕs) for M ≥ ⌊ϕs/ϕ⌋, and for M ≤ ⌊ϕs/ϕ⌋, the function Rspl
λ,M (ϕ, ϕs)

decomposes as

Rspl
λ,M (ϕ, ϕs) = σ2 + Bspl

λ,M (ϕ, ϕs) + V spl
λ,M (ϕ, ϕs) (4.32)

where Bspl
λ,M (ϕ, ϕs) = M−1Bλ(ϕs, ϕs) + (1 − M−1)Cλ(ϕs), V spl

λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs), Cλ(ϕs) =
ρ2c̃(−λ;ϕs), with Bλ(ϕs, ϕs) and Vλ(ϕs, ϕs) defined in Theorem 4.4.1.

Remark 4.4.7. For every pair (ϕ, ϕs) satisfying ϕs ≥ ϕ, note that the splagged predictor and the risks
are defined non-trivially only for M = 1, . . . , ⌊ϕs/ϕ⌋, and is defined as a constant for M > ⌊ϕs/ϕ⌋. In
particular, for a fixed pair (ϕ, ϕs), the sequence of risks as M changes looks like

Rspl
λ,1 (ϕ, ϕs), Rspl

λ,2 (ϕ, ϕs), . . . , Rspl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs), Rspl

λ,⌊ϕs/ϕ⌋(ϕ, ϕs), . . . .

Remark 4.4.8 (Dependence on data and subsample aspect ratios). Even though splagging does not
formally involve repeated observations like bootstrapping, we will still refer to ϕs = p/k as the subsample
aspect ratio, where k is the number of observations in each split part of the full dataset. In Theorem 4.4.1
for the subagged predictor with replacement, the asymptotic risk depends on both the data aspect ratio ϕ
as well as the subsample aspect ratio ϕs. In contrast, the asymptotic risk for the splagged predictor without
replacement in Theorem 4.4.6 does not depend on the data aspect ratio ϕ. This can be seen from the
expressions for Bspl

λ,M (ϕ, ϕs) and V spl
λ,M (ϕ, ϕs). However, it is interesting to note that the asymptotic risk for

f̃WR
M,Iπ

k
depends on both ϕ and ϕs because lim supk,n→∞ |Iπk | is finite, which makes the limiting risk of f̃WR

M,Iπ
k

and f̃WOR
M,Iπ

k
different. Because KN,M defined in (4.11) is bounded above by 1 and lim supk,n→∞ K|Iπ

k
|,M < 1

for any M > 1, f̃WOR
M,Iπ

k
is a strictly better predictor then f̃WR

M,Iπ
k

in terms of the squared risk (i.e., f̃WR
M,Iπ

k
is

inadmissible, even asymptotically).
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Remark 4.4.9 (Comparison with distributed learning). Theorem 4.4.1 considers the simple average of
base predictors fitted on non-overlapped samples, which is also closely related to distributed learning
(Mücke et al., 2022) that utilizes multiple computing devices to reduce overall training time. Mücke et al.
(2022) only provide finite-sample upper bounds for the prediction risk of distributed ridgeless predictor,
while Theorem 4.4.1 gives exact risk characterization. The distributed ridge predictors are also studied in
Dobriban and Sheng (2020), though their goal is to obtain the optimal weight and the optimal regularization
parameter.

Illustration of Theorem 4.4.6. In Figures 4.6 and 4.7, we provide numerical illustrations for Theo-
rem 4.4.6 (bagged ridgeless and ridge predictors with λ = 0.1) under model (M-AR1-LI), with the number
of bags M varying from 1 to ∞. The limiting data aspect ratio is fixed at 0.1 when n > p and at 1.1 when
n < p. We observe that the empirical risks very closely match the deterministic approximations as stated
in Theorem 4.4.6 for both bagged ridge and ridgeless predictors. Similar to Figure 4.3, for any fixed M ,
the optimal ϕs may be strictly larger than ϕ, an implication of non-monotonic risk behavior.
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Figure 4.6: Asymptotic prediction risk curves in (4.32) for splagged ridgeless predictors (λ = 0), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying split sizes k = ⌊p/ϕs⌋ and numbers of bags
M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1),
respectively. The null risk is marked as a dotted line. For each value of M , the points denote finite-sample
risks averaged over 100 dataset repetitions, with p = 500 and n = ⌊pϕ⌋.

Proof outline of Theorem 4.4.6. The proof of Theorem 4.4.6 follows the similar reduction strategy
as in the proof of Theorem 4.4.1, where we first analyze the subsample conditional risks for M = 1 and
M = 2, and appeal to Theorem 4.3.9 to obtain the result for data conditional and subsample conditional
risks for any M .

1. The deterministic risk approximation to the subsample conditional risk for M = 1 splagging is exactly
the same as that of subagging.

2. Under the linear model, the subsample conditional risk for M = 2 decomposes in the same form
as (4.29), except in this case the datasets DI1 and DI2 are independent of each other (conditional
on I1, I2), which makes the analysis in this case slightly easier compared to that in subagging. By
conditioning on each of the datasets successively, and utilizing the closed-form expression of the ridge
estimator, we obtain the desired deterministic approximations.

3. Finally, as with the case of Theorem 4.4.1, we obtain results for the ridgeless predictor as the limiting
risk approximations to the risk of the ridge predictor in the limit as λ → 0+ using uniformity
arguments.
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Figure 4.7: Asymptotic prediction risk curves in (4.32) for splagged ridge predictors (λ = 0.1), under model
(M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying split sizes k = ⌊p/ϕs⌋ and numbers of bags M . The
left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
The null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks averaged
over 100 dataset repetitions, with p = 500 and n = ⌊pϕ⌋.

4.4.3.2 Monotonicity of bias and variance in number of bags

Similar to subagging, the asymptotic bias and variance of the conditional risk for splagging are also
monotonically decreasing in the number of bags M , as shown in Proposition 4.4.10.

Proposition 4.4.10 (Improvement due to splagging). Fix any pair (ϕ, ϕs) such that ϕs ≥ ϕ. Then for all
M ∈ {1, . . . , ⌊ϕs/ϕ⌋},

Bspl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs) ≤ Bspl

λ,M+1(ϕ, ϕs) ≤ Bspl
λ,M (ϕ, ϕs), (4.33)

V spl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs) ≤ V spl

λ,M+1(ϕ, ϕs) ≤ V spl
λ,M (ϕ, ϕs). (4.34)

The inequalities in (4.33) are strict whenever ρ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ≠ 1 when λ = 0), while
the inequalities in (4.34) are strict when σ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when λ = 0). Thus, the
asymptotic risk is monotonically decreasing in M : Rspl

λ,M+1(ϕ, ϕs) ≤ Rspl
λ,M (ϕ, ϕs).

Because the deterministic risk approximation for splagging is defined as a constant in M for M ≥ ⌊ϕs/ϕ⌋,
Proposition 4.4.10 implies that the for every fixed pair (ϕ, ϕs), the optimal splagged predictor uses
M = ⌊ϕs/ϕ⌋ many bags.

4.5 Risk profile monotonization
The results presented in the previous sections provide risk characterizations for different versions of bagged
predictors, per (4.4) and (4.5), for all possible subsample aspect ratios ϕs. In practice, the choice of
ϕs is important to yield good prediction performance. Following the cross-validation strategy discussed
in Patil et al. (2022a), one can apply cross-validation to choose the optimal ϕs in order to obtain the best
possible prediction performance by subagging or splagging the base predictor across different subsample
sizes. In Section 4.5.1, we first describe the risk monotonization results for general predictors, going back
to the general setting in Section 4.3. In Section 4.5.2, we then specialize the general risk monotonization
results to the bagged ridge and ridgeless predictors. In Section 4.5.3, we provide a comparison of the best
subagged with the best splagged predictor among all possible choices of both ϕs and M , when the base
predictor is either ridge or ridgeless.
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4.5.1 Bagged general predictors
Several commonly used prediction procedures such as min-ℓ2-norm least squares and ridge regression exhibit
a non-monotonic risk behavior as a function of the data aspect ratio ϕ. This is referred to in the literature
as double/multiple descent. The deterministic risk approximation as a function of the aspect ratio ϕ first
increases with ϕ, reaches a peak, and then decreases with ϕ. Reinterpreting this phenomenon with a
fixed dimension and changing sample size n reads as follows: the risk first decreases as the sample size
increases up to some threshold, and then increases as the sample size increases. This is a counter-intuitive
behavior from a statistical point of view as this indicates that more data might hurt. But theoretically,
more information can only yield better performance. The underlying problem here is not the theory but
the prediction procedure being used in that they are sub-optimal when applied as is on the full data.

There are at least two ways in which one can think of improving a given predictor:

1. Obtain a new predictor whose risk is the greatest monotone minorant of the risk of the given prediction
procedure. This can be achieved by computing the predictor on a smaller sample size if necessary. Such
a procedure was called the zero-step procedure (with M = 1) in Patil et al. (2022a); see Algorithm 4
below for details. It does the bare minimum to get monotone risk.

2. The zero-step procedure (with M = 1) is not a genuine improvement of the base predictor in that it
is just the same predictor computed on a smaller dataset. From the positive effects of subagging or
splagging mentioned in previous sections, we can improve on the zero-step procedure by aggregating
over several subsets of the data. This was already eluded to and illustrated in Patil et al. (2022a). In
this section, we discuss this point further.

We note from Theorem 4.4.1 and Figures 4.3 and 4.4 that for each ϕ, there are essentially infinitely many
risk values possible (one for each pair of subsample aspect ratio ϕs and number of bags M). The zero-step
procedure (with M = 1) improves on the base predictor by optimizing over ϕs, but fixing M = 1. Going
one step forward, based on our results above, we can consider optimizing over ϕs and M ≥ 1 (or just over
ϕs, but fixing M ≥ 1). In the following, we present an actionable algorithm to attain the optimum over ϕs
for any fixed M ≥ 1. (Note that we have already proved monotonicity over M ≥ 1 and one can always
choose M to be as large as feasible in practice.) Then, we present Theorem 4.5.1 where we prove that the
general cross-validation attains the optimum over ϕs (asymptotically). Under the setting in Section 4.2,
Theorem 4.5.1 provides theoretical guarantees of the cross-validation procedure for general base predictors,
which extends the results of Patil et al. (2022a) to subagging and splagging.

Theorem 4.5.1 (Risk monotonization by cross-validation). Suppose that as n, p → ∞, p/n → ϕ ∈ (0,∞).
Let Kn be the set of subsample sizes defined in Algorithm 4 and Ik be the set of subsets of Str of size k ∈ Kn

according to the sampling scheme. Suppose for any k ∈ Kn, as n, k, p → ∞, and p/k → ϕs ∈ [ϕ,∞), there
exists a deterministic function R : (0,∞]2 → [0,∞] such that

(i) For any I ∈ Ik and {Ik,1, Ik,2} a simple random sample from Ik,

R(f̃1; Dn, {I}) a.s.−−→ R(ϕs, ϕs), R(f̃2; Dn, {Ik,1, Ik,2}) a.s.−−→ R(ϕ, ϕs).

(ii) For any ϕ ∈ (0,∞), ϕs 7→ R(ϕ, ϕs) is proper and lower semi-continuous over [ϕ,∞], and is continuous
on the set arg min{ψ:ψ≥ϕ} R(ϕ, ψ).

Let f̂ cv
M be the cross-validated predictor returned by Algorithm 4 with base predictor f̂ . If the estimated

risk R̂(f̃M,k) defined in (4.35) or (4.36) is uniformly (in k ∈ Kn) close to the subsample conditional risk
R(f̃M,k; Dn, {Ik,ℓ}Mℓ=1) with probability converging to 1, then the following conclusions hold. For subagging
with or without replacement, or splagging without replacement, it holds for all M ∈ N that,(

R(f̂ cv
M ; Dn, {Ik̂,ℓ}

M
ℓ=1) − min

ϕs≥ϕ
RM (ϕ, ϕs)

)
+

p−→ 0,
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Algorithm 4 Cross-validation for subagging or splagging
Input: A dataset Dn = {(xi, yi) ∈ Rp×R : 1 ≤ i ≤ n}, a positive integer nte < n (number of test samples),

a base prediction procedure f̂ , a real number ν ∈ (0, 1) (bag size unit parameter), a natural number M
(number of bags), a centering procedure CEN ∈ {AVG, MOM}, a real number η when CEN = MOM.

1: Data splitting: Randomly split Dn into training set Dtr and test set Dte as:

Dtr = {(xi, yi) : i ∈ Str}, Dte = {(xj , yj) : j ∈ Ste},

where Ste ⊂ [n] with |Ste| = nte and Str = [n] \ Ste.
2: Bag sample sizes grid construction: Let k0 = ⌊nν⌋ and Kn = {k0, 2k0, . . . , ⌊n/k0⌋k0}.
3: Subagging or splagging predictors: For each k ∈ Kn, define f̃M,k trained on Dtr as:

• For subagging, let f̃M,k(·) = f̃M (·; {DIk,ℓ
}Mℓ=1) denote the subagged predictor as in (4.4) with M

bags. Here, Ik,1, . . . , Ik,M represent a simple random sample with or without replacement from
the set of all subsets of Str of size k.

• For splagging, f̃M,k(·) is the same as above but now Ik,1, . . . , Ik,M represent a simple random
sample without replacement from a random split of Str into ⌊n/k⌋ parts with each part containing
k elements. As explained in Section 4.4.1, for M > ⌊n/k⌋, no such splitting exists. In this case,
we return f̃⌊n/k⌋,k. Hence in general, we have f̃M,k = f̃min{M,⌊n/k⌋},k.

4: Risk estimation: For each k ∈ Kn, estimate the conditional prediction risk on Dte of f̃M,k as:

R̂(f̃M,k) :=


|Ste|−1 ∑

j∈Ste

(yj − f̃M,k(xj))2, if CEN=AVG

median(R̂1(f̃M,k), . . . , R̂B(f̃M,k)), if CEN=MOM,

(4.35)

(4.36)

where B = ⌈8 log(1/η)⌉, and R̂j(f̃M,k), 1 ≤ j ≤ B is defined similarly to (4.35) for B random splits of
the test dataset Dte; see Patil et al. (2022a) for more details.

5: Cross-validation: Set k̂ ∈ Kn to be the bagging sample size that minimizes the estimated prediction
risk using

k̂ ∈ arg min
k∈Kn

R̂(f̃M,k). (4.37)

Output: Return the predictor f̂ cv
M (·; Dn) = f̃

M,̂k
(·) = f̃M (·; {DI

k̂,ℓ

}Mℓ=1).

where the function RM (ϕ, ϕs) is defined as

RM (ϕ, ϕs) := (2R(ϕ, ϕs) − R(ϕs, ϕs)) + 2
M

(R(ϕs, ϕs) − R(ϕ, ϕs)).

Furthermore, if for any ϕs ∈ (0,∞), ϕ 7→ R(ϕ, ϕs) is non-decreasing over (0, ϕs], then the function
ϕ 7→ minϕs≥ϕ RM (ϕ, ϕs) is monotonically increasing for every M .

Remark 4.5.2 (Asymptotic risks are different for subagging and splagging.). Although Theorem 4.5.1 is
presented in a unified manner for subagging and splagging, the actual limiting risks can be (and in most
cases are) different. This difference arises in the different expressions for the asymptotic risks assumed in
assumption (i) of Theorem 4.5.1.

Remark 4.5.3 (Exact risk characterization of the cross-validated predictor with stronger assumptions).
Note that Theorem 4.5.1 does not exactly characterize the risk of cross-validated bagged predictor; it
only states that the subsample conditional risk of f̃ cv

M is asymptotically no larger than minϕs
RM (ϕ, ϕs).
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Nevertheless, this is an improvement over the results of Patil et al. (2022a), who proved that the subsample
conditional risk of f̃ cv

M is asymptotically no larger than minϕs
R1(ϕ, ϕs). For the exact risk characterization

of f̃ cv
M , one can make the stronger assumption that as n, p → ∞ and p/n → ϕ,

sup
k≤n

|R(f̃1; Dn, {I1
SRSWR∼ Ik}) − R(p/k, p/k)| p−→ 0, sup

k≤n
|R(f̃2; Dn, {I1, I2

SRSWR∼ Ik}) − R(ϕ, p/k)| p−→ 0,

which can be used to conclude

R(f̂ cv
M ; Dn, {Ik̂,ℓ}

M
ℓ=1) p−→ min

ϕs≥ϕ
RM (ϕ, ϕs).

The result for bagging without replacement can be extended analogously.

Remark 4.5.4 (Assumption of uniform consistency of the estimated risk). The assumption of uniform (in
k ∈ Kn) closeness of the estimated risk R̂(f̃M,k) to the subsample conditional risk R(f̃M,k; Dn, {Ik,ℓ}Mℓ=1) is
meant to represent either

max
k∈Kn

|R̂(f̃M,k) −R(f̃M,k; Dn, {Ik,ℓ}Mℓ=1)| = op(1), or max
k∈Kn

∣∣∣∣∣ R̂(f̃M,k)
R(f̃M,k; Dn, {Ik,ℓ}Mℓ=1)

− 1
∣∣∣∣∣ = op(1).

In Section 2 of Patil et al. (2022a), the authors have provided several assumptions on the data distribution
and the predictors such that this uniform closeness assumption holds true. In Section 4.5.2, we will apply
Theorem 4.5.1 for bagged linear predictors which are themselves linear predictors. In this specific case,
Theorem 2.22 in the aforementioned work shows that uniform closeness holds true under assumptions on
the data distribution alone (no matter what linear predictor is, even those that have diverging risks); see
Patil et al. (2022a, Remarks 2.19 and 2.20). We do not further discuss this uniform closeness condition,
but only remark that Assumptions 4.1-4.5 imply the assumptions of Theorem 2.22 with CEN = MOM (the
median-of-means estimator). With CEN = AVG, sub-Gaussian features imply the assumptions of Theorem
2.22.

4.5.2 Bagged ridge and ridgeless predictors
Theorem 4.5.1 provides a very general result that describes the risk behavior of cross-validated bagged
predictors in general. Following our results in previous sections that verify condition (i) of Theorem 4.5.1 for
both ridge and ridgeless predictors, we now specialize Theorem 4.5.1 to these predictors under Assumptions
4.1-4.5.

Theorem 4.5.5 (Risk monotonicity in aspect ratio). Suppose that the cross-validated predictor f̂ cv
M is

returned by Algorithm 4 with base predictor f̂λ and M bags, and the conditions in Theorem 4.4.1 (or
Theorem 4.4.6) hold7 with Rλ,M (ϕ, ϕs) being the limiting risk Rsub

λ,M (ϕ, ϕs) (or Rspl
λ,M (ϕ, ϕs)). Then it holds

for all M ∈ N, (
R(f̂ cv

M ; Dn, {Ik̂,ℓ}
M
ℓ=1) − min

ϕs≥ϕ
Rλ,M (ϕ, ϕs)

)
+

p−→ 0. (4.38)

Furthermore, ϕ 7→ minϕs≥ϕ Rλ,M (ϕ, ϕs) is a monotonically increasing function of ϕ for every M .

In Theorem 4.5.5, the monotonicity of ϕ 7→ minϕs≥ϕ Rλ,M implies that for every M , for the optimal
bagged predictor, more data (i.e, increasing n) cannot hurt. In the plot of Figure 4.8, we observe slight
non-monotonicity of the empirical risk profile for M = 1. This is because of the small sample size which
does not allow for the optimal cross-validated predictor to be the null predictor. One way to not let this
happen (in this specific case) is to always include a perfect “null” predictor in the set of predictors tuned
with cross-validation in Algorithm 4.

7The statement as stated holds for CEN = MOM in Algorithm 4. For CEN = AVG, we need to assume sub-Gaussian features as
discussed in Remark 4.5.4.
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For splagging without replacement, the simulation results are shown in Figure 4.8(b). As expected,
as the limiting aspect ratio ϕ increases, the empirical excess risks are nearly monotone increasing and
match with theoretical curves. Another pattern we observe in Figure 4.8 (splagging without replacement)
is that the asymptotic risk may not be monotonically decreasing in M when ϕ is small. This is because
the subsample aspect ratio ϕs is restricted by the number of bags M in that it cannot be below Mϕ, and
the differences in the range of ϕs when using different numbers of bags result in the non-monotonicity
when ϕ is small. While in the overparameterized region when ϕ is large enough, the cross-validated risk for
bagging without replacement is guaranteed to be monotonically decreasing in M . Furthermore, the choice
of M = ϕs/ϕ guarantees that the risk is always optimal compared to any other value of M .
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Figure 4.8: Asymptotic excess risk curves for cross-validated bagged ridgeless predictors (λ = 0) for (a)
subagging and (b) splagging, under model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample sizes
k = ⌊p/ϕs⌋ and numbers of bags M . The left and the right panels correspond to the cases when SNR = 0.33
(ρar1 = 0.25) and 0.6 (ρar1 = 0.5), respectively. The excess null risks and the risks for the unbagged ridgeless
predictors are marked as dotted lines and the dashed lines, respectively. For each value of M , the points
denote finite-sample risks averaged over 100 dataset repetitions and the shaded regions denote the values
within one standard deviation, with n = 1000, nte = 63, and p = ⌊nϕ⌋.

4.5.3 Optimal subagging versus optimal splagging

The cross-validated predictors discussed previously yield asymptotic optimal risks over subsample aspect
ratio ϕs for every M . As a step further, we can obtain the optimal subagging and optimal splagging by
jointly optimizing over both ϕs and M . From the explicit formulas for the limiting risks for each pair of
aspect ratios (ϕ, ϕs) and each M , the optimal bagged risks in the two cases can be compared.

Proposition 4.5.6 (Comparison of the optimal risk of subagging and splagging). Under Assumptions
4.3-4.5, let Rsub

λ,M (ϕ, ϕs) and Rspl
λ,M (ϕ, ϕs) be defined as in Theorem 4.4.1 and Theorem 4.4.6, respectively.
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Then for any λ ∈ [0,∞) and ϕ ∈ (0,∞), the following holds:

inf
M∈N,ϕs∈[ϕ,∞]

Rsub
λ,M (ϕ, ϕs) ≤ inf

M∈N,ϕs∈[ϕ,∞]
Rspl
λ,M (ϕ, ϕs). (4.39)

In words, optimal subagging is at least as good as optimal splagging (without replacement) in terms of
squared loss for ridge predictors.

For any dataset with fixed aspect ratio ϕ, Proposition 4.5.6 indicates that the optimal risk for bagged
predictor across all possible choices of M and subsample aspect ratio ϕs is always given by subagging. The
optimal subagging and optimal splagging risks in Proposition 4.5.6 can be written as

Rsub
opt(ϕ) = Rsub

λ,∞(ϕ, ϕsub
s (ϕ)), and Rspl

opt(ϕ) = Rspl
λ,ϕ

spl
s (ϕ)/ϕ(ϕ, ϕspl

s (ϕ)), (4.40)

where the functions ϕ 7→ ϕsub
s (ϕ) and ϕ 7→ ϕ

spl
s (ϕ) are defined via

ϕsub
s (ϕ) := arg min

ϕs≥ϕ
Rsub
λ,∞(ϕ, ϕs), and ϕspl

s (ϕ) := arg min
ϕs≥ϕ

Rspl
λ,ϕs/ϕ

(ϕ, ϕs). (4.41)

The fact that the optimal risks shown in Proposition 4.5.6 are the same as shown in (4.40) follows from the
fact that the risks are monotonically decreasing in M for subagging and that the risk at M = ϕs/ϕ is the
best for splagging without replacement for any pair (ϕ, ϕs). The quantities ϕsub

s (·) and ϕspl
s (·) represent the

best possible subsample aspect ratios for subagging and splagging (without replacement) for every data
aspect ratio ϕ given. (Minimizers of lower semi-continuous functions over compact domains exist, which is
true for the functions in (4.41) from Theorem 4.5.5.)

We calculate and present the theoretical optimal asymptotic risks (4.40) for bagged ridgeless predictors in
Figure 4.9. The optimal risk minϕs≥ϕ Rsub

λ,1 (ϕ, ϕs) = minϕs≥ϕ Rspl
λ,1 (ϕ, ϕs) of the bagged ridgeless predictor

with M = 1 is also presented as the dashed line, which is the same as the monotone risk of the zero-step
ridgeless predictor of Patil et al. (2022a) with M = 1. As shown in Figure 4.9(a), the optimal risk for the
subagged ridgeless predictor is always smaller than the splagged ridgeless predictor without replacement.
Both of them improve the risk for the ridgeless predictor with optimal subsample aspect ratio ϕs using
only one bag (M = 1).

Oracle properties of optimal subsample aspect ratios. From the previous section, we see that
optimal subagged ridge or ridgeless regression always outperforms the splagged one in terms of limiting risk.
Due to the monotonicity in the number of bags M from Proposition 4.4.5, the optimal risk for subagging
must be obtained at M = ∞ for any given subsample aspect ratio ϕs. One question that arises is: what is
the optimal subsample aspect ratio ϕs? We provide a partial answer to this question in Proposition 4.5.7
specialized to ridgeless regression.

Proposition 4.5.7 (Optimal risk for bagged ridgeless predictor). Suppose the conditions in Theorems 4.4.1
and 4.4.6 hold, and σ2, ρ2 ≥ 0 are the noise variance and signal strength from Assumptions 4.2 and 4.3.
Let SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the optimal asymptotic risks Rsub

0,∞(ϕ, ϕsub
s (ϕ)) and

Rspl
0,ϕs/ϕ

(ϕ, ϕspl
s (ϕ)) in terms of SNR and ϕ are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum σ2 of both Rsub
0,∞(ϕ, ϕsub

s (ϕ)) and
Rspl

0,ϕs/ϕ
(ϕ, ϕspl

s (ϕ)) are obtained with ϕsub
s (ϕ) = ϕspl

s (ϕ) = ∞.

(2) SNR > 0: For all ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained at ϕsub

s (ϕ) ∈ (1,∞).
For ϕ ≥ 1, the global minimum of ϕs 7→ Rspl

0,ϕs/ϕ
(ϕ, ϕs) is obtained at ϕspl

s (ϕ) ∈ (1,∞); for ϕ ∈ (0, 1),
the global minimum of ϕs 7→ Rspl

0,ϕs/ϕ
(ϕ, ϕs) is obtained at ϕspl

s (ϕ) ∈ {ϕ} ∪ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = Rspl
0,ϕs/ϕ

(ϕ, ϕspl
s (ϕ)) =

0 is obtained with any ϕsub
s (ϕ), ϕspl

s (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimums Rsub
0,∞(ϕ, ϕsub

s (ϕ))
and Rspl

0,ϕs/ϕ
(ϕ, ϕspl

s (ϕ)) are obtained at ϕsub
s (ϕ), ϕspl

s (ϕ) ∈ [ϕ,∞).

97



10 2

10 1

Ex
ce

ss
 ri

sk
SNR = 0.33 SNR = 1.33

0.01 0.1 1 10
Data aspect ratio 

0.01

0.1

1

10

Op
tim

al
 su

bs
am

pl
e

as
pe

ct
 ra

tio
 

s

0.01 0.1 1 10
Data aspect ratio 

(a)

(b)

Optimal bagging (M=1) Optimal splagging Optimal subagging

Figure 4.9: Comparison between optimal subagging and optimal splagging of ridgeless predictors (λ = 0)
for varying limiting aspect ratios ϕ of p/n under model (M-AR1-LI) when σ2 = 1. The left and right
panels correspond to SNR = 0.33 (ρar1 = 0.25) and SNR = 0.6 (ρar1 = 0.5), respectively. The point of phase
transition for splagging is marked as the red dash-dot line in every subplot. (a) Optimal asymptotic excess
risk curves (4.39). The excess null risks are marked as gray dotted lines and the blue dashed lines represent
the optimal risks of bagged ridgeless predictor with M = 1, which are the same as the risks from the
zero-step procedure of Patil et al. (2022a). (b) The corresponding optimal subsample aspect ratio ϕs as a
function of data aspect ratio ϕ. For subagging, the optimal subsample aspect ratio is always larger than
one (above the gray dotted line). The line ϕs = ϕ is colored in green.

Proposition 4.5.7 implies that the optimal subsample aspect ratio ϕsub
s (ϕ) for subagging is always in

[1,∞], i.e., the overparameterized regime. In other words, subagging interpolators with larger aspect ratios
(larger than the full data aspect ratio ϕ) helps to reduce the prediction risk, even when ϕ < 1. For splagging,
however, the minimum risk can be obtained either using the full data or splagging interpolators, depending
on the data aspect ratio ϕ and the signal-to-noise ratio.

It is interesting to note that the optimal subsampling aspect ratio for splagging is either ϕ or it is in the
overparameterized regime (1,∞). This means that either splagging does not help, or when it helps, one has
to splag interpolators. Whenever SNR is positive, the optimal subsample aspect ratio is finite for any ϕ.
Hence we are able to visualize ϕsub

s (ϕ) and ϕspl
s (ϕ) in Figure 4.9(b). As shown in Figure 4.9, there is a

point of non-differentiability of ϕspl
s (ϕ) for optimal splagging without replacement. Before this point of

non-differentiability, ϕspl
s (ϕ) = ϕ, which is the same as the optimal bagged ridgeless with M = 1. This is

also the same as the ridgeless predictor trained on the full data. After the point of non-differentiability, the
optimal risk for splagging without replacement is obtained in the overparameterized regime, i.e., ϕspl

s (ϕ) > 1.
In contrast to splagging, ϕsub

s (ϕ) ≥ 1 for all ϕ > 0, meaning that it is always better to subag interpolators
(i.e., the overparameterized regime).

These observations indicate that, when the number of bags is sufficiently large enough, splagging without
replacement only helps when the limiting aspect ratio ϕ of the full dataset is above some threshold, but
subagging is always beneficial in reducing the prediction risk, even in the underparameterized regime.

Remark 4.5.8 (Guidelines for practical data analysis). Proposition 4.5.7 implies that when using M = ∞,
one should consider bagging interpolators to get better predictive performance, at least when the linear model
holds true. However, M = ∞ is practically infeasible particularly when n, k → ∞. Note from Figures 4.3
and 4.4 that for M large enough, the same phenomenon holds true, i.e., it is better to bag interpolators
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with a large M . How large such an M should be depends on various unknowns related to the linear model
and also on how much gap δ > 0 from M = ∞ one is willing to allow. Given the form of the limiting risk
as a function of M , we can figure out the necessary value of M as a function of the gap δ, based on the
cross-validation procedure (Algorithm 4). Note that this is completely data-driven and model-agnostic. The
procedure is as follows: (1) Run Algorithm 4 with M = 1 and M = 2 to obtain the estimators R̂1(ϕs, ϕ)
and R̂2(ϕs, ϕ) of the limiting subsample conditional risks M = 1, 2, respectively, for a grid of values ϕs ≥ ϕ.
Following Proposition 4.3.3, this yields an estimator of the subsample conditional risk for every M ≥ 1, in
particular, for M = ∞. (2) Find ϕ̂sub

s (ϕ), the minimizer of ϕs 7→ 2R̂2(ϕs, ϕ) − R̂1(ϕs, ϕ). Note that this
map is an estimator of the limiting risk for M = ∞. (3) Fix a tolerance level δ > 0, and choose

M = 2
δ

{
R̂1(ϕ̂sub

s (ϕ), ϕ) − R̂2(ϕ̂sub
s (ϕ), ϕ)

}
.

Operating at ϕ̂sub
s (ϕ) with such a value of M will yield an asymptotic risk that is δ close (in the additive

sense) to the optimal risk.

4.6 Illustrations and insights: isotropic features
All the results presented before are derived under Assumptions 4.1-4.5. We now consider a much simpler
case of isotropic features (i.e., Σ = Ip in Assumption 4.1). In this case, the spectral distribution simplifies
and allows us to compute the fixed point solutions analytically. We will primarily focus on the case of
ridgeless predictor for the sake of illustration. It is possible to obtain similar results for ridge predictors,
albeit slightly more involved. In Appendix D.7.3, we provide formulas for the fixed-point solutions for
λ > 0 from which one can derive the risk as well as the individual bias and variance numerically for ridge
predictors (with arbitrary λ > 0). In general, these quantities can always be computed numerically for
nonisotropic models.

For isotropic features, the bias and variance functions in Theorems 4.4.1 and 4.4.6 admit relatively
simple forms, as shown in Corollary 4.6.1. The asymptotic bias and variance can be further computed for
all M ∈ N from (4.28).

Corollary 4.6.1 (Bias-variance components for isotropic design). Assume the conditions in Theorem 4.4.1
or Theorem 4.4.6 hold with Σ = Ip. Then we have

B0(ϕ, ϕs) = ρ2 (ϕs − 1)2

ϕ2
s − ϕ

1(1,∞](ϕs),

C(ϕs) = ρ2 (ϕs − 1)2

ϕ2
s

1(1,∞](ϕs),
V0(ϕ, ϕs) =


σ2 ϕ

1 − ϕ
, ϕs ∈ (0, 1)

∞, ϕs = 1

σ2 ϕ

ϕ2
s − ϕ

, ϕs ∈ (1,∞].

Subagging with replacement. From Corollary 4.6.1, we are able to evaluate the closed-form asymptotic
risk under model (M-ISO-LI):

yi = x⊤
i β0 + ϵi, xi ∼ N (0, Ip), β0 ∼ N (0, p−1ρ2Ip), ϵi ∼ N (0, σ2). (M-ISO-LI)

Extra experimental results under model (M-ISO-LI) are also included in Appendix D.10. We note that
the Gaussianity of the noise ϵi in model (M-ISO-LI) is convenient for numerical evaluation, while it is
not needed for Corollary 4.6.1. Instead, we only need the first and second moments to match as above.
For M ∈ N, the bias term is always increasing, while the variance term will blow up when the subsample
aspect ratio ϕs approaches one. However, the variance for M = ∞ is different. It is decreasing in ϕs and
continuous at ϕs = 1. As a result, one might be interested in the optimal subsample aspect ratio ϕsub

s (ϕ),
that best trades off the bias and variance, and minimizes the risk for a given value of ϕ and M = ∞.

Proposition 4.6.2 (Optimal risk for subagged ridgeless predictors with isotropic features). Suppose
the conditions in Corollary 4.6.1 hold, and σ2, ρ2 ≥ 0 are the noise variance and signal strength from
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Assumptions 4.2 and 4.3. Let SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the asymptotic risk
Rsub

0,∞(ϕ, ϕs) as a function of ϕs are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): The global minimum Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = σ2 is obtained at ϕsub
s (ϕ) = ∞.

(2) SNR > 0: The global minimum

Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = σ2

2

1 + ϕ− 1
ϕ

SNR +

√(
1 − ϕ− 1

ϕ
SNR
)2

+ 4SNR

 (4.42)

is obtained at ϕsub
s (ϕ) = A+

√
A2 − ϕ ∈ (1,∞) where A = (ϕ+ 1 + ϕ/SNR)/2.

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], then the global minimum is Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = 0 is attained
at any ϕs ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum Rsub

0,∞(ϕ, ϕsub
s (ϕ)) = σ2 + ρ2(ϕ − 1)/ϕ is

attained at ϕsub
s (ϕ) = ϕ.

As a specialization of Proposition 4.5.7, Proposition 4.6.2 provides the analytic expression of the optimal
risk one could achieve by optimizing over all choices of the number of bags M and the subsample aspect
ratio ϕs. Furthermore, it also reveals the relationship between the optimal risk and the SNR, which is also
visualized in Figure 4.10. Specifically, the optimal subagged risk is monotonically decreasing in SNR when
σ2 is fixed, which is an intuitive behavior as one would expect a larger SNR yields a smaller prediction
risk. In contrast, such a property is not satisfied by the ridge or ridgeless predictor computed on the
full data (Hastie et al., 2022, Figure 2). It can be shown that the gap between the optimal risk given in
Proposition 4.6.2 and the underparameterized excess risk σ2ϕ/(1 − ϕ) obtained with the full dataset gets
larger, when SNR gets smaller. Most importantly, it benefits more when the SNR gets smaller, with higher
overparameterized aspect ratio ϕsub

s (ϕ).

Theorem 4.6.3 (Optimal subagged ridgeless risk versus optimal ridge risk). Under the conditions in
Corollary 4.6.1, we have that for all ϕ ∈ (0,∞),

min
ϕs≥ϕ

Rsub
0,∞(ϕ, ϕs) = min

λ≥0
Rsub
λ,1 (ϕ, ϕ).

In words, the optimal limiting risk of the subagged ridgeless predictors equals the optimal ridge predictors
trained on the full data.

Theorem 4.6.3 is an unexpected connection between subagging and ridge regression. This result can also
be interpreted as saying that subagging a ridge predictor with λ = 0 and optimizing over the subsample
size is “same” as using the ridge predictor with λ ≥ 0 and optimizing over λ. Consequently, this suggests
that subsampling and optimizing over subsample size is a form of regularization. A similar connection
between subsampling features and ridge regression was made by LeJeune et al. (2020, Theorem 3.6).

Remark 4.6.4 (Difference between optimal subagged ridgeless and optimal ridge predictors). Though
the two optimal limiting risks match under the isotopic model as suggested by Theorem 4.6.3, the risk
monotonicity properties of them in the data aspect ratio ϕ are different. Further, the optimal risk of the
subagged ridgeless predictor is expected to remain monotonically decreasing in ϕ from Theorem 4.5.5, while
whether the optimal ridge predictor has the same property is unknown under general models.

Splagging without replacement. Unlike subagging, it is possible, though very cumbersome to obtain
the optimal sub-sampling ratio ϕspl

s (ϕ) in this case. It involves solving a cubic equation (for a fixed M) or
a quartic equation (for the optimal M). To this end, we compute ϕ⋆s numerically and provide a qualitative
behavior for ϕs as summarized below. As SNR increases the point of phase transition occurs at a larger
value of ϕ. This indicates that when there are much more features than samples in the full dataset and the
SNR is relatively large, then splagging does not help to reduce the prediction risk. However, when the SNR
is small, splagging interpolators is beneficial, even when n is much larger than p in the full data.

100



0.1

0.5

1.0
Ex

ce
ss

 ri
sk

Subagging Splagging

0.05 0.1 0.5 1.0 5.0
Data aspect ratio 

0.1

1

10

100

Op
tim

al
 su

bs
am

pl
e

as
pe

ct
 ra

tio
 

s

0.05 0.1 0.5 1.0 5.0
Data aspect ratio 

(a)

(b)

SNR 0.1 0.2 0.3 0.4 0.5

Figure 4.10: Properties of optimal bagged ridgeless predictors (λ = 0) under model (M-ISO-LI) when
ρ2 = 1, for varying signal noise ratio (SNR = ρ2/σ2). (a) Optimal asymptotic excess risk curves of subagging
(left panel) and splagging (right panel) over the number of bags M and subsample aspect ratio ϕs. The
optimal numbers of bags are M = ∞ and M = ϕs/ϕ for subagging and splagging, respectively. The gray
dotted lines represent the excess null risk. (b) The corresponding optimal subsample aspect ratio ϕs as a
function of data aspect ratio ϕ. For subagging, the optimal subsample aspect ratio is always larger than
one (above the red dash line).

Subagging versus splagging. From the previous sections, we have observed the interesting phenomena
of the prediction risks for subagging and splagging. Here we briefly summarize these findings concerning
the similarities and differences between the two types of bagging strategies for ridgeless predictors.

• As revealed in Figure 4.10, for any data aspect ratio ϕ and any SNR, subagging can help to reduce the
risk with a suitable subsample aspect ratio in the overparameterized regime, if we have enough bags.
In contrast, splagging may not help when ϕ < 1 and SNR is large, even if we optimize over all possible
numbers of bags and subsample aspect ratios jointly.

• For the cases when subagging or splagging is beneficial, the maximal gain compared to the predictor
computed on the full data increases as the SNR decreases. When the full data aspect ratio ϕ is near
to 1, both subagging and splagging substantially reduce the prediction risk; see Figures 4.3, 4.4, 4.6
and 4.7.

• Most surprisingly, even if the original dataset is heavily underparameterized, overparameterized
subagging always helps, as shown in Figure 4.9(b). For example, recall in Figure 4.3 when n = 5000
and p = 500 (which is a favorable case in classical statistics), subagged ridgeless predictors trained
on overparameterized subsampled datasets (e.g. with n = 50 and p = 500) with M = 50 bags have
smaller prediction risk than least squares fitted on the original data.
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4.7 Discussion
In this work, we have provided a generic reduction strategy for characterizing the squared risk of general
bagged predictors (for two bagging strategies of subagging and splagging). As a function of the numbers of
bags M , for the squared error loss, we show that the asymptotic risk of the M -bagged predictor can be
expressed as M−1R1 + (1 −M−1)R∞, where R1 and R∞ represent the asymptotic risks of the M -bagged
predictor with M = 1 and M = ∞, respectively. More generally, for a smooth loss function, we show that
the risk of the M -bagged predictor is sandwiched between similar convex combinations. Furthermore, we
have provided a generic cross-validation framework to tune the subsample size that aims at obtaining the
best subagged predictor, which also helps in monotonizing the risk profile of any given prediction procedure.

Following this general strategy, along with some new tools from random matrix theory, we have derived
explicit risk characterization for bagged ridge and ridgeless predictors. The risk expressions reveal bias
and variance monotonicity in the number of bags. In comparing different versions of bagging for ridge and
ridgeless predictors, we show that subagging (with optimal subsample size) improves upon the divide-and-
conquer or the data-splitting approach of averaging the predictors computed on different non-overlapping
splits of data (with optimal split size). In the overparameterized regime, the latter data-splitting has been
recently observed to improve upon the ridgeless predictor computed on the entire data (Mücke et al., 2022)
under sub-Gaussian features.

Surprisingly, our results reveal that, under a well-specified linear model, subagging on properly chosen
ridgeless interpolators constantly improves upon the ridgeless predictor trained on the complete data, even
when the entire data has more observations than the number of features. Our generic and model-agnostic
cross-validation procedure provably yields the best ridgeless interpolators for subagging. Further specializing
to the case of isotropic features, we prove that the optimal subagged predictor has the asymptotic risk that
matches the unbagged ridge predictor with optimally-tuned regularization parameter.

Several natural extensions of the current work can be considered going forward. We briefly discuss two
of them below.

First, though the general strategy we proposed for analyzing bagged predictors can be helpful for
other prediction procedures, we have only derived the exact bagged risk expressions when the underlying
prediction procedure is ridge and ridgeless regression. In the context of the ridge and ridgeless predictors,
we had to develop new random matrix theory tools related to deterministic equivalents. One might have to
develop similar new tools to analyze other predictors based on our strategy. A natural prediction procedure
to analyze next for bagging is lasso or lassoless regression. An empirical investigation of the bagged lassoless
predictor is already conducted by Patil et al. (2022a). The traditional analysis of this predictor trained on
the full data is performed via appropriate message passing (AMP) techniques (Li and Wei, 2021). It would
be interesting to see if our general strategy can be combined with AMP, the convex Gaussian min-max
theorem, or the leave-one-out perturbation analysis to yield a far more general strategy for analyzing
bagging.

Second, we have analyzed the bagged ridge and ridgeless predictors under a well-specified linear model.
It is interesting to extend the analysis to a general data-distributional setting for two main reasons: (1)
to make the results more relevant for practical data analysis, and (2) to investigate whether bagging
interpolators can still improve upon the ridgeless predictor trained on the full data. Regarding (1) above,
techniques developed by Bartlett et al. (2021) are useful in relaxing the linear model assumptions. Regarding
(2) above, we performed a simple simulation study that suggests that even in the misspecified nonlinear
model, bagging properly selected interpolators can improve the unbagged ridgeless predictor. See Figure 4.11
for more details.

102



0.1 0.2 0.5 1.0 2.0 5.0 10.0
Subsample aspect ratio s

10 1

100

Ex
ce

ss
 ri

sk

= 0.1

1.0 2.0 5.0 10.0
Subsample aspect ratio s

= 1.1

M 1 2 5 10 50

Figure 4.11: Finite-sample prediction risks for subagged ridgeless predictors (λ = 0) under a nonlinear model,
averaged over 100 dataset repetitions, for varying bag size k = [pϕs] and number of bags M with replacement,
with n = [p/ϕ] and p = 500. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and
p > n (ϕ = 1.1), respectively. We generated data from a nonlinear model where the response yi for i ∈ [n]
is generated from a nonlinear function of xi with additive noise: yi = x⊤

i β0 + 1
p (∥xi∥2

2 − tr(Σar1)) + ϵi and
β0,X, ϵ are generated as in (M-AR1-LI) with ρar1 = 0.25 and σ2 = 1. We observe the similar pattern as in
Figure 4.3 that the risk of the subagged ridgeless predictor with M = 50 and ϕs ≈ 1.5 is smaller than the
risk of the ridgeless predictor fitted on the full data. As a consequence, the main results about subagging
are likely to in a much wider range of cases.
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Chapter 5

Revisiting model complexity

A note to the reader: This chapter is work in progress, and the results presented are partial in nature. As
such, please pardon any omissions and lack of clarifications in the meantime that the work is completed.

5.1 Introduction
Modern machine learning involves fitting a large number of parameters relative to the number of observations.
Such overparameterized models are typically trained to (nearly) interpolate noisy in-sample data, and yet
generalize reasonable well on out-of-sample data in many settings (Zhang et al., 2017). A series of recent
work has investigated this surprising phenomenon for different models, including linear regression (Belkin
et al., 2019a; Hastie et al., 2022; Muthukumar et al., 2020; Bartlett et al., 2020), random features regression
(Mei and Montanari, 2022), sparse regression (Li and Wei, 2021), kernel regression (Liang and Rakhlin,
2020), linear classification (Deng et al., 2019; Montanari et al., 2019b), boosting (Liang and Sur, 2020b),
among several others; see Bartlett et al. (2021); Dar et al. (2021) for more examples.

A peculiar feature of overparameterized models is the so-called “double descent” (or even “multiple
descent”) behavior in the generalization error curve when plotted against the raw number of model
parameters or some analogous notion of model complexity. This leads us to ask the following motivating
questions in this work:

1. Is there a better and more principled measure of model complexity in general for overparameterized
models?

2. More specifically, how do we compare complexity of different (near) interpolating models?

We address these questions through the lens of degrees of freedom, by borrowing and extending classical
ideas from optimism theory. In particular, we propose two measures of model complexity, namely emergent
and intrinsic random-X degrees of freedom. We show the utility of our proposed complexity measures
through examples of linear smoothers and interpolators, and illustrate how our proposed measures may
help “reconcile” the surprising “multiple descent” generalization behaviors in modern machine learning
with the “single descent” bias-variance tradeoff in classical statistical learning. In what follows, we fist
summarize our proposals in Section 5.2, and then provide illustrative examples in Section 5.3.

5.2 New proposal for random-X degrees of freedom
Consider the standard regression setup with i.i.d. observations (xi, yi) ∈ Rp × R, i = 1, . . . , n, such that
yi = f(xi) + εi, where f : Rp → R is the regression function, and εi has mean 0 and variance σ2. Denote
by X ∈ Rn×p the corresponding feature matrix and by y ∈ Rn the associated response vector. Let A be
any fitting algorithm that maps (X, y) A7→ f̂ , where f̂ : Rp → R is the resulting fitted predictor. Associated
with f̂ are three error metrics: (a) the training error, ErrT(f̂) = n−1∑n

i=1(yi − f̂(xi))2, (b) the fixed-X
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prediction error, ErrF(f̂) = n−1∑n
i=1 E[(ỹi − f̂(xi))2|X, y], where ỹ ∈ Rn is an independent copy of y at

the training points X, and (c) the random-X prediction error, ErrR(f̂) = E[(y0 − f̂(x0))2|X, y], where
(x0, y0) is a test observation sampled independently from the same distribution as the training data.

The training error underestimates both the fixed-X and random-X prediction error in general. In
classical statistics, such downward bias is referred to as training optimism (Hastie et al., 2009). Define
the fixed-X optimism, OptF(f̂) = E[ErrF(f̂) − ErrT(f̂)|X], and the random-X optimism, OptR(f̂) =
E[ErrR(f̂) − ErrT(f̂)|X] (Rosset and Tibshirani, 2019). The fixed-X optimism has been studied extensively
and leads to the definition of fixed-X degrees of freedom as DofF(f̂) =

∑n
i=1 Cov(yi, f̂(xi)|X) (Efron, 1983,

1986; Hastie and Tibshirani, 1990; Efron, 2004), which under certain regularity conditions, is the same
as as DofF(f̂) =

∑n
i=1 E[∂f̂(xi)/∂yi|X] (Ye, 1998; Stein, 1981). In some cases, DofF(f̂) can be computed

explicitly: e.g., for linear smoothers f̂(X) = L(X)y, it is given by tr[L(X)] (Craven and Wahba, 1978,
1979); for lasso, it is given by the expected number of non-zero coefficients in the fitted estimator (Zou
et al., 2007; Tibshirani and Taylor, 2012); see Kaufman and Rosset (2014); Janson et al. (2015); Tibshirani
(2015) for various other generalizations. In classical statistics, DofF is a widely agreed-upon qualitative
measure of complexity and is algorithm-specific, however it is only defined for the fixed-X setup. Despite
50+ years of work on DofF, there is no notion of random-X degrees of freedom that we know of. The goal
of this work is to propose a definition for random-X degrees of freedom, denoted by DofR, suitable for the
random-X setup underlying most predictive problems.

Towards defining DofR, we first cast the classical definition of the fixed-X degrees of freedom from
a different perspective. For a fitting procedure f̂ = A(X, y), DofF(f̂) can be shown to be equal to the
value of k that satisfy the following relation: OptF(A(X, y)) = OptF(Aref(Un×k, v)), where Aref is the
least squares reference algorithm, and Uk ∈ Rn×k is a certain design matrix consisting n observations
and k ≤ n features, and v ∈ Rn is a noise vector with mean 0n and covariance In (see Theorem 5.2.1 for
more details). We then extend the same analogy and use the least squares as the reference algorithm and
“match” random-X optimisms. We thus define the random-X degrees of freedom, DofR(f̂), of any predictor
f̂ = A(X, y), as the value of k (we can show that such k always exists and is unique assuming k ≤ n; see
the remarks after Theorem 5.2.1) for which the following relation holds:

OptR(A(X, y)) = OptR(Aref(Uk, v)). (DofR, emergent)

This measure, DofR(f̂), depends of both the the predictor f̂ and the underlying regression function f .
We call it emergent random-X degrees of freedom. We also define intrinsic random-X degrees of freedom,
denoted by DofRi, as the k (which again exists and is unique assuming k ≤ n) for which the following
relation holds:

OptR(A(X, v)) = OptR(Aref(Uk, v)). (DofR, intrinsic)
Apart from analogy with fixed-X degrees of freedom, another reason for choosing the least squares reference
algorithm to match optimisms is the following invariance property of OptR that we can show for least
squares:

Theorem 5.2.1. Let Uk = ZkΣ1/2
k , where Zk contains i.i.d. entries of mean 0, variance 1, and bounded

moment of order 4+µ for some µ > 0 and Σk×k is a positive definite matrix whose minimum and maximum
eigenvalues are uniformly bounded away from 0 and ∞. Let v contain i.i.d. entries of mean 0, variance σ2,
and bounded moment of order 4 + ν for some ν > 0. Denote the normalized random-X optimisms of f̂ by
ϕ := OptR(A(X, y))/σ2 and ψ := OptR(A(X, v))/σ2 Then, as n, k → ∞ and k/n → ξ ∈ (0, 1), we have

OptR(Aref(Uk, v))
σ2 → 1 − (1 − ξ)2

1 − ξ
, DofR(f̂) → 1 + ϕ

2 −
√

1 + ϕ2

4 , DofRi(f̂) → 1 + ψ

2 −
√

1 + ψ2

4 .

Remarks: There is remarkable universality in above limits: (1) They do not depend on the exact form of
the distributions of Uk and v. (2) They are also independent of Σk. This further justifies the choice of the
least squares reference algorithm for matching random-X optimisms. We can show an immediate interesting
property of the random-X degrees of freedom: There is a unique number that satisfies the desired relations
between [0, n]. We find this to be a very interpretable range for random-X degrees of freedom. The least
complex predictor has DofR of 0, and the most complex predictor has DofR of n, as if the saturated model.
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5.3 Explicit and numerical illustrative examples
In general, the random-X degrees of freedom depend of the exact form of the algorithm, but as with DofF,
for linear smoothers, DofRi takes a special interpretable form. It also shows how DofRi is related to DofF.

Proposition 5.3.1. Recall the setting of Theorem 5.2.1. Suppose f̂ is a linear smoother such that
f̂(X) = L(X)y and f̂(x0) = ℓ(x0)⊤y for some smoothing matrix L ∈ Rn×n and smoothing weight function
ℓ : Rp → Rn. Then, we have

ψ = 2 tr[L(X)]/n+ E[ℓ(x0)⊤ℓ(x0)] − tr[L(X)⊤L(X)]/n, and DofRi(f̂) → 1 + ψ

2 −
√

1 + ψ2

4 .

Remarks: Some special cases of interest are: (1) Interpolating models for which L(X) = In. In this case,
ψ simplifies to 1 + E[ℓ(x0)⊤ℓ(x0)]. As a result, DofRi differs between different interpolating models as
opposed to DofF which is always tr[L(X)] = n for any interpolating model. (2) In the special case of min
ℓ2-norm interpolator, we can prove the following interesting property: in the underparameterized regime
when p ≤ n, we have DofRi/n strictly increasing from [0, 1] as expected, while in the overparameterized
regime when p > n, DofRi/n is strictly decreasing from (1, 0), so DofRi is maximized at p = n. This result
holds for any feature covariance Σ and shows overparameterization indeed reduces the intrinsic complexity.

Beyond linear smoothers, properties of DofR and DofRi depend on the specific fitting procedure. Below
we compare min ℓ2-norm interpolator with min ℓ1-norm interpolator, abbreviated mn2ls and mn1ls, whose
risks are recently shown to exhibit double (Hastie et al., 2022) and multiple descents (Li and Wei, 2021),
respectively. Note that latter is a non-linear procedure. We observe from Figure 5.1 that our proposed
notion of intrinsic degrees-of-freedom reconciles the “bias-variance” tradeoff and turns modern “double
descents” into classical “single descents”.
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Figure 5.1: We consider a fixed data generating model with n = 200 and response non-linear in p = 200
feature, and consider training estimators with varying number of features. This model is similar to that
used in Belkin et al. (2019a).
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Appendix A

Supplement for Chapter 1

This supplement contains proofs and additional details for Chapter 1. The content of the supplement is
organized as follows.

• In Appendix A.1, we provide proofs of the constituent Lemmas 1.5.1 to 1.5.4 related to Theorem 1.4.1,
along with the remaining steps to complete the proof of Theorem 1.4.1.

• In Appendix A.2, we provide proof of the constituent Lemma 1.5.6 related to Theorem 1.4.2, along
with the remaining steps to complete the proof of Theorem 1.4.2.

• In Appendix A.3, we list and prove auxiliary lemmas that we need in other proofs.

• In Appendix A.4, we list useful concentration results that are used in the proofs throughout.

A.1 Proofs related to Theorem 1.4.1
A.1.1 Proof of Lemma 1.5.1
Recall from (1.2) that the expected out-of-sample prediction error of the ridge estimator β̂λ is defined as

Err(β̂λ) = Ex0,y0

[
(y0 − xT0 β̂λ)2 | X, y

]
.

Under a well-specified linear response y0 = xT0 β0 + ε0, the prediction error can be decomposed as

Err(β̂λ) = E
[
(β0 − β̂λ)Tx0x

T
0 (β0 − β̂λ) | X, y

]
+ E

[
(β0 − β̂λ)Tx0ε0 | X, y

]
+ E

[
ε2

0 | X, y
]

= (β0 − β̂λ)TΣ(β0 − β̂λ) + σ2. (A.1)

Here we used the fact that E
[
x0ε0

]
= 0 as ε0 is independent of x0. Using the expression of β̂λ from (1.1),

the deviation β0 − β̂λ can be expressed as

β0 − β̂λ = β0 − (XTX/n+ λIp)+XT y/n

= β0 − (XTX/n+ λIp)+XT (Xβ0 + y −Xβ0)/n
=
(
Ip − (XTX/n+ λIp)+XTX/n

)
β0 − (XTX/n+ λIp)+XT ε/n.

Note that the first component depends on the signal parameter β0 and the second depends on the error
vector ε. Plugging this into (A.1), and denoting XTX/n by Σ̂ and Err(β̂(λ)) by err(λ), we have the
following decomposition of the prediction error for any λ ∈ R:

err(λ) = errb(λ) + errc(λ) + errv(λ), (A.2)
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where errb(λ), errv(λ), and errc(λ) are the bias, variance, and cross components in the decomposition given
by

errb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Ip − Σ̂(Σ̂ + λIp)+)β0,

errc(λ) = −2βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Σ̂ + λIp)+XT ε/n,

errv(λ) = εT
(
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT /n

)
ε/n+ σ2.

For any λ ∈ (λmin,∞), we establish below that

errc(λ) a.s.−−→ 0 (A.3)

under proportional asymptotic limit. The desired decomposition in Lemma 1.5.1 then follows by plugging
convergence in (A.3) into (A.2).

To establish the convergence in (A.3), let us write errc(λ) = aTnε/n where an ∈ Rn is a function of X
and β0 given by

an = −2X(Σ̂ + λIp)+Σ
(
Ip − Σ̂(Σ̂ + λIp)+)β0.

We note that for λ ∈ (λmin,∞),

∥an∥2/n = 4βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+Σ

(
Ip − Σ̂(Σ̂ + λIp)+)β0

≤ C
∥∥∥(Ip − Σ̂(Σ̂ + λIp)+)Σ(Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+Σ

(
Ip − Σ̂(Σ̂ + λIp)+)∥∥∥

≤ C,

where the first inequality uses bound on the signal energy from Assumption 1.4 and the second inequality
holds almost surely for large n by using the facts that ∥Σ̂∥ ≤ C(√γ+ 1)2∥Σ∥, ∥(Σ̂ +λIp)+∥ ≤ (λ−λmin)−1

almost surely for n large enough from Assumption 1.2 and ∥Σ∥ ≤ rmax from Assumption 1.3. In addition, ε
has i.i.d. entries satisfying Assumption 1.1. The desired result then follows from application of Lemma A.4.1.

A.1.2 Proof of Lemma 1.5.2
We start by writing the GCV risk estimate gcv(λ) for the ridge estimator from (1.5) as

gcv(λ) = yT (In − Lλ)2y/n(
1 − tr[Lλ]/n

)2 (A.4)

where Lλ is the ridge smoothing matrix. Note that (A.4) is of the form 0
0 when Lλ = In (which happens

when λ = 0 and X has rank n). In this case, we define the GCV risk estimate as the corresponding limit as
λ → 0. We handle this case separately below.

The denominator of (A.4) can be expressed as

1 − tr[Lλ]/n = 1 − tr
[
X(XTX/n+ λIp)+XT /n

]
/n

= 1 − tr
[
(XTX/n+ λIp)+XTX/n

]
/n.

The numerator of (A.4) can be expressed as

yT (In − Lλ)2y/n = (Xβ0 + ε)T (In − Lλ)2(Xβ0 + ε)/n
= βT0 X

T (In − Lλ)2Xβ0/n+ 2βT0 XT (In − Lλ)2ε/n+ εT (In − Lλ)2ε/n.

Consider the first term of the numerator expression. The factor XT (In − Lλ)2X can be expressed as

XT (In − Lλ)2X = XT
(
In −X(XTX/n+ λIp)+XT /n

)2
X

=
(
XT −XTX/n(XTX/n+ λIp)+XT

)(
X −X(XTX/n+ λIp)+XTX/n

)
=
(
Ip −XTX/n(XTX/n+ λI)+)XTX

(
Ip − (XTX/n+ λIp)+XTX/n

)
.
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Consider the second term of the numerator expression. The factor XT (In − Lλ)2 can be expressed as

XT (In − Lλ)2 = XT
(
In −X(XTX/n+ λIp)+XT /n

)2

=
(
XT −XTX/n(XTX/n+ λIp)+XT

)(
In −X(XTX/n+ λIp)+XT /n

)
=
(
Ip −XTX/n(XTX/n+ λIp)+)XT

(
In −X(XTX/n+ λIp)+XT /n

)
=
(
Ip −XTX/n(XTX/n+ λIp)+)(XT −XTX/n(XTX/n+ λIp)+XT

)
=
(
Ip −XTX/n(XTX/n+ λIp)+)(Ip −XTX/n(XTX/n+ λIp)+)XT

Consider the third term of the numerator expansion. The factor (In − Lλ)2 can be expressed as

(In − Lλ)2 =
(
In −X(XTX/n+ λIp)+XT /n

)2

Case when λ ̸= 0. The GCV denominator 1 − tr
[
(XTX/n+ λIp)+XTX/n

]
/n ̸= 0 when λ ̸= 0. Thus

plugging the denominator and numerator expansions into (A.4) and denoting XTX/n by Σ̂, the GCV risk
estimate can be decomposed as

gcv(λ) = gcvb(λ) + gcvc(λ) + gcvv(λ)
gcvd(λ) , (A.5)

where gcvb(λ), gcvv(λ), and gcvc(λ) are the bias-like, variance-like, and cross components in the decompo-
sition given by

gcvb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)β0,

gcvc(λ) = 2βT0
(
Ip − Σ̂(Σ̂ + λIp)+)2

XT ε/n,

gcvv(λ) = εT
(
In −X(Σ̂ + λIp)+XT /n

)2
ε/n,

and gcvd(λ) is the normalization factor given by

gcvd(λ) =
(
1 − tr[Σ̂(Σ̂ + λIp)+]/n

)2
.

Similar to the proof of Lemma 1.5.1, we now establish that

gcvc(λ) a.s.−−→ 0 (A.6)

under proportional asymptotic limit. Let us write gcvc(λ) = bTnε/n where bn ∈ Rn is a function of X and
β0 given by

bn = 2X
(
Ip − (Σ̂ + λIp)+Σ̂

)2
β0.

As argued in the proof of Lemma 1.5.1, for λ ∈ (λmin,∞),

∥bn∥2/n = 4βT0
(
Ip − (Σ̂ + λIp)+Σ̂

)2Σ̂
(
Ip − (Σ̂ + λIp)+Σ̂

)2
β0

≤ C
∥∥∥(Ip − (Σ̂ + λIp)+Σ̂

)2Σ̂
(
Ip − (Σ̂ + λIp)+Σ̂

)2
∥∥∥

≤ C

almost surely for large n, and since ε has i.i.d. entries satisfying Assumption 1.1, the convergence in (A.6)
follow from application of Lemma A.4.1.
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Limiting case when λ = 0. To handle the case when gcvd(λ) can be zero, we note that when λ ̸= 0
using Lemma A.3.2 the components in the decomposition (A.5) can be alternately expressed as

gcvb(λ) = βT0 λ
2(Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+β0,

gcvb(λ) = 2λ2βT0 (Σ̂ + λIp)+(Σ̂ + λIp)+XT ε/n,

gcvv(λ) = λ2εT (XXT /n+ λIn)+(XXT /n+ λIn)+ε,

gcvd(λ) = λ2( tr[(XXT /n+ λIn)+]/n
)2
.

We can then cancel the factor of λ2 and take the limit λ → 0 to get the limiting GCV decomposition as

gcv(0) = gcvb(0) + gcvb(0) + gcvv(0)
gcvd(0) , (A.7)

where the limiting bias-like, variance-like and cross components in the decomposition are given by

gcvb(0) = βT0 Σ̂+Σ̂Σ̂+β0 = βT0 Σ̂+β0,

gcvc(0) = 2βT0 Σ̂+2XT ε/n,

gcvv(0) = εT (XXT /n)+2ε/n,

and the limiting normalization can be written as

gcvd(0) =
(

tr[Σ̂+]/n
)2

by noting that tr[(XXT /n)+] = tr[(XTX/n)+]. As before, let us establish that

gcvc(0) a.s.−−→ 0 (A.8)

under proportional asymptotics. We write gcvc(0) = bTnε/n where bn ∈ Rn is a function of X and β0 given
by

bn = 2XΣ̂+2β0.

We note that ∥bn∥2/n is almost surely bounded for large n and ε contains i.i.d. entries satisfying Assump-
tion 1.1. Using Lemma A.4.1, we conclude the convergence.

The desired decomposition in Lemma 1.5.2 then follows by using the convergences in (A.6) and (A.8)
into (A.5) and (A.7), respectively.

A.1.3 Proof of Lemma 1.5.3
We start with gcvb(λ) and first establish that

βT0
(
Ip−Σ̂(Σ̂+λIp)+)Σ̂(Ip−Σ̂(Σ̂+λIp)+)β0−

βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Ip − Σ̂(Σ̂ + λIp)+)β0(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

a.s.−−→ 0. (A.9)

To that end, let B := β0β
T
0 and break the left-hand side into sum of quadratic forms evaluated at the n

observations as follows:

βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)β0

= tr
[
B
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)]

= tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ̂]

= tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+) n∑

i=1
xix

T
i /n

]
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= 1
n

n∑
i=1

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)xixTi ]

= 1
n

n∑
i=1

xTi
(
Ip − Σ̂(Σ̂ + λIp

)+)B
(
Ip − Σ̂(Σ̂ + λIp)+)xi.

The summands xTi
(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)xi are quadratic forms where the point of

evaluation xi and the matrix
(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+) are dependent. To break the

dependence, we use the standard leave-one-out trick and the Sherman-Morrison-Woodbury formula with
Moore-Penrose pseudo-inverse (Meyer, 1973). Let us temporarily call wi := B(Ip − Σ̂(Σ̂ + λIp)+)xi and
proceed as follows:

xTi
(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)xi

= wTi (Ip − Σ̂(Σ̂ + λIp)+)xi
= wTi

(
Ip − (Σ̂−i + xix

T
i /n)(Σ̂−i + λIp + xix

T
i /n)+)xi

= wTi

(
Ip − (Σ̂−i + xix

T
i /n)

(
(Σ̂−i + λIp)+ − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n

))
xi

= wTi xi − wTi
(
Σ̂−i + xix

T
i /n

)(
(Σ̂−i + λIp)+ − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n

)
xi

= wTi xi − wTi
(
Σ̂−i + xix

T
i /n

)(
(Σ̂−i + λIp)+xi − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+xi

1 + xTi (Σ̂−i + λIp)+xi/n

)
= wTi xi − wTi

(
Σ̂−i + xix

T
i /n

)
·

(
(Σ̂−i + λIp)+xi + (Σ̂−i + λIp)+xix

T
i (Σ̂ + λIp)+xi/n− (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+xi

1 + xTi (Σ̂−i + λIp)+xi/n

)

= wTi xi − wTi (Σ̂−i + xix
T
i /n)(Σ̂−i + λIp)+xi

1 + xTi (Σ̂−i + λIp)+xi/n

= wTi xi + wTi xix
T
i (Σ̂ + λIp)+xi/n− wTi Σ̂−i(Σ̂−i + λIp)+xi − wTi xix

T
i /n(Σ̂−i + λIp)+xi

1 + xTi (Σ̂−i + λIp)+xi/n

= wTi xi − wTi Σ̂−i(Σ̂−i + λIp)+xi

1 + xTi (Σ̂−i + λIp)+xi/n

= wTi (Ip − Σ̂−i(Σ̂−i + λIp)+)xi
1 + xTi (Σ̂−i + λIp)+xi/n

=
xTi
(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xi

1 + xTi (Σ̂−i + λIp)+xi/n
.

By carrying our similar leave-one-out strategy on the other side, we can further simplify

xTi
(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xi

1 + xTi (Σ̂−i + λIp)+xi/n
=
xTi
(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 .

We now split the error to the target in (A.9) as follows:

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ̂]−

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ](

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

113



= 1
n

n∑
i=1

xTi
(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 −

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ](

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

= e1 + e2, where

e1 :=
1
n

n∑
i=1

xT
i

(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

xi(
1 + xT

i (Σ̂−i + λIp)+xi/n

)2 −
tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n

)2

 ,

e2 :=
1
n

n∑
i=1

 tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n

)2 −
tr
[(

Ip − Σ̂(Σ̂ + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

)2

 .

In Appendix A.1.6, we show that both terms e1 and e2 almost surely approach 0 under proportional
asymptotics.

Let us provide some intuition as follows. On one hand, in the error term e1, conditional on X−i,
expected value of xTi

(
Ip−Σ̂−i(Σ̂−i+λIp)+)B(Ip−Σ̂−i(Σ̂−i+λIp)+)xi is tr

[(
Ip−Σ̂−i(Σ̂−i+λIp)+)B(Ip−

Σ̂−i(Σ̂−i + λIp)+)Σ] and the expected value of xTi (Σ̂−i + λI)+xi/n is tr
[
(Σ̂−i + λI)+Σ

]
/n. Because of

concentration of these quantities around their respective expectations rapid enough, the error term e1

is almost surely 0. On the other hand, for e2, tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)Σ]

and tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ], and tr

[
(Σ̂−i + λIp)+Σ

]
/n and tr

[
(Σ̂ + λIp)+Σ

]
/n,

the matrices involved differ by rank-1 component. The difference is almost surely 0 in the proportional
asymptotic limit. We note that this strategy is similar to the ones used by, for example, Rubio and Mestre
(2011); Ledoit and Péché (2011) to obtain expressions for certain functionals involving Σ and Σ̂ in terms of
Σ. The main difference is that the eventual target in our case is defined solely in terms of Σ̂ rather than Σ.

We have so far established that

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ̂]−

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ](

1 + tr
[
(Σ̂ + λI)+Σ

]
/n
)2

a.s.−−→ 0,

which after expressing B in terms of β0 and moving the denominator across yields(
1+tr

[
(Σ̂+λI)+Σ

]
/n

)2
βT

0
(

Ip−Σ̂(Σ̂+λIp)+
)

Σ̂
(

Ip−Σ̂(Σ̂+λIp)+
)

β0−βT
0
(

Ip−Σ̂(Σ̂+λIp)+
)

Σ
(

Ip−Σ̂(Σ̂+λIp)+
)

β0
a.s.−−→ 0.

(A.10)

Case when λ ̸= 0. We now use the λ ̸= 0 case of Lemma A.3.1 to get

βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)β0(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 − βT0

(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Ip − Σ̂(Σ̂ + λIp)+)β0

a.s.−−→ 0

under proportional asymptotics as desired.

Limiting case when λ = 0. To handle the λ = 0 case, we first express Ip − Σ̂(Σ̂ + λIp)+ = λ(Σ̂ + λIp)+

when λ ≠ 0 using Lemma A.3.2. We can then move factor of λ2 from βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ +

λIp)+)β0 to
(

1 + tr
[
(Σ̂ + λI)+Σ

]
/n
)2

such that(
1 + tr

[
(Σ̂ + λI)+Σ

]
/n
)2
βT0
(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Ip − Σ̂(Σ̂ + λIp)+)β0

=
(

1 + tr
[
(Σ̂ + λI)+Σ

]
/n
)2
λ2βT0 (Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+β0
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=
(
λ+ λ tr

[
(Σ̂ + λI)+Σ

]
/n
)2
βT0 (Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+β0

=
(
λ+ tr

[
λ(Σ̂ + λI)+Σ

]
/n
)2
βT0 (Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+β0

=
(
λ+ tr

[(
Ip − Σ̂(Σ̂ + λIp)+)Σ]/n)2

βT0 (Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+β0.

Using the above expression in (A.10) and sending λ → 0 thus yields(
tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
βT0 Σ̂+Σ̂Σ̂+β0 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0

a.s.−−→ 0,

or in other words,(
tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
βT0 Σ̂+β0 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0

a.s.−−→ 0.

Using Lemma A.3.1 for this case, we then have

βT0 Σ̂+β0(
tr[Σ̂+]/n

)2 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0
a.s.−−→ 0

under proportional asymptotics, completing both the cases in Lemma 1.5.3.

A.1.4 Proof of Lemma 1.5.4
Case when λ ̸= 0. Under proportional asymptotic limit, our goal is to show that

εT
(
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT /n

)
ε/n + σ2 −

εT
(
In − X(Σ̂ + λIp)+XT /n

)2
ε/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

a.s.−−→ 0.

We first note that εT ε/n almost surely approaches σ2 from the strong law of large numbers. Thus we can
slightly rephrase our goals to show as

εT

[(
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT /n

)
+ In −

(
In −X(Σ̂ + λIp)+XT /n

)2(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2

]
ε/n

a.s.−−→ 0.

Our main strategy is to show that under proportional asymptotic limit

tr
[
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT /n

]
/n+ 1 −

tr
[(
In −X(Σ̂ + λIp)+XT /n

)2
]
/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

a.s.−−→ 0. (A.11)

The desired convergence then follows by using Lemma A.4.2.
We proceed by decomposing the first component of (A.11) as follows:

tr
[
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)XT /n

]
/n = tr

[
Σ̂(Σ̂ + λIp)+Σ(Σ̂ + λIp)+]/n

= tr
[
Σ(Σ̂ + λIp)+]/n− tr

[(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Σ̂ + λIp)+]/n.

For the numerator of the second component of (A.11), we note that(
In −X(Σ̂ + λIp)+XT /n

)2

=
(
In −X(Σ̂ + λIp)+XT /n

)(
In −X(Σ̂ + λIp)+XT /n

)
=
(
In −X(Σ̂ + λIp)+XT /n

)
−X(Σ̂ + λIp)+XT /n

(
In −X(Σ̂ + λIp)+XT /n

)
=
(
In −X(Σ̂ + λIp)+XT /n

)
−X(XTX/n+ λIp)+XT /n

(
In −X(XTX/n+ λIp)+XT /n

)
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=
(
In −X(Σ̂ + λIp)+XT /n

)
−X(XTX/n+ λIp)+(XT /n−XTX/n(XTX/n+ λIp)+XT /n

)
=
(
In −X(Σ̂ + λIp)+XT /n

)
−X(XTX/n+ λIp)+(Ip −XTX/n(XTX/n+ λIp)+)XT /n.

Thus we have

tr
[
In −X(Σ̂ + λIp)+XT /n

]2
/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

=
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n− tr

[
Σ̂(Σ̂ + λIp)+(Ip − Σ̂(Σ̂ + λIp)+)]/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

= 1
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n

−
tr
[
Σ̂(Σ̂ + λIp)+(Ip − Σ̂(Σ̂ + λIp)+)

]
/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 .

To establish the desired equivalence, we now use the following two individual equivalences:

tr
[
(Σ̂ + λIp)+Σ

]
/n− 1

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

+ 1 a.s.−−→ 0,

which follows from Lemma A.3.1, and

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)Σ(Σ̂ + λIp)+

]
/n−

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Σ̂ + λIp)+

]
/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

a.s.−−→ 0,

which follows analogously from the equivalence established in the proof of Lemma 1.5.3 with B = Ip.

Limiting case when λ = 0. To handle the case when λ = 0, we observe that when λ ̸= 0, we can write

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)Σ̂(Σ̂ + λIp)+]/n = 1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n+ λ2 tr

[
(XXT /n+ λIn)+2]/n,

along with

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n = λ tr

[
(XXT /n+ λIn)+]/n,

which follow from Lemma A.3.2. This allows us to cancel the factor of λ2 to write

tr
[
Σ̂(Σ̂ + λIp)+Σ(Σ̂ + λIp)+]/n−

tr
[
(XXT /n+ λIn)+2]/n(

tr
[
(XXT /n+ λIn)+

]
/n
)2 + 1 a.s.−−→ 0,

which in the limiting case by sending λ → 0 provides the equivalence

tr[Σ̂+Σ]/n− tr[Σ̂+2]/n(
tr[Σ̂+]/n

)2 + 1 a.s.−−→ 0

under proportional asymptotic limit. Note that we have written the final expression in terms Σ̂ instead of
XXT /n simply for consistency with the λ ̸= 0 case. Combining the two cases, we have the desired limiting
equivalences in Lemma 1.5.4.

A.1.5 Completing the proof of Theorem 1.4.1
Lemmas 1.5.1 to 1.5.4 establish the almost sure pointwise convergence of gcv(λ) to err(λ) under proportional
asymptotics for λ ∈ (λmin,∞). To complete the proof of Theorem 1.4.1, we now show that the convergence
holds uniformly over compact subintervals of (λmin,∞) and subsequently show the convergence of tuned
risks over such intervals.
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The strategy is show that, on any compact subinterval I ⊆ (λmin,∞), gcv(λ) and err(λ), and their
derivatives, as functions of λ are bounded over I. This provides equicontinuity of family as functions of λ
over I. The Arzela-Ascoli theorem then provides the desired uniform convergence. The convergence of
tuned risks subsequently follows from a standard argument.

We start by writing the GCV estimate (A.4) for the ridge estimator as

gcv(λ) = yT (In − Lλ)2y/n(
tr[In − Lλ]/n

)2 .

It is convenient to first assume λ ̸= 0 and express In − Lλ as λ(XXT /n+ λIn)+ using Lemma A.3.2 and
then cancel the factor of λ2 from both the numerator and denominator, which also covers the limiting
λ → 0 case. This lets us write the GCV estimate as

gcv(λ) = un(λ)
vn(λ) , (A.12)

where un(λ) = yT (XXT /n+ λIn)+2y/n, and the denominator vn(λ) =
(

tr
[
(XXT /n+ λIn)+]/n)2

. We
first bound the numerator and denominator appropriately. Let smin and smax denote the minimum non-zero
and maximum eigenvalues of XXT /n, respectively. We can upper bound the numerator as

|un(λ)| ≤ ∥y∥2

n

1
(smin + λ)2 , (A.13)

and we can lower bound the denominator as

|vn(λ)| ≥ 1
(smax + λ)2 . (A.14)

Using the two bounds in (A.13) and (A.14) into (A.12), we have the following upper bound on the GCV
estimate:

|gcv(λ)| ≤ ∥y∥2

n

(
smax + λ

smin + λ

)2
.

From the strong law of large numbers we note that ∥y∥2/n is almost surely upper bounded for sufficiently
large n. From Bai and Silverstein (1998), we have that smax ≤ C(1 + √

γ)2rmax for any C > 1 and
smin ≥ c(1 − √

γ)2rmin for any c < 1 almost surely for sufficiently large n, where rmin and rmax denote the
bounds on the minimum and maximum eigenvalues of Σ from Assumption 1.3. Thus, over any compact
subinterval I of (λmin,∞), gcv(λ) is bounded almost surely for sufficiently large n.

We next bound the derivative of gcv(λ) as a function of λ. We start with the quotient rule of the
derivatives to write:

gcv′(λ) = u′
n(λ)vn(λ) − un(λ)v′

n(λ)
vn(λ)2 . (A.15)

We now upper bound the derivatives of un(λ) and vn(λ), and additionally obtain an upper bound on vn(λ).
From short calculations, we can upper bound the derivative of the numerator as

|u′
n(λ)| ≤ 2∥y∥2

n

∣∣∣∣ 1
(smin + λ)3

∣∣∣∣ , (A.16)

and the derivative of the denominator as

|v′
n(λ)| ≤

∣∣∣∣ 2
(smin + λ)3

∣∣∣∣ . (A.17)

In addition, we can upper bound the denominator as

|vn(λ)| ≤ 1
(smin + λ)2 . (A.18)
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Combining the bounds in (A.16) to (A.18), along with the bounds in (A.13) and (A.14), into (A.15), we
get the following upper bound on the derivative:

|gcv′(λ)| ≤ 4∥y∥2

n

∣∣∣∣ (smax + λ)4

(smin + λ)5

∣∣∣∣ . (A.19)

As before, we note that ∥y∥2/n is almost surely upper bounded for sufficiently large n, and smax is upper
bounded and smin lower bounded above (√γ − 1)2rmin for sufficiently large n. Thus, over any compact
subinterval I of (λmin,∞), |gcv′(λ)| is almost surely upper bounded for sufficiently large n.

By similar arguments, we can bound the err(λ) and its derivative as a function of λ. Together, we
have that the function err(λ) − gcv(λ) forms an equicontinous family of functions of λ over any compact
subinterval of (λmin,∞). Applying the Arzela-Ascoli theorem, we conclude uniform convergence for a
subsequence, and since the difference converges pointwise to 0, the uniform convergence holds for the entire
sequence.

Finally, we use the uniform convergence to establish the convergence of the tuned risks by a standard
argument. We start with the observation that gcv(λ̂gcv

I ) ≤ gcv(λ) for any λ ∈ I using the optimality of
λ̂gcv
I . Using the specific λ = λ⋆I , we thus have that gcv(λ̂gcv

I ) ≤ gcv(λ⋆I). We next note that

err(λ̂gcv
I ) − err(λ⋆I) = err(λ̂gcv

I ) − gcv(λ̂gcv
I ) + gcv(λ̂gcv

I ) − gcv(λ⋆I) + gcv(λ⋆I) − err(λ⋆I)
≤ err(λ̂gcv

I ) − gcv(λ̂gcv
I ) + gcv(λ⋆I) − err(λ⋆I)

a.s.−−→ 0,

where the inequality follows from the optimality of λ̂gcv
I for gcv(λ) and the two almost sure convergences

follow from the uniform convergence. This concludes the proof of Theorem 1.4.1.

A.1.6 Error terms in the proof of Lemma 1.5.3
It is convenient to further split e1 = e11 + e12 where the suberror terms e11 and e12 are defined as follows:

e11 :=
1
n

n∑
i=1

xT
i

(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

xi(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2 −

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2

 ,

e12 :=
1
n

n∑
i=1

 tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2 −

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

 .

We similarly split e2 = e21 + e22 where the suberror terms e21 and e22 are defined as follows:

e21 :=
1
n

n∑
i=1

 tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 −

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2


e22 :=

1
n

n∑
i=1

 tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2 −

tr
[(

Ip − Σ̂(Σ̂ + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

 .

Below we show that for λ ∈ (λmin,∞) all the suberror terms almost surely approach 0 as n, p → ∞ with
p/n → γ ∈ (0,∞). Note that we use a generic letter C to denote a constant (that does not depend on n or
p) whose value can change from line to line and the inequality sign is used in an asymptotic sense which
holds almost surely for sufficiently large n.

Error term e11

We bound the error term e11 as follows:

|e11| =

∣∣∣∣∣∣ 1
n

n∑
i=1

xT
i

(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

xi − tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2

∣∣∣∣∣∣
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≤ C

∣∣∣∣∣ 1
n

n∑
i=1

xT
i

(
Ip − Σ̂−i(Σ̂−i + λIp

)+
)B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

xi − tr
[(

Ip − Σ̂−i(Σ̂−i + λIp

)+
)B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]∣∣∣∣∣

a.s.−−→ 0,

where the first inequality follows by noting that from Lemma A.4.2 the quadratic form xTi (Σ̂−i+λIp)+xi/n

converges almost surely to tr[(Σ̂ + λIp)+Σ]/n (as operator norm of (Σ̂−i + λIp)+ is almost surely bounded
for large n) and the fact that

∣∣∣1/(1 + tr[(Σ̂ + λIp)+Σ]/n
)∣∣∣ is bounded by viweing tr[(Σ̂ + λIp)+Σ]/n as a

Stieljes transform of a measure with bounded total mass (see, for example, Paul and Silverstein (2009);
Couillet and Hachem (2014)). The convergence in the final step follows from application of Lemma A.4.4
since

(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+) has trace norm almost surely bounded for large n

(as trace norm of B is bounded and the operator norm of
(
Ip − Σ̂−i(Σ̂−i + λIp)+) is almost surely bounded

for large n).

Error term e12

We bound the error term e12 as follows:

|e12| =

∣∣∣∣∣ 1
n

n∑
i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]( 1(

1 + xT
i (Σ̂−i + λIp)+xi/n

)2 −
1(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2

)∣∣∣∣∣
≤ C

∣∣∣∣∣ 1
n

n∑
i=1

1(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2 −

1(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

∣∣∣∣∣
= C

∣∣∣∣∣ 1
n

n∑
i=1

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

−
(

1 + xT
i (Σ̂−i + λIp)+xi/n

)2(
1 + xT

i (Σ̂−i + λIp)+xi/n
)2(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2

∣∣∣∣∣
≤ C

∣∣∣∣∣ 1
n

n∑
i=1

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

−
(

1 + xT
i (Σ̂−i + λIp)+xi/n

)2

∣∣∣∣∣
≤ C max

i=1,...,n

∣∣∣(1 + xT
i (Σ̂−i + λIp)+xi/n

)2
−
(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2
∣∣∣

≤ C max
i=1,...,n

∣∣xT
i (Σ̂−i + λIp)+xi/n − tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣ ∣∣2 + xT

i (Σ̂−i + λIp)+xi/n + tr
[
(Σ̂−i + λIp)+Σ

]
/n
∣∣

≤ C max
i=1,...,n

∣∣xT
i (Σ̂−i + λIp)+xi/n − tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣

a.s.−−→ 0,

where the first inequality bound follows from noting that the matrix
(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip −

Σ̂−i(Σ̂−i +λIp)+)Σ almost surely has bounded trace norm for large n (since trace norm of
(
Ip − Σ̂−i(Σ̂−i +

λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+) is bounded almost surely for large n as argued for the error term e11
above and the operator norm of Σ is bounded) and the final convergence follows from using Lemma A.4.3
by noting that the operator norm of (Σ̂−i + λIp)+ is almost surely bounded for large n.

Error term e21

We bound the error term e21 as follows:

|e21| =

∣∣∣∣∣ 1
n

n∑
i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]( 1(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2 −

1(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

)∣∣∣∣∣
≤ C

∣∣∣∣∣ 1
n

n∑
i=1

1(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 −

1(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

∣∣∣∣∣
=

C

n

∣∣∣∣∣
n∑

i=1

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

−
(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

∣∣∣∣∣
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≤
C

n

n∑
i=1

∣∣∣(1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

−
(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2
∣∣∣

≤
C

n

n∑
i=1

∣∣tr [(Σ̂ + λIp)+Σ
]
/n − tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣ ∣∣2 + tr

[
(Σ̂ + λIp)+Σ

]
/n + tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣

≤
C

n

n∑
i=1

∣∣tr [(Σ̂ + λIp)+Σ
]
/n − tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣

≤
C

n
a.s.−−→ 0,

where the final convergence follows by noting that

(Σ̂ + λIp)+ − (Σ̂−i + λIp)+ = − (Σ̂−i + λIp)+xix
T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
,

which after multiplying by Σ, taking the trace, and normalizing by n gives

∣∣∣tr [(Σ̂ + λIp)+Σ
]
/n− tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣ = 1

n

∣∣∣∣∣ tr
[
(Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+Σ

]
1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
= 1
n

∣∣∣∣∣xTi (Σ̂−i + λIp)+Σ(Σ̂−i + λIp)+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
≤ C

n
,

where the last bound follows by noting that operator norm of (Σ̂−i + λIp)+Σ is almost surely bounded for
large n.

Error term e22

We bound the error term e22 as follows:

|e22| =

∣∣∣∣∣∣∣ 1
n

n∑
i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

− tr
[

(Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

)2

∣∣∣∣∣∣∣
≤

C

n

∣∣∣∣∣
n∑

i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

− tr
[(

Ip − Σ̂(Σ̂ + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]∣∣∣∣∣

≤
C

n

∣∣∣∣∣
n∑

i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

Σ
]

− tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]∣∣∣∣∣

+
C

n

∣∣∣∣∣
n∑

i=1

tr
[(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]

− tr
[(

Ip − Σ̂(Σ̂ + λIp)+
)

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]∣∣∣∣∣

≤
C

n

∣∣∣∣∣
n∑

i=1

tr
[

Σ
(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

B

{(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
−
(

Ip − Σ̂(Σ̂ + λIp)+
)}]∣∣∣∣∣

+
C

n

∣∣∣∣∣
n∑

i=1

tr
[{(

Ip − Σ̂−i(Σ̂−i + λIp)+
)

−
(

Ip − Σ̂(Σ̂ + λIp)+
)}

B
(

Ip − Σ̂(Σ̂ + λIp)+
)

Σ
]∣∣∣∣∣

≤
C

n
a.s.−−→ 0,
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where the last inequality bound follows by noting that

Σ̂(Σ̂ + λIp)+ − Σ̂−i(Σ̂−i + λIp)+

= (Σ̂−i + xix
T
i /n)(Σ̂−i + xix

T
i /n+ λIp)+ − Σ̂−i(Σ̂−i + λIp)+

= (Σ̂−i + xix
T
i /n)

(
(Σ̂−i + λIp)+ − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + 1
nx

T
i (Σ̂−i + λIp)+xi

)
− Σ̂−i(Σ̂−i + λIp)+

= xix
T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
− Σ̂−i(Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n

=
(
Ip − Σ̂−i(Σ̂−i + λIp)+)xixTi /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
,

which after multiplying by Σ(Ip − Σ̂−i(Σ̂−i + λIp)+)B and taking the trace can be bounded as follows:∣∣∣∣tr [Σ(Ip − Σ̂−i(Σ̂−i + λIp)+)B{Σ̂(Σ̂ + λIp)+ − Σ̂−i(Σ̂−i + λIp)+
}]∣∣∣∣

=

∣∣∣∣∣∣∣∣
tr
[
Σ
(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xixTi /n(Σ̂−i + λIp)+

]
1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣∣∣∣
= 1
n

∣∣∣∣∣xTi (Σ̂−i + λIp)+Σ
(
Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip − Σ̂−i(Σ̂−i + λIp)+)xi

1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
≤ C

n
,

where the last bound follows by noting that the matrix (Σ̂−i + λIp)+Σ(Ip − Σ̂−i(Σ̂−i + λIp)+)B(Ip −
Σ̂−i(Σ̂−i + λIp)+)Σ has almost surely bounded trace norm for large n (since trace norm of B is bounded
and the operator norm of the remaining matrix component is almost surely bounded for large n). The
second term can be bounded analogously.

A.2 Proofs related to Theorem 1.4.2
A.2.1 Proof of Lemma 1.5.6
We start by writing the leave-one-out risk estimate loo(λ) from (1.4) as

loo(λ) = yT (In − Lλ)2D−2
λ y/n,

where Lλ is the ridge smoothing matrix and Dλ ∈ Rn×n is a diagonal matrix with entries 1 − [Lλ]ii for
i = 1, . . . , n. Under proportional asymptotic limit, we show below that for any λ ∈ (λmin,∞),

loo(λ) − yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n

a.s.−−→ 0, (A.20)

which after substituting back for Lλ proves the desired convergence.
Observe that for any i = 1, . . . , n,

[D−1
λ ]ii = 1

1 − [Lλ]ii
= 1

1 −
[
X(XTX/n+ λIp)+XT /n

]
ii

= 1
1 − xTi /

√
n(XTX/n+ λIp)+xi/

√
n
.
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Denoting XTX/n by Σ̂ and using the Woodbury matrix identity as explained in the proof of Lemma A.3.1,
we have that

1
1 − xTi (Σ̂ + λIp)+xi/n

= 1 + xTi (Σ̂−i + λIp)+xi/n.

The diagonal entries of the matrix D−1
λ are thus 1 + xTi (Σ̂−i + λIp)+xi/n for i = 1, . . . , n.

We proceed to bound the difference in the two quantities of (A.20) as follows:∣∣∣∣loo(λ) − yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n

∣∣∣∣
=
∣∣∣∣yT (In − Lλ)2D−2

λ y/n− yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n

∣∣∣∣
≤ yT (In − Lλ)2y/n max

i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)+xi/n
)2

−
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
∣∣∣∣

≤ C max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)+xi/n
)2

−
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
∣∣∣∣ ,

where the bound in the last inequality holds almost surely for sufficiently large n by noting that yT (In −
Lλ)2y/n is almost surely bounded for sufficiently large n as explained in the proof of Theorem 1.4.1 Note
that we do not require that the response y is well-specified. Finally, similar to the proof of Lemma 1.5.3,
we decompose the error as

max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)+xi/n
)2

−
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
∣∣∣∣ ≤ ξ1 + ξ2,

where the error terms ξ1 and ξ2 are defined as follows:

ξ1 := max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)+xi/n
)2

−
(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2
∣∣∣∣ , (A.21)

ξ2 := max
i=1,...,n

∣∣∣∣(1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2

−
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
∣∣∣∣ . (A.22)

Both of the error terms approach 0 under proportional asymptotic limit using the final parts of the
arguments used for e12 and e21 in the proof of Lemma 1.5.3.

A.2.2 Completing the proof of Theorem 1.4.2
Case when λ ̸= 0. Recall from (A.4) that the GCV risk estimate gcv(λ) in this case can be expressed as

gcv(λ) = yT (In − Lλ)2y/n(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2 .

On the other hand, from Lemma 1.5.6, under proportional asymptotics we have that

loo(λ) − yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n

a.s.−−→ 0.

The result then follows by noting that∣∣∣∣yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n− gcv(λ)

∣∣∣∣
=

∣∣∣∣∣∣∣yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
y/n− yT (In − Lλ)2y/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

∣∣∣∣∣∣∣
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≤ yT (In − Lλ)2y/n

∣∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

− 1(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2

∣∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

− 1(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2

∣∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)

− 1(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣

·

∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)

+ 1(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)

− 1(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣

a.s.−−→ 0

under proportional asymptotics using the first part of Lemma A.3.1. Note that the bound in the second
inequality again follows from the fact that ∥y∥2/n is almost surely upper bounded for sufficiently large n,
and the operator norm of In − Lλ is bounded almost surely for large n for λ ∈ (λmin,∞).

Limiting case when λ = 0 Similar to the proofs of Lemma 1.5.3 and Lemma 1.5.4, to handle the case
when λ = 0, we observe that for λ ≠ 0, we can extract a factor of λ2 from (In − Lλ)2 and absorb into(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

and take λ → 0 to write the limiting LOOCV risk estimate under proportional
asymptotics as

loo(0) − yT (XXT /n)+2
(

tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
y/n

a.s.−−→ 0,

while the limiting GCV estimate is given by

gcv(0) = yT (XXT /n)+2y/n(
tr[Σ̂+]/n

)2 .

As above, we can then bound the difference to get∣∣∣∣∣yT (XXT /n)+2
(

tr
[(
Ip − Σ̂(Σ̂ + λIp)+)Σ]/n)2

y/n− yT (XXT /n)+2y/n(
tr[Σ̂+]/n

)2

∣∣∣∣∣
≤ C

∣∣∣∣∣tr [(Ip − Σ̂(Σ̂ + λIp)+)Σ]/n− 1
tr[Σ̂+]/n

∣∣∣∣∣
a.s.−−→ 0,

where the convergence follows from the second part of Lemma A.3.1.
Putting things together, this establishes the almost sure pointwise convergence of loo(λ) to gcv(λ). To

show uniform convergence and the convergence of tuned risks, we similarly bound the estimate loo(λ) and
its derivative as a function of λ to establish equicontinuity as done in the proof of Theorem 1.4.1. We omit
the details due to similarity.
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A.3 Auxiliary lemmas
In this section, we state and prove auxiliary lemmas that we often make use of in other proofs. Note
that Lemma 1.5.5 is a special case of Lemma 1.5.3 and its proof follows analogous steps as the proof of
Lemma 1.5.3 in Appendix A.1.3 and is omitted.

Lemma A.3.1 (Basic GCV denominator lemma). Under Assumption 1.2 and Assumption 1.3, for
λ ∈ (λmin,∞) \ {0},

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n− 1

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

a.s.−−→ 0 (A.23)

as n, p → ∞ with p/n → γ ∈ (0,∞). In the case when λ = 0,

tr
[
(Ip − Σ̂+Σ̂)Σ

]
/n− 1

tr
[
Σ̂+
]
/n

a.s.−−→ 0 (A.24)

as n, p → ∞ with p/n → γ ∈ (0,∞).

Proof. We start with the the GCV denominator (the denominator of the second term of (A.23)) and
establish that under proportional asymptotics

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

a.s.−−→ 0.

To that end, we use the standard leave-one-out trick to break the trace functional 1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

into random quadratic forms where the point of evaluation is independent of the inner matrix as follows:

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n = 1 − 1

n
tr
[
(Σ̂ + λIp)+

n∑
i=1

xix
T
i /n

]
= 1 − 1

n

n∑
i=1

tr
[
(Σ̂ + λIp)+xix

T
i /n

]
= 1 − 1

n

n∑
i=1

xTi (Σ̂ + λIp)+xi/n

= 1
n

n∑
i=1

(
1 − xTi (Σ̂ + λIp)+xi/n

)
= 1
n

n∑
i=1

1
1 + xTi (Σ̂−i + λIp)+xi/n

.

Here the last equality follows from the following simplification using the Sherman-Morrison-Woodbury
formula with Moore-Penrose inverse (Meyer, 1973):

1 − xTi (Σ̂ + λIp)+xi/n

= 1 − xTi
(
Σ̂−i + λIp + xix

T
i /n

)+
xi/n

= 1 − xTi

(
(Σ̂−i + λIp)+ − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n

)
xi/n

= 1 − xTi (Σ̂−i + λIp)+xi/n+ xTi
(Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
xi/n

= 1 − xTi (Σ̂−i + λIp)+xi/n− xTi (Σ̂−i + λIp)+xi/nx
T
i (Σ̂ + λIp)+xi/n+ xTi (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
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= 1 − xTi (Σ̂−i + λIp)+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

= 1 + xTi (Σ̂−i + λIp)+xi/n− xTi (Σ̂−i + λIp)+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

= 1
1 + xTi (Σ̂−i + λIp)+xi/n

.

We now break the error in (A.23) as

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

= 1
n

n∑
i=1

1
1 + xTi (Σ̂−i + λIp)+xi/n

− 1
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

= 1
n

n∑
i=1

(
1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

)
= δ1 + δ2,

where the error terms δ1 and δ2 are defined as follows:

δ1 := 1
n

n∑
i=1

(
1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n

)
,

δ2 := 1
n

n∑
i=1

(
1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n

− 1
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

)
,

In Appendix A.3.1, we show that both the error terms δ1 and δ2 almost surely approach 0 under proportional
asymptotics for λ ∈ (λmin,∞) under Assumption 1.2 and Assumption 1.3.

We now finish the final step by considering the two cases of λ ̸= 0 and λ = 0.

Case when λ ̸= 0. We so far have that

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

a.s.−−→ 0,

which we can rewrite as(
1 − tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)

− 1 a.s.−−→ 0.

When λ ̸= 0, the GCV denominator 1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n ≠ 0, and we can safely take the inverse to get

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n− 1

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

a.s.−−→ 0

under proportional asymptotic limit as desired.

Limiting case when λ = 0. In this case, 1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n can be zero (in particular, it is zero

when p ≥ n and X has rank n). As before, we start with λ ̸= 0 and using Lemma A.3.2, express

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n = λ tr

[
(XXT /n+ λIn)+]/n,

along with
λ tr

[
(Σ̂ + λIp)+Σ

]
= tr

[(
Ip − Σ̂(Σ̂ + λIp)+)Σ]/n.
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This allows us to move λ across to write(
tr
[
(XXT /n+ λIn)+]/n)(λ+ tr

[(
Ip − Σ̂(Σ̂ + λIp)+)Σ]/n)− 1 a.s.−−→ 0.

Sending λ → 0, writing tr[(XXT /n+)]/n = tr[Σ̂+]/n, and inverting safely, we have

tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n− 1

tr[Σ̂+]/n
a.s.−−→ 0

under proportional asymptotic limit as desired.

Lemma A.3.2 (Gram and sample covariance matrix simplifications). Suppose XTX/n+λIp and XXT /n+
λIn are invertible. Then it holds that

In −X(XTX/n+ λIp)+XT /n = λ(XXT /n+ λIn)+,

Ip −
(
XTX/n+ λIp

)+
XTX/n = λ(XTX/n+ λIp)+.

Proof. Recall the Woodbury matrix identity

A−1 −A−1U(V A−1U + C−1)−1V A−1 = (UCV +A)−1.

Letting A = In, U = X/
√
n, C = 1/λIp, V = XT /

√
n, we get

In −X(XTX/n+ λIp)−1XT /n = (X/
√
n 1/λIpXT /

√
n+ In)−1

= λ(XXT /n+ λIn)−1.

On the other hand, letting A = Ip, U = Ip, V = XTX/n, C = 1/λIp, we get

Ip −
(
XTX/n+ λIp

)−1
XTX/n =

(
1/λIpXTX/n+ Ip

)−1

= λ
(
XTX/n+ λIp

)−1
.

A.3.1 Error terms in the proof of Lemma A.3.1
Below we show that for λ ∈ (λmin,∞) both the error terms δ1 and δ2 almost surely approach 0 as n, p → ∞
with p/n → γ ∈ (0,∞). The arguments mirror parts of the error analysis for terms e12 and e21 in
Appendix A.1.6.

Error term δ1

|δ1| =
∣∣∣∣∣ 1n

n∑
i=1

1
1 + xTi (Σ̂−i + λIp)+xi/n

− 1
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n

∣∣∣∣∣
=
∣∣∣∣∣ 1n

n∑
i=1

tr
[
Σ̂−i + λIp)+Σ

]
/n− xTi (Σ̂−i + λIp)+xi/n(

1 + xTi (Σ̂−i + λIp)+xi/n
)(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
) ∣∣∣∣∣

≤ C

∣∣∣∣∣ 1n
n∑
i=1

tr
[
(Σ̂−i + λIp)+Σ

]
/n− xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
≤ C max

i=1,...,n

∣∣∣tr [(Σ̂−i + λIp)+Σ
]
/n− xTi (Σ̂−i + λIp)+xi/n

∣∣∣
a.s.−−→ 0,

where the final convergence follows from using Lemma A.4.4 as argued for the suberror term e12 in
Appendix A.1.6.
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Error term δ2

|δ2| =
∣∣∣∣∣ 1n

n∑
i=1

1
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n

− 1
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

∣∣∣∣∣
= 1
n

∣∣∣∣∣
n∑
i=1

tr
[
(Σ̂ + λIp)+Σ

]
/n− tr

[
(Σ̂−i + λIp)+Σ

]
/n(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
) ∣∣∣∣∣

≤ C

n

∣∣∣∣∣
n∑
i=1

tr
[
Σ(Σ̂ + λIp)+]/n− tr

[
Σ(Σ̂−i + λIp)+]/n∣∣∣∣∣

≤ C

n
a.s.−−→ 0,

where the last inequality follows analogous simplification as done for the suberror term e21 in Appendix A.1.6.

A.4 Useful results
The following lemma is a standard concentration of linear combination of i.i.d. entries.

Lemma A.4.1 (Concentration of linear form with independent components). Let ε be a random vector in
Rn that satisfy conditions of error vector in Assumption 1.1. Let bn be a sequence of random vectors in Rn
independent of ε such that supn ∥bn∥2/n < ∞ almost surely. Then as n → ∞,

bTnε/n
a.s.−−→ 0.

The following lemma is adapted from Dobriban and Wager (2018, Lemma 7.6).

Lemma A.4.2 (Concentration of quadratic form with independent components). Let ε ∈ Rn be a random
vector that satisfy conditions of error vector in Assumption 1.1. Let Dn be a sequence of random matrices
in Rn×n that are independent of ε and have operator norm uniformly bounded in n. Then as n → ∞,

εTDnε/n− σ2 tr[Dn]/n a.s.−−→ 0.

The following lemma is adapted from an argument in Hastie et al. (2022, Theorem 7) using union bound
along with a lemma from Bai and Silverstein (2010, Lemma B.26).

Lemma A.4.3 (Concentration of maximum of quadratic forms with independent components). Let
x1, . . . , xn be random vectors in Rp that satisfy Assumption 1.2 and Assumption 1.3. Let G1, . . . , Gn be
random matrices in Rp×p such that Gi is independent of xi (but may depend on all of X−i) and have
operator norm uniformly bounded in n. Then as n → ∞,

max
i=1,...,n

∣∣xTi Gixi/n− tr[GiΣ]/n
∣∣ a.s.−−→ 0.

The following lemma is adapted from Rubio and Mestre (2011, Lemma 4).

Lemma A.4.4 (Concentration of sum of quadratic forms with independent components). Let x1, . . . , xn be
random vectors in Rp that satisfy Assumption 1.2 and Assumption 1.3. Let H1, . . . ,Hn be random matrices
in Rp×p such that Hi is independent of xi (but may depend on all of X−i) that have trace norm uniformly
bounded in n. Then as n → ∞, ∣∣∣∣∣

n∑
i=1

xTi Hixi/n− tr[HiΣ]/n
∣∣∣∣∣ a.s.−−→ 0.
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Appendix B

Supplement for Chapter 2

This supplement contains additional details, proofs, and numerical experiments for Chapter 2. The content
of the supplement is organized as follows.

• In Appendices B.1 to B.3, we first provide proofs related to Theorems 2.4.1 to 2.4.3, respectively, along
with supporting lemmas used in the process, as they constitute building blocks for other theoretical
results.

• In Appendix B.4, we then present proof of Theorem 2.3.1.

• In Appendix B.5, we present proofs related to Theorem 2.5.1, along with further theoretical results
related to quantile estimation.

• In Appendix B.7, we provide additional numerical results and experimental details

• In Appendix B.6, we collect statements of supplementary results from the literature that are used in
various proofs throughout the supplement.

A note about constants throughout the supplement: We use the letter C (either standalone or with a
subscript such as C1) to denote a generic constant whose value can change from line to line. Additionally,
some of the inequalities only hold almost surely for sufficiently large n. We will sometimes use the term
eventually almost surely to indicate such statements.

B.1 Proofs related to Theorem 2.4.1
As suggested in the proof overview in Section 2.4, we will first show the second part of the theorem statement:
T̂ loo
λ − Tλ

a.s.−−→ 0, and use it to show the first part: T̂ gcv
λ − Tλ

a.s.−−→ 0, as n, p → ∞ with p/n → γ ∈ (0,∞).

• To prove T̂ loo
λ − Tλ

a.s.−−→ 0, we introduce an intermediate quantity T̃λ as in (2.19) and break the
difference

Tλ − T̂ loo
λ = (Tλ − T̃λ) + (T̃λ − T̂ loo

λ ). (B.1)

We will show that both terms in the decomposition (B.1) almost surely vanish. Appendix B.1.1 shows
the convergence for the first term, while Appendix B.1.2 shows the convergence for the second term.

• To prove T̂ gcv
λ − Tλ

a.s.−−→ 0, we similarly break the difference

Tλ − T̂ gcv
λ = (Tλ − T̂ loo

λ ) + (T̂ loo
λ − T̂ gcv

λ ). (B.2)

We have already dealt with the first term in the decomposition (B.2) in (B.1). We show the second
term almost surely goes to zero in Appendix B.1.3.
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We will show the three aforementioned converges first under a slight stronger assumption that the error
function t is uniformly continuous. Using a truncation argument, we will then relax them to continuous
error functions t in Appendix B.1.4. Let ωt : [0,∞] → [0,∞] denote a modulus of continuity of t. Without
of loss of generality, we can assume ωt to be non-decreasing and continuous. Since the error function is
assumed to be uniformly continuous, such a modulus exits (see, e.g., Chapter 2 of DeVore and Lorentz,
1993). In addition, let ωt denote the least concave majorant of ωt. From DeVore and Lorentz (1993, Lemma
6.1), ωt is also a modulus of continuity and satisfies ωt(r) ≤ 2ωt(r) for r ≥ 0. We will make use of these
properties below.

B.1.1 Functional to LOO functional
Towards showing Tλ − T̃λ

a.s.−−→ 0, we begin by manipulating the desired difference using properties of
conditional expectation as follows:

Tλ − T̃λ = E
[
t(y0 − x⊤

0 β̂λ) | X, y
]

− 1
n

n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ) | X−i, y−i
]

= E
[
t(y0 − x⊤

0 β̂λ) | X, y
]

− 1
n

n∑
i=1

E
[
t(y0 − x⊤

0 β̂−i,λ) | X−i, y−i
]

= E
[
t(y0 − x⊤

0 β̂λ) | X, y
]

− 1
n

n∑
i=1

E
[
t(y0 − x⊤

0 β̂−i,λ) | X−i, y−i, xi, yi
]

= E
[
t(y0 − x⊤

0 β̂λ) | X, y
]

− 1
n

n∑
i=1

E
[
t(y0 − x⊤

0 β̂−i,λ) | X, y
]

= 1
n

n∑
i=1

E
[
t(y0 − x⊤

0 β̂λ) − t(y0 − x⊤
0 β̂−i,λ) | X, y

]
.

The second equality above uses independence of (y0, x0) and (X−i, y−i), while the third equality uses
independence of (y0, x0), β̂−i,λ, and (xi, yi). We will next show below that under proportional asymptotics
absolute value of the right-hand side of the last display almost surely goes to zero; in other words, we will
show ∣∣∣∣∣ 1n

n∑
i=1

E
[
t(y0 − x⊤

0 β̂λ) − t(y0 − x⊤
0 β̂−i,λ) | X, y

]∣∣∣∣∣ a.s.−−→ 0. (B.3)

Using the modulus of continuity of t and its least concave majorant, we first bound the summands in
(B.3) for i = 1, . . . , n as ∣∣t(y0 − x⊤

0 β̂λ) − t(y0 − x⊤
0 β̂−i,λ)

∣∣ ≤ ωt
(∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣)

≤ ωt
(∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣).

We can then bound the summation in (B.3) as∣∣∣∣∣ 1n
n∑
i=1

E
[
t(y0 − x⊤

0 β̂λ) − t(y0 − x⊤
0 β̂−i,λ) | X, y

]∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣∣E[t(y0 − x⊤
0 β̂λ) − t(y0 − x⊤

0 β̂−i,λ) | X, y
]∣∣∣

≤ 1
n

n∑
i=1

E
[∣∣t(y0 − x⊤

0 β̂λ) − t(y0 − x⊤
0 β̂−i,λ)

∣∣ ∣∣ X, y]
≤ 1
n

n∑
i=1

E
[
ωt
(∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣) ∣∣ X, y]

≤ 1
n

n∑
i=1

ωt

(
E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y])
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≤ ωt

(
1
n

n∑
i=1

E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y])

≤ 2ωt

(
1
n

n∑
i=1

E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y]) .

In the above chain of inequalities, the second, forth, and fifth inequalities follow from repeated use of
Jensen’s inequality (on the absolute value function and the concave majorant function). To finish the proof,
we will finally show below that

1
n

n∑
i=1

E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y] a.s.−−→ 0, (B.4)

which along with the continuity of the modulus that vanishes at 0 shows (B.3), leading to the desired
conclusion that Tλ − T̃λ

a.s.−−→ 0.
Towards showing (B.4), first note that under Assumption 2.1, we can bound the summands for each

i = 1, . . . , n as

E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y] ≤

(
E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣2 ∣∣ X, y])1/2

=
(
E
[∣∣z⊤

0 Σ1/2(β̂λ − β̂−i,λ)
∣∣2 ∣∣ X, y])1/2

=
(
E
[
(β̂λ − β̂−i,λ)⊤Σ1/2z0z

⊤
0 Σ1/2(β̂λ − β̂−i,λ)

∣∣ X, y])1/2

=
(

(β̂λ − β̂−i,λ)Σ(β̂λ − β̂−i,λ)
)1/2

≤
(
rmax(β̂λ − β̂−i,λ)⊤(β̂λ − β̂−i,λ)

)1/2

= √
rmax

∥∥(β̂λ − β̂−i,λ)
∥∥

2.

The inequality in the first line uses Jensen’s inequality (on the square root function), and the inequality in
the forth line follows since the maximum eigenvalue of Σ is upper bounded by rmax. Hence, overall we can
bound the left-hand side of (B.4) by

1
n

n∑
i=1

E
[∣∣x⊤

0 (β̂λ − β̂−i,λ)
∣∣ ∣∣ X, y] ≤

√
rmax

(
1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ
∥∥

2

)
. (B.5)

We show in Lemma B.1.2 that the term in the parenthesis on the right-hand side of (B.5) almost surely
goes to zero under Assumptions 2.1 and 2.2, proving (B.4) and completing the proof.

B.1.2 LOO functional to LOOCV estimator
To show T̃λ − T̂ loo

λ
a.s.−−→ 0, we start by breaking the difference into two pieces:

∣∣T̃λ − T̂ loo
λ

∣∣ =
∣∣∣∣∣T̃λ − 1

n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) + 1

n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) − T̂ loo

λ

∣∣∣∣∣
≤

∣∣∣∣∣T̃λ − 1
n

n∑
i=1

t(yi − x⊤
i β̂−i,λ)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) − T̂ loo

λ

∣∣∣∣∣ . (B.6)

In the sequel, we will show that each of two pieces in (B.6) vanishes almost surely under proportional
asymptotics.
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For the second piece in (B.6), using the modulus of t and its concave majorant, we can bound the
difference as ∣∣∣∣∣ 1n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) − T̃ loo

λ

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x→
i β̂−i,λ) − 1

n

n∑
i=1

t

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t(yi − x⊤
i β̂−i,λ) − t

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣yi − x⊤
i β̂−i,λ − yi − x⊤

i β̂λ
1 − [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣yi − x⊤
i β̂−i,λ − yi − x⊤

i β̂λ
1 − [Lλ]ii

∣∣∣∣∣
)

≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣∣yi − x⊤
i β̂−i,λ − yi − x⊤

i β̂λ
1 − [Lλ]ii

∣∣∣∣∣
)
, (B.7)

where line four uses Jensen’s inequality (on the concave majorant). Note that the above is valid when
1 − [Lλ]ii ̸= 0 for any of i = 1, . . . , n. For the case of min-norm estimator where [L0]ii = 0, we similarly
bound ∣∣∣∣∣ 1n

n∑
i=1

t(yi − x⊤
i β̂−i,0) − T̃ loo

λ

∣∣∣∣∣ ≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣yi − x⊤
i β̂−i,0 − [(XX⊤/n)†]i

[(XX⊤/n)†]ii

∣∣∣∣
)
. (B.8)

The argument of ω in either cases of (B.7) and (B.8) goes to 0 almost surely, and thus the continuity of ω
provides the desired convergence of the second piece in (B.6) It is worth mentioning that the only reason
we need to worry about (B.7) and (B.8) is the way we have defined ridge estimator in (2.1) where the
leave-one-out estimator β̂−i,λ gets a dividing factor of (n− 1) instead of n, otherwise these terms would be
exactly 0. It is a short straightforward calculation to show however that this does not make a difference as
n → ∞.

We now focus on the first piece in the decomposition (B.6). Note that we can express

1
n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) − T̃λ = 1

n

n∑
i=1

t(yi − x⊤
i β̂−i,λ) − 1

n

n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]
= 1
n

n∑
i=1

{
t(yi − x⊤

i β̂−i,λ) − E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]}
. (B.9)

For i = 1, . . . , n, let Fi denote the increasing σ-field generated by (x1, y1), . . . , (xi, yi). Observe that{
t(yi − x⊤

i β̂−i,λ) − E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]}n
i=1

forms a martingale difference array with respect to the filtration {Fi}ni=1. To see this, note that

E
[
t(yi − x⊤

i β̂−i,λ) − E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

] ∣∣∣ Fi−1

]
= E

[
t(yi − x⊤

i β̂−i,λ)
∣∣∣ Fi−1

]
− E

[
E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

] ∣∣∣ Fi−1

]
= E

[
t(yi − x⊤

i β̂−i,λ)
∣∣∣ Fi−1

]
− E

[
t(yi − x⊤

i β̂−i,λ)
∣∣∣ Fi−1

]
= 0,

where for the second equality we used the tower property of conditional expectation as Fi−1 is a subset
of the σ-field generated by (X−i, y−i). This observation allows us to use the Burkholder inequality (see
Lemma B.6.1 for an exact statement) to bound q-th moment of the difference for q ≥ 2.
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Applying the Burkholder inequality to our martingale sequence, we can bound

E

[∣∣∣∣ n∑
i=1

t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣q
]

≤ CE

{ n∑
i=1

E

[∣∣∣∣t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣2 ∣∣∣∣ Fi−1

]}q/2


+ CE

[
n∑
i=1

∣∣∣t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣q] (B.10)

for some constant C > 0. We next bound each of the terms in turn. Denote by Xn
i+i and yni+i dataset

consisting of observations (xi+1, yi+1), · · · , (xn, yn).
For the first term, from the law of total expectation observe that

E

[∣∣∣∣t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣2 ∣∣∣∣ Fi−1

]

= E

[
E

{∣∣∣∣t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣2 ∣∣∣∣ Fi−1, X
n
i+1, y

n
i+1

}]

= E

[
E

{∣∣∣∣t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣2 ∣∣∣∣ X−i, y−i

}]
≤ 4E

[
E
[∣∣t(yi − x⊤

i β̂−i,λ)
∣∣2 ∣∣∣ X−i, y−i

]]
,

where in the last step we used the inequality E[|a+ b|2] ≤ 2
(
E[|a|2] + E[|b|2]

)
.

For the second term, similarly note that

E
[∣∣∣∣t(yi − x⊤

i β̂−i,λ) − E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣q]
≤ E

[
E
[∣∣∣t(yi − x⊤

i β̂−i,λ) − E
[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣q] ∣∣∣∣ X−i, y−i

]
≤ 2qE

[
E
[∣∣∣t(yi − x⊤

i β̂−i,λ)
∣∣∣q ∣∣∣ X−i, y−i

]]
,

where the last step follows from using the inequality E[|a+ b|q] ≤ 2q−1(E[|a|q] + E[|b|q]
)

for q > 1.
In addition, from Jensen’s inequality, we have for q ≥ 2

E
[∣∣t(yi − x⊤

i β̂−i,λ)
∣∣2 ∣∣ X−i, y−i

]
≤ E

[∣∣t(yi − x⊤
i β̂−i,λ)

∣∣q ∣∣ X−i, y−i

]
.

Hence, to bound both the terms, it is sufficient to control q-th moment of the functional. From Lemma B.1.1,
for q ≤ 2 + min{µ/2, ν/2},

E
[∣∣t(yi − x⊤

i β̂−i,λ)
∣∣q ∣∣ X−i, y−i

]
≤
(
C1 + C2

∥∥β̂−i,λ
∥∥

2

)2q

for some positive constants C1 and C2. Combined Lemma B.1.3 that implies ∥β̂−i,λ∥2 ≤ C almost surely
for n large enough under Assumptions 2.1 and 2.2, we have

E
[
E
[∣∣t(yi − x⊤

i β̂−i,λ)
∣∣q ∣∣ X−i, y−i

]]
≤ C

for some constant C > 0 and 2 ≤ q ≤ 2 + min{µ/2, ν/2}.
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Therefore, from (B.10) we can bound q-th moment of normalized sum (B.9) to get

E

[∣∣∣∣ 1n
n∑
i=1

t(yi − x⊤
i β̂−i,λ) − E

[
t(yi − x⊤

i β̂−i,λ)
∣∣ X−i, y−i

]∣∣∣∣q
]

≤ (nC)q/2 + nC

nq

≤ C
1

nq/2 + C
1

nq−1 .

Finally, choosing 2 < q ≤ 2 + min{µ/2, ν/2} and applying Lemma B.6.7 provides the desired convergence
for the first piece in (B.6). This concludes the proof.

B.1.3 LOOCV estimator to GCV estimator
To prove T̂ gcv

λ − T̂ loo
λ

a.s.−−→ 0, we start by bounding the absolute difference of interest by the average of
absolute differences for i = 1, . . . , n:

∣∣T̂ gcv
λ − T̂ loo

λ

∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
− 1
n

n∑
i=1

t

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x⊤
i β̂λ

1 − tr[Lλ]/n

)
− t

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)∣∣∣∣∣ . (B.11)

We will show below that the right-hand side of the expression (B.11) almost surely goes to zero. As with
the proof of T̃λ − T̂λ

a.s.−−→ 0, we will first assume Lii ̸= 0 so (B.11) is well defined. We will indicate the
changes that we need to make when Lii = 0 towards the end of the proof.

Using the modulus of continuity of t and it least concave majorant, we have

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x⊤
i β̂λ

1 − tr[Lλ]/n

)
− t

(
yi − x⊤

i β̂λ
1 − [Lλ]ii

)∣∣∣∣∣ ≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x⊤
i β̂λ

1 − tr[Lλ]/n − yi − x⊤
i β̂λ

1 − [Lλ]ii

∣∣∣∣∣
)

≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x⊤
i β̂λ

1 − tr[Lλ]/n − yi − x⊤
i β̂λ

1 − [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x⊤
i β̂λ

1 − tr[Lλ]/n − yi − x⊤
i β̂λ

1 − [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x⊤
i β̂λ

1 − tr[Lλ]/n − yi − x⊤
i β̂λ

1 − [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣yi − x⊤
i β̂λ

∣∣∣ ∣∣∣∣ 1
1 − tr[Lλ]/n − 1

1 − [Lλ]ii

∣∣∣∣
)
.

In the above chain on inequalities, we used Jensen’s inequality on the concave majorant ωt for the third
line, and monotonicity of ωt on the fifth line.

Thus, from continuity of ωt at 0, we will be done by showing

1
n

n∑
i=1

∣∣∣yi − x⊤
i β̂λ

∣∣∣ ∣∣∣∣ 1
1 − tr[Lλ]/n − 1

1 − [Lλ]ii

∣∣∣∣ a.s.−−→ 0. (B.12)

To build towards proving (B.12), let us denote by r ∈ Rn the vector of residuals yi − x⊤
i β̂

λ and by
d ∈ Rn the vector of differences (1 − tr[Lλ]/n)−1 − (1 − [Lλ]ii)−1. Observe that

1
n

n∑
i=1

∣∣∣yi − x⊤
i β̂λ

∣∣∣ ∣∣∣∣ 1
1 − tr[Lλ]/n − 1

1 − [Lλ]ii

∣∣∣∣ = 1
n
r⊤d
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≤ 1
n

∥r∥1∥d∥∞

≤ 1√
n

∥r∥2∥d∥∞,

where we used Hölder’s inequality in the second line and the the bound ∥a∥1 ≤
√
n∥a∥2 for any a ∈ Rn

in the last line. Since r = (I − Lλ)y, and the operator norm of I − Lλ is bounded for λ ∈ (λmin, 0) and
∥y∥2/

√
n is almost surely bounded for sufficiently large n from the strong law of large numbers under

Assumption 2.2, we have that ∥r∥2/
√
n is eventually almost surely bounded. We now show in the sequel

that ∥d∥∞
a.s.−−→ 0 leading to the desired conclusion.

First for each i = 1, . . . , n, by adding and subtracting 1 + tr
[
(X⊤X/n+λI)†Σ

]
/n, and tr

[
(X⊤

−iX−i/n+
λI)†Σ

]
/n, we decompose the difference∣∣∣∣ 1

1 − tr[Lλ]/n − 1
1 − [Lλ]ii

∣∣∣∣
=
∣∣∣∣ 1
1 − tr[Lλ]/n −

(
1 + tr

[
(X⊤X/n+ λI)†Σ

]
/n
)

+ tr
[
(X⊤X/n+ λI)†Σ

]
/n− tr

[
(X⊤

−iX−i/n+ λI)†Σ
]
/n

+
(
1 + tr

[
(X⊤

−iX−i/n+ λI)†Σ
]
/n
)

− 1
1 − [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1 − tr[Lλ]/n −

(
1 − tr

[
(X⊤X/n+ λI)†Σ

]
/n
)∣∣∣∣

+
∣∣tr [(X⊤X/n+ λI)†Σ

]
/n− tr

[
(X⊤

−iX−i/n+ λI)†Σ
]
/n
∣∣

+
∣∣∣∣(1 − tr

[
(X⊤X/n+ λI)†Σ

]
/n
)

− 1
1 − [Lλ]ii

∣∣∣∣ .
This lets us decompose

∥d∥∞ = max
1≤i≤n

∣∣∣∣ 1
1 − tr[Lλ]/n − 1

1 − [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1 − tr[Lλ]/n −

(
1 − tr

[
(X⊤X/n+ λI)†Σ

]
/n
)∣∣∣∣

+ max
1≤i≤n

∣∣tr[(X⊤X/n+ λI)†Σ
]
/n− tr

[
(X⊤

−iX−i/n+ λI)†Σ
]
/n
∣∣

+ max
1≤i≤n

∣∣∣∣(1 − tr
[
(X⊤

−iX−i/n+ λI)†Σ
]
/n
)

− 1
1 − [Lλ]ii

∣∣∣∣ .
Finally, we verify that each of the term in the decomposition almost surely vanishes. Using the λ ≠ 0 case
of Lemma B.6.4, we have for the first term∣∣∣∣ 1

1 − tr[Lλ]/n −
(
1 − tr

[
(X⊤X/n+ λI)†Σ

]
/n
)∣∣∣∣ a.s.−−→ 0.

For the second term, following the proof of Lemma B.6.4, for i = 1, . . . , n we can bound∣∣ tr[(X⊤X/n+ λI)†Σ
]
/n− tr

[
(X⊤

−iX−i/n+ λI)†Σ
]
/n
∣∣ ≤ C/n,

almost surely for sufficiently large n. This uses the Sherman-Morrison-Woodbury formula with Moore-
Penrose inverse to express the difference

(X⊤X/n+ λI)† − (X⊤
−iX−i/n+ λI)† = −

(X⊤
−iX−i/n+ λI)†xix

⊤
i /n(X⊤

−iX−i/n+ λI)†

1 + x⊤
i (X⊤

−iX−i/n+ λI)†xi
. (B.13)

The second term thus almost surely goes to zero. For the third term, note that from using the Sherman-
Morrison-Woodbury formula again, we can simplify

1 − [Lλ]ii = 1 − x⊤
i (X⊤X/n+ λI)†xi/n
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= 1 − x⊤
i (X⊤

−iX−i/n+ λI + xix
⊤
i /n)†xi/n

= 1
1 + x⊤

i (X⊤
−iX−i/n+ λI)†xi/n

.

Therefore, for q ≥ 2, we can now proceed to bound the q-th moment of the second term as

E
[{

max
1≤i≤n

∣∣∣∣1 + tr
[
(X⊤

−iX−i/n+ λI)†Σ
]
/n− 1

1 − [Lλ]ii

∣∣∣∣}q]
= E

[{
max

1≤i≤n

∣∣1 + tr
[
(X⊤

−iX−i/n+ λI)†Σ
]
/n−

(
1 + x⊤

i (X⊤
−iX−i/n+ λI)†/n

)∣∣}q]
= E

[{
max

1≤i≤n

∣∣tr[(X⊤
−iX−i/n+ λI)†Σ

]
/n− x⊤

i (X⊤
−iX−i/n+ λI)†/n

∣∣}q]
≤ max

1≤i≤n
E
[{∣∣tr [(X⊤

−iX−i/n+ λI)†Σ
]
/n− x⊤

i (X⊤
−iX−i/n+ λI)†/n

∣∣}q]
≤ nE

[{
tr
[
(X⊤

−jX−j/n+ λI)†Σ
]
/n− x⊤

j (X⊤
−jX−j/n+ λI)†xj/n

}q]
for any j = 1, . . . , n. Note that the last line follows from noting that tr

[
(X⊤

−jX−j/n + λI)†Σ
]
/n, and

x⊤
i

(
X⊤

−iX−i/n+ λI
)†
xi are identically distributed for i = 1, . . . , n. Since

tr
[
(X⊤

−jX−j/n+ λI)†]/n ≤ C/n

almost surely for sufficiently large n, using Lemma B.6.3, the above quantity is of order O(n/nq). Choosing
q > 2 and applying Lemma B.6.7 thus provides the desired almost sure convergence.

The above argument assumed that Lii ≠ 0. For the case of min-norm interpolator when Lii = 0, we
follow exactly similar steps as above using the modified errors defined in (2.13) and (2.14). (For more
details on the λ cancellation for modified errors, see the proof of T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0 in Appendix B.1.4.)
This reduces to showing

1
n

n∑
i=1

∣∣[(XX⊤/n)†y]i
∣∣ ∣∣∣∣ 1

tr[(XX⊤/n)†]/n − 1
[(XX⊤/n)†]ii

∣∣∣∣ a.s.−−→ 0. (B.14)

The same way we argued the almost sure boundedness of ∥r∥2, we can bound the norm of modified error
vector (XX⊤/n)†y as shown in Appendix B.1.4. Finally, analogous to the argument used to bound d, we
can now use the case of λ = 0 equivalence in Lemma B.6.4 for the difference vector in the modified errors
of (B.14). This takes care of both the cases and concludes the proof.

B.1.4 Truncation arguments
We established the converges in Appendices B.1.1 to B.1.3 under the the assumption that the error function
t is uniformly continuous. In this section, we relax this assumption to t being only continuous by a
truncation argument. Let I{A} denote the indicator function for set A.

Let t be a continuous error function. Define w : R → R to be the truncation of t on the compact interval
[−n, n], in other words, w(r) = t(r)I{|r| ≤ n}. Let Wλ denote the linear functional (2.5) corresponding
to the error function w, and let W̃λ be the intermediate averaged LOO functional defined analogously
to (2.19) using w. Let Ŵ gcv

λ and Ŵ loo
λ denote the plug-in GCV and LOOCV estimators associated with

w. The arguments in Appendices B.1.1 to B.1.3 establish Wλ − W̃λ
a.s.−−→ 0, W̃λ − Ŵ loo

λ
a.s.−−→ 0, and

Ŵ loo
λ − Ŵ gcv

λ
a.s.−−→ 0. We will now show that Tλ − Wλ

a.s.−−→ 0, T̃λ − W̃λ
a.s.−−→ 0, T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0,
T̂ loo
λ − Ŵ loo

λ
a.s.−−→ 0 to finish the proof of Theorem 2.4.1. Since the proof of LOOCV mirrors that for GCV,

we will only show the argument for GCV to avoid repetition.
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Showing Tλ −Wλ
a.s.−−→ 0.

We can bound the absolute difference as follows:

|Tλ −Wλ| =
∣∣∣E[t(y0 − x⊤

0 β̂λ) | X, y
]

− E
[
w(y0 − x⊤

0 β̂λ) | X, y
]∣∣∣

=
∣∣∣E[t(y0 − x⊤

0 β̂λ) − w(y0 − x⊤
0 β̂λ) | X, y

]∣∣∣
=
∣∣∣E[t(y0 − x⊤

0 β̂λ)I{|y0 − x⊤
0 β̂| > n} | X, y

]∣∣∣
≤
√
E
[
|t(y0 − x⊤

0 β̂λ)|2 | X, y
]√

P
[
|y0 − x⊤

0 β̂λ| > n | X, y
]

≤ C

√
P
[
|y0 − x⊤

0 β̂λ| > n | X, y
]

≤ C

√
E
[
|y0 − x⊤

0 β̂λ|2 | X, y
]

n2

≤ C

n
→ 0,

where the third line uses the Cauchy-Schwarz inequality, the fourth line uses Lemmas B.1.1 and B.1.3 with
q = 2, the fifth line uses Chebychev’s inequality, and the last line again uses Lemmas B.1.1 and B.1.3 with
t as the identity function and q = 2.

Showing T̃λ − W̃λ
a.s.−−→ 0.

We can bound the absolute difference as follows:∣∣∣T̃λ − W̃λ

∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ) | X−i, y−i
]

− 1
n

n∑
i=1

E
[
w(yi − x⊤

i β̂−i,λ) | X−i, y−i
]∣∣∣∣∣

=
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ) − w(yi − x⊤
i β̂−i,λ) | X−i, y−i

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

E
[
t(yi − x⊤

i β̂−i,λ)I
{

|yi − x⊤
i β̂−i,λ| > n

} ∣∣ X−i, y−i

]∣∣∣∣∣
≤ 1
n

n∑
i=1

√
E
[
|t(yi − x⊤

i β̂−i,λ)|2
∣∣ X−i, y−i

]√
P
{

|yi − x⊤
i β̂−i,λ| > n

∣∣ X−i, y−i

}

≤ 1
n

n∑
i=i

√
E
[
|t(yi − x⊤

i β̂−i,λ)|2 | X−i, y−i
]√

P
{

nmax
j=1

|yi − x⊤
i β̂−i,λ| > n

∣∣∣ X, y}

≤

∣∣∣∣∣ 1n
n∑
i=i

√
E
[
|t(yi − x⊤

i β̂−i,λ)|2 | X−i, y−i
]∣∣∣∣∣
√
P
{

nmax
j=1

|yi − x⊤
i β̂−i,λ| > n

}

≤ C

√
P
{

nmax
j=1

|yi − x⊤
i β̂−i,λ| > n

}
.

Above, line four uses the Cauchy-Schwarz inequality, line five uses the fact that the event |yi−x⊤
i β̂−i,λ| > n

for any i = 1, . . . , n is contained inside the event maxnj=1 |yj − x⊤
j β̂−j,λ| > n, and the last line follows

from the q-th moment control as done in Appendix B.1.2 with q = 2. It therefore suffices to bound the
probability of the event maxnj=1 |yi − x⊤

i β̂−i,λ| > n which we do below.
Starting with union bound, we have that

P
{

nmax
j=1

|yi − x⊤
i β̂−i,λ| > n

}
≤

n∑
i=1

P
{

|yi − x⊤
i β̂−i,λ| > n

}
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≤
n∑
i=1

E
[
|yi − x⊤

i β̂−i,λ|2
]

n2

≤
n∑
i=1

C

n2

≤ C

n
→ 0.

Showing T̂ gcv
λ − Ŵ gcv

λ
a.s.−−→ 0.

By following similar argument used to bound
∣∣T̃λ − W̃λ

∣∣, it suffices to show that

P

{
nmax
j=1

yi − x⊤
i β̂λ

1 − tr[Lλ]/n > n

}
→ 0.

Using the union bound, it is thus enough to show that almost surely

1
n

n∑
i=1

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)2

≤ C.

Note that this is valid when λ ̸= 0. To cover the case of min-norm interpolator, we start by rewriting the
residuals in an alternate form as follows:

yi − x⊤
i β̂λ = yi − x⊤

i (X⊤X/n+ λI)†X⊤y/n

= yi − [X⊤(X⊤X/n+ λI)†X⊤y/n]i
= [y −X⊤(X⊤X/n+ λI)†X⊤y/n]i
= [(I −X⊤(X⊤X/n+ λI)†X/n)y]i
= λ[(XX⊤/n+ λI)†y]i (B.15)

Similarly, we rewrite the denominator of GCV using

1 − tr[Lλ]/n = 1 − tr[X(XX⊤/n+ λI)†X⊤]/n
= tr[I −X(XX⊤/n+ λI)†X⊤]/n
= λ tr[(XX⊤/n+ λI)†]/n. (B.16)

This lets us rewrite the invidual GCV reweighted errors as

yi − x⊤
i β̂λ

1 − tr[Lλ]/n = λ[(XX⊤/n+ λI)†y]i
λ tr[(XX⊤/n+ λI)†]/n = [(XX⊤/n+ λI)†y]i

tr[(XX⊤/n+ λI)†]/n.

Thus, we can now bound

1
n

n∑
i=1

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)2

=
∥∥(XX⊤/n+ λI)†y

∥∥2
2/n(

tr[(XX⊤/n+ λI)†]/n
)2

≤

∥∥(XX⊤/n+ λI)†
∥∥2

op

∥∥y∥∥2
2/n(

tr[(XX⊤/n+ λI)†]/n
)2 .

Each term in the above ratio is almost surely bounded for sufficiently large n under Assumption 2.1 and
Assumption 2.2 as explained in the proof of Lemma B.1.3. This finishes the argument.
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B.1.5 Auxiliary lemmas
In this section, we gather supporting lemmas used in the proofs in Appendices B.1.1 to B.1.3, along with
their proofs.

Lemma B.1.1 (Bounding conditional q-th moment of the i-th LOO residual). Suppose Assumptions 2.1
and 2.2 hold, and the error function t satisfies Assumption 2.3. Then, for q ≤ min{µ/2, ν/2} and
λ ∈ (λmin,∞),

E
[∣∣t(yi − x⊤

i β̂−i,λ)
∣∣q ∣∣X−i, y−i

]
≤
(
C1 + C2 ∥β̂−i,λ∥2

)2q

for some positive constants C1 and C2.

Proof. Note that under Assumption 2.3,
∣∣t(yi − x⊤

i β̂−i,λ)
∣∣q ≤ a

∣∣yi − x⊤
i β̂−i,λ

∣∣2q + b
∣∣yi − x⊤

i β̂−i,λ
∣∣q + c

for some positive constants a, b, c. Because E
[
Zql
]

≤ E
[
Zqh

]ql/qh for ql ≤ qh from Jensen’s inequality, it
suffices to bound E

[∣∣yi − x⊤
i β̂−i,λ

∣∣2q ∣∣ X−i, y−i
]
, which we do below.

From the triangle inequality for the conditional Lq norm, observe that

E
[∣∣yi − x⊤

i β̂−i,λ
∣∣2q ∣∣ X−i, y−i

]1/2q
≤ E

[∣∣yi∣∣2q ∣∣ X−i, y−i

]1/2q
+ E

[∣∣x⊤
i β̂−i,λ

∣∣2q ∣∣ X−i, y−i

]1/2q

≤ E
[∣∣yi∣∣2q]1/2q

+ E
[∣∣x⊤

i β̂−i,λ
∣∣2q ∣∣ X−i, y−i

]1/2q
.

The first term is bounded for q ≤ 2 + µ/2 under Assumption 2.2. For the second term, start by writing

E
[∣∣x⊤

i β̂−i,λ
∣∣2q ∣∣ X−i, y−i

]
= E

[∣∣z⊤
i Σ1/2β̂−i,λ

∣∣2q ∣∣ X−i, y−i

]
.

Note that conditional on X−i and y−i, Σ1/2β̂−i,λ is a fixed vector in Rp. For q ≤ 2 + ν/2, Lemma B.6.2
then provides

E
[∣∣x⊤

i β̂−i,λ
∣∣2q ∣∣ X−i, y−i

]1/2q
≤ C∥Σ1/2β̂−i,λ∥2 ≤ C

√
rmax∥β̂−i,λ∥2,

where the last inequality follows since the maximum eigenvalue of Σ is bounded by rmax. Therefore, for
q ≤ 2 + min{µ/2, ν/2}, we get

E
[∣∣yi − x⊤

i β̂−i,λ
∣∣2q ∣∣ X−i, y−i

]
≤
(
C1 + C2∥β̂−i,λ∥2

)2q

for some positive constants C1 and C2 as desired. This completes the proof.

Lemma B.1.2 (Bounding norm of the difference of leave-one-out ridge estimators). Suppose Assump-
tions 2.1 and 2.2 hold. Then, for λ ∈ (λmin,∞),

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ
∥∥

2
a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞).

Proof. For each i = 1, . . . , n, we start by breaking the difference

β̂λ − β̂−i,λ = (X⊤X/n+ λI)†X⊤y/n− (X⊤
−iX−i/n+ λI)†X⊤

i y−i/(n− 1)
= (X⊤X/n+ λI)†X⊤y/n− (X⊤

−iX−i/n+ λI)†X⊤y/n

+ (X⊤
−iX−i/n+ λI)†X⊤y/n− (X⊤

−iX−i/n+ λI)†X⊤
−iy−i/(n− 1)

=
{

(X⊤X/n+ λI)† − (X⊤
−iX−i/n+ λI)†}X⊤y/n

+ (X⊤
−iX−i/n+ λI)†{X⊤y/n−X⊤

−iy−i/(n− 1)
}
.
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Applying the triangle inequality, for each i = 1, . . . , n, we can then bound∥∥β̂λ − β̂−i,λ
∥∥

2 ≤
∥∥{(X⊤X/n+ λI)† − (X⊤

−iX−i/n+ λI)†}X⊤y/n
∥∥

2

+
∥∥(X⊤

−iX−i/n+ λI)†{X⊤y/n−X⊤
−iy−i/(n− 1)

}∥∥
2.

Averaging the bounds above thus provides

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ
∥∥

2 ≤ 1
n

n∑
i=1

∥∥(X⊤
−iX−i/n+ λI)†{X⊤y/n−X⊤

−iy−i/(n− 1)
}∥∥

+ 1
n

n∑
i=1

∥∥{(X⊤X/n+ λI)† − (X⊤
−iX−i/n+ λI)†}X⊤y/n

∥∥. (B.17)

We will see below that each of the two terms on the right-hand side of (B.17) almost surely goes to zero
providing the desired convergence. Note that for each i = 1, . . . , n, we can bound∥∥(X⊤

−iX−i/n+ λI)†{X⊤y/n−X⊤
−iy−i/(n− 1)

}∥∥
2 ≤

∥∥(X⊤
−iX−i/n+ λI)†∥∥

op

∥∥X⊤y/n−X⊤
−iy−i/(n− 1)

∥∥
2

≤ C
∥∥X⊤y/n−X⊤

−iy−i/(n− 1)
∥∥

2

= C

∥∥∥∥∥∥xiyin −
∑
j ̸=i

xjyj
(n− 1)n

∥∥∥∥∥∥
2

≤ C√
n

∥xiyi∥2√
n

+ C

(n− 1)
√
n

∑
j ̸=i

∥xjyj∥2√
n

,

where the second line follows from the fact that
∥∥(XT

−iX−i/n + λI)†
∥∥

op is almost surely bounded for n
large enough (as explained in the proof of Lemma B.1.3), and last line uses triangle inequality. Now writing
xi = Σ1/2zi, note that for each i = 1, . . . , n,∥∥xiyi∥∥2/

√
n =

∥∥Σ1/2ziyi
∥∥

2/
√
n ≤

∥∥Σ1/2∥∥
opyi

∥∥zi∥∥2/
√
n ≤ yi

∥∥zi∥∥2/
√
n ≤ Cyi

almost surely for sufficiently large n since ∥zi∥2/
√
n is eventually almost surely bounded from the strong

law of large numbers. Hence, we have

1
n

n∑
i=1

∥∥(X⊤
−iX−i + λI)†{X⊤y/n−X⊤

−iy−i/(n− 1)
}∥∥ ≤ C√

n

1
n

n∑
i=1

|yi| + C

(n− 1)
√
n

1
n

n∑
i=i

∑
j ̸=i

|yj |

≤ C√
n

(2n− 1)
(n− 1)n

n∑
i=1

|yi|

≤ C√
n

→ 0. (B.18)

Here the second inequality follows by adding |yi| to the second term, and the last inequality follows because∑n
i=1 |yi|/n is eventually almost surely bounded from the strong law of large numbers under Assumption 2.2.

Using the leave-one-out sample covariance difference (B.13), we can similarly show that the second term
goes to zero almost surely. Hence, we have that (B.17) almost surely goes to zero. This completes the
proof.

Lemma B.1.3 (Bounding norm of the ridge estimator). Suppose Assumption 2.1 and Assumption 2.2
hold. Then, for λ ∈ (λmin,∞), ∥β̂λ∥2 ≤ C for some positive constant C eventually almost surely.
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Proof. We can bound the norm of ridge estimator as∥∥β̂λ∥∥2 =
∥∥(X⊤X/n+ λI)†X⊤y/n

∥∥
2

≤
∥∥(X⊤X/n+ λI)†X⊤/

√
n
∥∥

op∥y∥2/
√
n

≤
∥∥(X⊤X/n+ λI)†∥∥

op

∥∥X⊤/
√
n
∥∥

op∥y∥2/
√
n. (B.19)

Now for λ ∈ (λmin,∞), the first two terms in the product (B.19) are almost surely bounded for n large
enough. This is because the maximum eigenvalue of X⊤X/n is upper bounded by C(1 + √

γ)2rmax for
some C > 1 and the minimum non-zero eigenvalue is lower bounded by c(1 − √

γ)2rmin for some c < 1
almost surely for sufficiently large n under Assumption 2.1 (Bai and Silverstein, 1998). From the strong law
of large numbers, the final term is eventually almost surely bounded as the second moment of the response
is bouned under Assumption 2.2. Hence, the product is eventually almost surely bounded, finishing the
proof.

B.2 Proofs related to Theorem 2.4.2
To show almost sure uniform convergence (in λ), we will appeal to Lemma B.6.5. A sufficient condition
to establish strong stochastic equicontinuity in the current differentiable case is uniform boundness of
the associated functions and their derivatives (with respect to λ) (e.g., Chpater 21 of Davidson, 1994).
We will show that both Tλ and T̂ gcv

λ and their derivates are bounded over Λ, implying strong stochastic
equicontinuity of the family of functions {Tλ − T̂ gcv

λ }λ∈Λ. Analogous analysis holds for {Tλ − T̂ loo
λ }λ∈Λ,

which we omit due to its similarity with the GCV analysis. Recall that Λ is a compact set in (λmin,∞). In
the following, let Λ ⊂ [λ, λ] where λmin < λ ≤ λ < ∞.

Bounding Tλ. We start with Tλ. Using Lemma B.1.1 with q = 1, under Assumptions 2.1 and 2.2, for
error function t satisfying Assumption 2.3, we can bound Tλ in terms of the norm of the ridge estimator β̂λ
as

Tλ = E
[
t(y0 − x⊤

0 β̂λ) | X, y
]

≤
(
C1 + C2∥β̂λ∥2

)2
, (B.20)

for some positive constants C1 and C2. Now following Lemma B.1.3, over Λ, we have that ∥β̂λ∥2 is
eventually almost surely bounded by C√

rmax(λmin + λ)−1 for some positive constant C (independent of
λ). This shows that Tλ is eventually almost surely bounded over λ ∈ Λ.

Bounding T̂ gcv
λ . We next consider T̂ gcv

λ . Using the alternate representation (B.15), for error function t
satisfying Assumption 2.3, for some positive constants C,C1, C2, we can bound

T̂ gcv
λ = 1

n

n∑
i=1

t

(
[(XX⊤/n+ λI)†y]i

tr[(XX⊤/n+ λI)†]/n

)

≤ C2

n

n∑
i=1

{
[(XX⊤/n+ λI)†y]i

}2{
tr[(XX⊤/n+ λI)†]/n

}2 + C1

n

n∑
i=1

∣∣[(XX⊤/n+ λI)†y]i
∣∣∣∣ tr[(XX⊤/n+ λI)†]/n
∣∣ + C

≤ C2

n

n∑
i=1

{
[(XX⊤/n+ λI)†y]i

}2 + C1

n

n∑
i=1

∣∣[(XX⊤/n+ λI)†y]i
∣∣+ C. (B.21)

The last inequality above follows by noting that the map λ 7→ tr[(XX⊤/n+ λI)†]/n is non-increasing over
[λ, λ], so tr[(XX⊤/n+ λI)†]/n is lower bounded by tr[(XX⊤/n+ λI)†/n]. Since λmin < λ, we then have
that {tr[(XX⊤/n+ λI)†]/n}−1 is upper bounded by (λmin + λ)−1. Now, observe that for the first term in
(B.21):

1
n

n∑
i=i

{
[(XX⊤/n+ λI)†y]i

}2 = 1
n

∥∥(XX⊤/n+ λI)†y
∥∥2

2 ≤ 1
n

∥∥(XX⊤/n+ λI)†∥∥2
op

∥∥y∥∥2
2.
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Similarly, note that for the second term in (B.21):

1
n

n∑
i=1

∣∣[(XX⊤/n+λI)†y]i
∣∣ = 1

n

∥∥(XX⊤/n+λI)†y
∥∥

1 ≤ 1√
n

∥∥(XX⊤/n+λI)†y
∥∥

2 ≤ 1√
n

∥∥(XX⊤/n+λI)†∥∥
op

∥∥y∥∥2.

Since ∥(XX⊤/n+ λI)†∥op is uniformly bounded over λ ∈ Λ under Assumption 2.1 as argued above, and
∥y∥2

2/n is almost surely bouned for n large enough from the law of large numbers under Assumption 2.2, it
follows that T̂ gcv

λ is almost surely bounded over λ ∈ Λ.

Bounding derivative of Tλ. We now turn to bounding the derivaties of the map λ 7→ Tλ. First note
that since E

[
|y0 − x⊤

0 β̂λ| | X, y
]

≤ E
[
|y0 − x⊤

0 β̂λ|2 | X, y
]1/2, and since the latter is almost surely bounded

as shown above, we can switch the order of differentiation and integration. The derivative of Tλ with
respect to λ can then be bounded above by

T ′
λ = E

[
t′(y0−x⊤

0 β̂λ) x⊤
0 β̂

′
λ | X, y

]
≤ E

[
{t′(y0−x⊤

0 β̂λ)}2 | X, y
]1/2·E

[
(β̂′
λ)⊤x0x

⊤
0 β̂

′
λ | X, y

]
≤ C

√
rmax∥β̂′

λ∥2.
(B.22)

In the above chain, the first inequality follows from Cauchy-Schwarz inequality, and the second inequality
follows from the bounding of Tλ per (B.20) above (because under Assumption 2.3, t′ is bounded above by
a linear function), and the fact that ∥Σ∥op ≤ rmax. Applying Lemma B.2.1 on the last term of (B.22), we
thus conclude that the derivative of Tλ is almost surely uniformly bounded over λ ∈ Λ, as desired.

Bounding derivative of T̂ gcv
λ . Finally, we bound the derivative of the map λ 7→ T̂ gcv

λ . From the chain
rule, the derivative of T̂ gcv

λ with respect to λ can be expressed as

1
n

n∑
i=1

t′
(

[(XX⊤/n+ λI)†y]i
tr[(XX⊤/n+ λI)†]/n

)
d

dλ

(
[(XX⊤/n+ λI)†y]i

tr[(XX⊤/n+ λI)†]/n

)

≤

√√√√ 1
n

n∑
i=1

{
t′
(

[(XX⊤/n+ λI)†y]i
tr[(XX⊤/n+ λI)†]/n

)}2
√√√√ 1
n

n∑
i=1

{
d

dλ

(
[(XX⊤/n+ λI)†y]i

tr[(XX⊤/n+ λI)†]/n

)}2
(B.23)

≤ C

√√√√ n∑
i=1

{
d

dλ

(
[(XX⊤/n+ λI)†y]i

tr[(XX⊤/n+ λI)†]/n

)}2
(B.24)

The first inequality above again follows from the Cauchy-Schwarz inequalty. The second inequality follows
since, from Assumption 2.3, t′ is bouned above by a linear function, and the bounding of T̂ gcv

λ per (B.21)
above shows that the first term of (B.23) is almost surely bounded. Applying Lemma B.2.2, we can now
upper bound the final term of (B.24). This leads the derivative of T̂ gcv

λ to be almost surely bounded over
λ ∈ Λ and concludes the proof.

Lemma B.2.1 (Bounding norm of the derivative of ridge estimator). Suppose Assumptions 2.1 and 2.2
hold. Then, for λ ∈ (λmin,∞), ∥β̂′

λ∥2 ≤ C eventually almost surely for some positive constant C.

Proof. The proof follows from a straightforward calculation. Expressing the ridge estimation in the gram
form, observe that

dβ̂λ
dλ

= dX⊤(XX⊤/n+ λI)†y/n

dλ
= X⊤(XX⊤/n+ I)†(XX⊤/n+ λI)†y/n.

In the above, we use the fact that for λ ∈ (λmin,∞), the map λ 7→ (XX⊤/n + λI)† is almost surely
differentiable for n large enough, with the derivative given by (XX⊤/n+ λI)†(XX⊤/n+ λI)†. The result
then follows by noting that the opeator norms of X/

√
n and (XX⊤/n+ λI)† are uniformly bounded over

Λ as argued above, and ∥y∥2/
√
n is almost surely bounded for n large enough, as explained in the proof of

Lemma B.1.3.
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Lemma B.2.2 (Bounding norm of the derivative of modified GCV residuals). Suppose Assumptions 2.1
and 2.2 hold. Then, for λ ∈ (λmin,∞), we have that

1√
n

∥∥∥∥ ddλ
(

(XX⊤/n+ λI)†y

tr[(XX⊤/n+ λI)†]/n

)∥∥∥∥
2

≤ C

eventually almost surely for some positive contant C.

Proof. The proof uses straightforward matrix calculus (Petersen et al., 2008). Using the chain rule, we can
write

d

dλ

(
(XX⊤/n+ λI)†y

tr[(XX⊤/n+ λI)†]/n

)
= − tr[(XX⊤/n+ λI)†(XX⊤/n+ λI)†]/n

{tr[(XX⊤/n+ λI)†]/n}2 (XX⊤/n+ λI)†y

+ 1
tr[(XX⊤/n+ λI)†]/n

d

dλ

(
(XX⊤/n+ λy)†y

)
.

Note that {tr[(XX⊤/n+ λI)†]/n}−1 is almost surely bounded for n sufficiently large as argued above. In
addition, since the operator norm of (XX⊤/n+ λI)† is uniformly upper bounded for λ ∈ Λ, we also have
that tr[(XX⊤/n+ λI)†(XX⊤/n+ λI)†]/n is uniformly upper bounded over Λ. Next, observe that

d

dλ

(
(XX⊤/n+ λI)†y

)
= (XX⊤/n+ λI)†(XX⊤/n+ λI)†y.

As above, since the opeator norm of (XX⊤/n + λI)† is uniformly bounded for λ ∈ Λ, and ∥y∥2/
√
n is

almost surely bounded for n large enough, the result then follows from simple application of the triangle
inequality (with respect to the ℓ2 norm). This finishes the proof.

B.3 Proofs related to Theorem 2.4.3
The proof is similar to that of proof of Theorem 2.4.2. We will again use Lemma B.6.5. In the current
the nonsmooth case, it is sufficient to show that the family of random functions under consideration is
almost surely Lipschitz continuous, along with the almost sure uniform bounds as shown in the proof of
Theorem 2.4.2 (see, e.g., Chpater 21 of Davidson, 1994). We will show in the two helper lemmas below
that this holds for {Tλ}λ∈Λ and {T̂ gcv

λ }λ∈Λ, assuming that the loss function t is Lipschitz continuous. This
will show that {Tλ − T̂ gcv

λ }λ∈Λ is almost surely Lipschitz continuous from which the theorem follows. A
similar analysis holds for {Tλ − T̂ loo

λ }λ∈Λ.

Lemma B.3.1 (Lipschitz continuity of the out-of-sample functional). Suppose Assumption 2.1 and
Assumption 2.2 hold, and the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞).
Then, over Λ, the random map λ 7→ Tλ is almost surely Lipschitz continuous.

Proof. Since Λ is compact, let Λ ⊆ [λ, λ] where λmin < λ ≤ λ < ∞. For any λ1, λ2 ∈ [λ, λ], using the
Lipschitz continuity of the error function, we have∣∣t(y0 − x⊤

0 β̂λ1) − t(y0 − x⊤
0 β̂λ2)

∣∣ ≤ L
∣∣x⊤

0 (β̂λ1 − β̂λ2)
∣∣

for some L ≥ 0. Now consider∣∣Tλ1 − Tλ2

∣∣ =
∣∣∣E[t(y0 − x⊤

0 β̂λ1) − t(y0 − x⊤
0 β̂λ2)

∣∣ X, y]∣∣∣
≤ E

[∣∣t(y0 − x⊤
0 β̂λ1) − t(y0 − x⊤

0 β̂λ2)
∣∣ ∣∣ X, y]

≤ LE
[∣∣x⊤

0 (β̂λ1 − β̂λ2)
∣∣ ∣∣ X, y]

= LE
[√∣∣x⊤

0 (β̂λ1 − β̂λ2)
∣∣2 ∣∣ X, y]
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≤ L

√
E
[∣∣x⊤

0 (β̂λ1 − β̂λ2)
∣∣2 ∣∣ X, y]

≤ L

√
E
[∣∣(β̂λ1 − β̂λ2)⊤x0x⊤

0 (β̂λ1 − β̂λ2)
∣∣2 ∣∣ X, y]

≤ L

√
(β̂λ1 − β̂λ2)⊤Σ(β̂λ1 − β̂λ2)

≤ L
√
rmax

∥∥β̂λ1 − β̂λ2

∥∥
2.

Above, the second and fourth lines follow from using Jensen’s inequality (on the absolute and square root
functions, respectively), the third line follows from the Lipschitz bound on the error function, and the last
inequality follow since the operator norm of Σ is bounded above by rmax.

To complete the proof, we show below that over [λ, λ], ∥β̂λ1 − β̂λ2∥ ≤ C|λ1 − λ2| for some constant C
that is eventually almost surely bounded. To see this, we start by writing the difference using equivalent
gram representation for ridge estimator:∥∥β̂λ1 − β̂λ2

∥∥
2 =

∥∥X(XX⊤/n+ λ1)†y/n−X(XX⊤/n+ λ2)†y/n
∥∥

2

≤
∥∥X/√n∥∥op

∥∥(XX⊤/n+ λ1) − (XX⊤/n+ λ2)
∥∥

op

∥∥y∥∥2/
√
n. (B.25)

As argued before, both the first and the last term in the product (B.25) are eventually almost surely
bounded under Assumptions 2.1 and 2.2. For the middle term, note that on [λ, λ], since λmin < λ,
the map λ 7→ (XX⊤/n + λI)† is differentiable on [λ, λ] with the derivative with respect to λ equal to
(XX⊤/n+ λI)†(XX⊤/n+ λI)†. Thus, using the mean value theorem, for some λ ∈ (λ, λ), we can bound∣∣(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†∣∣ ≤

∣∣(XX⊤/n+ λI)†(XX⊤/n+ λI)†∣∣ |λ1 − λ2| .

Hence, we can bound the second term as∥∥(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†∥∥
op ≤

∥∥(XX⊤/n+ λI)†(XX⊤/n+ λI)†∥∥
op |λ1 − λ2|

≤
∥∥(XX⊤/n+ λI)†∥∥

op

∥∥(XX⊤/n+ λI)†∥∥
op |λ1 − λ2|

≤ C |λ1 − λ2| , (B.26)

where the last inequality follows because λ ≥ λ > λmin as explained in the proof of Lemma B.1.3. This
concludes the proof.

Lemma B.3.2 (Lipschitz continuity of the GCV functional). Suppose Assumption 2.1 and Assumption 2.2
hold, and the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞). Then, over Λ,
the random map λ 7→ T̂ gcv

λ is almost surely Lipschitz continuous.

Proof. Let Λ ⊆ [λ, λ], where λmin < λ ≤ λ < ∞. Using the alternate representation (B.15) for the
numerator and (B.16) for the denominator of GCV reweighted errors, we can rewrite the plug-in functional
T̂ gcv
λ as

T̂ gcv
λ = 1

n

n∑
i=1

t

( [
(XX⊤/n+ λI)†y

]
i

tr
[
(XX⊤/n+ λI)†

]
/n

)
.

For λ1, λ2 ∈ Λ using the Lipschitz continuity of the error function, note that

T̂ gcv
λ1

− T̂ gcv
λ2

(B.27)

= 1
n

n∑
i=1

t

( [
(XX⊤/n+ λ1I)†y

]
i

tr
[
(XX⊤/n+ λ1I)†

]
/n

)
− t

( [
(XX⊤/n+ λ2I)†y

]
i

tr
[
(XX⊤/n+ λ2I)

]
/n

)

≤ 1
n

n∑
i=1

L

∣∣∣∣∣
[
(XX⊤/n+ λ1I)†y

]
i

tr
[
(XX⊤/n+ λ1I)†

]
/n

−
[
(XX⊤/n+ λ2I)†y

]
i

tr
[
(XX⊤/n+ λ2I)†

]
/n

∣∣∣∣∣
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≤ L

∣∣∣∣∣ 1
tr
[
(XX⊤/n+ λ1I)†

]
/n

− 1
tr
[
(XX⊤/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[(XX⊤/n+ λ1I)†y
]
i
−
[
(XX⊤/n+ λ2I)†y

]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX⊤/n+ λ1I)†

]
/n

− 1
tr
[
(XX⊤/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[{(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†}y]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX⊤/n+ λ1I)†

]
/n

− 1
tr
[
(XX⊤/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

∥∥{(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†}y∥∥1

(B.28)

Since the map λ 7→ tr
[
(XX⊤ + λI)†]/n is non-increasing over [λ, λ], we can bound the first term of (B.28)

using ∣∣∣∣∣ 1
tr
[
(XX⊤/n+ λ1I)†

]
/n

− 1
tr
[
(XX⊤/n+ λ2I)†

]
/n

∣∣∣∣∣ ≤ 2
∣∣∣∣∣ 1
tr
[
(XX⊤/n+ λI)†

]
/n

∣∣∣∣∣ . (B.29)

For bounding the second term of (B.28), note that∥∥{(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†}y∥∥1 /n ≤
∥∥{(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†}y∥∥2 /

√
n

≤
∥∥(XX⊤/n+ λ1I)† − (XX⊤/n+ λ2I)†∥∥

op ∥y∥2/
√
n

≤ C |λ1 − λ2| , (B.30)

where we used the bound from (B.26), along with the fact that ∥y∥2/
√
n is almost surely bounded for n

large enough from the strong law of large numbers under Assumption 2.2. Plugging (B.29) and (B.30) into
(B.28) then finishes the proof.

B.4 Proof of Theorem 2.3.1
Let F̂ gcv

λ and F̂ loo
λ denote the CDFs associated with the plug-in distributions P̂ gcv

λ and P̂ loo
λ of the GCV

and LOOCV reweighted errors, respectively. Recall that Fλ denotes the CDF of the out-of-sample
error distribution Pλ. To prove Theorem 2.3.1, for all z ∈ R that are continuity points of Fλ for n
sufficiently large, we will sandwich Fλ(z) such that, almost surely, lim supn→∞ F̂ gcv

λ (z) ≤ Fλ(z) along
with Fλ(z) ≤ lim infn→∞ F̂ gcv

λ (z). This then yields the desired result that F̂ gcv
λ (z) − Fλ(z) a.s.−−→ 0. Similar

argument shows F̂ loo
λ (z) − Fλ(z) a.s.−−→ 0. The idea of the proof is similar to that used in the proof of the

Portmanteau theorem, with the main difference being that the target distribution in our case is also a
random distribution. We will make use of Theorem 2.4.1 to deduce the desired inequalities in each direction
using suitably chosen error functions.

Fix ϵ > 0 and z ∈ R. For the first direction, let tz,ϵ be an error function defined as

tz,ϵ(r) =


1 r ≤ z

1 + (z − r)/ϵ z ≤ r ≤ z + ϵ

0 r ≥ z + ϵ.

Observe that I{r ≤ z} ≤ tz,ϵ(r) for all r ∈ R. Here I denotes the indicator function. This allow us to write

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x⊤

i β̂λ
1 − tr[Lλ]/n ≤ z

}
≤ 1
n

n∑
i=1

tz,ϵ

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
. (B.31)

Furthermore, tr,ϵ is Lipschitz continuous and satisfies Assumption 2.3. Hence, invoking Theorem 2.4.1, we
have that

1
n

n∑
i=1

tz,ϵ

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
− E

[
tz,ϵ(y0 − x⊤

0 β̂λ) | X, y
] a.s.−−→ 0. (B.32)
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In addition, observe that tz,ϵ(r) ≤ I{r ≤ z + ϵ} for all r ∈ R. This gives us

E
[
tz,ϵ(y0 − x⊤

0 β̂λ) | X, y
]

≤ E
[
I{y0 − x⊤

0 β̂λ ≤ z + ϵ} | X, y
]

= P
[
y0 − x⊤

0 β̂λ ≤ z + ϵ | X, y
]
. (B.33)

Thus, combining (B.31) to (B.33), we get that almost surely

lim sup
n→∞

F̂ gcv
λ (z) ≤ lim sup

n→∞
P
[
y0 − x⊤

0 β̂λ ≤ z + ϵ | X, y
]

= lim sup
n→∞

Fλ(z + ϵ). (B.34)

Now sending ϵ → 0, we obtain the desired inequality lim supn→∞ F̂ gcv
λ (z) ≤ Fλ(z) almost surely.

We proceed analogously on the other side. Again fix ϵ > 0 and let z ∈ R be a continuity point of Fλ for
n sufficiently large. We will now use the function tz−ϵ,ϵ. Explicitly, the evaluation map of tz−ϵ,ϵ is given by

tz−ϵ,ϵ(r) =


1 r ≤ z − ϵ

(z − r)/ϵ z − ϵ ≤ r ≤ z

0 r ≥ z.

Noting that tz−ϵ,ϵ(r) ≤ I{r ≤ z} for all r ∈ R, we obtain

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x⊤

i β̂λ
1 − tr[Lλ]/n ≤ z

}
≥ 1
n

n∑
i=1

tz−ϵ,ϵ

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
. (B.35)

Again, since tz−ϵ,ϵ is Lipschitz continuous and satisfies Assumption 2.3, application of Theorem 2.4.1 yields

1
n

n∑
i=1

tz−ϵ,ϵ

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n

)
− E

[
tz−ϵ,ϵ(y0 − x⊤

0 β̂λ) | X, y
] a.s.−−→ 0. (B.36)

Finally, because tz−ϵ,ϵ(r) ≥ I{r ≤ z − ϵ} for r ∈ R, we have that

E
[
tz−ϵ,ϵ(y0 − x⊤

0 β̂λ) | X, y
]

≥ E
[
I{y0 − x⊤

0 β̂λ ≤ z − ϵ} | X, y
]

= P
[
y0 − x⊤

0 β̂λ ≤ z − ϵ
]
. (B.37)

Combining (B.35) to (B.37), we have almost surely,

lim inf
n→∞

F̂ gcv
λ (z) ≥ lim inf

n→∞
P
[
y0 − x⊤

0 β̂λ ≤ z − ϵ
]

= lim inf
n→∞

Fλ(z − ϵ). (B.38)

Since z is a continuity point of Fλ, sending ε → 0, we get the desired inequality lim infn→∞ F̂ gcv
λ (z) ≥ Fλ(z)

almost surely.
Combining (B.34) and (B.38), we conclude that almost surely lim supn→∞ F̂ gcv

λ (z)−lim infn→∞ F̂ gcv
λ (z) →

0, and F̂ gcv
λ (z) − F (z) → 0, completing the proof.

B.5 Proofs related to Theorem 2.5.1
B.5.1 Proof of Theorem 2.5.1
The proof of Theorem 2.5.1 mainly builds on the result of Theorem 2.4.1. We will use Theorem 2.4.1 to
certify pointwise convergence (in v) of T̂ gcv

λ (v) and T̂ loo
λ (v) to Tλ(v). Then using the equicontinuity of TV

and appealing to Lemma B.6.6, we will prove the convergence of the minimizers V̂ gcv
λ and V loo

λ to Vλ.
First observe that each t(·, v) : R → R is a continuos function since TV is an equicontinous family of

functions. In addition, each t(·, v) satisfies Assumption 2.3. Thus, for each v ∈ V, Theorem 2.4.1 implies

T̂ gcv
λ (v) − Tλ(v) a.s.−−→ 0.

Next note that for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣Tλ(v1) − Tλ(v2)
∣∣
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= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x⊤
0 β̂λ, v1) | X, y

]
− E

[
t(y0 − x⊤

0 β̂λ, v2) | X, y
]∣∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x⊤
0 β̂λ, v1) − t(y0 − x⊤

0 β̂λ, v2) | X, y
]∣∣∣

≤ sup
|v1−v2|≤δ, v1,v2∈V

E
[∣∣t(y0 − x⊤

0 β̂λ, v1) − t(y0 − x⊤
0 β̂λ, v2)

∣∣ ∣∣ X, y]
≤ E

[
sup

|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x⊤
0 β̂λ, v1) − t(y0 − x⊤

0 β̂λ, v2)
∣∣ ∣∣∣ X, y] , (B.39)

where the third line follows from Jensen’s inequality, the last inequality follows because for any v1, v2 ∈ V
such that |v1 − v2| ≤ δ, we have that∣∣t(y0 − x⊤

0 β̂λ, v1) − t(y0 − x⊤
0 β̂λ, v2)

∣∣ ≤ sup
|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x⊤
0 β̂λ, v1) − t(y0 − x⊤

0 β̂λ, v2)
∣∣,

which after taking expectation and taking sup gives the desired inequality. Similarly, for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣T̂ gcv
λ (v1) − T̂ gcv

λ (v2)
∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣ 1n
n∑
i=1

t

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n, v1

)
− 1
n

n∑
i=1

t

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n, v2

)∣∣∣∣∣
≤ sup

|v1−v2|≤δ, v1,v2∈V

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x⊤
i β̂λ

1 − tr[Lλ]/n, v1

)
− t

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n, v2

)∣∣∣∣∣
≤ 1
n

n∑
i=1

sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣t
(

yi − x⊤
i β̂λ

1 − tr[Lλ]/n, v1

)
− t

(
yi − x⊤

i β̂λ
1 − tr[Lλ]/n, v2

)∣∣∣∣∣ . (B.40)

Note that the exact argument holds for the case of λ = 0 by replacing replacing the first argument of t
with the modified GCV errors. Since the family {t(·, v) : v ∈ V} is pointwise equicontinous, (B.39) and
(B.40) imply equicontinuity of {Tλ(v) : v ∈ V} and {T̂ gcv

λ (v) : v ∈ V}. Moreover, as V is compact and Vλ is
assumed to be unique, Lemma B.6.6 yields

V̂ gcv
λ − Vλ

a.s.−−→ 0.

Analogous argument shows the convergence for V̂ loo
λ by using the LOOCV part of Theorem 2.4.1.

B.5.2 Proof of Corollary 2.5.2
We verify that the conditions of Theorem 2.5.1 are satisfied. For τ ∈ (0, 1) and compact set U ⊆ R, the
family of error functions under consideration is TU = {tτ (·, u) : u ∈ U}, where each function tτ (·, u) is such
that for r ∈ R

tτ (r, u) = (r − u)(τ − I{r − u < 0}.
In other words, the evaluation map is given by

tτ (r, u) =
{

(r − u)τ if r ≥ u

(u− r)(1 − τ) if u > r.

A sufficient condition to establish equicontinuity of TU is to show that the functions in the family are
Lipschitz continuous with uniformly bounded Lipschitz constant (see, e.g., Section 1.8 of Tao, 2010). It is
easy to check that each function in the family TU is Lipschitz continuous with uniformly bounded constant
L = max{τ, 1 − τ}. Thus, the family TU is equicontinous over compact set U . Furthermore, since U is
assumed to contain the true quantile, Qλ(τ) is unique. Therefore, invoking Theorem 2.5.1 we obtain the
desired conclusion.
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B.6 Useful results
In this section, we record statements of various results adapted from other sources that are used in the
proofs throughout the supplement.

The following inequality bounding q-th moment of sum of random variables is by Burkholder (1973).
See also Bai and Silverstein (2010, Lemma 2.13).

Lemma B.6.1 (Burkholder’s inequality). Let {Zk} be a martingale difference sequence with respect to the
increasing σ-field {Fk}. Then, for q ≥ 2,

E
[∣∣∣∑

k

Zk

∣∣∣q] ≤ Cq

{
E

[(∑
k

E
[∣∣Zk∣∣2 ∣∣ Fk−1

])q/2
]

+ E
[∑

k

∣∣Zk∣∣q]}
for a constant Cq that only depends on q.

The following inequality bounding Lp norm of an inner product is from Erdos and Yau (2017, Lemma
7.8).

Lemma B.6.2 (Lq norm of an inner product). Let u ∈ Rp be a random vector consisting of independent
entries ui with E[ui] = 0, E[u2

i ] = 1, and ∥ui∥Lq
≤ Kq for i = 1, . . . , p. Let a ∈ Rp be a deterministic

vector. Then,
∥a⊤u∥Lq

≤ CqKq∥a∥2

for a constant Cq depending only on q.

The following lemma bounding q-th moment of a quadratic form is from Bai and Silverstein (2010,
Lemma B.26). See also Dobriban and Wager (2018, Lemma 7.10).

Lemma B.6.3 (Centered moment a quadratic form). Let W ∈ Rp×p be a deterministic matrix. Let
v ∈ Rp be a random vector of independent entries vi for i = 1, . . . , p with each E[vi] = 0, E[v2

i ] = 1, and
E[|vi|r] ≤ Mr. Then, for any q ≥ 1,

E
[∣∣v⊤Wv − tr[W ]

∣∣q] ≤ Cq

{(
M4 tr[WW⊤]

)q/2 +M2q tr
[
(WW⊤)q/2]}

for a constant Cq that only depends on q.

The following equivalence lemma for the denominator arising from GCV is adapted from Patil et al.
(2021, Lemma S.3.1).

Lemma B.6.4 (GCV denominator lemma). Suppose Assumption 2.1 holds. Then, for λ ∈ (λmin,∞) \ {0}

1 + tr
[
(X⊤X/n+ λI)†Σ

]
/n− 1

1 − tr
[
(X⊤X/n+ λI)†X⊤X/n

]
/n

a.s.−−→ 0

as n, p → ∞ with p/n → γ ∈ (0,∞), and for the case of λ = 0,

tr
[(
I − (X⊤X/n)†X⊤X/n

)
Σ
]
/n− 1

tr
[
(X⊤X/n)†

]
/n

a.s.−−→ 0,

as n, p → ∞ with p/n → γ ∈ (0,∞).

The following results are standard results on stochastic uniform convergence. See, e.g., Chapter 21 of
Davidson (1994).

Lemma B.6.5 (Stochastic uniform convergence). Let fn(θ), θ ∈ Θ be a family of stochastic functions.
Suppose Θ is a compact, and for every θ ∈ Θ, fn(θ) a.s.−−→ f(θ). Further, assume that {fn(θ)} is strongly
stochastic equicontinous. Then, as n → ∞,

sup
θ∈Θ

|fn(θ) − f(θ)| a.s.−−→ 0.
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A corollary of Lemma B.6.5 is the following statement.

Lemma B.6.6 (Convergence of minimizers). Assume the setting of Lemma B.6.5. Let ξ̂n and ξ be
minimizers of fn and f over θ ∈ Θ, respectively. Moreover, assume that f has a unique minimizer over Θ.
Then, as n → ∞,

ξ̂
a.s.−−→ ξ.

The following lemma is a simple application of Markov’s inequality along with the Borel-Cantelli lemma.

Lemma B.6.7 (Moment version of the Borel-Cantelli lemma). Let {Sn} be a sequence of random variables.
Suppose

{
E[|Sn|p]

}
forms a summable sequence for some p > 0. Then, as n → ∞, Sn

a.s.−−→ 0.

B.7 Additional numerical illustrations
In this section, we provide additional numerical illustrations to complement those included in the main
chapter. The details of feature and response models used throughout different experiments are described
next.

Feature model. The feature xi ∈ Rp is generated according to

xi = Σ1/2zi, (B.41)

where zi ∈ Rp contains independently sampled entires from a common distribution, and Σ ∈ Rp×p is a
positive semidefinite feature covariance matrix. The different distributions that we use for the components
of zi include: (1) Gaussian distribution, (2) Student’s t-distribution, and (3) Bernoulli distribution. These
represent a mix of both continuous and discrete, and light- and heavy-tailed distributions. We standardize
the distributions so that the mean is zero and the variance is one. The different feature covariance matrix
structures that we use include: (1) Identity (Σij = 1 when i = j and Σij = 0 when i ̸= j) and (2)
Autoregressive with parameter ρ (Σij = ρ|i−j| for all i, j).

Response model. Given xi, the response yi ∈ R is generated according to

yi = β⊤
0 xi +

(
x⊤
i Axi − tr[AΣ]

)
/p+ εi, (B.42)

where β0 ∈ Rp is a fixed signal vector, A ∈ Rp×p is a fixed matrix, and εi ∈ R is a random noise variable.
Note that we have subtracted the mean from the squared nonlinear component and scaled it to keep the
variance of the nonlinear component at the same order as the noise variance (see Mei and Montanari (2022)
for more details, for example). We again use either Gaussian, Student’s t, or Bernoulli distribution for the
random noise component, which is again standardized so that the mean is zero and the variance is one. We
refer to the value of β⊤

0 Σβ0 as the effective signal energy.

Train and test set sizes. In all of our experiments, the sample size for the train set is fixed at n = 2500.
To compute various out-of-sample quantities, we use a test set of 100000 indepedent observations. We use
three feature sizes of p = 100, p = 2000, and p = 5000 that represent low, moderate, and high-dimensional
settings (with aspect ratios p/n of 0.04, 0.8, and 2), respectively.

B.7.1 Distribution estimation
We first present illustrations with LOOCV reweighted errors for Figures 2.1 and 2.2 in Figures B.1 and B.2,
respectively.

Note that both in Figures 2.1 and 2.2 as well as Figures B.1 and B.2, the out-of-sample error distributions
and the associated GCV and LOOCV reweighted error distributions are all symmetric distributions. This
need not be the case. In Figure B.3, we consider a case in which the out-of-sample error distribution and
the estimated distributions based on GCV and LOOCV reweighted errors are negatively skewed.
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Figure B.1: A simulation with n = 2500 and p ∈ {100, 2000, 5000} features with a different p per panel
above. In each setting, the feature vectors xi are generated as in (B.41) with identity covariance with
components of zi sampled from a t-distribution with 5 degrees of freedom, and the responses yi are generated
as in (B.42). We fit the min-norm least squares solution, as in (2.1) with λ = 0. The blue curve in each
panel is a histogram of the true prediction error distribution, computed from 105 independent test samples.
The red curve is a histogram of the training errors; when p > n, this is just a point mass at zero. The
purple curve is a histogram of LOOCV reweighted training errors, as in (2.12) (when p < n in the first two
panels) and (2.14) (when p > n in the last panel). This tracks the blue curve very well in all three settings
again. Empirical results for GCV are provided in Figure 2.1.
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Figure B.2: An example with n = 2500, p = 5000. We generated each xi according to (B.41) with identity
covariance with the components of zi sampled from a symmetric Bernoulli distribution, and each response
yi is generated according to (B.42). The ridge parameter was fixed at λ = 1. Each panel above examines
weak convergence per (2.17) for a different function h of the error variable (identity, absolute value, and
square, from left to right). In each case, the LOOCV estimate (purple) tracks the true distribution (blue)
closely. Empirical results for GCV are in Figure 2.2.

B.7.2 Quantile estimation

We first provide further details on the setup used in Figure 2.3. We use a special “latent” space data model,
in which the true signal component lies in a small eigenspace of the feature covariance matrix. Such setup
was investigated in the context of ridge regression by Kobak et al. (2020); Wu and Xu (2020); Richards
et al. (2020); Hastie et al. (2022), who study the optimality of zero (or even negative) ridge regularization
for expected squared out-of-sample error under special cases. We verify empirically that such behavior
continues to hold even for general functionals of the out-of-sample error distribution and their plug-in
estimators based on GCV and LOOCV such as the length of prediction intervals, and even under nonlinear
model.

For numerical illustration, we consider an extreme case where the signal vector is aligned with the
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Figure B.3: An example with n = 2500, p = 5000. We generated each xi according to (B.41) with identity
covariance and components of zi sampled from a Gaussian distribution, and each response yi according to
(B.42) with noise variable εi distributed according to a Bernoulli random variable with success probability
0.8. The ridge parameter was fixed at λ = 1. Each panel above examines weak convergence per (2.17) for a
different function h of the error variable (identity, absolute value, and square, from left to right). In each
case, the GCV estimate (yellow) and LOOCV estimate (purple) track the true distribution (blue) closely.

eigenvector of the covariance matrix corresponding to the largest eigenvalue. More precisely, let Σ = WRW⊤

denote the eigenvalue decomposition of the covariance matrix Σ, where W ∈ Rp×p is a orthogonal
matrix whose columns w1, . . . , wp are eigenvectors of Σ and R ∈ Rp×p is a diagonal matrix whose entries
r1 ≥ · · · ≥ rp are eigenvalues of Σ in descending order. We then let β0 = ζw1, where ζ controls the effective
signal energy. Figure B.4 illustrate the coverage and length of prediction intervals (2.30) computed using
the LOOCV reweighted error distribution.
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Figure B.4: Illustration of empirical coverage and length of LOOCV prediction intervals constructed using
(2.30) against nominal coverage, where n = 2500, p = 5000. We generated features xi according to (B.41)
with autoregressive covariance structure (with ρ = 0.25) and t-distributed components of zi with 5 degrees
of freedom. The responses yi are generated according to (B.42) where the signal β0 is aligned with the top
eigenvector of the covariance matrix and the effective signal energy is 50. We see that intervals for any λ
have excellent finite-sample coverage (left), and the case of λ = 0 provides the smallest interval lengths
(right). Empirical results for GCV prediction intervals are in Figure B.4.

Finally, as a contrast we consider a “regular” setting in Figure B.5 where the signal does not have
any special structure, and the signal covariance is identity, where we see that regularization does in fact
help indicating the subtle interplay between the signal vector and feature covariance that causes the near
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optimality of ridgeless estimator for various functionals of the out-of-sample error distribution.
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Figure B.5: Illustration of empirical coverage and length of LOOCV prediction intervals (2.30) against
nominal coverage, where n = 2500, p = 5000. The features xi are generated according to (B.41) with
identity covariance and components of zi having Gaussian distribution. The responses yi are generated
according to (B.42) with the nonlinearity component set to 0 (thus a well-specified linear model) and a
random signal vector. We see again that the intervals for any λ have excellent finite-sample coverage (left)
and now the case of λ = 1 provides the smallest interval lengths (right). Similar trend holds for GCV
prediction intervals, and hence we do not present the corresponding figure for GCV.
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Appendix C

Supplement for Chapter 3

This supplement contains proofs and additional details for Chapter 3. The content of the supplement is
organized as follows.

• In Appendix C.1, we present proofs of results related to general cross-validation and model selection
from Sections 3.2.1 to 3.2.3.

• In Appendix C.2, we present proofs of results related to risk monotonization behavior of the zero-step
procedure from Section 3.3.3.

• In Appendix C.3, we present proofs for the verification of the deterministic risk profile assumption for
the MN2LS and MN1LS prediction procedures from Section 3.3.3.2.

• In Appendix C.4, we present proofs of results related to risk monotonization behavior of the one-step
procedure from Section 3.4.3.1.

• In Appendix C.5, we present proofs for the verification of the deterministic risk profile assumption
for arbitrary linear prediction procedures, and the MN2LS and MN1LS prediction procedures from
Section 3.4.3.2.

• In Appendix C.6, we collect various technical helper lemmas and their proofs that are used in proofs
in Appendices C.2 to C.5, and other miscellaneous details.

• In Appendix C.7, we list calculus rules for a certain notion of asymptotic equivalence of sequences of
matrices that are used in proofs in Appendices C.3 and C.5.

• In Appendix C.8, we record statements of useful concentration results available in the literature that
are used in proofs in Appendices C.1, C.3 and C.5.

• In Appendix C.9, we list some of the main notation used in this work.

C.1 Proofs related to general cross-validation and model selection
C.1.1 Proof of Proposition 3.2.1
Additive form. We will first prove the oracle risk inequalities (3.7) in additive form. Recall Algorithm 1
returns f̂ cv = f̂ ξ̂. Adding and subtracting minξ∈Ξ R(f̂ξ) and minξ∈Ξ R̂(f̂ξ) to R(f̂ cv), we can break R(f̂ cv)
into the following additive form:

R(f̂ cv) = min
ξ∈Ξ

R(f̂ξ) + min
ξ∈Ξ

R̂(f̂ξ) − min
ξ∈Ξ

R(f̂ξ) − min
ξ∈Ξ

R̂(f̂ξ) +R(f̂ ξ̂). (C.1)
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An application of triangle inequality then lets us upper bound R(f̂ cv) into sum of three terms:

R(f̂ cv) ≤ min
ξ∈Ξ

R(f̂ξ) +
∣∣∣min
ξ∈Ξ

R̂(f̂ξ) − min
ξ∈Ξ

R(f̂ξ)
∣∣∣︸ ︷︷ ︸

(a)

+
∣∣∣R(f̂ ξ̂) − min

ξ∈Ξ
R̂(f̂ξ)

∣∣∣︸ ︷︷ ︸
(b)

. (C.2)

We will next upper bound both terms (a) and (b) by ∆add
n to finish the first inequality of (3.7).

By definition (3.6a) of ∆add
n , for every ξ ∈ Ξ, we can write

R(f̂ξ) ≤ R̂(f̂ξ) + ∆add
n and R̂(f̂ξ) ≤ R(f̂ξ) + ∆add

n . (C.3)

Taking minimum on both sides of the inequalities in (C.3) then yields

min
ξ∈Ξ

R̂(f̂ξ) ≤ min
ξ∈Ξ

R(f̂ξ) + ∆add
n and min

ξ∈Ξ
R(f̂ξ) ≤ min

ξ∈Ξ
R̂(f̂ξ) + ∆add

n .

Combining the two inequalities, we arrive at the desired bound for term (a):∣∣∣min
ξ∈Ξ

R̂(f̂ξ) − min
ξ∈Ξ

R(f̂ξ)
∣∣∣ ≤ ∆add

n . (C.4)

Since ξ̂ ∈ arg minξ∈Ξ R̂(f̂ξ), we can obtain the following upper bound for term (b):∣∣∣R(f̂ ξ̂) − min
ξ∈Ξ

R̂(f̂ξ)
∣∣∣ =

∣∣∣R(f̂ ξ̂) − R̂(f̂ ξ̂)
∣∣∣ ≤ ∆add

n , (C.5)

where the inequality follows from the definition of ∆add
n .

Substituting the bounds (C.4) and (C.5) into (C.2), we conclude that∣∣∣R(f̂ cv) − min
ξ∈Ξ

R(f̂ξ)
∣∣∣ ≤ 2∆add

n . (C.6)

This implies the first inequality of (3.7). Taking expectations on the both sides of the first inequality
of (3.7), we obtain

E
[
R(f̂ cv)

]
≤ E

[
min
ξ∈Ξ

R(f̂ξ)
]

+ 2E
[
∆add
n

]
. (C.7)

It is clear that the first term on the right hand side is bounded above by minξ∈Ξ E[R(f̂ξ)], and thus we
obtain the second inequality of (3.7). This completes the proof of the oracle risk inequalities in additive
form.

Multiplicative form. We now turn to prove the oracle risk inequality (3.8) in multiplicative form. Recall
again that Algorithm 1 returns f̂ cv = f̂ ξ̂. In contrast to the proof of Proposition 3.2.1, we now break
R(f̂ cv) into the following multiplicative form:

R(f̂ cv) = R(f̂ cv)
R̂(f̂ cv)

· R̂(f̂ cv) = R(f̂ cv)
R̂(f̂ cv)

· R̂(f̂ ξ̂)

(i)= R(f̂ cv)
R̂(f̂ cv)

· min
ξ∈Ξ

R̂(f̂ξ)

= R(f̂ cv)
R̂(f̂ cv)

· min
ξ∈Ξ

[
R̂(f̂ξ)
R(f̂ξ)

·R(f̂ξ)
]

(ii)
≤ R(f̂ cv)

R̂(f̂ cv)
· min
ξ∈Ξ

[(
max
ρ∈Ξ

R̂(f̂ρ)
R(f̂ρ)

)
·R(f̂ξ)

]
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≤ R(f̂ cv)
R̂(f̂ cv)

·

(
max
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

)
· min
ξ∈Ξ

R(f̂ξ)

(iii)
≤ 1

min
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

·

(
max
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

)
· min
ξ∈Ξ

R(f̂ξ)

=
max
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

min
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

· min
ξ∈Ξ

R(f̂ξ). (C.8)

In the chain above, equality (i) follows from the definition of ξ̂ in Algorithm 1, inequality (ii) follows from
the inequality aibi ≤ (maxj aj)bi for any two sequences ai, bi, 1 ≤ i ≤ m, and inequality (iii) follows by
noting that

R(f̂ cv)
R̂(f̂ cv)

= 1
R̂(f̂ cv)
R(f̂ cv)

= 1
R̂(f̂ ξ̂)
R(f̂ ξ̂)

≤ 1

min
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

.

Now, from the definition of ∆mul
n , for all ξ ∈ Ξ, we have

1 − ∆mul
n ≤ R̂(f̂ξ)

R(f̂ξ)
≤ 1 + ∆mul

n .

In addition, since the loss function is assumed to be non-negative, both R(f̂ξ) and R̂(f̂ξ) are non-negative
for all ξ. Hence, we can bound

(1 − ∆mul
n )+ ≤ min

ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

≤ max
ξ∈Ξ

R̂(f̂ξ)
R(f̂ξ)

≤ 1 + ∆mul
n . (C.9)

Using (C.9) in (C.8) then implies the desired upper bound:

R(f̂ cv) ≤ 1 + ∆mul
n

(1 − ∆mul
n )+

· min
ξ∈Ξ

R(f̂ξ).

This completes the proof of the oracle risk inequality in multiplicative form.

C.1.2 Proof of Lemma 3.2.4
Tail bound. We begin by applying the Bernstein inequality (see Lemma C.8.1 for the exact statement)
on the random variables ℓ(Yj , f̂ξ(Xj)), j ∈ Ite with mean R(f̂ξ) conditionally on Dtr. (Note that the
random variables are i.i.d. conditionally on Dtr.) For any 0 < η < 1 and ξ ∈ Ξ, we have the tail bound

P

∣∣∣∣∣∣ 1
|Dte|

∑
j∈Ite

ℓ(Yj , f̂ξ(Xj)) −R(f̂ξ)

∣∣∣∣∣∣ ≥ C1 max
{√

σ̂2
ξ

log (2/η)
|Dte|

, σ̂ξ
log (2/η)

|Dte|

} ∣∣∣∣∣ Dtr

 ≤ η. (C.10)

Taking expectation on both sides, we get that the unconditional probability is also bounded by η. Denoting
the prediction risk estimate by R̂(f̂ξ), and choosing η = η/|Ξ|, for any ξ ∈ Ξ, we can equivalently write the
bound as

P

∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ C1σ̂ξ max


√

log (2|Ξ|/η)
nte

,
log (2|Ξ|/η)

nte


 ≤ η

|Ξ|
.

155



Applying union bound over ξ ∈ Ξ, for any 0 < η < 1/|Ξ|, we get uniform bound

P

max
ξ∈Ξ

∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ C1 max

ξ∈Ξ
σ̂ξ max


√

log (2|Ξ|/η)
nte

,
log (2|Ξ|/η)

nte


 ≤ η.

Using the definition of ∆add
n , and setting σ̂Ξ := maxk∈Ξ σ̂ξ, so far we have that

P

∆add
n ≥ C1σ̂Ξ max


√

log (2|Ξ|/η)
nte

,
log (2|Ξ|/η)

nte


 ≤ η. (C.11)

Choosing η = n−A for A > 0 provides the desired tail bound (for a modified constant C1 > 0)

P

∆add
n ≥ C1σ̂Ξ max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte


 ≤ n−A.

Expectation bound. We now turn to bounding E[∆add
n ]. Define the event

B∁
n :=

∆add
n ≥ C1C2 max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte


 .

Since P(σ̂n ≥ C2) ≤ n−A, combining this with (C.11), we conclude that P(B∁
n) ≤ 2n−A. For the case of

CEN = MOM, the proof follows from that of Lemma 3.2.5. This follows because bounded ψ1 norm implies
bounded L2 norm.

We can bound E[∆add
n ] by breaking the expected value as

E[∆add
n ] = E[∆add

n 1Bn
] + E[∆add

n 1B∁
n
]

≤ C1C2 max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte

+
(
E[(∆add

n )t]
)1/t (P(Bcn))1/r

≤ C1C2 max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte

+
(
E[(∆add

n )t]
)1/t (2n−A)1/r,

(C.12)

for Hölder conjugates t, r ≥ 2 satisfying 1/t+ 1/r = 1. Observe now that

E[(∆add
n )t] ≤ |Ξ| max

ξ∈Ξ
E
[∣∣R̂(f̂ξ) −R(f̂ξ)

∣∣t]
≤ |Ξ| max

ξ∈Ξ
E
[
E
[∣∣R̂(f̂ξ) −R(f̂ξ)

∣∣t ∣∣ Dtr

]]
≤ C3|Ξ| max

ξ∈Ξ
E

[
σ̂tξ max

{(
t

nte

)t/2
,

(
t

nte

)t}]
,

where the last inequality follows from integrating the quantile bound in (C.10) and C3 is a constant
potentially larger than C1. Substituting this bound in (C.12), we obtain the desired expectation bound

E[∆add
n ] ≤ C1C2 max


√

log (|Ξ|nA)
nte

,
log
(
|Ξ|nA

)
nte

+ C3n
−A/r|Ξ|1/t max

{√
t

nte
,
t

nte

}
max
ξ∈Ξ

(
E[σ̂tξ]

)1/t
.

for t, r ≥ 2 such that 1/r + 1/t = 1. This completes the proof.
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C.1.3 Proof of Lemma 3.2.5
Tail bound. The proof is similar to the proof of Lemma 3.2.4. Our main workhorse is going to be
Lemma C.8.2. We use η =

(
|Ξ|nA

)−1 in Algorithm 1. Applying the lemma with such η on the random
variables ℓ(Yj , f̂ξ(Xj)), j ∈ Ite conditionally on Dtr, for each ξ ∈ Ξ we get the tail bound

P

∣∣∣∣∣∣ 1
|Dte|

∑
j∈Ite

ℓ(Yj , f̂ξ(Xj)) −R(f̂ξ)

∣∣∣∣∣∣ ≥ C1σ̂ξ

√
log(|Ξ|nA)

|Dte|

∣∣∣∣∣ Dtr

 ≤ n−A

|Ξ|

for some absolute constant C1 > 0. In other words,

P

∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ C1σ̂ξ

√
log(|Ξ|nA)

nte

∣∣∣∣∣ Dtr

 ≤ n−A

|Ξ|
.

Integrating out Dtr and applying union bound over ξ ∈ Ξ then leads to the uniform bound

P

max
ξ∈Ξ

∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ C1 max

ξ∈Ξ
σ̂ξ

√
log(|Ξ|nA)

nte

 ≤ n−A. (C.13)

Substituting for the definitions of ∆add
n and σ̂Ξ gives the desired tail bound

P

∆add
n ≥ C1σ̂Ξ

√
log(|Ξ|nA)

nte

 ≤ n−A. (C.14)

Expectation bound. For bounding E[∆add
n ], we again follow similar strategy as in the proof of

Lemma 3.2.4. In order to bound certain expectations, we begin by extending the tail bound (C.14).
From the assumption, P(σ̂Ξ ≥ C2) ≤ n−A for a constant C2 > 0. For such a constant, consider the event

B∁
n :=

∆add
n ≥ C1C2

√
log(|Ξ|nA)

nte

 .

Conditioning on the event {σ̂Ξ ≥ C2}, we can bound the probability of B∁
n as follows:

P(B∁
n) = P

∆add
n ≥ C1C2

√
log(|Ξ|nA)

nte
, σ̂Ξ ≤ C2

+ P

∆add
n ≥ C1C2

√
log(|Ξ|nA)

nte
, σ̂Ξ ≥ C2


≤ P

∆add
n ≥ C1σ̂Ξ

√
log(|Ξ|nA)

nte

+ P (σ̂n ≥ C2) ≤ 2
nA

,

where we used the bound from (C.14). We are now ready to bound E[∆add
n ] by splitting using the event

B∁
n. We have

E
[
∆add
n

]
= E

[
∆add
n 1Bn

]
+ E

[
∆add
n 1B∁

n

]
≤ C1C2

√
log(|Ξ|nA)

nte
+
(
P(B∁

n)
)1/2 (

E[|∆add
n |2]

)1/2

≤ C1C2

√
log(|Ξ|nA)

nte
+
(
2n−A)1/2 (E[|∆add

n |2]
)1/2 (C.15)
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where in the first inequality, we used Cauchy-Schwartz inequality for the second term. It remains to bound
E[|∆add

n |2], which we do below. We have

E[
∣∣∆add

n

∣∣2] = E
[
max
ξ∈Ξ

∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣2] ≤ |Ξ| max

ξ∈Ξ
E
[
|R̂(f̂ξ) −R(f̂ξ)|2

]
.

For bounding the second term, recall that the MOM procedure computes R̂(f̂ξ) as the median of empirical
means computed on B partitions of the test data. For each of the B partitions, the variance of the empirical
mean is σ̂2

ξ/(nte/B). To bound the variance of the median of means on B partitions, we invoke Theorem 1
of Gribkova (2020) (with k = 2, ρ = 1, and i corresponding to the median position). Note that each of the
B empirical means are independent and identically distributed. This provides

E
[∣∣∣R̂(f̂ξ) −R(f̂ξ)

∣∣∣2 ∣∣∣ Dtr

]
≤ C

(
σ̂2
ξ

nte/B

)
≤ C

Bσ̂2
ξ

nte
.

for some absolute constant C. Thus,

(
E
[
|∆add

n |2
])1/2 ≤ C

(
|Ξ| B

nte
max
ξ∈Ξ

E[σ̂2
ξ ]
)1/2

≤ C|Ξ|1/2
√

B

nte
max
ξ∈Ξ

(
E[σ̂2

ξ ]
)1/2

Recalling B = ⌈8 log(|Ξ|nA)⌉ and combining this bound with (C.15), we finally have the desired expectation
bound

E
[
∆add
n

]
≤ C1C2

√
log(|Ξ|nA)

nte
+ C3n

−A/2|Ξ|1/2

√
log(|Ξ|nA)

nte
max
ξ∈Ξ

(
E[σ̂2

ξ ]
)1/2

.

for some absolute constant C3 > 0. This completes the proof.

C.1.4 Proof of Lemma 3.2.9
As argued in the proof of Lemma 3.2.4, using Lemma C.8.1, for any A > 0, we have the tail bound:

P

(∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ Cσ̂ξ max

{√
log(|Ξ|nA)

|Dte|
,

log(|Ξ|nA)
|Dte|

} ∣∣∣∣∣ Dtr

)
≤ n−A

|Ξ|

for some universal constant C > 0. By diving R(f̂ξ) on the both side of error event, and denoting σ̂ξ/R(f̂ξ)
by κ̂ξ, equivalently we have

P

(∣∣∣∣∣ R̂(f̂ξ)
R(f̂ξ)

− 1
∣∣∣∣∣ ≥ Cκ̂ξ max

{√
log(|Ξ|nA)

|Dte|
,

log(|Ξ|nA)
|Dte|

} ∣∣∣∣∣ Dtr

)
≤ n−A

|Ξ|
.

Integrating over randomness in Dtr, and applying union bound over ξ ∈ Ξ, we obtain

P

max
ξ∈Ξ

∣∣∣∣ R̂(f̂ξ)
R(f̂ξ)

− 1
∣∣∣∣ ≥ C max

ξ∈Ξ
κ̂ξ max


√

log(|Ξ|nA)
nte

,
log(|Ξ|nA)

nte


 ≤ n−A.

In other words, in terms ∆mul
n and κ̂Ξ, we have

P

∆mul
n ≥ Cκ̂Ξ max


√

log(|Ξ|nA)
nte

,
log(|Ξ|nA)

nte


 ≤ n−A,

as desired. This completes the proof.
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C.1.5 Proof of Lemma 3.2.10
As argued in the proof of Lemma 3.2.5, using Lemma C.8.2, for any A > 0, we have the following tail
bound:

P

(∣∣∣R̂(f̂ξ) −R(f̂ξ)
∣∣∣ ≥ Cσ̂ξ

√
log(|Ξ|nA)

|Dte|

∣∣∣∣∣ Dtr

)
≤ n−A

|Ξ|

for some universal constant C > 0. By diving R(f̂ξ) on the both side of error event, and denoting σ̂ξ/R(f̂ξ)
by κ̂ξ, we obtain

P

(∣∣∣∣∣ R̂(f̂ξ)
R(f̂ξ)

− 1
∣∣∣∣∣ ≥ Cκ̂ξ

√
log(|Ξ|nA)

|Dte|

∣∣∣∣∣ Dtr

)
≤ n−A

|Ξ|
.

Integrating over randomness in Dtr, and applying union bound over ξ ∈ Ξ, this implies that

P

max
ξ∈Ξ

∣∣∣∣ R̂(f̂ξ)
R(f̂ξ)

− 1
∣∣∣∣ ≥ C max

ξ∈Ξ
κ̂ξ

√
log(|Ξ|nA)

nte

 ≤ n−A.

Writing in terms ∆mul
n and κ̂Ξ, we arrive at the desired bound:

P

∆mul
n ≥ Cκ̂Ξ

√
log(|Ξ|nA)

nte

 ≤ n−A.

This finishes the proof.

C.1.6 Proof of Proposition 3.2.14
Part 1. For the first part, observe that |ℓ(Y0, f̂(X0))| = max{0, 1 − Y0f̂(X0)} ≤ 2 assuming |Y0| ≤ 1 and
|f̂(X0)| ≤ 1. For a bounded random variable Z, ∥Z∥ψ2 ≲ ∥Z∥∞ (see, e.g., Example 2.5.8 of Vershynin
(2018)). Thus, the random variable ℓ(Y0, f̂(X0)) is conditionally sub-Gaussian with sub-Gaussian norm 2
(up to constants), and consequently sub-exponential with the same sub-exponential norm upper bound.
The conditional L2 norm bound follows similarly.

Part 2. The second part follows in the same vein by noting that ℓ(Y0, f̂(X0)) = 1
Y0 ̸=f̂(X0) only takes

values 0 or 1, and Bernoulli random variables are sub-Gaussian with sub-Gaussian norm 1 (up to constants)
and hence sub-exponential with the same sub-exponential norm upper bound. The bound on the conditional
L2 norm follows analogously.

C.1.7 Proof of Theorem 3.2.15
An outline for the proof is already provided in Section 3.2.3. The theorem follows by combining the additive
form of the oracle inequality from Proposition 3.2.1, along with the probabilistic bounds on ∆add from
Lemmas 3.2.4 and 3.2.5, and the bounds on conditional ψ1 and L2 norm bounds from Proposition 3.2.14.

C.1.8 Proof of Proposition 3.2.16
Part 1. For the first part, we bound the ψ1 norm of the squared error by the squared ψ2 norm of the
error to get

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
= ∥(Y0 −X⊤

0 β̂)2∥ψ1|Dn
≤ ∥Y0 −X⊤

0 β̂∥2
ψ2|Dn

, (C.16)

where the inequality follows by Lemma 2.7.7 of Vershynin (2018). Note that for any β ∈ Rp, we have

(Y0 −X⊤
0 β̂) = (Y0 −X⊤

0 β) +X⊤
0 (β − β̂). (C.17)
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Because ∥Z1 + Z2∥ψ2 ≤ ∥Z1∥ψ2 + ∥Z∥ψ2 we can bound

∥Y0 −X⊤
0 β̂∥ψ2|Dn

≤ ∥Y0 −X⊤
0 β∥ψ2 + ∥X⊤

0 (β − β̂)∥ψ2|Dn
. (C.18)

Noting that Y0 −X⊤
0 β = (Y0, X0)⊤(1,−β) and (β− β̂) is a fixed vector conditioned on Dn, by using ψ2 −L2

equivalence on (X0, Y0), we have

∥Y0 −X⊤
0 β∥ψ2 ≤ τ∥Y0 −X⊤

0 β∥L2 and ∥X⊤
0 (β − β̂)∥ψ2|Dn

≤ τ∥X⊤
0 (β − β̂)∥L2|Dn

= τ∥β̂ − β∥Σ, (C.19)

where in the last inequality we used the fact that E[X0] = 0 and E[X0X
⊤
0 ] = Σ. Thus, combining (C.16),

(C.18), and (C.19), for β ∈ Rp, we have

∥ℓ(Y0 −X⊤
0 β̂)∥ψ1|Dn

≤ (∥Y0 −X⊤
0 β∥ψ2 + ∥β̂ − β∥Σ)2.

Taking infimum over β, we have that for squared loss

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ τ2 inf

β∈Rp
(∥Y0 −X⊤

0 β∥ψ2 + ∥β̂ − β∥Σ)2,

as desired. This completes the proof of the first inequality in (3.15). For the second inequality in (3.15),
using the ψ2 − L2 equivalence on the vector (X0, Y0), observe that

E[ℓ(Y0, f̂(X0)) | Dn] = E[(Y0 −X⊤
0 β̂)2 | Dn] = ∥Y0 −X⊤

0 ∥2
L2|Dn

. (C.20)

Hence, from (C.16) and (C.20), we have

∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤

∥Y0 −X⊤
0 β̂∥2

ψ2|Dn

∥Y0 −X⊤
0 β̂∥2

L2|Dn

=
(

∥(Y0, X0)(1,−β̂)∥ψ2|Dn

∥(Y0, X0)(1,−β̂)∥L2|Dn

)2

≤ τ2,

as desired. This completes the proof of the first part.

Part 2. We now turn to the second part to bound the conditional L2 norm of the square loss. For the
square loss, note that

∥ℓ(Y0, f̂(X0))∥2
L2|Dn

= E[(Y0 − f̂(X0))4 | Dn]. (C.21)
Using the decomposition (C.17) and triangle inequality with respect to the L4 norm, we have

E[(Y0 −X⊤
0 β̂)4 | Dn]1/4 ≤ E[(Y0 −X⊤

0 β)4 | Dn]1/4 + E[X⊤
0 (β − β̂)4 | Dn]1/4 (C.22)

Using the L4 − L2 equivalence for (Y0, X0), we can bound

∥Y0 −X⊤
0 β∥L4 ≤ τ∥Y0 −X⊤

0 β∥L2 and ∥X⊤
0 (β − β̂)∥L4|Dn

≤ τ∥X⊤
0 (β − β̂)∥L2|Dn

. (C.23)

Thus, combining (C.21), (C.22), and (C.23), we have for any β ∈ Rp,

∥(Y0, f̂(X0))∥L2|Dn
≤ (τ∥Y0 −X⊤

0 β∥L2 + τ∥β̂ − β∥Σ)2 ≤ τ2(∥Y0 −X⊤
0 β∥L2 + ∥β̂ − β∥Σ)2.

This completes the proof of first inequality in (3.16). For the second inequality of (3.16), note that

∥ℓ(Y0, f̂(X0))∥L2|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤

∥Y0 − f̂(X0)∥2
L4|Dn

∥Y0 − f̂(X0)∥2
L2|Dn

=
(

∥(Y0, X0)(1,−β̂)∥L4|Dn

∥(Y0, X0)(1,−β̂)∥L2|Dn

)2

≤ τ2.

This concludes the proof of the second part.

C.1.9 Proof of Proposition 3.2.17
The proof is similar to that of Proposition 3.2.16.
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Part 1. From the decomposition (C.17) and the triangle inequality on ψ1 norm, we have for any β ∈ Rp,

∥Y0 −X⊤
0 β̂∥ψ1|Dn

≤ ∥Y0 −X⊤
0 β∥ψ1 + ∥X⊤

0 (β − β̂)∥ψ1|Dn
. (C.24)

Using the ψ1 − L1 equivalence of (X0, Y0), note that

∥Y0 −X⊤
0 β∥ψ1 ≤ τ∥Y0 −X⊤

0 β∥L1 and ∥X⊤
0 (β − β̂)∥ψ1|Dn

≤ τ∥X⊤
0 (β − β̂)∥ψ1|Dn

. (C.25)

Thus, from (C.24) and (C.25), for any β ∈ Rp, we have

∥Y0 −X⊤
0 β̂∥ψ1|Dn

≤ τ(∥Y0 −X⊤
0 β∥L1 + ∥X⊤

0 (β̂ − β)∥L1|Dn
).

Now taking infimum over β ∈ Rp yields the first inequality of (3.18). To show the second inequality, observe
that

∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤

∥Y0 −X⊤
0 β̂∥ψ1|Dn

∥Y0 −X⊤
0 β̂∥L1|Dn

≤ τ,

as desired. This finishes the proof.

Part 2. The second part follows analogously to the first part by using the L2 −L1 equivalence on (X0, Y0).

C.1.10 Proof of Proposition 3.2.18
We start by writing the loss as

ℓ(Y0, f̂(X0)) = Y0 log(1 + e−X⊤
0 β̂) + (1 − Y0) log(1 + eX

⊤
0 β̂)

= KL(Y0, (1 + exp(−X⊤
0 β̂))−1).

Observe that the loss is non-negative since log(1 + et) ≥ 0 for all t.

Upper bounds on ψ1 and L2 norms. We will first obtain an upper on the loss and consequently on
the ψ1 and L2 norms of the loss. Because Y0 takes values 0 or 1, we have that

ℓ(Y0, f̂(X0)) ≤ max
{

log(1 + e−X⊤
0 β̂), log(1 + eX

⊤
0 β̂)
}

≤ log(1 + e|X⊤
0 β̂|),

where the second inequality follows since t 7→ et is monotonically increasing in t. Now using the following
bound on log(1 + e|t|):

log(1 + e|t|) ≤

{
log 2 if e|t| ≤ 1
log(2e|t|) = log 2 + |t| otherwise,

we can upper bound the loss by
ℓ(Y0, f̂(X0)) ≤ |X⊤

0 β̂| + log 2.

Hence, we can upper bound the ψ1 and L2 norm of the loss as follows:

∥ℓ(Y0, f̂(X0))∥ψ1|Dn
≤ log(2) + ∥X⊤

0 β̂∥ψ1|Dn
, (C.26)

(E[ℓ2(Y0, f̂(X0)) | Dn])1/2 ≤ log(2) + (E[|X⊤
0 β̂|2 | Dn])1/2. (C.27)
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Lower bound on expectation. Next we obtain a lower bound on E[ℓ(Y0, f̂(X0)) | Dn]. Setting
p(x) = E[Y0|X0 = x], it is clear that

E[ℓ(Y0, f̂(X0)) | Dn, X0] = p(X0) log(1 + exp(−X⊤
0 β̂)) + (1 − p(X0)) log(1 + exp(X⊤

0 β̂)).

Because 0 < pmin ≤ min{p(x), 1 − p(x)} for all x, we have

E[ℓ(Y0, f̂(X0)) | Dn] ≥ pmin E[max{log(1 + exp(−X⊤
0 β̂)), log(1 + exp(X⊤

0 β̂))} | Dn]
= pmin E[log(1 + exp(|X⊤

0 β̂|)) | Dn]

≥ pmin

2 E[log(2) + |X⊤
0 β̂| | Dn] = pmin

2 (log(2) + E|X⊤
0 β̂|), (C.28)

where the second equality follows since t 7→ et is monotonically increasing in t ∈ R, and the last inequality
follows from the fact that 1/2 ≤ log(1 + exp(x))/(log(2) + x) ≤ 1 for all x ≥ 0.

Using (C.26) and (C.28), we have

∥ℓ(Y0, f̂(X0))∥ψ1|Dn

E[ℓ(Y0, f̂(X0)) | Dn]
≤

∥X⊤
0 β̂∥ψ1|Dn

+ log(2)
pmin(E[|X⊤

0 β̂| | Dn] + log(2))/2
≤

τ∥X⊤
0 β̂∥L1|Dn

+ log(2)
pmin(τ∥X⊤

0 β̂∥L1|Dn
+ log(2))/2

= 2τp−1
min.

This proves the first part of Proposition 3.2.18. A similar bound holds for the second inequality of
Proposition 3.2.18 using upper bound from (C.27) and lower bound (C.28). This completes the proof.

C.1.11 Proof of Theorem 3.2.22
An outline for the proof is provided in Section 3.2.3. The theorem follows by combining the multiplicative
form of the oracle inequality from Proposition 3.2.1, along with probabilistic bounds on ∆mul from
Lemmas 3.2.9 and 3.2.10, and the bounds on ratio of conditional ψ1 and L1 norms, and L2 and L1 norms
from Proposition 3.2.16.

C.2 Proofs related to risk monotonization for zero-step procedure
C.2.1 Proof of Theorem 3.3.4
An outline for the proof is already provided in Section 3.3.3. For the sake of completeness, we briefly
summarize the main steps below.

The deterministic additive and multiplicative oracle risk inequalities from Proposition 3.2.1, along with
probabilistic bounds from Lemmas 3.2.4, 3.2.5, 3.2.9 and 3.2.10, provide the following bound on the risk of
the zero-step predictor

R(f̂ zs) =
{

minξ∈Ξn
R(f̂ξ) +Op(1)

√
logn/nte if σ̂Ξ = Op(1),

minξ∈Ξn R(f̂ξ)
(
1 +Op(1)

√
logn/nte

)
if κ̂ξ = Op(1).

(C.29)

Depending on the value of M , we now bound the term minξ∈Ξn
R(f̂ξ) under the assumptions (DET*) or

(DET).

Case of M = 1. Under (DET*), we have from (3.33),

min
ξ∈Ξn

R(f̂ξ) = min
ξ∈Ξn

R(f̃(·; Dξ,1
tr )) = Rdet

↗ (n; f̃)(1 + op(1)). (C.30)

Combining (C.30) with (C.29) yields

R(f̂ zs) =
{
Rdet

↗ (n; f̃)(1 + op(1)) +Op(1)
√

logn/nte if σ̂Ξ = Op(1)
Rdet

↗ (n; f̃)(1 + op(1)) if κ̂Ξ = Op(1)

= Rdet
↗ (n; f̃)

{
1 + op(1) +

√
logn/nte/R

det
↗ (n; f̃) if σ̂Ξ = Op(1)

1 + op(1) if κ̂Ξ = Op(1).

(C.31)
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Thus, under (O1) or (O2), we have |R(f̂ zs) −Rdet
↗ (n; f̃)|/Rdet

↗ (n; f̃) = op(1) as desired.

Case of M > 1. Under (DET), we have from (3.32),

min
ξ∈Ξn

R(f̂ξ) ≤ Rdet
↗ (n; f̃)(1 + op(1)). (C.32)

Now similar to the case of M = 1, combining (C.32) with (C.29), and under (O1) or (O2), we have that
(R(f̂ zs) −Rdet

↗ (n; f̃))+/R
det
↗ (n; f̃) = op(1) as claimed. This finishes the proof.

C.2.2 Proof of Lemma 3.3.8
Our goal is to verify (DETPA-0), i.e., existence of a deterministic profile Rdet(·; f̃) such that for all
non-stochastic sequences ξ⋆n ∈ arg minξ∈Ξn

Rdet(pn/nξ; f̃) and 1 ≤ j ≤ M ,

R(f̃(·; Dξ⋆
n,j

tr )) −Rdet(pn/nξ⋆
n
; f̃)

Rdet(pn/nξ⋆
n
; f̃)

p−→ 0,

as n → ∞ under (PA(γ)). Recall here f̃(·; Dξ⋆
n,j

tr ), 1 ≤ j ≤ M , is a predictor trained on the dataset Dξ⋆
n,j

tr
of sample size nξ⋆

n
= ntr − ξ⋆n⌊nν⌋ and feature dimension pn. We will make a series of reductions to verify

(DETPA-0) from the assumptions of Lemma 3.3.8.
First, note that R(f̃(·; Dξn,j

tr )) for 1 ≤ j ≤ M are identically distributed. It thus suffices to pick j = 1,
which we will do below and drop the index for notational brevity. Second, since R(f̃(·; Dkm)) > 0 for all
km, it suffices to show that as n → ∞ under (PA(γ)),

R(f̃(·; Dξ⋆
n

tr )) −Rdet(pn/nξ⋆
n
; f̃) p−→ 0, where ξ⋆n ∈ arg min

ξ∈Ξn

Rdet(pn/nξ; f̃).

More explicitly, that for all ϵ > 0, it suffices to verify that as n → ∞ under (PA(γ)),

P
(
|R(f̃(·; Dξ⋆

n
tr )) −Rdet(pn/nξ⋆

n
; f̃)| ≥ ϵ

)
→ 0, where ξ⋆n ∈ arg min

ξ∈Ξn

Rdet(pn/nξ; f̃).

Now, we will do our final reduction. Fix ϵ > 0. Define a sequence {hn(ϵ)}n≥1 as follows:

hn(ϵ) := P
(
|R(f̃(·; Dξ⋆

n
tr )) −Rdet(pn/nξ⋆

n
; f̃)| ≥ ϵ

)
.

From the discussion in Section 3.3.3.1, we know that pn/nξ⋆
n

may not necessarily converge as n → ∞. But
applying Lemma C.6.3 on the sequence {hn(ϵ)}n≥1, in order to verify that hn(ϵ) → 0 as n → ∞, it suffices
to show that for any index subsequence {nk}k≥1, there exists a further subsequence {nkl

}l≥1 such that
hnkl

(ϵ) → 0 as l → 0. Towards that goal, fix an arbitrary index subsequence {nk}k≥1. We will appeal
to Lemma C.6.5 to construct the desired subsequence {nkl

}l≥1 along which we will argue that hnkl
→ 0

provided the assumptions of Lemma 3.3.8 are satisfied. In particular, from Lemma C.6.1, note that since
ntr/n → 1 as n → ∞, we have ΠΞn(ζ) → ζ for any ζ ∈ [γ,∞] as n → ∞. Now applying Lemma C.6.5 on
Rdet(·; f̃) and the grid Ξn guarantees that for any subsequence {pnk

/nξ⋆
nk

}k≥1, there exists a subsequence
{pnkl

/nξ⋆
nkl

}l≥1 such that as l → ∞,

pn
nξ⋆

nkl

→ ϕ ∈ arg min
ζ∈[γ,∞]

Rdet(ζ; f̃). (C.33)

We will now show that hnkl
(ϵ) → 0 as l → ∞ if the profile convergence assumption (DETPAR-0) of

Lemma 3.3.8 is satisfied, i.e., for a dataset Dkm with km observations and pm features, there exists Rdet(·; f̃)
such that

R(f̃(·; Dkm
)) p−→ Rdet(ϕ; f̃) whenever pm

km
→ ϕ ∈ arg min

ζ∈[γ,∞]
Rdet(ζ; f̃). (C.34)
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This follows easily because the profile convergence condition (C.34) implies that as l → ∞,

P
(∣∣∣∣R(f̃(·; D

ξ⋆
nkl

tr )) −Rdet(ϕ; f̃)
∣∣∣∣ ≥ ϵ

)
→ 0 whenever pn

nξ⋆
nkl

→ ϕ ∈ arg min
ζ∈[γ,∞]

Rdet(ζ; f̃).

But since Rdet(·; f̃) is continuous at ϕ, and pn/nξ⋆
nkl

→ ϕ ∈ arg minζ∈[γ,∞] R
det(ζ; f̃) as l → ∞ from (C.33)

this implies that, as l → ∞,

P
(∣∣∣∣R(f̃(·; D

ξ⋆
nkl

tr )) −Rdet(pn/nξ⋆
nkl

; f̃)
∣∣∣∣ ≥ ϵ

)
= h(nkl

) → 0.

This concludes the proof.

C.2.3 Proof of Proposition 3.3.9
In order to verify lower semicontinuity of h, if suffices to show that for any t ∈ R≥0, the set {x : h(x) ≤ t}
is closed. Because limx→b− h(x) = ∞ and h continuous on [a, b), there exists b−(t) < b such that h(x) > t
for all x > b−(t). Similarly, there exists b+(t) > b such that h(x) > t for all x < b+(t). Note that

{x : h(x) ≤ t} = {x : h|[a,b−(t)](x) ≤ t} ∪ {x : h|[b+(t),c](x) ≤ t}.

Because h is continuous on [a, b−(t)] and [b+(t), c], it is also lower semicontinuous on these intervals, and
hence the corresponding level sets are closed. Because the intersection of two closed sets is closed, the
statement follows.

C.2.4 Proof of Proposition 3.3.10
The proof builds on similar idea as that in the proof of Lemma C.6.7 and employs a proof by contradiction.
However, since the random functions in this case (which are conditional prediction risks) are not simply
indexed by n (but also by other properties of the data distributions), we will need to do a bit more work.

We wish to show that Rdet(·; f̃) is continuous on I ∈ (0,∞). We will first show that Rdet(·; f̃) is
Q-continuous (see Definition C.6.8) on I and use Lemma C.6.9 to lift Q-continuity to R-continuity. Towards
showing Q-continuity, for the sake of contradiction, suppose Rdet(·; f̃) is Q-discontinuous at some point
ϕ∞ ∈ I. This implies that there exists a sequence {ϕr}r≥1 in Q>0 such that ϕr → ϕ∞, but for some ϵ > 0
and all r ≥ 1,

Rdet(ϕr; f̃) /∈ [Rdet(ϕ∞; f̃) − 2ϵ, Rdet(ϕ∞; f̃) + 2ϵ]. (C.35)

(Note that Rdet(ϕr; f̃) ̸→ Rdet(ϕ∞; f̃) as ϕr → ϕ∞.) The proof strategy is now to construct a sequence
of datasets {D′

km
}m≥1 whose aspects ratios pm/km converge to ϕ∞, but the conditional prediction risks

R(f̃(·; D′
km

)) of predictors f̃(·; D′
km

) trained on these datasets do not converge to Rdet(ϕ∞; f̃), thereby
supplying a contradiction to the hypothesis of continuous convergence of R(f̃(·; D′

km
)) to Rdet(ϕ∞; f̃). We

will construct such a sequence of datasets below.
For every r ≥ 1, construct a sequence of datasets {Dϕr

km
}m≥1 with km observations and pm = ϕikm

features. (Since ϕr ∈ Q>0, the resulting pm is a positive integer.) See Figure C.1 for a visual illustration.
For every r ≥ 1, from the assumption of Proposition 3.3.10, we have that

R(f̃(·; Dϕr

km
)) p−→ Rdet(ϕr; f̃) (C.36)

as km, pm → ∞ because pm/km → ϕr as m → ∞. Now, fix p ∈ (0, 1). For r = 1, the convergence in (C.36)
guarantees that there exists an integer m1 ≥ 1 such that the event

Ωm1 := {|R(f̃(·; Dϕ1
km1

)) −Rdet(ϕ1; f̃)| ≤ ϵ} (C.37)

has probability at least p. In addition, on the event Ωm1 , by the triangle inequality we have that

|R(f̃(·; Dϕ1
km1

)) −Rdet(ϕ∞; f̃)| ≥ |Rdet(ϕ1; f̃) −Rdet(ϕ∞; f̃)| − |R(f̃(·; Dϕ1
km1

)) −Rdet(ϕ1; f̃)| > ϵ, (C.38)
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where the second inequality follows by using (C.35) and (C.37). Next, for r ≥ 2, let mr > mr−1 be an
integer such that the event

Ωmr
:= {|R(f̃(·; Dϕr

kmr
)) −Rdet(ϕr; f̃)| ≤ ϵ} (C.39)

has probability at least p. Such sequence of integers {mr}r≥2 and the associated events {Ωmr }r≥2 indeed
exist as a consequence of the convergence in (C.36) for r ≥ 2. On each Ωmr

|R(f̃(·; Dϕr

kmr
)) −Rdet(ϕ∞; f̃)| > ϵ

by similar reasoning as that for (C.38) using (C.35) and (C.39) for r ≥ 2. Moreover, note that since
mr > m, mr → ∞ as r → ∞.

Consider now a sequence of datasets {D′
km

}m≥1 such that:

1. The first m1 datasets are {Dϕ1
km

}m1
m=1 that have km number of observations and pm = ϕ1km number

of features for m = 1, . . . ,m1.

2. The next m2 −m1 datasets are {Dϕ2
km

}m2
m=m1+1 that have km number of observations and pm = ϕ2km

number of features for m = m1 + 1, . . . ,m2.

3. The next m3 −m2 datasets are {Dϕ3
km

}m3
m=m2+1 that have km number of observations and pm = ϕ3km

number of features for m = m2 + 1, . . . ,m3.

4. And so on ...
We will argue now that the sequence of datasets {D′

km
}m≥1 works for our promised contradiction. Observe

that in the construction above the aspect ratios pm/km → ϕ∞ because ϕr → ϕ∞. However, we have that
for all r ≥ 1,

P(|R(f̃(·; D′
kmr

)) −Rdet(ϕ∞; f̃)| > ϵ) = P(|R(f̃(·; Dkmr
)) −Rdet(ϕ∞; f̃)| > ϵ) ≥ p.

Therefore, there exists an ϵ > 0 for which there is no M ≥ 1 such that for m ≥ M ,

P(|R(f̃(·; D′
km

)) −Rdet(ϕ∞; f̃)| > ϵ) < p/2.

Hence, we get the desired contraction that

R(f̃(·; D′
km

)) ̸ p−→ Rdet(ϕ∞, f̃)

as km, pm → ∞ and pm/km → ϕ∞. This completes the proof.
It is worth pointing out that the proof above bears similarity to the proof of Lemma C.6.9. It is possible

to combine the two and not have to go through the route of Q-continuity. We, however, find it easier to
break them so that the main ideas are easier to digest even though it leads to some repetition of overall
proof strategies.

C.2.5 Proof of Theorem 3.3.11
We will split the proof depending on the value of M .

Case of M = 1. Consider first the case when M = 1. In this case, for every ξ ∈ Ξ, f̂ξ = f̃ξ1 (and thus,
f̃⋆ = f̂ cv), which we denote by f̃ξ for simplicity of notation. To bound the desired difference, we break it
into three terms:(

R(f̂ cv) − min
ζ≥p/n

Rdet(f̃ ; ζ)
)

+
=
(
R(f̂ cv) − min

ξ∈Ξ
R(f̃ξ)

)
+

+
(

min
ξ∈Ξ

R(f̃ξ) − min
ξ∈Ξ

Rdet
(
f̃ ; pn
nξ

))
+

+
(

min
ξ∈Ξ

Rdet
(
f̃ ; pn
nξ

)
− min
ζ≥p/n

Rdet(f̃ ; ζ)
)

+
.

(C.40)
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Figure C.1: Illustration of construction of grid of datasets used in the proof of Proposition 3.3.10. (Side note:
as can be seen from the figure, the argument bears similarity to the standard diagonalization argument.)

This inequality follows from the fact that (a+ b+ c)+ ≤ (a)+ + (b)+ + (c)+ for any a, b, c ∈ R. We show
below that each of the three terms asymptotically vanish in probability as n → ∞ with p/n ≤ Γ.

Term 1: Because |Ξ| ≤ n1−ν ≤ n, and σ̂Ξ = op(
√
nν/ log(n)), following Remark 3.2.8, under the

assumptions of Lemma 3.2.4 or Lemma 3.2.5, we have∣∣∣∣R(f̃ cv) − min
ξ∈Ξ

R(f̃ξ)
∣∣∣∣ = op(1), (C.41)

which proves that the first term on the right hand side of (C.40) converges to zero in probability.
Term 2: To deal with the second term on the right hand side of (C.40), define

ξ⋆n ∈ arg min
ξ∈Ξ

Rdet
(
f̃ ; pn

nξ

)
.

Because Rdet(·; ·) is a non-stochastic function, {ξ⋆n}n≥1 is a non-stochastic sequence and further, trivially,
ξ⋆i ∈ Ξ for all n ≥ 1. Observe now that

min
ξ∈Ξ

R(f̃ξ) ≤ R(f̃ξ
⋆
n)

= R(f̃ξ
⋆
n) −Rdet

(
f̃ ; pn

nξ⋆
n

)
+ min

ξ∈Ξ
Rdet

(
f̃ ; pn

nξ

)
.

(C.42)
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Hence, assumption (DETPA-0) implies that(
min
ξ∈Ξ

R(f̃ξ) − min
ξ∈Ξ

Rdet
(
f̃ ; pn

nξ

))
+

= op(1), (C.43)

as n → ∞.
Term 3: Finally, because the risk profile ζ 7→ Rdet(f̃ ; ζ) is assumed to be continuous at ζ⋆, Lemma C.6.1

with the grid Ξ yields ∣∣∣∣min
ξ∈Ξ

Rdet
(
f̃ ; pn
nξ

)
− inf
ζ≥γ

Rdet(f̃ ; ζ)
∣∣∣∣ = o(1). (C.44)

Combining (C.41), (C.43), and (C.44), we have the desired result that∣∣∣∣R(f̂ cv) − min
ζ≥γ

Rdet(f̃ ; ζ)
∣∣∣∣ p−→ 0.

Case of M > 1. Consider now the case when M > 1. Note that (x+ y)+ ≤ (x)+ + (y)+ since max{z, 0}
is a convex function of z. Thus, we can break and bound the desired difference as:(

R(f̂ cv) − min
ζ≥p/n

Rdet(f̃ ; ζ)
)

+

≤
(
R(f̂ cv) − min

ξ∈Ξ
R(f̂ξ)

)
+

+

min
ξ∈Ξ

R(f̂ξ) − min
ξ∈Ξ

1
M

M∑
j=1

R(f̃ξj )


+

+

min
ξ∈Ξ

1
M

M∑
j=1

R(f̃ξj ) − min
ξ∈Ξ

Rdet
(
f̃ξ; pn

nξ

)
+

+
(

min
ξ∈Ξ

Rdet
(
f̃ ; pn
nξ

)
− min

ζ≥γ
Rdet(f̃ ; ζ)

)
+
.

As before, we show below that each of these terms are asymptotically vanishing in probability.
Term 1: Note that σ̂Ξ ≤ σ̃Ξ (from the triangle inequality for L2 and ψ1 norms). Thus, as argued above

for the case of m = 1, the first term is op(1).
Term 2: For the second term, observe that, for all ξ ∈ Ξ,

R
(
f̂ξ
)

= R

 1
M

M∑
j=1

f̃ξj

 = E

[
ℓ

(
Y0,

1
M

M∑
i=1

f̃ξj (X0)
) ∣∣∣ D1

]

≤ 1
M

M∑
j=1

E
[
ℓ(Y0, f̃

ξ
j (X0))

∣∣ D1

]

≤ 1
M

M∑
j=1

R(f̃ξj ).

Therefore, we have

min
ξ∈Ξ

R(f̂ξ) ≤ min
ξ∈Ξ

1
M

M∑
j=1

R(f̃ξj )

and the second term is 0.
Term 3: For the third term, as before, note thatmin

ξ∈Ξ

1
M

M∑
j=1

R(f̃ξj ) − min
ξ∈Ξ

Rdet
(
f̃ξ; p

nξ

)
+

≤

 1
M

M∑
j=1

R(f̃ξ
⋆
n
j ) −Rdet

(
f̃ ; pn
nξ⋆

n

)
+

,
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with the right hand side being op(1) because of (DETPA-0).
Term 4: Analogous to the argument for the m = 1 case, the fourth term is o(1).
Combined together, we have the final result. This completes the proof. For an overview, a schematic

for the proof of Theorem 3.3.11 is provided in Figure C.2.

Figure C.2: Schematic of the proof of Theorem 3.3.11.

C.3 Proofs related to deterministic profile verification for zero-
step procedure

In this section, we verify the assumption (DETPAR-0) for the MN2LS and MN1LS prediction procedures.

C.3.1 Proof of Proposition 3.3.14
Recall Dkm

is a dataset with km observations and pm features. Theorem 3 of Hastie et al. (2022) assumes
the following distributional assumptions on the dataset Dkm .

(ℓ2A1) The observations (Xi, Yi), 1 ≤ i ≤ km, are sampled i.i.d. from the model Yi = X⊤
i β0 + εi for some

(deterministic) unknown signal vector β0 ∈ Rpm and (random) unobserved error εi, assumed to be
independent of Xi ∈ Rpm , with mean 0, variance σ2, and bounded moment of order 4 + δ for some
δ > 0.

(ℓ2A2) The feature vector Xi, 1 ≤ i ≤ km, decomposes as Xi = Σ1/2Zi, where Σ ∈ Rpm×pm is a positive
semidefinite (covariance) matrix and Zi ∈ Rpm×1 is a random vector containing i.i.d. entries with
mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.

(ℓ2A3) The norm of the signal vector ∥β0∥2 is uniformly bounded in p, and limpm→∞ ∥β0∥2
2 = ρ2 < ∞.

(ℓ2A4) There exist real numbers rmin and rmax with 0 < rmin ≤ rmax < ∞ such that rminIpm ⪯ Σ ⪯ rmaxIpm .

(ℓ2A5) Let Σ = WRW⊤ denote the eigenvalue decomposition of the covariance matrix Σ, where R ∈
Rpm×pm is a diagonal matrix containing eigenvalues (in non-increasing order) r1 ≥ r2 ≥ · · · ≥
rpm

≥ 0, and W ∈ Rpm×pm is an orthonormal matrix containing the associated eigenvectors
w1, w2, . . . , wpm

∈ Rpm . Let Hpm
denote the empirical spectral distribution of Σ (supposed on R>0)

whose value at any r ∈ R is given by

Hpm
(r) = 1

pm

pm∑
i=1

I{ri≤r}.
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Let Gpm denote a certain distribution (supported on R>0) that encodes the components of the signal
vector β0 in the eigenbasis of Σ via the distribution of (squared) projection of β0 along the eigenvectors
wj , 1 ≤ j ≤ pm, whose value any r ∈ R is given by

Gpm(r) = 1
∥β0∥2

2

pm∑
i=1

(β⊤
0 wi)2 I{ri≤r}.

Assume there exist fixed distributions H and G (supported on R>0) such that Hpm

d→ H and
Gpm

d→ G as pm → ∞.

Under assumptions (ℓ2A1)–(ℓ2A5), we will verify that, for the MN2LS base prediction procedure f̃mn2,
there exists a deterministic risk approximation Rdet(·; f̃mn2) : (0,∞] → [0,∞] that satisfy the two conditions
stated in Proposition 3.3.14. In particular, we will show that the function Rdet(·; f̃mn2) defined below
satisfies the required conditions:

Rdet(ϕ; f̃mn2) =



σ2 1
1 − ϕ

if ϕ ∈ (0, 1)

∞ if ϕ = 1

ρ2(1 + ṽg(0;ϕ))
∫

r

(1 + v(0;ϕ)r)2 dG(r)

+ σ2
(
ϕṽ(0;ϕ)

∫
r2

(1 + v(0;ϕ)r)2 dH(r) + 1
)

if ϕ = (1,∞)

ρ2
∫
r dG(r) + σ2 if ϕ = ∞,

(C.45)

where the scalars v(0;ϕ), ṽ(0;ϕ), and ṽg(0;ϕ), for ϕ ∈ (1,∞), are defined as follows:

• v(0;ϕ) is the unique solution to the fixed-point equation:

1
ϕ

=
∫

v(0;ϕ)r
1 + v(0;ϕ)r dH(r), (C.46)

• ṽ(0;ϕ) is defined through v(0;ϕ) by the equation:

ṽ(0;ϕ) =
(

1
v(0;ϕ)2 − ϕ

∫
r2

(1 + v(0;ϕ)r)2 dH(r)
)−1

, (C.47)

• ṽg(0;ϕ) is defined through v(0;ϕ) and ṽ(0;ϕ) by the equation:

ṽg(0;ϕ) = ṽ(0;ϕ)ϕ
∫

r2

(1 + v(0;ϕ)r)2 dH(r). (C.48)

We will verify the two conditions of Proposition 3.3.14 below.
The limiting risk for the MN2LS predictor provided in (C.45), although in a different notation, matches

the one obtained in Theorem 3 of Hastie et al. (2022). We believe our notation makes the subsequent
analysis for the one-step procedure easy to follow for the reader. It is worth mentioning, however, that
Hastie et al. (2022) only explicitly consider ϕ ∈ (0, 1) ∪ (1,∞). We extend the analysis to show that the
risk continuously diverges to ∞ as ϕ → 1 and also continuously converges to the null risk as ϕ → ∞. In
addition, as mentioned in Remark 3.3.16, we analyze the prediction risk conditioned on both (X,Y ) as
opposed to only on X as done in Hastie et al. (2022). Furthermore, we also establish continuity properties
of the deterministic risk approximation in the aspect ratio that is needed for our analysis.
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Condition 1: Continuous convergence of conditional risk over ϕ ∈ (0, 1) ∪ (1,∞].

Let X ∈ Rkm×pm denote the design matrix and Y ∈ Rkm denote the response vector associated with the
dataset Dkm

. Let ε ∈ Rkm denote the error vector containing errors εi, 1 ≤ i ≤ km. Write the data model
from assumption (ℓ2A1) as Y = X⊤β0 + ε, and the MN2LS estimator (3.20) as

β̃mn2(Dkm) = (X⊤X/km)†X⊤Y /km. (C.49)

The associated predictor f̃mn2(·; Dkm
) is given by (3.22). Recall the prediction risk RX,Y (f̃mn2(·; Dkm

))
(where we use the subscripts X,Y to explicitly indicate the dependence of R(f̃mn2(·; Dkm

)) on the training
data (X,Y )) under the squared error loss is given by

RX,Y (f̃mn2(·; Dkm)) = E[(Y0 − f̃mn2(X0; Dkm))2 | X,Y ], (C.50)

where (X0, Y0) is sampled independently from the same distribution as the training data (X,Y ).
Our goal is to show that as km, pm → ∞, if pm/km → ϕ ∈ (0, 1) ∪ (1,∞], RX,Y (f̃mn2(·; Dkm

)) a.s.−−→
Rdet(ϕ; f̃mn2). The proof follows by combining Propositions C.3.1 to C.3.3. Specifically:

1. Propositions C.3.1 and C.3.2 combined together imply that RX,Y (f̃mn2(·; Dkm)) a.s.−−→ Rdet(ϕ; f̃mn2)
as pm, km → ∞ and pm/km → ϕ ∈ (0, 1) ∪ (1,∞).

2. Proposition C.3.3 imply that RX,Y (f̃mn2(·; Dkm)) a.s.−−→ Rdet(∞; f̃mn2) as pm, km → ∞ and pm/km →
∞.

Below we prove Propositions C.3.1 to C.3.3.
In preparation for the statements to follow, denote by Σ̂ := X⊤X/km the sample covariance matrix. Let

the singular value decomposition of X/
√
km be X/

√
km = USV ⊤, where U ∈ Rkm×km and V ∈ Rpm×pm

are orthonormal matrices, and S ∈ Rkm×p is a diagonal matrix containing singular values in non-increasing
order s1 ≥ s2 ≥ . . . .

The proposition below provides conditional convergence for the prediction risk (C.50) when pm/km →
ϕ ∈ (0, 1) ∪ (1,∞) as pm, km → ∞.

Proposition C.3.1 (Conditional convergence of squared prediction risk of MN2LS predictor). Suppose
assumptions (ℓ2A1)–(ℓ2A4) hold. Then, as km, pm → ∞, if pm/km → ϕ ∈ (0, 1) ∪ (1,∞), then

RX,Y (f̃mn2(·; Dkm)) − β⊤
0 (Ipm − Σ̂†Σ̂)Σ(Ipm − Σ̂†Σ̂)β0 − σ2 tr[Σ̂†Σ]/km − σ2 a.s.−−→ 0. (C.51)

Proof. Under assumption (ℓ2A1), the squared prediction risk (C.50) decomposes into

RX,Y (f̃mn2(·; Dkm)) = (β̃mn2(Dkm) − β0)⊤Σ(β̃mn2(Dkm) − β0) + σ2. (C.52)

Similarly, under assumption (ℓ2A1), the estimator (C.49) decomposes into

β̃mn2(Dkm
) = (X⊤X/km)†X⊤X/km β0 + (X⊤X/km)†X⊤ε/km.

Consequently, the difference between the estimator and the true parameter decomposes as

β̃mn2(Dkm
) − β0 =

{
(X⊤X/km)†X⊤X/km − Ipm

}
β0 + (X⊤X/km)†X⊤ε/km. (C.53)

Substituting (C.53) into (C.52), we can split the first term on the right hand side of (C.52) into three
component terms:

(β̃mn2(Dkm) − β0)⊤Σ(β̃mn2(Dkm) − β0) = B0 + V0 + C0,

where the component terms are given by:

B0 = β⊤
0
{

(X⊤X/km)†X⊤X/km − Ipm

}
Σ
{

(X⊤X/km)†X⊤X/km − Ipm

}
β0
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= β⊤
0 (Ipm − Σ̂†Σ̂)Σ(Ipm − Σ̂†Σ̂)β0,

C0 = β⊤
0
{

(X⊤X/km)†X⊤X/km − Ipm

}
Σ(X⊤X/km)†X⊤ε/km

= −β⊤
0 (Ipm

− Σ̂†Σ̂)ΣΣ̂†X⊤ε/km,

V0 = ε⊤X/km(X⊤X/km)†Σ(X⊤X/km)†X⊤ε/km

= ε⊤(XΣ̂†ΣΣ̂†X⊤/km)ε/km.

To finish the proof, we will show concentration of the terms C0 and V0 below.
Term C0: We will show that C0

a.s.−−→ 0 as km, pm → ∞ such that pm/km → ϕ ∈ (0, 1) ∪ (1,∞). Note
that

∥XΣ̂†Σ(Ipm
− Σ̂†Σ̂)β0∥2

2/km = β⊤
0 (Ipm

− Σ̂†Σ̂)ΣΣ̂†X⊤XΣ̂†Σ(Ipm
− Σ̂†Σ̂)β0/km

≤ ∥β0∥2
2∥∥(Ipm

− Σ̂†Σ̂)ΣΣ̂†Σ̂Σ̂†Σ(Ipm
− Σ̂†Σ̂)∥op

≤ ∥β0∥2
2∥ · r2

max · ∥Σ̂†∥op, (C.54)

where in the last inequality (C.54), we used the fact that ∥Ipm
− Σ̂†Σ̂∥op ≤ 1, ∥Σ∥op ≤ rmax, and that

Σ̂†Σ̂Σ̂† = Σ̂†, along with the submultiplicativity of the operator norm. Now, note that lim inf min1≤i≤p s
2
i ≥

rmin(1−
√
ϕ)2 almost surely from Bai and Silverstein (2010) for ϕ ∈ (0, 1)∪(1,∞). Therefore, lim sup ∥Σ̂†∥op ≤

C for some constant C < ∞ almost surely. Applying Lemma C.8.5, we thus have that C0
a.s.−−→ 0.

Term V0: We will show that V0 − tr[Σ̂+Σ]/km
a.s.−−→ 0 as km, pm → ∞ such that pm/km → ϕ ∈

(0, 1) ∪ (1,∞). Observe that

∥XΣ̂†ΣΣ̂†X⊤/km∥op ≤ rmax∥Σ̂∥op∥Σ̂†∥2
op. (C.55)

Now, note that lim sup ∥Σ̂∥op ≤ lim sup max1≤i≤p s
2
i ≤ rmax(1 +

√
ϕ)2, almost surely for ϕ ∈ (0, 1) ∪ (1,∞)

from Bai and Silverstein (2010). In addition, as argued above, ∥Σ̂†∥op ≤ C almost surely for some constant
C < ∞. Thus, using Lemma C.8.6, it follows that V0 − σ2 tr[XΣ̂+ΣΣ̂+X⊤]/k2

m
a.s.−−→ 0. Finally, since

tr[XΣ̂+ΣΣ̂+X⊤]/k2
m = tr[Σ̂†Σ̂Σ̂†Σ]/km = tr[Σ̂†Σ]/km, we obtain that V0 − σ2 tr[Σ̂†Σ]/km

a.s.−−→ 0.

The next proposition provides deterministic limits of the conditional risk functionals in Proposition C.3.1
when pm/km → ϕ ∈ (0, 1) ∪ (1,∞) as km, pm → ∞.

Proposition C.3.2 (Limits of conditional risk functionals over ϕ ∈ (0, 1) ∪ (1,∞)). Suppose assumptions
(ℓ2A2)–(ℓ2A5) hold. Then, as km, pm → ∞, and pm/km → ϕ ∈ (0, 1) ∪ (1,∞), the following holds:

• Bias functional:

β⊤
0 (Ipm

− Σ̂†Σ̂)Σ(Ipm
− Σ̂†Σ̂)β0

a.s.−−→


0 if ϕ ∈ (0, 1)

ρ2(1 + ṽg(0;ϕ))
∫

r

(1 + v(0;ϕ)r)2 dG(r) if ϕ ∈ (1,∞),

• Variance functional:

σ2 tr[Σ̂†Σ]/km
a.s.−−→


σ2 ϕ

1 − ϕ
if ϕ ∈ (0, 1)

σ2ϕṽ(0;ϕ)
∫

r2

(1 + v(0;ϕ)r)2 dH(r) if ϕ ∈ (1,∞),

where v(0;ϕ), ṽ(0;ϕ), and ṽg(0;ϕ) are as defined in (C.46), (C.47), and (C.48), respectively.

Proof. We will consider the bias and functionals separately below.
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Bias functional. Consider first the bias functional β⊤
0 (Ipm − Σ̂†Σ̂)Σ(Ipm − Σ̂†Σ̂)β0. Since rmin > 0,

the smallest eigenvalue of Σ̂† is almost surely positive, and the matrix Σ̂ is almost surely invertible
as km, pm → ∞ and pm/km → ϕ ∈ (0, 1). Therefore, in this case, Σ̂†Σ̂ = Ipm

almost surely, and
β⊤

0 (Ipm
− Σ̂†Σ̂)Σ(Ipm

− Σ̂†Σ̂)β0
a.s.−−→ 0. For the case when km, pm → ∞ and pm/km → ϕ ∈ (1,∞), from

the second part of Corollary C.6.12 by taking f(Σ) = Σ, we have

(Ipm
− Σ̂†Σ̂)Σ(Ipm

− Σ̂†Σ̂) ≃ (1 + ṽg(0;ϕ))(v(0;ϕ)Σ + Ipm
)−1Σ(v(0;ϕ)Σ + Ipm

)−1,

where v(0;ϕ) and ṽg(0) are as defined by (C.46) and (C.48), respectively. Note that from Lemma C.6.13 (1)
v(0;ϕ) is bounded for ϕ ∈ (1,∞), and the function r 7→ r/(1 + rv(0;ϕ))2 is continuous. Hence, under
(ℓ2A3) and (ℓ2A5), using Lemma C.7.2 (4), we have

β⊤
0 (Ipm

− Σ̂†Σ̂)Σ(Ipm
− Σ̂†Σ̂)β0

a.s.−−→ lim
pm→∞

pm∑
i=1

(1 + ṽg(0;ϕ)) ri
(1 + riv(0;ϕ))2 (β⊤

0 wi)2

= lim
pm→∞

∥β0∥2
2(1 + ṽg(0;ϕ))

∫
r

(1 + rv(0;ϕ))2 dGpm
(r)

= ρ2(1 + ṽg(0;ϕ))
∫

r

(1 + rv(0;ϕ))2 dG(r),

where in the last line we used the fact that Gpm
and G have compact supports, and limpm→∞ ∥β0∥2

2 = ρ2.
This completes the proof of the first part.

Variance functional. Consider next the variance functional tr[Σ̂†Σ]/km. As km, pm → ∞ and
pm/km → ϕ ∈ (0, 1), Σ̂ is almost surely invertible as explained above. In this case, tr[Σ̂†Σ]/km −
tr[(Z⊤Z/km)−1]/km

a.s.−−→ 0, where Z ∈ Rkm×pm is matrix with rows Zi, 1 ≤ i ≤ km. From the proof of
Proposition 2 of Hastie et al. (2022), this limit is given by ϕ/(1 − ϕ). In the case when km, pm → ∞ and
pm/km → ϕ ∈ (1,∞), from Corollary C.6.12, we have

Σ̂†Σ ≃ ṽ(0;ϕ)(v(0;ϕ)Σ + Ip)−2Σ2.

Along the same lines as above, from Lemma C.6.13 (1), v(0;ϕ) is bounded for ϕ ∈ (1,∞), and the the
function r 7→ r2/(1 + v(0;ϕ)r)2 is continuous. Thus, under (ℓ2A5), using Lemma C.7.2 (4), we have

σ2 tr[Σ̂†Σ]/km
a.s.−−→ lim

pm→∞

pm
km

1
pm

ṽ(0;ϕ)
pm∑
i=1

r2
i

(1 + v(0;ϕ)ri)2

= lim
pm→∞

pm
km

ṽ(0;ϕ)
∫

r2

(1 + v(0;ϕ)r)2 dH(r)

= ϕṽ(0;ϕ)
∫

r2

(1 + v(0;ϕ)r)2 dH(r).

This completes the proof of the second part.

We remark that Corollary C.6.12 used in the proof of Proposition C.3.2 assumes existence of moments
of order 8 + α for some α > 0 on the entries of Zi, 1 ≤ i ≤ km, mentioned in assumption (ℓ2A1). As done
in the proof of Theorem 6 of Hastie et al. (2022) (in Appendix A.1.4 therein), this can be relaxed to only
requiring existence of moments of order 4 + α. This being a simple truncation argument, we omit the
details and refer the readers to Hastie et al. (2022).

The proposition below covers the case when pm/km → ∞ as pm, km → ∞.

Proposition C.3.3 (Limits of risk and deterministic risk approximation as ϕ → ∞). Suppose assumptions
(ℓ2A1)–(ℓ2A5) hold. Then, as km, pm → ∞ and pm/km → ∞, we have

RX,Y (f̃mn2(·; Dkm
)) − β⊤

0 Σβ0 − σ2 a.s.−−→ 0.
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In addition,

lim
ϕ→∞

Rdet(·; f̃mn2) = lim
pm→∞

β0Σβ0 + σ2 = ρ2
∫
r dG(r) + σ2.

Proof. From (C.52), note that

RX,Y (f̃mn2(·; Dkm
)) − (∥β0∥2

Σ + σ2) = ∥β̃mn2(Dkm
)∥2

Σ − 2β̃mn2(Dkm
)⊤Σβ0

≤ r−1
min∥β̃mn2∥2

2 + 2∥β̃mn2(Dkm
)∥2∥Σβ0∥2

≤ r−1
min∥β̃mn2(Dkm

)∥2
2 + 2rmaxr∥β̃mn2(Dkm

)∥2,

where the first inequality follows by using the lower bound rmin on the smallest eigenvalue of Σ, and the
Cauchy-Schwarz inequality, and the second inequality follows by using the upper bound rmax on the largest
eigenvalue of Σ. Thus, for the first part it suffices to show that ∥β̃mn2∥2 → 0 as km, p → 0 and p/km → ∞.
Towards that end, note that

∥β̃mn2(Dkm
)∥2 = ∥(X⊤X/km)†X⊤Y /km∥2

≤ ∥(X⊤X/km)†X/
√
km∥op∥Y /

√
km∥2

≤ C∥(X⊤X/km)†X/
√
km∥op

√
ρ2 + σ2,

where the last inequality holds eventually almost surely since (ℓ2A1) and (ℓ2A3) imply that the entries of
Y have bounded 4-th moment, and thus from the strong law of large numbers, ∥Y /

√
km∥2 is eventually

almost surely bounded above by
√
E[Y 2] =

√
ρ2 + σ2. Observe that operator norm of the matrix

(X⊤X/km)†X/
√
km is upper bounded by the inverse of the smallest non-zero singular value smin of X.

As km, pm → ∞ such that pm/km → ∞, smin → ∞ almost surely (e.g., from results in Bloemendal et al.
(2016)) and therefore, ∥β∥2 → 0 almost surely. This completes the proof of first part.

Now, from Lemma C.6.13 (1) limϕ→∞ v(0;ϕ) = 0, and from Lemma C.6.13 (4) limϕ→∞ ṽg(0;ϕ) = 0.
Thus,

lim
ϕ→∞

ρ2(1 + ṽg(0;ϕ))
∫

r

(1 + v(0;ϕ)r)2) dG(r) = ρ2
∫
r dG(r).

On the other hand, from Lemma C.6.13 (4),

lim
ϕ→∞

σ2ϕṽ(0;ϕ)
∫

r

(1 + v(0;ϕ)r)2 dH(r) = 0.

This proves the second part, and finishes the proof.

Condition 2: Left and right limits of deterministic risk approximation as ϕ → 1.

Next we verify that limϕ→1 R
det(ϕ; f̃mn2) = ∞. First note that limϕ→1− Rdet(ϕ; f̃mn2) = limϕ→1− 1/(1 −

ϕ) = ∞. Now, from Lemma C.6.13 (4), observe that

lim
ϕ→1+

ϕṽ(0;ϕ)
∫

r2

(1 + v(0;ϕ)r)2 dH(r) = ∞.

Since limϕ→1− Rdet(ϕ) = limϕ→1+ Rdet(ϕ) = ∞, we have that limϕ→1 R
det(ϕ) = ∞, as claimed. This

finishes the verification.

C.3.2 Proof of Proposition 3.3.15
Recall that Dkm

is a dataset with km observations and pm features. Li and Wei (2021) makes the following
distributional assumptions on the dataset Dkm

. We adapt the scalings of Li and Wei (2021) to match the
current work for easy comparisons.
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(ℓ1A1) (Xi, Yi) for 1 ≤ i ≤ km are i.i.d. observations from the model: Y = X⊤β0 + ε for some fixed unknown
vector β0 ∈ Rpm×1 and unobserved error ε where εi

i.i.d.∼ N (0, σ2) independent of X.

(ℓ1A2) Each design vector is independently drawn by Xi
i.i.d.∼ N (0, Ip).

(ℓ1A3) The signal vector β0 is random such that the scaled coordinates {√
pm · βi0}pm

i=1 converge weakly to a
probability measure PΘ, where E[Θ2] < ∞ and P(Θ ̸= 0) > 0.

Under these assumptions, Theorem 2 of Li and Wei (2021) demonstrates that the prediction risk of the
MN1LS estimator obeys 1

lim
p/n→ϕ
n, p→∞

R(f̃mn1(·; Dkm
)) = τ⋆2, (C.56)

almost surely with respect to X and Y. Here, (τ⋆, α⋆) stands for the unique solution to the following system
of equations

τ2 = σ2 + E
[(
η(Θ + τZ;ατ) − Θ

)2
]
, (C.57a)

ϕ−1 = P
(
|Θ + τZ| > ατ

)
, (C.57b)

where Θ ∼ PΘ, and Z ∼ N (0, 1) and is independent of Θ. Here, η(·; b) is the soft-thresholding function at
level b ≥ 0 that maps x ∈ R to

η(x; b) = (|x| − b)+ sgn(x).
The existence and uniqueness of the equation set (C.57) is established in Li and Wei (2021). To facilitate
accurate characterization of τ⋆ as a function of ϕ, we make assumption on how the ground true is generated
as follows.

(ℓ1A4) Suppose that each coordinate of β0 = [βi0]1≤i≤p is identically and independently drawn as follows

βi0
i.i.d.∼ ϵPM/

√
pm

+ (1 − ϵ)P0, (C.58)

where Pc corresponds to the Dirac measure at point c ∈ R, and M > 0 is some given scalar that
determines the magnitude of a non-zero entry.

Under the above four assumptions, it is proved in Lemma 2 (p. 50) of Li and Wei (2021) that

lim
ϕ→1+

τ⋆2(ϕ) = ∞, (C.59)

and Lemma 1 (p. 51) of Li and Wei (2021) that

lim
ϕ→∞

τ⋆2(ϕ) = σ2 + E∥β0∥2
2 = σ2 + ϵM2.

We remark that the above results are stated slight differently therein due to a different scaling, where a
global 1/

√
km is applied to the design matrix and √

pm is applied to the ground truth parameter β0. Here,
we adapt a global scaling to allow for convenient comparisons with the MN2LS estimator.

From the discussion above, it is therefore clear that, one can set

Rdet(·; f̃mn1) =


σ2 1

1 − ϕ
if ϕ ∈ (0, 1)

∞ if ϕ = 1
τ⋆2 if ϕ ∈ (1,∞)
σ2 + ϵM2 if ϕ = ∞

(C.60)

1Li and Wei (2021) assumes p/n = ϕ for simplicity, but the proof goes through literatim as p/n → ϕ.
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which satisfies the conditions of Proposition 3.3.15.
In order to see this, first recognizing that the convergence (C.56) holds almost surely, the first condition

of Proposition 3.3.15 is satisfied naturally. Additionally, as established in Section C.3.1 and in (C.59), one
has

lim
ϕ→1+

Rdet(ϕ; f̃mn1) = ∞, and lim
ϕ→1−

Rdet(ϕ; f̃mn1) = ∞, (C.61)

which validates the second condition of Proposition 3.3.15. Putting everything together completes the proof
of Proposition 3.3.15.

C.4 Proofs related to risk monotonization for one-step procedure
C.4.1 Proof of Lemma 3.4.1
The idea of the proof is similar to proof of Lemma 3.3.8. We wish to verify that there exists a deterministic
approximation Rdet : R × R → R to the conditional prediction risk of the predictor f̃(·; Dξ1,n,j

tr ,Dξ2,n,j
tr ),

1 ≤ j ≤ M that satisfy∣∣∣∣∣R(f̃(·; Dξ⋆
1,n,j

tr ,Dξ⋆
2,n,j

tr )) −Rdet

(
pn

n1,ξ⋆
1,n

,
pn

n2,ξ⋆
2,n

; f̃
)∣∣∣∣∣ = op(1)Rdet

(
pn

n1,ξ⋆
1,n

,
pn

n2,ξ⋆
2,n

; f̃
)

as n → ∞ under (PA(γ)), where (ξ⋆1,n, ξ⋆2,n) are indices such that

(ξ⋆1,n, ξ⋆2,n) ∈ arg min
(ξ1,ξ2)∈Ξn

Rdet
(

pn
n1,ξ1

,
pn
n2,ξ2

; f̃
)
.

Following the arguments in the proof of Lemma 3.3.8, using the lower bound on R(f̃(·; Dξ1,n,j

tr ,Dξ2,n,j

tr )) and
identical distribution across j, it suffices to show that for all ϵ > 0,

P

(∣∣∣∣∣R(f̃(·; Dξ⋆
1,n

tr ,Dξ⋆
2,n

tr )) −Rdet

(
pn

n1,ξ⋆
1,n

,
pn

n2,ξ⋆
2,n

; f̃
)∣∣∣∣∣ ≥ ϵ

)
→ 0

as n → ∞ under (PA(γ)). Note that here we have dropped the superscript j for brevity. Now we will show
that (DETPAR-1) along with the assumed continuity behavior of Rdet(·, ·; f̃) implies desired conclusion.
Fix ε > 0 and define a sequence hn(ϵ) as follows:

hn(ϵ) := P

(∣∣∣∣∣R(f̃(·; Dξ⋆
1,n

tr ,Dξ⋆
2,n

tr )) −Rdet

(
pn

n1,ξ⋆
1,n

,
pn

n2,ξ⋆
2,n

; f̃
)∣∣∣∣∣ ≥ ϵ

)
.

We want to show that hn(ϵ) → ∞ as n → ∞ under (PA(γ)). We first note that using Lemma C.6.3, it
suffices to show that for an arbitrary subsequence {nk}k≥1, there exists further subsequence {nkl

}l≥1 such
that hnkl

→ 0 as n → ∞. Also, note that since ntr/n → 1, the grid Ξn satisfies the space-filling property
from Lemma C.6.2 that ΠΞn

(ζ1, ζ2) → (ζ1, ζ2) for any (ζ1, ζ2) that satisfy ζ−1
1 + ζ−1

2 ≤ γ−1 and the set
of (ζ1, ζ2) that satisfy this condition is compact. Now, we apply Lemma C.6.5 on the function Rdet(·, ·; f̃)
and the grid Ξn. Let sequence {xn}n≥1 be such that xn := (pn/n1,ξ⋆

1,n
, pn/n2,ξ⋆

2,n
) for n ≥ 1. Lemma C.6.5

guarantees that for any arbitrary subsequence {xnk
}k≥1, there exists a further subsequence {xnkl

}l≥1 such
that

xnkl
→ (ϕ1, ϕ2) ∈ arg min

ζ−1
1 +ζ−1

2 ≤γ−1
Rdet(ζ1, ζ2; f̃). (C.62)

We will now show that hnkl
→ 0 as l → ∞ if assumption (DETPAR-1) Lemma 3.4.1 is satisfied. It is easy

to see that the assumption implies

R(f̃(·; Dξ⋆
1,n

tr ,Dξ⋆
2,n

tr )) p−→ Rdet(ϕ1, ϕ2; f̃)
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as n, pn, ξ⋆1,n, ξ⋆2,n → ∞, whenever

(pn/n1,ξ⋆
1,n
, pn/n2,ξ⋆

2,n
) → (ϕ1, ϕ2) ∈ arg min

ζ−1
1 +ζ−1

2 ≤γ−1
Rdet(ζ1, ζ2; f̃).

But using the continuity of Rdet(·, ·; f̃) on the set arg minζ−1
1 +ζ−1

2 ≤γ−1 Rdet(ζ1, ζ2; f̃) and the fact that the
sequence {xnkl

}l≥1 converges to a point in this minimizing set from (C.62), it follows that that hnkl
→ 0

as l → ∞ as desired. This finishes the proof.

C.4.2 Proof of Proposition 3.4.2

Fix t < ∞. We will verify that the set Ct := {x : h(x) ≤ t} is closed. Note that Ct ⊆ M \ C because
h(x) < ∞ for x ∈ Ct. Now consider any converging sequence {xn}n≥1 in Ct with limit point p. We will
argue that p ∈ Ct. First note that the function h is continuous over Ct because Ct ⊆ M \ C. Note that
p /∈ C, because if it does then h(xn) → ∞ as n → ∞, which in turn implies that for infinitely many k ≥ 1,
h(xk) > t, contradicting xn ∈ Ct for all n ≥ 1. Hence, p ∈ M \ C and xn ∈ M \ C for all n ≥ 1. Therefore,
continuity of h on M \ C yields h(xn) → h(p). Moreover, h(xn) ≤ t implies that limn→∞ h(xn) ≤ t, which
in turn implies that h(p) ≤ t. Hence p ∈ C, finishing the proof.

C.4.3 Proof of Proposition 3.4.3

The proof uses a similar contradiction strategy employed in the proof of Proposition 3.3.10. We only sketch
the proof, and omit the details.

SupposeRdet(·, ·; f̃) is discontinuous at some point (ϕ1,∞, ϕ2,∞). This gives us a sequence {(ϕ1,r, ϕ2,r)}r≥1
such that for some ϵ > 0 and all r ≥ 1,

Rdet(ϕ1,r, ϕ2,r; f̃) /∈ [Rdet(ϕ1,∞, ϕ2,∞; f̃) − 2ϵ, Rdet(ϕ1,∞, ϕ2,∞; f̃) + 2ϵ], (C.63)

while (ϕ1,r, ϕ2,r) → (ϕ1,∞, ϕ2,∞) as r → ∞. From the continuous convergence hypothesis, for each r ≥ 1,
one can then construct a sequence of datasets {(Dϕ1,r

k1,m
,Dϕ2,r

k2,m
)}m≥1 with pm features and (k1,m, k2,m)

observations for which
R(f̃(·; Dϕ1,r

k1,m
,Dϕ2,r

k2,m
)) p−→ Rdet(ϕ1,r, ϕ2,r; f̃) (C.64)

as pm, k1,m, k2,m → ∞ and (pm/k1,m, pm/k2,m) → (ϕ1,r, ϕ2,r). From (C.63) and (C.64), one can obtain a
sequence of increasing integers {mr}r≥1 such that for each r ≥ 1, with probability 0 < p < 1,

|R(f̃(·; Dϕ1,r

k1,m
,Dϕ2,r

k2,m
)) −Rdet(ϕ1,∞, ϕ2,∞; f̃)| > ϵ.

This then lets us construct a sequence of datasets {(D′
k1,m

,D′
k2,m

)}m≥1 similar as done in the proof of
Proposition 3.3.10 for which

R(f̃(·; D′
k1,m

,D′
k2,m

)) ̸ p−→ Rdet(ϕ1,∞, ϕ2,∞; f̃)

as pm, k1,m, k2,m → ∞ and (pm/k1,m, pm/k2,m) → (ϕ1,∞, ϕ2,∞). This supplies the required contradiction
to the continuous convergence hypothesis.

C.4.4 Proof of Theorem 3.4.4

The idea of the proof is similar to that of the proof of Theorem 3.3.11. We will break the proof in two cases.
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Case of M = 1. Consider first the case when m = 1. In this case, f̂ cv = f̃ξ1 , which we denote by f̃ξ for
notational simplicity. Bound the desired difference as∣∣∣∣R(f̂ cv) − min

1/ζ1+1/ζ2≤n/p
Rdet(f̂ ; ζ1, ζ2)

∣∣∣∣
≤
∣∣∣∣R(f̂ cv) − min

ξ∈Ξ
R(f̃ξ)

∣∣∣∣+
∣∣∣∣min
ξ∈Ξ

R(f̃ξ) − min
ξ∈Ξ

Rdet
(
f̃ ; pn
n− ξ1⌊nν⌋

,
pn

ξ2⌊nν⌋

)∣∣∣∣
+
∣∣∣∣min
ξ∈Ξ

Rdet
(
f̃ ; pn
n− ξ1⌊nν⌋

,
pn

ξ2⌊nν⌋

)
− min

1/ζ1+1/ζ1≤n/p
Rdet(f̃ ; ζ1, ζ2)

∣∣∣∣
We show below that each of the terms asymptotically go to zero. Observe that

∣∣Ξ∣∣ =
⌈n/⌊nν ⌋−2⌉∑

ξ1=2
(ξ1 − 1) ≤ n2.

Since σ̂Ξ = σ̃Ξ = op(
√
nν/ log(n)), under the setting of Lemma 3.2.4 or Lemma 3.2.5, Remark 3.2.8 hold

so that ∣∣∣∣R(f̂ cv) − min
ξ∈Ξ

R(f̃)
∣∣∣∣ = op(1).

The assumption on the asymptotic risk profile (DETPA-1) leads to∣∣∣∣min
ξ∈Ξ

R(f̃ξ) − min
ξ∈Ξ

Rdet
(
f̃ ; pn
n− ξ1⌊nν⌋

,
pn

ξ2⌊nν⌋

)∣∣∣∣ = op(1).

Since the risk profile Rdet(f̃ ; ζ1, ζ2) is assumed be continuous at its minimizer, applying Lemma C.6.2 we
get

min
ξ∈Ξ

Rdet
(
f̃ ; pn
n− ξ1⌊nν⌋

,
pn

ξ2⌊nν⌋

)
→ min

1/ζ1+1/ζ2≤n/p
Rdet(f̃ ; ζ1, ζ2).

Combining the above three convergences, we have the desired conclusion.

Case of M > 1. When m > 1, we bound the desired difference as(
R(f̂ cv) − min

1/ζ1+1/ζ2≤n/p
Rdet(f̃ ; ζ1, ζ2)

)
+

≤
(
R(f̂ cv) − min

ξ∈Ξ
R(f̂ξ)

)
+

+

min
ξ∈Ξ

R(f̂ξ) − 1
M

M∑
j=1

min
ξ∈Ξ

R(f̃ξj )


+

+

 1
M

M∑
j=1

min
ξ∈Ξ

R(f̃ξj ) − min
ξ∈Ξ

Rdet
(
f̃ξ; pn

n− ξ1⌊nν⌋
,

pn
ξ2⌊nν⌋

)
+

+
(

min
ξ∈Ξ

Rdet
(
f̃ ; pn
n− ξ1⌊nν⌋

,
pn

ξ2⌊nν⌋

)
− min

1/ζ1+1/ζ2≤n/p
Rdet(f̃ ; ζ1, ζ2)

)
+

As before, we show below that each of the terms asymptotically vanish. Noting that σ̂Ξ ≤ σ̃Ξ, application
of Remark 3.2.8 shows that the first term is op(1). The second term is 0 exactly as argued in the proof of
Theorem 3.3.11. The third term is op(1) by noting that (DETPA-1) holds for all j = 1, . . . ,m. Finally, the
fourth term is 0 as argued for the case of m = 1.
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C.5 Proofs related to deterministic profile verification for one-
step procedure

In this section, we verify the assumption (DETPAR-1) for the one-step procedure, where the base prediction
procedure is linear, under some regularity conditions. We also specifically consider the cases of MN2LS and
MN1LS base prediction procedures.

C.5.1 Predictor simplifications and risk decompositions
In this section, we first provide preparatory lemmas that will be useful in the proofs of Lemma 3.4.8 and
Corollary 3.4.9.

Let X1 ∈ Rk1,m×pm and Y1 ∈ Rk1,m denote the feature matrix and response vector corresponding to
the first split dataset Dk1,m

. Similarly, let X2 ∈ Rk2,m×pm and Y2 ∈ Rk2,m denote the feature matrix and
response vector corresponding to the second split dataset Dk2,m

.
The following lemma gives an alternative representation for the ingredient one-step predictor assuming

that the base prediction procedure is linear.

Lemma C.5.1 (Alternate representation for the ingredient one-step predictor). Suppose the base prediction
procedure f̃ is linear such that f̃(x; Dk1,m

) = x⊤β̃(Dk1,m
) for some estimator β̃(Dk1,m

) trained on Dk1,m
.

Let f̃(·; Dk1,m ,Dk2,m) denote the ingredient one-step predictor (3.51). Then, f̃(·; Dk1,m ,Dk2,m) is a linear
predictor such that f̃(x; Dk1,m

,Dk2,m
) = x⊤β̃(Dk1,m

,Dk2,m
) with the corresponding ingredient one-step

estimator β̃(Dk1,m
,D2,m) given by

β̃(Dk1,m ,Dk2,m) =
{
Ip − (XT

2 X2/k2,m)†(XT
2 X2/k2,m)

}
β̃(Dk1,m) + β̃mn2(Dk2,m), (C.65)

where β̃mn2(Dk2,m) is the MN2LS estimator fit on Dk2,m . Furthermore, suppose assumption (ℓ2A1) holds
true for Dk2,m

. Then, the error between β̃(Dk1,m
,Dk2,m

) and β0 can be expressed as

β̃(Dk1,m ,Dk2,m) − β0

=
{
Ip − (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)

}
(β̃(Dk1,m) − β0) + (X⊤

2 X2/k2,m)†X⊤
2 ε2/k2,m. (C.66)

Proof. For the first part, start by re-arranging the ingredient one-step predictor (3.51) as follows:

f̃(x; Dk1,m
,Dk2,m

) = f̃(x; Dk1,m
) + x⊤(X⊤

2 X2/k2,m)†X⊤
2 (Y2 − X2β̃(Dk1,m

))/k2,m

= x⊤β̃(Dk1,m
) + x⊤(X⊤

2 X2/k2,m)†X⊤
2 (Y2 − X2β̃(Dk1,m

))/k2,m

= x⊤{Ip − (X⊤
2 X/k2,m)†(X⊤

2 X2)/k2,m
}
β̃(Dk1,m

) + x⊤(X⊤
2 X2/k2,m)†X⊤

2 Y2/k2,m

= x⊤{Ip − (X⊤
2 X/k2,m)†(X⊤

2 X2)/k2,m
}
β̃(Dk1,m

) + x⊤β̃mn2(Dk2,m
),

where β̃mn2(Dk2,m
) = (X⊤

2 X2/k2,m)†X⊤
2 Y2/k2,m is the MN2LS estimator fit on Dk2,m

. Thus, f̃(·; Dk1,m
,Dk2,m

)
is a linear predictor with the corresponding ingredient one-step estimator β̃(Dk1,m

,D2,m) given by (C.65).
This completes the proof of the first part.

For the second part, note that under linear model Y2 = X2β0 + ε2 (from (ℓ2A1) for Dk2,m
), the

ingredient one-step estimator β̃(Dk1,m
,Dk2,m

) can be further simplified to

β̃(Dk1,m ,Dk2,m)
=
{
Ip − (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)

}
β̃(Dk1,m) + (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)β0

+ (X⊤
2 X2/k2,m)†X⊤

2 ε2/k2,m.

Hence, the error between β̃(Dk1,m
,Dk2,m

) and β0 can be expressed as

β̃(Dk1,m ,Dk2,m) − β0
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=
{
Ip − (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)

}
β̃(Dk1,m) + (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)β0

+ (X⊤
2 X2/k2,m)†X⊤

2 ε2/k2,m − β0

=
{
Ip − (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)

}
β̃(Dk1,m

) +
{

(X⊤
2 X2/k2,m)†(X⊤

2 X2/k2,m) − Ip
}
β0

+ (X⊤
2 X2/k2,m)†X⊤

2 ε2/k2,m

=
{
Ip − (X⊤

2 X2/k2,m)†(X⊤
2 X2/k2,m)

}
(β̃(Dk1,m

) − β0) + (X⊤
2 X2/k2,m)†X⊤

2 ε2/k2,m.

This completes the proof of the second part.

Recall that we are interested in the conditional squared prediction risk of f̃(·; Dk1,m ,Dk2,m):

RX1,Y1,X2,Y2(f̃(·; Dk1,m
,Dk2,m

)) = E[(Y0 − f̃(X0; Dk1,m
,Dk2,m

))2 | X1,Y1,X2,Y2], (C.67)

where (X0, Y0) is sampled independently and from the same distribution as the training data (X1,Y1)
and (X2,Y2). We are being explicit about the dependence of R(f̃(·; Dk1,m ,Dk2,m)) on (X1,Y1,X2,Y2) as
we will consider concentration of R(f̃(·; Dk1,m

,Dk2,m
)) conditional on (X1,Y1) first, followed by that on

(X2,Y2). For notational convenience, let Σ̂1 := XT
1 X1/k1,m and Σ̂2 := XT

2 X2/k2,m denote the sample
covariance matrices for the two data splits Dk1,m

and Dk2,m
, respectively. The next lemma gives conditional

concentration of the squared prediction risk (C.67) of the one-step ingredient predictor under the additional
assumptions (ℓ2A2)–(ℓ2A4) on Dk2,m .
Lemma C.5.2 (Conditional concentration of squared prediction risk of one-step ingredient predictor).
Assume the setting of Lemma C.5.1. In addition, suppose assumptions (ℓ2A2)–(ℓ2A4) hold for Dk2,m . Let
k1,m, k2,m, pm → ∞ such that pm/k2,m → ϕ2 ∈ (0, 1) ∪ (1,∞) and assume lim sup ∥β̃(Dk1,m) − β0∥2 < ∞
almost surely. Then, we have

RX1,Y1,X2,Y2(f̃(·; Dk1,m
,Dk2,m

))
− (β̃(Dk1,m

) − β0)⊤(Ip − Σ̂†
2Σ̂2)Σ(Ip − Σ̂†

2Σ̂2)(β̃(Dk1,m
) − β0) − σ2 tr[Σ̂†

2Σ]/k2,m − σ2 a.s.−−→ 0.

Proof. The proof follows similar steps as those in the proof of Proposition C.3.1. We start by decomposing
the squared prediction risk:

RX1,Y1,X2,Y2(f̃(·; Dk1,m ,D2,m)) = (β̃(Dk1,m ,D2,m) − β0)⊤Σ(β̃(Dk1,m ,Dk2,m) − β0) + σ2. (C.68)

Under (ℓ2A1), from Lemma C.5.1, we have

β̃(Dk1,m ,Dk2,m) − β0 = (Ip − Σ̂†
2Σ̂2)(β̃(Dk1,m) − β0) + Σ̂†

2X⊤
2 ε2/k2,m.

Thus, the first term in the squared prediction risk (C.68) of f̃(·; Dk1,m
,Dk2,m

) can be split into:

(β̃(Dk1,m
,Dk2,m

) − β0)⊤Σ(β̃(Dk1,m
,Dk2,m

) − β0) = B1 + C1 + V1,

where the terms B1, C1, and V1 are given as follows:

B1 = (β̃(Dk1,m
) − β0)⊤(Ip − Σ̂†

2Σ̂2)Σ(Ip − Σ̂†
2Σ̂2)(β̃(Dk1,m

) − β0),
C1 = (β̃(Dk1,m

) − β0)⊤(Ip − Σ̂†
2Σ̂2)Σ̂†

2X⊤
2 ε2/k2,m,

V1 = ε2(X2Σ̂†
2ΣΣ̂†

2X⊤
2 /k2,m)ε2/k2,m.

The rest of the proof shows concentration for the terms C1 and V1.
As argued in the proof of Proposition C.3.1, appealing to Lemma C.8.5 we have that C1

a.s.−−→ 0 as
pm, km → ∞ such that pm/k2,m → ϕ ∈ (0, 1) ∪ (1,∞), assuming lim sup ∥β̃(Dk1,m

) − β0∥2 < ∞. This is
because, from a bounding similar to (C.54), we have

lim sup ∥X2Σ̂†
2(Ip − Σ̂†

2Σ̂2)(β̃(Dk1,m) − β0)∥2
2/k2,m ≤ C lim sup ∥β̃(Dk1,m − β0)∥2

2 ≤ C,

almost surely for a constant C < ∞. Similarly, for the term V1, using Lemma C.8.6 along with the bound
from (C.55), we have V1 − σ2 tr[Σ̂†

2Σ]/k2,m
a.s.−−→ 0. This finishes the proof.
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Lemma C.5.3 (Conditional deterministic approximation of squared risk of ingredient one-step predictor).
Assume the setting of Lemma C.5.2. Let k1,m, k2,m, pm → ∞ such that pm/k2,m → ϕ2 ∈ (0, 1) ∪ (1,∞].
Then, we have

RX1,Y1,X2,Y2(f̃(·; Dk1,m
,Dk2,m

)) −Rg
X1,Y1

(f̃(·; Dk1,m
)) a.s.−−→ 0,

where Rg
X1,Y1

(f̃(·; Dk1,m
)) is a certain generalized squared prediction risk of the predictor f̃(·; Dk1,m

), fit on
the first split data Dk1,m

, given by

Rg
X1,Y1

(f̃(·; Dk1,m
)) =


(β̃(Dk1,m

) − β0)⊤Σ(β̃(Dk1,m
) − β0) + σ2 if ϕ2 = ∞

(β̃(Dk1,m
) − β0)⊤g(Σ)(β̃(Dk1,m

) − β0) + σ2 tr[h(Σ)]/k2,m + σ2 if ϕ ∈ (1,∞)

σ2 1
1 − ϕ2

if ϕ ∈ (0, 1),
(C.69)

where g(Σ) and h(Σ) are matrix functions of Σ given explicitly as follows:

g(Σ) = (1 + ṽg(0;ϕ2))(v(0;ϕ2)Σ + Ipm
)−1Σ(v(0;ϕ2)Σ + Ipm

)−1, h(Σ) = ṽ(0;ϕ2)(v(0;ϕ2)Σ + I)−2Σ2,

and v(0;ϕ2), ṽ(0;ϕ2), and ṽg(0;ϕ2) are as defined in (3.55), (3.56), and (3.57), respectively.

Proof. We will start with the functionals derived in Lemma C.5.2 and obtain corresponding asymptotic
deterministic equivalents conditioned on X1 and Y1 as k1,m, k2,m, pm → ∞, and pm/k2,m → ϕ ∈ (0, 1) ∪
(1,∞]. We will split into three cases depending on where ϕ falls.

• ϕ2 ∈ (0, 1): When k1,m, k2,m, pm → ∞ such that pm/k2,m → ϕ2 ∈ (0, 1), (Ip − Σ̂†
2Σ̂) = 0 almost surely

and tr[Σ̂†Σ]/k2,m − ϕ2/(1 − ϕ2) a.s.−−→ 0, as argued in the proof of Proposition C.3.2.

• ϕ ∈ (1,∞): Next we consider the case when k1,m, k2,m, pm → ∞, such that pm/k2,m → ϕ ∈ (1,∞).
Consider the bias functional (β̃(Dk1,m

) − β0)⊤(Ip − Σ̂†
2Σ̂2)Σ(Ip − Σ̂†

2Σ̂2)(β̃(Dk1,m
) − β0). Invoking Part

1 of Corollary C.6.12 with f(Σ) = Σ, as k2,m, pm → ∞ such that pm/km → ϕ2 ∈ (1,∞), we have

(Ip − Σ̂†
2Σ̂2)Σ(Ip − Σ̂†

2Σ̂2) ≃ (1 + ṽg(0;ϕ2))(v(0;ϕ2)Σ + Ipm)−1Σ(v(0;ϕ2)Σ + Ipm)−1,

where v(0;ϕ2) and ṽg(0;ϕ2) are as defined in (3.55) and (3.57), respectively. Now, note that the vector
(β̃(Dk1,m

) − β0) is independent of Σ̂†
2. Thus, from the definition of asymptotic equivalence, we have

(β̃(Dk1,m
)−β0)⊤(Ip−Σ̂†

2Σ̂2)Σ(Ip−Σ̂†
2Σ̂2)(β̃(Dk1,m

)−β0)−(β̃(Dk1,m
)−β0)⊤g(Σ)(β̃(Dk1,m

)−β0) a.s.−−→ 0.

Consider now the variance resolvent Σ̂†
2Σ. From Part 2 of Corollary C.6.12 with f(Σ) = Σ, as

k2,m, pm → ∞ such that pm/k2,m → ϕ2 ∈ (1,∞), we have

Σ̂†
2Σ ≃ ṽ(0;ϕ2)(v(0;ϕ2)Σ + Ipm)−2Σ2.

Hence, using Lemma C.7.2 (4), we have

σ2 tr[Σ̂†
2Σ]/k2,m − σ2 tr[ṽ(0;ϕ2)(v(0;ϕ2)Σ + Ipm)−2Σ2]/k2,m

a.s.−−→ 0.

• ϕ2 = ∞: Finally, consider the case when k1,m, k2,m, pm → ∞ and pm/k2,m → ∞. We start by expressing
the ingredient one-step estimator (3.51) as

β̃(Dk1,m ,Dk2,m) = β̃(Dk1,m) + (X⊤
2 X2/k2,m)†X⊤

2 (Y2 − X2β̃(Dk1,m))/k2,m.

Using triangle inequality, note that

∥β̃(Dk1,m
,Dk2,m

) − β̃(Dk1,m
)∥2 = ∥(X⊤

2 X2/k2,m)†X⊤
2 (Y2 − X2β̃(Dk1,m

))/k2,m∥2
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≤ ∥(X⊤
2 X2/k2,m)†X2/

√
k2,m∥op∥Y2 − X2β̃(Dk1,m)/

√
k2,m∥2.

Under the setting of Lemma C.5.2, the second term in the display above is almost surely bounded.
Hence, following the proof of Proposition C.3.3, it follows that ∥β̃(Dk1,m

,Dk2,m
) − β̃(Dk1,m

)∥2
a.s.−−→ 0.

From the analogous reasoning in the proof of Proposition C.3.3, this in turn implies that

RX1,Y1,X2,Y2(f̃(·; Dk1,m ,Dk2,m)) − (β̃(Dk1,m) − β0)⊤Σ(β̃(Dk1,m) − β0) − σ2 a.s.−−→ 0.

This completes all three cases and finishes the proof.

C.5.2 Proof of Lemma 3.4.8
The idea of the proof is to use the conditional deterministic risk approximation derived in Lemma C.5.3
and obtain a limiting expression for the deterministic approximation in terms of the assumed limiting
distribution (3.52).

We start by noting that

∥β̃(Dk1,m
) − β0∥2

2 ≤ r−1
min∥β̃(Dk1,m

) − β0∥2
Σ.

Thus, under the assumption that there exists a deterministic approximation Rdet(ϕ1; f̃) to the conditional
risk of f̃(·; Dk1,m

) such that R(f̃(·; Dk1,m
)) p−→ Rdet(ϕ1; f̃) as k1,m, pm → ∞ and pm/k1,m → ϕ1, for ϕ1

satisfying Rdet(ϕ1; f̃) < ∞, it follows that lim sup ∥β̃(Dk1,m)−β0∥2 < ∞. We can now invoke Lemma C.5.3.
Let k2,m → ∞ such that pm/k2,m → ϕ2 ∈ (0, 1) ∪ (1,∞]. We will split into various cases depending on ϕ2.

1. The limit for ϕ2 = ∞ is clear from the ϕ2 = ∞ case in (C.69).

2. When ϕ2 ∈ (1,∞), we need to obtain limiting expressions for the quantities (β̃(Dk1,m
)−β0)⊤g(Σ)(β̃(Dk1,m

)−
β0) and tr[h(Σ)]/k2,m = tr[ṽ(0;ϕ2)Σ2(v(0;ϕ2)Σ + I)−2]/k2,m in terms of the limiting distributions Q
and H.
For the former, we start by expanding the quadratic form:

(β̃(Dk1,m) − β0)⊤g(Σ)(β̃(Dk1,m) − β0)
= (β̃(Dk1,m) − β0)⊤Wg(R)W⊤(β̃(Dk1,m) − β0)

=
pm∑
i=i

((β̃(Dk1,m
) − β0)⊤wi)2g(ri)

=
pm∑
i=1

((β̃(Dk1,m) − β0)⊤wi)2ri

pm∑
i=1

((β̃(Dk1.m) − β0)⊤wi)2ri · g(ri)/ri∑pm

i=1((β̃(Dk1,m
) − β0)⊤wi)2ri

= (R(f̃(·; D1,m)) − σ2)
∫
g̃(r) dQ̂n(r), (C.70)

where g̃(r) is given by

g̃(r) = g(r)
r

= (1 + ṽg(0;ϕ2)) 1
(v(0;ϕ2)r + 1)2 .

Under the assumption that Q̂n
d−→ Q in probability, we have∫

g̃(r) dQ̂n(r) p−→
∫
g̃(r) dQ(r) =

∫ (1 + ṽg(0;ϕ2))
(v(0;ϕ2)r + 1)2 dQ(r). (C.71)

Observe that g̃ is continuous. Since R(f̃(·; Dk1,m
)) a.s.−−→ Rdet(ψ1; f̃), from (C.70) and (C.71), we have

(β̃(Dk1,m
) − β0)⊤g(Σ)(β̃(Dk1,m

) − β0) p−→ (Rdet(ϕ1; f̃) − σ2)(1 + ṽg(0;ϕ2))
∫ 1

(v(0;ϕ2)r + 1)2 dQ(r)
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= Rdet(ϕ1; f̃)Υb(ϕ1, ϕ2) − σ2Υb(ϕ1, ϕ2), (C.72)

where Υb(ϕ1, ϕ2) is as defined in (3.58).
For the latter, using Lemma C.7.2 (4) and noting that the integrand is continuous, we have

tr[h(Σ)]/k2,m = pm
k2,m

ṽ(0;ϕ2)
∫

r2

(1 + v(0;ϕ2)r)2 dHpm(r) a.s.−−→ ϕ2ṽ(0;ϕ2)
∫

ρ2

(v(0;ϕ2)r + 1)2 dH(r)

= ṽg(0;ϕ2), (C.73)

where ṽg(0;ϕ2) is as defined in (3.57).
Putting (C.69), (C.72), and (C.73) together, the result follows for ϕ2 ∈ (1,∞).

3. The final case of ϕ2 ∈ (0, 1) follows analogous argument as in the proof of Proposition C.3.2.

This completes the proof.

C.5.3 Proof of Corollary 3.4.9

We will show that there exists a deterministic risk approximation Rdet(·, ·; f̃) : (0,∞] × (0,∞] → [0,∞] to
the conditional prediction risk R(f̃(·; Dk1,m

,Dk2,m
)) of the one-step ingredient predictor f̃(·; Dk1,m

,Dk2,m
)

that satisfies the three-point program (PRG-1-C1)–(PRG-1-C3). In particular, we will show that the
following Rdet(·, ·; f̃), that is a continuation of (3.54), satisfies the required conditions:

Rdet(ϕ1, ϕ2; f̃) =



Rdet(ϕ1; f̃) if ϕ2 = ∞

(Rdet(ϕ1; f̃) − σ2)Υb(ϕ1, ϕ2) + σ2(1 − Υb(ϕ1, ϕ2)) + σ2ṽg(0;ϕ2) if ϕ2 ∈ (1,∞)
∞ if ϕ2 = 1

σ2 ϕ2

1 − ϕ2
if ϕ2 ∈ (0, 1),

where Rdet(·; f̃) is the assumed deterministic risk approximation to the conditional prediction risk
R(f̃(·; Dk1,m

)) of the base predictor f̃(·; Dk1,m
), and Υb(·; ·) and ṽg(0; ·) are as defined in (3.58). Be-

low we split the three verifications:

1. Let Φ∞
1 := {ϕ1 ∈ (0,∞] : Rdet(ϕ1; f̃) = ∞} denote the set of limiting aspect ratios greater than

one, where the deterministic risk approximation to the base procedure is ∞. By the hypothesis
of Lemma 3.4.8, we have R(f̃(·; Dk1,m

)) p−→ Rdet(ϕ1; f̃) as k1,m, pm → ∞ and pm/k1,m → ϕ1 ∈
(0,∞] \ Φ∞

1 . Now observe that Rdet(ϕ1, ϕ2; f̃) = ∞ only at Φ∞ := {(ϕ1, ϕ2) : ϕ1 ∈ Φ∞
1 or ϕ2 = 1}.

This is because Υb(ϕ1, ϕ2), ṽg(0;ϕ2) < ∞ for ϕ2 ∈ (1,∞) from Lemma C.6.13 (5). Note from the
conclusion of Lemma 3.4.8 that R(f̃(·; Dk1,m

,Dk2,m
)) p−→ Rdet(ϕ1, ϕ2; f̃) as k1,m, k2,m, pm → ∞ and

(pm/k1,m, pm/k2,m) → (ϕ1, ϕ2) ∈ (0,∞] × (0,∞] \ Φ∞, or in other words, continuous convergence of
the risk to the deterministic approximation holds for all limiting (ϕ1, ϕ2) for which Rdet(ϕ1, ϕ2; f̃) < ∞.
This verifies (PRG-1-C1).

2. From the argument above, we have Rdet(ϕ1, ϕ2; f̃) = ∞ over Φ∞. Pick any (ϕ1, ϕ2) ∈ Φ∞. We will
show that Rdet(ϕ′

1, ϕ
′
2; f̃) → ∞ as (ϕ′

1, ϕ
′
2) → (ϕ1, ϕ2). From the definition of Φ∞, the point (ϕ1, ϕ2)

falls into either of the following two cases:

• ϕ2 = 1: In this case, observe thatRdet(ϕ′
1, ϕ

′
2) → ∞ as (ϕ′

1, ϕ
′
2) → (ϕ1, 1+) because limϕ′

2→1− ϕ′
2/(1−

ϕ′
2) = ∞, and Rdet(ϕ′

1, ϕ
′
2) → ∞ as (ϕ′

1, ϕ
′
2) → (ϕ1, 1+) because, from Lemma C.6.13 (5),

limϕ′
2→1+ ṽg(0;ϕ′

2) = ∞. Thus, Rdet(ϕ′
1, ϕ

′
2) → ∞ as (ϕ′

1, ϕ
′
2) → (ϕ1, ϕ2).
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• ϕ1 ∈ Φ∞
1 : In this case, Rdet(ϕ′

1) → ∞ as ϕ′
1 → ϕ1 from the assumption that Rdet(·; f̃) satisfies

(PRG-0-C2). Because Υb(ϕ′
1, ϕ

′
2), ṽg(0;ϕ′

2) > 0 over (ϕ′
1, ϕ

′
2) ∈ (0,∞] × (1,∞] from arguments

in Lemma C.6.13 (4) and Lemma C.6.13 (5), it follows that

lim
(ϕ′

1,ϕ
′
2)→(ϕ1,ϕ2)

Rdet(ϕ′
1, ϕ

′
2; f̃) = lim

ϕ′
1→ϕ1

Rdet(ϕ′
1; f̃) = ∞.

Thus, Rdet(ϕ′
1, ϕ

′
2) → ∞ as (ϕ′

1, ϕ
′
2) → (ϕ1, ϕ2).

Therefore, whenever (ϕ′
1, ϕ

′
2) → (ϕ1, ϕ2), we have Rdet(ϕ′

1, ϕ
′
2; f̃) → ∞, and thus Rdet(·, ·; f̃) satisfies

(PRG-1-C2).

3. Finally, the set of (ϕ1, ϕ2) such that Rdet(ϕ1, ϕ2; f̃) = ∞ is Φ∞. Because Φ∞ is product of two sets
each of which is closed in R, this set is closed in R2. Therefore, Rdet(·, ·; f̃) satisfies (PRG-1-C3).

Put together, all of (PRG-1-C1)–(PRG-1-C3) hold, and this in turn implies that f̃(·; Dk1,m
,Dk2,m

)
satisfies (DETPAR-1). This finishes the proof.

C.5.4 Proof of Proposition 3.4.10
It suffices to verify the hypothesis of Lemma 3.4.8 and then appeal to Corollary 3.4.9. We will use
Corollary C.6.12 along with the Portmanteau theorem to certify existence of a limiting distribution Q
assumed in Lemma 3.4.8. The form of Q is defined through limiting formulas for the generalized prediction
risks of the base predictor.

Let f be any continuous and bounded function. We will show that
∫
f(r) dQ̂n(r) converges to a

deterministic limit that is a function of H and G, and show existence of Q through this limit. We start by
noting that ∫

f(r) dQ̂n(r) = (β̃(Dk1,m) − β0)⊤f(Σ)(β̃(Dk1,m) − β0), (C.74)

where f(Σ) = Wf(R)W⊤, and f(R) is a matrix obtained by applying f component-wise to the diagonal
entries of R. We will now obtain a limiting expression for the term on the right hand side of (C.74), which
has the form of a generalized prediction risk of β̃(Dk1,m). Similar to the proof of Proposition 3.3.14, we will
first obtain a deterministic equivalent for the generalized prediction risk. Following similar steps as in the
proof of Proposition C.3.1, we have that

(β̃(Dk1,m)−β0)⊤f(Σ)(β̃(Dk1,m)−β0)−β⊤
0 (Ip−Σ̂†

1Σ̂1)f(Σ)(Ip−Σ̂†
1Σ̂1)β0+tr[Σ̂†

1f(Σ)]/k1,m
a.s.−−→ 0. (C.75)

Now, using first part of Corollary C.6.12, we can write

(Ip − Σ̂†
1Σ̂1)f(Σ)(Ip − Σ̂†

1Σ̂1) ≃ (1 + ṽg(0;ϕ1))(v(0;ϕ1)Σ + Ipm
)−1Σ(v(0;ϕ1)Σ + Ipm

)−1.

Using Property 4 of Appendix C.7, this then yields

β⊤
0 (Ip − Σ̂†

1Σ̂1)f(Σ)(Ip − Σ̂†
1Σ̂1)β0

a.s.−−→ (1 + ṽg(0;ϕ1))
∫

f(r)
(v(0;ϕ1)r + 1)2 dG(r). (C.76)

Similarly, using second part of Corollary C.6.12, we have

Σ̂†
1f(Σ) ≃ ṽ(0;ϕ1)(v(0;ϕ1)Σ + Ipm

)−2Σf(Σ).

Hence, appealing to Property 4 of Appendix C.7 again, we have

tr[Σ̂†
1f(Σ)]/k1,m

a.s.−−→ ϕ1ṽ(0;ϕ1)
∫

rf(r)
(v(0;ϕ1)r + 1)2 dH(r). (C.77)
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Therefore, from (C.74)–(C.77), it follows that∫
f(r) dQ̂n(r) a.s.−−→ (1 + ṽg(0;ϕ1))

∫
f(r)

(v(0;ϕ1)r + 1)2 dG(r) + ϕ1ṽ(0;ϕ1)
∫

rf(r)
(v(0;ϕ1)r + 1)2 dH(r).

Observe that this defines a distribution Q because one can take f(r) = eitr = cos(tr) + i sin(tr), which then
implies convergence of the characteristic function at all points. This finishes the proof. To get more insight
into the risk behaviour of the ingredient one-step predictor, we can also write out an explicit formula for
the deterministic approximation Rdet(·, ·; f̃mn2). We will do so below.

For the particular functional R(f̃(·; Dk1,m ,Dk2,m)), we have a specific f given by

f(r) = (1 + ṽg(0;ϕ2)) r

(v(0;ϕ2)r + 1)2 .

Thus, the final expression for Rdet(ϕ1, ϕ2) can be written explicitly as follows:

Rdet(ϕ1, ϕ2)

=



Rdet(min{ϕ1, ϕ2}) if ϕ1 = ∞ or ϕ2 = ∞

ρ2(1 + ṽg(0;ϕ1, ϕ2))(1 + ṽg(0;ϕ2))
∫

r

(1 + v(0;ϕ1)r)2(1 + v(0;ϕ2)r)2 dG(r)

+ σ2(1 + ṽg(0;ϕ2))ϕ1ṽ(0;ϕ1)
∫

r

(v(0;ϕ1)r + 1)2(v(0;ϕ2)r + 1)2 dH(r)

+ σ2
(
ϕ2ṽ(0;ϕ2)

∫
r

(1 + v(0;ϕ2)r)2 dH(r) + 1
)

if (ϕ1, ϕ2) ∈ (1,∞) × (1,∞)

σ2
(
ϕ2ṽ(0;ϕ2)

∫
r

(1 + v(0;ϕ2)r)2 dH(r) + 1
)

if (ϕ1, ϕ2) ∈ (0, 1) × (1,∞)

σ2 1
1 − ϕ2

if (ϕ1, ϕ2) ∈ (0,∞) × (0, 1),

where v(0;ϕ) is as defined in (C.46), ṽ(0;ϕ) is as defined in (C.47), ṽg(0;ϕ) is as defined in (C.48), and
ṽg(0;ϕ1, ϕ2) is as defined below:

ṽg(0;ϕ1, ϕ2) =
(1 + ṽg(0;ϕ2))ϕ1

∫
r2

(1 + v(0;ϕ2)r)2(1 + v(0;ϕ1)r)2 dH(r)

1
v(0;ϕ1)2 − ϕ1

∫
r2

(1 + v(0;ϕ1)r)2 dH(r)
.

Here, Rdet(·) is Rdet(·; f̃mn2) as defined in (C.45).

C.5.5 Proof of Proposition 3.4.11
Verification of the hypothesis of Lemma 3.4.8 is easy in this case because Σ = Ip. Observe that under
(ℓ1A2), the distribution Q̂n is simply a point mass at 1. Thus, the hypothesis of Lemma 3.4.8 is trivially
satisfied. Moreover, we can explicitly write expressions for the functions ṽg(0; ·) and Υb(·; ·). Towards that
end, we will first obtain expressions for the ingredient functions v(0; ·) and ṽ(0; ·).

• v(0;ϕ2): The fixed-point equation (3.55) can be solved explicitly since H is a point mass at 1. The
fixed-point equation in this case simplifies to

1
v(0;ϕ2) = ϕ2

1
v(0;ϕ2) + 1 . (C.78)

Solving (C.78) for v(0;ϕ2), we get

v(0;ϕ2) = 1
ϕ2 − 1 , and 1 + v(0;ϕ2) = ϕ2

ϕ2 − 1 . (C.79)
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• ṽ(0;ϕ2): Using (C.79), we can compute the inverse of ṽ(0;ϕ2) per (3.56) as

ṽ(0;ϕ2)−1 = (ϕ2 − 1)2 − ϕ2
(ϕ2 − 1)2

ϕ2
2

= (ϕ2 − 1)2 − (ϕ2 − 1)2

ϕ2
= (ϕ2 − 1)2ϕ2 − 1

ϕ2
= (ϕ2 − 1)3

ϕ2
.

Thus, we have

ṽ(0;ϕ2) = ϕ2

(ϕ2 − 1)3 , and ṽ(0;ϕ2)ϕ2 = ϕ2
2

(ϕ2 − 1)3 . (C.80)

Using (C.79) and (C.80), we can explicitly write out expressions for Υb(ϕ1, ϕ2) and ṽg(0;ϕ2).

• ṽg(0;ϕ2): Substituting (C.79) and (C.80) into (3.57), we obtain

ṽg(0;ϕ2) = ϕ2
2

(ϕ2 − 1)3
(ϕ2 − 1)2

ϕ2
2

= 1
ϕ2 − 1 , and (1 + ṽg(0;ϕ2)) = ϕ2

ϕ2 − 1 . (C.81)

• Υb(ϕ1, ϕ2): Substituting (C.79) and (C.80) into (3.58), we get

Υb(ϕ1, ϕ2) = ϕ2

ϕ2 − 1
(ϕ2 − 1)2

ϕ2
2

= ϕ2 − 1
ϕ2

, and 1 − Υb(ϕ1, ϕ2) = 1
ϕ2
. (C.82)

Observe that since the distribution Q does not depend on ϕ1 in this case, Υb(ϕ1, ϕ2) in turn also does
not depend on ϕ1.

Therefore, using (C.81) and (C.82), the deterministic risk approximation from (3.54) simplifies in this
case as follows:

Rdet(ϕ1, ϕ2; f̃) →



ρ2 + σ2 if ϕ1 = ϕ2 = ∞
Rdet(ϕ1) if ϕ2 = ∞

ρ2
(

1 − 1
ϕ2

)
+ σ2

(
1

ϕ2 − 1

)
+ σ2 if ϕ1 = ∞

Rdet(ϕ1)
(

1 − 1
ϕ2

)
+ σ2

(
1

ϕ2 − 1

)
+ σ2 if (ϕ1, ϕ2) ∈ (1,∞) × (1,∞)

σ2
(

ϕ1

1 − ϕ1

)(
1 − 1

ϕ2

)
+ σ2

(
1

ϕ2 − 1

)
+ σ2 if (ϕ1, ϕ2) ∈ (0, 1) × (1,∞)

σ2
(

ϕ2

1 − ϕ2

)
+ σ2 if (ϕ1, ϕ2) ∈ (0,∞) × (0, 1).

Here, Rdet(·) is Rdet(·; f̃mn1) as defined in (C.60).

C.6 Technical lemmas and miscellaneous details
In this section, we gather various technical lemmas along with their proofs, and other miscellaneous details.
Specific pointers to which lemmas are used in which proofs are provided at the start of each section.

C.6.1 Lemmas for verifying space-filling properties of discrete optimization
grids

In this section, we collect supplementary lemmas that are used in the proofs of Theorems 3.3.11 and 3.4.4
in Appendices C.2 and C.4, respectively.
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Lemma C.6.1 (Verifying space-filling property of the discrete grid used in the zero-step procedure). Let
{pn}, {m1,n}, {m2,n} are three sequences of positive integers such that m2,n ≤ m1,n for n ≥ 1. Suppose

pn
m1,n

→ γ ∈ (0,∞) and m2,n

m1,n
→ 0

as n → ∞. Define a sequence of grids Gn as follows:

Gn :=
{

pn
m1,n − km2,n

: 1 ≤ k ≤
⌈
m1,n

m2,n
− 2
⌉}

.

Then, for any ζ⋆ ∈ [γ,∞], ΠGn(ζ⋆) → ζ⋆ as n → ∞, where ΠGn(y) = arg minx∈Gn
|y−x| is the point in the

grid Gn closest to y. In particular, in the context of Algorithm 2, taking m1,n = ntr and m2,n = ⌊nν⌋ for
ν ∈ (0, 1), we get the aspect ratios used in Algorithm 2 “converge” to [γ,∞] when ntr/n → 1 under (PA(γ)).

Proof. We will consider different cases depending on where ζ⋆ ∈ [γ,∞] lands. See Figure C.3.

Figure C.3: Illustration of different cases of ζ ∈ [γ,∞] and the corresponding projection ΠGn
(ζ⋆).

1. Consider the first case when
γ ≤ ζ⋆ ≤ pn

m1,n −m2,n
.

In this case, ΠGn
(ζ⋆) is simply the first point in the grid. Observe that in this case

ΠGn(ζ⋆) − ζ⋆ ≤ pn
m1,n −m2,n

− γ =

pn
m1,n

1 − m2,n

m1,n

− γ → γ − γ = 0

as n → ∞ under the assumptions that pn/m1,n → γ and m2,n/m1,n → 0.

2. Consider the second case when
pn

m1,n −
⌈
m1,n

m2,n
− 2
⌉ ≤ ζ⋆ ≤ ∞.

In this case, ΠGn
(ζ⋆) is simply the last point in the grid. We will show eventually the only ζ⋆ in

this case is ζ⋆ = ∞. Note that pn/(m1,n − km2,n) increases with k ≥ 0. If ζ⋆ = ∞, then ΠGn
(ζ⋆) =

pn/(m1,n−k⋆m2,n) for k∗ = ⌈m1,n/m2,n−2⌉. Hence, it suffices to prove that pn/(m1,n−k⋆m2,n) → ∞
as n → ∞. This follows from the fact that

m1,n

m2,n
−
⌈
m1,n

m2,n
− 2
⌉

≤ 2,
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and thus
pn

m1,n − k⋆m2,n
= pn
m2,n(m1,n/m2,n − ⌈m1,n/m2,n − 2⌉) ≥ pn

2m2,n
→ ∞ = ζ∗,

as n → ∞ and pn/m1,n → γ ∈ (0,∞).

3. Consider the third case when
pn

m1,n − km2,n
≤ ζ⋆ ≤ pn

m1,n − (k + 1)m2,n
for some 1 ≤ k ≤

⌈
m1,n

m2,n
− 2
⌉
. (C.83)

From the first inequality in (C.83), we have
pn

m1,n − km2,n
≤ ζ⋆ =⇒ pn

m1,nζ⋆
≤ 1 − k

m2,n

m1,n
=⇒ k

m2,n

m1,n
≤ 1 − pn

m1,nζ⋆
. (C.84)

Similarly, from the second inequality of (C.83), we have

pn
m1,nζ⋆

≥ 1 − (k + 1)m2,n

m1,n
=⇒ k

m2,n

m1,n
≥ 1 − pn

m1,nζ⋆
− m2,n

m1,n
. (C.85)

The upper and lower bounds from (C.85) and (C.84) together imply that

1 − pn
m1,nζ⋆

− m2,n

m1,n
≤ km2,n

m1,n
≤ 1 − pn

m1,nζ⋆
.

Because limn→∞ m2,n/m1,n = 0, we conclude that

lim
n→∞

km2,n

m1,n
= 1 − γ

ζ⋆
∈ (0, 1). (C.86)

Now, note that since ΠGn(ζ⋆) is either of the two points of the grid partition, we have

|ΠGn
(ζ⋆) − ζ⋆| ≤ pn

m1,n − (k + 1)m2,n
− pn
m1,n − km2,n

= pn
m1,n − (k + 1)m2,n

m2,n

m1,n − km2,n

=

pn
m1,n

1 − (k + 1)m2,n

m1,n

m2,n

m1,n

1 − km2,n

m1,n

→ γ

1 −
(

1 − γ

ζ⋆

) 0(
1 −

(
1 − γ

ζ⋆

)) = 0,

as n → ∞ and pn/m1,n → γ and m2,n/m1,n → 0, where the limiting in the convergences on the last
line follow from (C.86).

This completes all the cases.
Finally, observe that for Algorithm 2, when m2,n = ⌊nν⌋ for some ν ∈ (0, 1) and m1,n = ntr such that

ntr/n → 1 as n → ∞, pn/m1,n → γ ∈ (0,∞), and m2,n/m1,n → 0, and hence the statement follows.

Lemma C.6.2 (Verifying space-filling property of the discrete grid used in the one-step procedure). Let
{pn}, {m1,n}, {m2,n} are three sequences of positive integers such that m2,n ≤ m1,n for n ≥ 1, and n → ∞,

pn
m1,n

→ γ ∈ (0,∞) and m2,n

m1,n
→ 0.
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Define a sequence of grids Gn as follows:

Gn :=
{(

pn
m1,n − k1m2,n

,
pn

k2m2,n

)
: k1 ∈

{
2, . . . ,

⌈
m1,n

m2,n
− 2
⌉}

, k2 ∈ {0, . . . , k1 − 1}
}
.

Let ζ⋆1 and ζ⋆2 be two non-negative real numbers such that

1
ζ⋆1

+ 1
ζ⋆2

≤ 1
γ
.

Let ΠGn
(ζ⋆1 , ζ⋆2 ) = (π1,n, π2,n) denote the projection of the point (ζ⋆1 , ζ⋆2 ) on the grid Gn with respect to the

ℓ1 distance. Then, π1,n → ζ⋆1 and π2,n → ζ⋆2 as n → ∞. In particular, in the context of Algorithm 3, taking
m1,n = ntr, m2,n = ⌊nν⌋ for some ν ∈ (0, 1), we get the aspect ratios used in Algorithm 3 “converge” to the
set {(ζ1, ζ2) : ζ−1

1 + ζ−1
2 ≤ γ−1} when ntr/n → 1 under (PA(γ)).

Proof. The proof follows the general strategy employed in the proof Lemma C.6.1 and uses the result as
ingredient.

Fix any point (ζ⋆1 , ζ⋆2 ) that satisfies the constraint

1
ζ⋆1

+ 1
ζ⋆2

≤ 1
γ
.

We will construct a pair (g⋆1 , g⋆2) in the grid Gn such that (g⋆1 , g⋆2) → (ζ⋆1 , ζ⋆2 ). Because

∥ΠGn
(ζ⋆1 , ζ⋆2 ) − (ζ⋆1 , ζ⋆2 )∥ℓ1 ≤ ∥(g⋆1 , g⋆2) − (ζ⋆1 , ζ⋆2 )∥ℓ1 ,

such a choice shows the desired result.
Define

(k⋆1 , k⋆2) =
(⌈

m1,n − pn/ζ
⋆
1

m2,n

⌉
,

⌊
pn/ζ

⋆
2

m2,n

⌋)
, and (g⋆1 , g⋆2) =

(
p

m1,n − k⋆1m2,n
,

p

k⋆2m2,n

)
.

By appealing to Lemma C.6.1, it follows that π1,n → ζ⋆1 as n → ∞. Note that the value of k⋆1 is exactly
the right point of the grid interval in Figure C.3 in the proof of Lemma C.6.1. Since ζ⋆1 ∈ [γ,∞] and the
first coordinate of the grid Gn is the same as that in Lemma C.6.1, we have that g⋆1 is a feasible choice and
g⋆1 → ζ⋆1 . It remains to verify the conditions for g⋆2 .

Note that when ζ⋆2 = ∞, k⋆2 = 0, which satisfies the desired condition. Assume that ζ⋆2 < ∞. We verify
below that k⋆2 < k⋆1 so that k⋆2 is a feasible choice and that

k⋆2m2,n

pn
→ 1

ζ⋆2
,

which implies the desired convergence of the reciprocal.
Observe that

k⋆2 ≤ pn
ζ⋆2m2,n

≤ pn
m2,n

(
m1,n

pn
− 1
ζ⋆1

)
≤ m1,n − pn/ζ

⋆
1

m2,n
= k⋆1 .

This verifies the first condition. For the second part, consider

0 ≤
∣∣∣∣k⋆2m2,n

pn
− 1
ζ⋆2

∣∣∣∣ =
∣∣∣∣⌊pn/ζ⋆2m2,n

⌋
m2,n

pn
− 1
ζ⋆2

∣∣∣∣ ≤ m2,n

pn
→ 0

under (PA(γ)) as n → ∞.
Finally, note that for Algorithm 3, when m2,n = ⌊nν⌋ for some ν ∈ (0, 1) and m1,n = ntr such that

ntr/n → 1 as n → ∞, pn/m1,n → γ ∈ (0,∞), and m2,n/m1,n → 0, and therefore the statement follows.
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C.6.2 Lemmas for restricting arbitrary sequences to specific convergent se-
quences

In this section, we collect supplementary lemmas that are used in the proofs of Lemmas 3.3.8 and 3.4.1 in
Appendices C.2 and C.4, respectively.

Lemma C.6.3 (From subsequence convergence to sequence convergence). Let {am}m≥1 be a sequence in R.
Suppose for any subsequence {amk

}k≥1, there is a further subsequence {amkl
}l≥1 such that limm→∞ amkl

= 0.
Then limm→∞ am = 0.

Proof. Let α := lim supm→∞ am and β := lim infm→∞ am. This means that there is subsequence {amk
}k≥1

such that limm→∞ amk
= α. Similarly, there is a (different) subsequence {aml

}l≥1 such that limm→∞ aml
=

β. But since every converging sequence has a further subsequence that converges to the same limit, the
lemma follows.

Lemma C.6.4 (Limit of minimization over finite grids in a metric space). Let (M,d) be a metric space,
and C be a subset of M . Suppose h : M → R is a function that attains its infimum over C at ζ⋆. Let G be
a finite set of points in C. Then, the following inequalities hold:

0 ≤ min
x∈G

h(x) − inf
x∈C

h(x) ≤ h(ΠG(ζ⋆)) − h(ζ⋆), (C.87)

where ΠG(y) = arg minx∈G d(x, y) is the point in the grid closest to y. Consequently, if Gn is a sequence of
grids such that ΠGn(ζ⋆) → ζ⋆, and h(·) is continuous at ζ⋆, then

min
x∈Gn

h(x) − inf
x∈C

h(x) → 0. (C.88)

Proof. Since G ⊆ C and ΠG(ζ⋆) ∈ G, we have the following chain of inequalities:

h(ζ⋆) = inf
x∈C

h(x) ≤ min
x∈G

h(x) ≤ h(ΠG(ζ⋆)).

Subtracting h(ζ⋆) throughout, we get the desired result (C.87). In addition, if Gn is a sequence of grids
such that ΠG(ζ⋆) → ζ⋆, then continuity of h(·) at ζ⋆ implies h(ΠG(ζ⋆)) → h(ζ⋆) leading to (C.88).

Lemma C.6.5 (Limit points of argmin sequence over space-filling grids). Let (M,d) be a metric space
and C be a compact subset of M . Let Gn be a sequence of grids such that for any ζ ∈ C, ΠGn

(ζ) → ζ as
n → ∞ where ΠGn

(y) = arg minx∈Gn
d(x, y) is the point in the grid Gn closest to y. Let h : C → [0,∞]

be a lower semicontinuous function, and let xn ∈ arg minx∈Gn
h(x). Then, for any arbitrary subsequence

{xnk
}k≥1 of {xn}n≥1, there exists a further subsequence {xnkl

}l≥1 such that xnkl
converges to a point in

arg minζ∈C h(ζ) as l → ∞.

Proof. Because h is lower semicontinuous and C is compact, h attains its minimum on C (see, e.g., Section
1.6 of Pedersen (2012) and also see Theorem 1.9 of Rockafellar and Wets (2009) with the domain Rn
replaced with any metric space.). Let M = arg minζ∈C h(ζ), which is non-empty. Because C is compact,
for any arbitrary subsequence {xnk

}k≥1, there is a further subsequence {xnkl
}l≥1 that converges to some

point p ∈ C. Lower semicontinuity of h now implies that

lim inf
l→∞

h(xnkl
) ≥ h(p). (C.89)

See, e.g., Section 1.5 of Pedersen (2012). By definition, h(xnkl
) = minx∈Gnkl

h(x) and because ΠGnkl
(ζ) → ζ

for any ζ ∈ C, Lemma C.6.4 implies that

lim
l→∞

h(xnkl
) = min

ζ∈C
h(ζ).

Combined with (C.89), we conclude that h(p) = minζ∈C h(ζ), and hence p ∈ M = arg minζ∈C h(ζ).
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C.6.3 Lemmas for certifying continuity from continuous convergence
In this section, we collect supplementary lemmas that are used in the proofs of Propositions 3.3.10 and 3.4.3
in Appendix C.2 and Appendix C.4, respectively.

Lemma C.6.6 (Deterministic functions; see, e.g., Problem 57, Chapter 4 of Pugh (2002), converse of
Theorem 21.3 in Munkres (2000)). Suppose fn and f are (deterministic) functions from I ⊆ R to R. For
any x ∈ I and any arbitrary sequence {xn}n≥1 in I for which xn → x, assume that fn(xn) → f(x) as
n → ∞. Then, f is continuous on I.

Proof. The following is a standard proof by contradiction. Assume f is discontinuous at a ∈ I. Then, there
exists a sequence xn → a such that

f(xn) /∈ [f(a) − 2ϵ, f(a) + 2ϵ]

for some ϵ > 0. Note that fn(x) → f(x) for all x ∈ I. Now, consider another sequence yn such that

y1 = y2 = · · · = yN1 = x1, where |fN1(x1) − f(a)| > ϵ

yN1+1 = yN1+2 = · · · = yN2 = x2, where |fN2(x2) − f(a)| > ϵ,N2 > N1

...

Observe that yn → a, however fn(yn) ̸→ f(a). Hence, a contradiction.

Lemma C.6.7 (Extension of Lemma C.6.6 to random functions). Suppose fn is a sequence of random
real-valued functions from I ⊆ R such that, for every deterministic sequence {xn}n≥1 in I such that
xn → x ∈ I, fn(xn) → f(x) in probability, for a deterministic function f on I. Then, f is continuous on I.

Proof. The idea of the proof is similar to that of an analogous statement for fixed functions; see Lemma C.6.6.
We will use proof by contradiction. Assume that f is discontinuous at a ∈ I. Then, as in the proof of
Lemma C.6.6 for deterministic functions, there exists a ϵ > 0 and a sequence {xn} ⊂ I such that xn → a
and

f(xn) /∈ [f(a) − 2ϵ, f(a) + 2ϵ]. (C.90)

From the hypothesis, we have that, for each x ∈ I, fn(x) → f(x) in probability. Let p ∈ (0, 1) be a fixed
number. Then, there exists an integer N1 ≥ 1 such that the event

ΩN1 = {|fN1(x1) − f(x1)| < ϵ}

holds with probability at least p. Thus, on ΩN1 , by the triangle inequality,

|fN1(x1) − f(a)| ≥ |f(x1) − f(a)| − |fN1(x1) − f(x1)| > ϵ, (C.91)

where last inequality stems from (C.90). Next, for i = 2, 3, . . . , let Ni ≥ Ni−1 + 1 be an integer such that
the event

ΩNi
= {|fNi

(xi) − f(xi)| < ϵ}

has probability at least p. These sequences of numbers {Ni} and events {ΩNi} exist because, by hypothesis,
fn(xi) → f(xi) in probability for each i. Furthermore Ni → ∞ and, on each ΩNi

, |fNi
(xi) − f(a)| > ϵ by

the same argument used in (C.91).
Consider the sequence {yn} given by

y1 = y2 = · · · = yN1 = x1

yN1+1 = yN1+2 = · · · = yN2 = x2

...
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such that, by construction, yn → a. We will derive a contradiction by showing that it cannot be the case
that fn(yn) → a in probability, thus violating the hypothesis. Indeed, the sequence of probability values
{P(|fn(yn) − f(a)| > ϵ)} does not converge to zero since, for each n, there exist infinitely many Ni > n
such that

P(|fNi
(yNi

) − f(a)| > ϵ) ≥ P(ΩNi
) > p > 0.

Thus, it must be the case that f is continuous at a. Continuity of f over I readily follows.

C.6.4 A lemma for lifting Q-continuity to R-continuity
The following lemma is used in the proofs of Propositions 3.3.10 and 3.4.3 in Appendices C.2 and C.4,
respectively.

Recall that a function f : R → R is continuous at a point x∞ ∈ R, if for all sequences {xn}n≥1 in R for
which xn → x∞ as n → ∞, we have f(xn) → f(x∞) as n → ∞. Call this R-continuity of f at the point
x∞, and call a function is R-continuous if it is R-continuous on its domain. Define a variant of continuity
with respect to rational sequences, dubbed Q-continuity, as follows.

Definition C.6.8 (Q-continuity). A function f : R → R is Q-continuous at a point x∞ ∈ R, if for all
sequences {xn}n≥1 in Q for which xn → x∞ as n → ∞, we have f(xn) → f(x∞) as n → ∞. A function is
Q-continuous if it is Q-continuous over its domain.

The following lemma shows that Q-continuity implies R-continuity.

Lemma C.6.9 (Q-continuity implies R-continuity). Suppose f : R → R is a Q continuous function. Then
f is R-continuous.

Proof. To prove R-continuity of f , fix any y∞ ∈ R, and consider any arbitrary sequence {yn}n≥1 in R such
that yn → y∞ as n → ∞. For any ϵ > 0, if we can produce nϵ such that |f(yn) − f(y∞)| ≤ ϵ for all n ≥ nϵ,
then R-continuity of f follows. We will produce such nϵ below.

For every m ≥ 1, construct a sequence {xk,m}k≥1 in Q such that xk,m → ym as k → ∞; see Figure C.4.
(Note this is possible because Q is dense in R.) Now, for every m ≥ 1, using Q-continuity of f at ym, we
have f(xk,m) → f(ym) as k → ∞. Fix ϵ > 0. Let k0(ϵ) = 1 and for m ≥ 1, define a positive integer km(ϵ)
by

km(ϵ) = min{k > km−1(ϵ) : |f(xk,m) − f(ym)| ≤ ϵ/2}.

Such a km(ϵ) always exists because xk,m → ym as k → ∞ and f is Q-continuous at ym. Note that
km(ϵ) > km−1(ϵ), which in turn implies that km(ϵ) ≥ m and thus km(ϵ) → ∞ as m → ∞. Hence, as
m → ∞, xkm(ϵ),m → y∞. Using the Q-continuity of f at y∞, there exists a positive integer mϵ such that for
all m ≥ mϵ, we have |f(xkm(ϵ),m) − f(y∞)| ≤ ϵ/2. For all m ≥ mϵ, by the triangle inequality, observe that

|f(ym) − f(y∞)| ≤ |f(ym) − f(km(ϵ))| + |f(km(ϵ)) − f(y∞)| ≤ ϵ.

Therefore, choosing nϵ = mϵ completes the proof.

C.6.5 Lemmas on asymptotic deterministic equivalents for generalized bias
and variance resolvents

In this section, we collect lemmas on asymptotic deterministic equivalents for generalized bias and variance
resolvents associated with ridge and ridgeless regression that are used in the proof of Proposition 3.3.14 in
Appendix C.3, and Proposition 3.4.10 and Lemma 3.4.8 in Appendix C.5.
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Figure C.4: Illustration of the grid of rational sequences used in the proof of Lemma C.6.9.

Lemma C.6.10 (Deterministic equivalents for generalized bias and variance ridge resolvents). Suppose
Xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d. random vectors with each Xi = ZiΣ1/2, where Zi ∈ Rp contains i.i.d. random
variables Zij, 1 ≤ j ≤ p, each with E[Zij ] = 0, E[Z2

ij ] = 1, and E[|Zij |8+α] ≤ Mα for some constants
α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite matrix such that rminIp ⪯ Σ ⪯ rmaxIp for
some constants rmin > 0 and rmax < ∞ (independent of p). Let X ∈ Rn×p be the random matrix with Xi,
1 ≤ i ≤ n, as its rows and let Σ̂ ∈ Rp×p denote the p× p random matrix X⊤X/n. Let A ∈ Rp×p be any
deterministic positive semidefinite matrix that commutes with Σ such that aminIp ⪯ A ⪯ amaxIp for some
constants amin > 0 and amax < ∞ (independent of p). Let γn := p/n. Then, for λ > 0, as n, p → ∞ with
0 < lim inf γn ≤ lim sup γn < ∞, the following asymptotic deterministic equivalences hold:

1. Generalized variance of ridge regression:

(Σ̂ + λIp)−2Σ̂A ≃ ṽ(−λ; γn)(v(−λ; γn)Σ + Ip)−2ΣA, (C.92)

where v(−λ; γn) ≥ 0 is the unique solution to the fixed-point equation

v(−λ; γn)−1 = λ+ γn tr[Σ(v(−λ; γn)Σ + Ip)−1]/p, (C.93)

and ṽ(−λ; γn) is defined via v(−λ; γn) by the equation

ṽ(−λ; γn)−1 = v(−λ; γn)−2 − γn tr[Σ2(v(−λ; γn)Σ + Ip)−2]/p. (C.94)

2. Generalized bias of ridge regression:

λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1 ≃ (v(−λ; γn)Σ + Ip)−1(ṽg(−λ; γn)Σ +A)(v(−λ; γn)Σ + Ip)−1, (C.95)

where v(−λ; γn) as defined in (C.98), and ṽg(−λ; γn) is defined via v(−λ; γn) by the equation

ṽg(−λ; γn) = γn tr[AΣ(v(−λ; γn)Σ + Ip)−2]/p
v(−λ; γn)−2 − γn tr[Σ2(v(−λ; γn)Σ + Ip)−2]/p

. (C.96)
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Proof. The main idea for both the first and second parts is to use Corollary C.7.4 as the starting point,
and apply the calculus rules for asymptotic deterministic equivalents listed in Appendix C.7 to manipulate
into the desired equivalents.

Part 1. For the first part, observe that we can express the resolvent of interest (associated with the
generalized variance of ridge regression) as a derivative (with respect to λ) of a certain resolvent:

(Σ̂ + λIp)−2Σ̂A = (Σ̂ + λIp)−1A− λ(Σ̂ + λIp)−2A = ∂

∂λ
[λ(Σ̂ + λIp)−1A)]. (C.97)

To find a deterministic equivalent for (Σ̂+λIp)−2Σ̂A, it thus suffices to obtain a deterministic equivalent for
the resolvent λ(Σ̂+λIp)−1A and take its derivative, thanks to the differentiation rule from Lemma C.7.2 (5).
Similar derivative trick is used in the proof of Theorem 2.1 in Liu and Dobriban (2019) and Theorem 2.1
in Dobriban and Wager (2018) to compute the standard variance of ridge regression, by Dobriban and
Sheng (2020) in the context of distributed ridge regression, and in the earlier works by Karoui and Kösters
(2011); Rubio and Mestre (2011); Ledoit and Péché (2011), among others, to compute certain limiting trace
functionals.

Starting with Corollary C.7.4, we have

λ(Σ̂ + λIp)−1 ≃ (v(−λ; γn)Σ + Ip)−1,

where v(−λ; γn) is the unique solution to the fixed point equation

v(−λ; γn)−1 = λ+ γn tr[Σ(v(−λ; γn)Σ + Ip)−1]/p. (C.98)

Since A has bounded operator norm (uniformly in p), from Lemma C.7.2 (3), we have

λ(Σ̂ + λIp)−1A ≃ (v(−λ; γn)Σ + Ip)−1A, (C.99)

where v(−λ; γn) is as defined by (C.98). It now remains to take the derivative of the right hand side of
(C.99) with respect to λ. Before doing so, we will briefly argue that the differentiation rule indeed applies
in this case. Let T ∈ Rp×p be a matrix with trace norm uniformly bounded in p. Note that

tr[Tλ(Σ̂ + λIp)−1A] = tr[T (Ip − Σ̂(Σ̂ + λIp)−1)A]
≤ ∥(Ip − Σ̂(Σ̂ + λIp)−1)A∥op tr[T ]
≤ ∥Ip − Σ̂(Σ̂ + λIp)−1∥op∥A∥op tr[T ]
≤ ∥A∥op tr[T ] ≤ C,

for some constant C < ∞. Here, the first inequality follows from Proposition 3.4.10 of Pedersen (2012) (see
also, Problem III.6.2 of Bhatia (1997)), and the second inequality follows from the submultiplicativity of
the operator norm. Similarly, note that

tr[T (v(−λ; γn)Σ + Ip)−1A] ≤ ∥(v(−λ; γn)Σ + Ip)−1∥op∥A∥op tr[T ] ≤ C,

for some constant C < ∞. Thus, we can safely apply the differentiation rule from Lemma C.7.2 (5) to get

(Σ̂ + λIp)−2Σ̂A ≃ ∂

∂λ
[(v(−λ; γn)Σ + Ip)−1A].

Taking derivative, we have
∂

∂λ
[(v(−λ; γn)Σ + Ip)−1A] = − ∂

∂λ
[v(−λ; γn)](v(−λ; γn)Σ + Ip)−2ΣA. (C.100)

We can write - ∂/∂λ[v(−λ; γn)] in terms of v(−λ; γn) by taking derivative of (C.98) with respect to λ and
solving for - ∂/∂λ[v(−λ; γn)]. Taking the derivative of (C.98) yields the following equation:

− ∂

∂λ
[v(−λ; γn)]v(−λ; γn)−2 = 1 + γn − ∂

∂λ
[v(−λ; γn)] tr[Σ2(v(−λ; γn)Σ + Ip)−2]/p. (C.101)
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Denoting - ∂/∂λ[v(−λ; γn)] by ṽ(−λ; γn) and solving for ṽ(−λ; γn) in (C.101), we get

ṽ(−λ; γn)−1 = v(−λ; γn)−2 − γn tr[Σ2(v(−λ; γn)Σ + Ip)−2]/p. (C.102)

Combining (C.97), (C.100), and (C.102), the statement follows. This completes the proof of the first part.

Part 2. For the second part, observe that we can express the resolvent of interest (appearing in the
generalized bias of ridge regression) as a derivative of a certain parameterized resolvent at a fixed value of
the parameter:

λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1 = λ2(Σ̂ + λIp + λρA)−1A(Σ̂ + λIp + λρA)−1|ρ=0

= − ∂

∂ρ
[λ(Σ̂ + λIp + λρA)−1]

∣∣∣
ρ=0

.
(C.103)

It is worth remarking that in contrast to Part 1, we needed to introduce another parameter ρ for this part
to appropriately pull out the matrix A in the middle. This trick has been used in the proof of Theorem 5 in
Hastie et al. (2022) in the context of standard bias calculation for ridge regression. Our strategy henceforth
will be to obtain a deterministic equivalent for the resolvent λ(Σ̂ + λIp + λρA)−1, take its derivative with
respect to ρ, and set ρ = 0. Towards that end, we first massage it to make it amenable for application of
Lemma C.7.3 as follows:

λ
(
Σ̂ + λIp + λρA

)−1 = λ
(
Σ̂ + λ(Ip + ρA)

)−1

= (Ip + ρA)−1/2λ
(
(Ip + ρA)−1/2Σ̂(Ip + ρΣ)−1/2 + λIp

)−1(Ip + ρA)−1/2

= (Ip + ρA)−1/2λ
(
Σ̂ρ,A + λIp

)−1(Ip + ρA)−1/2, (C.104)

where Σ̂ρ,A := Σ1/2
ρ,A(Z⊤Z/n)Σ1/2

ρ,A and Σρ,A := (Ip + ρA)−1/2Σ(Ip + ρA)−1/2. We will now obtain a
deterministic equivalent for λ(Σ̂ρ,A + λIp)−1, and use the product rule to arrive at the deterministic
equivalent for λ(Σ̂ + λIp + λρA)−1.

Using Corollary C.7.4, we have

λ(Σ̂ρ,A + λIp)−1 ≃ (vg(−λ, ρ; γn)Σρ,A + Ip)−1, (C.105)

where vg(−λ, ρ; γn) is the unique solution to the fixed-point equation

vg(−λ, ρ; γn)−1 = λ+ γn tr[Σρ,A(vg(−λ, ρ; γn)Σρ,A + Ip)−1]/p. (C.106)

Combining (C.104) with (C.105), and using the product rule from Lemma C.7.2 (3) (which is applicable
since (Ip + ρA)−1/2 is a deterministic matrix), we get

λ(Σ̂ + λIp + λρA)−1 = (Ip + ρA)−1/2λ(Σ̂ρ,A + λIp)−1(Ip + ρA)−1/2

≃ (Ip + ρA)−1/2(vg(−λ, ρ; γn)Σρ,A + Ip)−1(Ip + ρA)−1/2

= (Ip + ρA)−1/2(vg(−λ, ρ; γn)(Ip + ρA)−1/2Σ(Ip + ρA)−1/2 + Ip)−1(Ip + ρA)−1/2

= (vg(−λ, ρ; γn)Σ + Ip + ρA)−1.

Similarly, the right hand side of the fixed-point equation (C.106) can be simplified by substituting back for
Σρ,A to yield

vg(−λ, ρ; γn)−1 = λ+ γn tr[(Ip + ρA)−1/2Σ(Ip + ρA)−1/2(vg(−λ, ρ; γn)Σρ,A + Ip)−1]/p
= λ+ γn tr[Σ(vg(−λ, ρ; γn)(Ip + ρA)1/2Σρ,A(Ip + ρA)1/2 + (Ip + ρA))−1]/p
= λ+ γn tr[Σ(vg(−λ, ρ; γn)Σ + Ip + ρA)−1]/p. (C.107)
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Finally, we will now use the differentiation rule from Lemma C.7.2 (5) (with respect to ρ this time). The
applicability of the differentiation rule follows analogously to first part for ρ > −1/amin. Additionally, it is
easy to verify that both sides of (C.107) are analytic in ρ. Taking derivative with respect to ρ, we get

− ∂

∂ρ
[(vg(−λ, ρ; γn)Σ + Ip + ρA)−1]

= (vg(−λ, ρ; γn)Σ + Ip + ρA)−1
(
∂

∂ρ
[vg(−λ, ρ; γn)]Σ +A

)
(vg(−λ, ρ; γn)Σ + Ip + ρA)−1.

(C.108)

Setting ρ = 0 and observing that vg(−λ, 0; γn) = v(−λ; γn), where v(−λ; γn) is as defined in (C.98), we
have

∂

∂ρ
[(vg(−λ, ρ; γn)Σ + Ip + ρA)−1]

∣∣∣
ρ=0

= (v(−λ; γn)Σ + Ip)−1
(
∂

∂ρ
[vg(−λ, ρ; γn)]

∣∣∣
ρ=0

Σ +A

)
(v(−λ; γn)Σ + Ip)−1.

(C.109)

To obtain an equation for ∂/∂ρ[vg(−λ, ρ; γn)]|ρ=0, we can differentiate the fixed-point equation (C.107)
with respect to ρ to yield

− ∂

∂ρ
[vg(−λ, ρ; γn)]vg(−λ, ρ; γn)−2

= −γn
∂

∂ρ
[vg(−λ, ρ; γn)] tr[Σ2(vg(−λ, ρ; γn)Σ + Ip + ρA)−2]/p

− γn tr[AΣ(vg(−λ, ρ; γn)Σ + Ip + ρA)−2]/p.

Setting ρ = 0 in the equation above, and using the fact that vg(−λ, 0; γn) = v(−λ; γn), and denoting
∂/∂ρ[vg(−λ, ρ; γn)]|ρ=0 by ṽg(−λ; γn), we get that

ṽg(−λ; γn) = γn tr[AΣ(v(−λ; γn)Σ + Ip)−2]/p
v(−λ; γn)−2 − γn tr[Σ2(v(−λ; γn)Σ + Ip)−2]/p

. (C.110)

Therefore, from (C.103) and (C.109), we finally have

λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1 ≃ (v(−λ; γn)Σ + Ip)−1(ṽg(−λ; γn)Σ +A)(v(−λ; γn)Σ + Ip)−1,

where v(−λ; γn) is as defined in (C.98), and ṽg(−λ; γn) is as defined in (C.110). This completes the proof
of the second part.

Lemma C.6.11 (Deterministic equivalents for generalized bias and variance ridgeless resolvents). Assume
the setting of Lemma C.6.10 with γn ∈ (1,∞). Then, the following deterministic equivalences hold:

1. Generalized variance of ridgeless regression:

Σ̂+A ≃ ṽ(0; γn)(v(0; γn)Σ + Ip)−2ΣA, (C.111)

where v(0; γn) is the unique solution to the fixed-point equation

γ−1
n = tr[v(0; γn)Σ(v(0; γn)Σ + Ip)−1]/p, (C.112)

and ṽ(0; γn) is defined through v(0; γn) via

ṽ(0; γn) =
(
v(0; γn)−2 − γn tr[Σ2(v(0; γn)Σ + Ip)−2]/p

)−1
. (C.113)

2. Generalized bias of ridgeless regression:

(Ip − Σ̂+Σ̂)A(Ip − Σ̂+Σ̂) ≃ (v(0; γn)Σ + Ip)−1(ṽg(0; γn)Σ +A)(v(0; γn)Σ + Ip)−1, (C.114)
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where v(0; γn) is as defined in (C.112), and ṽg(0; γn) is defined via v(0; γn) by

ṽg(0; γn) = γn tr[AΣ(v(0; γn)Σ + Ip)−2]/p ·
(
v(0; γn)−2 − γn tr[Σ2(v(0; γn)Σ + Ip)−2]/p

)−1
. (C.115)

Proof. The proofs for both the parts use the results of Lemma C.6.10 and a limiting argument as λ → 0+.
The results of Lemma C.6.10 are pointwise in λ, but can be strengthened to be uniform in λ over a
range that includes λ = 0 allowing one to take the limits of the deterministic equivalents obtained in
Lemma C.6.10 as λ → 0+.

Part 1. We will use the result in Part 1 of Lemma C.6.10 as our starting point. Let Λ := [0, λmax] where
λmax < ∞, and let T be a matrix with bounded trace norm. Note that

| tr[(Σ̂ + λIp)−2Σ̂AT ]| ≤ ∥(Σ̂ + λIp)−2Σ̂A∥op tr[T ] ≤ C∥(Σ̂ + λIp)−2Σ̂∥op∥A∥op ≤ C (C.116)

for some constant C < ∞. Here, the last inequality follows because s2
i /(s2

i + λ)2 ≤ 1 where s2
i , 1 ≤ i ≤ p,

are the eigenvalues of Σ̂, and the operator norm A is assumed to be bounded. Consider the magnitude of
the derivative (in λ) of the map λ 7→ tr[(Σ̂ + λIp)−2Σ̂AT ] given by∣∣∣∣ ∂∂λ tr[(Σ̂ + λIp)−2Σ̂AT ]

∣∣∣∣ = 2| tr[(Σ̂ + λIp)−3Σ̂AT ]|.

Following the argument in (C.116), for λ ∈ Λ, observe that

| tr[(Σ̂ + λIp)−3Σ̂AT ]| ≤ ∥(Σ̂ + λIp)−3Σ̂∥op∥A∥op tr[T ] ≤ C

for some constant C < ∞. Similarly, in the same interval tr[ṽ(−λ; γn)(v(−λ; γn)Σ + Ip)−2ΣAT ] ≤ C. In
addition, from Lemma C.6.14, we have the map λ 7→ tr[ṽ(−λ; γn)(v(−λ; γn)Σ + Ip)−2AT ] is differentiable
in λ and the derivative for λ ∈ Λ is bounded. Therefore, the family of functions tr[(Σ̂ + λIp)−2Σ̂AT ] −
tr[ṽ(−λ; γn)(v(−λ; γn)Σ+Ip)−2ΣAT ] forms an equicontinuous family in λ over λ ∈ Λ. Thus, the convergence
in Part 1 of Lemma C.6.10 is uniform in λ. We can now use the Moore-Osgood theorem to interchange the
limits to obtain

lim
p→∞

{
tr[Σ̂+AT ] − tr[ṽ(0; γn)(v(0; γn)Σ + Ip)−2ΣAT ]

}
= lim
p→∞

lim
λ→0+

{
tr[(Σ̂ + λIp)−2Σ̂AT ] − tr[ṽ(−λ; γn)(v(−λ; γn)Σ + Ip)−2ΣAT )]

}
= lim
λ→0+

lim
p→∞

{
tr[(Σ̂ + λIp)−2Σ̂AT ] − tr[ṽ(−λ; γn)(v(−λ; γn)Σ + Ip)−2ΣAT )]

}
= 0.

In the first equality above, we used the fact that Σ̂+ = Σ̂+Σ̂Σ̂+ = limλ→0+(Σ̂ +λIp)−1Σ̂(Σ̂ +λIp)−1, and
that the functions v(·; γn) and ṽ(·; γn) are continuous (which follows, from say Lemma C.6.15 (1)). This
provides the right hand side of (C.111). Similarly, the fixed-point equation (C.98) as λ → 0+ becomes

v(0; γn)−1 = γn tr[Σ(v(0; γn)Σ + Ip)−1]/p.

Moving v(0; γn) to the other side (from Lemma C.6.13 (1), it follows that v(0; γn) > 0 for γn ∈ (1,∞)), we
arrive at the desired result.

Part 2. As done in Part 1, it is not difficult to show that over λ ∈ Λ the family of functions
tr[λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1T ] − tr[(v(−λ; γn)Σ + Ip)−1(ṽg(−λ; γn)Σ +A)(v(−λ; γn)Σ + Ip)−1T ] form
an equicontinuous family. Therefore, the convergence in Part 2 of Lemma C.6.10 is uniform in λ over Λ
(that includes 0). Using the Moore-Osgood theorem to the interchange the limits, one has

lim
p→∞

{
tr[(Ip − Σ̂+Σ̂)A(Ip − Σ̂+Σ̂)T ]
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− tr[(v(0; γn)Σ + Ip)−1(ṽg(0; γn)Σ +A)(v(0; γn)Σ + Ip)−1T ]
}

= lim
p→∞

lim
λ→0+

{
tr[λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1T ]

− tr[(v(−λ; γn)Σ + Ip)−1(ṽg(−λ; γn)Σ +A)(v(−λ; γn)Σ + Ip)−1T ]
}

= lim
λ→0+

lim
p→∞

{
tr[λ2(Σ̂ + λIp)−1A(Σ̂ + λIp)−1T ]

− tr[(v(−λ; γn)Σ + Ip)−1(ṽg(−λ; γn)Σ +A)(v(−λ; γn)Σ + Ip)−1T ]
}

= 0.

Now both (C.113) and (C.115) follow by taking λ → 0+ in (C.95) and (C.96), respectively.
This concludes the proof.

Corollary C.6.12 (Limiting deterministic equivalents for generalized bias and variance ridgeless resolvents).
Assume the setting of Lemma C.6.10. Let f : R≥0 → R≥0 be a function. Then, as n, p → ∞ and
p/n → γ ∈ (1,∞), the following equivalences hold:

1. Limiting generalized variance of ridgeless regression:

Σ̂+f(Σ) ≃ ṽ(0; γ)(v(0; γ)Σ + Ip)−2Σf(Σ), (C.117)

where v(0; γ) and ṽ(0; γ) are defined by (C.112) and (C.113), respectively.

2. Limiting generalized bias of ridgeless regression:

(Ip − Σ̂+Σ̂)f(Σ)(Ip − Σ̂+Σ̂) ≃ (1 + ṽg(0; γ))(v(0; γ)Σ + Ip)−1f(Σ)(v(0; γ)Σ + Ip)−1, (C.118)

where v(0; γ) is as defined in (C.112) and ṽg(0; γ) is as defined in (C.115) with A replaced by f(Σ).

Proof. The proof follows from Lemma C.6.11, in conjunction with Lemma C.6.13 ((1), (3), (4)) to provide
continuity of the functions v(0; ·), ṽ(0; ·), and ṽg(0; ·) (in the aspect ratio) over (1,∞).

C.6.6 Lemmas on properties of solutions of certain fixed-point equations
In this section, we collect helper lemmas that are used in the proofs of Proposition 3.3.14 in Appendix C.3,
Corollary 3.4.9 in Appendix C.5, and Lemma C.6.11 and Corollary C.6.12 in Appendix C.6.

Lemma C.6.13 (Continuity and limiting behavior of functions of the solution of a fixed-point equation
in the aspect ratio). Let a > 0 and b < ∞ be real numbers. Let P be a probability measure supported on
[a, b]. Consider the function v(0; ·) : ϕ 7→ v(0;ϕ), over (1,∞), where v(0;ϕ) ≥ 0 is the unique solution to
the fixed-point equation

1
ϕ

=
∫

v(0;ϕ)r
1 + v(0;ϕ)r dP (r). (C.119)

Then, the following properties hold:

1. The function v(0; ·) is continuous and strictly decreasing over (1,∞). Furthermore, limϕ→1+ v(0;ϕ) =
∞, and limϕ→∞ v(0;ϕ) = 0.

2. The function ϕ 7→ (ϕv(0;ϕ))−1 is strictly increasing over (1,∞). Furthermore, limϕ→1+(ϕv(0;ϕ))−1 =
0 and limϕ→∞(ϕv(0;ϕ))−1 = 1.

3. The function ṽ(0; ·) : ϕ 7→ ṽ(0;ϕ), where

ṽ(0;ϕ) =
(

1
v(0;ϕ)2 − ϕ

∫
r2

(1 + rv(0;ϕ))2 dP (r)
)−1

,

is continuous over (1,∞). Furthermore, limϕ→1+ ṽ(0;ϕ) = ∞, and limϕ→∞ ṽ(0;ϕ) = 0.
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4. The function ṽg(0; ·) : ϕ 7→ ṽg(0;ϕ), where

ṽg(0;ϕ) = ṽ(0;ϕ)ϕ
∫

r2

(1 + v(0;ϕ)r)2 dP (r),

is continuous over (1,∞). Furthermore, limϕ→1+ ṽg(0;ϕ) = ∞, and limϕ→∞ ṽg(0;ϕ) = 0.

5. Let Q be a (fixed) probability distribution supported on [a, b] that depends on a scalar ϕ1. Then, the
function Υb(ϕ1; ·) : ϕ 7→ Υb(ϕ1, ϕ), where

Υb(ϕ1, ϕ) = (1 + ṽg(0;ϕ))
∫ 1

(1 + v(0;ϕ)r)2 dQ(r),

is continuous over (1,∞). Furthermore, Υb(ϕ1, ϕ) < ∞ for ϕ ∈ (1,∞), and limϕ→∞ Υb(ϕ1, ϕ) = 1.

Proof. We consider the five parts separately below. Before doing so though, it is worth mentioning that for
ϕ ∈ (1,∞), there is a unique non-negative solution v(0;ϕ) to the fixed-point equation (C.119) as stated
in the statement. This follows from Lemma C.6.15 (1). The following properties refer to the function
v(0; ·) : ϕ 7→ v(0;ϕ) defined via this unique solution.

Part 1. We begin with the first part. Observe that the function

t 7→
∫ 1

1 + tr
dP (r)

is strictly decreasing and strictly convex over (0,∞). Thus, the function

T : t 7→ 1 −
∫ 1

1 + tr
dP (r) =

∫
t

1 + tr
dP (r)

is strictly increasing and strictly concave over (0,∞), with limt→0 T (t) = 0 and limt→∞ T (t) = 1. Since
the inverse image of a strictly increasing and strictly concave real function is strictly increasing and strictly
convex (see, e.g. Proposition 3 of Hiriart-Urruty and Martınez-Legaz (2003)), we have that T−1 is strictly
convex and strictly increasing. This also implies that T−1 is continuous. Note that v(0;ϕ) = T−1(ϕ−1).
Since ϕ−1 is continuous, it follows that v(0; ·) is continuous. In addition, since ϕ 7→ ϕ−1 is strictly decreasing,
we have that v(0; ·) is strictly decreasing. Moreover, limϕ→1+ T−1(ϕ−1) = ∞, and limϕ→∞ T−1(ϕ−1) = 0.

Part 2. From (C.119), we have

1
ϕv(0;ϕ) =

∫
r

1 + v(0;ϕ)r dP (r).

Because v(0;ϕ) is strictly decreasing over (1,∞), the right side of the display above is strictly increasing. Fur-
thermore, because limϕ→1+ v(0;ϕ) = ∞, we have limϕ→1+(ϕv(0;ϕ))−1 = 0, and because limϕ→∞ v(0;ϕ) = 0,
we have limϕ→∞(ϕv(0;ϕ))−1 = 1.

Part 3. From Part 1, the function 1/v(0; ·)2 is continuous. In addition, observe that the function

ϕ 7→
∫

r2

(1 + v(0;ϕ)r)2 dP (r)

is also continuous. Finally, note that

1
v(0;ϕ)2 − ϕ

∫
r2

(1 + rv(0;ϕ))2 dP (r) = 1
v(0;ϕ)2

(
1 − ϕ

∫ (
rv(0;ϕ)

1 + rv(0;ϕ)

)2
dP (r)

)
> 0,
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where the last inequality holds for all ϕ ∈ (1,∞) because v(0;ϕ) > 0 over ϕ ∈ (1,∞) from Part 1, and the
term in the parenthesis is strictly positive over ϕ ∈ (1,∞) because

ϕ

∫ (
rv(0;ϕ)

1 + rv(0;ϕ)

)2
dP (r) < ϕ

∫
rv(0;ϕ)

1 + rv(0;ϕ) dP (r) = 1,

where the last equality follows from (C.119). Thus, ṽ(0; ·) is continuous.
Furthermore, since limϕ→1+ v(0;ϕ) = ∞, it follows that limϕ→1+ ṽ(0;ϕ) = ∞. Similarly, from

limϕ→∞ v(0;ϕ) = 0 and the fact that

lim
ϕ→∞

∫
r2

(1 + rv(0;ϕ))2 dP (r) ≥ a2 > 0,

it follows that limϕ→∞ ṽ(0;ϕ) = 0.

Part 4. Similar to Part 3, continuity of ṽg(0; ·) follows from the continuity of ṽ(0; ·) and v(0;ϕ). To
compute the desired limits, observe that

1 + ṽg(0;ϕ) =

1
v(0;ϕ)2

1
v(0;ϕ)2 − ϕ

∫
r2

(1 + v(0;ϕ)r)2 dP (r)
.

We thus have

(1 + ṽg(0;ϕ))−1 = 1 − v(0;ϕ)2ϕ

∫
r2

(1 + rv(0;ϕ))2 dP (r) (C.120)

= 1 − ϕ

∫
r2

(v(0;ϕ)−1 + r)2 dP (r). (C.121)

Because limϕ→1+ v(0;ϕ) = ∞, from (C.121), we have

lim
ϕ→1+

(1 + ṽg(0;ϕ))−1 = 1 − lim
ϕ→1+

ϕ

∫
r2

(v(0;ϕ)−1 + r)2 dP (r) = 1 − 1 = 0.

It follows then that limϕ→1+ ṽg(0;ϕ) = ∞.
On the other hand, observe from (C.120) that

(1 + ṽg(0;ϕ))−1 = 1 − ϕv(0;ϕ)v(0;ϕ)
∫

r2

(1 + rv(0;ϕ))2 dP (r). (C.122)

From Part 2, we have limϕ→∞ ϕv(0;ϕ) = 1, and from Part 1, we have limϕ→∞ v(0;ϕ) = 0. Moreover, since
P is supported on [a, b], and v(0;ϕ) > 0 for ϕ ∈ (1,∞) from Part 1, for ϕ ∈ (1,∞), note that

0 <
∫

r2

(1 + rv(0;ϕ))2 < b2.

Thus, from (C.122), we obtain
lim
ϕ→∞

(1 + ṽg(0;ϕ))−1 = 1 − 0 = 1.

We hence conclude that limϕ→∞ ṽg(0;ϕ) = 0.
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Part 5. The continuity claim follows from the continuity of v(0; ·) and ṽg(0; ·) from Parts 1 and 4,
respectively. From calculation similar to that in Part 4, it follows that (1 + ṽg(0;ϕ)) < ∞ for ϕ ∈ (1,∞).
Now, since v(0;ϕ) > 0 for ϕ ∈ (1,∞) from Part 1, and Q is supported on [a, b], observe that∫ 1

(1 + v(0;ϕ)r)2 dQ(r) ≤ 1 < ∞.

Hence, Υb(ϕ1, ϕ) < ∞ for ϕ ∈ (1,∞). Moreover, because limϕ→∞(1+ ṽg(0;ϕ)) = 1, and limϕ→∞ v(0;ϕ) = 0,
we obtain

lim
ϕ→∞

Υb(ϕ1, ϕ) = lim
ϕ→∞

(1 + ṽg(0;ϕ)) · lim
ϕ→∞

∫ 1
(1 + v(0;ϕ)r)2 dQ(r) = 1.

Therefore, limϕ→∞ Υb(ϕ1, ϕ) = 1, as desired.
This completes all the five parts, and finishes the proof.

Lemma C.6.14 (Bounding derivatives of the solution of a fixed-point equation in the regularization
parameter). Let a > 0 and b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Let
γ ∈ (1,∞) be a real number. Let Λ = [0, λmax] for some constant λmax < ∞. For λ ∈ Λ, let v(−λ; γ) ≥ 0
denote the solution to the fixed-point equation

1
v(−λ; γ) = λ+ γ

∫
r

v(−λ; γ)r + 1 dP (r).

Then, the function λ 7→ v(−λ; γ) is twice differentiable over Λ. Furthermore, over Λ, v(−λ; γ), ∂/∂λ[v(−λ; γ)],
and ∂2/∂λ2[v(−λ; γ)] are bounded above. Furthermore, over Λ, absolute values of v(−λ; γ), ∂/∂λ[v(−λ; γ)],
and ∂2/∂λ2[v(−λ; γ)] are bounded above.

Proof. Start by re-writing the fixed-point equation as

λ = 1
v(−λ; γ) − γ

∫
r

v(−λ; γ)r + 1 dP (r).

Define a function f by
f(x) = 1

x
− γ

∫
r

xr + 1 dP (r).

Observe that v(−λ; γ) = f−1(λ). The claim of twice differentiability of the function λ 7→ v(−λ; γn) follows
from Lemma C.6.15 (4). The claim of boundedness of the function and its first derivatives (with respect to
λ) follows from Lemma C.6.15 ((4), (5), (6)).

Lemma C.6.15 (Bounding derivatives of the solution of a fixed-point equation). Let a > 0 and b < ∞ be
two real numbers. Let P be a probability distribution supported on [a, b]. Let γ ∈ (1,∞) be a real number.
Define a function f by

f(x) = 1
x

− γ

∫
r

xr + 1 dP (r). (C.123)

Then, the following properties hold:

1. There is a unique 0 < x0 < ∞ such that f(x0) = 0. The function f is twice differentiable and strictly
decreasing over (0, x0), with limx→0+ f(x) = ∞ and f(x0) = 0.

2. The derivative f ′ is strictly increasing over (0, x0), with limx→0+ f ′(x) = −∞ and f ′(x0) < 0.

3. The second derivative f ′′ is strictly decreasing over (0, x0), with limx→0+ f ′′(x) = ∞ and f ′′(x0) > 0.

4. The inverse function f−1 is twice differentiable, bounded over [0,∞) by x0 < ∞, and strictly decreasing
over (0,∞), with f−1(0) = x0 and limy→∞ f−1(y) = 0.
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5. The derivative of the inverse function (f−1)′ is bounded over [0,∞) by

x2
0

1 − γ

∫ (
x0r

x0r + 1

)2
dP (r)

< ∞.

6. The second derivative of the inverse function (f−1)′′ is bounded over [0,∞) by

2x3
0(

1 − γ

∫ (
x0r

x0r + 1

)2
dP (r)

)3 < ∞.

Proof. We consider different parts separately below.

Part 1. Observe that

f(x) = 1
x

− γ

∫
r

xr + 1 dP (r) = 1
x

(
1 − γ

∫
xr

xr + 1 dP (r)
)
.

The function g : x 7→ 1/x is positive and strictly decreasing over (0,∞) with limx→0+ g(x) = ∞ and
limx→∞ g(x) = 0, while the function

h : x 7→ 1 − γ

∫
xr

xr + 1 dP (r)

is strictly decreasing over (0,∞) with h(0) = 1 and limx→∞ h(x) = 1 − γ < 0. Thus, there is a unique
0 < x0 < ∞ such that h(x0) = 0, and consequently f(x0) = 0. Because h is positive over [0, x0], f , a product
of two positive strictly decreasing functions, is strictly decreasing over (0, x0), with limx→0+ f(x) = ∞ and
f(x0) = 0.

Part 2. The derivative f ′ at x is given by

f ′(x) = − 1
x2 + γ

∫
r2

(xr + 1)2 dP (r) = − 1
x2

(
1 − γ

∫ (
xr

xr + 1

)2
dP (r)

)
.

The function g : x 7→ 1/x2 is positive and strictly decreasing over (0,∞) with limx→0+ g(x) = ∞ and
limx→∞ g(x) = 0. On the other hand, the function

h : x 7→ 1 − γ

∫ (
xr

xr + 1

)2
dP (r)

strictly decreasing over (0,∞) with h(0) = 1 and h(x0) > 0. This follows because for x ∈ [0, x0],

γ

∫ (
xr

xr + 1

)2
dP (r) ≤

(
x0b

x0b+ 1

)
γ

∫ (
xr

xr + 1

)
dP (r)

< γ

∫
xr

xr + 1 dP (r) ≤ γ

∫
x0r

x0r + 1 dP (r) = 1,
(C.124)

where the first inequality in the chain above follows as the support of P is [a, b], and the last inequality
follows since f(x0) = 0 and x0 > 0, which implies that

1
x0

= γ

∫
r

x0r + 1 dP (r), or equivalently that 1 = γ

∫
x0r

x0r + 1 dP (r).

Thus, −f ′, a product of two positive strictly decreasing functions, is strictly decreasing, and in turn, f ′ is
strictly increasing. Moreover, limx→0+ f ′(x) = −∞ and f ′(x0) < 0.
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Part 3. The second derivative f ′′ at x is given by

f ′′(x) = 2
x3 − 2γ

∫
r3

(xr + 1)3 dP (r) = 2
x3

(
1 − γ

∫ (
xr

xr + 1

)3
dP (r)

)
.

The rest of the arguments are similar to those in Part 2. The function g : x 7→ 1/x3 is positive and strictly
decreasing over (0,∞) with limx→0+ g(x) = ∞ and limx→∞ g(x) = 0, while the function

h : x 7→ 1 − γ

∫ (
xr

xr + 1

)3
dP (r)

is strictly decreasing over (0,∞) with h(0) = 1 and h(x0) > 0 as

γ

∫ (
xr

xr + 1

)3
dP (r) ≤

(
x0b

x0b+ 1

)2
γ

∫ (
xr

xr + 1

)
dP (r)

< γ

∫
xr

xr + 1 dP (r) ≤ γ

∫
x0r

x0r + 1 dP (r) = 1.
(C.125)

It then follows that f ′′ is strictly decreasing, with limx→0+ f ′′(x) = ∞ and f ′′(x0) > 0.

Part 4. Because f is twice differentiable and strictly monotonic over (0, x0), f−1 is twice differentiable
and strictly monotonic (see, e.g., Problem 2, Chapter 5 of Rudin (1976)). Since f(x0) = 0, f−1(0) = x0,
and since limx→0+ f(x) = ∞, limy→∞ f−1(y) = 0. Hence, f−1 is bounded above over [0,∞) by x0 < ∞.

Part 5. Because f ′(x) ̸= 0 over (0, x0), by the inverse function theorem, we have

∣∣(f−1)′(f(x))
∣∣ =

∣∣∣∣ 1
f ′(x)

∣∣∣∣ < ∣∣∣∣ 1
f ′(x0)

∣∣∣∣ = 1
1
x2

0

(
1 − γ

∫ (
xr

xr + 1

)2
dP (r)

) < ∞,

where the first inequality uses the fact that |f ′(x0)| < |f ′(x)| for x ∈ (0, x0] from Part 2, and the last
inequality uses the bound from (C.124).

Part 6. Similar to Part 5, by inverse function theorem, we have

∣∣(f−1)′′(f(x))
∣∣ =

∣∣∣∣ f ′′(x)
f ′(x)3

∣∣∣∣ =

2
x3

(
1 − γ

∫ (
xr

xr + 1

)3
dP (r)

)
1
x6

(
1 − γ

∫ (
xr

xr + 1

)2
dP (r)

)3 ≤ 2x3
0(

1 − γ

∫ (
xr

xr + 1

)2
dP (r)

)3 < ∞,

where the first inequality uses the bound from (C.125), and the second inequality uses the bound from
(C.124).

This finishes all the six parts, and concludes the proof.

We remark that the technique of Lemma A.2 of Hastie et al. (2022) can be applied to obtain similar
conclusions as those in Lemmas C.6.14 and C.6.15. However, since our parameterization is slightly different,
we make use of the inverse function theorem instead of the implicit function theorem employed in Hastie
et al. (2022).
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C.6.7 Proof of Theorem C.6.16 (Risk characterization of one-step procedure
with ridgeless regression)

The following theorem characterizes the risk of the one-step procedure starting with MN2LS base procedure
for isotropic features under square error. Let Rdet(γ; f̃os) denote the risk of the one-step predictor starting
with the MN2LS base predictor on i.i.d. data with limiting aspect ratio γ.

Theorem C.6.16 (Limiting risk of one-step procedure with ridgeless regression). Suppose assumptions
(ℓ2A1), (ℓ2A2) with Σ = I, (ℓ2A3) hold true. Let SNR := ρ2/σ2. Then, the limiting risk of the one-step
predictor starting with the MN2LS base predictor under (PA(γ)) is given as follows:

• When SNR ≤ 1:

Rdet(γ; f̂os)
σ2 − 1 =


γ

1 − γ
if γ ≤ SNR

SNR + 1 < 1

SNR otherwise.

• When 1 < SNR ≤ SNR⋆(≈ 10.7041):

Rdet(γ; f̂os)
σ2 − 1 =

γ

1 − γ
if γ ≤ 1 − 1

2
√

2
√

SNR − 1
< 1

2
√

2
√

SNR − 1 − 1 if 1 − 1
2
√

2
√

SNR − 1
< γ ≤

(
2 − 1√

SNR
− 1√

2
√

SNR − 1

)−1

{
SNR

(
1 − 1

ζ1

)
+ 1
ζ1 − 1

}(
1 − 1

ζ2

)
+ 1
ζ2 − 1 otherwise,

where SNR⋆ (which is approximately 10.7041) is value of x > 1 that solves

1 − 1
2
√

2
√
x− 1

=
(

2 − 1
x

− 1√
2
√
x− 1

)−1

, (C.126)

and ζ1, ζ2 ≥ 1 are solutions to the equations

SNR
(

1
ζ1

− 1
ζ2

)
= ζ2

1
(ζ1 − 1)2 − ζ2

2
(ζ2 − 1)2 + 1

ζ1 − 1

(
1 − ζ1

ζ2

ζ1

(ζ1 − 1)

)
(C.127)

1
ζ1

+ 1
ζ2

= 1
γ
. (C.128)

• When SNR > SNR⋆:

Rdet(γ; f̂os)
σ2 − 1 =


γ

1 − γ
if γ ≤ γ⋆ < 1{

SNR
(

1 − 1
ζ1

)
+ 1
ζ1 − 1

}(
1 − 1

ζ2

)
+ 1
ζ2 − 1 otherwise,

where SNR⋆ is as defined in (C.126), γ⋆ is given by

1 −
(

1 + min
γ≤1

{
SNR

(
1 − 1

ζ1

)
+ 1
ζ1 − 1

}(
1 − 1

ζ2

)
+ 1
ζ2 − 1

)−1
,

and ζ1, ζ2 ≥ 1 are solutions to the set of equations (C.127) and (C.128).
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Furthermore, in each case, the limiting risk is a non-decreasing function of γ.

Proof. From Proposition 3.4.10, it follows that that the limiting risk of the ingredient one-step predictor
for various limiting split proportions (ζ1, ζ2) under isotropic features is given by

Rdet(ζ1, ζ2; f̃) − 1 =


{
ρ2
(

1 − 1
ζ1

)
+ σ2

(
1

ζ1−1

)}(
1 − 1

ζ2

)
+ σ2

(
1

ζ2−1

)
when ζ1 > 1, ζ2 > 1{

σ2
(

ζ1
1−ζ1

)}(
1 − 1

ζ2

)
+ σ2

(
1

ζ2−1

)
when ζ1 < 1, ζ2 > 1

σ2
(

ζ2
1−ζ2

)
when ζ2 < 1.

Note that the last case covers both ζ1 > 1 and ζ1 < 1. Given a fixed γ, our goal is to minimize Rdet(ζ1, ζ2; f̃)
with the constraint 1

ζ1
+ 1

ζ2
≤ 1

γ .
To simplify the calculations below, we first scale out the factor of σ2 and express the risk in terms of

SNR := ρ2

σ2 to write

Rdet(ζ1, ζ2; f̃)
σ2 − 1 =


{

SNR
(

1 − 1
ζ1

)
+
(

1
ζ1−1

)}(
1 − 1

ζ2

)
+
(

1
ζ2−1

)
when ζ1 > 1, ζ2 > 1{

ζ1
1−ζ1

}(
1 − 1

ζ2

)
+
(

1
ζ2−1

)
when ζ1 < 1, ζ2 > 1(

ζ2
1−ζ2

)
when ζ2 < 1.

The problem of minimizing R(β̂os) can now be broken into three separate minimization problems, one for
each of the cases above. The final allocation is then the one that gives the minimum among the three cases.

We next notice a simple observation that lets us eliminate the third case. Any feasible allocation of ζ1
and ζ2 in the third case is also a feasible allocation for the second case. This can be seen by making ζ1 for
the second case equal to ζ2 in the third case and letting ζ2 for the second case tend to ∞. Moreover, this
gives the same objective value for both the cases. Hence, the minimum of the second case is no larger than
the minimum of the third case and we can ignore the minimization of the third case.

Overall we are thus left with two minimization problems:

minimize
{

SNR
(

1 − 1
ζ1

)
+
(

1
ζ1−1

)}(
1 − 1

ζ2

)
+
(

1
ζ2−1

)
subject to 1

ζ1
+ 1

ζ2
≤ 1

γ

ζ1 > 1
ζ2 > 1

(C.129)

from the first case, and

minimize
{

ζ1
1−ζ1

}(
1 − 1

ζ2

)
+
(

1
ζ2−1

)
subject to 1

ζ1
+ 1

ζ2
≤ 1

γ

ζ1 < 1
ζ2 > 1

(C.130)

from the second case. We now in turn analyze both of these optimization problems.

Optimization problem (C.130)

Let’s start with the problem (C.130). Note that the objective function of the optimization problem (C.130)
does not depend on SNR. Hence the optimal value will only be a function of γ. In addition, the constraint
ζ1 < 1 is only satisfied when γ < 1. Thus, when γ > 1, the problem is infeasible. We divide the remaining
range of γ into two main cases of 0 < γ < 0.5 and 0.5 < γ < 1. In each of the cases, we show that the
minimum value of the problem is γ

1−γ , which is achieved by setting ζ1 = γ and ζ2 = ∞.
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When γ ≤ 0.5. We first note that any allocation ζ1 > 0.5 is suboptimal because when ζ1 > 0.5, we
have ζ1

1−ζ1
> 1 by Lemma C.6.17 (3). Thus using Lemma C.6.18 (3), the objective function in this case is

always larger than 1 for such ζ1. However, we can achieve 1 by setting ζ1 = 0.5 and ζ2 → ∞. Therefore
we only need to consider ζ1 ≤ 0.5. For such ζ1, we have ζ1

1−ζ1
≤ 1 by Lemma C.6.17 (1). Now using

Lemma C.6.18 (1), the optimal allocation is obtained by setting ζ2 → ∞ and choosing the least ζ1, which
is γ, and the corresponding optimal value is γ

1−γ .

When 0.5 < γ < 1. We claim that the optimum value is still γ
1−γ , which is achieved by setting ζ1 = γ

and ζ2 → ∞. This is a slightly more involved argument than the previous case because now ζ1
1−ζ1

will be
larger than 1 since ζ1 > γ > 0.5, and hence there is a possibility of optimal allocation other than ζ1 = γ
and ζ2 = ∞. We proceed as follows.

Consider any feasible ζ1 < 1. On one hand, using Lemma C.6.18 (2), we note that the unconstrained

optimal ζ⋆2 for this ζ1 is
√

ζ1
1−ζ1√
ζ1

1−ζ1
−1

. On the other hand, from the constraint 1
ζ2

≤ 1
γ − 1

ζ1
, we know that we

need to satisfy ζ2 ≥ 1
1
γ − 1

ζ1
. There are now two possible scenarios.

• When 4
7 < γ < 1.

In this case, we verify that any feasible ζ1 (such that γ ≤ ζ1 < 1) satisfies√
ζ1

1−ζ1√
ζ1

1−ζ1
− 1

<
1

1
γ − 1

ζ1

.

To see this, the above inequality after separating components of γ and ζ1 reads

1
γ
<

1
ζ1

+ 1 −
√

1
ζ1

− 1.

It is easy to check that the function x 7→ 1 + 1
x −

√
1
x − 1 attains minimum value of 7

4 (at x = 4
5 ) on

the interval 0.5 < x < 1. Thus whenever γ > 4
7 , this condition will be satisfied for all feasible ζ1. In

this case, from Lemma C.6.18 (2), the optimal ζ2 that satisfy the constraint is 1
1
γ − 1

ζ1
. Plugging this

value into the objective function, we arrive at the objective function{
ζ1

1 − ζ1

}(
1 − 1

γ
+ 1
ζ1

)
+

1
γ − 1

ζ1

1 − 1
γ + 1

ζ1

and the overall optimization problem reduces to

minimize
{

ζ1
1−ζ1

}(
1 − 1

γ + 1
ζ1

)
+

1
γ − 1

ζ1
1− 1

γ + 1
ζ1

subject to ζ1 ≥ γ ≥ 4
7

ζ1 < 1.
(C.131)

We can verify that the objective function is increasing in the constraint set and achieves the minimum
at ζ1 = γ. The corresponding ζ2 then tends to ∞ as desired.

• When 0.5 < γ < 4
7 , or equivalently 7

4 <
1
γ < 2.

In this case, we can check that when

2
γ −

√
4
γ − 7 − 1

2
(

1
γ2 − 2

γ + 2
) ≤ ζ1 ≤

2
γ +

√
4
γ − 7 − 1

2
(

1
γ2 − 2

γ + 2
) , (C.132)
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we have
1
γ
>

1
ζ1

+ 1 −
√

1
ζ1

− 1

which leads to
1

1
γ − 1

ζ1

<

√
ζ1

1−ζ1√
ζ1

1−ζ1
− 1

Thus ζ⋆2 =
√

ζ1
1−ζ1√
ζ1

1−ζ1
−1

is feasible. The objective at this ζ2 is 2
√

ζ1
1−ζ1

− 1. Now note that the function

x 7→ 2
√

x
1−x − 1 is increasing for 0 < x < 1 and thus the optimal ζ1 in this case is the lower point of

the above interval (C.132). The optimal value for this case is thus given by

2

√√√√√ 2
γ −

√
4
γ − 7 − 1

2
γ2 − 4

γ + 4 − 2
γ +

√
4
γ − 7 + 1

− 1.

While when

γ < ζ1 <

2
γ −

√
4
γ − 7 − 1

2
(

1
γ2 − 2

γ + 2
) , or

2
γ +

√
4
γ − 7 − 1

2
(

1
γ2 − 2

γ + 2
) < ζ1 < 1,

we have
1
γ
<

1
ζ1

+ 1 −
√

1
ζ1

− 1.

As argued before, in this case, the optimal ζ2 is 1
1
γ − 1

ζ1
and the objective function at this value is given

by {
ζ1

1 − ζ1

}(
1 − 1

γ
+ 1
ζ1

)
+

1
γ − 1

ζ1

1 − 1
γ + 1

ζ1

.

This function is again increasing in ζ1 in the constrained set and hence the optimal value of ζ1 is the
lower point when ζ1 = γ leading to the optimal value γ

1−γ . Now, we have

γ

1 − γ
< 2

√√√√√ 2
γ −

√
4
γ − 7 − 1

2
γ2 − 4

γ + 4 − 2
γ +

√
4
γ − 7 + 1

− 1

for 0.5 < γ < 4
7 . Thus overall, even in this case, the optimal allocation is ζ1 = γ and ζ2 → ∞.

Optimization problem (C.129)

We now turn to problem (C.129). In this case, the solution depends on both SNR and γ. Note that the
objective function can be written more compactly as h(ζ2;h(ζ1; SNR)) where h(γ; SNR) is defined as

h(γ; SNR) = SNR
(

1 − 1
γ

)
+ 1
γ − 1 .

We first consider the case when SNR ≤ 1. We argue that the optimum value in this case is SNR itself
and it is achieved by setting both ζ1 → ∞ and ζ2 → ∞. This can be seen as follows. For any feasible
ζ1 > 1, the minimum value of h(γ; SNR) is SNR and it is achieved as ζ1 → ∞ from Lemma C.6.18 (1).
Since this minimum value is less than 1, h(ζ2; SNR) is again minimized as ζ2 → ∞ and overall minimum is
SNR.

Let us consider the case when SNR > 1. For ease of notation, we denote SNR by s.
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We first claim that we can restrict to ζ1 ≥
√
s√
s−1 without loss of generality. This is because for any

1 < ζ1 <
√
s√
s−1 , there is a corresponding ζ1 ≥

√
s√
s−1 that gives either the same or smaller objective value

while enlarging the constraint set for ζ2. This claim follows from Lemma C.6.19 (1).
Next observe that the minimum without the constraint 1

ζ1
+ 1

ζ2
≤ 1

γ is

2
√

2
√
s− 1 − 1,

which is achieved by setting ζ1 =
√
s√
s−1 and ζ2 =

√
2

√
s−1√

2
√
s−1−1

. The values of γ for which this value is
achievable are:

γ ≤

(
1 − 1√

s
+ 1 − 1√

2
√
s− 1

)−1

. (C.133)

In other words, the optimum value of problem (C.129) is 2
√

2
√
s− 1 − 1 for γ satisfying (C.133) achieved

by setting ζ1 =
√
s√
s−1 and ζ2 =

√
2

√
s−1√

2
√
s−1−1

.
Now we consider γ bigger than (C.133). For such γ, we need to move either (or both) of ζ1 and ζ2

from their unconstrained optimum values above. We claim that the constraint 1
ζ1

+ 1
ζ2

≤ 1
γ need to be

satisfied with equality in this case. This can be seen as follows. By way of contradiction, suppose the
optimal allocation is (ζ⋆1 , ζ⋆2 ), and 1

ζ⋆
1

+ 1
ζ⋆

2
< 1

γ . We now argue that we can strictly decrease the objective
function while satisfying the constraint by producing a feasible allocation (ζ⋆⋆1 , ζ⋆⋆2 ) that strictly dominates
the assumed allocation. We have two cases to consider.

1. ζ⋆1 ≥
√
s√
s−1 and ζ⋆2 >

√
2

√
s−1√

2
√
s−1−1

. In this case, observe that we can keep ζ⋆⋆1 = ζ⋆1 and decrease ζ⋆2 so

that ζ⋆⋆2 = 1
γ − 1

ζ⋆
1

. This is feasible. Now note that

h(ζ⋆⋆2 ;h(ζ⋆⋆1 ; s)) = h(ζ⋆⋆2 ;h(ζ⋆1 ; s)) < h(ζ⋆2 ;h(ζ⋆1 ; s))

where the inequality follows from Lemma C.6.19 (2). Thus, the new allocation strictly decreases the
objective value.

2. ζ⋆1 >
√
s√
s−1 and ζ⋆2 =

√
2

√
s−1√

2
√
s−1−1

. In this case, we can decrease ζ⋆1 first so that ζ⋆⋆1 = 1
γ − 1

ζ⋆
2

, and keep
ζ⋆⋆2 = ζ⋆2 . Observe that this modification keeps us in the feasible region. Now note that

h(ζ⋆⋆2 ;h(ζ⋆⋆1 ; s)) = h(ζ⋆2 ;h(ζ⋆⋆1 ; s)) < h(ζ⋆2 ;h(ζ⋆1 ; s))

where the inequality follows from Lemma C.6.19 (1). Thus, the objective value is again strictly
smaller.

Hence, in both the cases, the objective value can be strictly improved while staying within the feasible
constraint. Therefore, we must hit the constraint with equality.

With the equality constraint, we can now use the method of Lagrange multipliers. The Lagrangian is
given by

L(ζ1, ζ2, µ) = h(ζ2;h(ζ1; s)) + µ

(
1
ζ1

+ 1
ζ2

− 1
γ

)
.

The optimality conditions are given by the following system of equations in (ζ1, ζ2, µ){
s

(
1 − 1

ζ1

)
+ 1
ζ1 − 1

}
1
ζ2

2
− 1

(ζ2 − 1)2 − µ

ζ2
2

= 0(
1 − 1

ζ2

){
s

ζ2
1

− 1
(ζ1 − 1)2

}
− µ

ζ2
1

= 0
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1
ζ1

+ 1
ζ2

= 1
γ
.

After minor simplifications, these lead to

s

(
1 − 1

ζ1

)
− µ = ζ2

1
(ζ1 − 1)2 − 1

ζ1 − 1

s

(
1 − 1

ζ2

)
− µ = ζ2

1
(ζ1 − 1)2

(
1 − 1

ζ2

)
1
ζ1

+ 1
ζ2

= 1
γ
.

Eliminating µ, we get two equations in two unknowns (ζ1, ζ2):

s

(
1
ζ1

− 1
ζ2

)
= ζ2

1
(ζ1 − 1)2 − ζ2

2
(ζ2 − 1)2 + 1

ζ1 − 1

(
1 − ζ1

ζ2

ζ1

(ζ1 − 1)

)
1
ζ1

+ 1
ζ2

= 1
γ
,

as claimed.
Finally, to obtain various boundary cutoff points for γ and SNR in each of the cases, note that:

• When x = SNR
SNR+1 , we have x

1−x = SNR.

• When x = 1 − 1
2
√

2
√

SNR−1
, we have x

x−γ = 2
√

2
√

SNR − 1 − 1. In addition, from a short calculation

it follows that, when SNR ≈ 10.704, we have 1 − 1
2
√

2
√

SNR−1
=
(

2 − 1√
SNR − 1√

2
√

SNR−1

)−1
.

• When x = γ⋆, we have x
1−x = minγ≤1 h(γ2;h(γ1; SNR)).

This finishes the proof. See Figure C.5 for an illustration of the optimal splitting of the aspect ratios
(ζ⋆1 (γ), ζ⋆2 (γ)) for a given γ for two different SNR values.
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Figure C.5: Illustration of the optimal splitting of the aspect ratios for the one-step optimization with
MN2LS base prediction procedure. Here, (ζ⋆1 (γ), ζ⋆2 (γ)) indicates the optimal splitting of the aspect ratio γ
for the first and second splits.
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C.6.8 Lemmas on properties of risk profile of ridgeless regression
In this section, we collect helper lemmas used in the proof of Theorem C.6.16. All the lemmas in this section
are quite elementary, and only abstracted out for ease of repeated use in the proof of Theorem C.6.16.

Lemma C.6.17 (Properties of ridgeless risk profile in the underparameterized regime). The function
g : x 7→ x

1−x over the domain (0, 1) has the following properties:

1. The function g is increasing in x.

2. When x ≤ 0.5, g(x) ≤ 1.

3. When x > 0.5, g(x) > 1.

Proof. The claims are easy to check. See Figure C.6 (the x < 1 segment) for illustration.

Lemma C.6.18 (Properties of ridgeless risk profile in the overparameterized regime). Let h(·; s) : x 7→
s
(
1 − 1

x

)
+ 1

x−1 be a function defined on the domain x > 1, parametrized by s ≥ 0. The function h has the
following properties:

1. When s ≤ 1, the function is decreasing in x and approaches the minimum value of s as x → ∞.

2. When s > 1, the function attains the minimum value of 2
√
s− 1 at x =

√
s√
s−1 .

3. When s > 1, h(x; s) > 1 for all x > 1.

4. For x >
√
s√
s−1 , the function is increasing in x.

5. The function s 7→ h(x; s) is increasing in s for s ≥ 0 for any fixed x > 1.

Proof. The first property is easy to check. The second property follows elementary calculus. The third
property follows from the second property. The fourth property follows by inspecting the derivative of h(·; s)
for x >

√
s√
s−1 . The fifth property is easy to check. See Figure C.6 (the x > 1 segment) for illustration.
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Figure C.6: Illustration of ridgeless risk profile with varying SNR.

Lemma C.6.19 (Properties of ridgeless one-step ingredient risk profile in the overparameterized regime).
Let h(x; s) : x 7→ s

(
1 − 1

x

)
+ 1

x−1 be a function defined on the domain x > 1, parameterized by s ≥ 1. Let
g : (x, y) 7→ h(y;h(x; s)) be a function defined on the domain x > 1 and y > 1, parameterized by s ≥ 1. The
function g has the following properties:
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1. For any fixed y > 1, the function g is minimized at x =
√
s√
s−1 and increasing in x for x ≥

√
s√
s−1 .

2. For any fixed x > 1, g(x, y) is increasing over y ≥
√
h(x;s)√
h(x;s)−1

.

Proof. The first claim follows from Lemma C.6.18 (2), (4), (5). The second claim follows from Lemma C.6.18 (4).

C.6.9 Control of additive error term in expectation
The following remark complements Remark 3.2.8 and specifies the growth allowed conditions on σ̂Ξ to
ensure that E[∆add

n ] = o(1).

Remark C.6.20 (Tolerable growth rates on σ̂Ξ for E∆add
n = o(1)). Suppose |Ξ| ≤ nS for some S < ∞.

Under the setting of Lemma 3.2.4, if for some t ≥ 1,

max
ξ∈Ξ

∥σ̂ξ∥Lt = o

(
n

1/2
te

n−A+(A+S)/t

)
,

then E[∆add
n ] = o(1). On the other hand, under the setting of Lemma 3.2.5, if

max
ξ∈Ξ

∥σ̂ξ∥L2 = o

(
n

1/2
te

n(S−A)/2

)

then E[∆add
n ] = o(1). The remark follows simply by observing that the first term in the expectation bounds

(3.11) and (3.13) for both Lemmas 3.2.4 and 3.2.5 are o(1), while the second term in Lemma 3.2.4 is of
order

O

(
n−A/r+S/t

n
1/2
te

)
max
ξ∈Ξ

∥σ̂ξ∥Lt
,

for r, t ≥ 1 and 1/r + 1/t = 1, and the second term in Lemma 3.2.5 is of order

O

(
n−A/2+S/2

n
1/2
te

)
max
ξ∈Ξ

∥σ̂ξ∥L2 .

It is worth mentioning that one can also derive suitable growth rates on κ̂Ξ that yield conditions for
E[∆mul

n ] = o(1). However, this does not directly lead to control of E[R(f̂ cv(·; Dn))] in the multiplicative
form (3.8). This is because of the denominator (1 − ∆mul

n )+ appearing in (3.8). For every n, there is a
non-zero probability that the denominator (1 − ∆mul

n )+ is zero. Hence, the right hand side of (3.8) may
not have a finite expectation in general. However, assuming E[R(f̂ξ(·; Dn))] < C for some C < ∞ for all
ξ ∈ Ξ, one can control E[R(f̂ cv(·; Dn))] by explicitly analyzing P(∆mul

n > 1/2), and using the bound

R(f̂ cv(·; Dn)) ≤ 1 + ∆mul
n

(1 − ∆mul
n )+

· min
ξ∈Ξ

R(f̂ξ(·; Dtr).I∆mul
n ≤1/2 +

∑
ξ∈Ξ

R(f̂ξ(·; Dn))I∆mul
n >1/2.

C.6.10 A lemma on norm equivalence implications
The following lemma formalizes various norm equivalence implications mentioned in Remarks 3.2.19
and 3.2.20.

Proposition C.6.21 (Norm equivalence implications). The following statements hold.

1. Suppose a random X satisfies L4 − L2 equivalence, i.e., there exists a constant C such that E[X4] ≤
CE[X2], then the random variable satisfies L2 − L1 equivalence, i.e., there exists a constant C such
that E[X2] ≤ CE[|X|].
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2. A random variable W satisfying ψ2 − L2 equivalence also satisfies ψ1 − L1 equivalence.

Proof. We will use the fact that the map p 7→ logE[|X|p] (p ≥ 1) is convex. In other words, for λ ∈ (0, 1),
we have

logE[|X|λr+(1−λ)s] ≤ λ logE[|X|r] + (1 − λ) logE[|X|s]. (C.134)

We now use r = 4 and s = 1, and λ = 1/3 so that λr + (1 − λ)s = 2. Plugging these choices in (C.134)
yields

logE[X2] ≤ 1
3 logE[X4] + 2

3 logE[|X|].

In terms of norms the inequality then becomes

2 log ∥X∥L2 ≤ 4
3 log ∥X∥L4 + 2

3 log ∥X∥L1 .

This yields
2
3 log ∥X∥L2

∥X∥L1

≤ 4
3 log ∥X∥L4

∥X∥L2

.

Manipulating both sides, we end up with

∥X∥L2

∥X∥L1

≤
(

∥X∥L4

∥X∥L2

)2

as desired.
The second facts follows because ψ2 − L2 equivalence implies Lp − L2 equivalence for each p ≥ 1, i.e.,

for each p ≥ 1, we have that
∥W∥Lp ≤ C

√
p∥W∥L2 ,

for an universal constant C; see Vershynin (2018, Proposition 2.5.2), for example. This in particular implies,
L4 − L2 equivalence, and by the first fact implies L2 − L1. Thus, there exists a universal constant C such
that

∥W∥L2 ≤ ∥W∥L1 .

Combining with the inequality above, we then get for p ≥ 1,

∥W∥Lp
≤ C

√
p∥W∥L1 ≤ Cp∥W∥L1 .

Now, using Vershynin (2018, Proposition 2.7.1), this implies ψ1 − L1 equivalence.
Alternatively, assuming ψ2 − L2 equivalence, observe the following chain of inequalities:

C∥X∥L4

(a)
≤ ∥X∥ψ1

(b)
≤ (log 2)1/2∥X∥ψ2

(c)
≤ C∥X∥L2

where (a) follows from Vershynin (2018, Proposition 2.5.2), (b) follows from Wellner and van der Vaart
(2013, Problem 2.2.5), (c) follows from the assumed ψ2 −L2 equivalence. Finally, since ψ2 −L2 equivalence
implies L4 − L2 equivalence, and from the fact this implies L2 − L1 equivalence concludes the proof.

Figure C.7 visually summarizes the norm equivalence implications.

C.6.11 Proof of (3.63)
Below we prove the risk decomposition (3.63) for the ingredient zero-step predictor under squared error
loss. The proof follows from the following iterated bias-variance decomposition.

E
[
(Y0 − f̃M (X0; Dtr))2 | Dtr

]
= E

[
E
[
(Y0 − f̂M (X0; Dtr))2 | Dtr, (X0, Y0)

]
| Dtr

]
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Figure C.7: Visual illustration of norm equivalence implications discussed in Remarks 3.2.19 and 3.2.20,
and in the proof of Proposition C.6.21. In the figure, A ⇒ B indicates that equivalence A implies
equivalence B.

= E
[(
Y0 − E

[
f̃M (X0; Dtr) | Dtr, (X0, Y0)

])2 ∣∣ Dtr

]
+ E

[
Var
(
f̃M (X0; Dtr) | Dtr, (X0, Y0)

) ∣∣ Dtr

]
= E


Y0 − 1(

n
kn

) ∑
i1,...,ikn

f̃
(
X0; {(Xij , Yij ) : 1 ≤ j ≤ kn}

)2 ∣∣∣∣∣ Dtr


+ E

[
1
M

Var
(
f̃(X0; Dtr,1)

∣∣ Dtr, (X0, Y0)
) ∣∣∣∣ Dtr

]

= R(f̃∞(·; Dtr)) + 1
M

E

 1(
n
kn

) ∑
i1,...,ikn

(
f̃
(
X0; {(X0, Y0) : 1 ≤ j ≤ kn}

)
− f̃∞(X0; Dtr)

)2
∣∣∣∣ Dtr

 ,
where in the last line f∞(·; Dtr) : Rp → R is defined such that for any x ∈ Rp

f̃∞(x; Dtr) = 1(
n
kn

) ∑
1≤i1<...<ikn ≤ntr

f̃(x; {(Xij , Yij ) : 1 ≤ j ≤ kn}).

C.7 Calculus of deterministic equivalents
We use the language of deterministic equivalents in the proofs of Proposition 3.3.14 and Proposition 3.4.11
in Appendix C.3 and Appendix C.5, respectively. In this section, we provide a basic review of the definitions
and useful calculus rules. For more details, see Dobriban and Sheng (2021).

Definition C.7.1. Consider sequences {Ap}p≥1 and {Bp}p≥1 of (random or deterministic) matrices of
growing dimension. We say that Ap and Bp are equivalent and write Ap ≃ Bp if limp→∞ | tr[Cp(Ap−Bp)]| =
0 almost surely for any sequence Cp matrices with bounded trace norm such that lim sup ∥Cp∥tr < ∞ as
p → ∞.

An observant reader will notice that Dobriban and Sheng (2021) use the notation Ap ≍ Bp to denote
deterministic asymptotic equivalence. In this work, we instead prefer to use the notation Ap ≃ Bp for such
equivalence to stress the fact that this equivalence is exact in the limit rather than up to constants as the
“standard” use of the asymptotic notation ≍ would hint at.

Lemma C.7.2 (Calculus of deterministic equivalents, Dobriban and Wager (2018), Dobriban and Sheng
(2021)). Let Ap, Bp, and Cp be sequences of (random or deterministic) matrices. The calculus of determin-
istic equivalents satisfy the following properties:

1. Equivalence: The relation ≃ is an equivalence relation.

2. Sum: If Ap ≃ Bp and Cp ≃ Dp, then Ap + Cp ≃ Bp +Dp.
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3. Product: If Ap a sequence of matrices with bounded operator norms, i.e., ∥Ap∥op < ∞, and Bp ≃ Cp,
then ApBp ≃ ApCp.

4. Trace: If Ap ≃ Bp, then tr[Ap]/p− tr[Bp]/p → 0 almost surely.

5. Differentiation: Suppose f(z,Ap) ≃ g(z,Bp) where the entries of f and g are analytic functions in
z ∈ S and S is an open connected subset of C. Suppose for any sequence Cp of deterministic matrices
with bounded trace norm we have | tr[Cp(f(z,Ap) − g(z,Bp))]| ≤ M for every p and z ∈ S. Then we
have f ′(z,Ap) ≃ g′(z,Bp) for every z ∈ S, where the derivatives are taken entry-wise with respect to
z.

We record deterministic equivalent for the standard ridge resolvent.

Lemma C.7.3 (Deterministic equivalent for basic ridge resolvent, adapted from Theorem 1 of Rubio and
Mestre (2011); see also Theorem 3.1 of Dobriban and Sheng (2021)). Suppose Xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d.
random vectors where each Xi = ZiΣ1/2, where Zi contains i.i.d. entries Zij, 1 ≤ j ≤ p, with E[Zij ] = 0,
E[Z2

ij ] = 1, and E[|Zij |8+α] ≤ Mα for some α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite
matrix such that 0 ⪯ Σ ⪯ rmaxIp for some constant (independent of p) rmax < ∞. Let X ∈ Rn×p the
matrix with Xi, 1 ≤ i ≤ n as rows and Σ̂ ∈ Rp×p denote the random matrix X⊤X/n. Define γn = p/n.
Then, for z ∈ C>0, as n, p → ∞ such that 0 < lim inf γn ≤ lim sup γn < ∞, we have

(Σ̂ − zIp)−1 ≃ (c(e(z; γn))Σ − zIp)−1, (C.135)

where c(e(z; γn)) is defined as
c(e(z; γn)) = 1

1 + γne(z; γn) , (C.136)

and e(z; γn) is the unique solution in C>0 to the fixed-point equation

e(z; γn) = tr[Σ(c(e(z; γn))Σ − zIp)−1]/p. (C.137)

Furthermore, e(z; γn) is the Stieltjes transform of a certain positive measure on R≥0 with total mass tr[Σ]/p.

We note that in defining e(λ; γn), it is also implicitly a parameterized by Σ. We suppress this dependence
for notational simplicity, and only explicitly indicate dependence on z and γn that will be useful for our
purposes.

Corollary C.7.4. Assume the setting of Lemma C.7.3. For λ > 0, we have

λ(Σ̂ + λIp)−1 ≃ (v(−λ; γn)Σ + Ip)−1,

where v(−λ; γn) is the unique solution to the fixed-point equation

1
v(−λ; γn) = λ+ γn tr[Σ(v(−λ; γn)Σ + Ip)−1]/p.

Proof. From Lemma C.7.3, for z ∈ C>0, we have the basic equivalence for ridge resolvent

(Σ̂ − zIp)−1 ≃ (c(e(z; γn))Σ − zIp)−1, (C.138)

where c(e(z; γn)) is defined by (C.136) and and e(z; γn) is the unqiue solution in C>0 to the fixed-point
equation (C.137). Substituting for e(z; γn) from (C.136) into (C.137), we can write the fixed-point equation
for c(e(z; γn)) as

1
c(e(z; γn))γn

− 1
γn

= tr[Σ(c(e(z; γn))Σ − zIp)−1]/p. (C.139)

Manipulating (C.139), we can write

1
c(e(z; γn)) − 1 = γn tr[Σ(c(e(z; γn))Σ − zIp)−1]/p = γn

(−z) tr[Σ(c(e(z; γn))/(−z)Σ + Ip)−1]/p. (C.140)
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Moving (−z) across in (C.140), we have equivalently the following equation for c(e(z; γn)):

(−z)
c(e(z; γn)) + z = γn tr[Σ(c(e(z; γn))/(−z)Σ + Ip)−1]/p. (C.141)

Now defining c(e(z; γn))/(−z) by v(z; γn), the fixed-point equation (C.141) becomes

1
v(z; γn) = −z + γn tr[Σ(v(z; γn)Σ + Ip)−1]/p. (C.142)

Note that (C.142) is also known as the Silverstein equation (Silverstein, 1995), and v(z; γn) as the companion
Stieltjes transform. Along the same lines, from (C.138), we have

(−z)(Σ̂ − zIp)−1 ≃ (−z)(c(e(z; γn))Σ − zIp)−1 = (c(e(z; γn))/(−z)Σ + Ip)−1. (C.143)

Substituting for v(z; γn), we can thus write

(−z)(Σ̂ − zIp)−1 ≃ (v(z; γn)Σ + Ip)−1. (C.144)

Now, taking z = −λ in (C.142) and (C.144) yields the equivalence

λ(Σ̂ + λIp)−1 ≃ (v(−λ; γn)Σ + Ip)−1,

where v(−λ; γn) is the unique solution to the fixed point equation

1
v(−λ; γn) = λ+ γn tr[Σ(v(−λ; γn)Σ + Ip)−1]/p.

Finally, since v(−λ; γn) is a Stieltjes transform of a probability measure (with support on R≥0), we have
that for Re(λ) > 0, by taking Im(λ) → 0, we have that Im(v(−λ; γn)) → 0, and thus the statement
follows.

We remark that we will directly apply Corollary C.7.4 for a real λ > 0 (in particular, in Lemma C.6.10).
The limiting argument to go from a complex λ to a real λ follow as done in the proof of Corollary C.7.4.
See, for example, proof of Theorem 5 in Hastie et al. (2022) (that uses Lemma 2.2 of Knowles and Yin
(2017)) for more details.

C.8 Useful results
In this section, we gather statements of concentration results available in the literature that are used in the
proofs in Appendices C.1, C.3 and C.5.

Non-asymptotic statements
Tail bounds. The following two tail bounds are used in the proofs of Lemmas 3.2.4, 3.2.5, 3.2.9 and 3.2.10
in Appendix C.1.

Lemma C.8.1 (Bernstein’s inequality, adapted from Theorem 2.8.1 of Vershynin (2018)). Let Z1, . . . , Zn
be independent mean-zero sub-exponential random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
−cmin

{
t2∑n

i=1 ∥Zi∥2
ψ1

,
t

max1≤i≤n ∥Zi∥ψ1

})
,

where c > 0 is an absolute constant. In other words, with probability at least 1 − η, we have∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≤ max


√√√√1
c

n∑
i=1

∥Zi∥2
ψ1

log
(

2
η

)
,

1
c

max
1≤i≤n

∥Zi∥ψ1 log
(

2
η

) .
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Lemma C.8.2 (Concentration for median-of-means (MOM) estimator, adapted from Theorem 2 of Lugosi
and Mendelson (2019)). Let W1, . . . ,Wn be i.i.d. random variables with mean µ and variance bounded by
σ2. Suppose we split the data {W1, . . . ,Wn} into B batches T1, . . . , TB. Let µ̂b be sample mean computed
on Tb for b = 1, . . . , B. Define

µ̂MOM
B := median(µ̂1, . . . , µ̂B).

Then, we have
P
{∣∣µ̂MOM

B − µ
∣∣ > σ

√
4B/n

}
≤ exp(−B/8).

Thus, letting 0 < η < 1 be a real number, B = ⌈8 log(1/η)⌉, with probability at least 1 − η,

∣∣µ̂MOM
B − µ

∣∣ ≤ σ

√
32 log(1/η)

n
.

With B = ⌈8 log(1/η)⌉, we use the notation MOM({W1, . . . ,Wn}, η) for µ̂MOM
B , that is,

MOM({W1, . . . ,Wn}, η) := µ̂MOM
⌈8 log(1/η)⌉. (C.145)

Moment bounds. The following two moment bounds imply Lemmas C.8.5 and C.8.6 that are used in
the proofs of Proposition 3.3.14 and Corollary 3.4.9 in Appendix C.3 and Appendix C.5, respectively.
Lemma C.8.3 (Moment bound on centered linear form, adapted from Lemma 7.8 of Erdos and Yau
(2017)). Let Z ∈ Rp be a random vector containing i.i.d. entries Zi, i = 1, . . . , n, such that for each i,
E[Zi] = 0, E[Z2

i ] = 1, and E[|Zi|k] ≤ Mk. Let a ∈ Rp be a deterministic vector. Then,

E[|a⊤Z|q] ≤ CqMq∥a∥q2
for a constant Cq that only depends on q.

Lemma C.8.4 (Moment bound on centered quadratic form, adapted from Lemma B.26 of Bai and
Silverstein (2010)). Let Z ∈ Rn be a random vector with i.i.d. entries Zi, i = 1, . . . , n, such that for each i,
E[Zi] = 0, E[Z2

i ] = 1, and E[|Zi|k] ≤ Mk for k > 2 and some constant Mk. Let A ∈ Rp×p be a deterministic
matrix. Then, for q ≥ 1,

E
[
|Z⊤AZ − tr[A]|q

]
≤ Cq

{
(M4 tr[AA⊤])q/2 +M2q tr[(AA⊤)q/2]

}
for a constant Cq that only depends on q.

Asymptotic statements
As a consequence of Lemma C.8.3 and Lemma C.8.7, we have the following concentration of a linear form
with independent components.
Lemma C.8.5 (Concentration of linear form with independent components). Let Z ∈ Rp be a random
vector with i.i.d. entries Zi, i = 1, . . . , p such that for each i, E[Zi] = 0, E[|Zi|4+α] ≤ Mα for some constant
Mα < ∞. Let A ∈ Rp be a random vector independent of Z such that lim supp ∥Ap∥2/p ≤ Mn almost
surely for a constant Mn < ∞. Then, A⊤Z/p → 0 almost surely as p → ∞.

As a consequence of Lemma C.8.4 and Lemma C.8.7, we have the following concentration of a quadratic
form with independent components.
Lemma C.8.6 (Concentration of quadratic form with independent components). Let Z ∈ Rp be a random
vector with i.i.d. entries Zi, i = 1, . . . , p such that for each i, E[Zi] = 0, E[Z2

i ] = 1, E[|Zi|4+α] ≤ Mα for
some α > 0 and constant Mα < ∞. Let D ∈ Rp×p be a random matrix such that lim sup ∥D∥op ≤ Mo

almost surely as p → ∞ for some constant Mo < ∞. Then, Z⊤DZ/p − tr[D]/p → 0 almost surely as
p → ∞.

Lemma C.8.7 (Moment version of the Borel-Cantelli lemma). Let {Zn}n≥1 be a sequence of real-valued
random variables such that the sequence {E|Zn|q}n≥1 is summable for some q > 0. Then, Zn → 0 almost
surely as n → ∞.
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C.9 Notation
Below we list general notation used in this work.

• We denote scalar random variables in regular upper case (e.g., X), and vector and matrix random
variables in bold upper case (e.g., X). We use calligraphic letters to denote sets (e.g., D), and
blackboard letters to denote some specials sets listed next.

• We use N to denote the set of natural numbers. We use Q to denote the set of rational numbers,
Q>0 to denote the set of positive rational numbers; R to denote the set of real numbers, R≥0 to
denote the set of non-negative real numbers, R>0 to denote the set of positive real numbers; C
to denote the set of complex numbers, C>0 to denote the upper half of the complex plane, i.e.,
C>0 = {z ∈ C : Im(z) > 0}.

• For a real number a, (a)+ denotes its positive part, ⌊a⌋ denotes its floor, ⌈a⌉ denotes its ceiling, sgn(a)
denotes its sign. For a complex number z, Re(z) denotes its real part, Im(z) denotes its imaginary
part, z denote its conjugate, |z| denotes its absolute value.

• For a set A, |A| denotes its cardinality, A∁ denotes its complement, IA denotes its indicator function.
For a function f , ∂/∂x[f ] denotes its partial derivative with respect to variable x. We also use f ′ to
denote derivative of f when it is clear from the context.

• For an event A, P(A) denotes its probability, and IA its indicator random variable. For a random
variable X, E[X] denotes its expectation, Var(X) = E[(X − E[X])2] denotes its variance; E[Xr]
denotes its r-th moment, E[|X|r] denotes its r-th absolute moment, ∥X∥Lr

= (E[|X|r])1/r denotes its
Lr norm, for a real number r ≥ 1; ∥X∥ψ denotes its ψ norm for an Orlicz function ψ; see Section 3.2.2
for more details.

• For a vector a ∈ Rp, ∥a∥r denotes its ℓr norm for r ≥ 1, ∥a∥A =
√
a⊤Aa denotes its norm with

respect to a positive semidefinite matrix A ∈ Rp×p.

• For a matrix A ∈ Rn×p, A⊤ ∈ Rp×n denote its transpose, A† ∈ Rp×n denotes the its Moore-
Penrose inverse, ∥A∥op denotes its operator norm, ∥A∥tr denotes its trace norm or nuclear norm
(∥A∥tr = tr[(A⊤A)1/2] =

∑
i σi(A)), where σ1(A) ≥ σ2(A) ≥ . . . denote its singular values in non-

increasing order. For a square matrix A ∈ Rp×p, tr[A] =
∑p
i=1 Aii denotes its trace. A p-dimensional

identity matrix is denoted as Ip or simply I when it is clear from the context.

• For a p × p positive semidefinite matrix A with eigenvalue decomposition A = V RV ⊤ for an
orthonormal matrix V and a diagonal matrix R, and a function f : R≥0 → R≥0, we denote by f(A)
the p× p positive semidefinite matrix V f(R)V ⊤, where f(R) is a p× p diagonal matrix obtained by
applying the function f to each diagonal entry of R.

• For two sequences of matrices An and Bn, we use the notation An ≃ Bn to denote a certain notion of
asymptotic equivalence; see Appendix C.7 for more details. For symmetric matrices A and B, A ⪯ B
denotes the Loewner ordering to mean that the matrix B −A is positive semidefinite.

• We write a ≍ b when there exist absolute constants Cl and Cu such that Cl ≤ a/b ≤ Cu. We write
a ≲ b when there exists an absolute constant C such that a ≤ Cb.

• We use O and o to denote the big-O and little-o asymptotic notation, respectively. We use Op
and op to denote the probabilistic big-O and little-o asymptotic notation, respectively. We denote
convergence in probability by p−→, almost sure convergence by a.s.−−→, weak convergence by d−→.

• Finally, we use generic letters C,C1, C2, . . . to denote constants whose value may change from line to
line.
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Notation Meaning (Location)
(X,Y ) feature vector X ∈ Rp and response variable Y ∈ R (Section 3.2.1)
Dn = {(Xi, Yi)}ni=1 dataset with n observations (Xi, Yi), 1 ≤ i ≤ n (Section 3.2.1)
f̂(·; Dn) : Rp → R predictor fitted on dataset Dn using prediction procedure f̂ (Section 3.2.1)
ℓ : R × R → R≥0 non-negative loss function (Section 3.2.1)
ℓ(Y0, f̂(X0; Dn)) prediction loss of predictor f̂(·; Dn) evaluated at test point (X0, Y0) (Section 3.2.1)
R(f̂(·; Dn)) prediction risk of predictor f̂(·; Dn) (3.5)
R̂(f̂(·; Dn)) estimator of prediction risk of f̂(·; Dn) (Section 3.2.1)

f̂ cv(·; Dn) cross-validated predictor fitted using dataset Dn (Algorithm 1)
f̂ξ, ξ ∈ Ξ collection of prediction procedures indexed by set Ξ (Algorithm 1)
ntr, nte number of train and test observations (Algorithm 1)
Dtr,Dte random split of Dn into train and test datasets with ntr and nte observations (Algorithm 1)
Itr, Ite disjoint subsets of In := {1, . . . , n} that are index sets for Dtr and Dte (Algorithm 1)
CEN, AVG, MOM centering procedure, averaging, median-of-means (3.2, 3.3)
η parameter in median-of-means (C.145)
∆add
n , ∆mul

n error terms in the additive and multiplicative oracle risk inequalities (3.6a, 3.6b)
σ̂ξ, σ̂Ξ conditional second moment of loss and their max over Ξ (Lemmas 3.2.4 and 3.2.5)
κ̂ξ, κ̂Ξ conditional kurtosis-like parameter of loss and their max over Ξ (Lemmas 3.2.9 and 3.2.10)
∥ℓ(Y0, f̂(X0; Dn))∥ψ1|Dn

conditional ψ1 norm of prediction loss (3.9)
∥ℓ(Y0, f̂(X0; Dn))∥Lr|Dn

conditional Lr norm of prediction loss (r ≥ 1) (3.10)

β̃ridge, β̃lasso, β̃mn2, β̃mn1 ridge, lasso, min ℓ2, ℓ1-norm least squares estimation procedures (3.20–3.24)
f̃mn2, f̃mn1 min ℓ2, ℓ1-norm least squares prediction procedures (3.22, 3.25)

f̂ zs(·; Dn) zero-step predictor fitted on dataset Dn (Algorithm 2)
ν ∈ (0, 1) exponent for block sizes ⌊nν⌋ in zero-step prediction procedure (Algorithm 2)
nξ n− ξ⌊nν⌋ (Algorithm 2)
M number of sub-samples for averaging for zero-step ingredient predictor (3.26)
Dξ,j

tr , 1 ≤ j ≤ M random subset of Dtr of size nξ (Algorithm 2)
f̃(·; Dξ,j

tr ) zero-step ingredient predictor fitted on dataset Dξ,j
tr using base prediction procedure f̃ (3.26)

Rdet(m; f̃) deterministic approximation to R(f̃(·; Dm)) (Definition 3.3.2)
Rdet

↗ (n; f̃) monotonized deterministic approximation at sample size n under general asymptotics (3.30)
PA(γ) proportional asymptotics regime (PA(γ))
DETPA-0 assumption of deterministic risk approximation to conditional risk under PA (DETPA-0)
DETPAR-0 reduction of assumption DETPA-0 (Lemma 3.3.8, DETPAR-0)
Rdet(pm/m; f̃) deterministic risk approximation at aspect ratio pm/m under PA (Section 3.3.3.1)
ξ⋆n optimal sequence of ξ for zero-step monotonized risk approximation (3.30, DETPA-0)
PRG-0-C1,C2 deterministic risk approximation program for zero-step (PRG-0-C1)–(PRG-0-C2)
km, pm sample size and feature size when verifying zero-step profile assumption (Lemma 3.3.8)
ρ2, σ2, SNR signal energy, noise energy, signal-to-noise ratio (ρ2/σ2) (Section 3.3.4)
Rdet

mn2(ϕ; ρ2, σ2) MN2LS risk approximation at aspect ratio ϕ, signal energy ρ2, noise energy σ2 (3.60)
f̃∞(·; Dtr) zero-step ingredient predictor fitted on Dn with M = ∞ (3.62)

f̂os(·; Dn) one-step predictor fitted on dataset Dn (Algorithm 3)
(n1,ξ1 , n2,ξ2) (n− ξ1⌊nν⌋, ξ2⌊nν⌋) (Algorithm 3)
(Dξ1,j

tr ,Dξ2,j
tr ), 1 ≤ j ≤ M random pairs of disjoint subsets of Dtr of sizes (n1,ξ1 , n2,ξ2) (Algorithm 3)

f̃(·; Dξ1,j
tr ,Dξ2,j

tr ) one-step ingredient predictor fitted on datasets (Dξ1,j
tr ,Dξ2,j

tr ) (3.43)
DETPA-1, DETPA-1* assumption of deterministic risk approximation to conditional risk under PA (DETPA-1)
DETPAR-1 reduction of assumption DETPA-1 (Lemma 3.4.1, DETPAR-1)
Rdet(p/n1, p/n2; f̃) risk approximation of ingredient one-step predictor at aspect ratios (p/n1, p/n2) (Section 3.4.3.1)
(ξ⋆1,n, ξ⋆2,n) optimal pair of sequence of ξ for one-step monotonized risk approximation (3.45)
PRG-1-C1,C2,C3 deterministic risk approximation program for one-step (PRG-1-C1)–(PRG-1-C3)
k1,m, k2,m, pm sample size and feature sizes when verifying one-step profile assumption (Lemma 3.4.1)
wi, ri, 1 ≤ i ≤ pm eigenvectors and eigenvalues of feature covariance matrix Σ ∈ Rpm×pm (Section 3.4.3.2)
Q̂n, Q a certain random distribution and its weak limit (C.69)
Hpm

, H empirical distribution of eigenvalues of Σ and limiting spectral distribution (3.53)
v(0;ϕ2), ṽ(0;ϕ2), ṽg(0;ϕ2),Υb(ϕ1, ϕ2) scalars in risk approximation of one-step procedure with linear base procedure (3.55–3.58)
Rdet

mn2(ϕ1, ϕ2; ρ2, σ2) MN2LS one-step risk approx at aspect ratios (ϕ1, ϕ2), signal energy ρ2, noise energy σ2 (3.60)

Table C.1: Summary of some of the main notation used in this work.
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Appendix D

Supplement for Chapter 4

D.1 Notation and organization
Notation
Below we provide an overview of some general notation used in this work.

We denote scalars in non-bold lower or upper case (e.g., n, λ, C), vectors in bold lower case (e.g., x,
β), and matrices in bold upper case (e.g., X). We denote sets using calligraphic letters (e.g., D), and use
blackboard letters to denote some special sets: N denotes the set of positive integers, R denotes the set
of real numbers, R≥0 denotes the set of non-negative real numbers, R>0 denotes the set of positive real
numbers, C denotes the set of complex numbers, C+ denotes the set of complex numbers with positive
imaginary part, and C− denotes the set of complex numbers with negative imaginary part. For a natural
number n, we use [n] to denote the set {1, . . . , n}.

For a real number x, (x)+ denotes its positive part, ⌊x⌋ its floor, and ⌈x⌉ its ceiling. For a vector β,
∥β∥2 denotes its ℓ2 norm. For a pair of vectors v and w, ⟨v,w⟩ denotes their inner product. For an event
A, 1A denotes the associated indicator random variable. For a matrix X ∈ Rn×p, X⊤ ∈ Rp×n denotes
its transpose, and X+ ∈ Rp×n denote its Moore-Penrose inverse. For a square matrix A ∈ Rp×p, tr[A]
denotes its trace, and A−1 ∈ Rp×p denotes its inverse, provided it is invertible. For a positive semidefinite
matrix Σ, Σ1/2 denotes its principal square root. A p× p identity matrix is denoted Ip, or simply by I,
when it is clear from the context.

For a real matrix X, its operator norm (or spectral norm) with respect to ℓ2 vector norm is denoted by
∥X∥op, and its trace norm (or nuclear norm) is denoted by ∥X∥tr (recall that ∥X∥tr = tr[(X⊤X)1/2]). For
a positive semidefinite matrix A ∈ Rp×p with eigenvalue decomposition A = V RV −1 for an orthonormal
matrix V ∈ Rp×p and a diagonal matrix R ∈ Rp×p with non-negative entries, and a function f : R≥0 → R≥0,
we denote by f(A) the p × p positive semidefinite matrix V f(R)V −1. Here, f(R) is a p × p diagonal
matrix obtained by applying the function f to each diagonal entry of R.

For symmetric matrices A and B, A ⪯ B denotes the Loewner ordering. For sequences of matrices An

and Bn, An ≃ Bn denotes a certain notion of asymptotic equivalence (see Definitions D.8.1 and D.8.2).
We use Op and op to denote probabilistic big-O and little-o notation, respectively. We denote convergence
in probability by “ p−→", almost sure convergence by “ a.s.−−→", and convergence in distribution by “ d−→".

Organization
Below we outline the structure of the rest of the supplement.

• In Appendix D.2, we present proofs of results related to general subagged predictors from Section 4.3.

• In Appendices D.3 and D.4, we present proof of Theorem 4.4.1 related to subagging from Section 4.4.2
for ridge and ridgeless predictors, respectively. The proofs for the two cases are separated due to
length. However, the proof architecture for the two is similar.
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• In Appendix D.5, we present proof of Theorem 4.4.6 related to splagging from Section 4.4.3 for ridge
and ridgeless predictors. Because some of this proof builds on that of Theorem 4.4.1, we can combine
the two cases of ridge and ridgeless predictors, unlike the split cases for Theorem 4.4.1.

• In Appendix D.6, we present proofs of results related to the bias-variance component monotonicity
properties in Propositions 4.4.5 and 4.4.10 for subagging and splagging, respectively. In this section,
we also provide proofs of results related to cross-validation and profile monotonicity and those related
to oracle properties of optimized bagging from Section 4.5.

• In Appendix D.7, we present proofs of specialized results related to subagging and splagging under
isotopic features from Section 4.6.

• In Appendix D.8, we formalize several calculus rules for a certain notion of conditional asymptotic
equivalence of sequences of matrices that are used in the proofs of constituent lemmas in Appendices D.3
to D.5.

• In Appendix D.9, we collect various technical helper lemmas related to concentrations and convergences
along with their proofs that are used in proofs in Appendices D.2 to D.5.

• In Appendix D.10, we present additional numerical illustrations for Theorems 4.4.1, 4.4.6 and 4.5.5,
and for specialized isotropic results from Section 4.6.

D.2 Proofs in Section 4.3
D.2.1 Asymptotic data conditional risk, squared loss
Proof of Proposition 4.3.2. The key idea in the proof is to use the conditional risk decomposition from
Proposition 4.3.1. Below we present the proof for sampling from Ik. The proof for sampling from Iπk is
analogous.

SRSWR. We will do the case of SRSWR from Ik first. From Proposition 4.3.1, we have

R(f̃M ; Dn) = E(x,y)[E[(f̃M − y)2 | Dn, (x, y)]]

= E(x,y) [BIk
(x, y) | Dn] + 1

M
E(x,y) [VIk

(x, y) | Dn]

= R(f̃∞; Dn) + 1
M
Cn, (D.1)

where Cn = E(x,y)

[
1

|Ik|
∑
I∈Ik

(
f̂(x; DI) − f̃∞,Ik

(x)
)2
∣∣∣∣Dn

]
.

Since for M = 1 and M = 2, we have

R(f̃1; Dn) = R(f̃∞; Dn) + Cn,

R(f̃2; Dn) = R(f̃∞; Dn) + Cn
2 .

We can thus write R(f̃∞; Dn) and Cn in terms of R(f̃WR
1,Ik

; Dn) and R(f̃WR
2,Ik

; Dn) as

R(f̃∞; Dn) = 2R(f̃2; Dn) −R(f̃1; Dn),
Cn = 2R(f̃1; Dn) − 2R(f̃2; Dn).

Substituting in (D.1), we obtain

R(f̃M ; Dn) = 2R(f̃2; Dn) −R(f̃1; Dn) + 1
M

(
2R(f̃1; Dn) − 2R(f̃2; Dn)

)
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= −
(

1 − 2
M

)
R(f̃1; Dn) +

(
2 − 2

M

)
R(f̃2; Dn).

Thus, subtracting the desired target in (4.13) for with replacement from both sides, we get

R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]
= −

(
1 − 2

M

)(
R(f̃1; Dn) − a1

)
+
(

2 − 2
M

)(
R(f̃2; Dn) − a2

)
.

Taking absolute values on both sides and using triangle inequality yields∣∣∣∣R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]∣∣∣∣ ≤
∣∣∣∣1 − 2

M

∣∣∣∣ ∣∣∣R(f̃1; Dn) − a1

∣∣∣+
(

2 − 2
M

) ∣∣∣R(f̃2; Dn) − a2

∣∣∣ .
Taking supremum over M , we have

sup
M∈N

∣∣∣∣R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]∣∣∣∣ ≤
∣∣∣R(f̃1; Dn) − a1

∣∣∣+ 2
∣∣∣R(f̃2; Dn) − a2

∣∣∣ .
Finally, since we have

R(f̃1; Dn) a.s.−−→ a1, R(f̃2; Dn) a.s.−−→ a2,

the desired claim in (4.13) for with replacement follows.

SRSWOR. For SRSWOR from Ik, similarly we have

R(f̃M ; Dn) = E(x,y)[E[(f̃M − y)2|Dn, (x, y)]]

= E(x,y) [BIk
(x, y) | Dn] + |Ik| −M

|Ik| − 1
1
M

E(x,y) [VIk
(x, y) | Dn]

= R(f̃∞; Dn) + |Ik| −M

|Ik| − 1
1
M
Cn

= R(f̃∞; Dn) − Cn
|Ik| − 1 + 1

M
· |Ik|Cn

|Ik| − 1 , (D.2)

where Cn = E(x,y)

[
1

|Ik|
∑
I∈Ik

(
f̂(x; DI) − f̃∞,Ik

(x)
)2
∣∣∣∣Dn

]
. Since for M = 1 and M = 2,

R(f̃1; Dn) = R(f̃∞; Dn) − Cn
|Ik| − 1 + |Ik|Cn

|Ik| − 1 ,

R(f̃2; Dn) = R(f̃∞; Dn) − Cn
|Ik| − 1 + 1

2 · |Ik|Cn
|Ik| − 1 .

We can thus write R(f̃∞; Dn)−Cn/(|Ik|−1) and |Ik|Cn/(|Ik|−1) in terms of R(f̃WR
1,Ik

; Dn) and R(f̃WR
2,Ik

; Dn)
as

R(f̃∞; Dn) − Cn
|Ik| − 1 = 2R(f̃2; Dn) −R(f̃1; Dn),

|Ik|Cn
|Ik| − 1 = 2(R(f̃1; Dn) −R(f̃2; Dn)).

Substituting in (D.2), we obtain

R(f̃M ; Dn) = 2R(f̃2; Dn) −R(f̃1; Dn) + 1
M

· 2(R(f̃1; Dn) −R(f̃2; Dn))

= −
(

1 − 2
M

)
R(f̃1; Dn) + 2

(
1 − 1

M

)
R(f̃2; Dn).
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Thus, subtracting the desired target in (4.13) for with replacement from both sides, we get

R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]
= −

(
1 − 2

M

)(
R(f̃1; Dn) − a1

)
+
(

2 − 2
M

)(
R(f̃2; Dn) − a2

)
.

Taking absolute values on both sides and using triangle inequality yields∣∣∣∣R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]∣∣∣∣ ≤
∣∣∣∣1 − 2

M

∣∣∣∣ ∣∣∣R(f̃1; Dn) − a1

∣∣∣+
(

2 − 2
M

) ∣∣∣R(f̃2; Dn) − a2

∣∣∣ .
Taking supremum over M , we have

sup
M∈N

∣∣∣∣R(f̃M ; Dn) −
[
(2a2 − a1) + 2(a1 − a2)

M

]∣∣∣∣ ≤
∣∣∣R(f̃1; Dn) − a1

∣∣∣+ 2
∣∣∣R(f̃2; Dn) − a2

∣∣∣ .
Finally, since we have

R(f̃1; Dn) a.s.−−→ a1, R(f̃2; Dn) a.s.−−→ a2,

the desired claim in (4.13) for the case of sampling without replacement follows.

D.2.2 Asymptotic subsample conditional risk, squared loss
Before we present the proof for Proposition 4.3.3, we first show the upper bound of the squared subsample
conditional risk for general M .

Lemma D.2.1 (Bounding the squared subsample conditional risk). The subsample conditional prediction
risk defined in (4.8) for the bagged predictor f̂M,Ik

can be bounded as:∣∣∣∣R(f̃M,Ik
; Dn, {Iℓ}Mℓ=1) −

{
(2b2 − b1) + 2(b1 − b2)

M

}∣∣∣∣
≤

∣∣∣∣∣ 1
M

M∑
ℓ=1

R(f̃1,Ik
; Dn, {Iℓ}) − b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣ 1
M(M − 1)

∑
i,j∈[M ],i̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}) − b2

∣∣∣∣∣∣ .
(D.3)

Proof of Lemma D.2.1. We start by expanding the squared risk as:

R(f̃M,Ik
; Dn, {Iℓ}Mℓ=1)

=
∫ (

y − 1
M

M∑
ℓ=1

f̂(x; DIℓ
)
)2

dP (x, y)

=
∫ ( 1

M

M∑
ℓ=1

(
y − f̂(x; DIℓ

)
))2

dP (x, y)

= 1
M2

M∑
ℓ=1

∫ (
y − f̂(x; DIℓ

)
)2 dP (x, y) + 1

M2

M∑
i=1

M∑
j=1
j ̸=i

∫ (
y − f̂(x; DIi)

)(
y − f̂(x; DIj )

)
dP (x, y)

= 1
M2

M∑
ℓ=1

R(f̃1,Ik
; Dn, Iℓ) + 1

M2

M∑
i=1

M∑
j=1
j ̸=i

∫
(y − f̂(x; DIi

))(y − f̂(x; DIj
)) dP (x, y)

(i)= 1
M2

M∑
ℓ=1

R(f̃1,Ik
; Dn, Iℓ)
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+ 1
M2

M∑
i=1

M∑
j=1
j ̸=i

∫ 1
2

{
4
(
y − 1

2
(
f̂(x; DIi

) + f̂(x; DIj
)
))2

−
(
y − f̂(x; DIi

)
)2 −

(
y − f̂(x; DIj

)
)2
}

dP (x, y)

= 1
M2

M∑
ℓ=1

R(f̃1,Ik
; Dn, Iℓ)

+ 1
M2

M∑
i=1

M∑
j=1
j ̸=i

1
2

{
4R(f̂2,Ik

; Dn; Ii, Ij) −R(f̃1,Ik
; Dn; Ii) −R(f̃1,Ik

; Dn; Ij)
}

= 1
M2

M∑
ℓ=1

R(f̃1,Ik
; Dn, Iℓ) − 1

2M2

M∑
i=1

M∑
j=1
j ̸=i

R(f̃1,Ik
; Ii) − 1

2M2

M∑
i=1

M∑
j=1
j ̸=i

R(f̃1,Ik
; Ij) + 1

M2

M∑
i=1

M∑
j=1
j ̸=i

2R(f̂2,Ik
; Dn; Ii, Ij)

= 1
M2

M∑
ℓ=1

R(f̃1,Ik
; Dn; Iℓ) − 1

2M2 · 2 · (M − 1)
M∑
ℓ=1

R(f̃1,Ik
; Iℓ) + 2

M2

∑
i,j∈[M ]
i̸=j

R(f̂2,Ik
; Dn; Ii, Ij)

=
(

1
M2 − (M − 1)

M2

) M∑
ℓ=1

R(f̃1,Ik
; Dn; Iℓ) + 2

M2

∑
i,j∈[M ]
i̸=j

R(f̂2,Ik
; Dn; Ii, Ij)

= −
(

1
M

− 2
M2

) M∑
ℓ=1

R(f̃1,Ik
; Dn, {Iℓ}) + 2

M2

∑
i,j∈[M ]
i ̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}).

In the expansion above, for equality (i), we used the fact that ab = {4(a/2 + b/2)2 − a2 − b2}/2.
Now, subtracting the desired limit on both sides yields∣∣∣∣R(f̃M,Ik

; Dn, {Iℓ}Mℓ=1) −
{

(2b2 − b1) + 2(b1 − b2)
M

}∣∣∣∣
=

∣∣∣∣∣∣∣∣−
(

1
M

− 2
M2

) M∑
ℓ=1

(R(f̃1,Ik
; Dn, {Iℓ}) − b1) + 2

M2

∑
i,j∈[M ]
i ̸=j

(R(f̃2,Ik
; Dn, {Ii, Ij}) − b2)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣1 − 2

M

∣∣∣∣ ·

∣∣∣∣∣ 1
M

M∑
ℓ=1

R(f̃1,Ik
; Dn, {Iℓ}) − b1

∣∣∣∣∣+ 2(M − 1)
M

∣∣∣∣∣∣∣∣
1

M(M − 1)
∑

i,j∈[M ]
i ̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}) − b2

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣ 1
M

M∑
ℓ=1

R(f̃1,Ik
; Dn, {Iℓ}) − b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣
1

M(M − 1)
∑

i,j∈[M ]
i ̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}) − b2

∣∣∣∣∣∣∣∣ .
This completes the proof of the upper bound.

Next, we present the proof of Proposition 4.3.3.

Proof of Proposition 4.3.3. Lemma 4.3.8 implies the asymptotics for the data conditional risk. Now,
consider the asymptotics for the subsample conditional risk of the bagged predictors. From (D.3) of
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Lemma D.2.1, it holds that∣∣∣∣R(f̃M,Ik
; Dn, {Iℓ}Mℓ=1) −

{
(2b2 − b1) + 2(b1 − b2)

M

}∣∣∣∣
≤

∣∣∣∣∣ 1
M

M∑
ℓ=1

R(f̃1,Ik
; Dn, {Iℓ}) − b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣ 1
M(M − 1)

∑
i,j∈[M ],i̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}) − b2

∣∣∣∣∣∣ .
(D.4)

This implies that

sup
M∈N

∣∣∣∣R(f̃M,Ik
; Dn, {Iℓ}Mℓ=1) −

{
(2b2 − b1) + 2(b1 − b2)

M

}∣∣∣∣
≤ sup
I∈Ik

|R(f̃1,Ik
; Dn, {I}) − b1| + 2 sup

M≥2

∣∣∣∣∣∣ 1
M(M − 1)

∑
i,j∈[M ],i̸=j

R(f̃2,Ik
; Dn, {Ii, Ij}) − b2

∣∣∣∣∣∣ .
The first term on the right hand side converges almost surely to zero by Lemma D.9.6 (1). To prove that
the second term converges to zero, we start by noting that

UM = 1
M(M − 1)

∑
i,j∈[M ],i̸=j

{
R(f̃2,Ik

; Dn, {Ii, Ij}) − b2

}
,

is a U -statistics based on either an SRSWR or an SRSWOR sample I1, . . . , IM conditional on Dn. Theorem
2 in Section 3.4.2 of Lee (1990) implies that {UM}M≥2 is a reverse martingale conditional on Dn with
respect to the some filtration, when we have an SRSWR sample (which is same as an i.i.d. sample). Lemma
2.1 of Sen (1970) proves the same result, when we have an SRSWOR sample. This combined with Theorem
3 (maximal inequality for reverse martingales) in Section 3.4.1 of Lee (1990) (for r = 11) yields

P
(

sup
M≥2

|UM | ≥ δ
∣∣ Dn

)
≤ 1
δ
E
[
|U2|

∣∣ Dn

]
= 1
δ
E
[
|R(f̃2,Ik

; Dn, {I1, I2}) − b2|
∣∣ Dn

]
.

The right hand side we know converges to zero almost surely. To see this, we first write as before the
right hand side as E[|R(f̃2,Ik

; Dn, {I1, I2}) − b2| | Dn = Dn(ω)] = E[|R(f̃2,Ik
; Dn(ω), {I1, I2}) − b2|]. We

know that for all ω ∈ A, R(f̃2,Ik
; Dn(ω), {I1, I2}) a.s.−−→ b2 as n → ∞ (from the given assumption). Also,

we know (D.10) and that the right hand side of (D.10) converges in L1 to its probability limit. Hence,
Vitali’s theorem (Bogachev, 2007, Theorem 4.5.4) implies that E[|R(f̃2,Ik

; Dn, {I1, I2}) − b2| | Dn = Dn(ω)]
converges to zero for all ω ∈ A as n → ∞. Therefore, as n → ∞, for all ω ∈ A,

P
(

sup
M≥2

|UM | ≥ δ
∣∣ Dn = Dn(ω)

)
→ 0.

Because probabilities are bounded by one, dominated convergence theorem implies that

P
(

sup
M≥2

|UM | ≥ δ

)
→ 0, as n → ∞.

Therefore,

sup
M∈N

∣∣∣∣R(f̃M,Ik
; Dn, {Iℓ}Mℓ=1) −

{
(2b2 − b1) + 2(b1 − b2)

M

}∣∣∣∣ p−→ 0.

1Theorem 3 of Section 3.4.1 is only stated with r > 1, but from the proof, it is clear that r = 1 is a valid choice.
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D.2.3 Conditional risk bounds for convex, strongly-convex, and smooth losses
Proof of Proposition 4.3.6. We split the proof in two parts, depending on the assumption imposed on the
loss function L.

Part 1. For any loss function L : R × R → R convex in the second argument, one can trivially obtain

R(f̃M,Ik
; Dn) = E[L(y, f̃M,Ik

(x)) | Dn]
= E[E[L(y, f̃M,Ik

(x)) | {Iℓ}Mℓ=1] | Dn]
≥ E[L(y,E[f̃M,Ik

(x) | {Iℓ}Mℓ=1]) | Dn].

(D.5)

Here the last inequality follows from Jensen’s inequality. Because E[f̃M,Ik
(x) | {Iℓ}Mℓ=1] = f̃∞,Ik

(x), we get
for any M ≥ 1,

R(f̃M,Ik
; Dn) ≥ R(f̃∞,Ik

; Dn).

On the other hand, we have by Jensen’s inequality

R(f̃M,Ik
; Dn) = E

[
L

(
y,

1
M

M∑
ℓ=1

f̃(x; DIℓ
)
) ∣∣∣ Dn

]
≤ E

[
1
M

M∑
ℓ=1

L(y, f̃(x; DIℓ
))
∣∣∣ Dn

]
= R(f̃1,Ik

; Dn).

Summarizing, we get that for any M ≥ 1,

R(f̃1,Ik
; Dn) ≥ R(f̃M,Ik

; Dn) ≥ R(f̃∞,Ik
; Dn).

One can further obtain the monotonicity property by noting that for any M ≥ 1,

f̃M+1,Ik
(x, {DIℓ

}M+1
ℓ=1 ) = 1

M + 1

M+1∑
ℓ=1

f̃(x; DIℓ
) = 1

(M + 1)!
∑
π′

(
1
M

M∑
ℓ=1

f̃(x; DIπ′(ℓ))
)
,

where π′ represents a permutation of {1, 2, . . . ,M + 1}. Therefore, for any loss function L : R × R → R
that is convex in the second argument, we get

L(y, f̃M+1,Ik
(x; {DIℓ

}M+1
ℓ=1 )) ≤ 1

(M + 1)!
∑
π′

L
(
y, f̃(x; {DIπ′(ℓ)}

M
ℓ=1)

)
.

Because any (non-random) subset of a simple random sample with/without replacement is itself a simple
random sample with/without replacement, taking conditional expectation on both sides conditional on Dn

yields
R(f̃M+1,Ik

; Dn) ≤ R(f̃M,Ik
; Dn).

This, in particular, implies that R(f̃∞,Ik
; Dn) ≤ R(f̃M,Ik

; Dn) ≤ R(f̃1,Ik
; Dn) for any M ≥ 1. This finishes

the proof of the first part of the statement.

Part 2. If we assume that the loss function is strongly convex and differentiable in the second argument,
then we can improve the lower bound of Part 1 in terms of f̃∞. Formally, if L : R × R → R is m-strongly
convex, i.e., L(a, b) −m/2b2 is convex in b (for every a), then

L(y, f̃M,Ik
(x)) ≥ L(y, f̃∞,Ik

(x)) + ∂L(y, f̃∞,Ik
(x))

∂b
(f̃M,Ik

(x) − f̃∞,Ik
(x)) + m

2 (f̃M,Ik
(x) − f̃∞,Ik

(x))2.

Applying Proposition 4.3.1 and taking the expectation (x, y) conditional on Dn, we obtain

R(f̃M,Ik
; Dn) ≥ R(f̃∞,Ik

; Dn) + m

2
1
M

∫ 1
|Ik|

∑
I∈Ik

(f̂(x; DI) − f̃∞,Ik
(x))2 dP (x, y). (D.6)
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On the other hand, if we assume that the loss function L : R × R → R is m smooth in the second
argument, then

L(a, b) ≤ L(a, b′) + ∂L(a, b′)
∂b

(b− b′) + m

2 (b− b′)2.

It follows that

R(f̃M,Ik
; Dn) ≤ R(f̃∞,Ik

; Dn) + m

2
K|Ik|,M

M

∫ ∑
I∈Ik

(f̂(x; DI) − f̃∞,Ik
(x))2 dP (x, y). (D.7)

Combining the lower bound from (D.6) and the upper bound from (D.7) finishes the proof of the second
part of the statement.

D.2.4 From subsample conditional to data conditional risk, M = 1, 2
Proof of Lemma 4.3.8. Let us first prove the result when sampling with/without replacement from Ik. The
proof for Iπk would be analogous. Note that R(f̃1; Dn) = E[R(f̃1,Ik

; Dn, {I1}) | Dn] where the expectation
is taken over a random draw I1 from Ik. We are given that R(f̃1,Ik

; Dn, {I}) − b1
a.s.−−→ 0 for every I ∈ Ik.

Under this condition, let us note that∣∣∣E[R(f̃1,Ik
; Dn, {I1}) | Dn] − b1

∣∣∣ =
∣∣∣∣∣ 1
|Ik|

∑
I∈Ik

R(f̃1,Ik
; Dn, {I}) − b1

∣∣∣∣∣
≤ 1

|Ik|
∑
I∈Ik

|R(f̃1,Ik
; Dn, {I}) − b1|

≤ max
I∈Ik

|R(f̃1,Ik
; Dn, {I}) − b1|

a.s.−−→ 0,

by Lemma D.9.6 (1). Hence, we proved that

R(f̃1,Ik
; Dn) a.s.−−→ b1, as n → ∞. (D.8)

Now, observe that

R(f̃2,Ik
; Dn, {Iℓ}2

ℓ=1) ≤ 1
2R(f̃1,Ik

; Dn, {I1}) + 1
2R(f̃1,Ik

; Dn, {I2}). (D.9)

We will now apply Pratt’s lemma (see, e.g., Gut, 2005, Theorem 5.5) to prove almost sure convergence
of E[R(f̃2,Ik

; Dn, {Iℓ}2
ℓ=1) | Dn]. Usually Pratt’s lemma is applied unconditionally and here we apply it

conditional on Dn. For easier understanding of the proof, let us write Dn(ω) in place of Dn in order to
make it clear that we are conditioning on Dn. Recall that Dn is independent of the subsamples {Iℓ}Mℓ=1 for
any M ≥ 1. In this notation, inequality (D.9) becomes

0 ≤ R(f̃2,Ik
; Dn(ω), {Iℓ}2

ℓ=1) ≤ 1
2R(f̃1,Ik

; Dn(ω), {I1}) + 1
2R(f̃1,Ik

; Dn(ω), {I2}). (D.10)

Because R(f̃1,Ik
; Dn, {I}) a.s.−−→ b1 for every I ∈ Ik, there exists a set A ⊆ Ω such that P(A) = 1 and for all

ω ∈ A, R(f̃1,Ik
; Dn(ω), {I}) a.s.−−→ b1 for every I ∈ Ik. Applying Pratt’s lemma for every ω ∈ A, as n → ∞

and using the fact (D.8) as well as the assumption R(f̃2,Ik
; Dn(ω), {Iℓ}2

ℓ=1) a.s.−−→ b2, we get that

E[R(f̃2,Ik
; Dn(ω), {Iℓ}2

ℓ=1)] → b2, for all ω ∈ A.

Note that R(f̃2,I2 ; Dn(ω)) = E[R(f̃2,Ik
; Dn, {Iℓ}2

ℓ=1) | Dn = Dn(ω)]. Therefore, we conclude

R(f̃2,I2 ; Dn) a.s.−−→ b2, as n → ∞. (D.11)

Therefore, (4.12) applies to yield asymptotics for the data conditional risk uniformly over M ∈ N.
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D.2.5 From subsample conditional to data conditional risk, general M

Proof of Theorem 4.3.9. The proof follows by combining Propositions 4.3.2 and 4.3.3, and Lemma 4.3.8.

D.3 Proof of Theorem 4.4.1 (subagging with replacement, ridge
predictor)

For f̃WR
M,Ik

defined in Theorem 4.4.1, we present the proof for ridge and ridgeless predictors in Theorems D.3.1
and D.4.1. For f̃WOR

M,Ik
defined in Theorem 4.4.1, the conclusion still holds since the limits of the proportions

of intersection between two SRSWR and SRSWOR draws from Ik are the same from Lemma D.9.3. For
proving the asymptotic conditional risks, we will treat Ik as fixed and use f̃WR

λ,M to denote the ingredient
predictor associated with regularization parameter λ.

D.3.1 Proof assembly
Before we present the proof, recall the nonnegative constants defined in (4.19) and (4.20): v(−λ; θ) ≥ 0 is
the unique solution to the fixed-point equation

v(−λ; θ)−1 = λ+ θ

∫
r(1 + v(−λ; θ)r)−1 dH(r), (D.12)

and the nonnegative constants ṽ(−λ;ϑ, θ), and c̃(−λ; θ) are defined via the following equations

ṽ(−λ, ϑ, θ) = ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r) , c̃(−λ; θ) =

∫
r(1 + v(−λ; θ))r)−2 dG(r).

(D.13)

It helps to first slightly rewrite the statement of Theorem 4.4.1 for λ > 0 as follows. Though it suffices to
analyze the case M = 2 according to Theorem 4.3.9, below we will do the risk decomposition for general M .

Theorem D.3.1 (Risk characterization of subagged ridge predictor). Let f̃WR
λ,M be the ingredient predictor

as defined in (4.18) for λ > 0. Suppose that Assumptions 4.1-4.5 hold, then for M = {1, 2, 3, . . .}, as
k, n, p → ∞, p/n → ϕ ∈ [0,∞) and p/k → ϕs ∈ [ϕ,∞], there exists a deterministic function Rsub

λ,M (ϕ, ϕs)
such that for I1, . . . , IM

SRSWR∼ Ik,

sup
M∈N

|R(f̃WR
λ,M ; Dn, {Iℓ}Mℓ=1) − Rsub

λ,M (ϕ, ϕs)|
p−→ 0,

and
sup
M∈N

|R(f̃WR
λ,M ; Dn) − Rsub

λ,M (ϕ, ϕs)|
a.s.−−→ 0.

Furthermore, Rsub
λ,M (ϕ, ϕs) decomposes as

Rsub
λ,M (ϕ, ϕs) := σ2 + Bsub

λ,M (ϕ, ϕs) + V sub
λ,M (ϕ, ϕs),

where Bsub
λ,M (ϕ, ϕs) = M−1Bλ(ϕ, ϕs) + (1 − M−1)Bλ(ϕ, ϕs), and V sub

λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs) + (1 −
M−1)Vλ(ϕ, ϕs) with

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ), θ ∈ (0,∞], ϑ ≤ θ,

where ṽ(−λ;ϑ, θ) and c̃(−λ; θ) are as defined in (D.13).

Proof of Theorem D.3.1. In what follows, we will prove the results for n, k, p being a sequence of integers
{nm}∞

m=1, {km}∞
m=1, {pm}∞

m=1. For simplicity, we drop the subscript when it is clear from the context.
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DI1

p

DI2

i0

k − i0

k − i0

L1 L2

Figure D.1: Illustration of subsampled datasets DI1 and DI2 from Dn. The design matrix of each of them
can be represented as LjX (j = 1, 2), where X ∈ Rn×p is the full design matrix.

For any m ∈ [M ], let Im be a sample from Ik, and Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if
l ∈ Im and 0 otherwise. An illustration of these notations for M = 2 is shown in Figure D.1. The proof
will reduce to analyze the individual terms concerning one dataset DIm , or the cross terms concerning DIm

and DIl
for m ̸= l.

The ingredient estimator takes the form:

β̃λ,M ({DIℓ
}Mℓ=1) = 1

M

M∑
m=1

β̂λ(DIm
)

= 1
M

M∑
m=1

(X⊤LmX/k + λIp)−1(X⊤Lmy/k)

= 1
M

M∑
m=1

[(
X⊤LmX

k
+ λIp

)−1
X⊤Lm

k
β0 +

(
X⊤LmX

k
+ λIp

)−1
X⊤Lm

k
ϵ

]
.

Denote β̃λ,M ({DIℓ
}Mℓ=1) by β̃λ,M for simplicity. Let Mm = (X⊤LmX/k + λIp)−1 for m ∈ [M ], we have

β̃λ,M = 1
M

M∑
m=1

(Ip − λMm)β0 + 1
M

M∑
m=1

Mm(X⊤Lm/k)ϵ,

which yields

β0 − β̃λ,M = 1
M

M∑
m=1

λMmβ0 − 1
M

M∑
m=1

Mm(X⊤Lm/k)ϵ.

Thus, the conditional risk is given by

R(f̃M,λ; Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤
0 β̃λ,M )2]

= σ2 + (β0 − β̃λ,M )⊤Σ(β0 − β̃λ,M )
= σ2 + TC + TB + TV ,

where the constant term TC , bias term TB , and the variance term TV are given by

TC = − 2λ
M2 · ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ
(

M∑
m=1

Mm

)
β0, (D.14)

TB = λ2

M2 · β⊤
0

(
M∑
m=1

Mm

)
Σ
(

M∑
m=1

Mm

)
β0, (D.15)
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TV = 1
M2 · ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ
(

M∑
m=1

Mm
X⊤Lm

k

)
ϵ. (D.16)

Next we analyze the three terms separately for M ∈ {1, 2}. From Lemmas D.3.2 and D.3.3, we have
that TC

a.s.−−→ 0, and

TV = 1
M2

M∑
m=1

ϵ⊤Mm
X⊤Lm

k
ΣMm

X⊤Lm

k
ϵ + 1

M2

M∑
m=1

M∑
l=1

ϵ⊤Mm
X⊤Lm

k
ΣMl

X⊤Ll

k
ϵ

a.s.−−→ 1
M2

M∑
m=1

σ2

k
tr(MmΣ̂mMmΣ) + 1

M2

∑
m ̸=1

σ2

k2 tr(MlX
⊤LlLmXMmΣ) := T ′

V .

Thus, it remains to obtain the deterministic equivalent for the bias term TB and the trace term T ′
V . From

Lemma D.3.4 and Lemma D.3.5, we have that for all I1 ∈ Ik when M = 1 and for all Im, Il
SRSWR∼ Ik when

M = 2, it holds that

TB = λ2

M2

M∑
m=1

β⊤
0 MmΣMmβ0 + λ2

M2

M∑
m=1

M∑
l=1

β⊤
0 MmΣMlβ0

a.s.−−→ ρ2

M
(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs) + ρ2(M − 1)

M
(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs)

T ′
V

a.s.−−→ σ2

M
ṽ(−λ;ϕs, ϕs) + σ2(M − 1)

M
ṽ(−λ;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where the nonnegative constants ṽ(−λ;ϕ, ϕs)
and c̃(−λ;ϕs) are as defined in (D.13). Therefore, we have shown that for all I ∈ Ik,

R(f̃λ,1; Dn, {I}) a.s.−−→ Rsub
λ,1 (ϕ, ϕs),

and for all I1, I2
SRSWR∼ Ik,

R(f̃λ,2; Dn, {Iℓ}2
ℓ=1) a.s.−−→ Rsub

λ,2 (ϕ, ϕs),
where

Rsub
λ,M (ϕ, ϕs) = σ2 + 1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) + M − 1

M
(Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)),

and the components are:

Bλ(ϕ, ϕs) = ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs), Vλ(ϕ, ϕs) = σ2ṽ(−λ;ϕ, ϕs).

The proof for the boundary case when ϕs = ∞ follows from Proposition D.3.6. Then, we have that the
function Rsub

λ,M (ϕ, ϕs) is continuous on [ϕ,∞].
Finally, the risk expression for general M and the uniformity claim over M ∈ N follow from Theorem 4.3.9.

D.3.2 Component concentrations
In this subsection, we will show that the cross-term TC converges to zero and the variance term TV converge
to its corresponding trace expectation.

D.3.2.1 Convergence of the cross term

Lemma D.3.2 (Convergence of the cross term). Under Assumptions 4.1-4.5, for TC as defined in (D.14),
we have TC

a.s.−−→ 0 as k, p → ∞ and p/k → ϕs.
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Proof of Lemma D.3.2. Note that

TC = − 2λ
M2 · 1

k

〈(
M∑
m=1

MmX⊤Lm

)⊤

Σ
(

M∑
m=1

Mm

)
β0, ϵ

〉
.

We next bound the squared norm

1
k

∥∥∥∥∥∥ 1
M

(
M∑
m=1

MmX⊤Lm

)⊤

Σ
(

M∑
m=1

Mm

)
β0

∥∥∥∥∥∥
2

2

≤
M∑
j=1

M∑
l=1

1
M2k

∥∥(MjX
⊤Lj)⊤ΣMlβ0

∥∥2
2

≤
∥β0∥2

2
M2 ·

M∑
j=1

M∑
l=1

1
k

∥∥MlΣMjX
⊤LjXMjΣMl

∥∥
op

≤
∥β0∥2

2
M2 ·

M∑
j=1

M∑
l=1

∥Ml∥2
op ∥Σ∥2

op
∥∥Mj(X⊤LjX/k)Mj

∥∥
op

= ∥β0∥2
2

M2 ·
M∑
j=1

M∑
l=1

∥Ml∥2
op ∥Σ∥2

op ∥Mj∥op ∥Ip − λMj∥op

≤
∥β0∥2

2 r
2
max

λ3 ,

where the last inequality is due to Assumption 4.4 and the fact that ∥Mj∥op ≤ 1/λ. By Assumption 4.3,
the above quantity is uniformly bounded in p. Applying Lemma D.9.4, we thus have that TC

a.s.−−→ 0.

D.3.2.2 Convergence of the variance term

Lemma D.3.3 (Convergence of the variance term). Under Assumptions 4.1-4.5, let M ∈ N. For all
m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im
and 0 otherwise, and Mm = (X⊤LmX/k + λIp)−1. Then, for all m, l ∈ [M ] and m ̸= l, it holds that

1
k2 ϵ⊤LmXMmΣMmX⊤Lmϵ − σ2

k
tr(MmΣ̂mMmΣ) a.s.−−→ 0,

1
k2 ϵ⊤LmXMmΣMlX

⊤Llϵ − σ2

k2 tr(MlX
⊤LlLmXMmΣ) a.s.−−→ 0,

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞).
Proof of Lemma D.3.3. Note that the first term is the same as the variance term for ridge predictor trained
on k i.i.d. samples (LmX,Lmy). Notice that Lmϵ is independent of LmXMmΣMmX⊤Lm, and

1
k

∥∥LmXMmΣMmX⊤Lm

∥∥
op ≤

∥∥∥Σ̂m

∥∥∥ 1
2

op
∥Mm∥op ∥Σ∥op ∥Mm∥op

∥∥∥Σ̂m

∥∥∥ 1
2

op

=
∥∥∥Σ̂m

∥∥∥
op

∥Mm∥2
op ∥Σ∥op

≤ rmax

λ2

∥∥∥Σ̂m

∥∥∥
op
.

Now, we have lim sup
∥∥∥Σ̂m

∥∥∥
op

≤ lim sup max1≤i≤p s
2
i ≤ rmax(1 +

√
ϕs)2 almost surely as k, p → ∞ and

p/k → ϕs ∈ (0,∞) from Bai and Silverstein (2010). From Lemma D.9.5, it follows that

ϵ⊤ L⊤
mX

k
MmΣMm

X⊤Lm

k
ϵ − σ2

k2 tr(LmXMmΣMmX⊤Lm) a.s.−−→ 0.
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Since tr(LmXMmΣMmX⊤Lm)/k2 = tr(MmΣ̂mMmΣ)/k = tr(M2
mΣ̂mΣ)/k, we further have ∀ m ∈

[M ],

ϵ⊤ L⊤
mX

k
MmΣMm

X⊤Lm

k
ϵ − σ2

k
tr(MmΣ̂mMmΣ) a.s.−−→ 0. (D.17)

The second term involves the cross-term MmΣMl. Note that

1
n

∥∥LmXMmΣMlX
⊤Ll

∥∥
op ≤ k

n

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂l

∥∥∥ 1
2

op
∥Mm∥op ∥Ml∥op ∥Σ∥op ≤ rmax

λ2
k

n

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂l

∥∥∥ 1
2

op
.

Because
∥∥∥Σ̂m

∥∥∥
op

for m ∈ [M ] are uniformly bounded almost surely, again by Lemma D.9.5, it follows that

1
n

ϵ⊤LmXMmΣMlX
⊤Llϵ − σ2

n
tr(LmXMmΣMlX

⊤Ll)
a.s.−−→ 0.

Since k/n → ϕs/ϕ, we have

1
k2 ϵ⊤L1XM1ΣM2X⊤L2ϵ − σ2

k2 tr(MlX
⊤LlLmXMmΣ) a.s.−−→ 0. (D.18)

D.3.3 Component deterministic approximations
D.3.3.1 Deterministic approximation of the bias functional

Lemma D.3.4 (Deterministic approximation of the bias functional). Under Assumptions 4.1-4.5, for all
m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im
and 0 otherwise, and Mm = (X⊤LmX/k + λIp)−1. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

λ2β⊤
0 MmΣMmβ0

a.s.−−→ ρ2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

λ2β⊤
0 MmΣMlβ0

a.s.−−→ ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where ϕ0 = ϕ2
s/ϕ, TB is as defined in (D.15),

and the nonnegative constants ṽ(−λ;ϕ, ϕs) and c̃(−λ;ϕs) are as defined in (D.13).

Proof of Lemma D.3.4. From Lemma D.8.9 (1) we have that for m ∈ [M ],

λ2MmΣMm ≃ (ṽb(−λ;ϕs) + 1) · (v(−λ;ϕs)Σ + Ip)−1Σ(v(−λ;ϕs)Σ + Ip)−1. (D.19)

By the definition of deterministic equivalent, we have

λ2β⊤
0 MmΣMmβ0

a.s.−−→ lim
p→∞

(1 + ṽb(−λ;ϕs))
p∑
i=1

ri
(1 + riv(−λ;ϕs))2 (β⊤

0 wi)2

= lim
p→∞

∥β0∥2
2(1 + ṽb(−λ;ϕs))

∫
r

(1 + v(−λ;ϕs)r)2 dGp(r)

= ρ2(1 + ṽb(−λ;ϕs))
∫

r

(1 + v(−λ;ϕs)r)2 dG(r), (D.20)

where the last equality holds since Gp and G have compact supports and Assumptions 4.3 and 4.5.
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For the cross term, it suffices to derive the deterministic equivalent of β⊤
0 M1ΣM2β0/2. We begin with

analyze the deterministic equivalent of M1ΣM2. Let i0 = tr(L1L2) be the number of shared samples
between DI1 and DI2 , we use the decomposition

M−1
j = i0

k
(Σ̂0 + λIp) + k − i0

k
(Σ̂ind

j + λIp), j = 1, 2,

where Σ̂0 = X⊤L1L2X/i0 and Σ̂ind
j = X⊤(Lj − L1L2)X/(k − i0) are the common and individual

covariance estimators of the two datasets. Let N0 = (Σ̂0 + λIp)−1 and Nj = (Σ̂ind
j + λIp)−1 for j = 1, 2.

Then

Mj =
(
i0
k

N−1
0 + k − i0

k
N−1
j

)−1
, j = 1, 2, (D.21)

where the equalities hold because N0 is invertible when λ > 0. Conditioning on i0, we will show a sequence
of deterministic equivalents

λ2M1ΣM2
(a)
≃ λMdet

N0,i0ΣM2
(b)
≃ Mdet

N0,i0ΣMdet
N0,i0

(c)
≃ (λ2M1ΣM2)det

i0 ,

where in each step we consider randomness from N1, N2, N0, respectively, since they are independent
to each other conditioning on i0. The subscript of the deterministic equivalent indicates the dependence
on the corresponding random variables, and we will specify each deterministic equivalent in the following
proof.

When i0 = k, we have M1 = M2 and the above asymptotic equation reduces to (D.19). We next prove
the case when i0 < k.

Part (a). Since N1 is independent to N0 conditioning on i0, from Definition D.8.5 and Lemma D.8.10 (1)
we have

λM1 ≃ Mdet
N0,i0 := k

k − i0
(v1Σ + Ip + C1)−1

∣∣∣ i0,
where v1 = v(−λ; γ1,ΣC1), ΣC1 = (Ip+C1)− 1

2 Σ(Ip+C1)− 1
2 , C1 = i0(λ(k−i0))−1N−1

0 , and γ1 = p/(k−i0).
Here the subscripts of v1 and C1 are related to the aspect ratio γ1. Because of the sub-multiplicativity of
operator norm, we have

∥ΣM2∥op ≤ ∥Σ∥op ∥M2∥op ≤ rmax

λ
.

By Proposition D.8.6 (2), we have λ2M1ΣM2 ≃ λMdet
N0,i0

ΣM2 | i0.

Part (b). Analoguously, we have

λMdet
N0,i0ΣM2 ≃ Mdet

N0,i0ΣMdet
N0,i0

≃
(

k

k − i0

)2
(v1Σ + Ip + C1)−1 Σ (v1Σ + Ip + C1)−1 | i0,

as
∥∥Mdet

N0,i0

∥∥
op ≤ 1.

Part (c). As we have symmetrized the expression, we have

λ2M1ΣM2 ≃ Mdet
N0,i0ΣMdet

N0,i0 = k2

i20
λ2(N−1

0 + λC0)−1Σ(N−1
0 + λC0)−1 | i0,
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where C0 = (k − i0)/i0 · (v1Σ + Ip). Define ΣC0 = (I + C0)− 1
2 Σ(I + C0)− 1

2 . Conditioning on i0, by
Lemma D.8.10 (1), we have

tr[ΣC1(v1ΣC1 + Ip)−1] = tr[Σ(v1Σ + Ip + C1)−1]

= λ(k − i0)
i0

tr
[

Σ
(

N−1
0 + λ(k − i0)

i0
(v1Σ + Ip)

)−1
]

a.s.= k − i0
i0

tr
[

Σ
(
v0Σ + Ip + k − i0

i0
(v1Σ + Ip)

)−1
]

= tr
[

Σ
((

i0
k − i0

v0 + v1

)
Σ + k

k − i0
Ip

)−1
]
,

where v0 = v(−λ; γ0,ΣC0)and γ0 = p/i0. Note that the fixed-point solution v0 depends on v1. The
fixed-point equations reduce to

1
v0

= λ+ γ0 tr[ΣC0(v0ΣC0 + Ip)−1]/p = λ+ p

k
tr
[

Σ
((

i0
k
v0 + k − i0

k
v1

)
Σ + Ip

)−1
]
/p

1
v1

= λ+ γ1 tr[ΣC1(v1ΣC1 + Ip)−1]/p = λ+ p

k
tr
[

Σ
((

i0
k
v0 + k − i0

k
v1

)
Σ + Ip

)−1
]
/p

almost surely. Note that the solution (v0, v1) to the above equations is a pair of positive numbers and
does not depend on samples. If (v0, v1) is a solution to the above system, then (v1, v0) is also a solution.
Thus, any solution to the above equations must be unique. On the other hand, since v0 = v1 = v(−λ; p/k)
satisfies the above equations, it is the unique solution. By Lemma D.8.16, we can replace v(−λ; γ1,ΣC1)
by the solution v0 = v1 = v(−λ; p/k) of the above system, which does not depend on samples. Thus,

λ2M1ΣM2 ≃ k2

i20
λ2(N−1

0 + λC∗)−1Σ(N−1
0 + λC∗)−1 | i0, (D.22)

where C∗ = (k − i0)/i0 · (v(−λ; p/k)Σ + Ip). By Lemma D.8.10 (2), we have

Mdet
N0,i0ΣMdet

N0,i0 ≃ (λ2M1ΣM2)det
i0 := k2

i20
(ṽb(−λ; γ0,C

∗) + 1)(v(−λ; γ0,C
∗)Σ + Ip + C∗)−2Σ | i0,

(D.23)

where γ0 = p/i0, and v(−λ; γ0,C
∗) and ṽb(−λ; γ0,C

∗) are defined through the following equations:
1

v(−λ; γ0,C∗) = λ+ γ0 tr[Σ(v(−λ; γ0,C
∗)Σ + Ip + C∗)−1]/p

1
ṽb(−λ; γ0,C∗) = γ0 tr[Σ2(v(−λ; γ0,C

∗)Σ + Ip + C∗)−2]/p
v(−λ; γ0,C∗)−2 − γ0 tr[Σ2(v(−λ; γ0,C∗)Σ + Ip + C∗)−2]/p .

From Parts (a) to (c), we have shown that λ2M1ΣM2 ≃ (λ2M1ΣM2)det
i0

| i0 for i0 < k. Note that the
above equivalence also holds for i0 = k. That is, this holds for all i0 ∈ {0, 1, · · · , k}. By Proposition
D.8.6 (1), we can obtain the unconditioned asymptotic equivalence Mdet

N0,i0
ΣMdet

N0,i0
≃ (λ2M1ΣM2)det

i0
.

Note that from Lemma D.8.13 ṽb(−λ; γ) and v(−λ; γ) are continuous on γ, and from Lemma D.9.3,
i0/k

a.s.−−→ ϕ/ϕs, where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs as k, p → ∞. We have

(λ2M1ΣM2)det
i0 ≃ϕ2

s

ϕ2 (ṽb(−λ;ϕ0,ΣC′) + 1)(v(−λ;ϕ0,ΣC′)Σ + Ip + C ′)−2Σ,

where C ′ = (ϕs − ϕ)/ϕ · (v(−λ;ϕs)Σ + Ip) and ϕ0 = ϕ2
s/ϕ. Note that

1
v(−λ;ϕ0,ΣC′) = λ+ ϕ0

∫
r

1 + rv(−λ;ϕ0,ΣC′) dH(r; ΣC′)
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= λ+ ϕs lim
p→∞

tr
[

Σ
(
ϕ

ϕs
(v(−λ;ϕ0,ΣC′)Σ + Ip) +

(
1 − ϕ

ϕs

)
(v(−λ;ϕs)Σ + Ip)

)−1
]
/p

1
v(−λ;ϕs)

= λ+ ϕs lim
p→∞

tr
[
Σ(v(−λ;ϕs)Σ + Ip)−1] /p.

We have

v(−λ;ϕ0,ΣC′) = v(−λ;ϕs) (D.24)

is a solution to the first fixed-point equation. From Lemma D.8.12 (2), this solution is also unique. Then,
we have

1 + ṽb(−λ;ϕ0,ΣC′) = lim
p→∞

v(−λ;ϕ0,C
′)−2

v(−λ;ϕ0,C ′)−2 − ϕ0 tr[Σ2(v(−λ;ϕ0,C ′)Σ + Ip + C ′)−2]/p

= lim
p→∞

v(−λ;ϕs)−2

v(−λ;ϕs)−2 − ϕ tr[Σ2(v(−λ;ϕs)Σ + Ip)−2]/p

= v(−λ;ϕs)−2

v(−λ;ϕs)−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)
:= 1 + ṽ(−λ;ϕ, ϕs).

From Lemma D.8.12 (4), we have that 1 + ṽ(−λ;ϕ, ϕs) > 0. To conclude, we have shown that

λ2M1ΣM2 ≃ (1 + ṽ(−λ;ϕ, ϕs)) (v(−λ;ϕs)Σ + Ip)−2 Σ. (D.25)

By the definition of deterministic equivalent, we have

λ2β⊤
0 M1ΣM2β0

a.s.−−→ lim
p→∞

p∑
i=1

(1 + ṽ(−λ;ϕ, ϕs))ri
(1 + v(−λ;ϕs)ri)2 (β⊤

0 wi)2

= lim
p→∞

∥β0∥2
2

∫ (1 + ṽ(−λ;ϕ, ϕs))r
(1 + v(−λ;ϕs)r)2 dGp(r)

= ρ2
∫ (1 + ṽ(−λ;ϕ, ϕs))r

(1 + v(−λ;ϕs)r)2 dG(r), (D.26)

where in the last line we used the fact that Gp and G have compact supports and Assumptions 4.3 and 4.5.
The conclusion follows by combining (D.20) and (D.26).

D.3.3.2 Deterministic approximation of the variance functional

Lemma D.3.5 (Deterministic approximation of the variance functional). Under Assumptions 4.1-4.5, for
all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if
l ∈ Im and 0 otherwise, and Mm = (X⊤LmX/k + λIp)−1. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1
k

tr(MmΣ̂mMmΣ) a.s.−−→ ṽ(−λ;ϕs, ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1
k2 tr(MlX

⊤LlLmXMmΣ) a.s.−−→ ṽ(−λ;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where the nonnegative constant ṽ(λ;ϕ, ϕs) is
as defined in (D.13).
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Proof of Lemma D.3.5. From Lemma D.8.9 (2), we have that for j ∈ [M ],

MjΣ̂jMjΣ ≃ ṽv(−λ;ϕs)(v(−λ;ϕs)Σ + Ip)−2Σ2. (D.27)

By the trace rule Lemma D.8.4 (4) , we have

1
k

tr(MjΣ̂jMjΣ) a.s.−−→ lim
p→∞

p

k
· 1
p

tr(ṽv(−λ;ϕs)(v(−λ;ϕs)Σ + Ip)−2Σ2)

= ϕsṽv(−λ;ϕs) lim
p→∞

1
p

p∑
i=1

r2
i

(v(−λ;ϕs)ri + 1)2

= ϕsṽv(−λ;ϕs) lim
p→∞

∫
r2

(v(−λ;ϕs)r + 1)2 dHp(r)

= ϕsṽv(−λ;ϕs)
∫

r2

(v(−λ;ϕs)r + 1)2 dH(r), j = 1, 2, (D.28)

where in the last line we used the fact that Hp and H have compact supports and Assumption 4.5.
For the cross term, it suffices to derive the deterministic equivalent of M1Σ̂0M2Σ where Σ̂0 =

X⊤L1L2X/i0 and i0 = tr(L1L2). We again show a sequence of deterministic equivalents as in the proof
for Lemma D.3.4:

M1Σ̂0M2Σ
(a)
≃ Mdet

N0,i0Σ̂0M2Σ
(b)
≃ Mdet

N0,i0Σ̂0Mdet
N0,i0Σ

(c)
≃ (M1Σ̂0M2Σ)det

i0 | i0.

When i0 = k, this reduces to (D.27). We next show the case when i0 < k.

Part (a). We use Lemma D.8.10 (1) to obtain

M1 ≃ Mdet
N0,i0 := k

λ(k − i0) (v(−λ; γ1,ΣC1)Σ + Ip + C1)−1 | i0 (D.29)

where ΣC1 = (Ip + C1)− 1
2 Σ(Ip + C1)− 1

2 , C1 = i0(λ(k − i0))−1N−1
0 , and γ1 = p/(k − i0). Let γ0 = p/i0.

Note that conditioning on i0, lim sup
∥∥∥Σ̂0

∥∥∥
op

≤ rmax(1 +
√
ϕ0)2 almost surely as i0, p → ∞ and γ0 →

ϕ0 ∈ (0,∞) from Bai and Silverstein (2010). Then Σ̂0M2Σ has bounded operator norm and we have
M1Σ̂0M2Σ ≃ Mdet

N0,i0
Σ̂0M2Σ | i0 by Proposition D.8.6 (2).

Part (b). Similarly, we have M2 ≃ Mdet
N0,i0

| i0 and M1Σ̂0M2Σ ≃ Mdet
N0,i0

Σ̂0Mdet
N0,i0

Σ | i0.

Part (c). Note that

Mdet
N0,i0Σ̂0Mdet

N0,i0Σ = k2

λ2(k − i0)2 (v(−λ; γ1,ΣC1)Σ + Ip + C1)−1 Σ̂0 (v(−λ; γ1,ΣC1)Σ + Ip + C1)−1 Σ

= k2

i20

(
N−1

0 + λC0
)−1 Σ̂0

(
N−1

0 + λC0
)−1 Σ,

where C0 = (k− i0)/i0 · (v(−λ; γ1,ΣC1)Σ + Ip). Define ΣC0 = (I + C0)− 1
2 Σ(I + C0)− 1

2 . Conditioning on
i0, by Lemma D.8.10 (1) we have

tr[ΣC1(v1ΣC1 + Ip)−1] = tr[Σ(v1Σ + Ip + C1)−1]

= λ(k − i0)
i0

tr
[

Σ
(

N−1
0 + λ(k − i0)

i0
(v1Σ + Ip)

)−1
]

a.s.= k − i0
i0

tr
[

Σ
(
v0Σ + Ip + k − i0

i0
(v1Σ + Ip)

)−1
]
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= tr
[

Σ
((

i0
k − i0

v0 + v1

)
Σ + k

k − i0
Ip

)−1
]

where v0 = v(−λ; γ0,ΣC0) and γ0 = p/i0. Note that the fixed-point solution v0 depends on v1. The
fixed-point equations reduce to

1
v0

= λ+ γ0 tr[ΣC0(v0ΣC0 + Ip)−1]/p = λ+ p

k
tr
[

Σ
((

i0
k
v0 + k − i0

k
v1

)
Σ + Ip

)−1
]
/p

1
v1

= λ+ γ1 tr[ΣC1(v1ΣC1 + Ip)−1]/p = λ+ p

k
tr
[

Σ
((

i0
k
v0 + k − i0

k
v1

)
Σ + Ip

)−1
]
/p

almost surely. By the same argument as in the proof for Lemma D.3.4, we have that the solution
v0 = v1 = v(−λ; p/k) of the above system does not depend on samples and equals to v(−λ; γ1,ΣC1) or
v(−λ; γ0,ΣC0) almost surely. Thus, by Lemma D.8.16,

Mdet
N0,i0Σ̂0Mdet

N0,i0Σ ≃ k2

i20
(N−1

0 + λC∗)−1Σ̂0(N−1
0 + λC∗)−1 | i0,

where C∗ = (k − i0)/i0 · (v(−λ; p/k)Σ + Ip). From Lemma D.8.10 (3), we have

Mdet
N0,i0Σ̂0Mdet

N0,i0Σ ≃ (M1Σ̂0M2Σ)det
i0 := k2

i20
ṽv(−λ; γ0,ΣC∗)(v(−λ; γ0,ΣC∗)Σ + Ip + C∗)−2Σ2 | i0,

where γ0 = p/i0.
From Parts (a) to (c), we have shown that M1Σ̂0M2Σ ≃ (M1Σ̂0M2Σ)det

i0
| i0 for i0 < k. Note that

this also holds for i0 = k. Then by Proposition D.8.6, M1Σ̂0M2Σ ≃ (M1Σ̂0M2Σ)det
i0

.
Note that from Lemma D.8.13, ṽb(−λ; γ) and v(−λ; γ) are continuous on γ, and from Lemma D.9.3,

i0/k
a.s.−−→ ϕ/ϕs where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs as k, p → ∞. We have

M1Σ̂0M2Σ ≃ ϕ2
s

ϕ2 ṽv(−λ;ϕ0,ΣC′)(v(−λ;ϕ0,ΣC′)Σ + Ip + C ′)−2Σ2,

where ϕ0 = ϕ2
s/ϕ, ΣC′ = (Ip + C ′)− 1

2 Σ(Ip + C ′)− 1
2 , and C ′ = (ϕs − ϕ)/ϕ · (v(−λ;ϕs)Σ + Ip). From

(D.24), we have that v(−λ;ϕ0; ΣC′) = v(−λ;ϕs), and

ϕṽv(−λ;ϕ0,ΣC′) = lim
p→∞

ϕ

v(−λ;ϕ0,C ′)−2 − ϕ0 tr[Σ2(v(−λ;ϕ0,C ′)Σ + Ip + C ′)−2]/p

= lim
p→∞

ϕ

v(−λ;ϕs)−2 − ϕ tr[Σ2(v(−λ;ϕs)Σ + Ip)−2]/p

= ϕ

v(−λ;ϕs)−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)
:= vv(−λ;ϕ, ϕs).

From Lemma D.8.12 (4), we have that vv(−λ;ϕ, ϕs) > 0. Then we have

M1Σ̂0M2Σ ≃ ϕ−1vv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ + Ip)−2Σ2, (D.30)

and thus, we have

i0
k2 tr(M1Σ̂0M2Σ)) a.s.−−→ lim

p→∞

i0p

k2
1
ϕ

· 1
p

tr(vv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ + Ip)−2Σ2)

= lim
p→∞

1
p

p∑
i=1

vv(−λ;ϕ, ϕs)r2
i

(1 + v(−λ;ϕs)ri)2
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= lim
p→∞

∫
vv(−λ;ϕ, ϕs)r2

(1 + v(−λ;ϕs)r)2 dHp(r)

=
∫

ϕvv(−λ;ϕ, ϕs)r2

(1 + v(−λ;ϕs)r)2 dH(r) := ṽ(−λ;ϕ, ϕs), (D.31)

where in the last line we used the fact that Hp and H have compact supports and Assumption 4.5.

D.3.4 Boundary case: diverging subsample aspect ratio
Proposition D.3.6 (Risk approximation when ϕs → +∞). Under Assumptions 4.1-4.5, it holds for all
M ∈ N

R(f̃WR
λ,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ Rsub

λ,M (ϕ,∞),
as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ∞, where

Rsub
λ,M (ϕ,∞) := lim

ϕs→+∞
Rsub
λ,M (ϕ, ϕs) = σ2 + ρ2

∫
r dG(r) (D.32)

and Rsub
λ,M (ϕ, ϕs) is defined in Theorem D.3.1.

Proof of Proposition D.3.6. Note that

R(f̃WR
λ,M ; Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤

0 β̃λ,M ({DIℓ
}Mℓ=1))2]

= E(x0,y0)[(ϵ0 + x⊤
0 (β0 − β̃λ,M ({DIℓ

}Mℓ=1)))2]
= σ2 + E(x0,y0)[(β0 − β̃λ,M ({DIℓ

}Mℓ=1))⊤x0x⊤
0 (β0 − β̃λ,M ({DIℓ

}Mℓ=1))]
= σ2 + (β0 − β̃λ,M ({DIℓ

}Mℓ=1))⊤Σ(β0 − β̃λ,M ({DIℓ
}Mℓ=1)).

Then, by the Cauchy-Schwarz inequality, we have

R(f̃WR
λ,M ; Dn, {Iℓ}Mℓ=1) − (β⊤

0 Σβ0 + σ2) = ∥Σ 1
2 β̃λ,M ({DIℓ

}Mℓ=1)∥2
2 − 2β̃λ,M ({DIℓ

}Mℓ=1)⊤Σβ0

≤ 1
rmin

∥β̃λ,M ({DIℓ
}Mℓ=1)∥2

2 + 2∥β̃λ,M ({DIℓ
}Mℓ=1)∥2∥Σ∥2

≤ 1
rmin

∥β̃λ,M ({DIℓ
}Mℓ=1)∥2

2 + 2rmaxρ∥β̃λ,M ({DIℓ
}Mℓ=1)∥2,

almost surely as k, n, p → and p/k → ∞. Thus, we have the following holds almost surely:

∥β̃λ,M ({DIℓ
}Mℓ=1)({DIℓ

}Mℓ=1)∥2 ≤ 1
M

M∑
m=1

∥(X⊤LmX/k + λIp)−1(X⊤Lmy/k)∥2

≤ 1
M

M∑
m=1

∥(X⊤LmX/k + λIp)−1X⊤Lm/
√
k∥ · ∥Lmy/

√
k∥2

≤ C
√
ρ2 + σ2 · 1

M

M∑
m=1

∥(X⊤LmX/k + λIp)−1X⊤Lm/
√
k∥,

where the last inequality holds eventually almost surely since Assumptions 4.1-4.3 imply that the entries of
y have bounded 4-th moment, and thus from the strong law of large numbers, ∥Lmy/

√
k∥2 is eventually

almost surely bounded above by C
√
E[y2

1 ] = C
√
ρ2 + σ2 for some constant C. Observe that operator

norm of the matrix (X⊤LmX/k + λIp)−1XLm/
√
k is upper bounded maxi si/(s2

i + λ) ≤ 1/smin where
si’s are the singular values of X and smin is the smallest nonzero singular value. As k, p → ∞ such
that p/k → ∞, smin → ∞ almost surely (e.g., from results in Bloemendal et al. (2016)) and therefore,
∥β̃λ,M ({DIℓ

}Mℓ=1)∥2 → 0 almost surely. Thus, we have shown that

R(f̃WR
λ,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ σ2 + β⊤

0 Σβ0.
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or equivalently
R(f̃WR

λ,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ σ2 + ρ2
∫
r dG(r).

From Lemma D.8.13, we have

lim
ϕs→+∞

v(−λ;ϕs) = lim
ϕs→+∞

ṽb(−λ;ϕs) = lim
ϕs→+∞

ṽv(−λ;ϕs).

Thus,
lim

ϕs→+∞
Vλ(ϕ, ϕs) = lim

ϕs→+∞
Vλ(ϕ, ϕs) = 0

and
lim

ϕs→+∞
Bλ(ϕ, ϕs) = lim

ϕs→+∞
Bλ(ϕ, ϕs) = ρ2

∫
r dG(r).

Therefore, we have Rsub
λ,M (ϕ,∞) := limϕs→+∞ Rsub

λ,M (ϕ, ϕs) = σ2 + ρ2 ∫ r dG(r). Thus, Rsub
λ,M (ϕ,∞) is well

defined and Rsub
λ,M (ϕ, ϕs) is right continuous at ϕs = +∞.

D.4 Proof of Theorem 4.4.1 (subagging with replacement, ridge-
less predictor)

As done in Appendix D.3, for proving the asymptotic conditional risks, we will treat Ik or Iσk as fixed. We
will use f̃WR

0,M to denote the ingredient predictor associated with regularization parameter λ = 0.

D.4.1 Proof assembly
We first explicitly write out the statement of Theorem 4.4.1 for the ridgeless case of λ = 0. As in
Appendix D.3, we obtain the risk decomposition for general M though it suffices to analyze the case M = 2
according to Theorem 4.3.9.

For ridgeless predictors (λ = 0) and θ > 1, the scalar v(0; θ) is the unique fixed-point solution to the
following equation:

v(0; θ)−1 = θ

∫
r(1 + v(0; θ)r)−1 dH(r). (D.33)

and the nonnegative constants ṽ(0;ϑ, θ) and c̃(0; θ) are defined via the following equations:

ṽ(0;ϑ, θ) = ϑ
∫
r2(1 + v(0; θ)r)−2 dH(r)

v(0; θ)−2 − ϑ
∫
r2(1 + v(0; θ)r)−2 dH(r) , c̃(0; θ) =

∫
r(1 + v(0; θ)r)−2 dG(r). (D.34)

When θ ≤ 1, the quantities defined in (D.33) and (D.34) are interpreted as limλ→0+ v(−λ; θ) = ∞,
limλ→0+ c̃(−λ; θ) = 0 and limλ→0+ ṽ(−λ;ϑ, θ) = ϑ(1 − ϑ)−1.

Theorem D.4.1 (Risk characterization of subagged ridgeless predictor). Let f̃WR
0,M be the ingredient predictor

as defined in (4.18). Suppose Assumptions 4.1-4.5 hold for the dataset Dn. Then, as k, n, p → ∞ such that
p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞] and ϕs ̸= 1, there exists a deterministic function Rsub

0,M (ϕ, ϕs),
M ∈ N, such that for I1, . . . , IM

SRSWR∼ Ik,

sup
M∈N

|R(f̃WR
0,M ; {DIℓ

}Mℓ=1) − Rsub
0,M (ϕ, ϕs)|

p−→ 0,

and
sup
M∈N

|R(f̃0,M ; Dn) − Rsub
0,M (ϕ, ϕs)|

a.s.−−→ 0.
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Furthermore, the function Rsub
0,M (ϕ, ϕs) decomposes as Rsub

0,M (ϕ, ϕs) = σ2 + Bsub
0,M (ϕ, ϕs) + V sub

0,M (ϕ, ϕs),
where the terms are given by Bsub

0,M (ϕ, ϕs) = M−1B0(ϕs, ϕs) + (1 − M−1)B0(ϕ, ϕs), and V sub
0,M (ϕ, ϕs) =

M−1V0(ϕs, ϕs) + (1 −M−1)V0(ϕ, ϕs), and the functions B0(·, ·) and V0(·, ·) are defined as

B0(ϑ, θ) =
{

0 θ ∈ (0, 1), ϑ ≤ θ

ρ2(1 + ṽ(0;ϑ, θ)c̃(0; θ) θ ∈ (1,∞], ϑ ≤ θ
, V0(ϑ, θ) =

σ2 ϑ

1 − ϑ
θ ∈ (0, 1), ϑ ≤ θ

σ2ṽ(0;ϑ, θ) θ ∈ (1,∞], ϑ ≤ θ

,

where the nonnegative constants ṽ(0;ϑ, θ) and c̃(0; θ) are as defined in (D.34).

Proof of Theorem D.4.1. We use the same notations as in the proof for Theorem D.3.1 and let Σ̂m =
X⊤LmX/k for all m ∈ [M ]. Note that

β0 − β̃({DIℓ
}Mℓ=1) = 1

M

M∑
m=1

(Ip − Σ̂+
mΣ̂m)β0 − 1

M

M∑
m=1

Σ̂+
m

X⊤Lmϵ

k
.

We have

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) = σ2 + (β0 − β̃({DIℓ

}Mℓ=1))⊤Σ(β0 − β̃({DIℓ
}Mℓ=1))

= σ2 + TB + TV + TC ,

where

TC = − 2
M2 ϵ⊤

(
M∑
m=1

Σ̂+
m

X⊤Lm

k

)⊤

Σ
(

M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0, (D.35)

TB = 1
M2 β⊤

0

(
M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
Σ
(

M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0, (D.36)

TV = 1
M2 ϵ⊤

(
M∑
m=1

Σ̂+
m

X⊤Lm

k

)⊤

Σ
(

M∑
m=1

Σ̂+
m

X⊤Lm

k

)
ϵ. (D.37)

Next we analyze the three term separately for M ∈ {1, 2}. From Lemma D.4.2, we have that TC
a.s.−−→ 0.

Further, from Lemma D.4.4, Lemma D.4.5, and Lemma D.4.6, for all I1 ∈ Ik when M = 1 and for all
Im, Il

SRSWR∼ Ik when M = 2, it holds that

R(f̃M,λ; {DIℓ
}Mℓ=1) a.s.−−→ Rsub

0,M (ϕ, ϕs)

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}, where

Rsub
0,M (ϕ, ϕs) = σ2 + 1

M
(B0(ϕs, ϕs) + V0(ϕs, ϕs)) + M − 1

M
(B0(ϕ, ϕs) + V0(ϕ, ϕs)).

Here, the components are:

B0(ϕ, ϕs) =
{

0, ϕs ∈ (0, 1)
ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs), ϕs ∈ (1,∞)

, V0(ϕ, ϕs) =
{
σ2 ϕ

1−ϕ , ϕs ∈ (0, 1)
σ2ṽ(0;ϕ, ϕs), ϕs ∈ (1,∞)

,

and the nonnegative constants ṽ(0;ϕ, ϕs) and c̃(0;ϕs) are as defined in (D.34). The proof for the boundary
case when ϕs = ∞ follows from Proposition D.4.7. Then, we have that the function Rsub

0,M (ϕ, ϕs) is
continuous on [ϕ,∞] \ {1} and lower-semi continuous on [ϕ,∞].

Finally, the risk expression for general M and the uniformity claim over M ∈ N follow from Theorem 4.3.9.
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D.4.2 Component concentrations
In this subsection, we will show that the cross-term C0 converges to zero and the variance term TV converge
to its corresponding trace expectation.

D.4.2.1 Convergence of the cross term

Lemma D.4.2 (Convergence of the cross term). Under Assumptions 4.1-4.5, for TC as defined in (D.35),
we have TC

a.s.−−→ 0 as k, p → ∞ and p/k → ϕs ∈ (0, 1) ∪ (1,∞),
Proof of Lemma D.4.2. Note that

TC = − 2
M2 · 1

k

〈(
M∑
m=1

Σ̂+
m

X⊤Lm

k

)⊤

Σ
(

M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0, ϵ

〉
.

We next bound the norm

1
k

∥∥∥∥∥∥ 1
M

(
M∑
m=1

Σ̂+
m

X⊤Lm

k

)⊤

Σ
(

M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0

∥∥∥∥∥∥
2

2

≤ 1
M2

M∑
m=1

M∑
l=1

1
k

∥∥∥(Σ̂+
mX⊤Lm)⊤Σ(Ip − Σ̂+

l Σ̂l)β0

∥∥∥2

2

≤
∥β0∥2

2
M2 ·

M∑
m=1

M∑
l=1

∥∥∥(Ip − Σ̂+
l Σ̂l)ΣΣ+

mΣmΣ̂+
mΣ(Ip − Σ̂+

l Σ̂l)
∥∥∥

op

≤
∥β0∥2

2
M2 ·

M∑
j=1

M∑
l=1

∥∥∥Ip − Σ̂+
l Σ̂l

∥∥∥2

op
∥Σ∥2

op

∥∥∥Σ̂+
j ΣjΣ̂+

j

∥∥∥
op

= ∥β0∥2
2

M2 ·
M∑
j=1

M∑
l=1

∥∥∥Ip − Σ̂+
l Σ̂l

∥∥∥2

op
∥Σ∥2

op

∥∥∥Σ̂+
j

∥∥∥
op

≤ ∥β0∥2
2 r

2
max · 1

M

M∑
j=1

∥∥∥Σ̂+
m

∥∥∥
op
,

where the last inequality is due to Assumption 4.4 and the fact that
∥∥∥Ip − Σ̂+

l Σ̂l

∥∥∥
op

≤ 1. By Assumption
4.3, ∥β0∥2

2 is uniformly bounded in p. From Bai and Silverstein (2010), lim inf min1≤i≤p s
2
i ≥ rmin(1−

√
ϕs)2

almost surely for ϕs ∈ (0, 1) ∪ (1,∞). Thus, lim sup
∥∥∥Σ̂+

m

∥∥∥
op

≤ C for some constant C < ∞ almost surely.

Applying Lemma D.9.4, we thus have that TC
a.s.−−→ 0.

D.4.2.2 Convergence of the variance term

Lemma D.4.3 (Convergence of the variance term). Under Assumptions 4.1-4.5, for all m ∈ [M ] and
Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0
otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1
k2 ϵ⊤LmXΣ̂+

mΣΣ̂+
mX⊤Lmϵ − σ2

k
tr(Σ̂+

j Σ) a.s.−−→ 0,

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1
k2 ϵ⊤LmXΣ̂+

mΣΣ̂+
l X⊤Llϵ − σ2

k2 tr(Σ̂+
l X⊤LlLmΣ̂+

mΣ) a.s.−−→ 0,
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as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}.

Proof of Lemma D.3.3. Note that the term is the same as the variance terms for ridge predictor trained
on k i.i.d. samples (LmX,Lmy). Notice that Lmϵ is independent of LmXΣ̂+

mΣΣ̂+
mX⊤Lm, and

1
k

∥∥∥LmXΣ̂+
mΣΣ̂+

mX⊤Lm

∥∥∥
op

≤
∥∥∥Σ̂+

m

∥∥∥2

op

∥∥∥Σ̂m

∥∥∥
op

∥Σ∥op ≤ rmax

∥∥∥Σ̂+
m

∥∥∥2

op

∥∥∥Σ̂m

∥∥∥
op
.

Observe that lim inf
∥∥∥Σ̂m

∥∥∥
op

≥ lim inf min1≤i≤p s
2
i ≥ rmax(1−

√
ϕs)2 and lim sup

∥∥∥Σ̂m

∥∥∥
op

≤ lim sup max1≤i≤p s
2
i ≤

rmax(1 +
√
ϕs)2 almost surely as k, p → ∞ and p/k → ϕs ∈ (0, 1) ∪ (1,∞) from Bai and Silverstein (2010).

We have lim sup
∥∥∥Σ̂+

m

∥∥∥
op

≤ C and lim sup
∥∥∥Σ̂m

∥∥∥
op

≤ C for some constant C < ∞ almost surely. From
Lemma D.9.5, it follows that

1
k2 ϵ⊤LmXΣ̂+

mΣΣ̂+
mX⊤Lmϵ − σ2

k2 tr(LmXΣ̂+
mΣΣ̂+

mX⊤Lm) a.s.−−→ 0.

Since tr(LmXΣ̂+
mΣΣ̂+

mX⊤Lm)/k2 = tr(Σ̂+
mΣ̂mΣ̂+

mΣ)/k = tr(Σ̂+
mΣ)/k, we further have

1
k2 ϵ⊤LmXΣ̂+

mΣΣ̂+
mX⊤Lmϵ − σ2

k
tr(Σ̂+

mΣ) a.s.−−→ 0. (D.38)

The second term involves the cross term MmΣMl. Note that

1
n

∥∥∥LmXΣ̂+
mΣΣ̂+

l X⊤Ll

∥∥∥
op

≤ k

n
rmax

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂+
l

∥∥∥
op

∥∥∥Σ̂+
l

∥∥∥
op
,

because
∥∥∥Σ̂+

m

∥∥∥
op

and
∥∥∥Σ̂m

∥∥∥
op

for m ∈ [M ] are uniformly bounded almost surely. By Lemma D.9.5, it
follows that

1
n

ϵ⊤LmXΣ̂+
mΣΣ̂+

l X⊤Llϵ − σ2

n
tr(LmXΣ̂+

mΣΣ̂+
l X⊤Ll)

a.s.−−→ 0.

Since k/n → ϕs/ϕ, we have

1
k2 ϵ⊤LmXΣ̂+

mΣΣ̂+
l X⊤Llϵ − σ2

k2 tr(LmXΣ̂+
mΣΣ̂+

l X⊤Ll)
a.s.−−→ 0.

D.4.3 Component deterministic approximations
D.4.3.1 Deterministic approximation of the bias functional

Lemma D.4.4 (Deterministic approximation of the bias functional). Under Assumptions 4.1-4.5, for all
m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if
l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
mΣ̂m)β0

a.s.−−→

{
0 ϕs ∈ (0, 1)
ρ2(1 + ṽ(0;ϕs, ϕs))c̃(0;ϕs) ϕs ∈ (1,∞),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
l Σ̂l)β0

a.s.−−→

{
0 ϕs ∈ (0, 1)
ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs) ϕs ∈ (1,∞),
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as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞)\{1}, where the nonnegative constants ṽ(0;ϕ, ϕs)
and c̃(0;ϕs) are as defined in (D.34).

Proof of Lemma D.4.4. For the first term, we have that for m ∈ [M ],

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
mΣ̂m)β0

a.s.−−→

{
0 if ϕs ∈ (0, 1)
ρ2(1 + ṽb(0;ϕs))

∫
r

(1+v(0;ϕs)r)2 dG(r) if ϕs ∈ (1,∞).
(D.39)

Next we analyze the second term, by considering the following two cases separately for (m, l) = (1, 2).
(1) ϕs ∈ (0, 1). Since the singular values of Σ̂j ’s are almost surely lower bounded away from 0, we
have Σ̂+

j Σ̂j = Ip almost surely. Then β⊤
0 (Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2)β0

a.s.−−→ 0 when k, p → ∞ and
p/k → ϕs ∈ (0, 1).
(2) ϕs ∈ (1,∞). We begin with analyzing the deterministic equivalent of (Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2).

Recall that i0 is the number of shared samples between DI1 and DI2 , and Σ̂0 = X⊤L1L2X⊤/i0 and
Σ̂ind
j = X⊤(Lj − L1L2)X⊤/(k − i0) are the common and individual covariance estimators of the two

datasets. Also note that from (D.25), we have λ2M1ΣM2 ≃ (λ2M1ΣM2)det, where

(λ2M1ΣM2)det = (1 + ṽ(−λ;ϕs, ϕ)) (v(−λ;ϕs)Σ + Ip)−2 Σ > 0, (D.40)

and ṽ(−λ;ϕs, ϕ) is as defined in (D.34). Let λ ∈ Λ = [0, λmax] where λmax < ∞. For any matrix T ∈ Rp×p

with trace norm uniformly bounded by M ,

| tr[λ2M1ΣM2T ]| ≤ λ2 ∥M1∥op ∥M2∥op ∥Σ∥op | tr[(T ⊤T ) 1
2 ]| ≤ Mrmax ∥Σ∥op

where the second inequality holds because ∥M1∥op ≤ λ−1 and ∥Σ∥op ≤ rmax. Since ϕ0 ≥ ϕs > 1, it follows
from Patil et al. (2022a, Lemma S.6.14) that, there exists M ′ > 0 such that the magnitudes of v(−λ;ϕs)
and vb(λ, ϕs, ϕ) − 1, and their derivatives with respect to λ are continuous and bounded by M ′ for all λ ∈ Λ.
Thus, we get ∣∣tr [(λ2M1ΣM2)detT

]∣∣ ≤ (1 +M ′) ∥v(−λ;ϕs)Σ + Ip∥−2
op ∥Σ∥op | tr[(T ⊤T ) 1

2 ]|
≤ (1 +M ′)Mrmax.

Similarly, in the same interval the derivatives of tr
[
λ2M1ΣM2T

]
and tr

[
(λ2M1ΣM2)detT

]
with respect

to λ also have bounded magnitudes for λ ∈ Λ. Therefore, the family of functions

tr[λ2M1ΣM2T ] − tr
[
(λ2M1ΣM2)detT

]
forms an equicontinuous family in λ over λ ∈ Λ. Thus, the convergence in Part 1 of Lemma D.8.9 is uniform
in λ. We can now use the Moore-Osgood theorem and the continuity property from Lemma D.8.15 to
interchange the limits to obtain

lim
p→∞

tr
[
(Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2)T

]
− tr

[
((Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2))detT

]
= lim
p→∞

lim
λ→0+

tr
[
λ2M1ΣM2T

]
− tr

[
(λ2M1ΣM2)detT

]
= lim
λ→0+

lim
p→∞

tr
[
λ2M1ΣM2T

]
− tr

[
(λ2M1ΣM2)detT

]
= 0,

where
((Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2))det = (1 + ṽ(0;ϕ, ϕs))(v(0;ϕs)Σ + Ip)−2Σ.

As p → ∞, replacing the empirical distribution Gp(r) by limiting distribution G(r) yields the desired
results.
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D.4.3.2 Deterministic approximation of the variance functional

Lemma D.4.5 (Deterministic approximation of the variance functional when ϕs < 1). Under Assumptions
4.1-4.5, for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be a diagonal matrix with
(Lm)ll = 1 if l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1
k

tr(Σ̂+
mΣ) a.s.−−→ ϕs

1 − ϕs
,

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1
k

tr(Σ̂+
l X⊤LlLmΣ̂+

mΣ) a.s.−−→ ϕ

1 − ϕ

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) ∩ (0, 1).

Proof of Lemma D.4.5. For the first term, from Patil et al. (2022a, Proposition S.3.2) we have that for
m ∈ [M ],

1
k

tr(Σ̂+
mΣ) a.s.−−→


ϕs

1 − ϕs
if ϕs ∈ (0, 1)

ϕsvv(0;ϕ, ϕs)
∫

r2

(1 + v(0;ϕs)r)2 dH(r) if ϕs ∈ (1,∞)
. (D.41)

Next we analyze the second term for ϕs ∈ (0, 1). It suffices to analyze the case when (m, l) = (1, 2).
From Bai and Silverstein (2010), we have

rmin(1 −
√
ϕs)2 ≤ lim inf

∥∥∥Σ̂j

∥∥∥
op

≤ lim sup
∥∥∥Σ̂j

∥∥∥
op

≤ rmax(1 +
√
ϕs)2, j = 1, 2.

Then Σ̂j ’s are invertible almost surely. From Lemma D.8.11, we have that for j = 1, 2,

Σ̂−1
j =

(
i0
k

Σ̂0 + k − i0
k

Σ̂ind
1

)−1
≃
(
i0
k

Σ̂0 + (1 − ϕs)
k − i0
k

Σ
)−1

,

where Σ̂0 = X⊤L1L2X/i0 and Σ̂ind
j = X⊤LjX/(k − i0) for j = 1, 2, defined analogously as in the proof

for Theorem D.3.1. Thus, conditional on Σ̂0 and i0, we have

Σ̂−1
1 Σ̂0Σ̂−1

2 Σ ≃
(
i0
k

Σ̂0 + (1 − ϕs)
k − i0
k

Σ
)−1

Σ̂0

(
i0
k

Σ̂0 + (1 − ϕs)
k − i0
k

Σ
)−1

= i20
k2

(
Σ̂0 + (1 − ϕs)

k − i0
i0

Σ
)−1

Σ̂0

(
Σ̂0 + (1 − ϕs)

k − i0
i0

Σ
)−1

Σ

by applying the conditional product rule from Proposition D.8.6. When i0 < k, let Σ̂′ = cΣ− 1
2 Σ̂0Σ− 1

2 and
c = (1 − ϕs)(k − i0)/i0, we further have

Σ̂−1
1 Σ̂0Σ̂−1

2 Σ ≃ i20
k2c2 Σ− 1

2 (Σ̂′ + Ip)−1Σ̂′(Σ̂′ + Ip)−1Σ− 1
2 Σ

≃ i20
k2 ṽv(−1; γ0, c

−1Ip)(v(−1; γ0, c
−1Ip) + c)−2Ip,

where γ0 = p/i0, the second equality is from Lemma D.8.9 (2) and the fixed point solutions are defined by

1
v(−1; γ0, c−1Ip)

= 1 + γ0

c+ v(−1; γ0, c−1Ip)
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1
ṽv(−1; γ0, c−1Ip)

= 1
v(−1; γ0, c−1Ip)2 − γ0

(c+ v(−1; γ0, c−1Ip))2 .

When i0 = k, the above equivalent is also valid, which reduces to the case for Σ̂+
j Σ̂jΣ̂+

j as in (D.41).
Note that from Lemma D.8.13, ṽv(−λ; γ) and v(−λ; γ) are continuous on γ, and from Lemma D.9.3,
i0/k

a.s.−−→ ϕ/ϕs where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs as k, p → ∞. We have

Σ̂−1
1 Σ̂0Σ̂−1

2 Σ ≃ ϕ2
s

ϕ2
0
ṽv(−1;ϕ0, c

−1
0 Ip)(v(−1;ϕ0, c

−1
0 Ip) + c0)−2Ip,

where c0 = limp→∞ c = (1 − ϕs)(ϕs − ϕ)/ϕ and the fixed solutions reduce to

v(−1; γ0, c
−1
0 Ip) = 1 − ϕs, ṽv(−1; γ0, c

−1
0 Ip) = (1 − ϕs)2

1 − ϕ
.

Then, we have

i0
k2 tr[Σ̂+

1 Σ̂0Σ̂+
2 Σ] a.s.−−→ lim

p→∞

i0p

k2 · 1
p

tr
[
ϕ2
s

ϕ2
(1 − ϕs)2

1 − ϕ

(
1 − ϕs + (1 − ϕs)(ϕs − ϕ)

ϕ

)−2
Ip

]
= ϕ

1 − ϕ
.

(D.42)

Combining (D.41) and (D.42), the conclusion follows.

Lemma D.4.6 (Deterministic approximation of the variance functional when ϕs > 1). Under Assumptions
4.1-4.5, for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be a diagonal matrix with
(Lm)ll = 1 if l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1
k

tr(Σ̂+
j Σ) a.s.−−→ 1

2 ṽ(0;ϕs, ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1
k2 ϵ⊤L1XΣ̂+

mΣΣ̂+
l X⊤L2ϵ

a.s.−−→ 1
2 ṽ(0;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) ∩ (1,∞), where the nonnegative constants
v(0;ϕs) and ṽ(0;ϕ, ϕs) are as defined in (D.33) and (D.34).

Proof of Lemma D.4.6. From (D.41) we have

1
k

tr(Σ̂+
mΣ) a.s.−−→ ṽ(0;ϕ, ϕs). (D.43)

For the second term, it suffices to consider the case when (m, l) = (1, 2). Let P0 = ϵ⊤L1XΣ̂+
1 ΣΣ̂+

2 X⊤L2ϵ/k2

and Pλ = ϵ⊤L1XM1Σ M2X⊤L2ϵ/k2 where Mj = (Σ̂j +λIp)−1. Note that limλ→0+ Pλ = P0. Note that
limλ→0+ Pλ = P0. From Lemma D.3.3 and Lemma D.3.5, we have that for any fixed λ > 0,

Pλ
a.s.−−→ Qλ := ṽ(−λ;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}, where ṽ(λ, ϕs, ϕ) is as defined in (D.13).
Because of the continuity of ṽv(−λ;ϕ) and v(−λ;ϕ) in λ from Lemma D.8.15, we have that

lim
λ→0+

Qλ = Q0 := ṽ(0;ϕ, ϕs).
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As n, p → ∞, we have that almost surely

|Pλ| = ϕ| tr(M2Σ̂0M1Σ)/p| ≤ ϕ∥M1Σ̂0M2∥op∥Σ∥op ≤ ϕ2
srmax

ϕ
,

where the last inequality is because
∥∥∥Σ̂0

∥∥∥
op

≤ rmax, and

∥∥∥M1Σ̂0M2

∥∥∥
op

≤ k2

i20
· max

i

li(
li + k−i0

i0
λ
)2 ≤ k2

i20
, (D.44)

where li’s are the eigenvalues of Σ̂0. Similarly, we have |P0| is almost surely bounded. Thus, |Pλ| is almost
surely bounded over λ ∈ Λ[0, λmax] for some constant λmax > 0. Next we consider the derivative

∂Pλ
∂λ

= ϵ⊤L1X
∂M1

∂λ
ΣM2X⊤L2ϵ/k2 + ϵ⊤L1XM1Σ∂M2

∂λ
X⊤L2ϵ/k2

= −ϵ⊤L1XM2
1 ΣM2X⊤L2ϵ/k2 − ϵ⊤L1XM1ΣM2

2 X⊤L2ϵ/k2

Note that for λ ∈ Λ, we can bound∥∥∥M2
1 Σ̂0M2

∥∥∥
op

≤ k2

i20
· max

i

li(
li + k−i0

i0
λ
)3 ≤ k2

i20
,

where li’s are the eigenvalues of Σ̂0. Similarly, we have that
∥∥∥M1Σ̂0M2

2

∥∥∥
op

is almost surely bounded for
λ ∈ Λ. By similar argument as in Lemma D.4.3, the following holds almost surely as n, p → ∞,∣∣∣∣∂Pλ∂λ

∣∣∣∣ = ϕ| tr(M2
1 Σ̂0M2Σ) + tr(M1Σ̂0M2

2 Σ)| ≤ ϕ2
srmax

ϕ
.

That is, |∂Pλ/∂λ| is almost surely bounded over λ ∈ Λ[0, λmax].
Since ϕ0 ≥ ϕs > 1, it follows from Patil et al. (2022a, Lemma S.6.14) that, there exists M ′ > 0 such that

the magnitudes of v(−λ;ϕs) and vv(λ, ϕs, ϕ)/ϕ, and their derivatives with respect to λ are continuous and
bounded by M ′ for all λ ∈ Λ. Thus, |Qλ| ≤ ϕ0M

′r2
max over λ ∈ Λ. Similarly, we have |∂Qλ/∂λ|λ=0+ | are

uniformly bounded over λ ∈ Λ. We can now use the Moore-Osgood theorem and the continuity property
from Lemma D.8.15 to interchange the limits to obtain

lim
p→∞

P0 −Q0 = lim
p→∞

lim
λ→0+

Pλ −Qλ = lim
λ→0+

lim
p→∞

Pλ −Qλ = 0,

and the conclusion follows.

D.4.4 Boundary case: diverging subsample aspect ratio
Proposition D.4.7 (Risk approximation when ϕs → ∞). Under Assumptions 4.1-4.5, it holds for all
M ∈ N

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ Rsub

0,M (ϕ,∞),

as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ∞, where

Rsub
0,M (ϕ,∞) := lim

ϕs→∞
Rsub

0,M (ϕ, ϕs) = σ2 + ρ2
∫
r dG(r), (D.45)

and Rsub
0,M (ϕ, ϕs) is as defined in Theorem D.4.1.

245



Proof of Proposition D.4.7. Note that

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤

0 β̃0,M ({DIℓ
}Mℓ=1))2]

= E(x0,y0)[(ϵ0 + x⊤
0 (β0 − β̃0,M ({DIℓ

}Mℓ=1)))2]
= σ2 + E(x0,y0)[(β0 − β̃0,M ({DIℓ

}Mℓ=1))⊤x0x⊤
0 (β0 − β̃0,M ({DIℓ

}Mℓ=1))]
= σ2 + (β0 − β̃0,M ({DIℓ

}Mℓ=1))⊤Σ(β0 − β̃0,M ({DIℓ
}Mℓ=1)).

Then, by the Cauchy-Schwarz inequality, we have

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) − (β⊤

0 Σβ0 + σ2) = ∥Σ 1
2 β̃0,M ({DIℓ

}Mℓ=1)∥2
2 − 2β̃0,M ({DIℓ

}Mℓ=1)⊤Σβ0

≤ 1
rmin

∥β̃0,M ({DIℓ
}Mℓ=1)∥2

2 + 2∥β̃0,M ({DIℓ
}Mℓ=1)∥2∥Σ∥2

≤ 1
rmin

∥β̃0,M ({DIℓ
}Mℓ=1)∥2

2 + 2rmaxρ∥β̃0,M ({DIℓ
}Mℓ=1)∥2

almost surely as k, n, p → and p/k → ∞. Thus, we have the following holds almost surely:

∥β̃0
M (Dn)∥2 ≤ 1

M

M∑
m=1

∥(X⊤LmX/k)+(X⊤Lmy/k)∥2

≤ 1
M

M∑
m=1

∥(X⊤LmX/k)+X⊤Lm/
√
k∥ · ∥Lmy/

√
k∥2

≤ C
√
ρ2 + σ2 · 1

M

M∑
m=1

∥(X⊤LmX/k)+X⊤Lm/
√
k∥

where the last inequality holds eventually almost surely since Assumptions 4.1-4.3 imply that the entries of
y have bounded 4-th moment, and thus from the strong law of large numbers, ∥Lmy/

√
k∥2 is eventually

almost surely bounded above by C
√
E[y2

1 ] = C
√
ρ2 + σ2 for some constant C. Observe that operator

norm of the matrix (X⊤LmX/k)+XLm/
√
k is upper bounded 1/smin, where smin is the smallest nonzero

singular value of X. As k, p → ∞ such that p/k → ∞, smin → ∞ almost surely (e.g., from results in
Bloemendal et al. (2016)), and therefore, ∥β̃0,M ({DIℓ

}Mℓ=1)∥2 → 0 almost surely. Thus, we have shown that

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ σ2 + β⊤

0 Σβ0,

or equivalently,

R(f̃WR
0,M ; Dn, {Iℓ}Mℓ=1) a.s.−−→ σ2 + ρ2

∫
r dG(r).

From Lemma D.8.14 we have

lim
ϕs→∞

v(0;ϕs) = lim
ϕs→∞

ṽb(0;ϕs) = lim
ϕs→∞

ṽv(0;ϕs).

Thus,
lim

ϕs→∞
V0(ϕs, ϕs) = lim

ϕs→∞
V0(ϕ, ϕs) = 0,

and
lim

ϕs→∞
B0(ϕs, ϕs) = lim

ϕs→∞
B0(ϕ, ϕs) = ρ2

∫
r dG(r).

Therefore, we have RWR
0,M (ϕ,∞) := limϕs→∞ Rsub

0,M (ϕ, ϕs) = σ2 + ρ2 ∫ r dG(r). Thus, RWR
0,M (ϕ,∞) is well

defined and RWR
0,M (ϕ, ϕs) is right continuous at ϕs = ∞.
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D.5 Proof of Theorem 4.4.6 (splagging without replacement, ridge
and ridgeless predictors)

Proof of Theorem 4.4.6. For M ∈ {1, 2, . . . , ⌊lim inf n/k⌋}, following the proof in Theorem D.3.1, the
conditional risk is given by

R(f̃WOR
λ,M ; {DIℓ

}Mℓ=1) = σ2 + TC + TB + TV ,

where TC , TB , and TV are defined as

TC = − λ

M
· ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ
(

M∑
m=1

Mm

)
β0, (D.46)

TB = λ2

M2 · β⊤
0

(
M∑
i=1

MIi

)
Σ
(

M∑
i=1

MIi

)
β0 (D.47)

= λ2

M

M∑
i=1

β⊤
0 MIiΣMIiβ0 + λ2(M − 1)

M

M∑
i,j=1

β⊤
0 MIiΣMIj β0,

TV = 1
M2 · ϵ⊤

(
M∑
i=1

MIi

X⊤Li

k

)⊤

Σ
(

M∑
i=1

MIi

X⊤Li

k

)
ϵ

= 1
M

M∑
i=1

(
MIi

X⊤Li

k

)⊤

Σ
(

MIi

X⊤Li

k

)
+ M − 1

M

M∑
i,j=1

(
MIi

X⊤Li

k

)⊤

Σ
(

MIj

X⊤Lj

k

)
,

(D.48)

where MIℓ
= (X⊤LℓX/k + λIp)−1 and Lℓ is a diagonal matrix with diagonal entry being 1 if the ℓth

sample Xℓ is in the sub-sampled dataset DIℓ
and 0 otherwise. Note that for splagging, Ii ∩ Ij = ∅ for all

i ̸= j.
We analyze each term separately for M ∈ {1, 2}. From Lemma D.3.2, we have that TC

a.s.−−→ 0. From
Lemma D.3.3, we have that

TV − 1
M

M∑
j=1

σ2

k
tr(MIj

Σ̂jMIj
Σ) a.s.−−→ 0, (D.49)

since the datasets have no overlaps and the cross term vanishes because LlLm = 0n×n for l ̸= m. Then,
from (D.20) and (D.28), we have that for ℓ ∈ [M ],

λ2β⊤
0 MIℓ

ΣMIℓ
β0

a.s.−−→ ρ2ṽ(−λ;ϕs, ϕs)c̃(−λ;ϕs), (D.50)
σ2

k
tr(MIℓ

Σ̂ℓMIℓ
Σ) a.s.−−→ σ2

2 ṽ(−λ;ϕs, ϕs), (D.51)

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs = 2ϕ, where the positive constants ṽ(λ;ϕs, ϕ), and
c̃(−λ;ϕs) are as defined in (D.13). For the cross term (i ̸= j), setting i0 = 0 in (D.22) yields that

MIi
ΣMIj

≃ (v(−λ;ϕs)Σ + Ip)−1Σ(v(−λ;ϕs)Σ + Ip)−1.

Thus,

λ2β⊤
0 MIi

ΣMIj
β0

a.s.−−→ ρ2
∫

r

(1 + v(−λ;ϕs)r)2 dG(r) = ρ2c̃(0;ϕs). (D.52)

Combining (D.46)-(D.52), we have shown that R(f̃WOR
λ,M ; {DIℓ

}Mℓ=1) a.s.−−→ Rspl
λ,M (ϕ, ϕs), where

Rspl
λ,M (ϕ, ϕs) = σ2 + Bspl

λ,M (ϕ, ϕs) + V spl
λ,M (ϕ, ϕs),
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and the components are:

Bspl
λ,M (ϕ, ϕs) = 1

M
Bλ(ϕs, ϕs) +

(
1 − 1

M

)
Cλ(ϕs), V spl

λ,M (ϕ, ϕs)
1
M
Vλ(ϕs, ϕs),

with Bλ(ϕ, ϕs) = ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs), Cλ(ϕs) = ρ2c̃(−λ;ϕs), and Vλ(ϕ, ϕs) = σ2ṽ(−λ;ϕ, ϕs).
From Proposition D.3.6 and Proposition D.4.7, we have that for all λ ∈ [0,∞) and M ∈ {1, 2},

lim
ϕs→+∞

R(f̃WOR
λ,M ; {D(m)

k }Mm=1) = σ2 + ρ2
∫
r dG(r),

limϕs→+∞ Bλ(ϕs, ϕs) = ρ2 ∫ r dG(r) and limϕs→+∞ v(−λ;ϕs) = limϕs→+∞ Vλ(ϕs, ϕs) = 0. Then

lim
ϕs→+∞

c̃(−λ;ϕs) = lim
ϕs→+∞

∫
r(1 + v(−λ;ϕs)r)−2 dG(r) =

∫
r dG(r).

Thus, the approximation holds when ϕs = ∞: limϕs→+∞ R(f̃WOR
λ,M ; {DIℓ

}Mℓ=1) = limϕs→+∞ Rspl
λ,M (ϕ, ϕs).

Finally, the risk expression for general M and the uniform statement for all M ≤ ⌊n/k⌋ follow from
Theorem 4.3.9.

D.6 Proofs related to bagged risk properties
D.6.1 Bias-variance monotonicities in the number of bags, subagging with

replacement
Proof of Proposition 4.4.5. Recall that from the proof for Theorem D.3.1, we have

Bsub
λ,1(ϕ, ϕs) = ρ2(1 + ṽ(−λ, ϕs, ϕs))c̃(−λ;ϕs) V sub

λ,1 (ϕ, ϕs) = σ2ṽ(−λ;ϕs, ϕs)
Bsub
λ,∞(ϕ, ϕs) = ρ2(1 + ṽ(−λ, ϕ, ϕs))c̃(−λ;ϕs) Bsub

λ,∞(ϕ, ϕs) = σ2ṽ(−λ;ϕ, ϕs)

where the nonnegative constants ṽ(−λ, ϕ, ϕs) and c̃(−λ;ϕs) are defined in (D.12). Since H has positive
support, ṽ(−λ;ϕ, ϕs) is strictly increasing in ϕ, and thus, Bsub

λ,∞(ϕ, ϕs) = Bsub
λ,1(ϕ, ϕs) when ϕs = ϕ,

and Bsub
λ,1(ϕ, ϕs) > Bsub

λ,∞(ϕ, ϕs) when ϕs > ϕ. Similarly, V sub
λ,∞(ϕ, ϕs) = V sub

λ,1 (ϕ, ϕs) when ϕs = ϕ and
V sub
λ,1 (ϕ, ϕs) < V sub

λ,∞(ϕ, ϕs) when ϕs > ϕ. Recall that the definitions of Bsub
λ,M (ϕ, ϕs) = 1/M · Bλ(ϕs, ϕs) +

(1 − 1/M)Bλ(ϕ, ϕs) and V sub
λ,M (ϕ, ϕs) = 1/M · Vλ(ϕs, ϕs) + (1 − 1/M)Vλ(ϕ, ϕs) are a convex combination

of Bλ(ϕ, ϕs) and Bλ(ϕs, ϕs), and Vλ(ϕ, ϕs) and Vλ(ϕs, ϕs), respectively. The proof for ridgeless predictor
follows by setting λ = 0 except B0(ϕ, ϕs) = B0(ϕ, ϕs) = 0 for ϕs < 1.

D.6.2 Bias-variance monotonicities in the number of bags, splagging without
replacement

Proof of Proposition 4.4.10. For the variance term, V spl
λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs) as a linear function of

M−1 is strictly decreasing in M if ϕs < ∞ and is zero if ϕs = ∞ or σ2 = 0.
For the bias term, when ϕs > 1, since c̃(−λ;ϕs) > 0, we have that Bλ(ϕs, ϕs) ≥ Cλ(ϕs) with equality

holds if and only if ṽ(−λ;ϕ, ϕs) = 0 or c̃(−λ;ϕs) = 0, if and only if ϕs = ∞. Then we have

Bspl
λ,M (ϕ, ϕs) = 1

M
Bλ(ϕs, ϕs) +

(
1 − 1

M

)
Cλ(ϕs)

= 1
M

(Bλ(ϕs, ϕs) − Cλ(ϕs)) + Cλ(ϕs)

≥ 1
M + 1(Bλ(ϕs, ϕs) − Cλ(ϕs)) + Cλ(ϕs)

= 1
M + 1Bλ(ϕs, ϕs) +

(
1 − 1

M + 1

)
Cλ(ϕs)
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= Bspl
λ,M+1(ϕ, ϕs).

with equality holds if ϕs = ∞ or ρ2 = 0. When ϕs < 1, Bλ(ϕs, ϕs) ≥ Cλ(ϕs) with equality holds if and
only if c̃(−λ;ϕs) = 0, if and only if λ = 0. The monotonicity of V spl

λ,M (ϕ, ϕs) in M follows analogously.
As M ≤ ϕs/ϕ, we further have V spl

λ,M (ϕ, ϕs) ≥ V spl
λ,ϕs/ϕ

(ϕ, ϕs) and V spl
λ,M (ϕ, ϕs) ≥ V spl

λ,ϕs/ϕ
(ϕ, ϕs) for all

M = 1, . . . , ⌊lim inf n/k⌋.

D.6.3 Risk monotonization of general bagged predictors by cross-validation
Proof of Theorem 4.5.1. We present the proof for bagging with replacement, and the proof for bagging
without replacement follows by restricting the support of ϕs 7→ RM (ϕ, ϕs) to [Mϕ,∞]. From Theorem 4.3.9,
we have that for any M ∈ N and {Iℓ}Mℓ=1 simple random samples from Ik or Iπk , it holds that

R(f̃M ; Dn, {Iℓ}Mℓ=1) p−→ RM (ϕ, ϕs)

as k, n, p →, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where

RM (ϕ, ϕs) := (2R(ϕ, ϕs) − R(ϕs, ϕs)) + 2
M

(R(ϕs, ϕs) − R(ϕ, ϕs)).

From Patil et al. (2022a, Lemma 3.8 and Theorem 3.4), we have that(
R(f̂ cv

M,I
k̂

; Dn) − RM (ϕ, ϕs)
)

+

p−→ 0.

In Patil et al. (2022a), we have assumed that the risk is bounded away from 0 in order to conclude that the
relative error converges to 0. But in Theorem 4.5.1, we conclude only the positive part of the absolute
error converges to 0, for which we do not require the risk to be bounded away from 0.

Since RM (ϕ, ϕs) is increasing in ϕ for any fixed ϕs. For 0 < ϕ1 ≤ ϕ2 < ∞,

min
ϕs≥ϕ1

RM (ϕ1, ϕs) ≤ min
ϕs≥ϕ2

RM (ϕ1, ϕs) ≤ min
ϕs≥ϕ2

RM (ϕ2, ϕs)

where the first inequality follows because {ϕs : ϕs ≥ ϕ1} ⊇ {ϕs : ϕs ≥ ϕ2}, and the second inequality
follows because RM (ϕ, ϕs) is increasing in ϕ for a fixed ϕs. Thus, minϕs≥ϕ RM (ϕ, ϕs) is a monotonically
increasing function in ϕ.

D.6.4 Risk monotonization of ridge bagged predictors by cross-validation
Proof of Theorem 4.5.5. It suffices to verify the two conditions (i) and (ii) in Theorem 4.5.1. From
Theorem 4.4.1 and Theorem 4.4.6, condition (i) holds naturally with RM (ϕ, ϕs) being the limiting risk
Rsub
λ,M (ϕ, ϕs) (or Rspl

λ,M (ϕ, ϕs)) for fixed λ ≥ 0. For condition (ii), note that when λ > 0, RM (ϕ, ϕs) is
continuous over [ϕ,∞]. When λ = 0, RM (ϕ, ϕs) is continuous over [ϕ,∞] \ {1} and can takes value infinity
when ϕs tends to 1 from both sides. Thus, RM (ϕ, ϕs) is lower semi-continuous over [ϕ,∞] and continuous
on the set arg minψ:ψ≥ϕ RM (ϕ, ψ) ⊆ [ϕ,∞] \ {1}.

Following Remark 4.5.4, the uniform risk closeness condition for k ∈ Kn holds. Then by Theorem 4.5.1,
we have that (

R(f̂ cv
M ; Dn, {Ik̂,ℓ}

M
ℓ=1) − min

ϕs≥ϕ
Rsub
λ,M (ϕ, ϕs)

)
+

p−→ 0.

Recall that for any fixed θ, the function

ṽ(−λ;ϑ, θ) = ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ;ϕs)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r) ≥ 0
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is increasing in ϑ. Then Rsub
λ,M (ϕ, ϕs) as a function of ṽ(−λ;ϑ, θ) through (4.23) and (4.26) is also increasing

in ϕ for any fixed ϕs. For 0 < ϕ1 ≤ ϕ2 < ∞,

min
ϕs≥ϕ1

Rsub
λ,M (ϕ1, ϕs) ≤ min

ϕs≥ϕ2
Rsub
λ,M (ϕ1, ϕs) ≤ min

ϕs≥ϕ2
Rsub
λ,M (ϕ2, ϕs)

where the first inequality follows because {ϕs : ϕs ≥ ϕ1} ⊇ {ϕs : ϕs ≥ ϕ2}, and the second inequality
follows because Rsub

λ,M (ϕ, ϕs) is increasing in ϕ for a fixed ϕs. Thus, minϕs≥ϕ Rsub
λ,M (ϕ, ϕs) is a monotonically

increasing function in ϕ.

D.6.5 Optimal subagging versus optimal splagging
Proof of Proposition 4.5.6. Recall that

Rsub
λ,M (ϕ, ϕs) = 1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1 − 1

M

)
(Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)), M ∈ N

Rspl
λ,M (ϕ, ϕs) = 1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1 − 1

M

)
Cλ(ϕs), M = 1, . . . , ⌊n

k
⌋.

From Proposition 4.4.5, we have that

Rsub
λ,M (ϕ, ϕs) ≥ Rsub

λ,∞(ϕ, ϕs)
= Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)
= ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs) + σ2ṽ(−λ;ϕ, ϕs)
= ρ2c̃(−λ;ϕs) + ṽ(−λ;ϕ, ϕs))(ρ2c̃(−λ;ϕs) + σ2). (D.53)

where c̃(−λ;ϕs) =
∫
r/(1 + v(−λ;ϕs)r)2 dG(r). From Proposition 4.4.10, we have that for M ∈ N,

Rspl
λ,M (ϕ, ϕs) ≥ Rspl

λ,ϕs/ϕ
(ϕ, ϕs) = ϕ

ϕs
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1 − ϕ

ϕs

)
Cλ(ϕs). (D.54)

On the other hand,

Rspl
λ,ϕs/ϕ

(ϕ, ϕs) = ϕ

ϕs
ρ2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs) + ϕ

ϕs
σ2ṽ(−λ;ϕs, ϕs)) +

(
1 − ϕ

ϕs

)
ρ2c̃(−λ;ϕs)

= ρ2c̃(−λ;ϕs) + ϕ

ϕs
ṽ(−λ;ϕs, ϕs))(ρ2c̃(−λ;ϕs) + σ2). (D.55)

Since v(−λ;ϕs) is strictly decreasing in ϕs from Lemma D.8.13 and G has nonnegative support from
Assumption 4.5, we have that c̃(−λ;ϕs) is nonnegative and increasing in ϕs. Also note that

ϕ

ϕs
ṽ(−λ;ϕs, ϕs)) =

ϕ

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)

v(−λ;ϕs)−2 − ϕs

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)

≥
ϕ

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)

v(−λ;ϕs)−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2 dH(r)

= ṽ(−λ;ϕ, ϕs). (D.56)

Suppose that ϕ∗ ∈ arg mininfϕs∈[ϕ,∞]
Rspl
λ,M (ϕ, ϕs), we have

inf
M∈N,ϕs∈[ϕ,∞]

Rsub
λ,M (ϕ, ϕs) = inf

ϕs∈[ϕ,∞]
Rsub
λ,∞(ϕ, ϕs)
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≤ Rsub
λ,∞(ϕ, ϕ∗)

= ρ2c̃(−λ;ϕ∗
s) + ṽ(−λ;ϕ∗

s, ϕ))(ρ2c̃(−λ;ϕ∗
s) + σ2)

≤ ρ2c̃(−λ;ϕs) + ϕ

ϕs
ṽ(−λ;ϕs, ϕs))(ρ2c̃(−λ;ϕs) + σ2)

= Rspl
λ,M (ϕs, ϕ∗

s)
= inf
ϕs∈[ϕ,∞]

Rspl
λ,ϕs/ϕ

(ϕ, ϕs)

≤ inf
M∈N,ϕs∈[ϕ,∞]

Rspl
λ,M (ϕ, ϕs)

where in the second inequality we use (D.56) and the last inequality is from (D.54).

D.6.6 Optimal bag size for ridgeless predictors
Proof of Proposition 4.5.7. The proof of Proposition 4.5.7 follows by combining results from Lemma D.6.1
and Lemma D.6.2 for subagged and splagged ridgeless predictors, respectively.

Lemma D.6.1 (Optimal risk for subagged ridgeless predictor). Suppose the conditions in Theorem 4.4.1
hold, and σ2, ρ2 ≥ 0 are the noise variance and signal strength from Assumptions 4.2 and 4.3. Let
SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the optimal asymptotic risk Rsub

0,∞(ϕ, ϕsub
s (ϕ)) in terms

of SNR and ϕ are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = σ2 is obtained with
ϕsub
s (ϕ) = ∞.

(2) SNR > 0: For all ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained at ϕsub

s (ϕ) ∈ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rsub
0,∞(ϕ, ϕsub

s (ϕ)) = 0 is obtained
with any ϕsub

s (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum Rsub
0,∞(ϕ, ϕsub

s (ϕ)) is obtained at
ϕsub
s (ϕ) ∈ [ϕ,∞).

Proof of Lemma D.6.1. From Theorem 4.4.1, the limiting risk for bagged ridgeless with M = ∞ is given by

Rsub
0,∞(ϕ, ϕs) = ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs) + σ2(1 + ṽ(0;ϕ, ϕs)).

Defined in (D.33)-(D.34), ṽ(0;ϕ, ϕs) ≥ 0 and c̃(0;ϕs) ≥ 0 are continuous functions of v(0;ϕs), which is
strictly decreasing over ϕs ∈ (1,∞) and satisfies limϕs→∞ v(0;ϕs) = 0 from Lemma D.8.14. Then we have
ṽ(0;ϕ, ϕs) is decreasing in ϕs over (1,∞), c̃(0;ϕs) is increasing in ϕs over (1,∞), and

lim
ϕs→∞

ṽ(0;ϕ, ϕs) = 0, lim
ϕs→∞

c̃(0;ϕs) =
∫
r dG(r).

Also, ṽ(0;ϕ, ϕs) = ϕ/(1−ϕ) and c̃(0;ϕs) = 0 remain constant for ϕs ∈ (0, 1] from (4.28). Then to determine
the global minimum, it suffices to consider the case when ϕs ∈ [1,∞). Next, we consider various cases
depending on the value of SNR.

• We first consider the case SNR > 0. We consider further sub-cases depending the value of the pair (ϕ, ϕs).

1. When ϕ ∈ (0, 1) and ϕs ∈ (1,∞],

∂Rsub
0,∞(ϕ, ϕs)
∂ϕs

=
∂Rsub

0,∞(ϕ, ϕs)
∂v(0;ϕs)

∂v(0;ϕs)
∂ϕs

= ρ2
ϕ

∫
v(0;ϕs)r2

(1 + v(0;ϕs)r)3 dH(r)(
1 − ϕ

∫ (
v(0;ϕs)r

(1 + v(0;ϕs)r)

)2
dH(r)

)2

∫
r

(1 + v(0;ϕs)r)2 dG(r) · ∂v(0;ϕs)
∂ϕs

251



− 2ρ2

1
v(0;ϕs)2

1
v(0;ϕs)2 − ϕ

∫
r2

(1 + v(0;ϕs)r)2 dH(r)

∫
r2

(1 + v(0;ϕs)r)3 dG(r) · ∂v(0;ϕs)
∂ϕs

+ σ2
ϕ

∫
v(0;ϕs)r2

(1 + v(0;ϕs)r)3 dH(r)(
1 − ϕ

∫ (
v(0;ϕs)r

(1 + v(0;ϕs)r)

)2
dH(r)

)2 · ∂v(0;ϕs)
∂ϕs

.

Note that from Lemma D.8.13 v(0;ϕs) is differentiable in ϕs ∈ (0,∞] with

∂v(0;ϕs)
∂ϕs

= −

∫
r

1 + v(0;ϕs)r
dH(r)

1
v(0;ϕs)2 − ϕs

∫
r2

(1 + v(0;ϕs)r)2 dH(r)

being negative over ϕs ∈ (1,∞) and continuous in ϕs ∈ (1,∞], and

lim
ϕs→1+

∂v(0;ϕs)
∂ϕs

= −∞, lim
ϕs→∞

∂v(0;ϕs)
∂ϕs

= − lim
ϕs→∞

ṽv(0;ϕs)
∫

r

1 + v(0;ϕs)r
dH(r) = 0

by Lemma D.8.14 with ṽv defined therein. We have that ∂Rsub
0,∞(ϕ, ϕs)/∂ϕs is continuous over

ϕs ∈ (1,∞]. Since limϕs→∞ v(0;ϕs) = 0 from Lemma D.8.14, we have that

lim
ϕs→∞

ϕ

∫
v(0;ϕs)r2

(1 + v(0;ϕs)r)3 dH(r)(
1 − ϕ

∫ (
v(0;ϕs)r

(1 + v(0;ϕs)r)

)2
dH(r)

)2 = 0 (D.57)

lim
ϕs→∞

1
v(0;ϕs)2

1
v(0;ϕs)2 − ϕ

∫
r2

(1 + v(0;ϕs)r)2 dH(r)

∫
r2

(1 + v(0;ϕs)r)3 dG(r) = 1
1 − ϕ

∫
r2 dG(r) > 0.

(D.58)

Since ∂v(0;ϕs)/∂ϕs is negative over (1,∞) and limϕs→∞0 ∂v(0;ϕs)/∂ϕs = 0, we have

∂Rsub
0,∞(ϕ, ϕs)
∂ϕs

∣∣
ϕs=∞ = −ρ2

∫
r2 dG(r) · lim

ϕs→∞

∂v(0;ϕs)
∂ϕs

= 0. (D.59)

Combining (D.57)-(D.59), we have that when ϕs is large, ∂Rsub
0,∞(ϕ, ϕs)/∂ϕs approaching zero from

above as ϕs tends to ∞. On the other hand, since for k = 1, 2,

lim
ϕs→1+

∫
rk

(1 + v(0;ϕs)r)k+1 dG(r) · ∂v(0;ϕs)
∂ϕs

= lim
ϕs→1+

∫
v(0;ϕs)rk

(1 + v(0;ϕs)r)k+1 dG(r) · lim
ϕs→1+

1
v(0;ϕs)

∂v(0;ϕs)
∂ϕs

= 0,

we have
∂Rsub

0,∞(ϕ, ϕs)
∂ϕs

∣∣
ϕs=1+ = σ2 ϕ

1 − ϕ
· lim
ϕs→1+

∂v(0;ϕs)
∂ϕs

< 0.

Thus, there exists ϕ∗ ∈ (1,∞) such that

Rsub
0,∞(ϕ, ϕ∗) < Rsub

0,∞(ϕ, 1) = Rsub
0,∞(ϕ, ϕ).
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2. When ϕ = 1, Rsub
0,∞(1, 1) = ∞ while Rsub

0,∞(ϕ, ϕs) < ∞ for all ϕs ∈ (1,∞]. Since Rsub
0,∞(ϕ, ϕs) is

continuous and finite in (1,∞], by continuity and (D.57)-(D.59) we have ϕ∗ ∈ (1,∞).
3. When ϕ ∈ (1,∞), the optimal ϕ∗ ≥ ϕ > 1 must be obtained in [ϕ,∞) because of (D.57)-(D.59).

• Next consider the case when SNR = 0, i.e., ρ2 = 0 and σ2 ̸= 0, since Rsub
0,∞(ϕ, ϕs) = σ2 +σ2ṽ(0;ϕ, ϕs) > 0

is increasing in v(0;ϕs) and v(0;ϕs) ≥ 0 is decreasing in ϕs, we have that Rsub
0,∞(ϕ, ϕs) is decreasing in

ϕs. Thus, the global minimum Rsub
0,∞(∞, ϕs) = σ2 is obtained at ϕ∗

s = ∞.

• Finally, consider the case when SNR = ∞, i.e. ρ2 ̸= 0 and σ2 = 0, Rsub
0,∞(ϕ, ϕs) = ρ2(1+ṽ(0;ϕ, ϕs))c̃(0;ϕs).

As the bias term is zero when ϕs ∈ (0, 1] and positive when ϕs ∈ (1,∞], we have that Rsub
0,∞(ϕ, ϕs) ≥

Rsub
0,∞(ϕ, ϕ∗) = 0 for all ϕ∗

s ∈ [ϕ, 1] when ϕ ∈ (0, 1]. If ϕ ∈ (1,∞), since the risk is continuous over [ϕ,∞],
the global minimum exists. Since the derivative ∂Rsub

0,∞(ϕ, ϕs)/∂ϕs is continuous over ϕs ∈ (1,∞] and
(D.57)-(D.59), the minimizer satisfies ϕ∗ ∈ [ϕ,∞).

Lemma D.6.2 (Optimal splagged ridgeless). Suppose the conditions in Theorem 4.4.6 hold, and σ2, ρ2 ≥ 0
are the noise variance and signal strength from Assumptions 4.2 and 4.3. Let SNR = ρ2/σ2. For any
ϕ ∈ (0,∞), the properties of the optimal asymptotic risk Rspl

0,∞(ϕ, ϕspl
s (ϕ)) in terms of SNR and ϕ are

characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum Rspl
0,∞(ϕ, ϕspl

s (ϕ)) = σ2 is obtained with
ϕspl
s (ϕ) = ∞.

(2) SNR > 0: For ϕ ≥ 1, there exists global minimum of ϕs 7→ Rspl
0,∞(ϕ, ϕs) in (1,∞). For ϕ ∈ (0, 1), the

global minimum is in {ϕ} ∪ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rspl
0,∞(ϕ, ϕspl

s (ϕ)) = 0 is obtained
with any ϕspl

s (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum Rspl
0,∞(ϕ, ϕspl

s (ϕ)) is obtained at
ϕspl
s (ϕ) ∈ [ϕ,∞).

Proof of Lemma D.6.2. From Theorem 4.4.6, the limiting risk for bagged ridgeless with M = ϕs/ϕ is given
by

Rspl
0,ϕs/ϕ

(ϕ, ϕs) = σ2 + ϕ

ϕs

[
ρ2(1 + ṽ(0;ϕs, ϕs))c̃(0;ϕs) + σ2ṽ(0;ϕs, ϕs)

]
+
(

1 − ϕ

ϕs

)
ρ2c̃(0;ϕs)

= σ2 + ρ2c̃(0;ϕs) + ϕ
ṽ(0;ϕs, ϕs)

ϕs
(ρ2c̃(0;ϕs) + σ2).

Defined in (D.33)-(D.34), ṽ(0;ϕs, ϕs) ≥ 0 and c̃(0;ϕs) ≥ 0 are continuous functions of v(0;ϕs), which is
strictly decreasing over ϕs ∈ (1,∞) and satisfies limϕs→∞ v(0;ϕs) = 0 from Lemma D.8.14. Then c̃(0;ϕs)
is increasing in ϕs over (1,∞) and limϕs→∞ c̃(0;ϕs) =

∫
r dG(r).

• We first consider the case SNR > 0. We consider further sub-cases depending the value of the pair (ϕ, ϕs).

1. When ϕ ∈ (0, 1) and ϕs ∈ (1,∞],
Define functions h1 and h2 as follows:

h1(ϕs) = SNR · c̃(0;ϕs), h2(ϕs) = ṽ(0;ϕs, ϕs)
ϕs

= ṽv(0;ϕs)
∫ (

r

1 + v(0;ϕs)r

)2
dH(r), (D.60)

where ṽv is defined in Lemma D.8.14. Then Rspl
0,ϕs/ϕ

(ϕ, ϕs) = σ2 +σ2(h1(ϕs)+ϕh2(ϕs)(1+h1(ϕs))),
with h1 increasing in ϕs and

lim
ϕs→1+

h1(ϕs) = 0, lim
ϕs→∞

h1(ϕs) = SNR
∫
r dG(r), lim

ϕs→1+
h2(ϕs) = +∞, lim

ϕs→∞
h2(ϕs) = 0.
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Next we study the property of h2. Simple calculation yields that

∂h2(ϕs)
∂ϕs

=ṽv(0;ϕs)2

[
2

v(0;ϕs)3

∫
r2

(1 + v(0;ϕs)r)3 dH(r) · ∂v(0;ϕs)
∂ϕs

+
(∫

r2

(1 + v(0;ϕs)r)2 dH(r)
)2]

=ṽv(0;ϕs)2

[(∫
r2

(1 + v(0;ϕs)r)2 dH(r)
)2

− 2ṽv(0;ϕs)
v(0;ϕs)3

∫
r2

(1 + v(0;ϕs)r)3 dH(r)
∫

r

1 + v(0;ϕs)r
dH(r)

]
.

From Lemma D.8.14 (4), we have that limϕs→∞ ṽv(0;ϕs)/v(0;ϕs)2 limϕs→∞[1+ ṽb(0;ϕs)] = 1 where
ṽb(0;ϕs) is defined in Lemma D.8.14. Analogously, limϕs→1+ ṽv(0;ϕs)/v(0;ϕs)2 = +∞. Then as in
the proof of Proposition 4.5.7, one can verify that

∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)
∂ϕs

= −σ2ṽv(0;ϕs)
[
SNR(1 + ϕh2(ϕs))

∫
r2

(1 + v(0;ϕs)r)3 dG(r) ·
∫

r

1 + v(0;ϕs)r
dH(r)

+ ϕ(1 + h1(ϕs))
2ṽv(0;ϕs)2

v(0;ϕs)3

∫
r2

(1 + v(0;ϕs))3 dH(r) ·
∫

r

1 + v(0;ϕs)r
dH(r)

−ṽv(0;ϕs)ϕ(1 + h1(ϕs))
(∫

r2

(1 + v(0;ϕs)r)2 dH(r)
)2]

satisfies limϕs→1+ ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs = −∞ and limϕs→∞ ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs = 0 by utilizing
properties in Lemma D.8.14. Furthermore, as

lim
ϕs→∞

ṽv(0;ϕs)−1
∂Rspl

0,ϕs/ϕ
(ϕ, ϕs)

∂ϕs
= −ρ2

∫
r2 dG(r) ·

∫
r dH(r) < 0, (D.61)

we have that when ϕs is large, ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs approaching zero from above as ϕs tends to ∞.
Thus, the minimum of Rspl

0,ϕs/ϕ
(ϕ, ϕs) over [1,∞] is obtained in the open interval (1,∞).

2. When ϕ < 1 and ϕs ∈ [ϕ, 1), since the term c̃(0;ϕs) is zero, Rspl
0,ϕs/ϕ

(ϕ, ϕs) = σ2 + σ2ϕ(1 − ϕs)−1 is
increasing in ϕs. So the minimum over [ϕ, 1] is obtained at ϕs = ϕ.

3. When ϕ = 1, Rspl
0,ϕs/ϕ

(1, 1) = ∞ while Rspl
0,ϕs/ϕ

(ϕ, ϕs) < ∞ for all ϕs ∈ (1,∞]. Since Rspl
0,ϕs/ϕ

(ϕ, ϕs)
is continuous and finite in (1,∞], by continuity and (D.61) we have ϕ∗

s ∈ (1,∞).

4. When ϕ ∈ (1,∞), the optimal ϕ∗
s ≥ ϕ > 1 must be obtained in [ϕ,∞) because of (D.61).

• Next consider the case when SNR = 0, i.e., ρ2 = 0 and σ2 ̸= 0. Then h1 ≡ 0 and Rspl
0,∞(ϕs/ϕ, ϕs) =

σ2 + σ2ϕṽ(0;ϕs, ϕs)/ϕs. When ϕs ∈ (0, 1), ṽ(0;ϕs, ϕs)/ϕs = (1 − ϕs)−1 is increasing in ϕs; when ϕs > 1,
ṽ(0;ϕs, ϕs)/ϕs ≥ 0 = limϕs→∞ ṽ(0;ϕs, ϕs)/ϕs = 0. Therefore, the global minimum Rsub

0,∞(∞, ϕs) = σ2 is
obtained at ϕ∗

s = ∞.

• Finally, consider the case when SNR = ∞, i.e. ρ2 ̸= 0 and σ2 = 0, Rspl
0,∞(ϕs/ϕ, ϕs) = ρ2c̃(0;ϕs) +

ρ2ϕϕ−1
s ṽ(0;ϕ, ϕs)c̃(0;ϕs). As the term c̃(0;ϕs) is zero when ϕs ∈ (0, 1] and positive when ϕs ∈ (1,∞],

we have that Rsub
0,∞(ϕ, ϕs) ≥ Rsub

0,∞(ϕ, ϕ∗
s) = 0 for all ϕ∗

s ∈ [ϕ, 1] when ϕ ∈ (0, 1]. If ϕ ∈ (1,∞), since
the risk is continuous over [ϕ,∞], the global minimum exists. Since the derivative ∂Rsub

0,∞(ϕ, ϕs)/∂ϕs is
continuous over ϕs ∈ (1,∞] and (D.61), the minimizer satisfies ϕ∗

s ∈ [ϕ,∞).
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D.7 Proofs in Section 4.6
D.7.1 Bagged risk for ridgeless regression
Proof of Corollary 4.6.1. Since Σ = Ip, we have that dG = dH = δ1. Then, v(0;ϕs), ṽ(0;ϕ, ϕs) and
c̃(0;ϕs) defined in (D.33) and (D.34) for ϕs > 1 reduce to

v(0;ϕs) = 1
ϕs − 1 , ṽ(0;ϕ, ϕs) = ϕ

ϕ2
s − ϕ

, c̃(0;ϕs) = (ϕs − 1)2

ϕ2
s

.

Thus, we have

B0(ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2ϕs − 1
ϕs

, ϕs ∈ (1,∞)
, V0(ϕ, ϕs) =


σ2 ϕs

1 − ϕs
, ϕs ∈ (0, 1)

σ2 1
ϕs − 1 , ϕs ∈ (1,∞)

,

and

C0(ϕs) =


0, ϕs ∈ (0, 1)

ρ2 (ϕs − 1)2

ϕ2
s

, ϕs ∈ (1,∞)
.

From Corollary 4.6.1, we are able to derive the asymptotic bias and variance for M = 1 and M = ∞ for
ridgeless regression with replacement:

Bsub
0,1 (ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2ϕs − 1
ϕs

, ϕs ∈ (1,∞)
V sub

0,1 (ϕ, ϕs) =


σ2 ϕs

1 − ϕs
, ϕs ∈ (0, 1)

σ2 1
ϕs − 1 , ϕs ∈ (1,∞)

Bsub
0,∞(ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2 (ϕs − 1)2

ϕ2
s − ϕ

, ϕs ∈ (1,∞)
V sub

0,∞(ϕ, ϕs) =


σ2 ϕ

1 − ϕ
, ϕs ∈ (0, 1)

σ2 ϕ

ϕ2
s − ϕ

, ϕs ∈ (1,∞)
.

Then the asymptotic bias and variance for general M would be convex combinations of the above quantities.
On the other hand, the asymptotic bias and variance for splagging without replacement are given by

Bspl
λ,M (ϕ, ϕs) = M−1Bλ(ϕs, ϕs) + (1 −M−1)Cλ(ϕs), V spl

λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs).

D.7.2 Optimal subagged ridgeless regression with replacement
Proof of Proposition 4.6.2. For ϕ ∈ (0, 1) and ϕs ∈ (1,∞], we have that

Rsub
0,∞(ϕ, ϕs) = σ2 + ρ2 (ϕs − 1)2

ϕ2
s − ϕ

+ σ2 ϕ

ϕ2
s − ϕ

.

Taking the derivative of the right hand side with respect to ϕs

∂Rsub
0,∞(ϕ, ϕs)
∂ϕs

= 2σ2 SNR(ϕs − 1)(ϕs − ϕ) − ϕϕs
(ϕ2
s − ϕ)2

and setting it to zero yields that

ϕs = A±
√
A2 − ϕ. (D.62)
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where A = (ϕ+ 1 + ϕ/SNR)/2. Since A−
√
A2 − ϕ <

√
ϕ ≤ 1, we have ϕ∗

s = A+
√
A2 − ϕ is a minimizer

and

Rsub
0,∞(ϕ, ϕ∗) = σ2 + σ2ϕ+A−

√
A2 − ϕ+ SNR(1 − ϕ)/ϕ(A− ϕ−

√
A2 − ϕ)

2
√
A2 − ϕ

= σ2

2

[
1 + ϕ− 1

ϕ
SNR + 2SNR

ϕ

√
A2 − ϕ

]

= σ2

2

1 + ϕ− 1
ϕ

SNR +

√(
1 − ϕ− 1

ϕ
SNR
)2

+ 4SNR

 , (D.63)

which gives the simplified formula. Note that

Rsub
0,∞(ϕ, ϕ∗) = σ2 + σ2

(
ϕ

2
√
A2 − ϕ

+ A−
√
A2 − ϕ

2
√
A2 − ϕ

+ 1 − ϕ

ϕ
SNR

A− ϕ−
√
A2 − ϕ

2
√
A2 − ϕ

)
= σ2 + σ2h(SNR) − σ2δ(SNR) (D.64)

where for all r ≥ 0, the functions h and δ are defined as h(r) = h1(r) + h2(r) + h3(r) and δ(r) =
(1 − ϕ)rh1(r)/ϕ, with A(r) = (ϕ+ 1 + ϕ/r)/2 and

h1(r) = ϕ

2
√
A(r)2 − ϕ

h2(r) = A(r) −
√
A(r)2 − ϕ

2
√
A(r)2 − ϕ

= 1
2
√

1 − ϕ/A(r)2
− 1

2

h3(r) = 1 − ϕ

ϕ
rh2(r).

Since h1, h2, and h3 are nonngative over (0,∞), h and δ are also nonnegative. Also noted that

δ(0) = 1 − ϕ

ϕ
lim
r→0+

rh1(r) = 0, δ(∞) = 1 − ϕ

ϕ
lim

r→+∞
rh1(r) = +∞,

we obtain the upper bound for Rsub
0,∞(ϕ, ϕ∗) as follows:

Rsub
0,∞(ϕ, ϕ∗) ≤ σ2 + σ2h(SNR), (D.65)

with equality obtained if and only if SNR = 0.
Next we analyze the function h(r). Note that A(r) > 0 is decreasing in r, we have that the functions

h1 and h2 are nonnegative and monotone increasing in SNR. Hence h3 as the product of nonnegative and
monotone increasing functions, is also nonnegative and monotone increasing in SNR. Thus, h is monotone
increasing in SNR and

h(SNR) ≤ lim
r→∞

h(r)

= lim
r→∞

h1(r) + lim
r→∞

h2(r) + lim
r→∞

rh2(r)

= ϕ

1 − ϕ
+ ϕ

1 − ϕ
+ 1
ϕ

lim
r→∞

A(r) −
√
A(r)2 − ϕ
1
r

= ϕ

1 − ϕ
+ ϕ

1 − ϕ
+ 1
ϕ

lim
r→∞

− ϕ

2r2 +
A(r)ϕ
r2

2
√
A(r)2 − ϕ

− 1
r2
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= ϕ

1 − ϕ

where the third equality is due to the L’Hospital’s rule. Note that the risk for ϕs ∈ [ϕ, 1) is given by
σ2 + σ2ϕ/(1 − ϕ), we have that ϕ∗

s obtained the global minimum of Rsub
0,∞(ϕ, ϕs) over ϕs ∈ (ϕ,∞].

For ϕ ∈ [1,∞) and ϕs ∈ [ϕ,∞), from (D.62) and A −
√
A2 − ϕ ≤

√
ϕ ≤ ϕ, we have again ϕ∗

s =
A+

√
A2 − ϕ is a minimizer.

When SNR = 0, since the bias term is zero and variance term is increasing over ϕs < 1 and increasing
over ϕs > 1, we have that when ϕs > 1 (whenever ϕ ≤ ϕs),

Rsub
0,∞(ϕ, ϕs) = σ2 + V0(ϕ, ϕs) ≥ σ2 + V0(ϕ,∞) = σ2.

When ϕ < 1, we have Rsub
0,∞(ϕ, ϕs) ≥ Rsub

0,∞(ϕ, ϕ) = σ2/(1 − ϕ) > σ2. Therefore, Rsub
0,∞(ϕ, ϕs) ≥

Rsub
0,∞(ϕ,∞) = σ2 for all ϕ ∈ (1,∞].

When SNR = ∞, the variance term V0(ϕ, ϕs) = 0 for all ϕs ∈ [ϕ,∞]. If ϕ ∈ (0, 1], then B0(ϕ, ϕs) = 0
for all ϕs ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then B0(ϕ, ϕs) is increasing over ϕs ∈ [ϕ,∞]. Hence, the conclusions
follow.

D.7.3 Comparison between subagged and optimal ridge regression
Proof of Theorem 4.6.3. As n, p → ∞ and p/n → ϕ, the optimal regularization parameter is given by
λ∗ = ϕσ2/ρ2 under the isotopic model (Dobriban and Wager, 2018). The limiting risk of the optimal ridge
regression is given by

RWR
λ∗,1(ϕ, ϕ) = σ2

2

1 + ϕ− 1
ϕ

SNR +

√(
1 − ϕ− 1

ϕ
SNR
)2

+ 4SNR


which is the same the formula given in Proposition 4.6.2. Thus, the conclusion follows.

Fixed-point equation details for ridge regression
For isotopic features Σ = Ip, dG = dH = δ1. When n, p → and p/n → ϕ ∈ (0,∞), (D.73)-(D.75) reduce to

v(−λ;ϕ)−1 = λ+ ϕ(1 + v(−λ;ϕ))−1

ṽb(−λ;ϕ) = ϕ(1 + v(−λ;ϕ))−2

v(−λ;ϕ)−2 − ϕ(1 + v(−λ;ϕ))−2

ṽv(−λ;ϕ)−1 = v(−λ;ϕ)−2 − ϕ(1 + v(−λ;ϕ))−2.

Solving the first equation for v(−λ;ϕ) ≥ 0 gives

v(−λ;ϕ) = 1
2λ (−(ϕ+ λ− 1) +

√
(ϕ+ λ− 1)2 + 4λ). (D.66)

Then the asymptotic bias and variance defined in Theorem D.3.1 can be evaluated accordingly.

D.8 Auxiliary asymptotic equivalency results
D.8.1 Preliminaries
We use the notion of asymptotic equivalence of sequences of random matrices in various proofs. In this
section, we provide a basic review of the related definitions and corresponding calculus rules.

Definition D.8.1 (Asymptotic equivalence: deterministic version). Consider sequences {Ap}p≥1 and
{Bp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that Ap and Bp are
equivalent and write Ap ≃D Bp if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any sequence of
matrices Cp with bounded trace norm such that lim supp→∞ ∥Cp∥tr < ∞.
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We emphasize that recent work (Dobriban and Sheng, 2021; Patil et al., 2022a) used the deterministic
version of the asymptotic equivalence, implicitly assuming that Cp in the definition is deterministic.
However, in this work we need to investigate the asymptotic equivalence relationship conditional on some
other sequences. In that direction, we first extend Definition D.8.1 to allow for random Cp, as in Definition
D.8.2.

Definition D.8.2 (Asymptotic equivalence: random version). Consider sequences {Ap}p≥1 and {Bp}p≥1
of (random or deterministic) matrices of growing dimensions. We say that Ap and Bp are equivalent and
write Ap ≃R Bp if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any sequence of random matrices Cp

independent to Ap and Bp, with bounded trace norm such that lim supp→∞ ∥Cp∥tr < ∞ almost surely.

Even though Definition D.8.1 seems to be more restrictive than Definition D.8.2, they are indeed
equivalent as shown in Proposition D.8.3. The latter definition allows for more general definition for
“conditional” asymptotic equivalents.

Proposition D.8.3 (Equivalence of ≃D and ≃R). The asymptotic equivalent relations ≃D in Definition
D.8.1 and ≃R in Definition D.8.2 are equivalent.

Proof of Proposition D.8.3. Let {Ap} and {B}p be two sequences of random matrices. Suppose that
Ap ≃D Bp. We next show that Ap ≃R Bp holds. For any sequence of random matrices Cp that is
independent to Ap and Bp for all p ∈ N, and has bounded trace norm such that lim sup ∥Cp∥tr < ∞ as
p → ∞ almost surely. Let A denote the event that limp→∞ | tr[Cp(Ap − Bp)]| = 0. Then

P (A) = E[1A] (a)= E[E[1A | {Cp}p≥1]] (b)= E[1] = 1.

Above, equality (a) follows from the law of total expectation. Inequality (b) holds almost surely be-
cause Ap ≃D Bp and Cp is independent of Ap and Bp. This can be seen as follows. Note that
1A({Cp}, ({Ap}, {Bp})) is a function of random variables {Cp} and ({Ap}, {Bp}). Let E[1A({cp}, ({Ap}, {Bp}))] =
h({cp}) where the expectation is taken over the randomness in ({Ap}, {Bp}). Since {Cp} and ({Ap}, {Bp})
are independent and E[|1A |] ≤ 1 < ∞, we have that (see, e.g., Shiryaev (2016, Chapter 2, Section 7,
Equation (16)), or Durrett (2019, Example 5.1.5))

E[1A | {Cp}] = h({Cp}),

and from Definition D.8.1, we have h({Cp}) = 1 almost surely. Thus, we can conclude that Ap ≃R Bp.
On the other hand, by definition, Ap ≃R Bp directly implies Ap ≃D Bp, which completes the proof.

The properties for the two types of deterministic equivalents are summarized in Lemma D.8.4. Though
most of the calculus rules are the direct consequences from Dobriban and Wager (2018); Dobriban and
Sheng (2021), the product rule involving random matrices Cp does not immediately follow from previous
work.

Lemma D.8.4 (Calculus of deterministic equivalents). Let Ap, Bp, Cp and Dp be sequences of random
matrices. The calculus of deterministic equivalents (≃D and ≃R) satisfies the following properties:

(1) Equivalence: The relation ≃ is an equivalence relation.

(2) Sum: If Ap ≃ Bp and Cp ≃ Dp, then Ap + Cp ≃ Bp + Dp.

(3) Product: If Ap has uniformly bounded operator norms such that lim supp→∞ ∥Ap∥op < ∞, Ap is
independent to Bp and Cp for p ≥ 1, and Bp ≃ Cp, then ApBp ≃ ApCp.

(4) Trace: If Ap ≃ Bp, then tr[Ap]/p− tr[Bp]/p → 0 almost surely.

(5) Differentiation: Suppose f(z,Ap) ≃ g(z,Bp) where the entries of f and g are analytic functions in
z ∈ S and S is an open connected subset of C. Suppose for any sequence Cp of deterministic matrices
with bounded trace norm we have | tr[Cp(f(z,Ap) − g(z,Bp))]| ≤ M for every p and z ∈ S. Then we
have f ′(z,Ap) ≃ g′(z,Bp) for every z ∈ S, where the derivatives are taken entrywise with respect to
z.
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Proof. The conclusions for ≃D directly follow from Dobriban and Wager (2018); Dobriban and Sheng
(2021). Then, the proof of property (1), (2), (4), and (5) for ≃R follows from Proposition D.8.3. It remains
to show that the product rule holds for ≃R. Since Bp ≃R Cp, we have Bp ≃D Cp. Then for any sequence
of random matrices {Dp}p≥1 that have bounded trace norm and are independent to Bp and Cp, we have

P
(

lim
p→∞

| tr[Dp(Bp − Cp)]| = 0
)

= 1.

Because | tr[Dp(ApBp − ApCp)]| ≤ ∥Ap∥op| tr[Dp(Bp − Cp)]| and lim supp→∞ ∥Ap∥op < ∞, we have that
limp→∞ | tr[Dp(Bp − Cp)]| = 0 implies limp→∞ | tr[Dp(ApBp − ApCp)]| = 0 conditioning on {Ap}p≥1.
Thus,

P
(

lim
p→∞

| tr[Dp(ApBp − ApCp)]| = 0
∣∣∣∣ {Ap}p≥1

)
= 1.

and by law of total expectation

P
(

lim
p→∞

| tr[DpAp(Bp − Cp)]| = 0
)

= 1,

which holds for any sequence of random matrices {DpAp}p≥1 that have bounded trace norm and are
independent to Bp and Cp. By definition, we have ApBp ≃ ApCp.

Since the asymptotic equivalent relation ≃D is equivalent to ≃R, we will just ignore the subscript and
use the notation “≃” for simplicity. The subscript will be specified when needed.

D.8.2 Conditioning and calculus
In this section, we extend the notion of asymptotic equivalence of two sequences of random matrices from
Definitions D.8.1 and D.8.2 to incorporate conditioning on another sequence of random matrices.

Definition D.8.5 (Conditional asymptotic equivalence). Consider sequences {Ap}p≥1, {Bp}p≥1 and
{Dp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that Ap and Bp are
equivalent given Dp and write Ap ≃ Bp | Dp if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely conditional
on {Dp}p≥1, i.e.,

P
(

lim
p→∞

| tr[Cp(Ap − Bp)]| = 0
∣∣∣∣ {Dp}p≥1

)
= 1,

for any sequence of random matrices Cp independent to Ap and Bp conditional on Dp, with bounded trace
norm such that lim sup ∥Cp∥tr < ∞ as p → ∞.

Below we formalize additional calculus rules that hold for conditional asymptotic equivalence Defini-
tion D.8.5.

Proposition D.8.6 (Calculus of conditional asymptotic equivalents). Let Ap, Bp, Cp, and Ep be sequences
of random matrices.

(1) Unconditioning: If Ap ≃ Bp | Ep, then Ap ≃ Bp.

(2) Product: If Ap has bounded operator norms such that lim supp→∞ ∥Ap∥op < ∞, Ap is conditional
independent to Bp and Cp given Ep for p ≥ 1, and Bp ≃ Cp | Ep, then ApBp ≃ ApCp | Ep.

Proof of Proposition D.8.6. Proofs for the two parts appear below.
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Part (1) For any sequence of deterministic matrices Cp with bounded trace norm, we have

P
(

lim
p→∞

| tr[Cp(Ap − Bp)]| = 0
∣∣∣∣ {Dp}p≥1

)
= 1

because Ap ≃ Bp | Ep. By the law of total expectation, we have

P
(

lim
p→∞

| tr[Cp(Ap − Bp)]| = 0
)

= 1.

Thus, Ap ≃D Bp. By Proposition D.8.3, we further have Ap ≃R Bp.

Part (2) For any sequence of random matrices Dp, let E1 and E2 denote the event limp→∞ | tr[Dp(Bp −
Cp)]| = 0 and limp→∞ | tr[Dp(ApBp − ApCp)]| = 0, respectively. Because Bp ≃ Cp | Ep, by definition we
have

P (E1 | {Ep}p≥1) = 1

Because | tr[Dp(ApBp − ApCp)]| ≤ ∥Ap∥op| tr[Dp(Bp − Cp)]| and lim supp→∞ ∥Ap∥op < ∞, we have E1
implies E2 conditioning on {Ep}p≥1. Thus we have

P (E2 | {Ep}p≥1) = 1

holds for any {Dp}p≥1. This implies that ApBp ≃ ApCp | Ep.

Other rules in Lemma D.8.4 also hold for conditional asymptotic equivalents. A direct implication of
this is that the deterministic equivalents for resolvents we will derive in Appendix D.8.3 based on these
rules can be naturally generalized to allow for conditional asymptotic equivalents given a common sequence
of random matrices that are independent to the source sequence.

D.8.3 Standard ridge resolvents and extensions
In this section, we collect various asymptotic equivalents that are used in the proofs of Lemmas D.3.4
and D.3.5, and Lemmas D.4.4 to D.4.6, which serve to prove Theorem 4.4.1. These equivalents are also
subsequently used in the proof of Theorem 4.4.6.

D.8.3.1 Standard ridge resolvents

The following lemma provides a deterministic equivalent for the standard ridge resolvent and implies
Corollary D.8.8. It is adapted from Theorem 1 of Rubio and Mestre (2011). See also Theorem 3 of Dobriban
and Sheng (2021).
Lemma D.8.7 (Deterministic equivalent for standard ridge resolvent). Suppose xi ∈ Rp, 1 ≤ i ≤ n, are
i.i.d. random vectors such that each xi = ziΣ1/2, where zi is a random vector consisting of i.i.d. entries
zij, 1 ≤ j ≤ p, satisfying E[zij ] = 0, E[z2

ij ] = 1, and E[|zij |8+α] ≤ Mα for some constants α > 0 and
Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite matrix satisfying 0 ⪯ Σ ⪯ rmaxIp for some constant
rmax < ∞ (independent of p). Let X ∈ Rn×p the concatenated matrix with x⊤

i , 1 ≤ i ≤ n, as rows, and let
Σ̂ ∈ Rp×p denote the random matrix X⊤X/n. Let γ := p/n. Then, for z ∈ C+, as n, p → ∞ such that
0 < lim inf γ ≤ lim sup γ < ∞, we have

(Σ̂ − zIp)−1 ≃ (c(e(z; γ))Σ − zIp)−1, (D.67)

where the scalar c(e(z; γ)) is defined in terms of another scalar e(z; γ) by the equation

c(e(z; γ)) = 1
1 + γe(z; γ) , (D.68)

and e(z; γ) is the unique solution in C+ to the fixed-point equation

e(z; γ) = tr[Σ(c(e(z; γ))Σ − zIp)−1]/p. (D.69)
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Note that both the scalars c(e(z; γ)) and e(z; γ) also implicitly depend on Σ. For notation brevity, we
do not always explicitly indicate this dependence. However, we will be explicit in such dependence for
certain extensions to follow. See the remark after Lemma D.8.9 for more details. Additionally, observe that
one can eliminate e(z; γ) in the statement of Lemma D.8.7 by combining (D.68) and (D.69) so that for
z ∈ C+, one has

(Σ̂ − zIp)−1 ≃ (c(z; γ)Σ − zIp)−1,

where c(z) is the unique solution in C− to the fixed-point equation

1
c(z; γ) = 1 + γ tr[Σ(c(z; γ)Σ − zIp)−1]/p.

The following corollary is a simple consequence of Lemma D.8.7, which supplies a deterministic equivalent
for the (regularization) scaled ridge resolvent. We will work with a real regularization parameter λ from
here on.

Corollary D.8.8 (Deterministic equivalent for scaled ridge resolvent). Assume the setting of Lemma D.8.7.
For λ > 0, we have

λ(Σ̂ + λIp)−1 ≃ (v(−λ; γ)Σ + Ip)−1,

where v(−λ; γ) > 0 is the unique solution to the fixed-point equation

1
v(−λ; γ) = λ+ γ

∫
r

1 + v(−λ; γ)r dHn(r). (D.70)

Here Hn is the empirical distribution (supported on R≥0) of the eigenvalues of Σ.

As a side note, the parameter v(−λ; γ) in Corollary D.8.8 is also the companion Stieltjes transform of
the spectral distribution of the sample covariance matrix Σ̂, which is also the Stieltjes transform of the
spectral distribution of the gram matrix XX⊤/n.

The following lemma uses Corollary D.8.8 along with calculus of deterministic equivalents (from
Lemma D.8.4), and provides deterministic equivalents for resolvents needed to obtain limiting bias and
variance of standard ridge regression. It is adapted from Lemma S.6.10 of Patil et al. (2022a).

Lemma D.8.9 (Deterministic equivalents for ridge resolvents associated with generalized bias and variance).
Suppose xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d. random vectors with each xi = ziΣ1/2, where zi ∈ Rp is a random
vector that contains i.i.d. random variables zij, 1 ≤ j ≤ p, each with E[zij ] = 0, E[z2

ij ] = 1, and
E[|zij |8+α] ≤ Mα for some constants α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite matrix
with rminIp ⪯ Σ ⪯ rmaxIp for some constants rmin > 0 and rmax < ∞ (independent of p). Let X ∈ Rn×p

be the concatenated random matrix with xi, 1 ≤ i ≤ n, as its rows, and define Σ̂ := X⊤X/n ∈ Rp×p. Let
γ := p/n. Then, for λ > 0, as n, p → ∞ with 0 < lim inf γ ≤ lim sup γ < ∞, the following statements hold:

(1) Bias of ridge regression:

λ2(Σ̂ + λIp)−1Σ(Σ̂ + λIp)−1 ≃ (v(−λ; γ)Σ + Ip)−1(ṽb(−λ; γ)Σ + Σ)(v(−λ; γ)Σ + Ip)−1. (D.71)

(2) Variance of ridge regression:

(Σ̂ + λIp)−2Σ̂Σ ≃ ṽv(−λ; γ)(v(−λ; γ)Σ + Ip)−2ΣΣ. (D.72)

Here v(−λ; γ,Σ) > 0 is the unique solution to the fixed-point equation

1
v(−λ; γ,Σ) = λ+

∫
γr

1 + v(−λ; γ,Σ)r dHn(r; Σ), (D.73)
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and ṽb(−λ; γ,Σ) and ṽv(−λ; γ,Σ) are defined through v(−λ; γ,Σ) by the following equations:

ṽb(−λ; γ,Σ) =

∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r; Σ)

v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r; Σ)

, (D.74)

ṽv(−λ; γ,Σ)−1 = v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r; Σ), (D.75)

where Hn(·; Σ) is the empirical distribution (supported on [rmin, rmax]) of the eigenvalues of Σ.

A few remarks on Lemma D.8.9 follow.

• The dependency of various scalar parameters appearing in Lemma D.8.9 on the matrix Σ is explicitly
highlighted the statement. This is because when we extend the current results later in Lemma D.8.10,
these parameters depend on the distributions of eigenvalues of matrices other than Σ. In places where
it is clear from context, we will write Hn(r), v(−λ; γ), ṽb(−λ; γ), and ṽv(−λ; γ) to denote Hn(r; Σ),
v(−λ; γ,Σ), ṽb(−λ; γ,Σ), and ṽv(−λ; γ,Σ), respectively, for notational simplicity.

• Lemmas D.8.7 and D.8.9 assume existence of moments of order 8 + α for some α > 0 on the entries
of zi, 1 ≤ i ≤ km, mentioned in assumption 4.2. As done in the proof of Theorem 6 of Hastie et al.
(2022) (in Appendix A.4 therein), this can be relaxed to only requiring existence of moments of order
4 + α by a truncation argument. We omit the details and refer the readers to Hastie et al. (2022).

D.8.3.2 Extended ridge resolvents

The lemma below extends the deterministic equivalents of the ridge resolvents in Lemma D.8.9 to provide
deterministic equivalents for Tikhonov resolvents, where the regularization matrix λIp is replaced with
λ(Ip + C) and C ∈ Rp×p is an arbitrary positive semidefinite random matrix.
Lemma D.8.10 (Tikhonov resolvents). Suppose the conditions in Lemma D.8.9 holds. Let C ∈ Rp×p be
any symmetric and positive semidefinite random matrix with uniformly bounded operator norm in p that is
independent to X for all n, p ∈ N, and let N = (Σ̂ + λIp)−1. Then the following statements hold:

(1) Tikhonov resolvent:

λ(N−1 + λC)−1 ≃ Σ̃−1
C . (D.76)

(2) Bias of Tikhonov regression:

λ2(N−1 + λC)−1Σ(N−1 + λC)−1 ≃ Σ̃−1
C (ṽb(−λ; γ,ΣC)Σ + Σ)Σ̃−1

C . (D.77)

(3) Variance of Tikhonov regression:

(N−1 + λC)−1Σ̂(N−1 + λC)−1Σ ≃ ṽv(−λ; γ,ΣC)Σ̃−1
C ΣΣ̃−1

C Σ, (D.78)

where ΣC = (Ip+ C)− 1
2 Σ(Ip+ C)− 1

2 , Σ̃C = v(−λ; γ,ΣC)Σ + Ip+ C. Here, v(−λ; γ,ΣC), ṽb(−λ; γ,ΣC),
and ṽv(−λ; γ,ΣC) defined by (D.73)-(D.75) simplify to

1
v(−λ; γ,ΣC) = λ+ γ tr[(v(−λ; γ,ΣC)Σ + Ip + C)−1Σ]/p, (D.79)

1
ṽv(−λ; γ,ΣC) = 1

v(−λ; γ,ΣC)2 − γ tr[(v(−λ; γ,ΣC)Σ + Ip + C)−2Σ2]/p, (D.80)

ṽb(−λ; γ,ΣC) = γ tr[(v(−λ; γ,ΣC)Σ + Ip + C)−2Σ2]/p · ṽv(−λ; γ,ΣC). (D.81)

If γ → ϕ ∈ (0,∞), then γ in (1)-(3) can be replaced by ϕ, with the empirical distribution Hn of eigenvalues
replaced by the limiting distribution H.

Proof of Lemma D.8.10. Proofs for the different parts are separated below.
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Part (1) Note that

λ(N−1 + λC)−1 = λ(Σ̂ + λ(Ip + C))−1 = (Ip + C)− 1
2λ(Σ̂C + λIp)−1(Ip + C)− 1

2 , (D.82)

where Σ̂C = Σ
1
2
C(Z⊤Z/n)Σ

1
2
C , and ΣC = (Ip + C)− 1

2 Σ(Ip + C)− 1
2 . Using Lemma D.8.7, we have

λ(Σ̂C + λIp)−1 ≃ (v(−λ; γ,ΣC)ΣC + Ip)−1, (D.83)

where v(−λ; γ,ΣC) is the unique solution to the fixed point equation (D.70) such that

1
v(−λ; γ,ΣC) = λ+ γ tr[ΣC(v(−λ; γ,ΣC)ΣC + Ip)−1]/p = λ+ γ tr[Σ(v(−λ; γ,ΣC)Σ + Ip + C)−1]/p.

Note that
∥∥(Ip + C)−1

∥∥
op ≤ 1. We can apply the product rule from Lemma D.8.4 (3) and get

λ(N−1 + λC)−1 ≃ (Ip + C)− 1
2 (v(−λ; γ,ΣC)ΣC + Ip)−1(Ip + C)− 1

2 = (v(−λ; γ,ΣC)Σ + Ip + C)−1,

by combining (D.82)-(D.83).

Part (2) From Lemma D.8.9 (1), we have

λ2(N−1 + λC)−1Σ(N−1 + λC)−1

= λ2(Ip + C)− 1
2 · [(Σ̂C + λIp)−1(Ip + C)− 1

2 · Σ · (Ip + C)− 1
2 (Σ̂C + λIp)−1] · (Ip + C)− 1

2

≃ (Ip + C)− 1
2 · [(v(−λ; γ,ΣC)ΣC + Ip)−1

· (ṽb(−λ; γ,ΣC)ΣC + (Ip + C)− 1
2 Σ(Ip + C)− 1

2 ) · (v(−λ; γ,ΣC)ΣC + Ip)−1] · (Ip + C)− 1
2

= (v(−λ; γ,ΣC)Σ + Ip + C)−1(ṽb(−λ; γ,ΣC)Σ + Σ)(v(−λ; γ,ΣC)Σ + Ip + C)−1.

Part (3) Similar to Part (2), from Lemma D.8.9 (2), we have

(N−1 + λC)−1Σ̂(N−1 + λC)−1Σ

= (Ip + C)− 1
2 · (Σ̂C + λIp)−1Σ̂C(Σ̂C + λIp)−1 · (Ip + C)− 1

2 Σ

≃ (Ip + C)− 1
2 · ṽv(−λ; γ,ΣC)(v(−λ; γ,ΣC)ΣC + Ip)−1ΣC(v(−λ; γ,ΣC)ΣC + Ip)−1 · (Ip + C)− 1

2 Σ
= ṽv(−λ; γ,ΣC)(v(−λ; γ,ΣC)Σ + Ip + C)−1Σ(v(−λ; γ,ΣC)Σ + Ip + C)−1Σ.

Note that the distribution of ΣC ’s eigenvalue has positive support. By the continuity of v(−λ; ·,ΣC),
ṽb(−λ; ·,ΣC), and ṽv(−λ; ·,ΣC) from Lemma D.8.13 (2), (4) and (3), γ can by replaced by its limit ϕ as
n, p → ∞.

The following lemma concerns the deterministic equivalents of the precision matrix as the weighted
average of two sample covariance matrices of subsamples, when the full sample covariance matrix is invertible
almost surely. It is useful when we aim to condition on one of the subsampled covariance matrix, which is
used in the proof of Lemma D.4.5.

Lemma D.8.11 (Deterministic equivalent of subsamples in the underparameterized regime). Suppose the
conditions in Lemma D.8.9 holds. Let Σ̂0 be the sample covariance matrix computed using i observations
of X, and Σ̂1 be the sample covariance matrix computed using the remaining n− i samples. Let π0 = i/n
and π1 = (n− i)/n. Suppose that p/n → ϕ ∈ (0, 1) as n, p → ∞. Then, we have

(π0Σ̂0 + π1Σ̂1)−1 ≃ (π0Σ̂0 + (1 − ϕ)π1Σ)−1.
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Proof. We first note that when ϕ ∈ (0, 1), the eigenvalues of Σ̂ = π0Σ̂0 +π1Σ̂1 are bounded away from zero
almost surely (Bai and Silverstein, 2010) and hence the inverse is well defined almost surely as n, p → ∞.

The idea for the proof is to consider the perturbed resolvent (π0Σ̂0 + µIp + π1Σ̂1)−1 for µ > 0. Note
that since the matrix (π0Σ̂0 + π1Σ̂1) is almost surely invertible. Then,

lim
µ→0+

(π0Σ̂0 + µIp + π1Σ̂1)−1 = (π0Σ̂0 + π1Σ̂1)−1.

Conditioned on (π0Σ̂0 + µIp), we have

(π0Σ̂0 + µIp + π1Σ̂1)−1 = a(A + Σ̂1)−1

= aA− 1
2 (Ip + A− 1

2 Σ̂1A− 1
2 )A− 1

2

= aA− 1
2 (Ip + Σ̂1,A)−1A− 1

2

≃ aA− 1
2 (Ip + cΣA)A− 1

2

= a(A + cΣ)−1

= (π0Σ̂0 + µIp + cπ1Σ)−1,

where the intermediate constants are a = π−1
1 , A = aπ0Σ̂0 +aµIp, Σ̂1,A = A− 1

2 Σ̂A− 1
2 , ΣA = A− 1

2 ΣA− 1
2 ,

and c satisfy the fixed-point equation
1
c

= 1 + p

n− i
tr[ΣA(cΣA + Ip)−1]/p

= 1 + p

k

k

n− i
tr[A−1/2ΣA−1/2(cA−1/2ΣA−1/2 + Ip)−1]/p

= 1 + ϕa tr[Σ(cΣ + A)−1]/p
= 1 + ϕ tr[Σ(cπ1Σ + π0Σ̂0 + µIp)−1]/p
= 1 + ϕ tr[Σ(π0Σ̂0 + µIp + π1Σ̂1)−1]/p,

where in final equality, we used the trace property of the asymptotic equivalence

(π0Σ̂0 + µIp + cπ1Σ)−1 ≃ (π0Σ̂0 + µIp + π1Σ̂1)−1.

Now note that
(π0Σ̂0 + µIp + π1Σ̂1)−1 = (Σ̂ + µIp)−1 ≃ (c′Σ + µIp)−1

where c′ solves the fixed-point equation
1
c′ = 1 + ϕ tr[Σ(c′Σ + µIp)−1]/p.

Thus, the fixed-point in c can be written as
1
c

= 1 + ϕ tr[Σ(c′Σ + µIp)−1]/p.

We note that c = c′ satisfy the fixed-point equation for c (from the fixed-point equation for c′). Since c is a
unique solution, this must be the solution. Letting µ → 0+, we observe that c′ = 1 − ϕ is the solution for
the fixed-point equation in c′. Thus, we also have c = 1 − ϕ.

D.8.4 Analytic properties of associated fixed-point equations
In this section, we gather results on the properties of the fixed-point solution v(−λ;ϕ) defined in (D.70).

The following lemma provides the existence and uniqueness of the solution v(−λ;ϕ). The properties of
the derivatives in Lemma D.8.12 are related to the properties of ṽv(−λ;ϕ) defined in (D.75), which equals
−f ′(x), where the function f is defined in (D.84).
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Lemma D.8.12 (Properties of the solution to the fixed-point equation). Let λ, ϕ, a > 0 and b < ∞ be real
numbers. Let P be a probability measure supported on [a, b]. Define the function

f(x) = 1
x

− ϕ

∫
r

1 + rx
dP (r) − λ. (D.84)

Then the following properties hold:

(1) For λ = 0 and ϕ ∈ (1,∞), there is a unique x0 ∈ (0,∞) such that f(x0) = 0. The function f is
positive and strictly decreasing over (0, x0) and negative over (x0,∞), with limx→0+ f(x) = ∞ and
limx→∞ f(x) = 0.

(2) For λ > 0 and ϕ ∈ (0,∞), there is a unique xλ0 ∈ (0,∞) such that f(xλ0 ) = 0. The function f is
positive and strictly decreasing over (0, xλ0 ) and negative over (xλ0 ,∞), with limx→0+ f(x) = ∞ and
limx→∞ f(x) = −λ.

(3) For λ = 0 and ϕ ∈ (1,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly increasing over
(0, x0), with limx→0+ f ′(x) = −∞ and f ′(x0) < 0.

(4) For λ > 0 and ϕ ∈ (0,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly increasing over
(0,∞), with limx→0+ f ′(x) = −∞ and f ′(xλ0 ) < 0.

Proof of Lemma D.8.12. We consider different parts separately below.

Part (1) Observe that
f(x) = 1

x
− ϕ

∫
r

xr + 1 dP (r) = g1(x)h1(x),

where
g1(x) = 1

x
, h1(x) = 1 − ϕ

∫
xr

xr + 1 dP (r).

Note that g1 is positive and strictly decreasing over (0,∞) with limx→0+ g1(x) = ∞ and limx→∞ g1(x) = 0,
while h1 is strictly decreasing over (0,∞) with h1(0) = 1 and limx→∞ h1(x) = 1 − ϕ < 0. Thus, there is a
unique 0 < x0 < ∞ such that h1(x0) = 0, and consequently f(x0) = 0. Because h1 is positive over (0, x0),
and negative over (x0,∞), f is positive strictly decreasing over (0, x0) and negative over (x0,∞), with
limx→0+ f(x) = ∞ and limx→∞ f(x) = 0.

Part (2) Note that f(x) = g1(x)h1(x)−λ. Since from (1) limx→0 g1(x)h1(x) = ∞ and limx→0 g1(x)h1(x) =
0, we have that limx→0+ f(x) = +∞ and limx→∞ f(x) = −λ < 0.

For ϕ > 1, since g1(x)h1(x) is positive and strictly decreasing over (0, x0) and negative over (x0,∞),
and limx→0+ g1(x)h1(x) = ∞, we have that there exists xλ0 ∈ (0, x0) such that f(xλ0 ) = 0. The properties
of f over (0, xλ0 ) and (xλ0 ,∞) follow analogously as in (1).

For ϕ ∈ (0, 1], since g1h1 is continuous, positive and strictly decreasing over (0,∞), by intermediate
value theorem, there exists xλ0 ∈ (0,∞) such that f(xλ0 ) = 0, f is positive and strictly decreasing for x < xλ0
and negative for x > xλ0 , with limx→0+ f(x) = ∞ and limx→∞ f(x) = −λ.

Part (3) Since f is monotone and continuous, it is differentiable. The derivative f ′ at x is given by

f ′(x) = − 1
x2 + ϕ

∫
r2

(xr + 1)2 dP (r) = −g2(x)h2(x),

where

g2(x) = 1
x2 , h2(x) =

(
1 − ϕ

∫ (
xr

xr + 1

)2
dP (r).

)
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Note that the function g2 is positive and strictly decreasing over (0,∞) with limx→0+ g2(x) = ∞ and
limx→∞ g2(x) = 0. On the other hand, the function h2 is strictly decreasing over (0,∞) with h2(0) = 1
and h2(x0) > 0. This follows because for x ∈ (0, x0],

ϕ

∫ (
xr

xr + 1

)2
dP (r) ≤ x0b

x0b+ 1ϕ
∫ (

xr

xr + 1

)
dP (r) <

∫
ϕxr

xr + 1 dP (r) ≤
∫

ϕx0r

x0r + 1 dP (r) = 1,

where the first inequality in the chain above follows as the support of P is [a, b], and the last inequality
follows since f(x0) = 0 and x0 > 0, which implies that

1
x0

= ϕ

∫
r

x0r + 1 dP (r), or equivalently that 1 = ϕ

∫
x0r

x0r + 1 dP (r).

Thus, −f ′, a product of two positive strictly decreasing functions, is strictly decreasing, and in turn, f ′ is
strictly increasing. Moreover, limx→0+ f ′(x) = −∞ and f ′(x0) < 0.

Part (4) The conclusion follows by noting that h2(xλ0 ) > h2(x0) > 0 from (3).

The continuity and limiting behavior of the function ϕ 7→ v(−λ;ϕ) is given for ridge regression (λ > 0)
in Lemma D.8.13 and for ridgeless regression (λ = 0) in Lemma D.8.14.

Lemma D.8.13 (Continuity in the aspect ratio for ridge regression). Let λ, a > 0 and b < ∞ be real
numbers. Let P be a probability measure supported on [a, b]. Consider the function v(−λ; ·) : ϕ 7→ v(−λ;ϕ),
over (0,∞), where v(−λ;ϕ) > 0 is the unique solution to the fixed-point equation

1
v(−λ;ϕ) = λ+ ϕ

∫
r

1 + rv(−λ;ϕ)dP (r) (D.85)

Then the following properties hold:

(1) The range of the function v(−λ; ·) is a subset of (0, λ−1).

(2) The function v(−λ; ·) is continuous and strictly decreasing over (0,∞). Furthermore, limϕ→0+ v(−λ;ϕ) =
λ−1, and limϕ→∞ v(−λ;ϕ) = 0.

(3) The function ṽv(−λ; ·) : ϕ 7→ ṽv(−λ;ϕ), where

ṽv(−λ;ϕ) =
(
v(−λ;ϕ)−2 −

∫
ϕr2(1 + rv(−λ;ϕ))−2 dP (r)

)−1
,

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽv(−λ;ϕ) = λ−2, and limϕ→∞ ṽv(−λ;ϕ) =
0.

(4) The function ṽb(−λ; ·) : ϕ 7→ ṽb(−λ;ϕ), where

ṽb(−λ;ϕ) = ṽv(−λ;ϕ)
∫
ϕr2(1 + v(−λ;ϕ)r)−2 dP (r),

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽb(−λ;ϕ) = limϕ→∞ ṽb(−λ;ϕ) = 0.

Proof of Lemma D.8.13. Proofs for the different parts appear below.

Part (1) Since P has positive support, we have

1
v(−λ;ϕ) = λ+ ϕ

∫
r

1 + rv(−λ;ϕ)dP (r) > λ,

1
v(−λ;ϕ) = λ+ ϕ

∫
r

1 + rv(−λ;ϕ)dP (r) < λ+ ϕb

which implies that 0 < (λ+ ϕb)−1 < v(−λ;ϕ) < λ−1.
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Part (2) Rearranging (D.85) yields

1
ϕ

= 1
1 − λv(−λ;ϕ)

(
1 −

∫ 1
1 + rv(−λ;ϕ)dP (r)

)
.

From Patil et al. (2022a, Lemma S.6.13), the function

h1 : t 7→ 1 −
∫ 1

1 + rt
dP (r)

is strictly increasing and continuous over (0,∞), limt→0 h1(t) = 0, and limt→∞ h1(t) = 1. It is also positive
from (1). Since h2 : t 7→ 1/(1 − λt) is positive, strictly increasing and continuous over t ∈ (0, λ−1), we have
that the function

T : t 7→ 1
1 − λt

(
1 −

∫ 1
1 + rt

dP (r)
)

is strictly increasing and continuous over (0, λ−1). By the continuous inverse theorem, we have T−1 is
strictly increasing and continuous. Note that v(−λ;ϕ) = T−1(ϕ−1). Since ϕ 7→ ϕ−1 is continuous and
strictly decreasing in ϕ, we have ϕ 7→ v(−λ;ϕ) is continuous and strictly decreasing over ϕ ∈ (0,∞).
Moreover, limϕ→0+ T−1(ϕ−1) = λ−1 and limϕ→∞ T−1(ϕ−1) = 0.

Part (3) From (2), ϕ 7→ v(−λ;ϕ)−2 is continuous in ϕ and

T2 : ϕ 7→ ϕ

∫
r2

(1 + rv(−λ;ϕ))2 dP (r)

is also continuous in ϕ. Thus, the function ṽv(−λ; ·)−1 is continuous. Note that

v(−λ;ϕ)2

ṽv(−λ;ϕ) = 1 − ϕ

∫
r2v(−λ;ϕ)2

(1 + rv(−λ;ϕ))2 dP (r) > 1 − ϕ

∫
rv(−λ;ϕ)

1 + rv(−λ;ϕ)dP (r) = 0,

where the inequality holds because rv(−λ;ϕ)/(1 + rv(−λ;ϕ)) is strictly positive and P (r) has positive
support. Then we have that ϕ 7→ ṽv(−λ;ϕ)−1 > 0 and ṽv(−λ; ·) is continuous over (0,∞). Since
limϕ→0+ v(−λ;ϕ) = λ−1, it follows that limϕ→0+ ṽv(−λ;ϕ) = λ−2. Similarly, from limϕ→∞ v(−λ;ϕ) = 0,
limϕ→∞ ϕv(−λ;ϕ) = 1 and the fact that

lim
ϕ→∞

∫
r2

(1 + rv(−λ;ϕ))2 dP (r) ∈ [a2, b2],

it follows that

lim
ϕ→∞

ṽv(−λ;ϕ) = lim
ϕ→∞

v(−λ;ϕ)2 ·
(

1 − v(−λ;ϕ) · ϕv(−λ;ϕ) ·
∫
r2(1 + rv(−λ;ϕ))−2 dP (r)

)−1
= 0.

Part (4) The continuity of ṽb(−λ; ·) follows from the continuity of v(−λ; ·) and ṽv(−λ; ·). Note that

1
1 + ṽb(−λ;ϕ) = 1 − v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2 dP (r).

From the proof in (3), we have

lim
ϕ→0+

1
1 + ṽb(−λ;ϕ) = 1 − lim

ϕ→0+
v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2 dP (r) = 1

lim
ϕ→∞

1
1 + ṽb(−λ;ϕ) = 1 − lim

ϕ→∞
v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2 dP (r) = 1

and thus, limϕ→0+ ṽb(−λ;ϕ) = limϕ→∞ ṽb(−λ;ϕ) = 0.
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Lemma D.8.14 (Continuity in the aspect ratio for ridgeless regression, adapted from Patil et al. (2022a)).
Let a > 0 and b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Consider the
function v(0; ·) : ϕ 7→ v(0;ϕ), over (1,∞), where v(0;ϕ) > 0 is the unique solution to the fixed-point equation

1
ϕ

=
∫

v(0;ϕ)r
1 + v(0;ϕ)r dP (r). (D.86)

Then the following properties hold:

(1) The function v(0; ·) is continuous and strictly decreasing over (1,∞). Furthermore, limϕ→1+ v(0;ϕ) =
∞, and limϕ→∞ v(0;ϕ) = 0.

(2) The function ϕ 7→ (ϕv(0;ϕ))−1 is strictly increasing over (1,∞). Furthermore, limϕ→1+(ϕv(0;ϕ))−1 =
0 and limϕ→∞(ϕv(0;ϕ))−1 = 1.

(3) The function ṽv(0; ·) : ϕ 7→ ṽv(0;ϕ), where

ṽv(0;ϕ) =
(
v(0;ϕ)−2 − ϕ

∫
r2(1 + rv(0;ϕ))−2 dP (r)

)−1
,

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽv(0;ϕ) = ∞, and limϕ→∞ ṽv(0;ϕ) = 0.

(4) The function ṽb(0; ·) : ϕ 7→ ṽb(0;ϕ), where

ṽb(0;ϕ) = ṽv(0;ϕ)
∫
r2(1 + v(0;ϕ)r)−2 dP (r),

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽb(0;ϕ) = ∞, and limϕ→∞ ṽb(0;ϕ) = 0.

The continuity and differentiabilty of the function λ 7→ v(−λ;ϕ) on a closed interval [0, λmax] for some
constant λmax is given for ϕ ∈ (1,∞) in Lemma D.8.15 adapted from Patil et al. (2022a). This ensures that
v(0;ϕ) = limλ→0+ v(−λ;ϕ) is well-defined for ϕ > 1 and also implies that related functions are bounded.

Lemma D.8.15 (Differentiability in the regularization parameter for ϕ ∈ (1,∞), adapted from Patil
et al. (2022a)). Let 0 < a ≤ b < ∞ be real numbers. Let P be a probability measure supported on [a, b].
Let ϕ ∈ (1,∞) be a real number. Let Λ = [0, λmax] for some constant λmax ∈ (0,∞). For λ ∈ Λ, let
v(−λ;ϕ) > 0 denote the solution to the fixed-point equation

1
v(−λ;ϕ) = λ+ ϕ

∫
r

v(−λ;ϕ)r + 1 dP (r).

Then, the function λ 7→ v(−λ;ϕ) is twice differentiable over Λ. Furthermore, over Λ, v(−λ;ϕ), ∂/∂λ[v(−λ;ϕ)],
and ∂2/∂λ2[v(−λ;ϕ)] are bounded.

Lemma D.8.16 (Substitutability of the fixed-point solution). Let v : Rp×p → R and f(v(C),C) : Rp×p →
Rp×p be a matrix function for matrix C ∈ Rp×p and p ∈ N, that is continuous in the first augment
with respect to operator norm. If v(C) a.s.= v(D) such that C is independent to D, then f(v(C),C) ≃
f(v(D),C) | C.

Proof. For any matrix T whose trace norm is bounded by M , conditioning on {C}p≥1, we have

| tr[(f(v(C),C) − f(v(D),C))T ]| ≤ ∥f(v(C),C) − f(v(D),C)∥op tr(T )
≤ M ∥f(v(C),C) − f(v(D),C)∥op .

Since v(C) a.s.−−→ v(D) and f is continuous in the first argument with respect to operator norm, we have
limp→∞ ∥f(v(C),C) − f(v(D),C)∥op = 0. Thus,

lim
p→∞

| tr[(f(v(C),C) − f(v(D),C))T ]| = 0,

conditioning on {C}p≥1.
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The lemma below specializes the solution to the fixed-point equations under the isotopic model.

Lemma D.8.17 (Properties of the fixed-point solution with isotopic features). Let P be a probability
measure supported on {a} for a > 0. For λ > 0 and ϕ > 0, the fixed-point equation

1
v(−λ;ϕ) = λ+ ϕ

∫
r

v(−λ;ϕ)r + 1 dP (r) = λ+ ϕa

1 + v(−λ;ϕ)a

has a closed-form solution

v(−λ;ϕ) = −(λ/a+ ϕ− 1) +
√

(λ/a+ ϕ− 1)2 + 4λ/a
2λ .

Define ṽb(−λ;ϕ) and ṽv(−λ;ϕ) via the follow equations:

ṽb(−λ;ϕ) =
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r)

v(−λ;ϕ)−2 −
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r) ,

ṽv(−λ;ϕ)−1 = v(−λ;ϕ)−2 −
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r).

As λ → 0+, we have

(1) ϕ ∈ (0, 1) : v(0;ϕ) = ∞, ṽb(0;ϕ) = ϕ

1 − ϕ
, ṽv(0;ϕ) = ∞,

(2) ϕ = 1 : v(0;ϕ) = ∞, ṽb(0;ϕ) = ∞, ṽv(0;ϕ) = ∞,

(3) ϕ ∈ (1,∞) : v(0;ϕ) = 1
a(ϕ− 1) , ṽb(0;ϕ) = 1

ϕ− 1 , ṽv(0;ϕ) = ϕ

a2(ϕ− 1)3 ,

(4) ϕ = ∞ : v(0;ϕ) = 0, ṽb(0;ϕ) = 0, ṽv(0;ϕ) = 0,

Proof of Lemma D.8.17. For ϕ ∈ (0, 1), we have v(0;ϕ) = limλ→0+ v(−λ;ϕ) = ∞. For ϕ > 1,

v(0;ϕ) = lim
λ→0+

v(−λ;ϕ) = 1
2a lim

λ→0+

(
−1 + λ/a+ ϕ+ 1√

(λ/a+ ϕ− 1)2 + 4λ/a

)
= 1
a(ϕ− 1) ,

by applying the L’Hospital’s rule for indeterminate forms. When ϕ = 1, we have

v(0; 1) = lim
λ→0+

v(−λ; 1) = lim
λ→0+

1
2a

(
−1 +

√
1 + a

λ

)
= ∞.

Since ṽb(0;ϕ) and ṽv(0;ϕ) are continuous functions of v(0;ϕ), we have

ṽv(0;ϕ) =


∞, ϕ ∈ (0, 1]

ϕ

a2(ϕ− 1)3 , ϕ ∈ (1,∞)

and ṽb(0;ϕ) = 1/(ϕ− 1) for ϕ ∈ (1,∞). For ϕ ∈ (0, 1], we apply the L’Hospital’ rule to obtain ṽb(0;ϕ) =
ϕ/(1 − ϕ).

D.9 Helper concentration results
D.9.1 Size of intersection of randomly sampled datasets
In this section, we collect various helper results concerned with concentrations and convergences that are
used in the proofs of Lemma 4.3.8, Lemmas D.3.4, D.3.5 and D.4.5.

Below we recall the definition of a hypergeometric random variable, along with its mean and variance.
See, e.g., Greene and Wellner (2017) for more related details.
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Definition D.9.1 (Hypergeometric random variable). A random variable X follows the hypergeometric
distribution X ∼ Hypergeometric(n,K,N) if its probability mass function is given by

P(X = k) =
(
K
k

)(
N−K
n−k

)(
N
n

) , max{0, n+K −N} ≤ k ≤ min{n,K}.

The expectation and variance of X are given by

E[X] = nK

N
, Var(X) = nK(N −K)(N − n)

N2(N − 1) .

The following lemma provides tail bounds for the number of shared observations in two simple random
samples, which is adapted from (Hoeffding, 1963; Serfling, 1974). See also Greene and Wellner (2017).

Lemma D.9.2 (Concentration bounds for the number of shared observations). For n ∈ N, define
Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n}. Let I1, I2

SRSWR∼ Ik, define the random variable
iSRSWR
0 := |I1 ∩ I2| to be the number of shared samples, and define iSRSWOR

0 accordingly. Then we have

(1) iSRSWR
0 follows a binomial distribution, iSRSWR

0 ∼ Binomial(k, k/n) with mean E[iSRSWR
0 ] = k2/n. It holds

that for all t > 0,

P
(
iSRSWR
0 − E[iSRSWR

0 ] ≥ kt
)

≤ exp
(
−2kt2

)
.

(2) iSRSWOR
0 follows a hypergeometric distribution, iSRSWOR

0 ∼ Hypergeometric(k, k, n) with mean E[iSRSWOR
0 ] =

k2/n. It holds that for all t > 0,

P
(
iSRSWOR
0 − E[iSRSWOR

0 ] ≥ kt
)

≤ exp
(

− 2nkt2
n− k + 1

)
. (D.87)

The following lemma characterize the limiting proportions of shared observations in two simple random
samples under proportional asymptotics, when both the subsample size and the full data size tend to
infinity.

Lemma D.9.3 (Asymptotic proportions of shared observations). Consider the setting in Lemma D.9.2.
Let {km}∞

m=1 and {nm}∞
m=1 be two sequences of positive integers such that nm is strictly increasing in

m, nνm ≤ km ≤ nm for some constant ν ∈ (0, 1) and km/nm → ωs ∈ [0, 1]. Then, iSRSWR
0

a.s.−−→ ωs, and
iSRSWOR
0

a.s.−−→ ωs.

Proof. The two parts are split below.

Part 1. For all δ > 0,
∞∑
m=1

P
(

1
km

|iSRSWR
0 − E[iSRSWR

0 ]| > δ

)
≤ 2

∞∑
m=1

exp
(
−2kmδ2) .

Because km, nm → ∞ and km = Ω(nνm), there exists m0 ∈ N, such that for all m > m0, exp(−2kmδ2) ≤
n

−(1+ν)
m . Thus,

∞∑
m=1

P
(

1
km

|iSRSWR
0 − E[iSRSWR

0 ]| > δ

)
≤ 2

m0∑
m=1

exp
(
−2kmδ2)+ 2

∞∑
m=m0

1
n1+ν
m

< ∞.

By the Borel–Cantelli lemma, we have

iSRSWR
0
km

− E[iSRSWR
0 ]
km

a.s.−−→ 0.

As limm→∞ E[iSRSWR
0 ]/km = limm→∞ km/nm = ωs, we further have iSRSWR

0 /km
a.s.−−→ ωs.
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Part 2. Note that

P
(
iSRSWOR
0 − E[iSRSWOR

0 ] ≥ kt
)

≤ exp
(

− 2nkt2
n− k + 1

)
≤ exp

(
−2kt2

)
.

The conclusion then follows analogously as in Part 1.

D.9.2 Convergence of random linear and quadratic forms
In this section, we collect helper lemmas on concentration of linear and quadratic forms of random vectors
that are used in the proofs of Lemmas D.3.2, D.3.3, D.4.2 and D.4.3.

The following lemma provides concentration of a linear form of a random vector with independent
components. It follows from a moment bound from Lemma 7.8 of Erdos and Yau (2017), along with the
Borel-Cantelli lemma, and is adapted from Lemma S.8.5 of Patil et al. (2022a).

Lemma D.9.4 (Concentration of linear form with independent components). Let zp ∈ Rp be a sequence of
random vector with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2

pi] = 1, E[|zpi|4+α] ≤
Mα for some α > 0 and constant Mα < ∞. Let ap ∈ Rp be a sequence of random vectors independent
of zp such that lim supp ∥ap∥2/p ≤ M0 almost surely for a constant M0 < ∞. Then, a⊤

p zp/p → 0 almost
surely as p → ∞.

The following lemma provides concentration of a quadratic form of a random vector with independent
components. It follows from a moment bound from Lemma B.26 of Bai and Silverstein (2010), along with
the Borel-Cantelli lemma, and is adapted from Lemma S.8.6 of Patil et al. (2022a).

Lemma D.9.5 (Concentration of quadratic form with independent components). Let zp ∈ Rp be a
sequence of random vector with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2

pi] = 1,
E[|zpi|4+α] ≤ Mα for some α > 0 and constant Mα < ∞. Let Dp ∈ Rp×p be a sequence of random
matrix such that lim sup ∥Dp∥op ≤ M0 almost surely as p → ∞ for some constant M0 < ∞. Then,
z⊤
p Dpzp/p− tr[Dp]/p → 0 almost surely as p → ∞.

D.9.3 Convergence of Ces̀aro-type mean and max for triangular array
In this section, we collect a helper lemma on deducing almost sure convergence of a Ces̀aro-type mean
from almost sure convergence of the original sequence. It is used in the proof of Proposition 4.3.3 and
Lemma 4.3.8.

Lemma D.9.6 (Convergence of conditional expectation). For n ∈ N, suppose {Rn,ℓ}Nn

ℓ=1 is a set of Nn
random variables defined over the probability space (Ω,F ,P), with 1 < Nn < ∞ almost surely. If there
exists a constant c such that Rn,pn

a.s.−−→ c for all deterministic sequences {pn ∈ [Nn]}∞
n=1, then the following

statements hold:

(1) maxℓ∈[Nn] |Rn,ℓ(ω) − c| a.s.−−→ 0,

(2) N−1
n

∑Nn

ℓ=1 Rn,ℓ
a.s.−−→ c.

Proof of Lemma D.9.6. Proofs for the two parts are split below.

Part (1) We concatenate the sets {Rn,ℓ}Nn

ℓ=1 for all n ∈ N to form a new sequence

W = (W1,W2, · · · ) = (R1,1, · · · , R1,N1 , R2,1, · · · , R2,N2 , · · · ).

That is, Wt = Rn,ℓ for t =
∑n
j=1 Nj + ℓ. See Figure D.2 for an illustration. Because Nn → ∞ if and only

if n → ∞ if and only if t → ∞, it holds that Wt
a.s.−−→ c as t → ∞ Then, by Shiryaev (2016, Chapter 2,

Section 10, Theorem 1), we have that for all ϵ > 0,

lim
s→∞

P

( ∞⋃
t=s

{ω ∈ Ω : |Wt(ω) − c| > ϵ}

)
= 0.
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Figure D.2: Illustration of the concatenated sequence {Wt} (in maroon) constructed from the triangle array
{Rn,ℓ}Nn

ℓ=1, n ∈ N (in black), used in the proof of Lemma D.9.6, along with the max sequence (in blue) and
the average sequence (in teal).

Now, for s ∈ N, let m be the smallest natural number such that
∑m
j=1 Nj ≥ s. Since

∞⋃
t=s

{ω ∈ Ω : |Wt(ω) − c| > ϵ} ⊇
∞⋃
n=m

Nn⋃
ℓ=1

{ω ∈ Ω : |Rn,ℓ(ω) − c| > ϵ}

=
∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω) − c| > ϵ

}
.

We further have

0 ≤ lim
m→∞

P

( ∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω) − c| > ϵ

})
≤ lim
s→∞

P

( ∞⋃
t=s

{ω ∈ Ω : |Wt(ω) − c| > ϵ}

)
= 0,

or in other words,

lim
m→∞

P

( ∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω) − c| > ϵ

})
= 0.

Thus, we have that maxℓ∈[Nn] |Rn,ℓ(ω) − c| a.s.−−→ 0 by Shiryaev (2016, Chapter 2, Section 10, Theorem 1).
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Part (2) We will use the first part. Note that by triangle inequality,∣∣∣∣∣N−1
n

Nn∑
ℓ=1

Rn,ℓ − c

∣∣∣∣∣ ≤ N−1
n

Nn∑
ℓ=1

|Rn,ℓ − c| ≤ max
ℓ∈[Nn]

|Rn,ℓ(ω) − c| .

Invoking the first part, we have that N−1
n

∑Nn

ℓ=1 Rn,ℓ
a.s.−−→ c.
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D.10 Additional numerical illustrations
D.10.1 Additional illustrations for Theorem 4.4.1
D.10.1.1 Prediction risk curves for subagged ridgeless and ridge predictors with varying M

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Subsampled aspect ratio s

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ict
io

n 
ris

k

= 0.1

1.0 2.0 5.0 10.0
Subsampled aspect ratio s

= 1.1

M 1 2 5 10 50

Figure D.3: Asymptotic prediction risk curves in (4.23) for ridgeless predictors (λ = 0), under model
(M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The null
risk is marked as a dotted line. For each value of M , the points denote finite-sample risks averaged over
100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋. The left and the right panels correspond to the cases
when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
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Figure D.4: Asymptotic prediction risk curves in (4.23) for subagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The
null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks averaged
over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋. The left and the right panels correspond to the
cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
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D.10.1.2 Bias-variance curves for subagged ridgeless and ridge predictors with varying M
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Figure D.5: Asymptotic bias and variance curves in (4.26) for subagged ridgeless predictors (λ = 0), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The
left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
The values of V sub

0,M (ϕ, ϕs) are shown on a log-10 scale.
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Figure D.6: Asymptotic bias and variance curves in (4.26) for subagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The
left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure D.7: Asymptotic bias and variance curves in (4.26) for subagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The
left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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D.10.1.3 Bias-variance curves for subagged ridge predictors with varying λ (M = 1)
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Figure D.8: Asymptotic bias and variance curves in (4.26) for subagged ridge and ridgeless predictors
with number of bags M = 1, under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying regularization
parameter λ. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.

D.10.1.4 Bias-variance curves for subagged ridge predictors with varying λ (M = ∞)
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Figure D.9: Asymptotic bias and variance curves in (4.26) for subagged ridge and ridgeless predictors with
number of bags M = ∞, under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying regularization
parameter λ. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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D.10.2 Additional illustrations for Theorem 4.4.6
D.10.2.1 Prediction risk curves for splagged ridgeless and ridge predictors with varying M
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Figure D.10: Asymptotic prediction risk curves in (4.32) for splagged ridgeless predictors (λ = 0), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags M
without replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and
p > n (ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value of M , the points
denote finite-sample risks averaged over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋.
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Figure D.11: Asymptotic prediction risk curves in (4.32) for splagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags M
without replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and
p > n (ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value of M , the points
denote finite-sample risks averaged over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋.
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D.10.2.2 Bias-variance curves for ridgeless and ridge predictors with varying M
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Figure D.12: Asymptotic bias and variance curves in (4.26) for splagged ridgeless predictors (λ = 0), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M without
replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure D.13: Asymptotic bias and variance curves in (4.26) for splagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M without
replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V spl

λ,M (ϕ, ϕs) are shown in log-10 scale.
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Figure D.14: Asymptotic bias and variance curves in (4.26) for splagged ridgeless predictors (λ = 0), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M
without replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and
p > n (ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure D.15: Asymptotic bias and variance curves in (4.26) for splagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M
without replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and
p > n (ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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D.10.3 Additional illustrations for Theorem 4.5.1

D.10.3.1 Risk monotonization for subagged ridgeless and ridge predictors
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Figure D.16: Asymptotic excess risk curves for cross-validated subagged ridgeless predictors (λ = 0), under
model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers of bags M with
replacement. The left and the right panels correspond to the cases when SNR = 1 and 4 respectively. The
null risk is marked as a dotted line, and risk for the unbagged ridgeless predictor is denoted by the dashed
line. For each value of M , the points denote finite-sample risks and the shaded regions denote the values
within one standard deviation, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure D.17: Asymptotic prediction risk curves for cross-validated subagged ridge predictors (λ = 0.1),
under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers of bags M
with replacement. The left and the right panels correspond to the cases when SNR = 1 and 2 respectively.
The null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks averaged
over 100 dataset repetitions, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure D.18: Asymptotic excess risk curves for cross-validated subagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers of bags M .
The left and the right panels correspond to the cases when SNR = 0.33 (ρar1 = 0.25) and 0.6 (ρar1 = 0.5)
respectively. The excess null risk is marked as a dotted line, and risk for the unbagged ridgeless predictor is
denoted by the dashed line. For each value of M , the points denote finite-sample risks averaged over 100
dataset repetitions and the shaded regions denote the values within one standard deviation, with n = 1000,
nte = 63, and p = ⌊nϕ⌋.

D.10.3.2 Risk monotonization for splagged ridgeless and ridge predictors
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Figure D.19: Asymptotic excess risk curves for cross-validated splagged ridgeless predictors (λ = 0), under
model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers of bags M
without replacement. The left and the right panels correspond to the cases when SNR = 1 and 4 respectively.
The null risk is marked as a dotted line, and risk for the unbagged ridgeless predictor is denoted by the
dashed line. For each value of M , the points denote finite-sample risks averaged over 100 dataset repetitions
and the shaded regions denote the values within one standard deviation, with n = 1000, nte = 63, and
p = ⌊nϕ⌋.
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Figure D.20: Asymptotic prediction risk curves for cross-validated splagged ridge predictors (λ = 0.1),
under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers of bags M
without replacement. The left and the right panels correspond to the cases when SNR = 1 and 4 respectively.
The null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks averaged
over 100 dataset repetitions, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure D.21: Asymptotic excess risk curves for cross-validated splagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers of bags M .
The left and the right panels correspond to the cases when SNR = 0.33 (ρar1 = 0.25) and 0.6 (ρar1 = 0.5)
respectively. The excess null risk is marked as a dotted line, and risk for the unbagged ridgeless predictor is
denoted by the dashed line. For each value of M , the points denote finite-sample risks averaged over 100
dataset repetitions and the shaded regions denote the values within one standard deviation, with n = 1000,
nte = 63, and p = ⌊nϕ⌋.
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D.10.4 Additional illustrations in Section 4.6
D.10.4.1 Subagging with replacement and splagging without replacement
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Figure D.22: Asymptotic excess risk (the difference between the prediction risk and the noise level σ2)
curves of bagged ridgeless predictors (λ = 0) for subagging (left panel) and splagging (right panel), under
model (M-ISO-LI) when ρ2 = 1 and SNR = 0.1, for varying ϕ (p < n), bag size k = ⌊p/ϕs⌋ and number
of bags M . The solid lines represent the optimal risks with respect to M for either with replacement
(M = ∞) or without replacement (M = ϕs/ϕ); the dashed lines represent the risks for M = 1; the dotted
lines indicates the aspect ratio ϕ of the full dataset; the solid dots represent the optimal risk with respect
to both M and ϕs.
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Figure D.23: Asymptotic excess risk (the difference between the prediction risk and the noise level σ2)
curves of bagged ridgeless predictors (λ = 0) for subagging (left panel) and splagging (right panel), under
model (M-ISO-LI) when ρ2 = 1 and SNR = 0.5, for varying ϕ (p ≥ n), bag size k = ⌊p/ϕs⌋ and number
of bags M . The solid lines represent the optimal risks with respect to M for either with replacement
(M = ∞) or without replacement (M = ϕs/ϕ); the dashed lines represent the risks for M = 1; the dotted
lines indicates the aspect ratio ϕ of the full dataset; the solid dots represent the optimal risk with respect
to both M and ϕs.
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