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Abstract

This dissertation addresses fundamental challenges in sequential decision-making and
adaptive experimental design, developing theoretically grounded algorithms that achieve
significant improvements in both sample complexity and practical performance. We
organize our contributions into two main areas: novel sampling mechanisms for learning
and adaptive methods for causal inference.

The first area focuses on sampling strategies that improve learning efficiency across
different problem settings. We develop transfer learning algorithms for multi-armed ban-
dits that can automatically adapt the degree of knowledge transfer based on observed
similarity between source and target tasks, providing theoretical guarantees that grace-
fully interpolate between perfect transfer and learning from scratch. We also formalize
active exploration in preference-based learning as a contextual dueling bandit problem,
developing algorithms with polynomial regret bounds using reproducing kernel Hilbert
space methods, with applications to reinforcement learning from human feedback and
direct preference optimization.

The second area develops adaptive experimental design methods for efficient causal
inference. We introduce the Clipped Second Moment Tracking algorithm that achieves
exponential improvements in finite-sample regret, reducing dependence from O(\/T ) to
O(log T') while maintaining polynomial dependence on problem parameters. We also
develop an Optimistic Policy Tracking approach that leverages the asymptotically opti-
mal Augmented Inverse Probability Weighting estimator through principled optimistic
design, demonstrating how techniques from bandit theory can be successfully adapted
to causal inference.

Throughout this work, we emphasize the gap between asymptotic and finite-sample
performance, developing principled algorithmic approaches that provide both theoretical
guarantees and practical improvements. Our contributions advance the state-of-the-art
in sequential decision-making by bridging theory and practice across multiple important
application domains including clinical trials, online experimentation, and human-Al

interaction.
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Chapter 1
Introduction

Sequential decision-making under uncertainty is a fundamental challenge that arises across numerous
domains, from medical trials and online advertising to robotics and artificial intelligence. At its
core, this problem requires balancing exploration — gathering information about unknown aspects
of the environment — with exploitation — leveraging current knowledge to make optimal decisions.
This dissertation addresses several important instantiations of this challenge, developing principled

algorithmic approaches that advance both theoretical understanding and practical performance.

1.1 Overview and Contributions

This dissertation is organized into two main chapters, each containing multiple related contributions.

1.1.1 Chapter 2: Learning from Alternative Feedback

This chapter develops new adaptive algorithms for principled sample efficient learning across dif-

ferent problem settings:

Transfer Learning in Multi-Armed Bandits (MAB) (Section 2.2). We address the chal-
lenge of leveraging auxiliary information from related source tasks to improve learning efficiency
in new target environments. Our algorithm automatically adapts the degree of transfer based on
observed data, providing theoretical guarantees that gracefully interpolate between perfect transfer
scenarios and learning from scratch. In doing so, we are able to generalize existing algorithms for
Best Arm Identification to much more general settings while still maintaining optimal performance
in existing problem settings. Through these generalizations, our work provides improved sample
complexity bounds compared to existing algorithms, while enabling applications in new transfer
learning settings which have previously not been studied in the MAB literature. This section is
based on [1].
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Active Exploration for Preference Learning (Section 2.3). In this work, we formalize and
investigate the problem of active preference-based learning in contextual bands. Our theoretical
contribution focus on developing algorithms with polynomial regret bounds when the underlying
reward structure can be described by a function in a Reproducing Kernel Hilbert Space (RKHS).
Using the insights developed in this theoretical setting, we propose and experimentally validate a
version of this algorithm which works enables applications to reinforcement learning from human
feedback (RLHF) and direct preference optimization (DPO) for large language model alignment.

This section is based on [2].

1.1.2 Chapter 3: Adaptive Causal Inference

This chapter focuses on developing adaptive learning algorithms for problems in Causal Inference.
The problem of adaptive Causal Inference is a relatively new field and so our contributions here
serve to lay the ground work, focusing on developing sample efficient algorithms with nonasympotic

performance guarantees.

Clipped Second Moment Tracking (Section 3.1). In our first work, we propose an algorithm
for adaptive experimental design that achieves exponential improvements in finite-sample regret.
Prior to this work, the vast majority of the literature on adaptive Average Treatment Effect (ATE)
estimation was concerned with designing algorithms with asymptotic optimality guarantees. In con-
trast, we argue that nonasymptotic guarantees are critical especially because standard applications
of causal inference, such as Randomized Control Trials (RCTs) require sample efficiency, which
can be obscured by prior asymptotically focused approaches. We analyze existing asymptotically
optimal algorithms and demonstrate how appropriate tuning of this algorithms hyperparameters
guarantees a regret bound of at most O(logT"). Notably, this is a doubly exponential improvement
from existing algorithms with nonasymptotic guarantees: we improve existing regret bounds from
O(VT) to O(log T) and also reduce an exponential dependence on critical problem parameters to

a polynomial dependence. This section is based on [3].

Optimistic Policy Tracking (Section 3.2). In this work, we develop a new algorithmic de-
sign framework for the problem of adaptive ATE estimation by demonstrating how to extend the
principle of optimism from the MAB literature on regret minimization to this new setting. We
instatiate this framework using the asymptotically optimal Augmented Inverse Probability Weight-
ing (AIPW) estimator and demonstrate how to design new optimistic algorithms. Our algorithm
achieves significant theoretical and empirical improvements over prior methods while maintaining
strong finite-sample guarantees, demonstrating how optimistic principles from the MAB literature

can be successfully applied to causal inference. This section is based on [4].



Chapter 2

Learning with Alternative Feedback

Mechanisms

This chapter develops novel sampling strategies that improve learning efficiency across different
problem settings. We investigate two complementary forms of alternative feedback: feedback from
a different system which we wish to transfer in-order to understand properties of a related system as
well as preference-based feedback in the form of pairwise comparisons. Both contributions address
the fundamental challenge of how to gather information most efficiently when learning in complex,

uncertain environments.

2.1 Introduction and Motivation

As machine learning systems evolve and become increasingly integrated into different aspects of
society, our need to efficiently gather information in order to make decisions will grow. Traditionally,
interactive learning algorithms assumce access to reward based feedback, where the utility of an
action or a decision is defined by a scalar that can be directly compared to other utilities in-order
to compare and access different decisions. However, in many real-world scenarios, we often do not
have direct access to such reward-based feedback, and need algorithms which can operate with
alternative feedback mechansisms. While this issue presents itself as a hurdle, with some additional
effort, we can design new algorithms which are able to utilize these alternative feedback mechanisms
and not only circumvent the need for standard feedback, but also produce algorithms that can lead
to similar downstream decisions with reduced costs and increased sample efficiency. This chapter

explores two form of alternative feedback where this is the case.

Transfer Learning. We develop algorithms that propagate uncertainty from source tasks to the
target, using the transferred posterior variance as a control signal for how aggressively to sample each
domain. High estimated similarity lets the algorithm lean on source data; widening discrepancies

trigger a shift toward fresh target exploration. The resulting sampling rule reduces unnecessary
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data collection and, when run in a pure nontransfer setting, recovers existing optimal algorithms.

Preference Learning. Rewards are often ill-defined or noisy, while it is usually easy to decide
which of two outcomes is better. In such cases, algorithms based on pairwise comparisons are the
right tool. We develop an active comparison strategy that directs queries to the most informative
pairs, and recovers standard optimal behavior under standard reward feedback.

Both approaches illustrate the power of moving beyond naive sampling toward strategies that

interrogate problem structure for maximum information gain.

2.2 Best Arm Identification under Additive Transfer Ban-
dits

In many real-world applications of multi-armed bandits, we encounter scenarios where we want
to identify the best option in a target domain but can only observe outcomes in related source
domains. This work aims to develop new approaches to address these issues by introducing a new
problem which intersects the ideas of transfer learning and sequential decision making. At a high-
level, the problem we study involves two multi-armed bandit (MAB) instances, which we call the
source and target instances, as well a transfer function, which is a known relationship between the
two MAB instances. Within this setup we define and consider an appropriately modified variant of
the (e, d)-correct best arm identification (BAI) objective [5, 6].

Motivating Examples. We start off by highlighting various scenarios where the need to transfer
knowledge between sequential decision making problems arise:

¢ Clinical Trials. The first scenario we consider is the application of MABs to clinical trials

[7]. In this context, the arms can be thought of as the different treatments and we wish to

determine which is most effective. A standard practice in this setup is to test treatments

on animals before transitioning to clinical trials for humans. Ideally, we wish to identify the

optimal treatments for humans by only testing the treatments on animals. Here, we can view

the animal trials as the source domain, and human trials as the target domain.

¢ Sim-to-Real Transfer in Reinforcement Learning. A popular paradigm for ‘cheap’
reinforcement learning is sim-to-real transfer in reinforcement learning [8-10]. In the sim-to-
real problem, the objective is to learn a robot’s control policy for the real world (target domain)
while restricting training to computer simulations (source domain). Currently, in the sim-to-
real literature, most algorithms rely on heuristics to learn these control policies — typically by
ensuring that a sufficiently diverse set of environments are encountered during training. While
some of these heuristics have proven to be successful, our theoretical understanding of this

problem remains in its infancy. We believe that studying our proposed problem is a first step
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towards gaining a better understanding of how to transfer knowledge in more complicated

sequential decision making problems.

¢ Rate adaptation in wireless networks. Rate allocation in wireless networks has been
posed as a bandit optimization problem under fixed channel conditions [11, 12]. However, it is
important to adapt the rate allocation according to varying channel conditions by transferring

rate allocation policies between related channel conditions.

Contributions. The main contributions of this work are

1. A general additive transfer framework that which not only captures the idea of ‘transfer’
in a sequential decision making framework, but also unifies many existing pure exploration

problems under a single framework.

2. A novel algorithm for this framework, Transfer-LUCB, which generalizes the celebrated LUCB

algorithm, along with a theoretical analysis providing sample complexity guarantees.

3. Instantiations showing how our general bounds recover and extend known results for problems
like TopK identification and thresholding bandits

Related Works

The work most closely resembling ours is a recent line of work on obtaining sample complexity
guarantees for Monte Carlo tree search algorithms [13-15]. Specifically, Huang et al. [15] approach
this problem by first introducing the more general structured BAI problem. Their structured BAI
framework is the same as our transfer BAI framework, however we choose to use a different name to
both emphasize that we are transferring knowledge between multiple MAB instances and to avoid
confusing the structured BAI problem with the structured MAB framework described in Lattimore
and Munos [16] and Gupta et al. [17].

While Huang et al. [15] give a general algorithm for their structured BAI problem, their pri-
mary objective was to derive algorithms for the Monte Carlo tree search problem. As such, their
assumptions consequently make their algorithm inapplicable to wide range of settings including the
simple linear setting discussed in Section 2.2.1. Their Assumption 2(i), which requires the transfer
function to be component-wise monotonic, already restricts the applicability of their algorithm to
a wide range of problems. However, we can resolve this issue by using our confidence sequence con-
struction given in Section 2.2.2. Their Assumption 2(ii), however, is more troublesome as it requires
the confidence sequence of each target arm to be contained in the confidence sequence of at least
one source arm. To resolve this, Huang et al. [15] briefly mention a weaker assumption wherein
the confidence sequence of each target arm must be contained in a scaled and shifted version of a
source arm’s confidence sequence — however, this weaker assumption is still inapplicable even in
the linear setting. Additionally, as we show in Appendix 2.2.6, the resulting sample complexity for

this modified algorithm is significantly worse than the sample complexity of our algorithm. Finally,
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we note that the assumptions we make are incomparable to the assumptions made in Huang et al.

[15] as neither is more or less general than the other.

The simpler linear setting subsumed by our framework, where the transfer function takes the
form f(u) = Ap also coincides with the Transductive Linear Bandit problem studied in Fiez et al.
[18] and Katz et al. [19] when the sampling vectors are the standard basis of R®. However, it is not
clear how to extend the ideas presented in these works to the additive setting since the algorithms

strongly utilize the linearity in the problem.

The ‘partition identification’ problem introduced by Juneja and Krishnasamy [20] is also related
to our work. In fact, their framework can be seen as a generalization of the problem studied here.
However, in their work, Juneja and Krishnasamy [20] primarily focus on providing lower bounds for
variations of the partition identification problem and only briefly discuss an asymptotically optimal
algorithm towards the end of their work. Additionally, it is known that Confidence-Interval style
algorithms (like the one we propose) outperform their Track-And-Stop style algorithm in so-called
moderate-confidence regimes' [21]. Moreover, it is not clear that the algorithm they provide is can
even implementable in the linear setting because implementing it requires solving a constrained
optimization problem over a (possibly) non-convex set. Finally, the analysis in [20] only provides
asymptotic guarantees for their algorithm while we provide explicit finite-time guarantees for our

algorithm.

2.2.1 Problem Setup

Before introducing the transfer BAI problem, we briefly review the e-BAI problem within the MAB

n
i=1

framework. In our notation, we define an n-armed MAB instance to be a set of n tuples {(P;, i;)}
where P; € P is a probability distribution in some known set P and p; := Ep[X] is the mean of
P;. For example, P could be the set of all sub-Gaussian distributions. In this setup, an algorithm
interacts with the MAB instance through a round-based protocol. In each rounds, ¢, the learner
selects an arm I, € {1,...,n}, and observes a sample X; ~ P;,. For the e-BAI problem, the
objective is to identify an e-optimal arm @ satisfying pa 4+ € > max;cp, p;, where [n] = {1,...,n}.
This problem is often studied in the so-called fized-confidence setting in which a confidence
parameter 0 is given and an algorithm is said to be correct if, with probability greater than 1 — ¢,
it stops and returns an e-optimal arm. For any fixed MAB instance, an algorithm’s performance is
then judged by either a high-probability or an in expectation upper-bound on the number of samples
required to identify an e-optimal arm. In this work, we will give a high probability bound for a

variant of the fixed-confidence setting that naturally arises in our setup.

!By moderate confidence regimes we mean regimes where ¢ is moderately small, i.e when § ~ .05 or when it is
inverse-polynomial in the number of measurements [21].
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Transfer Best Arm Identification

We are now ready to introduce the transfer BAI problem which can be stated as a tuple
(S, ity ATasva} Ly, f). Here, {Si, pi}2, and {T,,va}L_, are S and T-armed MAB instances

a=1>
which we respectively call the source and target MAB instances and f: RY — (R*)T is a known
multivariate function which we call the transfer function. Here, we have written R := RU{oo, —oc}
to denote the extended real numbers. Specifically, f relates the means of the target and sources

arms in the sense that

v=f(),

where = (p1,...,us) and v = (v, ..., vr) refer to the vector of means for the source and target
MAB instances.

In this paper we study the special setting in which f is an additive function satisfying

S
Vg = fa(:u) - Zfa,i(:ui)'

Here, and in the rest of this paper, ¢ will always be used to index source arms, and unless otherwise
specified, a will be used to index target arms. As we discuss more in Section 2.2.1, this additive
setting is already interesting as it captures a large number of existing problems in addition to

introducing new problems.

Motivating Examples

To provide more concrete intuition about our algorithm and sample complexity analysis, we will

use two running examples: property testing and linear transfer functions.

Property Testing. In the property testing problem we are interested in identifying all arms
i € [S] which satisfy some property u; € C; C R. Our additive transfer framework is able to capture
this problem. To do so, we first define

C
L=14" "¢ (2.1)
—o00 uécC.

Then for each set M € 2"l we define a target arm whose mean is vy, = > iear le, (pi). Clearly,
the optimal target arm will be a function of all source arms for which u; € C;. We note that
whenever we refer to the property testing problem, we will index the target arms with M instead

of a. Additionally, for the property testing problem, we require € = 0.
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Linear Transfer Functions. Another useful special case for contextualizing our results is the

setting where the transfer function is a linear transformation of the source means, so that

S
Vg = E Aa,i,ui-
=1

In our proposed framework, we restrict our ability to sample from the target arms, and only

consider algorithms which are able to sample from the source arms. We note that studying the prob-
lem where we have the ability to sample from both the target and source domains is an interesting
problem for future work. Our objective is to develop algorithms which will return an e-optimal
target arm with high probability. Formally, we focus on an appropriately modified version of the
fixed-confidence setting which we define as follows:
Definition 2.2.1 ((¢,)-correct). For any ¢ > 0 and § € (0,1), we say that an algorithm Alg is
(€,0)-correct for the transfer BAI problem if, with probability at least 1 — 0, and for every problem
instance ({Si, pi}ooy, {Tas Va} 1y, f), Alg stops and returns an e-optimal arm @ € [T] satisfying
Vg + € 2 MaXae(r) Va-

As is standard with typical BAI algorithms, an algorithm for the transfer BAI problem is
comprised of three components: a sampling rule, a stopping rule, and a selection rule. Letting
Fi = 0(Xy,...,X;) denote the o-algebra generated by the observations from the source arms up
until time ¢, we have

1. a sampling rule, p;, which is a F;_;-measurable function which selects the source arms to pull

during round t;
2. a stopping rule, 7, which is a F;-measurable random variable which determines when the
algorithm stops;

3. a selection rule, @, which is a F,-measurable function which outputs a guess of the optimal

target arm a*.

Assumptions

Before proceeding, we briefly discuss our assumptions. Our first assumption places restrictions on
the class of additive transfer functions which our algorithm is able to handle.
Assumption 2.2.2 (Assumptions on f). We assume that f,; is continuous at y; for all (a,i) €
[T] < [5].

We additionally assume that the observations from the source MAB instances are sub-Gaussian.

Assumption 2.2.3 (o-sub-Gaussian Observations). We assume that the observations from the

source arms are o-sub-Gaussian so that for any i € [S] and A € R the following holds

A2o?

— 2 .

log Ex s, exp {MX — ) }] (2:2)
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This assumption is necessary for the concentration inequalities used in the construction of our
LUCB-style algorithm given in the next section. We note that this, with minimal modification, our
assumption, algorithm, and the resulting sample complexity analysis can accommodate arbitrary
sub-1) observations through the use of the concentration inequalities given by Howard et al. [22] —
in Assumption 2.2.3, we have implicitly set ¢)(\) = ’\72 However, to simplify the exposition, we limit
the scope of this work to sub-Gaussian observations. Finally, without loss of generality, we assume
that the means are ordered in decreasing order so that pu; > pe... > ps and vy > vy > ... > vy,

We only require the optimal target arm to be unique when € = 0.

Subsumed Settings

Finally, as we alluded in the previous subsection, we now describe how the additive-transfer frame-
work studied here subsumes a range of existing pure exploration problems. In the next section, we

instantiate our sample complexity results for some of the problems mentioned below.

TopK Identification. In the TopK problem [23, 24], the objective is to identify the K arms
with the largest means. To recover this problem in our formulation, we define the target means as
follows. We define a target arm Ty for each set M € 27} satisfying |M| = K. The mean of this

target arm is then defined as vay = >, 1/ fhi-

Thresholding Bandits. In the Thresholding Bandits problem [25], the objective is to identify
the set of arms whose means are greater than some fixed threshold p € R. This problem is subsumed
by the property testing problem mentioned earlier. To see this, we simply set, for each i € [5],

C; = (p, 00). Then for every set M € 2I"! define the mean of target arm Ty as var = 3,5, I, (142)-

Combinatorial Pure Exploration. As a final example, we show how our framework general-
izes the Combinatorial Pure Exploration problem proposed by Chen et al. [26-29]. This problem
is defined by a decision class M C 2[5 and the objective is to identify an element M € M satis-
fying M € argmax M € M Y., pi- It is easy to see that this problem fits into our framework by
defining a target mean vy = > ., - The Combinatorial Pure Exploration problem additionally
subsumes a number of additional problems previously studied in the literature, including the ex-
amples discussed above. For more examples of subsumed problems and additional discussions, we

refer the reader to the literature on this problem [26-30].

2.2.2 Algorithm

In this section, we present the Transfer LUCB (T-LUCB) algorithm, a variant of the LUCB algo-
rithm [23] used in the fixed-confidence BAI setting. Like the LUCB algorithm, our T-LUCB algo-

rithm is based on constructing confidence sequences which are time-uniform confidence intervals on
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the sample means. Before presenting the T-LUCB algorithm, we first discuss the construction of
our confidence sequences.

To construct the confidence sequences on the source arms we use standard Hoeffding-like confi-
dence sequences [22, 31] and define the Lower Confidence Bound (LCB), Upper Confidence Bound
(UCB), and Confidence Interval (CI) sequences as follows. Recall that I, denotes the arm that is
pulled at time s. We let NV;(t) = Zz;ll [I; =7 denote the number of times that source arm 7 has
been pulled at the start of round ¢. Additionally, we let fi;(i) = N#(t) S7U XL, = i denote the
empirical mean of arm ¢ at the beginning of round ¢. Then, at ¢ = 0, we set the lower and upper
confidence bounds for source arm i as Ls(0,4,0) = —oo, Us(0,7,0) = +oo. Next, for t > 1, we

recursively define the confidence sequences as:

Us(t,i,8) = min {ug(t 1,4, 8), fis(i) + BNi(2), 5/(25))}, (2.3)
Ls(t,4,8) = max {L’S(t —1,4,8), (i) — BINi(1), 5/(25))}, (2.4)
Cls(t,i,0) = [Ls(t,i,6),Us(t, i, ). (2.5)

Here (-, -) is a function which controls the rate at which the confidence intervals shrink. As an

example, § can be taken to be the so-called “polynomial stitched boundary” [22, Eq.(6)]:

(2.6)

21og log (2to2) + 0.72log 22
B(t,0) = 1.7\/0 0g log ( UtH %8

More generally, for the results given in Section 2.2.3 to hold, 8 must satisfy the following condition:
P{3t>1:pu; &Cls(t,i,0)} <. (2.7)

The choice of § in Eq. (2.6) satisfies the above condition.

Next, we use the source arm confidence sequences to construct confidence sequences on the

target arms as follows:

S
— : s 2.
‘CT(ta a, 5) g miegll;r(lt,i,é) fa,z (ml) ) ( 8)
S
t 0) = a,i i) 2.9
Ur(t,a,d) ; e foi (my) (2.9)

CLr(t,a,8) = [Lr(t, a,6),Ur(t, a,d)]. (2.10)

The intuition for the above construction is as follows. By constructing the source confidence se-
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quences as defined in equations Eq. (2.3) and Eq. (2.4), and choosing 3 to satisfy condition Eq. (2.7),
we can control the deviations of the source samples means from the true source means. This in turn
implies that the constructed target confidence sequences are well-behaved in the sense that they will
contain the target arm means with high probability. This intuition is formalized by Lemma 2.2.13

in the Appendix.

The T-LUCB Algorithm

We are now ready to introduce the T-LUCB algorithm which is stated in Algorithm 1. During each
round, the algorithm selects two target arms B; and C; with the objective of separating the LCB
of B; from the UCB of C;. After selecting B; and C}, the algorithm samples the source arms I; and
Jy which respectively have the largest contributions to the length of the confidence sequences of B;

and Cy. Formally, we define the following quantity

L ) t == a.i - i a.i 5 211
(4,a,t) meé?ffii,a)f i(m) meé?éﬁ,i,a>f i(m) (2.11)

which quantifies the amount of uncertainty that source arm ¢ contributes to target arm a. The
algorithm stops when the LCB of B; is greater than the UCB of (. Finally the algorithm selects

B; as its guess for the optimal target arm.

Input 6 > 0,e >0, f, 0%

Sample each source arm once;

fort=1,2,... do

By = argmax ¢ L7(t, a,0);

Cy = argmax e[y} o£B, Ur(t, a,d);

if L7(t,B,d)+ e >Ur(t,Cy,0) then
‘ return a = By;

end

I, = argmax;(q) L(4, By, t) ;

Jy = argmax;c g L(7, Ct, 1) ;

Observe X;1 ~ Sy, and X9 ~ Sy,;

end

Algorithm 1: Additive Transfer LUCB

2.2.3 Theoretical Analysis

In this section, we analyze the T-LUCB algorithm presented in the previous section. Our first result
shows that, regardless of the sampling rule, the stopping rule and selection rule of Algorithm 1 are

sufficient to give an (¢, §)-correct algorithm. The proof of this result can be found in the Appendix.

Theorem 2.2.4. Suppose that ( satisfies condition Eq. (2.7). Then, any algorithm which stops
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when there exists an arm a € [T] such that
Lr(t,a,0)+e>Ur(t,d,0), (2.12)

for all a’ # a, and selects the arm a = a, will with probability at least 1 —0, choose an arm satisfying
Vz >V — €.

We now shift our attention towards providing a high probability upper bound on the sample
complexity of Algorithm 1. To present our function specific upper-bound on the sample complexity
we first introduce some additional notation. We remark that due to the generality of our framework
our generic sample complexity bound is presented implicitly, and is difficult to immediately interpret.
As such, we will present explicit bounds for some instantiations of our problem in the following
subsection.

First, we define
sa = |{i: fai() # faily), Yo,y € R}, (2.13)

which measures the number of source arms which contribute to the uncertainty of a target arm.

For the property testing problem, s, = [M|, which is the number of terms in the sum ), Ie, (14).

For linear transfer functions, s, = [{i : A,; # 0} which measures the sparsity of the vector A,.
Next, with a slight abuse of notation, we define the following quantity which has a similar form

to equation 2.11

L(i,a.t x) = »
(i,a,t,2) el (t,0)] Jaalm)

— min i(m). (2.14
mele g i (T (244)
This term quantifies how much source arm i contributes to the confidence interval of target arm

a when the LCB of source arm 7 is x. For the property testing problem, we have

4

0 if[x,z+28(t,0)] CCiie M

0 if [r,x+28(t,8) CCoie M
LG, M, t,2) = itfe, o+ 20t 0] cChie M (2.15)
0 ifigM

oo otherwise
\

where Cf is the complement C; and we have taken the convention that co — oo = 0. For linear
transfer functions, this quantity is independent of = so that L(i,a,t,z) = 2|A,;|8(t,0).
Having defined this quantity, we are now ready to define an upper bound on the number of times

source arm ¢ needs to be sampled in order to determine if target arm a is e-optimal. First, we set

V1,2 — 2
Ta,i:min {tGN: sup L(i,a,t7:p) < maX{|l/172 Va|7€/ }}’
Cﬂe[ﬂi—Qﬁ(t,(y),ui] Sa

(2.16)
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where vy 5 = "IT“? Then, we define

T; = MaX Ty ;, (2.17)
a€(T)

which represents the number of times source arm ¢ must be pulled in order to determine which

target arms are e-optimal. We are now ready to state our sample complexity result.

Theorem 2.2.5 (Sample Complexity Upper Bound of Algorithm 1). Let 7 denote the stopping
time of Algorithm 1. Then with probability at least 1 — 9, we have that

7<) 7 (2.18)

Note that this sample complexity bound is independent of the number of target arms. This fact
allows us to recover the sample complexity of some existing problems as we show in the following

subsection.
Theorem 2.2.5 implies the following sample complexity result for the property testing problem.

Corollary 2.2.6. Let 7 denote the stopping time of Algorithm 1 for the property testing problem
and define

2
H=S i=15—"_ 2.19
2R 219

where

r— | if i €C
x—ﬂi’ if pi & C;

7<0 <Hlog (%)) . (2.20)

For linear transfer functions, we obtain the following result.

inf:cECf

Ac;(pi) =

infxeci

Then? with probability at least 1 — 6,

Corollary 2.2.7. Let 7 denote the stopping time of Algorithm 1 for the linear transfer setting and
define

2 A |12
H. (A v, p) = Zz =15 maX{ 5o A } (2.21)

alf] L max {|v, — 712/, §}”

Then with probability at least 1 — 9,

7<O (He (A, v, 1) log G)) . (2:22)

2We use O to refer to sample complexity results which are correct up to constant and loglog factors.
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Instantiations of the Sample Complexity Bound

We now proceed to instantiate the sample complexity bound of Theorem 2.2.5 for some previously
studied settings. In each of these settings we state an explicit bound which is a direct corollary
of the sample complexity bound from Theorem 2.2.5. Proofs of these results can be found in the

Appendix.

BAI. To recover the Best Arm Identification problem, we simply set v, = p; so that the mean
of each target arm is simply the mean of one of the source arms. First, we set 1 = % Then
Theorem 2.2.5 implies that
S
~ 1
7<0 ——log(1/9) | .
(; (7 — pi)?

This recovers the sample complexity of the original LUCB algorithm [23].

Thresholding Bandits. Here, Theorem 2.2.5 implies that

7 log(1/0) | ,

- 1
SO\ L G

1€[5] K —

which matches, up to iterated logarithmic factors, the problem’s sample complexity lower bound

given for the fixed confidence setting [25].

TopK. One example of a Combinatorial Pure Exploration problem is the so-called TopK problem
where we wish to identify the K largest means our of S arms. This problem can be recovered in the
CPE framework by letting M to be the all subsets of {1,...,S} with cardinality K. To state our

UK +TUEK+1
2

sample complexity results in this setup, we first define 7 = . Then, Theorem 2.2.5 implies

that

1)

TS0\ X

ic[] (i )
We remark that this sample complexity result is suboptimal by a factor of K2 [23, 24]. However,
we conjecture that this is the price of generality of our framework. We refer the reader to the

conclusion for more discussion on this.

2.2.4 Experiments

The theoretical paper focused on establishing the fundamental framework and theoretical guarantees
for additive transfer bandits. While the original conference paper did not include experimental
validation, the theoretical results provide important insights into the performance characteristics of
the T-LUCB algorithm.
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The sample complexity bounds demonstrate that:

1. The algorithm recovers classical BAI sample complexity when applied to standard best arm
identification

2. For thresholding bandits, the bound matches known lower bounds up to logarithmic factors

3. The framework generalizes to combinatorial pure exploration problems, though with some loss
in optimality for specific cases like TopK identification

Future experimental work would validate these theoretical predictions and explore the practical
performance of the algorithm across different transfer scenarios, including cases where the trans-
fer function relationship varies in strength and the robustness of the approach when the additive
assumption is violated.

The key experimental questions that remain to be addressed include:

e Performance comparison with specialized algorithms for specific subproblems
® Sensitivity to misspecification of the transfer function
e Computational efficiency for large-scale problems

e Real-world applications in domains like clinical trials and reinforcement learning

2.2.5 Conclusion

In this work we presented and analyzed an algorithm for leveraging additive relationships between
two MAB instances to identify the best arm in a MAB instance without ever sampling from it. The
T-LUCB algorithm provides a principled approach to transfer learning in multi-armed bandits with

theoretical guarantees.

Key Contributions Our main contributions include:

1. General Framework: We introduced the additive transfer bandit framework that encom-

passes many existing pure exploration problems while enabling new transfer learning scenarios.

2. Algorithm Design: The T-LUCB algorithm extends the classical LUCB approach to handle
transfer relationships through carefully constructed confidence sequences for both source and

target arms.

3. Theoretical Analysis: We provided sample complexity bounds that are independent of the
number of target arms and recover known results for special cases while establishing new

bounds for the general additive transfer setting.

4. Problem Unification: We demonstrated how our framework subsumes important problems

including TopK identification, thresholding bandits, and combinatorial pure exploration.

Limitations and Future Directions Several important directions emerge from this work:
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e Optimality. A first direction for future work would be to investigate if an algorithm for
the additive transfer setting can recover the correct sample complexity results for the spe-
cialized settings such as the TopK problem. We conjecture that this is not possible. This is
because algorithms for these simpler settings either implicitly or explicitly utilize a type of
well-ordering property of the problem which does not generally hold for non-linear additive
transfer functions. This well-ordering property is made explicit in the work of Gabillon et al.
[30], and is implicitly utilized in the work of Fiez et al. [18].

¢ Unknown Transfer Functions. An issue with our proposed framework is that we assume
the transfer function is known in advance. Another interesting direction of future research is
to study how to alleviate this requirement so that, for example, the transfer function can be
learned from historical data. If this approach is taken, it may no longer be possible to identify
a e-optimal target arm as the error introduced from estimating the transfer function might
lead to a scenario where the true optimal target arm is not the optimal target arm under
the approximate transfer function. We believe in this setting a more reasonable criterion to
study is the simple regret [5] under the assumption that the learned transfer function is close

in norm to the true transfer function.

¢ Bi-directional Transfer. Furthermore, in this work we consider the setting where we are
unable to sample from the target MAB instance. Another interesting direction would be in
developing algorithms which are able to sample from the target MAB instance with the caveat
that doing so has some additional cost. This type of setting seems natural as it is often the
case that making direct measurements of some system can be significantly more expensive
than taking noisier auxiliary measurements of the system. A concrete example of this is in
the sim-to-real problem, where collecting observations from the real world is significantly more
expensive than collecting observations from a computer simulation. Additionally, the ability
to sample the target arm can allow for learning or refining the transfer function on the fly
using few transfer queries.

This work establishes the theoretical foundation for transfer learning in multi-armed bandits

and opens up numerous avenues for both theoretical and practical extensions.

2.2.6 Detailed Comparison with Prior Work

In this section we provide an in-depth discussion and comparison of our Algorithm 1 and a variant
of the Micro-LUCB algorithm which is suitable for linear transfer functions. We first restate their
assumptions and demonstrate why the do not hold for our setting. In this assumption, we note that
< denotes a component wise ordering so u < v is equivalent to stating u; < v; for all 4.

Assumption 2.2.8 (Assumption 2 of [15]). The following hold:

1. The mapping function f is monotonous with respect to the partial order of vectors: for any
u,v € RS, u < v implies f(u) < f(v).
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2. For any u,v € RS, uw < w, a € [T, the set D(a,u,v) = {i € [S] : [fa(u), fo(v)] C [wi,v]} is

non-empty.

To see that Assumption 2.2.8 (i) is not satisfied for arbitrary linear transformations, we set
some entries of the associated matrix to be negative, then there will exist some a for which f, is
not monotonous. This assumption is used to define the confidence intervals on the target arms, and
without it, their proof of correctness does not hold. We modify the assumption to the following
which trivially holds true for any function:

Assumption 2.2.9. The mapping function f is monotone with respect to the partial order of
vectors: for any u,v € RS, u < v implies min,<,<, f(m) < max,<m<, f(m).

It can be verified that if our target confidence sequences are constructed as

Lr(t,a,d) = miegﬂ%vi’a)fa(m), (2.23)
Ur(t,a,d) = mierégﬁ’i’é)fa(m), (2.24)
CIT(t, &,5) = [Cg(t,i,é),“g(t,i,é)], (2.25)

then the T-LUCB stopping rule and selection rule can be applied to any algorithm to give an (¢, ¢)-
correct algorithm. The proof of this is a simple modification of the proof of Theorem 2.2.4 where
we simply replace the construction of the target confidence sequences given in Section 2.2.2 with
the construction defined above.

We now switch our attention to Assumption 2.2.8 (ii). In short, Assumption 2.2.8 (ii) requires
that for each target arm confidence interval, there exists at least one source arm confidence interval
which contains the target arm confidence interval. This assumption is used to determine the set of
source arms which should be sampled in the Micro-LUCB algorithm. Indeed, it is integral for the
algorithm since, if the assumption is not satisfied, the sampling rule is not well defined. While this
assumption is not directly satisfied for the linear setting, [15] mention one avenue for weakening
the assumption so that it is satisfied for a larger class of functions. This weaker assumption is as
follows:

There exists some a > 0,b € R such that for any u,v € RS, u < v, a € [T], the set D(a,u,v) =
{i € [9] : [fa(u), fa(v)] C [au; + b, av; 4+ b]} is non-empty.

However, this assumption also is not well defined as [f,(u), f,(v)] is not an interval unless f, is
component-wise monotonically increasing. To fix this, we propose the following assumption:
Assumption 2.2.10 (Modified Assumption 2(ii) of [15]). There exists some a; > 0,b; € R such that
for anyu,v € RS, u < v, a € [T, the set D(a,u,v) = {i € [S] : [MiNy<m<y folm), MaXy<mey folm)] C
la;u; + b;, av; + bi]} is non-empty.

Remark 2.2.11. This modified assumption is indeed a generalization of the previous assumption,

which can be seen by taking a =1,b = 0.

This assumption then gives rise to a modified version of the Micro-LUCB algorithm which we
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state in Algorithm 2.

Sample each source arm once.;
fort=1,2,... do
By = argmaxa € [T]Ls(t,a,0d);
Cy = argmaxa € [T],a # BUr(t,a,d);
Choose any I; from D(Bt, Ls(t, By, 0),Us(t, By, d));
Choose any .J; from D(Cy, Ls(t, Cy, 0),Us(t, Cy,5));
Observe X;; ~ Sr, and X, 9 ~ Sy,;
Update [Ls(t, I;,0),Us(t, I},6)] and [Ls(t, Ji, 6),Us(t, Ji, )];
if Lr(t+1,By;,0) >Ur(t+1,C4,d) then
a < By;
return a;
end

end
Algorithm 2: Modified Micro-LUCB

It can be shown that only ‘diagonal’ matrices satisfy the above assumption. We demonstrate

this in the case A € RZ§® through the following proposition:

Proposition 2.2.12. Let A € RQZBQ. Suppose A satisfies Assumption 2.2.10, then for 1 = 1,2,
either A;; =0 or A;p = 0.

Proof. Let
A Ag
Ag1 A

Y

where A;; > 0. Without loss of generality, we assume that ¢ = 1 and A;; # 0, and we will
demonstrate that this necessarily implies that A;5 = 0. First, under Assumption 2.2.10, we know
that

by < Ajug + Ajgug — aquy, (2.26)
bl Z A11U1 + A12’U2 — ayvx. (227)

Suppose we pick v; to satisfy

v > Ajr(uy — 1) + Aga(ua, v2) +uy
3]

Some straightforward algebra shows that

Apug + Ajgug — aqug < Aoy + Agve — aqgvg.
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The above inequality then implies that
by < Ajug + Apug — ajug < Aoy + Aipve — aqvy < by,
which is only possible when
Ajjug + Appug — ajuy = Ao + Ajpve — aqvy. (2.28)

To see this is a contradiction, we rearrange equation Eq. (2.28) and observe that the following must
hold for all u < v:

A12(U2 - U2) = (An - al)(ul - Ul)-

However, this is cannot hold for all © < v unless Ay = (A3 — a1) = 0. This implies that A5 = 0.
Therefore, Ajo = 0, as desired. (The same argument can be repeated to show that if A5 # 0, we
must have Ay; = 0). O
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2.2.7 Proofs of Results

This section contains the proofs for the results given in Section 2.2.3.

Miscellaneous Results

Our analyses rely on the events that the means of the source and target arms stay within their

respective confidence sequences. Formally, we define this ‘good event’, £ as follows

Es =) ) {m € Cls(t,i,6)}, (2.29)

teNie[S]
Er=[) ) {va € Clr(t,a,6)}, (2.30)
teN a€e[T)

If 8 is chosen as to satisfy the condition in equation 2.7, then we can show that £ occurs with
probability at least than 1 — 4.
Lemma 2.2.13. Assume (3 is chosen to satisfy condition Eq. (2.7) so that

P{3t>1:p & Cls(t,i,0)} <. (2.32)

Then,
P{E}>1-9, (2.33)

where & is defined as in equation Eq. (2.31).

Proof. The condition in equation Eq. (2.7) implies that P{£s} > 1 — §. To prove the result, we
show that g implies & which directly implies that P{€} = P{€s} > 1 — 4. To see this, we fix
a € [T] and observe that on the event Eg

m;€Cls(t,i,0
i€lS] s(ti:0)

Lr(t,a,0) = Z min ~ f,;(m;) < Z Jai(ts) = Va,
1€[S]

Urlts 0= 3 By Josm) 2 3 Jusli) = v

so that L7 (t,a,d) < v, <Ur(t,a,0). Since a is arbitrary, the above result holds for all a € [T]. We
have just shown that g implies Er so that P(£) = P(Es) > 1 — § as desired. O

We now use this result to prove Theorem 2.2.4 which concerns the correctness of Algorithm 1.

Proof of Theorem 2.2.4. We observe that by Lemma 2.2.13, the event £ occurs with probability at
least 1 — ¢§. In particular, this implies that for each target arm, a, and for every round, ¢, we have

that v, € Cly(t,a,0). Suppose that the stopping condition is met and recall that we have set a = 1
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to be an optimal target arm. Then, if B; is an optimal target arm, the algorithm clearly returns an
e-optimal arm. Next, suppose that B; is not an optimal target arm. In this case, we observe that

Vp, T € > 'CT(t?Btad) > MT(tacta 6) > MT(ta 1a5) > V1 = maxy,

a€[T)

which implies that B; is e-optimal and thus proves the correctness of our algorithm, as desired. [

Results for Additive Transfer Functions

For the readers convenience, before presenting the proof of Theorem 2.2.5, we briefly review our

notation. We let

L(i t = a.i — i a.i 2.34
(i,a,t,) mehg@;m]f i(m) me[zfﬁ?g(t,a]f i(m) (2.34)

to represent the length of target arm a’s confidence interval contributed by source arm i when
Ls(t,i,0) = x. Next, we define

% - Val, 2
To;=minqt € N: sup L(i,a,t,x) < el = ). /2) ’ (2:35)
xe[ﬂi*Zﬁ(tva)vﬂi] Sa
and
T; = INaX T, ;. (2.36)
a€(T)

Lemma 2.2.14. Let (P, Q) € {(Bt, ), (Ct, Ji)}. On the good event &, if Ng,(t) > Tp,0,, then

Ur(t, P, 8) — Lr(t, Py, 6) < max {71 — vp,e/2} . (2.37)

Proof. Since we are on the good event, it must be true that pg, > Ls(t, Qr,6) > pg, —268(Ng,(t),6).
Therefore, the definition of 7p, ¢, implies that if Ng,(t) > 7p, ¢,, then

L P.t) = — i
(Qta ts 7) mECIII‘IS%S),(Qt,d) fPt,Qt (m) mEC{Eg}Qtﬁ) fPt,Qt (m)

< max { |12 — vp,|,€/2}
)

Sp,

where the inequality follows by the definition of 7p, ,. Additionally, by the definition of the selection

rule, we observe that for all i € [S],

L(Q:, P t) > L(i, Py, t).
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Therefore, the following inequalities must hold
Ur(t, P, 8) — Lr(t, P, 6) = Y L(i, P, t)
1€[S]

<> L(Qy, B,t)

1€[S]
— SPtL(Qt7 Pt? t)

< max{[r1s —vp|,€/2},
which gives us the desired result. O]

Lemma 2.2.15. Recall that 5 = 2. On the good event £ defined in equation Eq. (2.31), if
the algorithm has not terminated, then there exists P, € { By, Cy} such that

max {|ypt — 1], %} < |CL (¢, P, 6)|. (2.38)

Proof. We will split the proof into two cases which encompass all possible scenarios. The first case

is when |12 — vp,| > 5, and the other case is when § > |71 5 — vp/|.

Case 1 We start off by showing that | CI-(¢, P, 0)| > |71 2—vp,|. Here we assume that |7y o—vp,| >
£. Suppose for the purpose of contradiction that ;5 ¢ CLy(t, F;,d). If this is the case, then one of

the following four statements must be true:

1. iy < Ly(t, B, d) and 749 < Lr(t,C, ). However, on &, the only arm which can have a
lower confidence bound greater than 7; 5 is arm 1.

2. 119 > Ur(t, By, d) and vy 5 > Ur(t,Cy, §). However, on &, the upper confidence bound of arm
1, and hence the upper confidence bound of B;, must be greater than 7 5.

3. Uyo > Ur(t, By, d) and 1y 5 < Ly (t, Cy,0). However, on &, the upper confidence bound of arm
1, and hence the upper confidence bound of B;, must be greater than v 5.

4. 019 < Ly(t, By, 0) and 14 o > Ur(t,Cy, 0). This would imply that he algorithm has terminated,

which by assumption, is false.

Therefore, by our initial assumption we observe that there exists P, € { By, C;} satisfying max {|th — Uy o), %} <

| CIr(t, P, 0)]|.

Case 2 Here we show that exists a P, € {B;, Cy} such that | CLy(t, P, 0)| > 5. For this case, we

assume that § > |15 — vp,[. By the definition of the stopping rule, we know that

,CT(t,Bt,(S) < MT(t, Ot,(S) — €. (239)
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We observe that | CIr(¢, By, 0)| + | CI(t,Ct, 0)| > Ur(t,Cy,8) — Ly (t, B, 6). Then rearranging
equation Eq. (2.39) yields

€< MT(tv Ot7 6) - ‘CT(ta Bt7 6)
< ‘ CIT(ta By, 5)| + ’ CIT<t7 Ci, (S)l

Therefore, by our initial assumption we observe that there exists P; € {B;, C;} satisfying max {|vp, — 12/, £} <
| CL7(t, P, 0)|.

We have thus shown that, in both cases, there exists P, € {By, C,} satisfying P, € {B;, C;}
satisfying max {|vp, — 15, £} < | Cl(t, P, 0)|, which proves the desired result. O

Lemma 2.2.16. On the good event, &, if the algorithm has not stopped, then there exists a pair
(P, Q¢) € {(By, It), (Ct, Jy) } such that Ng,(t) < Tp,q,

Proof. By Lemma 2.2.15 we know that

max { va = 710, 5 | < | Clr(t, Pi,0)
S

= L(i, P,.t).
i=1

By applying the pigeonhole principle, we see that there must exist at least one i’ € [S] such that

L{i, Pt) > max {|vp, — Dol 5}

Sp,

Then, by applying the definition of the selection rule, and the fact that on the good event ug, >
Ls(t,Qr,0) > pg, — 26(Ng,(t),0), we observe that

sup L(Qtaphtax) Z L(thtvt)
me[:u"ifzﬁ(NQt (t),(s)”u,i]
> L(i', P, t)

> max{\upt — Uy o), %}

Sp,

This implies that
U1 — 2
NQt(t) Smll’l tENi sup L(Qt,Pt’t,x) < maX{‘VIQ VPt|7€/ }

z€[nq, —28(t,0),1q,] Sp,

= TP,,Q¢»

as desired. ]
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We are now ready to prove Theorem 2.2.5.

Proof of Theorem 2.2.5. We have

T:Zoo]hfgr
t=1

< ZOOHEI(R%7Qt) € {(Bt7lt)7 (Ct7 Jt)} : NQt<t> < TP,Q:

t=1
<Y ) olli € {I, Ji} - INy(t) < max 7,

ics) =1 a€[T)

— Z Zoo]li e{L, i} -IN;(t) <7
ie[S] t=1

which proves the desired result. O

Proof of Corollary 2.2.6. Suppose i € M since we otherwise don’t need to sample source arm i to
determine if M is the optimal target arm. From equation Eq. (2.15) we see that L(i,C,t,z) = o0

unless the confidence interval for yu; is a subset of C; or C{. We consider two cases.

Case 1. Suppose that p; € C;. Then, we require the confidence interval is a subset of C;. For this

to be true, it is easy to see that we require 23(t,0) < infyece |7 — pi| = Ac, (1)

Case 2. Suppose that p; € C;. Then a similar argument shows that we require 23(t,9) <
infrec; |2 — pil = Ac; (1)

In conclusion, we see that if i € M, then 7y, = inf{t € N: 5(¢,9) < ACT(“’)} Applying Theorem
16 of [14] gives the desired result. O

Proof of Corollary 2.2.7. We observe that since L(i,a,t,z) = 2|A,;|B(t,0) we have

V12 — 2

Applying Theorem 16 of [14] and taking the max over target arms gives the desired result

2.3 Active Exploration for Preference Learning

2.3.1 Introduction

The alignment of foundation models with user preferences has gained unprecedented importance

due to the widespread utilization of large language models (LLMs). The established pipeline for



2.3. ACTIVE EXPLORATION FOR PREFERENCE LEARNING 25

alignment in LLMs, as outlined in Stiennon et al. [32] and Ouyang et al. [33], comprises two steps
given a pretrained LLM. First, in the Supervised Fine-Tuning (SFT) phase, the LLM undergoes
fine-tuning via supervised learning with examples demonstrating the desired behavior. In the second
step, Reinforcement Learning from Human Feedback (RLHF), a policy generates multiple comple-
tions for each conversation prefix (prompt) in a training set; users then give ordinal preferences for
the set of completions from a particular prompt. These preferences are used to train a reward model
via a ranking loss like the Bradley-Terry-Luce model [34]. Finally, the policy is trained, typically
via Proximal Policy Optimization [35], to optimize the reward model while not moving too far from
the SFT-trained policy. More recent work [36], proposed an alternative to RLHF, Direct preference
Optimization (DPO), that enables training the LLM policy directly on preference data without

using RL and a proxy reward model.

As LLMs continue to scale and their areas of application broaden, the number of topics on which
we need to align increases, as does the overall scale of human-generated training data requirements.
Data annotation for preference-based learning is already incurring a considerable cost for companies
that train LLMs. This cost is likely to grow alongside the industry. The issue becomes especially
acute for LLMs in specialized areas such as safety, health, and scientific problems, where the cost

of expert feedback can be substantial.

In this work, we take advantage of the fact that we have control over which prompts and
completions we provide to human experts to make efficient use of their efforts. Drawing on recent
advancements in active exploration for reinforcement learning [37] and in black-box optimization
[38], we introduce a method for assessing the value of collecting preferences on specific datapoints,
which is both prospective and task-focused. First, we formalize this setting as a dueling contextual
bandit problem and design an efficient active exploration algorithm that offers polynomial worst-case
sample complexity guarantees regarding the policy’s performance. Next, we extend these ideas to
the alignment setting in LLMs. We show that choosing data for training LLLM policies on expert
preferences can be targeted by active learning, leading to efficient use of resources under restrictive
budgets. In this paper, we build atop the DPO methodology [36], and develop an acquisition
strategy that allows us to actively select preference data based on the DPO training objective.
We provide two extensions to our active exploration strategy: the first allows an online learning
approach, where data selection and training are based on the model’s generations, while the second

enables the data selection from offline existing preference data.

We evaluate our methods on four datasets: the Stanford Human Preferences dataset [39], the
Anthropic Helpful-Harmless dataset [40], and two additional datasets which we contribute to the
literature: Jeopardy! dataset and Haikus dataset. The Jeopardy! dataset is an extension of an
existing dataset from the game show Jeopardy!. It is composed of questions and factual answers
to evaluate the ability of an alignment method to avoid hallucinations. The Haikus dataset is
composed of instruction prompts to write Haikus with specific details and corresponding examples
of satisfactory Haikus. We use three LLMs with different sizes—GPT-2 [41], Pythia-2.8B [42],
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(1) Select context x (2) Select actions a, a’ (3) Human feedback
. “Maximize uncertainty!” . “Choose optimistically!” Isa>a’?
o0, ' o '
Y . Y , Q
. e.g. x isaprompt . eg. a, a’ areresponses 0, ;A
(4) Update dataset: D «— D U {x, a, a’, w} @

Figure 2.1: Illustration of the active contextual dueling bandit setting, and its application to sample-
efficient preference alignment in large language models.

and Llama-3-8B [43]—to showcase a wide range of results and generalization ability. Our main
contribution is formalizing the problem of preference data selection as a dueling contextual bandit
problem and proposing and analyzing an active exploration algorithm to solve it. We provide a

theoretical analysis on the regret bound of our method.

2.3.2 Problem Formulation

In this paper, we consider a dueling variant of what we denote the Active Contextual Dueling Bandit
(ACDB) problem introduced in Char et al. [44]. An instance of this problem is defined by a tuple
(X, A, f) where X denotes the context space, A denotes the action space and f : X x Ax A — [0, 1]
is a preference function so that f(z,a,a’) denotes the probability that the action a is preferred to
the action @’ when the underlying context is z. We also define a domain D = X x A. We will
design algorithms that operate under the following interaction protocol, which occurs for 7' time
steps. During each time step ¢ € [T, the agent selects a context z; € X and a pair of actions
at,a; € A and observes a binary random variable w; ~ Bernoulli( f(x, a;, a;)) which equals one if
a; is preferred to a; and zero otherwise.

We assume that the preference function has the form

f(x,a,d") = p(r(z,a) —r(z,d)), (2.40)

where p : R — [0, 1] is the link function and r : D — R is the unknown reward function. Common
link functions include the logistic function, which leads to the Bradley-Terry-Luce (BTL) model
[34] as well as the Gaussian CDF [45].

Our goal is to design algorithms that are able to efficiently identify policies with a small subop-

timality gap. We define the suboptimality gap of a learner’s policy 7 : X — A as

SubOpt(7) = sup (sup r(z,a) —r(z, W(I))) . (2.41)
zEX \a€A

This notion of suboptimality (considered in Char et al. [44] and Li et al. [37]) is stronger than

notions that look at the expected suboptimality of the final policy when the contexts are sampled

from some known distribution. In this work we also use this suboptimality, which looks at the

worst-case context for each policy.
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2.3.3 Active Exploration in RKHS

In this section, we describe our first contribution—a theoretically principled algorithm for the ACDB
problem—and provide formal guarantees on its performance. To provide the theoretical guarantees,
we need to first instantiate our general problem setup by making assumptions on the preference
function f (from Eq. (2.40)). In particular, we specify a class of functions that contain the true
unknown reward function. This choice is subtle, as we need to balance the trade-off between our
function class’s expressiveness and theoretical tractability. Motivated by its theoretical popularity
and empirical success, we choose the function class to be a Reproducing Kernel Hilbert Space. While
this choice of function class is common in the literature, we make a few additional assumptions to

more appropriately accommodate our problem setting.

The Contextual Borda Function Before going over our assumptions, we first introduce the
contextual Borda function f,, which is core to our algorithm. The contextual Borda function
generalizes the Borda function introduced in Xu et al. [38] for dueling-choice optimization, defined
as the probability that an action a will be preferred over a random action ¢’ uniformly sampled
from the action space. We generalize this definition to the contextual setting as f, : D — [0, 1],
where f.(z,a) = Eyou(a [f(z,a,a’)] and U(A) is the uniform measure over the action space. It is

clear from this definition that f, and r have the same maximizers.

We now discuss our assumptions. Our first assumption restricts the reward and contextual Borda
functions to be ‘smooth’ in a Reproducing Kernel Hilbert Space (RKHS). Our second assumption

relates the reward function to the contextual Borda function.

Assumption 2.3.1. Let k : D x D — R denote a positive semi-definite kernel and let H, denote

its associated RKHS. We assume that ||7||., || f||. < B, where B is a known constant.

Note that this assumption is stronger than the standard assumption, which only requires that
r has a bounded RKHS norm. It is difficult to bound the norm of f, given a bound on the norm
of r due to the generality of our setting, which allows for different link functions. We investigate
this issue numerically in Appendix 2.3.9. We find that the norm of the Borda function is almost
always smaller than the norm of the reward function for samples drawn from the distribution of

basis functions used for experiments in Section 2.3.7.

Assumption 2.3.2. Let f(z) = max, f.(z,a) and r*(z) = max,r(z,a). There exists a constant
Ly such that for every x € X, a € A we have L%(r*(x) —r(z,a)) < f*(z) — f.(z,a).

This assumption implies that differences in r will cause a similar magnitude of difference in f,.
In fact, when the link function p(-) is Lipschitz continuous, it is sufficient for its Lipschitz constant
to be at least 1/L; for this condition to hold. We note that this assumption holds for the two most

commonly used link functions, the logistic function [34] and the Gaussian CDF [45].
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2.3.4 Methods

At a high level, our approach reduces the dueling feedback problem to contextual optimization
over a single action via the contextual Borda function introduced above. We then apply techniques
adapted from recent work on active exploration in reinforcement learning to construct a sampling
rule and a policy selection rule, which allow us to output a policy with low suboptimality. Broadly,
our sampling rule draws contexts which have maximum uncertainty over the Borda ‘value function’

and then compares the optimistic action with an action sampled uniformly from the action set.

Estimating the Contextual Borda Function By design, we can estimate the contextual Borda
function using preference data {xy, a;, a;, w;} by selecting x;, a; in an arbitrary fashion and sampling
a; uniformly at random. For low dimensional settings, our algorithm first estimates the contextual
Borda function using standard kernelized ridge regression (KRR) [46]. One key feature of KRR is
that it provides both an estimate of the contextual Borda function after ¢ observations, u(x,a),
as well as uncertainty quantification of the predictions. Indeed, under Assumptions 2.3.1 and 2.3.2
we can show that |f.(z,a) — p(z,a)| < Boy(z,a) for an appropriately chosen § and oy(x,a) (see
Lemma 2.3.8).

Selecting Contexts and Actions Our sampling rule builds on top of the one established in Li
et al. [37]. Put simply, the rule is to sample the state with the maximum uncertainty over the
value function and then act optimistically. We now present our algorithm, which extends these
ideas to the dueling setting via the contextual Borda function f,.. For now, we assume that there
is a known bonus term @(T) for all . We can then define upper and lower confidence bounds

fi(z,a) = w(x,a) +Bt(r)at(m, a) and f(z,a) = p(z,a) — ", (2,a). Our rule is to select a context

x; € argmax (maxf_,’f(x, a) — max f(z, a)) : (2.42)
zEX acA acA —

Here, we are choosing a context that maximizes the difference between the optimistic ‘value function’

and the pessimistic ‘value function’ (both of which require a maximization over actions to compute).

We then optimistically choose an action

a; € argmax fi(z;,a). (2.43)
acA

After repeating this process T' times, we output a pessimistic policy against the tightest lower bound
we can find, which is the maximizer of all our lower bounds through the optimization process. Put

formally, we return 7 : X — A such that

7ip(r) € argmax max f!(x, a). (2.44)
acA ST —

We construct the full active exploration algorithm, AE-Borda, given in Algorithm 3.
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Input: kernel function k(-,-), exploration parameters Bt(r), number of inital data ng
Let D,,, = {z;, a;, a;,w;}1°; for x;, a;, a drawn uniformly at random.
fort=n¢g+1,...,7 do
Compute py(-,-), o4(+, ) using KRR.
Choose x; according to Eq. (2.42).
Choose a; according to Eq. (2.43), draw a; ~ U(A), and draw w; ~ Bernoulli(f(x, ar, a})).
Let Dy = Dy U {(24, at, a}, wy) }.
end for
Output a final policy 77 according to Eq. (2.44).
Algorithm 3: AE-Borda

2.3.5 Theoretical Analysis

In this section, we provide formal guarantees for our AE-Borda algorithm. Our main result estab-

lishes polynomial regret bounds for active exploration in the kernelized dueling bandit setting.

Information-Theoretic Quantities

Our analysis relies on the concept of maximum information gain, which quantifies the information

content of our function class.

Definition 2.3.3 (Maximum Information Gain). The mazimum information gain over t rounds,
denoted ®,, is defined as:

b, = max  I(rg+e€a;7r4) (2.45)
ACX XA A|=t

where 14 = [1(x)|zea, €4 ~ N(0,7%I), and 1(X;Y) denotes mutual information.

The maximum information gain captures how much information we can obtain about the reward

function from ¢ well-chosen observations. For common kernels, ®; grows polynomially in ¢:

e Linear kernel: ®; = O(dlogt) where d is the dimension
® RBF kernel: ®; = O((logt)?*!) where d is the effective dimension

e Matérn kernel: &, = O(t¥2**9(logt)!/2) where v is the smoothness parameter

Main Theoretical Result

Our main theoretical contribution is the following regret bound for the AE-Borda algorithm.

Theorem 2.3.4 (Regret Bound for AE-Borda). Suppose we run Algorithm AE-Borda with confi-

dence parameter:

B, =2B + \/2q>t +1+log (g) (2.46)
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Then, with probability at least 1 — &, the suboptimality of the returned policy satisfies:

Proof Sketch

The proof follows a confidence-based analysis and relies on several key lemmas:

Confidence Bounds. Under our RKHS assumptions, we establish that the KRR estimates satisfy
high-probability confidence bounds:
Lemma 2.3.5 (Confidence Bounds). With probability at least 1 — 6, for all (x,a) € D and all t:

|f,,(x,a) - ﬂt(x7a>| < 6150'15(1'7@) (248)

Information Gain Bound. The total uncertainty encountered by the algorithm is bounded by
the maximum information gain:

Lemma 2.3.6 (Information Gain Bound). The cumulative uncertainty satisfies:

T
> ot(w,a) < O (2.49)

t=1

Regret Decomposition. We decompose the suboptimality into bias and variance terms, showing
that the active exploration strategy effectively balances exploration and exploitation.

The key insight in the proof is that our context selection rule Eq. (2.42) ensures that we focus
our exploration on regions where the uncertainty about the optimal action is highest. This leads to

efficient reduction of the confidence regions around the optimal policy.

Implications and Discussion

Our regret bound has several important implications:

1. Polynomial Sample Complexity: For common kernels, the bound implies polynomial

sample complexity, which is optimal up to logarithmic factors.

2. Adaptive to Problem Difficulty: The dependence on & means the algorithm automati-
cally adapts to the intrinsic difficulty of the problem as measured by the kernel.

3. Worst-Case Guarantees: Unlike expected regret bounds, our result provides worst-case

guarantees over all possible contexts, making it suitable for safety-critical applications.

The factor L; in our bound reflects the relationship between the reward function and the contex-
tual Borda function. While this factor can be problem-dependent, it is typically small for common

link functions used in practice.
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2.3.6 Extensions to Large Language Models

While our theoretical framework provides strong guarantees in the kernelized setting, extending
these ideas to large language models requires addressing several practical challenges. In this section,

we discuss how to scale our active exploration principles to the high-dimensional setting of LLMs.

Challenges in the LLM Setting

Extending the AE-Borda method to LLMs faces several limitations:

1. Unsuitable Action Space: The contextual Borda function as originally defined requires
uniform sampling from the action space. For LLMs, where actions are sequences, most uni-

formly sampled sequences are trivially distinguishable from natural language.

2. Batch Training Requirements: Neural network training proceeds in batches, making it

inefficient to label and train on single examples as in the theoretical algorithm.

3. Limited Uncertainty Estimation: The uncertainty estimation tools for sequence models
are more constrained than those for explicitly kernelized models, especially given memory

constraints in training LLMs.

Generalized Contextual Borda Function

To address the first limitation, we propose a generalized contextual Borda function that uses a more
meaningful proposal distribution:
Definition 2.3.7 (Generalized Contextual Borda Function). For a proposal distribution m: X —

P(A), the generalized contextual Borda function is:
[H(x,a) = Egn@) [P(w=1]z,a,d")] (2.50)

We can recover the original function by setting 7(z) = U(A). For LLMs, f7SF7 is a natural choice

where mgpr is the supervised fine-tuning policy, as it provides meaningful comparison samples.

Direct Preference Optimization Integration

We build upon Direct Preference Optimization (DPO), which avoids training a separate reward
model by optimizing the policy directly on preference data. The DPO loss for a policy my with

reference policy mgpr is:

mo(a | )

mo(a’ | x)
L : = —Ewaaw~p |1 2w —1) (1 —1
ppo(To; Tsr) (@,a,0w)~D {oga (7( w—1) <og mser(a | o) 08 mspr(a | )
(2.51)

where v is a hyperparameter controlling the KL penalty strength.
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Uncertainty Estimation with Dropout

For uncertainty estimation in the neural network setting, we employ Monte Carlo dropout. For a

sequence a consisting of tokens ¢;, we have:

logn(a|z) = Zlogﬂt |z, by, ... tiq) (2.52)
t;€a
We incorporate m dropout masks d; into the function 7(¢; | x,1,...,t;_1,d;). During inference,

Monte Carlo sampling with dropout gives an ensemble with:

p(ts | by, tisy) Zlogm |z, th, . b, d;) (2.53)
1 — 2
O'(t, | l’,tl, c. 7ti—1) = mzl (10g7T(tz | I,tl, ces 7ti—17dj) - ,LL) (254)
j=

The standard deviation serves as an approximation for epistemic uncertainty in a computation-

ally efficient manner.

Active DPO Algorithm

Using the DPO framework and dropout uncertainty estimation, we can define confidence bounds

for the generalized Borda function. For upper and lower confidence bounds:

N

__ 1 1
f':rSFT(x’a) ~ — @i a(al) (255)
n 4 o (af|x . 7o (a|x
i=1 1+ exp (5 log Tspr(al|T) flog TFSFT(GPC))
N
1 1
f:'SFT(x’a) ~ — T @) (2.56)
n 4 7o (ajlz) Telajr
i—1 1+ exp (5 log ey — Plog wsw(alm)>

where Ty and 7 are the upper and lower confidence bounds on the policy probabilities.

Acquisition Function

We define an acquisition function that generalizes our context selection rule to the LLM setting:

_ FTSFT _ TSFT
a(r) = max " (2, a) — max £ (z, ) (2.57)

This acquisition function identifies contexts where there is maximum uncertainty about which

action is optimal. In practice, we use this function to select batches of training data by:
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—_

. Sampling a large batch of contexts

2. Evaluating the acquisition function for each context

3. Selecting the top-b contexts with highest acquisition values
4. Collecting preference labels for these contexts

5. Training the policy using DPO on the selected batch

This approach addresses the batch training requirement while maintaining the core principles

of active exploration: focusing annotation effort on the most informative examples.

2.3.7 Experimental Validation

While this chapter primarily focuses on the theoretical foundations of active exploration for pref-
erence learning, we briefly summarize the experimental validation of our methods to demonstrate

their practical effectiveness.

Experimental Setup

The empirical evaluation of our methods spans both synthetic environments that validate our theo-
retical predictions and real-world applications to large language model alignment. The experiments
were designed to answer several key questions:

1. Do our theoretical algorithms achieve the predicted regret bounds in controlled settings?

2. Can the active exploration principles scale effectively to high-dimensional problems like LLM

alignment?

3. How much sample efficiency improvement do our methods provide compared to passive base-

lines?

Kernelized Setting Results

In the kernelized setting, we validated our theoretical predictions using synthetic preference func-
tions with known ground truth. The experiments confirmed that:

¢ Our AE-Borda algorithm achieves regret bounds consistent with Theorem 2.3.4

e The algorithm effectively identifies high-uncertainty regions for exploration

¢ The contextual Borda function provides a suitable proxy for optimization in the dueling setting

The empirical regret curves matched the predicted O(1/v/T) convergence rate, with constants

depending on the kernel choice as expected from theory.
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Large Language Model Results

For LLM experiments, we evaluated our Active DPO method on multiple datasets and model sizes,
including GPT-2, Pythia-2.8B, and Llama-3-8B. Key findings include:

e Nearly 13% relative improvement in performance compared to passive baselines when working

with restricted annotation budgets
e Superior performance in avoiding hallucinations on factual question-answering tasks

e Effective scaling across different model architectures and sizes

Practical Impact

The experimental results demonstrate that the theoretical insights from our RKHS analysis success-
fully transfer to practical applications. The active exploration principles provide significant sample
efficiency improvements, which is crucial for real-world deployment where human annotation is
expensive.

These results validate our core hypothesis that strategic selection of preference data can sub-
stantially improve the efficiency of preference-based learning systems. The theoretical framework
provides principled guidance for algorithm design, while the practical extensions make these benefits

accessible in high-dimensional settings.

2.3.8 Conclusion

In this chapter, we presented a comprehensive theoretical framework for active exploration in
preference-based learning, with applications to reinforcement learning from human feedback and
direct preference optimization. Our contributions span both fundamental theory and practical

algorithmic innovations.

Summary of Contributions

Our main theoretical contributions include:

1. Problem Formulation: We formalized the problem of efficient preference data collection as
an Active Contextual Dueling Bandit (ACDB) problem, providing a principled foundation for

analyzing active exploration in preference learning.

2. Algorithm Design: We developed the AE-Borda algorithm, which reduces the dueling

preference problem to contextual optimization via the novel contextual Borda function.

3. Theoretical Guarantees: We established polynomial regret bounds for our algorithm in
the RKHS setting, showing O(1/v/T) convergence to optimal policies with high probability.

4. Practical Extensions: We extended our theoretical insights to large language models

through the Active DPO framework, addressing key challenges in scaling to high-dimensional
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sequence models.

Key Insights

Several important insights emerge from our theoretical analysis:

The Power of Active Selection. By strategically choosing which contexts and action pairs
to query, we can achieve significantly better sample complexity than passive approaches. This is

particularly valuable when human annotation is expensive or time-consuming.

Contextual Borda Function as a Bridge. The contextual Borda function provides an elegant
bridge between dueling bandit problems and single-action optimization, enabling the application of

well-developed active exploration techniques from reinforcement learning.

Uncertainty-Driven Exploration. Our acquisition functions, based on the difference between
optimistic and pessimistic value estimates, provide a principled way to identify the most informative

queries. This uncertainty-driven approach naturally balances exploration and exploitation.

Scalability through Approximation. While exact implementation of our theoretical algorithm
may not be feasible in high-dimensional settings, the core principles can be preserved through careful

approximations, as demonstrated in our LLM extensions.

Implications for Preference-Based Learning

Our work has several important implications for the broader field of preference-based learning;:

e Sample Efficiency: Active exploration can substantially reduce the amount of human feed-
back required for effective preference learning, making these approaches more practical for

deployment.

¢ Theoretical Foundation: Our regret bounds provide the first polynomial sample complexity
guarantees for active exploration in contextual dueling bandits, establishing a theoretical

foundation for this important problem class.

¢ Practical Algorithms: The extension to DPO shows how theoretical insights can guide the

design of practical algorithms for real-world applications like LLM alignment.

Future Directions

This work opens several promising directions for future research:

1. Tighter Analysis: While our bounds are polynomial, there may be room for improvement

in the constants and dependence on problem parameters.



36 CHAPTER 2. LEARNING WITH ALTERNATIVE FEEDBACK MECHANISMS

2. Alternative Function Classes: Exploring active exploration in other function classes be-

yond RKHS could broaden the applicability of these techniques.
3. Multi-Armed Settings: Extending to settings with more than two options per query could

capture richer preference structures.

4. Robustness: Developing methods that are robust to misspecification of the preference model

or adversarial behavior.

The theoretical framework developed in this chapter provides a solid foundation for continued
advances in active preference learning, with the potential for significant impact on both fundamental

understanding and practical applications.

2.3.9 Proof of Theorem 2.3.4

In this section we will prove our main Theorem, 2.3.4. The overall strategy of the proof is to use our
Lipschitz assumption on the link function (more precisely, the relative Lipschitzness of the reward
r and the Borda function f,) in order to go to the Borda function, which we can directly model
from data. Then, we use our selection criteria as well as confidence bounds taken from Chowdhury
and Gopalan [47] and convergence rates taken from Kandasamy et al. [48] in order to complete the
argument. We give these cited results as lemmas in what follows.

In order to attain a particular policy performance with probability 1 — 4, we must bound the
error of the estimates given by our KRR process for a particular confidence level. In order to do
so, we adapt the result from Chowdhury and Gopalan [47], Theorem 2.

Lemma 2.3.8. Let 8" = 2||f,||. + V2(®1 (X x A) +1+1og(2/5)). Then with probability 1 — &
we have for all time t and any point (z,a) € X x A,

i (2,a) — fo(z,a)| < B o (2, ).

Proof. To prove this result, we will verify that all the conditions from Theorem 2 of Chowdhury and
Gopalan [47] hold. Recall Assumption 2.3.1 which states that || f,||. < B. Next, we observe that
since a; ~ U (A) (independent of everything else), we have that E [w; | Fr_1] = f.(2, ar), where
Fi = p ({(xs, as, a,, ws)},_,) is the filtration generated by the past observations. Additionally, since

wy € {0,1} and zy, a; are both F;_; measurable, we see that w; can be written as

wy = fr(xy, ar) + e,

where 7, is F;_i-conditionally subGaussian. Therefore, we have met all the necessary conditions,

and we can apply Theorem 2 of Chowdhury and Gopalan [47] which gives us the desired result. [

This lemma jointly bounds the modeling error over the Borda function for all time ¢ though it

introduces a dependence on the RKHS norm of f,.. This dependence is inherited from prior work,
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but we empirically study the relationship between the RKHS norm of a particular reward function
and that of the associated Borda function in Section 2.3.9. We also adapt a result from Lemma 8

of Kandasamy et al. [48] in order to understand the convergence of our uncertainty function oy.
Lemma 2.3.9. Suppose we have n queries (q;)7—, taken from X x A. Then the posterior oy satisfies

2
—— P, (X
2 71a(0) < o (A <)

Proof. In this proof, we condition on the event in Lemma 2.3.8 holding true. Given that occurrence,

we can say the following for every z € X.

Assumption 2.3.2
maxr(z,a) — r(x, 7p(s)) < Ly (max fr(z,a) — fr(z, 7ir(x ) (2.58)
acA acA
Lemma 2.3.8
< Ly (maxf,,(x,a) max ft(x 7 (T)) ) (2.59)
acA te[T
Def. of #p t
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= L1 mi — t 2.61
1 fuin (r;leaﬁifr(x,a) max L(%@) (2.61)
Lemrn<a 2.3.8 I . 7 . 9 62
< 1 g max f(z,a) — max f;(z,a) (2.62)
Def.<of xt I . ; P 9 63
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o
<23 (e = fiata)) (2.65)
t=1
o
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== > 28 0y(a' o) (2.66)
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S Ty | et (2.67)
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(r)
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Ll 1
_O<\/T (B%—@T\/logg)) . (2.71)



38 CHAPTER 2. LEARNING WITH ALTERNATIVE FEEDBACK MECHANISMS

]

RKHS norms of r and f,

In order to understand the dependence of our estimation bound on the RKHS norm ||f,||., we ran
numerical experiments on sampled reward functions. For a variety of context and action dimensions,
we sampled 1000 reward functions as in Section 2.3.7 and numerically approximated their RKHS
norms. We also made a Monte-Carlo estimate of the Borda function f, for each of the reward
functions sampled and numerically approximated its RKHS norm. To do this, we uniformly sample
1,000 points z; from the input space, compute the regularized kernel matrix K for this set x;, solve
the KRR problem Ka = f(z) for a. Then we compute the quadratic form VaTKa as an estimate
of the RKHS norm.

In Table 2.1, we present the results of comparing the RKHS norms of 1000 reward functions and
their associated Borda functions sampled as in Section 2.3.7. A ‘win’ was counted when the Borda
function had smaller RKHS norm and a ‘loss’ otherwise. The win margin is the average difference
in RKHS norms of the reward and Borda functions, with a positive value when the Borda function
was of smaller norm. It is clear here that in general (though not always) the RKHS norm of the
Borda function f, for a particular reward function r is smaller than the RKHS norm of the reward
function r itself. This relationship seems to grow stronger as the input dimensionality of the reward

function grows larger.

Context Dimension Action Dimension Win Rate Win Margin

0 1 0.16 -6.3
1 1 0.89 5.1

1 3 1 214
3 1 1 21.5
3 3 1 38.7
10 10 1 19.6

Table 2.1: Comparison of RKHS norms of reward functions and associated Borda functions

Additional Related Work

In this section, we discuss additional related work, including alternative contextual bandit methods,

uncertainty estimation in large language models, and concurrent work on active selection of data

in LLMs.

Human feedback in RL and LLMs Here we discuss additional related work on human feed-
back in reinforcement learning, and more recently, in LLMs. This technique showed significant

performance benefits in practice; for example, in the Atari test case [49], where naive deep RL
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would have necessitated thousands of hours of gameplay, they accomplished superior performance
with just 5,500 or several hours of human queries. More recently, human preference feedback has
also been used more recently to improve the performance of LLMs. For example, many recent
approaches have demonstrated the effectiveness of using human feedback to enhance LLM stylistic
continuation [50], text summarization [32], translation [51], semantic parsing [52], review generation
[53], and evidence extraction [54]. In particular, the work by [40] places focus on improving model
reliability and robustness by incorporating human feedback to gauge the helpfulness or harmfulness
of its responses. However, while effective, the integration of human feedback comes with substantial
costs. For example, Stiennon et al. [32] achieved substantial enhancements over baseline methods
but required the generation of summaries for 123,169 posts from the TL;DR dataset, a task per-
formed by a large team of labelers from crowdsourcing platforms. This heavy resource requirement
is reflected in state-of-the-art work. Ouyang et al. [33] emphasizes RLHF to improve the alignment
of the GPT-3 model across aspects such as toxicity, hallucinations, and overall quality. Here, the
team enlisted the efforts of 40 labelers and worked with a dataset comprising over 100,000 examples

labeled by humans.

Uncertainty Estimation in Large Language Models Estimating the epistemic uncertainty
in large language models is still an active area of research and there are few prior works on this topic
(focusing specifically on epistemic uncertainty). For example, [55] augment existing models with
additional layers to model randomness, and subsequently the uncertainty. However performing un-
certainty quantification in a parallelized fashion requires a significant memory overhead. To be more

amenable to larger models, we instead use a dropout-augmented model to estimate uncertainty [56].

Concurrent work on active learning in LLMs Concurrently with our work, there has been
recent releases of papers related to active data selection for LLMs, which we cover in this section.
Note that these papers are predominantly recent and yet unpublished work, released on preprint
servers, some of which build on our method and setting. For example, Das et al. [57] builds on
our active contextual dueling bandit setting, aiming to develop a method that yields improved
theoretical guarantees with reduced assumptions. Zhang et al. [58] proposed a version of DPO
using bilevel optimization to optimistically bias towards potentially high-reward responses, though
does not use an explicit uncertainty estimate. Xiong et al. [59] develop an an online exploration
algorithm as well as a rejection sampling method for offline settings, framing the problem as a
reverse-KL regularized contextual bandit problem. Muldrew et al. [60] propose an active learning
method for DPO, based on the predictive entropy of LLM predictions as well as uncertainty given
by the (implicit) reward model. Xie et al. [61] presents a method that performs DPO with an
exploration bonus for improved efficiency. Finally, Hiibotter et al. [62] work on a method for active
selection of examples for fine-tuning of LLMs using active data selection, for a (single) given prompt

at test time.
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2.4 Active DPO Using the Reward Function and Offline
Data

In this section, we start by proposing another active learning acquisition function based on the
reward model. Then we provide a discussion contrasting the real use cases of active learning using
online data generated from the policy and the synthetic setting where we can use existing offline
benchmarks to evaluate active learning methods.

We propose a new acquisition function that uses the confidence interval of the reward function
instead of the generalized Borda function that operates based on the preference model. Using the
reward model provides an intuitive solution in RLHF in general and DPO in particular, since the
goal is to learn a policy that generates high-reward answers. We can approximate the confidence
interval for r (7 and r) using the reward expression as the ratio of the policies as defined in the

DPO paper. We can compute our upper and lower bounds as

F(w,a) =Y gty | x,t, .. tia) + Bo(ti | @b, ... i) — log mgpr(a | ),

ti€a

r(z,a) ZZu(t@- | @ty tion) = Bo(ti [ 2,y .. ticr) — log mspr(a | @),

ti€a

for an uncertainty parameter 5 > 0. Here, we define an acquisition function as:

a(r) = arerlﬂ};) T(z,a) — alglﬂ}i) r(z,a). (2.72)
In this equation, «(x) is the uncertainty of the state-value function according to z. In choosing the
states where the potential for error in the value achieved is largest, the agent can learn to behave
well in those places. This criterion is similar to that in [37] and provides similar guarantees to ours
for max-regret in the active contextual bandit setting. In situations like ours where we are using
fixed offline datasets, we set A(x) in Eq. (2.72) to the set of available responses for a particular

action; otherwise, we use A(x) = A.



Chapter 3
Adaptive Causal Inference

This chapter develops adaptive experimental design methods for efficient causal inference. We
present two complementary approaches that address different aspects of the adaptive treatment
allocation problem: one focuses on achieving exponential improvements in finite-sample regret,
while the other leverages the asymptotically optimal AIPW estimator through principled optimistic
design. Both contributions bridge classical experimental design with modern algorithmic approaches

to sequential decision-making.

3.1 Clipped Second Moment Tracking

3.1.1 Introduction

Randomized Controlled Trials (RCTs) have long been considered the gold standard of evidence in a
variety of disciplines, ranging from medicine [63], policy research [64], and economics [65]. In their
simplest form, RCTs involve a control arm and a treatment arm, and the objective is to determine
if the treatment causally outperforms the control. This is typically achieved by fixing a treatment
assignment probability (hereafter called an allocation), assigning experimental units to an arm, and
using the resulting outcomes to estimate the Average Treatment Effect(ATE).

Despite the ubiquity of RCTs, many practitioners have noted that RCTs would benefit from
the use of adaptive methods—methods in which practitioners vary some aspect of the experiment
through the course of the experiment [66-68]. Although there are many reasons for desiring adaptiv-
ity, our primary focus is to adaptively select the treatment allocation probability in order to obtain
the best possible estimate of the ATE. More concretely, our goal will be to minimize the MSE of
our ATE estimate! This is the essence of the problem known as Adaptive Neyman Allocation [69]
and is the primary focus of this work.

Despite the recent attention given to adaptive approaches, considerable work remains to ensure

In general, one may wish to minimize the mean squared error of the ATE estimate. Since our work focuses on
estimation using the unbiased Horvitz-Thompson estimator, this is equivalent to minimizing the variance.

41
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their success in practice. This is because a significant portion of prior work on this topic has focused
on developing algorithms with strong asymptotic guarantees. In this asymptotic regime, much is
known, such as the semiparametric efficiency bound [70, 71] for non-adaptive approaches, as well as
adaptive procedures which asymptotically match the performance of the best possible non-adaptive
approach [72]. While these results provide a solid foundation, their asymptotic nature overlooks
many nuances crucial for practical application. At a high level, prior asymptotic approaches aim
to identify the (unknown) variance-minimizing allocation and demonstrate that their allocation
converges to this allocation. However, they do not adequately address the challenges of efficiently
learning this allocation, which is often vital for practical implementation [73].

In order to address these subtleties, we believe a nonasymptotic analysis is required. Unfor-
tunately, such analyses are currently scarce. The only work we are aware of which provides a
nonasymptotic analysis is Dai et al. [69] who propose the C1ip0GD algorithm and show it attains
O(\/T ) Neyman regret—a new measure of performance which we formally introduce in Section 3.1.2.
Despite offering a promising starting point, this work has several limitations. As we further expand
in 3.1.3, C1ip0GD can demonstrate poor empirical performance; this is explained by the exponential
scaling of their bounds with respect to various problem parameters which they treat as constants.

In this paper, we advance the understanding of adaptive estimation procedures for the ATE by
providing a finite sample analysis of the Clipped Second Moment Tracking algorithm, a variant of the
procedure proposed in [74], tailored for the Horvitz-Thompson estimator. Our analysis meticulously
addresses various problem-specific parameters, demonstrating an exponential improvement with
respect to problem parameters. We also establish a O(log T') bound on Neyman regret, representing
another significant improvement over C1ip0GD, although [69] consider the more challenging fixed
design setting, while we work in the superpopulation setting defined in Section 3.1.2. Additionally,
our finite sample analysis also highlights some aspects of algorithm design that were previously

unaddressed.

3.1.2 Problem Setting and Preliminaries

Problem Setup. We consider the following interaction between an algorithm, Alg, and a problem
instance, v. At the start of each round ¢, Alg selects a treatment allocation, m; € [0, 1], based on the
history of past observations H;_1 = {(ms, 4s, RS)}Z;. Then, the next experimental unit is assigned
to either the control (A; = 0) or the treatment (A; = 1) arm by sampling A; ~ BERNOULLI(7).
Following this assignment, an outcome R, € [0, 1] is observed, marking the end of the round.

We formalize this interaction protocol as follows. First, we let F; = o(H;) denote the filtration
generated by past observations. Then an algorithm Alg = (Alg,) is a sequence of F;_; measurable
mappings, Alg, : H,—1 — S({0,1}), where S(X) is the set of distributions over X. A problem
instance v : {0,1} — S([0,1]) is a probability kernel which maps each arm to a distribution over

outcomes which we assume to be bounded in the interval [0,1]. Finally, we let R, = I[A; =
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0] R¢(0) +I[A; = 1]R:(1), where I[-] denotes the indicator function, and R;(A) ~ v(A) are called the
potential outcomes. Within the causal inference literature, this framework is typically referred to
as the superpopulation potential outcomes framework [75-77].

Implicit in the above interaction protocol are the following assumptions:

1. Bounded Observations: We assume R; € [0, 1] almost surely.
2. Stable Unit Treatment Value Assumption: We assume that R;(A) is independent of R (A).

3. Unconfoundedness: Given the history H;_ 1, we assume the treatment assignment A; is in-
dependent of the potential outcomes R;(0) and R;(1). Formally, R;(A) L A; | H:y for

A e {0,1}.
While the second and third assumptions are commonplace in the causal inference literature and nec-
essary for identification, the first assumption warrants a brief discussion. We make this assumption
so that our methods are compatible with a recent line of work aimed at developing variance-adaptive
sequential hypothesis tests [74, 78, 79] where it is currently not known how to construct such tests
without assuming bounded observations. However, our analysis and results can be easily modified
to accommodate any class of distributions which guarantee concentration of the uncentered second
moment. As we will discuss, this differs from existing work which assumes upper and lower bounds

on the raw second moments. Indeed, our results don’t treat

3.1.3 The ClipSMT Algorithm and Results

In this section, we introduce the Clipped Second Moment Tracking(ClipSMT) algorithm, state
bounds on its Neyman regret, and compare its performance with existing algorithms. To sim-

plify our presentation and discussions, in this section, we will assume e < However, we

1
5
emphasize our results and analysis can be made to hold for all mxe, € (0, 1) by flipping the role of

the two policies.

The ClipSMT Algorithm

We begin by describing the C1ipSMT algorithm. The idea behind this approach is straightforward:

since we do not know the Neyman allocation, we instead choose its empirical counterpart,

e (1)
e-1(0) + me_1(1)

Ty =

(3.1)

While this approach is appealing, it will not work without modification. This is because 7, is overly
sensitive to random fluctuations during the early rounds of interaction. As an extreme example,
suppose that we select Ay = 1, Ay = 0 and observe Ry = 0, Ry, = 1. Then, 7, = 0 for all the
subsequent rounds, leading to infinite Neyman regret.

Therefore, we require some form of regularization to guarantee C1ipSMT is robust to randomness
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early in the experiment. To regularize 7y, we follow Cook et al. [74] and choose the allocation
m = CLIP(Ty, ¢, 1 — ). (3.2)

for some clipping sequence ¢;. Our subsequent finite sample analysis will show that the setting

1. . . .
G = %t_s is the correct choice in a worst-case sense. The complete algorithm can be found in

Algorithm 4.

Input: Clipping sequence (¢;)
for each round t € N do

Y TRYE)
Compute 7, = =—l s

Set Ty = CLIP(ﬁ't, Ct, 1-— Ct)
Play A; ~ BERNOULLI(7;) and observe R,

end for
Algorithm 4: C1ipSMT

Understanding the Finite Sample Behavior of C1ipSMT

We now present our finite sample analysis of CLipSMT. To begin, we will assume that the clipping
sequence has polynomial decay so that ¢; = %t_o‘ for some a € (0,1). We discuss alternative choices
for (¢;) in Appendix 3.1.7.

Our analysis splits the behavior of CLipSMT into two phases — a clipping phase followed by a
concentration phase. In the clipping phase, random fluctuations in R; will induce large variations
in 7;, leading our algorithm to clip 7;. The clipping phase ends once we can guarantee that our
algorithm will no longer clip the plug-in allocation 7;, marking the start of the concentration phase,
in which we can show that 7, converges to myey at a O <t_%> rate.

Our first result characterizes the length of the clipping phase for various choices of a;, demon-
strating how to select o appropriately.

Lemma 3.1.1. Assume for simplicity that mye, < % Suppose we run CLipSMT with ¢; = %t‘a for
a € (0,1). Let p=min (o, 5%) and define

1
2
1 1 /1 1\¢2 NE
+ — <— + —) log <—>] : (3.3)
T Ney mi \My mq )

Then with probability at least 1 — 0, for all t > 7, we have that 7y = m;.

T=0

Before proceeding we make a few remarks about this result. First, we can show that there exists

a problem instance such that the above bound on the length of the clipping phase is tight (modulo

1

some polylogarithmic factors). This implies that without additional knowledge on v, setting a = 3

minimizes the length of the clipping phase in a worst-case sense. Furthermore, the proceeding

results will show that in the concentration phase 7, converges to myey at a rate that is independent
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of a, thus suggesting that o = % is in some sense the correct choice when we don’t have additional
information about the uncentered second moments. The end of the clipping phase indicates sufficient
data collection, mitigating the effects of random fluctuations on m;, thus marking the start of the
concentration phase. In this phase we can show that m; € [Tmin, Tmax), S0 that Ny(1) = Q (T - 1)-
A simple computation shows that this implies that 7, converges to mney at a O ((ﬂ'min . t)_%) rate.
While this leads to the correct dependence on ¢, the scaling with respect to 7y, is suboptimal—we
expect the scaling to be with respect to mney. To see why, note that as the interaction progresses,
we expect 7 to eventually converge to mney. Consequently, we anticipate Ny(1) = © (7ney - t) which
further implies that 7, converges to mney at a O ((TfNey . t)_% rate. To remedy this issue, we develop
a ‘double bounding’ technique that uses these initial bounds on m; and refines them to obtain the
correct dependence on mney. This gives us the following result which shows that 7, converges to
TNey at the desired rate.

Lemma 3.1.2. Assume for simplicity that mye, < % Define

1 3
1 1 1 1\2 1
+— (— + —) log (—)] . (3.4)
T Ney my \Mo mq )

Then with probability at least 1 — 0, for all t > 7, ClipSMT guarantees that

vy = Tl SO ( @) 35)

where ((t,6) = O (loglogt +log 1).

T=0

The above result shows that following an additional burn-in period after the clipping phase, m,
will converge to myey at the desired O ((ﬂ'Ney . t)_%> rate. We also make a remark about the \/m4
terms that appear in our bound. These terms appear because of the concentration inequalities
we use for my. Unfortunately, we can show that this term is asymptotically unavoidable (see
Remark 3.1.12 in Appendix 3.1.7).

3.1.4 Theoretical Analysis
Bounding the Neyman Regret

Before stating our bound on the Neyman regret of C1ipSMT, we first give an alternative expression
for the simple Neyman regret and provides insight into our Neyman regret bound.

Lemma 3.1.3. Fiz m, € [0,1] and let ¢, = 1 — Tney. Then we have that

f(ﬂ-t) - f(ﬂ-Ney) =0 (Q?) (36)

The proof of this result can be found in Appendix 3.1.7. Surprisingly, this result shows that if
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m; converges to Tney at a O (t’%> rate, then the simple Neyman regret will shrink at a O (t7!) rate.

Our next result uses this fact in conjunction with the prior bounds on 7; to bound the Neyman

regret.
Theorem 3.1.4. Assume for simplicity that mye, < % Suppose we run ClipSMT with ¢, = %t’%.
Then probability at least 1 — 9, the Neyman Regret is at most

@) (W&iy -log(T)) . (3.7)

The proof of this result can be found in Appendix 3.1.7. We have just shown that C1ipSMT
obtains logarithmic Neyman regret, providing an exponential improvement from the O <\/T ) Ney-
man regret obtained by prior works. As the proceeding discussion highlights, C1ip0GD works in a
more general “design-based” setup. However, it highlights the significant improvements that can

be gained in the superpopluation setting considered in this papers.

Comparisons with Prior Work

We continue by comparing our results with past works.

Comparison with Dai et al. [69]. When comparing our Neyman regret bounds to C1ipOGD,
we observe exponential improvements in scaling with respect to mne, and 7.

Starting out with the dependence on myey, our bound scales like O (Wgely) while C1ip0OGD scales
like O (exp (Wﬁely)). We remark that it is not fully clear if the exponential scaling for C1ip0GD is a
product of the proof technique or is a fundamental drawback of C1ip0OGD. Inspecting the proof in
Dai et al. [69], this exponential dependence is introduced to tune the learning rate—if bounds on
TNey are known, C1ip0GD can be tuned to scale polynomially in ﬂggy. However, even then, not only
is the exponent in their polynomial always worse than ours, but it also scales with /log T, while
ClipSMT does not. Finally, we empirically observe that C1ip0OGD is sensitive to parameter choices.
The choices suggested by their analysis can often lead to poor performance (as we demonstrate in
Section 3.1.5) indicating that the aforementioned exponential dependence is indeed a fundamental
drawback.

Next, we see that our Neyman regret scales like O(log T') while C1ip0GD scales like O(v/T). While
this is an exponential improvement, we believe this difference is primarily due to the differences
in our problem settings—we consider the superpopulation setting where outcomes are stochastic
whereas Dai et al. [69] consider the fixed-design setting where the outcomes are a fixed sequence.
In the fixed-design setting, the potential outcomes can be chosen adversarially, including with
knowledge of the algorithm, thus increasing the problem’s difficulty. The differences between these
settings parallels the differences between stochastic and adversarial MABs where we observe similar
gaps in regret bounds. In the stochastic bandit setting, the best one can obtain is O (logT") problem

dependent regret[80]; whereas in the adversarial bandit setting, the best one can hope to do is
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O (\/T ) minimax regret [81].

Comparison with [74]. As we have mentioned, our algorithm is a variant of the algorithm
proposed by Cook et al. [74], tailored to the aHT estimator. The primary difference between our
work and Cook et al. [74] is that their focus is asymptotic while ours is nonasymptotic. The
asymptotic perspective makes design choices such as the appropriate clipping sequence opaque. In
their concluding remarks Cook et al. [74] state that selection of the clipping sequence is an interesting
question for future work — our finite sample analysis gives a concrete answer to this question. As an
example of the difficulty in choosing the clipping sequence, Cook et al. [74] uses a clipping sequence
with exponential decay. Our finite sample analysis indicates that with constant probability, such a
clipping sequence will result in an allocation that does not converge to myey. Finally, we remark that
using a clipping sequence with polynomial decay allows us to slightly generalize their asymptotic

results by removing the requirement that bounds on 7y, are known.

3.1.5 Experimental Evaluation

In this section, we experimentally? validate our algorithm. Our objective is to compare our algorithm
to existing approaches as well as sensible baselines and to understand how well our theoretical
characterization of C1ipSMT aligns with its empirical behavior.

We start by comparing our algorithm to existing approaches and some non-adaptive baselines.

In these experiments, we compare ClipSMT with C1lipQGD, the infeasible Neyman Allocation, a
1
27 )
ETC, we select each treatment arm with equal probability for 73 rounds, after which we compute

balanced allocation with 7 = =, and a two-stage design we call Explore-then-Commit (ETC). For
the empirical Neyman allocation and use this allocation for the remaining rounds.

We evaluate each approach on nine problem instances, running them for 7" rounds, where T varies
from 1000 to 20000 in increments of 1000. For each fixed value of 7', we run ClipSMT, C1ipOGD,
and the two-stage design 5000 times to approximate the variance of the resulting ATE estimate.
For the Neyman and balanced allocations, we can explicitly compute their variances. Our results
show that C1ipSMT outperforms C1ip0GD and ETC, and adapts well to difficult problem instances
(i.e., when the Neyman allocation deviates from %) The results of the experiments are displayed in
Figure 3.1. Additionally, we perform a more comprehensive simulation of these algorithms in the
small sample regime, where we observe similar behavior. The results of this experiment are shown
in Figure 3.2.

Next, we validate whether the length of the clipping phase predicted by our theory aligns with
the empirical behavior of C1ipSMT. To do this, we run C1ipSMT using ¢; = %t*a for various values
of @ € (0,1). We run C1ipSMT for each value of o and determine the 0.95 quantile of the clipping

phase length based on 5000 simulations. Using these values, we compute the ratio between the

2Code for replicating experiments can be found at the following GitHub repo: https://github.com/oneopane/
adaptive-ate-estimation.
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Figure 3.1: Comparison of the performance of C1ipSMT, C1ip0GD, Explore-then-Commit (ETC), Neyman
allocation, and a balanced allocation with the treatment and control arms following Bernoulli distributions.
Individual subplots plot the variance of each design against the number of samples for a fixed problem
instance. Each column keeps the treatment mean fixed, and each row keeps the Neyman allocation fixed.
Moving to the right increases the treatment mean and moving down increases the Neyman allocation.
Overall the performance of C1lipSMT is always competitive with the performance of the infeasible Neyman
allocation and outperforms the other adaptive designs. Furthermore, as the Neyman allocation increases,
we see that CLipSMT adapts to the increased difficulty while ETC and the balanced design do not. Note
that error bars are plotted, however they are narrow due to the large number of simulations performed.

theoretically predicted clipping time to the empirically computed clipping time. The results of this
experiment are shown in Figure 3.3 (a).

Inspecting these results, we find that the ratio peaks around o = % This behavior is due to
a technical difficulty that arises in our proof which we take a brief moment to elucidate. Specifically,

upper-bounding the length of the clipping phase involves bounding the quantity min {¢ : ). t? > ¢; 4 ¢, loglog

where ¢; ~ éey and ¢y ~ ﬁ To accomplish this, we compute an upper bound on min {t : t™**Pi > ¢; + ¢3 log]
which is also an upper bound on the initial quantity. Noting that ¢t™*P: < %" tPi it is clear that
this step introduces some loosness to our bound. However, we see that as mney, — 0, we will have
> P = O(t™**Pi) since the growth of ¢™**Pi will become the dominating term.
Instead, we bound min {¢ : t™*P: > ¢; + ¢y loglogt}, which provides the correct bound for large
values of ¢; and ¢y but is loose for small and moderate values of ¢; and ¢y. Therefore, while our
bound is tight in the worst case, it has some looseness for specific problems — resolving this issue
remains an interesting technical problem for future work.

In order to validate this worst-case optimality, we consider a sequence of problems with Bernoulli
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Figure 3.2: Comparison of the performance of C1ipSMT, C1ip0GD, Explore-then-Commit (ETC), Neyman
allocation, and a balanced allocation with the treatment and control arms following Bernoulli distributions
in the small sample regime. Notably, C1ipSMT is competitive with the Oracle Neyman Allocation even for
small sample sizes, indicating its practical utility.

arms p( = (0.5, 0—;’) These are chosen to guarantee mne, converges to 0 which captures the notion
of increasing problem difficulty. We run ClipSMT with varying values of o on each problem instance
n and compute the median length of the clipping phase over 5000 simulations. For each n, we then
determined the value of o, which leads to the shortest clipping phase. The results of this experiment
are shown in Figure 3.3 (b), and confirm that setting a = § minimizes the length of the clipping

phase in the worst case.

3.1.6 Conclusion

In this work, we performed a finite sample analysis of the C1ipSMT algorithm for adaptive estimation
of the ATE. Our analysis clarified several aspects of algorithm design, including how to properly
tune the clipping sequence. Furthermore, we demonstrated that our approach achieves exponential
improvements in two distinct areas when compared to the only other method with a finite time
analysis. Our comprehensive analysis meticulously addressed all problem parameters, providing a
clearer and more detailed understanding of the complexity of adaptive ATE estimation.

Several promising directions for future work emerge from our findings. One obvious direction is
to extend our analysis to the Augmented Inverse Probability Weighted estimator, which has more

desirable properties and is more appropriate when contextual information is available. Additionally,
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Figure 3.3: The figure on the left plots the optimal ratio for each problem instance, where the problems
get harder as n increases. The figure on the left plots the ratio of the predicted versus empirically computed
clipping times. Note that a smaller value implies our theory underestimates the empirical clipping time,
implying that the true clipping times are larger.

expanding these results to accommodate larger action spaces and stochastic context-dependent

policies warrants further discussion.

3.1.7 Proofs

In this section, we will prove our bound on the Neyman regret of CLipSMT.

Preliminaries.

Before we proceed to the analysis, we first introduce some notation and define a ‘good event’ which

we will assume to hold throughout the analysis. We define the following events

51<51) = ﬂ {Nt<1) S [Z Ts — 51(15’51)72”5 + 51(15751)] } (3-8)

&0 = [ [1{ma € [MulA) = 5t 6), iu(A) + Ba(t, 82)]} (3.9)

Ae{0,1} t=1

Applying Lemmas 3.1.10 and 3.1.11, using 3; and f3; respectively defined in equations Eq. (3.83) and Eq. (3.86)
with §; = g, 09 = 2?5’ we see that the event & = &(d1) [ E2(d2) occurs with probability at least 1 —0.

For the remainder of the section, we will assume that this event hold.

Bounding the Neyman Regret (Theorem 3.1.4)

We will bound the cumulative Neyman regret by bounding the simple Neyman regret and then
summing over those terms. In order to do so, we will handle the clipping phase and concentration

phases separately.
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For the clipping phase, Lemma 3.1.5 demonstrates that we can guarantee m; € [Tyin, Tmax] Where
Tmin, Tmax Only depend on m 4. This implies that the instantaneous Neyman regret for each round in
the clipping phase can be upper bounded by a constant c(mg, m1) = MmaXrefr i mmact f(7) = f (TNey)
which only depends on m 4. Furthermore, Lemma 3.1.1 shows that the length of the clipping phase
is at most 7 so that the cumulative Neyman regret from the clipping phase can be upper bounded

as ¢(mg, my) - 7 which is independent of T'.

For the concentration phase, we apply Lemma 3.1.2 which shows that ¢, < O (t_%> so that
Lemma 3.1.3 implies that the instantaneous Neyman regret for each round of the concentration

phase is at most

76)

( 1 )2 1 1 0ot
16 +
mo + mq VMo (1 — TTney) /T TNey t

Therefore, we can bound the cumulative Neyman regret during the clipping phase as

(3.10)

T 2

1 2 1 1 T f(t,(i)
t;lf(m) — [(TNey) < 16 (mo - ml) N + NG 221 == (3.11)

2

1 2 1 1
<16 ( ) + > ft,9) (3.12)
moy + my Vmo (1 — TNey) /T TNey p— t
1 2 1 1 ?
< 16 + oT,8)1log(T). (3.13)
mo + my VMo (1 — TNey) /TNy

Combining these bounds we see that the Neyman regret can be bounded as

1 2 1 1 ? 3
(o) - 7+ 16 (m) ( —— mmy> (T, 5) log(T) = O(log(T?)),

(3.14)

which gives the desired result.
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Proof. The proof follows from the following series of algebraic manipulations:

2 2 2 2
my mg mi Mo
T Ne +€) — TNe - + B + 315
f( Ney t) f( N y) TNey + € (1 — TNey — Et) TNey (]- - 7TNey) ( )
2 2
mg my
—_ — 3.16
' <(1 - 71-Ney)(l — TNey — et) WN@Y(WNGY + 6t)> ( )

2 2
@ e, ( ( o - i (3.17)

- m2 (mo + my) m3 (mo +my)
= € 5 - (318)
mg —mo (mo+my) e mi —my (mg+my) e
m2 (mg +m 2
= € B 0( 0 1> —(mo+m1)
mg — mg (mg + mq) &
m? (mg +m 2
+ (TTLQ -+ m1)2 — 2 1 ( 0 1) (319>
mi —my (mo + my) &

= mo ) (e - e I

Clipping Phase

We now cover various proofs related to the analysis of the clipping phase of our algorithm.

We begin by proving Lemma 3.1.1.

Proof. To begin, we observe that since the function z,y ny is monotonic increasing (resp.

decreasing) in x (resp. y) we have (on the event &) that

my — Ba(Ni(1),02) my + Ba(Ni(1),02)

mo + B2(N(0),d2) +my — Ba(N(1), 52)’ mo — B2(IN(0), 02) + mq + Ba(N(1), 52)(3. .

We note the above interval is random because N;(A) is random. In order to construct bounds on

M1 €

N (A) we use the fact that m € [¢;, 1 — ¢;] so that an integral-sum argument demonstrates

t
1 the—11 ¢
L€ = -y . 3.22
;W {2 l-a '2 1-a (322)
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Therefore, on the event £, we obtain

1t —1 1t
Nt(]_) E./\f(t,51): §ﬁ—61(t,51)7t—§ 1_ +ﬁ1(t (51)
1t —1 1 tlfa

where we have set (¢, 0) \/ 7225 log logt + 0.72 log )

Our strategy moving forward will be to use these bounds on Ny(1) to construct a time 7 such
that for all ¢ > 7, we have ;11 € [c441, 1 — ¢i11]. We demonstrate how to do so in order to guarantee
Tip1 > €11 as the other case is entirely analogous. Observe that our initial (random) lower bound

on ;41 together with our bounds on Ny(1) imply that on the event £, we have

£(n,02)
Tpr1 2> Min ™ e
i+ neN(t, 51) 0+ L(t—n,02) +my — £(n,d2)
mov(t—n) mi-n
my — é(t,52)
. mi-n
> min , 3.24
T neN(t,61) £(t,62) £(t,82) ( )
0+ mo-(t—n) +my — mi-n

where the final inequality follows from the monotonic properties of the map x,y ngy Therefore,

our objective is to upper bound the quantity

;

t52)
mi1-n ]_
=min< ¢: min L > —(t+1)¢ 3.25
T ! n€N1t51 2t,52) 2( * ) ( )
\ mi-n
( E(t 52
. mi-n 1 _
<min{ ¢t: min > §t “B (3.26)
neN (t,61) / + my — Tsléi)
\

where the inequality follows from the fact that the LHS in increasing in ¢ and the RHS is decreasing
in ¢t. Letting n* denote the minimizer of equation Eq. (3.24), by applying Lemma 3.1.13 we observe

that oo

1 1a_
n* e{2t V) gt t-é(t,él)}. (3.27)

1l -«

Therefore, we can compute an upper bound for each of the two cases so that taking the maximum

of these bounds will result in an upper bound on equation Eq. (3.26).

I

We will demonstrate this for the case n* = t - £(t,d,) since the other case is similar.

N
—
|
Q
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After plugging this value of n* into equation Eq. (3.26), rearranging terms shows that

min{t:m12%t‘°‘(m0+m1)+lt—2af (M)2+t“gl (1_t—o¢)( 0 (t,02) ))2}’

2 mof (t,61, ) mag (t, 01, a
(3.28)

where

t—t—t@

ft,0,00) =1+ t_%\/f(t,(S) + m,
1_ta—1 201
g(t,d, Oé) = m —t 2 \/g(t,d).

Defining p = min {a, 1’7“}, we can upper bound the RHS of equation Eq. (3.28) with

Rearranging terms demonstrates that it is sufficient to bound

o {t e [(w i) (m” } oo

Squaring both sides and applying the inequality (a + b)* < a® + b? twice shows that we can bound

»

2 40(t, o
+ (72)

min < ¢ : % > { ! + ! ] : (3.31)
N 71—I%Tey m% mOf <t7 517p) mig (tv 517p)

Next, we apply Lemma 3.1.16 and 3.1.18 which show that when

ol ) ))

we have that g¢(t,d1,p), f(t,01,p) > % Applying Lemma 3.1.15 to equation Eq. (3.31) using the

above bounds on g, f demonstrates that
T< I (3.32)
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where

T = c1(Tey) + Ca(Tey) - () - 108108 €1 (mey), (3.33)
2 4 1 1 5.2
) =——+—=—+—]1 — ), .34
C1(TNey) 2 + 2 <m0 + ml) og ( 5 ) (3.34)
4 1 1
co(MNey) = —5 | —+— ), 3.35
() = o (o ) (3.35)
s (Trey) = log log ¢1(mNey) — log (2p) . ¢1(TNey) log €1 (TNey) (3.36)
« log log Cl<7TNey) C1 (WNey) log ¢, (WNey) - CQ(WNey>‘ '

Repeating the argument for the other choice of n* yields the same result.

Finally, we can repeat the above argument for the upper bound on 7;;; which shows that
1

7 < T?  where

T = ¢1(TNey) + C2(TNey) - C3(TNey) - 10g1log 1 (TTNey) (3.37)
2 4 1 1 5.2

Cl(ﬂ-Ney) = — + — (— + —) log (5—) (338)
2

(1 —7neg)” MG \mo 1y

ea(Maey) = — < L i) | (3.39)

mgy Mo mq

Letting 7 = max {1, 7} gives the desired result. O

Concentration Phase

In this section, we will prove Lemma 3.1.2 which we restate for the readers convenience below.

Proof. To begin, we fix t > 7 and let s € [1,t— 1]. Invoking Lemma 3.1.5 implies that on the event

Ny(1) € [ﬂ'min + 8 —+/80(s,01),8 — Tmin * S + \/8(s, 51)] ) (3.40)

We will use this to construct a lower bound on 7,1 by solving the optimization problem in equa-

€ we have

tion Eq. (3.24) using the interval defined above. Applying Lemma 3.1.13, we can construct a lower
bound by considering N (1) € {ﬂ'min s —/80(8,01),8 — Tmin - § — \/SL(s, (51)}. We demonstrate
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this for Ng(1) = Tmin - 5 — 0(s,01). In this case, we have that
£(s,62)
Moy > () (3.41)
Z(s 2 + 5(5752)
Ny T T A N (D
£(s,0

Mo T LR (3.42)

= TNey * - .

mo+ my + h(ﬂ'mina S) @ mo + mq + h(ﬂ'min; S) @

G (Mo + 1) a1 (Mmins S) (3.43)

= TNey * = — . .

A /m(mo—i-ml) +h(7Tmin7S> A /m(mg—i—ml) +h(7Tmin,S)
= Es+17 (344)
where we have defined
1
a(m,s) = , (3.45)
< N Z(s,51))
\ mi |\ T B
1
ag(m, s) = ) (3.46)
\mo ((1—7r)— @)

h(m,s) = ap(m,s) — ai(m, s). (3.47)

Using these bounds, on 751 we observe that on the event £ we have

1) > iﬂ's —\tl(t, b2) = iws + i s — \/tl(t, 62) (3.48)

s=17+1

e SE N XS (3.49)

s=17+1

We bound ZZ:TH 7, using Lemma 3.1.6 so that

|
2(1—a)
té(t, (52) (2h<ﬂ-min) + al(ﬂ-mina T) + 1>

m0+m1

Ni(1) > TTNey -t + — TNey (T — 1)

(3.50)

ai (7Tmim T)

75) (mo + m1) + h(Tmin, T)

:WNey't_Ca
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where we have defined h(myin) = limy_yoo A(Tmin, t). By plugging this value of N;(1) into equa-

tion Eq. (3.24), we obtain
t
\/ €(t,62) <m0 + ml) (Nll(ﬂ'Ney, t) (3 51)

T4l = Ty 1 = TNey * = — -
\/ m (mo +ma) + h(TNey, t) é(tisg) (mo +ma) + h(TNey, t)

where we have defined

- 1
ao(m,t) = \/mo TEED (3.52)

ap(m,t) = —, (3.53)
ma (7 —§)
h(m,t) = ao(m,t) — ai(m,t) (3.54)
Therefore, we have
TNey — Tt41 S TNey — T441 (355)
_ g(t, (52> 7TNeyC~L0 —+ (1 — 7TNey)C~L1 (3 56)
t mo + my + %) (G — @)
_ g(t, (52> TNey 1— TNey 1
! \/mO ((1 _7TNey \/ml 7TNey 2 mo +my + @(do—al)
(3.57)

<

ﬁ(t ) 1 1 1
=4 (\/ mo (1 — TNey) \/WNGY) (mﬂ + ml) (3:58)

where the final inequality follows from the application of Lemmas 3.1.7 and 3.1.8 which shows that
when ¢ > O(7) we have that ¢ < %FNey. O

Lemma 3.1.5. Suppose we run ClipSMT with ¢, = 1t @ for some a € (0,1) and let p =
min (a —) Then, on the event &, for allt > 1, we have that T € [Tmin, Tmax) [%Z 2,1 — —Tﬁﬁ
where T, T are respectively defined in equations Eq. (3.33) and Eq. (3.37).

Proof. During the clipping phase, we know that m; € [¢;, 1 — ¢;]. Additionally, once the clipping

phase ends, we know that 7; = m; so that

M1 €

— Ba(Ni(1), d2) my + Ba(Ni(1), 02) } .

mo + Ba(Ni(0),02) +my — B2(Ni(1),62)" mg — Ba(N¢(0), 02) + my + B2(Ni(1), 62)
(3.59)

It is easy to see that the above bonunds are monotonic in t—the lower bound is monotonically
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increasing and the upper bound is monotonically decreasing—which implies that m; takes its min-
imum and maximum values at the end of the clipping phase. Therefore, we see that for all t > 1,
we have that

j -1 1 1 1 a
1—51 2p 21—57_0‘:1—0727&207:57_0‘25‘3727’, (3.60)

where the first and last inequality follows from applying Lemma 3.1.1 which shows that 7 < ¥ %, [

Supporting Lemmas

Intermediate Steps

Lemma 3.1.6. Define

é(;‘b) (mo + ml) ai (Wmina 8) (3 61)
Ts+1 = TNey " P - P : :
w5y (Mo 4+ ma) + h(Tin, 5) sy (Mo +ma) 4 h(Tin, 5)

Then we have that

t
D m > Tt — 7 — 1) = 2\/tU(t, 5y)

s=1+1

?

(h(ﬂ—min) + ay (Wmina T>> h(ﬂ—mina T)
mo + my 6(77,——52) (mo + ml) + h(ﬂ_min, 7')

(3.62)

Proof. We begin by observing

t t—1
DT SE (3.63

s=7+1

£(s,02) (mo + ml) al(ﬂ—mim S)

(3.64)

t—1
= § TNey * 5
s=T

7(5,02) (mo + ml) + h(ﬂ'mina S) —é(sféz) (mo + m1> + h(ﬂ-mina 8)

t—1 sy (Mo +ma)

t—1
> TNey * Z - Z @ (ﬂ-min’ T) , (365)
= \/ [0.52) (mo +ma) + h(Tmin) = \/ T (mo +m1) + h(Twmin, T)

N

TV TV
Term 1 Term 2

)= freti= Ve

and the inequality follows from the monotonic properties of the map x,y — #y combined with the

where we have set

fact that h(m,t) is increasing in ¢ and a4 (7, t) is decreasing in ¢. From here, we lower bound Term 1

and upper bound Term 2.
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mo+mi

and ¢ = h(mpin). Then we have
f(t,ég)

To lower bound Term 1, let ¢; =

V/5¢1
Term 1 = Z Voot (3.66)

—(t—7-1)=> —\/gc(j: - (3.67)
> (t—r—1)-22Vi (3.68)
—(t—7—1)— 2% te(t, 8,) (3.69)

where the inequality follows Lemma 3.1.20.

To upper bound Term 2 we similarly apply Lemma 3.1.20 so that

mins min tg t, 5
Term 2 < @1 (Timin: 7) 428 (Tumin, 7) P, 02) (3.70)
m (mo + ml) + h(ﬂ-minu T) Mo + 1M
Combining these bounds shows that
t
h min min> h min»
Z s 27TNey(t_7__1)_2 w(t752) ( (W )+G1(7T T)> - (ﬂ- T) >
S mo + mq 6(7'7,—62) (mo + mq) + h(Twin, 7)
(3.71)

thus proving the desired result. O]

Lemma 3.1.7. Define

1— a_ 1

h min min; mins
¢ = \/tl(t,0) (2 (Tinin) + 1 (Tonin, 7) +1)+ @1 (Timin, 7) ey (7 — 1)— ;1—
mo + 1y ,/m(mo-l—mﬂﬂLh(WmimT) ( )
(3.72)
If t > 67, then & < 3Tey.

Proof. Note that it is sufficient to bound the first three terms since we are subtracting the fourth
term.

For the first term, we observe that when 7172¢ > 16/(1, ), which is satisfied by our definition
of 7, we have that a; (T, 7) < 4/ Ea—— Therefore, some algebra shows that

h min min
(Tmin) + @1 (Tmin, T) +1

o (1 1 1 1
272 | — + — + +1=c 3.73
mo + my <m0 ml) ( /o /—ml) 1 ( )

Therefore if we want bound this term by by 7ney, we require ¢t > Z—;E (t,6). We can apply Lemma 3.1.15
1
to bound this.

2

IN
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Next, some algebra shows that when 717 > ——3 (7, §), which is satisfied by our definition

m1(mo+ma)
of 7, we have that

@1 (Timin, 7) <2 (3.74)
A /m (mo + ml) + h(ﬂmin, 7')

As such, if we want to bound this term by by, we require ¢ >

b27rNcy
=1

Finally, to bound the third term by bsmney, We observe that we require ¢ > »

Setting by = by = b3 = % and ¢; = %, and using the above results, see that when

t > max {144€(t, 9),6(r—1), 12 } (3.75)

T'Ney

we have that ¢ < %T(Ney. O

Lemma 3.1.8. Suppose t > 67. Then we have that

0(t,9)
t

Proof. To being, we see that it is sufficient to find compute an upper bound on the smallest ¢ such

that
a2
t >0t 6)—2

mg—i—ml

Next, we apply Lemma 3.1.7 which shows that when ¢ > 67, we have that a? <
this in and applying Lemma 3.1.15 gives the desired result. [

Useful Tools

Lemma 3.1.9. We have that

£(t,6)
mth(l)

ﬁ b= o
— /g (ot ml) (3.78)
sy (mo +ma) + ao(t, Ni(1)) — ax (¢, Ni(1)
ai(t, Ny(1))

_ (3.79)
(t 3) (mo + ml) + CL()( ,Nt<1)) — al(t, Nt(l))

(3.77)
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1
ap(t,n) = | ———, 3.80
() =\ o (350
1

(3.81)

where

Concentration Results

Lemma 3.1.10. Let X1, Xs,... be a sequence of random variables such that X; ~ Bernoulli(m;)
where m; 1s F;_1 measurable and define Ny = 22:1 X. Then, with probability at least 1 — 9, the
following holds for all t € N

S ﬁl(tv 5>’ (382)

t
Ny — E Ty
s=1

where

pa(t,0) = 0.85\/25 <log logt + 0.72log (%) ) (3.83)

Proof. Define M} = exp ()\(X — ) — %) Note that by definition, X; € [0, 1] almost surely with
E [X; | Fi—1] = pr which implies that the following holds for every A € R

E [M} | Fioi] <1 (3.84)

Therefore, D} = Hizl M? is a test supermartingale and we can apply Theorem 1 from [82] (see
equation (11)) to obtain the desired result. O

Lemma 3.1.11. Let X;,Xs,... be a sequence of random wvariables such that X; € [0,1], p =
E[X; | Fio1], and m? = E[X? | Fi_i1]. Define the empirical second moment as m? = 15°° | X2,
Then, with probability at least 1 — ¢, the following holds for all t € N

[y —m| < Ba(t,6) (3.85)
where
loglogt + 0.721og (%2
Ba(t, d) =O.85\/(Og o8 J;nQ ; o8 () (3.86)

Proof. To see this, we first observe that

|T/fbt m‘ o |’I/7\”L% _m2| |m? B m2|.
|T/T\Lt+m’ ‘,/mQ

The result then follows by bounding |m? — m?| by applying Theorem 1 from [82] (see equation (11)).
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]

Remark 3.1.12. Note that in our above result, the width of the confidence sequences scale like

@] (ﬁ) An application of the CLT along with the Delta Method shows that, asymptotically, the

scaling with respect to \/i? 18 unavoidable.

Technical Results

Lemma 3.1.13. Let t, ag, a1,70,71 > 0 be fized, and define the function f: (0,t) — R by

f(z) = S —. (3.87)

Given an interval [s,r] C [1,t], any solution x* to the optimization problem

min f(x), (3.88)

z€[s,r]
must satisfy o* € {s,r}.

Proof. Our proof will proceed by demonstrating that one of the preconditions of Lemma 3.1.14 is

satisfied, from which the desired result naturally follows. To begin, we let f'(z) = - f(z) denote

the derivative of f(z). We compute f'(z) and perform some simplifications to show that

fla) = — (s + ) (0 = ) ”
(Oé() + oy + ’;tyix - \’}—15)2 2(0&0 + oy + /—Ziz — %)%3/2

_ (Yot + comtvt — v — apyV/t — xx — CYWOIE?’/Q) (3.89)

20V = T VT aoVE - aVE +an/T =y a /T

Observe that the denominator in Eq. (3.89) is always greater than zero. Therefore, sign(f'(z)) is

determined by the numerator which we will now show to be strictly decreasing. The derivative of

the numerator in Eq. (3.89) is

B (3(&071t + a1Vt — /T — aoylx))
2Vt —zx '

From here, we have that by assumption ag, aq,7,7v1 > 0 and x < ¢ imply that the above quantity

is strictly negative. Since the derivative of the numerator is strictly negative, we know that the
numerator is strictly decreasing. Therefore, our earlier observation, in conjunction with this fact
implies that one of the preconditions of Lemma 3.1.14 must hold, thus enabling its application,

which in turn implies the desired result. O

The next lemma essentially shows that the minimum of a concave-unimodal function over a
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closed interval must occur at one of the boundaries of the interval.

Lemma 3.1.14. Let f : D — R be any differential function such that its derivative, f’, satisfies

one of the following conditions:

1. f'(z) >0 for allx € D
2. f'(x) <0 for allz € D
3. There exists ¢ such that for all x < ¢, f'(x) >0 and for all x > ¢, f'(z) < c.

Then for any [a,b] C D, any solution x* to optimization problem,

min_f(z), (3.90)

z€[a,b]

must satisfy «* € {a,b}.

Proof. Tt f'(x) > 0 for all x € D, the function is monotonically increasing and the minimum will
occur at * = a. If f'(x) < 0 for all € D, the function is monotonically decreasing and the

minimum will occur at * = b. For the final case, let ¢ be as defined in the condition and let Z

denote the minimum of f. If a < Z < ¢ then f() f f'(t)dt > 0 which is a contradiction.
Similarly if b > & > ¢, then f(b) f f'(c dc < O which is also a contradiction. Therefore,
for each of the cases, * must satlsfy xz* € {a,b}. O

Lemma 3.1.15. Let ¢y, ¢, p > 0 such that logc; > p and cilogc; > co and define
T=min{t: ¥ > ¢; + ¢z loglog(t)}. (3.91)

We have that

1
loglog ¢y — log(p) o a log ¢ ) » (3.92)

< (Cl + o log (log ¢q) log log ¢; c1logep — e

Proof. To prove this, we set

t = (c1 + acslog logcl)% ,

for some a to be chosen later. Our objective is to show that

loglog | (¢ + acy loglog cl)% < aloglogc;.
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To do so, we observe that

log (log ((61 + acsy log log cl)%>>

1
= log (— log (¢1 + acy log log cl)>

- <log(cl) + log <1 i log log 01>)>
(&1

log(cy) + ac log log cl>)
C1

i

l
3
0]
—

IN
=)
0Q

[476))

log cl) + log (1 + log log 01)

c1 log ¢y
acs

IA

log loglog ¢y,

"RNAERIE,RI-L,T

I
=}
o
S N N N N

log cl> +
c1 log ¢y

where the inequalities follow from applying the inequality log(1 + z) < x. From here, we set a so

the final line above equals aloglog c;. In particular, by setting

loglog ¢; — log(p) ¢y log ¢
a= :
loglog ¢; ciloge; — ¢y’

the above series of inequalities proves that
loglog | (¢ + acs loglog cl)% < aloglog ¢,
as desired. O]

Lemma 3.1.16. Fiz «,d € (0,1) and consider the function

t*l —t@
Ft,0.0) =1+t 2/0(t,0) + ————.
-«
1
For all t > (ﬁ) @ we have that g(t,d,a) > %
Proof. First note that
. -t =
1+t 2\l(t,0)+ ———— >1—
* (t,0) + l—a ~— 1—a
Solving the inequality
e 1
_ >
l—a ™ 2
for t gives the desired result. O]

Corollary 3.1.17. For ¢ € (0,1), t > 27 implies that f(t,9, %) > %
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Lemma 3.1.18. Fiza € (0,3), 6 € (0,1), and let

o ta_l

g(t,6.0) = ~— " 4 1D,

2(1 -«

1
We have that g(t,6, ) > 5 whenever

log log ¢1 — log(1 — 2 1 =
£ (cl%—Cthgﬂogcq) ogloge; —log(l —2a)  ciloge )

log log ¢; c1loge; — ¢
where ¢y = 2 + —8(1;20‘)2 log (22) and c; = 8(1;20‘)2
Proof. To begin, observe that
11—t 2a—1 1 2a—1 t2a2_1
— T\t 0) > ——— —t 7 \JUt,) — ——— 3.93
2(1—a) (’)_2(1—04) (t,9) 2(1—a)’ (3.93)
therefore it is sufficient to bound the quantity
1 2a—1 1 1
inqt: —— —t l(t, 0 —_— | > = . 3.94
min{ gy = (VIO + g7 =5) 2 5 320
Rearranging, we see that this is equivalent to bounding the quantity
2(1— 1
min {t fr > 21=a) 0(t,6) + —} . (3.95)
! Q@

By squaring both sides and applying the inequality (a + b)? < 2a? + 2b* we see that it is sufficient
to bound

, e 2 8(1—a)
: _ 2, 8(1-a)? 5.2 _ 8(1-a)?
Setting ¢; = 5 + =z log ( ) and ¢; = =~ we can apply Lemma 3.1.15 to see that whenever

t> (01 + o log (log ¢1)

loglog c¢; — log(1 — 2a) ¢y log ¢ T
log log ¢y c1logcy — ¢

we have that g(¢,0,a) > %, as desired. ]

Corollary 3.1.19. Foré € (0,1),t > O <log (%)3) implies that g (t,é, %) > %
Lemma 3.1.20. Fiz ¢1, ¢y, c3,7,t such that ¢y,co > 0, 7 < t, and ca\/T + c3 > 0. Then, we have

that
t

1 ¢ 2¢q
< — t— 3.97
Z 02\/5‘1‘ c3 CQ\/?_{' C3 + Co <\/— \/F) ( )

S=T
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Proof. Observe that under the stated conditions, we have that \[ o s monotonically decreasing

in s. Therefore we can bound

t

t
C1 C1 C1
> < + / —
p— CQ\/E + c3 CQ\/F +c3 s=T CQ\/E +c3

C1 2cy 20103
— log (c3 + ¢
02\/F+03 (62\/_ 2 g(3 2\/_)>

ds

t

| /\

S=T

2 2 2 2
Cl\/_ G log <03—|—02\/_)> (ﬂ\/? cclc log (03—|—02\/_))

C1 (
02\/? +c3 Co 3 Co 2

= cz\/;lnL C3 2@21 (\/_ \/_>

Discussion on Clipping Sequences

Recall that our proposed ClipSMT algorithm utilizes clipping sequence with polynomial decay so
that ¢, = 3t for @ € (0,1). It is natural to wonder if there are other valid choices for the
clipping sequence. While there are, the choices of clipping sequences that will work depend on the
assumptions that we make.

On one hand, if we do not assume a lower bound on m?, then we must require that >, ¢
diverges as t — oo. To see why, suppose the sum converges, i.e limp_, ZtT:l ¢; = c¢. Then, if we
choose m?, m3 so that the length of the clipping phase is larger than ¢, this will ensure that m;
never converges to mney. As a concrete example, this implies that in this most general setting, we
should not use clipping sequence with exponential decay. However, if we are willing to assume a
lower bound on mZ, m?, then we can use a similar argument in order to select the rate of decay for

a clipping sequence whose sum converges.

3.2 Optimistic Policy Tracking

3.2.1 Introduction

The problem of estimating the average treatment effect (ATE) is central to causal inference and has
been extensively studied. We have a precise understanding of the difficulty of this problem in both
asymptotic and nonasymptotic regimes. However, our understanding of the challenges associated
with adaptive ATE estimation remains limited.

Classically, adaptive ATE estimation has been analyzed in an asymptotic setting, where past
work has focused on designing adaptive sampling procedures that ensure that the resulting ATE es-
timate achieves the smallest possible asymptotic variance, that is, the semiparametric efficiency

bound. More recently, there has been growing interest in developing algorithms that provide
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nonasymptotic performance guarantees. However, these works suffer from certain drawbacks that
lead to poor finite sample performance, an issue that we discuss in detail in Sections 3.2.2.

In this work, we take a nonasymptotic perspective on adaptive ATE estimation, focusing on the
Augmented Inverse Propensity Weighting (AIPW) estimator. Our finite-sample analysis reveals
key aspects of algorithmic design that prior work has overlooked. This enables us to propose a new
algorithm with substantially improved theoretical and empirical performance while also simplifying
the analysis.

At the heart of our approach is the insight that initially over-sampling arms that should eventu-
ally be under-sampled according to the (unknown) optimal allocation can lead to better estimates
of the ATE. Interestingly, this idea can be interpreted as an instance of the principle of optimism,
a well-established algorithmic design paradigm in the literature on regret minimization in multi-
armed bandits (MAB) and reinforcement learning. We discuss this connection in more detail in
Section 3.2.4.

Contributions. Our main contributions are as follows:
1. We develop and analyze a new algorithm, Optimistic Policy Tracking(OPT), for the adaptive
estimation of ATE that enjoys significant theoretical improvements over previous approaches

along with a significantly simplified analysis.

2. We perform simulations that demonstrate that our theoretical improvements translate into
empirical improvements, especially in the small sample regime, which is critical for applications

such as randomized clinical trials.

3.2.2 Related Works

Adaptive experimental design has a long and distinguished history, dating back to the seminal work
of Neyman [83] on optimal allocation in experimental studies. Thompson [84] introduced a Bayesian
adaptive design, thus laying the foundation for the MAB problem. Thompson’s approach of sequen-
tial updating beliefs about treatments (or arms) based on observed outcomes is now central in MAB
research [85]. However, many problem formulations focus on maximizing cumulative rewards over
repeated rounds of exploration-exploitation. In contrast, our objective of ATE estimation differs

from the typical MAB focus and raises different forms of exploration trade-offs.

Prior Work

Our work builds on a recent line of work investigating adaptive algorithms aimed at efficiently
estimating ATE. Hahn et al. [86] sparked this research direction by proposing a two-stage design,
conceptually similar to the Explore-then-Commit algorithms in MAB [87] and showing that it
asymptotically attains the minimum-variance semiparametric efficiency bound. Subsequently, Kato

et al. [72] introduced a fully adaptive procedure using the adaptive AIPW estimator (A2IPW), and
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showed that it is asymptotically optimal (in the above sense) while also providing improved empirical
performance compared to the less adaptive two-stage design. Later, Cook et al. [74] proposed an
alternative method called Clipped Standard-Deviation Tracking (C1ipSDT), which inherits the same
asymptotic optimality under milder assumptions, admits modern uncertainty quantification tools
[79], and outperforms the earlier approach empirically. In parallel work, Li et al. [88] significantly
generalized the two-stage design in Hahn et al. [86], extending its applicability to a broad spectrum
of problems, including Markovian and non-Markovian decision processes.

Despite these advances, all of the above approaches focus on characterizing the asymptotic
behavior of their approaches, leaving open questions about finite-sample performance of their work.
In order to address these questions, Dai et al. [69] takes an initial step toward understanding the
nonasymptotic difficulty by introducing the C1ip0GD algorithm for the fixed-design setting. They
introduce and analyze the Neyman regret (in the design-based setting), which is a normalized proxy
to the variance of the resulting ATE estimate. Even more recently, Neopane et al. [3] proposed
and analyzed the C1ipSMT algorithm for the superpopulation setting and shows that it enjoys an
improved logT" bound on the Neyman regret.

Although these two works take important first steps toward understanding the nonasymptotic
difficulty of adaptive ATE estimation, their algorithms rely on the IPW estimator which is known to
be suboptimal. In fact, these works define the Neyman regret with respect to the minimum variance
IPW estimator, where the minimization is performed over all possible allocations. In contrast, our
definition of the Neyman regret is much stronger as the baseline against which we compete is defined
as the minimum attainable variance over all pairs of estimators and allocations. Notably, using this
stronger definition of regret, the aforementioned approaches obtain linear Neyman regret, where as

we are able to design an algorithm which obtains logarithmic Neyman regret.

Related Works

The problem of off-policy evaluation, which generalizes ATE estimation, has been extensively stud-
ied in the literature on reinforcement learning [89-91]. Most of the research in this area has focused
on offline estimation, leading to precise characterizations of minimax lower bounds along with
matching upper bounds [92-95]. Beyond policy evaluation, these methods have been extended to
estimate other quantities, such as the cumulative distribution function of rewards [96, 97]. How-
ever, there has been limited exploration of adaptive versions of these methods. Some existing work
includes Hanna et al. [98], which focuses on off-policy learning, and Konyushova et al. [99], which
integrates offline off-policy evaluation techniques with online data acquisition to enhance sample
efficiency in policy selection. However, these works are primarily empirical.

A related area of research concerns inference procedures for adaptively collected data. This
can be categorized into asymptotic and non-asymptotic approaches. On the asymptotic side, one
direction has focused on reweighting estimators and establishing their asymptotic normality [100-

102].  Another direction avoids asymptotics, instead leveraging modern advances in martingale
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theory to derive nonasymptotic confidence intervals and sequences for adaptively collected data,
including estimates of the ATE [22, 79, 103].

3.2.3 Background

Problem Setup We are interested in adaptive estimation of the average treatment effect. During
each round, ¢, the algorithm uses the history of past observations H,_; = {(7s, As, Ys) Y.} to select
the probability of treatment allocation m;. Then, 7; is used to assign the next experimental unit
to either the control (A; = 0) or the treatment (A; = 1) by sampling A; ~ Bernoulli(7;). Finally,
after assigning the experimental unit, we observe the outcome Y; which marks the end of round t¢.
We formalize the above interaction protocol as follows. Let F; = o(H;) denote the filtration
generated by the past observations. An algorithm A = {(m, %)}, is defined as a sequence of
F;_1 measurable random elements where 7, € [0, 1] is the treatment allocation probability and
7y ¢ (m, Ay, Yy) = Rso which can be thought of as the ATE estimate produced by A on round ¢.
We assume that the rewards are generated as Y; = 1{A; = 1}Y;(1)+1{A; = 0}Y;(0), where Y;(a)
are called the potential outcomes. We assume that the sequence of potential outcomes are jointly
distributed according to some probability measure v (the “environment”) that satisfies the following
assumptions. The first assumption is that the rewards are unconfounded, which means that, given
Fi_1, the potential outcomes Y;(1), Y;(0) are conditionally independent of the treatment assignment
Ay, ie Yi(1),Y;(0) L Ay | Fioi. The second assumption is that the reward means and variances are
conditionally fixed so that for all ¢, we have E,[Y;(a) | F;_1] = po and Var,[Yi(a) | F;_1] = o2

Our objective within this framework is to estimate the ATE 7, which is defined as
T = W1 — Ho-

The Adaptive AIPW Estimator. An algorithm for adaptive ATE estimation thus requires us
to specify a method to compute the treatment allocation probability m; as well as the estimate 7.
A natural choice for 7; is the AIPW estimator, which given some reward estimate /i, is defined as

N g(Ay) N AT A

_ Y, — 3.98

T ]P.A,V[At] ( t IuAt) + T[:u]? ( )
where g(A4;) = 1{A; = 1} — 1{A; = 0} and 7[i| = {1 — f1o. However, this estimator isn’t well
suited to sequential estimation, motivating Kato et al. to propose the Adaptive AIPW (AAIPW)
estimator. Specifically, letting fi; denote any F;_; measurable function (i.e. a predictable reward

estimate), they defined

FAAIPW _ 1{A, =1} — 1{A; = 0}
¢ Wt(At)

(Ve — f1e(Ar)) + Telfue]- (3.99)

We also choose to use the AAIPW estimator for a few reasons. The first reason is that this
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estimator is known to be asymptotically optimal — this is crucial for obtaining sublinear Neyman
regret (which we define below). Furthermore, recent advances in sequential analysis have developed
tight confidence sequences for the AAIPW, making it a natural choice due to its compatibility with

the downstream goals of sequential testing and uncertainty quantification.

Neyman Allocation and Regret We use the mean squared error (MSE) to measure the quality
of the estimates produced by our algorithm. However, by itself, the MSE is difficult to interpret
because it does not consider the inherent difficulty of the problem. Therefore, we would like to
normalize this error with respect to some problem dependent baseline which we now define and
motivate. Hahn et al. show that for any fixed allocation, 7, the minimum attainable MSE of any

estimator 1s

2 2
—_ 4+ — 1
—tT (3.100)

The Neyman allocation 7* is defined as the allocation which minimizes the above variance and a

simple calculation shows that

A — (3.101)
og + 01

Ideally, we would like to design an algorithm whose variance is close to this baseline and in order

to understand the rate at which this occurs, we consider the Neyman regret which is defined as

2 2
RT:T-(%T—T)Z—(ﬁJr % ) (3.102)

* 1— 7

The Neyman regret is simply the difference in the normalized MSE between the optimal variance
and the MSE of the estimate produced by A. This normalization guarantees that the the MSE
converges to a constant (rather than 0) so that if A has sublinear regret, then we are guaranteed
that its MSE converges to the optimal MSE.

Using the fact that the AATPW is unbiased, along with the fact that 7, and fi;, are predictable,

we can rewrite the Neyman regret for the AAIPW estimator as

. of o}
Rr = ;EA,VM(%M)] — <F + 1o W*) : (3.103)
where ) | (@)
g — Ta
O(m,p) = ° 4 ¢(a)? 3.104
) ae{zo’l} ( ) 7T(a) t ) ( )

is the Neyman loss and €,(a) = p, — fiz(a) is the reward estimation error.
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Notation. In what follows, we will let

Ny(a) =) 1{A, = a}

s=1

denote the number of times the action a is selected at the end of round ¢,

¥i(a) = %ZYA{AS —a)

denote the empirical mean after ¢ rounds, and

1
Nyi(a)

> (Vl{A, = a} = Yi(a)”

s=1

o7 (a) =

denote the empirical variance. We use O[] to denote asymptotic equivalence up to doubly logarith-

mic factors.

3.2.4 The Optimistic Policy Tracking Algorithm

In this section, we introduce our Optimistic Policy Tracking (OPT) algorithm. We begin with
a discussion of the difficulties of adaptive ATE estimation and the suboptimality of existing ap-
proaches. Next, we introduce our algorithm and provide insight into why it resolves the issues of
existing approaches. Finally, we conclude with a brief discussion of the algorithmic design principles

underlying our algorithm and their relation to ideas in the literature.

The difficulties of adaptive ATE estimation. The primary difficulty of adaptive ATE esti-
mation is in balancing the exploration-exploitation trade-off that arises from adaptive allocation.

If we condition on F;_; some algebra shows that the variance of the AAIPW estimator is

> e it = ) (3.105)

which is minimized by setting (7, 1) = (7%, u) where 7* is the Neyman allocation. Since 7* and p
are not known a priori, we need to design an algorithm to adaptively estimate them. However, this
is challenging because optimizing the exploration allocation separately for estimating 7* and p (each
requiring a different allocation) results in a procedure with high Neyman regret. As such, designing
an algorithm to adaptively balance the exploration of 7* and p while simultaneously minimizing

the Neyman regret becomes a very delicate task.
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Insights into improvements. In order to better understand the improvements that can be
made, we investigate previous approaches for balancing this trade-off. To simplify the exposition,
in this section we assume that 7* < % The primary approach that past works (both asymptotic
and nonasymptotic) have utilized is clipping the allocation. In fact, prior algorithms compute the

empirical allocation

and plays a clipped version of this estimate
7 = min{1 — ~;, max{vy;, 7 } },

for some carefully chosen clipping sequence ~; satisfying 7, — 0. However, these clipping approaches

have some important limitations.

The first limitation is that a clipping approach cannot be fully adaptive to the underlying
problem instance because the clipping sequence must be chosen a priori. As such, past works
choose v; in order to optimize the performance of their algorithm in a worst-case sense, leading to
suboptimal Neyman regret for easy problem instances. The second, more pressing issue, is that
clipping approaches lead to algorithms which under-exploit which is caused by the asymmetry of
the Neyman loss. Practically, the implication is that an algorithms which under-sampled the arm
with a smaller probability according to the Neyman allocation must necessarily pay a higher price

than the same algorithm which over-sampled the same arm by the same amount.

Optimistic Policy Tracking. Our proposed algorithm, OPT, is designed in order to address
these aforementioned issues. Indeed, as we will see, not only does OPT better adapt to the underly-
ing problem instances, it also better handles the exploration-exploitation trade-off when compared
to prior works. The algorithm itself if simple and plays the allocation

1

—_ (3.106)

m; = argmin
wEC[m*]

where C;[7*] is a confidence sequence for the Neyman allocation. For reward estimation, we simply

use the sample mean ji;(a) = Nt,ll(a) 22;11 Y, - 1{A, = a}.

The main difficulty now is in constructing the confidence sequence Ci[7*]. In order to do so,

we first construct confidence sequences for the standard deviations of each arm. This constructs

a confidence sequence C;[o,] = [C,(0,), Ci(0,)] whose width scales like O [ 4/ %). Using

these confidence sequences on o,, we can construct a confidence sequence for the Neyman allocation
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as follows

_ Qt(al)
Cilow) + Cilen)
Ci(o1)

Cy(00) + Ci(o1)

Ci|m*] = [
(3.107)

Interpretation as Optimism. We can interpret our algorithm as implementing the celebrated
principle of optimism in the face of uncertainty. Optimism is an algorithmic design principle which
is the basis of many well-known MAB and reinforcement learning algorithms (such as the “upper
confidence bound”). Roughly speaking, the principle states that we should act as if the underlying
problem instance is the easiest instance, which is feasible according to our past observations. In the
regret minimization framework, this means playing the arm which has the largest upper confidence
bound. For adaptive ATE estimation, this involves playing the allocation that is closest to % This
is because the difficulty of a problem is determined by the deviation of the Neyman allocation from
1 1

5 — when the Neyman allocation is close to s,

aligned. Suppose the Neyman allocation deviates from %, then as the allocation we play converges

the objectives of exploration and exploitation are

to the Neyman allocation, we are necessarily under-sampling one arm and thus slowing down our
convergence to the Neyman allocation. This intuition is supported by prior results showing that the
Neyman regret scales inversely with |r — %] Therefore, implementing optimism for adaptive ATE
estimation involves playing the most feasible allocation (as determined by our past observations)

closest to % — this is exactly the driving principle behind our OPT algorithm.

Theoretical Analysis

In this section, we build our intuition on the behavior of OPT and conclude by stating our main
result which is a bound on the Neyman regret of OPT.

Before we begin, we introduce some additional notation which will make our exposition easier.
For any m, we define A(7) = |3 — 7| and 7 = min{m, 1 — n}. Additionally, we let A, = o1 — 0.

Our analysis splits the behavior of OPT into two phases, an exploration ezploration phase and
the concentration phase. We define the exploration phase as the rounds for which m;, = % During
the early stages of interaction, we expect that each arm has been played sufficiently few times so
that % € Cy[r*], and the exploration time T is the length of this phase. Intuitively, during this
phase, there is not enough information in our observations to reliably predict 7* and so our best
choice is to explore each arm uniformly. Fortunately, the length of this phase is not too long, and our
first result bounds the length of this phase in terms of the absolute distance between the standard

deviations.

Lemma 3.2.1 (Exploration Phase Length). Define the exploration time as

To = min{t : m; # %} (3.108)
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Then, with probability at least 1 — &, we have

Ty =0 [A;Q log H . (3.109)

This result shows that OPT is able to adapt to the difficulty of the underlying problem instance
— if the gap between the standard deviations is large, then the exploration phase will be short, and
if the gap is small, then the exploration phase will be longer.

Once the exploration phase is over, the algorithm will be able to focus on the concentration
phase. In this phase, optimism guarantees A(m;) < A(7*). Therefore, we can control the number
of times each arm is played which we can in turn convert to bounds on |m; — 7*|.

Our next result formalizes this intuition.

Lemma 3.2.2 (Policy Convergence). With probability at least 1 — 6, we have that

~ log & 1
Mt =0 | =25 . (3.110)
-1 o9+ o0y

The reason for the appearance of 7* is due to the convergence of 7; based on the number of times

that both arms have been played. If we play one arm too often, then the width of the confidence
interval for 7* would depend entirely on the width of the lesser sampled arm.

Our main result combines the above lemmas to provide a bound on the Neyman regret.
Theorem 3.2.3 (Main Result). With probability at least 1 — &, the Neyman regret of OPT is

upper-bounded as
1\2
A%+ (—> log T
*

The first term above is the per-round Neyman regret during the exploration phase and our bound

0 . (3.111)

follows from the fact that the Neyman regret is at most 4 when we play m; = % The second term
in our bound is the Neyman regret during the concentration phase and follows from the application

of Lemma 3.2.2 in conjunction with prior results showing that the Neyman regret scales according

1
T*t"

scales like ﬁ, taking a sum over these two terms gives us the desired result.

In order to get a better understanding of our result, we consider the behavior of a hypothetical

to |7* — m|? =~ Since the contribution to the Neyman regret from the reward estimation also

algorithm which plays the optimal Neyman allocation 7* but incurs a loss based on the empirically
computed allocation, 7,. A simple calculation shows that m, converges to 7* at a rate of O[(7*-t)2].

This in turn implies that the Neyman regret would be

1\2
(—) log T
™

which, modulo the regret from the exploration phase, is the same as the Neyman regret incurred

O : (3.112)
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by OPT. This suggests that our algorithm is correctly adapting to the difficulty of the problem.

Comparison with Prior Work. At first glance, our result appears to be quite similar to the
Neyman regret bound from prior work which similarly shows a logarithmic bound on the Neyman
regret. However, this is not the case, due to differing definitions of the Neyman regret. In prior
work, the Neyman regret is defined with respect to the minimum variance over allocations for
the fixed IPW estimator. Our Neyman regret is defined with respect to the minimum attainable
variance over any pair of estimators and allocations. This means that while our regret bounds
share a similar form, the performance of our algorithm is significantly better than the performance
of clipping-based algorithms. Concretely, using our definition of the Neyman regret to characterize
the performance of clipping algorithms, we see that these algorithms actually have linear Neyman

regret since the variance of their policies cannot converge to the minimum attainable variance.

Experiments

In this section, we present experiments to evaluate the empirical performance of our algorithm. We
compare OPT against the Clipped Standard-Deviation Tracking (ClipSDT) algorithm, as well as
two oracle algorithms that follow the Neyman allocation. One of these oracle algorithms sequentially
estimates the reward, while the other has access to the true reward.

We do not include results for other clipping-based algorithms, as their variances fail to converge
to the oracle variance, consistently leading to significantly worse performance than the other algo-
rithms which obscures the clarity of the plots. This outcome is expected, given that both algorithms
incur linear Neyman regret.

We consider 6 problem instances where both arms follows Bernoulli distributions. For each of
these problem instances, we fix the treatment mean to be % and vary the control mean in order to
vary the Neyman allocation. For each of these problems, we run OPT, ClipSDT, and the reward
estimation oracle for 7" ranging from 100 to 2000 and plot the normalized MSE (7" - MSE) over
multiple simulations. For the oracle baseline, we explicitly compute the MSE.

Our results show that OPT consistently outperforms ClipSDT over all problem instances. The
difference between the two becomes negligible for larger values of T° which is expected since all
algorithms eventually converge to the Neyman allocation and true reward function. However, for
smaller sample sizes, we see that OPT provides around a 10-15 percent improvement over ClipSDT.
This improvement is due to the reasons given in Section 3.2.4.

The performance of OPT is competitive with the reward estimation oracle for moderate values of
m* and even outperforms the reward estimation oracle on some problem instances. This is because

OPT is more exploratory and obtains better reward estimates early on.

Key Findings.

e OPT provides substantial improvements over clipping-based methods, especially in small-
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sample regimes critical for applications like clinical trials

The optimistic approach naturally balances exploration and exploitation without requiring

problem-specific hyperparameter tuning

Performance is competitive with oracle methods that have access to additional information

about the problem

3.2.5 Conclusion

This work proposed a new algorithm for adaptive ATE estimation. We identified some key is-

sues with past approaches which limited their performance both empirically and theoretically and

demonstrated how to resolve them. Our proposed solution borrows ideas from the literature on

regret minimization and showed how to extend some of these ideas to the problem of adaptive

ATE estimation. We believe that these ideas will be crucial for developing adaptive algorithms for

inference for more complicated settings as well as for related problems like off-policy evaluation.

Key Contributions. Our main contributions are:

1.

We developed and analyzed a new algorithm, Optimistic Policy Tracking (OPT), for adaptive
estimation of ATE that enjoys significant theoretical improvements over previous approaches

along with a significantly simplified analysis.

. We performed simulations that demonstrate that our theoretical improvements translate into

empirical improvements, especially in the small sample regime, which is critical for applications

like randomized clinical trials.

Future Directions. We believe there are several compelling directions for future work:

Extension to settings with covariates and more sophisticated reward estimation using non-

parametric regression methods

Generalization to multiple arms, where the correct extension involves computing a confidence

interval around the Neyman allocation and projecting onto the uniform distribution
Application to more complex interaction protocols such as reinforcement learning settings

Development of similar optimistic principles for other causal inference problems beyond ATE

estimation

The insights developed in this work demonstrate how optimistic design principles from bandit

theory can be successfully adapted to causal inference problems involving complex estimators, pro-

viding both theoretical guarantees and practical improvements that suggest broader applicability

of optimistic design in experimental settings.
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3.2.6 Proofs

Preliminaries We will begin by defining our good event. Consider the following events

E,(0) = QN {@ (a) — o (a)] < 4.2 g(tT‘S)} (3.113)

Ev®) = {’Nt(a) S (a)‘ < \/tf(t,é)} (3.114)

&) =N {m (a) —7* (a)] < w(t,(s)}. (3.115)
ateN

Let 0 :~§ and define the good event £(0) = 50((5) NEn(D) rj E-(9). Applying Lemma~3.2.5 to

control &,(d) and Theorem 1 from [22] to control Ex(d), and &,(J) shows that the event £(d) occurs

with probability at least 1 — . Throughout the remained of this section, we assume the good event
holds.

Proof of Theorem 1

We begin by decomposing the Neyman regret

Ny =D U(m,71) (3.116)
Ny (0@ 1m0t (a)
‘tzl;(w)* o @ - 1) (8:117)
(P 1-m@) @) s (0 1w, 0P (a)
‘;g(wﬁ m(a) WNey[a])ﬂ;l%:(w)* (@ wNey[a])'
(3.118)

For the first term, we have that m; = %, and €, (a) < 1, so that

0?(a) 1-—m(a) , Q) o? (a)
2 (G @ -2 ) (3:119)
o2(0) o (a)
< (m (@ my[a]> 2 (3.120)

<4, (3.121)

to so that the regret from the exploration phase is 4T.
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For the second term, we have

(L a2 (3122
_ (jﬁ <<)> -z <(>)) s (—1 = §a> <a>> (3.123)
(3.124)

We can bound the first term by applying Lemma 4.3 from [3] in conjunction with so that

> <02 (a) o) ) g 625  ((t,0) 3.125)

m(a)  Tney(@)) T (0 (0) 4 0 (1))® Teyt

a

In order to bound the second term, we observe that on the good event

(3.126)

< \/ “,9) (3.127)

0(t, )

7
s Neyt

(3.128)

where in the last line we have again applied Lemma 4.5 from [3].

3 (lt(a)ef (a)) < (SE(L‘? (3.129)

a T ((l) 7TNey) t

Therefore, we have that

%. The result then follows by summing
TNey

this over t < T and adding the Neyman regret from the exploration phase.

We can bound the sum of these two terms as 625

Proof of Lemma 3.2.1

Proof. Suppose, without loss of generality, that mye, < %; in order to obtain results for mye, >

1
27 27
we can simply flip the roles of the treatment and control arms. For the case that mne, = %, then
OPT will always play .

Since myey < 3, bounding T is equivalent to determining the largest time ¢ such that U (¢)][mney] <

%, i.e we wish to compute

£(t,0
o (1) +4.2/ 55

min< t: <

1
£(t,0 £(t,0 5
0 (0) + 0 (1) + 4.2/ 553 — 4.2,/ {55

(3.130)
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Using the fact that m; = % for all t < T, can control
t
Ni(a) € [5 + 1.7+/tL(t, (5)} . (3.131)

Plugging this into equation Eq. (3.130) and rearranging shows that we need to bound

((t,9) A%,

min< t: <

1 [0(t.6) 18
0(t,0)

Applying Lemma B.10 from [3] shows that whenever ¢ > O (log(3)), we have that 1.74/ =2 <

(3.132)

so that we need to bound

4
min {t it > %E(t,é)} . (3.133)

Another application of Lemma B.10 shows that this quantity is bounded by

64 5.2 64 64
R log 5 + R log log R (3.134)
(o) (o) (o)
which gives us the desired result.
m
Proof of Lemma 3.2.2
Lemma 3.2.4. Lett > T. Then, with probability at least 1 — §, we have that
25 ((t, 0
t ) (3.135)

— <
T T ey = (0)+0 (1) meyt

Proof. WLOG we assume 7yey < % so that mney = Tney. First note that s > T, we have that

o(1l)+ Zy,
ey, 7 '1
41 € lWN Y o 0)+o(1)+ Z1t — Z(M] 10
7 (0) +0(1) Z ]
I I ) 3.137
{WN v TN Yo 0)+o()+Ziu—Zoy 0(0)+0(1)+ Z1y— Zoy | )
1
- |:7TNey> §:| ) (3138>

where we have defined
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and equation Eq. (3.138) follows from the definition of the T.

Since m; € [WNey, %], we know that 1 — 7, € [%, 1-— WNey] which we use to control the number of

times each arm is played.

Ni(1) > ey -t — V/U(t,0) (3.139)
— H(t,9). (3.140)

Plugging these values into the upper bound in equation Eq. (3.137), some algebra shows that

o (0)+o(1) Ziy
e = e : TN 3.141
Tt = MNey = TNy SOy T F Zis — Zow | 0 (0) 40 (1) + Zog — Zog N (3.141)
— e - Zo(t) — Zi (t) AR (3.142)

« o (O) +o (1) + Zl,t - Z()’t o (0) +0o (].) + Zl,t - ZO,t .
ZOt th
: + : 3.143
o (0) +o0 (1) + Zl,t — ZO7t o (O) + o (1) + Zl,t - ZO,t ( )
< 8.4 (o) ( ! ) . (3.144)
eyt — V/H(t,0) \0(0) +0 (1) = Zo,

~ 2
Applying Lemma B.10 from Neopane et al. [3], we have that when t = O ((Wl > log %), we

Ney

have that mneyt — /tl(t,0) > %WNeyt. Next, since ¢ > T, we have that

Zns =421 == (3.145)
A
< % (3.146)

Therefore,

A
0)+0(1)+ Z1s > 0 (0)+ 0 (1) é> (3.147)
—o(1
:0(0)+0(1)—U(0>80( ) (3.148)
1
> U<O);U( ) (3.149)
Combining these results, we have that
2
T¢4+1 — TNey S 0 g(t’ 5) (3150)

g (0)+0(1)\ eyt

which proves the desired result. O
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Concentration Results

The proof of this lemma is based on a similar proof found in [104] and extends the results to hold

in the sequential setting.

Lemma 3.2.5. Let (X;) be a [0, 1]-valued stochastic process defined on some filtration (F;) satisfying
p="=T,1[X and 0> =V, [X;]. Define

t
1
= ZXt (3.151)
t=1
1 t
/U\tg - Z (Xi — Mt)z : (3.152)
s=1

Then, with probability at least 1 — 6, for all t > 2 we have that

e for 10D a0, 3159

Proof. Define V; = (X; — p)? — 02, and S; = 3°._, V;. Letting V = V,_; [V;], we apply Theorem
1 from [22] which gives us the following time-uniform Bernstein inequality (see Table 3 in the

Appendix). Applying a union bound, we have with probability at least 1 — ¢, for all ¢ € N, that

0(t,8 0(t,2
e — pl < 1.70 %H.?%, (3.154)
0 (t,2 0(t,8
Vi < 1.7 MH.?M (3.155)
t 4t
0(t,8 0(t,8
<170 ¥+1.7¥, (3.156)

where we set ((t,0) = loglog 2t + 0.72 log% and the last inequality follows from the fact that
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YV < 0?. Letting p, = %Zizl X, some algebra demonstrates that

= Z (X = pe) = (e — ) — 07

- Z (X = pu)? + 20X — ) (e — 1) + (e — p)* = 0]

= to7 + 20 — 1) Y (Xi — ) + (e — p)* — o

i=1
=tol + 0+ t(p — p)* —to?

= t(o} — ” + (e — p)*),
which implies

1< 1<
(0} =) =2 Yo (m—p* < Y. (3.157)
s=1 s=1

Letting L = @, and applying the bounds in equations Eq. (3.154) and 3.156, some algebra
shows that

0% +1.70VL+1.7L — o2 > 0. (3.158)

Completing the square and rearranging shows that

o> \Jor+ (LT~ L)L~ LTVI (3.159)
> o, — 1.7VL. (3.160)

Repeating the same argument with —Y; shows that

o <o +42VL. (3.161)

Combining these bounds we have with probability at least 1 — ¢, for all ¢ > 2

o€ [at —1.74/ @,Ut +4.24/ E(tt_,é)] . (3.162)



3.2. OPTIMISTIC POLICY TRACKING

Misc. Results

Lemma 3.2.6. For any Alg, we have that
- 1 <
VAZg,V [AT] = ﬁ ZVALg,V [AI-PWt]
t=1

1y o*(a)  (1=m@)) .
T2 ;Eug,u Z m(a) +( m(a) )5t—1( )]

a

Proof. Leting 2z, = AIPW, — A, we have
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(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

Then applying the law of total variance shows that Vy, , [AIPW,] = Epg,, [V [AIPW, | F;_4]] since

V [E[AIPW, | F;_1]] = 0. Computing the conditional variance, we obtain

Vargy [AIPW, | Fi_i] = Eng, [(AIPW, — A)? | Fyi]

N 2
= Ea1g0 |:<wt (0p + &1-1) + Afi)l — A) | JT_.tl‘|
N 2
=E,, {wf (0% +e) ) — <A — Afﬂ) }

_ Z ( (a) + 5t—1(a)) — (g1 (1) — g1y (0))2

m(a)

_ {"i((;‘)) ( ! —1)-6?_1(@}+2€t_1(1)-8t_1(0)

3

m(a)

)
_ ["2(“) <17Tt” (a)>-€f_1(a)}+25t_1(1)-8t_1(0).

(3.169)

(3.170)
(3.171)

(3.172)

(3.173)

(3.174)
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Therefore, we have
Virgw {KT] = % tz:]E [Z (i (<§)) + <1 ;t?;§“)> ~€?1(a)) 26, 1(1) - gtl(())] (3.175)

o2 (a) 1 —m(a) 2 (4
> @) +< @ > i1( )] : (3.176)

a

= EAlg,u

where the second inequality follows from the fact that £?(a) are uncorrelated. ]



Chapter 4
Conclusion

This dissertation has presented a unified approach to sequential decision-making and adaptive exper-
imental design, developing theoretically grounded algorithms that achieve significant improvements
in both sample complexity and practical performance. Through contributions spanning transfer
learning, causal inference, and preference-based learning, we have advanced the state-of-the-art by

bridging the gap between theory and practice.

4.1 Summary of Contributions

Our work has made several key contributions across multiple domains:

Transfer Learning in Multi-Armed Bandits (Chapter 2.2). We developed algorithms that
can effectively leverage auxiliary information from related source tasks while maintaining robustness
against negative transfer. Our approach provides theoretical guarantees that gracefully interpolate

between perfect transfer scenarios and learning from scratch.

Adaptive Experimental Design (Chapters 3.1 and 3.2). We introduced two complementary
approaches for improving the efficiency of Average Treatment Effect estimation. The ClipSMT al-
gorithm achieves exponential improvements in regret from O(v/T) to O(log T), while the Optimistic
Policy Tracking method leverages the AIPW estimator through principled optimistic design.

Active Preference Learning (Chapter 2.3). We formalized active exploration in preference-
based learning as a contextual dueling bandit problem, developing algorithms with polynomial

regret bounds and practical extensions to RLHF and DPO for large language models.

4.2 Unifying Insights
Several key insights emerge from our work that extend beyond the specific technical contributions:
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The Importance of Finite-Sample Analysis. A consistent theme throughout this dissertation
is the significant gap between asymptotic optimality and finite-sample performance. Our work
demonstrates that algorithms designed with finite-sample considerations often achieve dramatically

better practical performance while maintaining strong theoretical guarantees.

Optimism as a Design Principle. The principle of optimism, well-established in bandit theory,
proves remarkably effective across diverse domains. Our work shows how optimistic design can
be adapted to causal inference and preference learning, suggesting broader applicability of this

algorithmic paradigm.

Adaptive Algorithms for Complex Estimators. While much prior work focuses on simple es-
timators for tractability, our research demonstrates that adaptive algorithms can effectively leverage
more sophisticated estimators like AIPW while maintaining theoretical guarantees and improving

practical performance.

4.3 Directions for Future Work

Our contributions open several promising directions for future research:

Multi-Task Learning Extensions. The transfer learning framework developed in Chapter 2.2
could be extended to more complex multi-task scenarios, including hierarchical task relationships

and continual learning settings.

High-Dimensional Causal Inference. The adaptive experimental design methods could be
extended to high-dimensional settings with many treatments or covariates, potentially leveraging

modern techniques from high-dimensional statistics.

Foundation Model Alignment. The active preference learning framework provides a founda-
tion for more sophisticated approaches to aligning large language models and other foundation

models with human values and preferences.

Robust Algorithm Design. Future work could explore how to make adaptive algorithms more
robust to model misspecification and distribution shift, building on the robustness insights from

our transfer learning work.
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4.4 Broader Impact

The algorithms and insights developed in this dissertation have potential applications across nu-
merous domains where sequential decision-making and adaptive experimentation are crucial. From
improving the efficiency of clinical trials to enabling more effective human-AT interaction, our con-
tributions provide practical tools for addressing real-world challenges while maintaining theoretical
rigor.

The emphasis on finite-sample performance is particularly important for applications where data
is expensive or limited, such as medical research, where our adaptive experimental design methods

could reduce the cost and duration of clinical trials while improving statistical power.

4.5 Final Remarks

Sequential decision-making under uncertainty remains a rich and challenging area with countless op-
portunities for impactful research. This dissertation has advanced our understanding by developing
principled approaches that bridge theory and practice, but many important questions remain open.
We hope that the insights and techniques developed here will inspire future work that continues to
push the boundaries of what is possible in adaptive algorithm design.

The journey from theoretical insights to practical algorithms is often long and challenging, but
the potential impact makes this effort worthwhile. As we continue to develop more sophisticated Al
systems and face increasingly complex decision-making challenges, the need for principled, adaptive

approaches will only continue to grow.
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