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Abstract

This dissertation addresses fundamental challenges in sequential decision-making and

adaptive experimental design, developing theoretically grounded algorithms that achieve

significant improvements in both sample complexity and practical performance. We

organize our contributions into two main areas: novel sampling mechanisms for learning

and adaptive methods for causal inference.

The first area focuses on sampling strategies that improve learning efficiency across

different problem settings. We develop transfer learning algorithms for multi-armed ban-

dits that can automatically adapt the degree of knowledge transfer based on observed

similarity between source and target tasks, providing theoretical guarantees that grace-

fully interpolate between perfect transfer and learning from scratch. We also formalize

active exploration in preference-based learning as a contextual dueling bandit problem,

developing algorithms with polynomial regret bounds using reproducing kernel Hilbert

space methods, with applications to reinforcement learning from human feedback and

direct preference optimization.

The second area develops adaptive experimental design methods for efficient causal

inference. We introduce the Clipped Second Moment Tracking algorithm that achieves

exponential improvements in finite-sample regret, reducing dependence from O(
√
T ) to

O(log T ) while maintaining polynomial dependence on problem parameters. We also

develop an Optimistic Policy Tracking approach that leverages the asymptotically opti-

mal Augmented Inverse Probability Weighting estimator through principled optimistic

design, demonstrating how techniques from bandit theory can be successfully adapted

to causal inference.

Throughout this work, we emphasize the gap between asymptotic and finite-sample

performance, developing principled algorithmic approaches that provide both theoretical

guarantees and practical improvements. Our contributions advance the state-of-the-art

in sequential decision-making by bridging theory and practice across multiple important

application domains including clinical trials, online experimentation, and human-AI

interaction.
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Chapter 1

Introduction

Sequential decision-making under uncertainty is a fundamental challenge that arises across numerous

domains, from medical trials and online advertising to robotics and artificial intelligence. At its

core, this problem requires balancing exploration — gathering information about unknown aspects

of the environment — with exploitation — leveraging current knowledge to make optimal decisions.

This dissertation addresses several important instantiations of this challenge, developing principled

algorithmic approaches that advance both theoretical understanding and practical performance.

1.1 Overview and Contributions

This dissertation is organized into two main chapters, each containing multiple related contributions.

1.1.1 Chapter 2: Learning from Alternative Feedback

This chapter develops new adaptive algorithms for principled sample efficient learning across dif-

ferent problem settings:

Transfer Learning in Multi-Armed Bandits (MAB) (Section 2.2). We address the chal-

lenge of leveraging auxiliary information from related source tasks to improve learning efficiency

in new target environments. Our algorithm automatically adapts the degree of transfer based on

observed data, providing theoretical guarantees that gracefully interpolate between perfect transfer

scenarios and learning from scratch. In doing so, we are able to generalize existing algorithms for

Best Arm Identification to much more general settings while still maintaining optimal performance

in existing problem settings. Through these generalizations, our work provides improved sample

complexity bounds compared to existing algorithms, while enabling applications in new transfer

learning settings which have previously not been studied in the MAB literature. This section is

based on [1].

1



2 CHAPTER 1. INTRODUCTION

Active Exploration for Preference Learning (Section 2.3). In this work, we formalize and

investigate the problem of active preference-based learning in contextual bands. Our theoretical

contribution focus on developing algorithms with polynomial regret bounds when the underlying

reward structure can be described by a function in a Reproducing Kernel Hilbert Space (RKHS).

Using the insights developed in this theoretical setting, we propose and experimentally validate a

version of this algorithm which works enables applications to reinforcement learning from human

feedback (RLHF) and direct preference optimization (DPO) for large language model alignment.

This section is based on [2].

1.1.2 Chapter 3: Adaptive Causal Inference

This chapter focuses on developing adaptive learning algorithms for problems in Causal Inference.

The problem of adaptive Causal Inference is a relatively new field and so our contributions here

serve to lay the ground work, focusing on developing sample efficient algorithms with nonasympotic

performance guarantees.

Clipped Second Moment Tracking (Section 3.1). In our first work, we propose an algorithm

for adaptive experimental design that achieves exponential improvements in finite-sample regret.

Prior to this work, the vast majority of the literature on adaptive Average Treatment Effect (ATE)

estimation was concerned with designing algorithms with asymptotic optimality guarantees. In con-

trast, we argue that nonasymptotic guarantees are critical especially because standard applications

of causal inference, such as Randomized Control Trials (RCTs) require sample efficiency, which

can be obscured by prior asymptotically focused approaches. We analyze existing asymptotically

optimal algorithms and demonstrate how appropriate tuning of this algorithms hyperparameters

guarantees a regret bound of at most O(log T ). Notably, this is a doubly exponential improvement

from existing algorithms with nonasymptotic guarantees: we improve existing regret bounds from

O(
√
T ) to O(log T ) and also reduce an exponential dependence on critical problem parameters to

a polynomial dependence. This section is based on [3].

Optimistic Policy Tracking (Section 3.2). In this work, we develop a new algorithmic de-

sign framework for the problem of adaptive ATE estimation by demonstrating how to extend the

principle of optimism from the MAB literature on regret minimization to this new setting. We

instatiate this framework using the asymptotically optimal Augmented Inverse Probability Weight-

ing (AIPW) estimator and demonstrate how to design new optimistic algorithms. Our algorithm

achieves significant theoretical and empirical improvements over prior methods while maintaining

strong finite-sample guarantees, demonstrating how optimistic principles from the MAB literature

can be successfully applied to causal inference. This section is based on [4].



Chapter 2

Learning with Alternative Feedback

Mechanisms

This chapter develops novel sampling strategies that improve learning efficiency across different

problem settings. We investigate two complementary forms of alternative feedback: feedback from

a different system which we wish to transfer in-order to understand properties of a related system as

well as preference-based feedback in the form of pairwise comparisons. Both contributions address

the fundamental challenge of how to gather information most efficiently when learning in complex,

uncertain environments.

2.1 Introduction and Motivation

As machine learning systems evolve and become increasingly integrated into different aspects of

society, our need to efficiently gather information in order to make decisions will grow. Traditionally,

interactive learning algorithms assumce access to reward based feedback, where the utility of an

action or a decision is defined by a scalar that can be directly compared to other utilities in-order

to compare and access different decisions. However, in many real-world scenarios, we often do not

have direct access to such reward-based feedback, and need algorithms which can operate with

alternative feedback mechansisms. While this issue presents itself as a hurdle, with some additional

effort, we can design new algorithms which are able to utilize these alternative feedback mechanisms

and not only circumvent the need for standard feedback, but also produce algorithms that can lead

to similar downstream decisions with reduced costs and increased sample efficiency. This chapter

explores two form of alternative feedback where this is the case.

Transfer Learning. We develop algorithms that propagate uncertainty from source tasks to the

target, using the transferred posterior variance as a control signal for how aggressively to sample each

domain. High estimated similarity lets the algorithm lean on source data; widening discrepancies

trigger a shift toward fresh target exploration. The resulting sampling rule reduces unnecessary

3



4 CHAPTER 2. LEARNING WITH ALTERNATIVE FEEDBACK MECHANISMS

data collection and, when run in a pure nontransfer setting, recovers existing optimal algorithms.

Preference Learning. Rewards are often ill-defined or noisy, while it is usually easy to decide

which of two outcomes is better. In such cases, algorithms based on pairwise comparisons are the

right tool. We develop an active comparison strategy that directs queries to the most informative

pairs, and recovers standard optimal behavior under standard reward feedback.

Both approaches illustrate the power of moving beyond naive sampling toward strategies that

interrogate problem structure for maximum information gain.

2.2 Best Arm Identification under Additive Transfer Ban-

dits

In many real-world applications of multi-armed bandits, we encounter scenarios where we want

to identify the best option in a target domain but can only observe outcomes in related source

domains. This work aims to develop new approaches to address these issues by introducing a new

problem which intersects the ideas of transfer learning and sequential decision making. At a high-

level, the problem we study involves two multi-armed bandit (MAB) instances, which we call the

source and target instances, as well a transfer function, which is a known relationship between the

two MAB instances. Within this setup we define and consider an appropriately modified variant of

the (ϵ, δ)-correct best arm identification (BAI) objective [5, 6].

Motivating Examples. We start off by highlighting various scenarios where the need to transfer

knowledge between sequential decision making problems arise:

• Clinical Trials. The first scenario we consider is the application of MABs to clinical trials

[7]. In this context, the arms can be thought of as the different treatments and we wish to

determine which is most effective. A standard practice in this setup is to test treatments

on animals before transitioning to clinical trials for humans. Ideally, we wish to identify the

optimal treatments for humans by only testing the treatments on animals. Here, we can view

the animal trials as the source domain, and human trials as the target domain.

• Sim-to-Real Transfer in Reinforcement Learning. A popular paradigm for ‘cheap’

reinforcement learning is sim-to-real transfer in reinforcement learning [8–10]. In the sim-to-

real problem, the objective is to learn a robot’s control policy for the real world (target domain)

while restricting training to computer simulations (source domain). Currently, in the sim-to-

real literature, most algorithms rely on heuristics to learn these control policies – typically by

ensuring that a sufficiently diverse set of environments are encountered during training. While

some of these heuristics have proven to be successful, our theoretical understanding of this

problem remains in its infancy. We believe that studying our proposed problem is a first step
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towards gaining a better understanding of how to transfer knowledge in more complicated

sequential decision making problems.

• Rate adaptation in wireless networks. Rate allocation in wireless networks has been

posed as a bandit optimization problem under fixed channel conditions [11, 12]. However, it is

important to adapt the rate allocation according to varying channel conditions by transferring

rate allocation policies between related channel conditions.

Contributions. The main contributions of this work are

1. A general additive transfer framework that which not only captures the idea of ‘transfer‘

in a sequential decision making framework, but also unifies many existing pure exploration

problems under a single framework.

2. A novel algorithm for this framework, Transfer-LUCB, which generalizes the celebrated LUCB

algorithm, along with a theoretical analysis providing sample complexity guarantees.

3. Instantiations showing how our general bounds recover and extend known results for problems

like TopK identification and thresholding bandits

Related Works

The work most closely resembling ours is a recent line of work on obtaining sample complexity

guarantees for Monte Carlo tree search algorithms [13–15]. Specifically, Huang et al. [15] approach

this problem by first introducing the more general structured BAI problem. Their structured BAI

framework is the same as our transfer BAI framework, however we choose to use a different name to

both emphasize that we are transferring knowledge between multiple MAB instances and to avoid

confusing the structured BAI problem with the structured MAB framework described in Lattimore

and Munos [16] and Gupta et al. [17].

While Huang et al. [15] give a general algorithm for their structured BAI problem, their pri-

mary objective was to derive algorithms for the Monte Carlo tree search problem. As such, their

assumptions consequently make their algorithm inapplicable to wide range of settings including the

simple linear setting discussed in Section 2.2.1. Their Assumption 2(i), which requires the transfer

function to be component-wise monotonic, already restricts the applicability of their algorithm to

a wide range of problems. However, we can resolve this issue by using our confidence sequence con-

struction given in Section 2.2.2. Their Assumption 2(ii), however, is more troublesome as it requires

the confidence sequence of each target arm to be contained in the confidence sequence of at least

one source arm. To resolve this, Huang et al. [15] briefly mention a weaker assumption wherein

the confidence sequence of each target arm must be contained in a scaled and shifted version of a

source arm’s confidence sequence — however, this weaker assumption is still inapplicable even in

the linear setting. Additionally, as we show in Appendix 2.2.6, the resulting sample complexity for

this modified algorithm is significantly worse than the sample complexity of our algorithm. Finally,
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we note that the assumptions we make are incomparable to the assumptions made in Huang et al.

[15] as neither is more or less general than the other.

The simpler linear setting subsumed by our framework, where the transfer function takes the

form f(µ) = Aµ also coincides with the Transductive Linear Bandit problem studied in Fiez et al.

[18] and Katz et al. [19] when the sampling vectors are the standard basis of RS. However, it is not

clear how to extend the ideas presented in these works to the additive setting since the algorithms

strongly utilize the linearity in the problem.

The ‘partition identification’ problem introduced by Juneja and Krishnasamy [20] is also related

to our work. In fact, their framework can be seen as a generalization of the problem studied here.

However, in their work, Juneja and Krishnasamy [20] primarily focus on providing lower bounds for

variations of the partition identification problem and only briefly discuss an asymptotically optimal

algorithm towards the end of their work. Additionally, it is known that Confidence-Interval style

algorithms (like the one we propose) outperform their Track-And-Stop style algorithm in so-called

moderate-confidence regimes1 [21]. Moreover, it is not clear that the algorithm they provide is can

even implementable in the linear setting because implementing it requires solving a constrained

optimization problem over a (possibly) non-convex set. Finally, the analysis in [20] only provides

asymptotic guarantees for their algorithm while we provide explicit finite-time guarantees for our

algorithm.

2.2.1 Problem Setup

Before introducing the transfer BAI problem, we briefly review the ϵ-BAI problem within the MAB

framework. In our notation, we define an n-armed MAB instance to be a set of n tuples {(Pi, µi)}ni=1

where Pi ∈ P is a probability distribution in some known set P and µi := EPi
[X] is the mean of

Pi. For example, P could be the set of all sub-Gaussian distributions. In this setup, an algorithm

interacts with the MAB instance through a round-based protocol. In each rounds, t, the learner

selects an arm It ∈ {1, . . . , n}, and observes a sample Xt ∼ PIt . For the ϵ-BAI problem, the

objective is to identify an ϵ-optimal arm â satisfying µâ + ϵ ≥ maxi∈[n] µi, where [n] = {1, . . . , n}.

This problem is often studied in the so-called fixed-confidence setting in which a confidence

parameter δ is given and an algorithm is said to be correct if, with probability greater than 1− δ,
it stops and returns an ϵ-optimal arm. For any fixed MAB instance, an algorithm’s performance is

then judged by either a high-probability or an in expectation upper-bound on the number of samples

required to identify an ϵ-optimal arm. In this work, we will give a high probability bound for a

variant of the fixed-confidence setting that naturally arises in our setup.

1By moderate confidence regimes we mean regimes where δ is moderately small, i.e when δ ≈ .05 or when it is
inverse-polynomial in the number of measurements [21].
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Transfer Best Arm Identification

We are now ready to introduce the transfer BAI problem which can be stated as a tuple

({Si, µi}Si=1, {Ta, νa}Ta=1, f). Here, {Si, µi}Si=1 and {Ta, νa}Ta=1 are S and T -armed MAB instances

which we respectively call the source and target MAB instances and f : RS 7→ (R+)T is a known

multivariate function which we call the transfer function. Here, we have written R+ := R∪{∞,−∞}
to denote the extended real numbers. Specifically, f relates the means of the target and sources

arms in the sense that

ν = f(µ),

where µ = (µ1, . . . , µS) and ν = (ν1, . . . , νT ) refer to the vector of means for the source and target

MAB instances.

In this paper we study the special setting in which f is an additive function satisfying

νa = fa(µ) =
S∑

i=1

fa,i(µi).

Here, and in the rest of this paper, i will always be used to index source arms, and unless otherwise

specified, a will be used to index target arms. As we discuss more in Section 2.2.1, this additive

setting is already interesting as it captures a large number of existing problems in addition to

introducing new problems.

Motivating Examples

To provide more concrete intuition about our algorithm and sample complexity analysis, we will

use two running examples: property testing and linear transfer functions.

Property Testing. In the property testing problem we are interested in identifying all arms

i ∈ [S] which satisfy some property µi ∈ Ci ⊂ R. Our additive transfer framework is able to capture

this problem. To do so, we first define

IC(µ) =

1 µ ∈ C,

−∞ µ ̸∈ C.
(2.1)

Then for each set M ∈ 2[n] we define a target arm whose mean is νM =
∑

i∈M ICi(µi). Clearly,

the optimal target arm will be a function of all source arms for which µi ∈ Ci. We note that

whenever we refer to the property testing problem, we will index the target arms with M instead

of a. Additionally, for the property testing problem, we require ϵ = 0.
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Linear Transfer Functions. Another useful special case for contextualizing our results is the

setting where the transfer function is a linear transformation of the source means, so that

νa =
S∑

i=1

Aa,iµi.

In our proposed framework, we restrict our ability to sample from the target arms, and only

consider algorithms which are able to sample from the source arms. We note that studying the prob-

lem where we have the ability to sample from both the target and source domains is an interesting

problem for future work. Our objective is to develop algorithms which will return an ϵ-optimal

target arm with high probability. Formally, we focus on an appropriately modified version of the

fixed-confidence setting which we define as follows:

Definition 2.2.1 ((ϵ, δ)-correct). For any ϵ ≥ 0 and δ ∈ (0, 1), we say that an algorithm Alg is

(ϵ, δ)-correct for the transfer BAI problem if, with probability at least 1− δ, and for every problem

instance ({Si, µi}Si=1, {Ta, νa}Ta=1, f), Alg stops and returns an ϵ-optimal arm â ∈ [T ] satisfying

νâ + ϵ ≥ maxa∈[T ] νa.

As is standard with typical BAI algorithms, an algorithm for the transfer BAI problem is

comprised of three components: a sampling rule, a stopping rule, and a selection rule. Letting

Ft = σ(X1, . . . , Xt) denote the σ-algebra generated by the observations from the source arms up

until time t, we have

1. a sampling rule, pt, which is a Ft−1-measurable function which selects the source arms to pull

during round t;

2. a stopping rule, τ , which is a Ft-measurable random variable which determines when the

algorithm stops;

3. a selection rule, â, which is a Fτ -measurable function which outputs a guess of the optimal

target arm a∗.

Assumptions

Before proceeding, we briefly discuss our assumptions. Our first assumption places restrictions on

the class of additive transfer functions which our algorithm is able to handle.

Assumption 2.2.2 (Assumptions on f). We assume that fa,i is continuous at µi for all (a, i) ∈
[T ]× [S].

We additionally assume that the observations from the source MAB instances are sub-Gaussian.

Assumption 2.2.3 (σ-sub-Gaussian Observations). We assume that the observations from the

source arms are σ-sub-Gaussian so that for any i ∈ [S] and λ ∈ R the following holds

logEX∼Si
[exp {λ(X − µi)}] ≤

λ2σ2

2
. (2.2)
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This assumption is necessary for the concentration inequalities used in the construction of our

LUCB-style algorithm given in the next section. We note that this, with minimal modification, our

assumption, algorithm, and the resulting sample complexity analysis can accommodate arbitrary

sub-ψ observations through the use of the concentration inequalities given by Howard et al. [22] —

in Assumption 2.2.3, we have implicitly set ψ(λ) = λ2

2
. However, to simplify the exposition, we limit

the scope of this work to sub-Gaussian observations. Finally, without loss of generality, we assume

that the means are ordered in decreasing order so that µ1 ≥ µ2 . . . ≥ µS and ν1 ≥ ν2 ≥ . . . ≥ νT .

We only require the optimal target arm to be unique when ϵ = 0.

Subsumed Settings

Finally, as we alluded in the previous subsection, we now describe how the additive-transfer frame-

work studied here subsumes a range of existing pure exploration problems. In the next section, we

instantiate our sample complexity results for some of the problems mentioned below.

TopK Identification. In the TopK problem [23, 24], the objective is to identify the K arms

with the largest means. To recover this problem in our formulation, we define the target means as

follows. We define a target arm TM for each set M ∈ 2[T ] satisfying |M | = K. The mean of this

target arm is then defined as νM =
∑

i∈M µi.

Thresholding Bandits. In the Thresholding Bandits problem [25], the objective is to identify

the set of arms whose means are greater than some fixed threshold µ ∈ R. This problem is subsumed

by the property testing problem mentioned earlier. To see this, we simply set, for each i ∈ [S],

Ci = (µ,∞). Then for every set M ∈ 2[n] define the mean of target arm TM as νM =
∑

i∈M ICi(µi).

Combinatorial Pure Exploration. As a final example, we show how our framework general-

izes the Combinatorial Pure Exploration problem proposed by Chen et al. [26–29]. This problem

is defined by a decision class M ⊆ 2[S] and the objective is to identify an element M ∈ M satis-

fying M ∈ argmaxM ∈M
∑

i∈M µi. It is easy to see that this problem fits into our framework by

defining a target mean νM =
∑

i∈M µi. The Combinatorial Pure Exploration problem additionally

subsumes a number of additional problems previously studied in the literature, including the ex-

amples discussed above. For more examples of subsumed problems and additional discussions, we

refer the reader to the literature on this problem [26–30].

2.2.2 Algorithm

In this section, we present the Transfer LUCB (T-LUCB) algorithm, a variant of the LUCB algo-

rithm [23] used in the fixed-confidence BAI setting. Like the LUCB algorithm, our T-LUCB algo-

rithm is based on constructing confidence sequences which are time-uniform confidence intervals on
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the sample means. Before presenting the T-LUCB algorithm, we first discuss the construction of

our confidence sequences.

To construct the confidence sequences on the source arms we use standard Hoeffding-like confi-

dence sequences [22, 31] and define the Lower Confidence Bound (LCB), Upper Confidence Bound

(UCB), and Confidence Interval (CI) sequences as follows. Recall that Is denotes the arm that is

pulled at time s. We let Ni(t) =
∑t−1

s=1 IIs = i denote the number of times that source arm i has

been pulled at the start of round t. Additionally, we let µ̂t(i) = 1
Ni(t)

∑t−1
s=1XsIIs = i denote the

empirical mean of arm i at the beginning of round t. Then, at t = 0, we set the lower and upper

confidence bounds for source arm i as LS(0, i, δ) = −∞, US(0, i, δ) = +∞. Next, for t ≥ 1, we

recursively define the confidence sequences as:

US(t, i, δ) := min

{
US(t− 1, i, δ), µ̂t(i) + β(Ni(t), δ/(2S))

}
, (2.3)

LS(t, i, δ) := max

{
LS(t− 1, i, δ), µ̂t(i)− β(Ni(t), δ/(2S))

}
, (2.4)

CIS(t, i, δ) := [LS(t, i, δ),US(t, i, δ)]. (2.5)

Here β(·, ·) is a function which controls the rate at which the confidence intervals shrink. As an

example, β can be taken to be the so-called “polynomial stitched boundary” [22, Eq.(6)]:

β(t, δ) := 1.7

√
σ2 log log (2tσ2) + 0.72 log 5.2

δ

t
. (2.6)

More generally, for the results given in Section 2.2.3 to hold, β must satisfy the following condition:

P {∃t ≥ 1 : µi ̸∈ CIS(t, i, δ)} ≤ δ. (2.7)

The choice of β in Eq. (2.6) satisfies the above condition.

Next, we use the source arm confidence sequences to construct confidence sequences on the

target arms as follows:

LT (t, a, δ) :=
S∑

i=1

min
mi∈CIS(t,i,δ)

fa,i (mi) , (2.8)

UT (t, a, δ) :=
S∑

i=1

max
mi∈CIS(t,i,δ)

fa,i (mi) , (2.9)

CIT (t, a, δ) := [LT (t, a, δ),UT (t, a, δ)]. (2.10)

The intuition for the above construction is as follows. By constructing the source confidence se-
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quences as defined in equations Eq. (2.3) and Eq. (2.4), and choosing β to satisfy condition Eq. (2.7),

we can control the deviations of the source samples means from the true source means. This in turn

implies that the constructed target confidence sequences are well-behaved in the sense that they will

contain the target arm means with high probability. This intuition is formalized by Lemma 2.2.13

in the Appendix.

The T-LUCB Algorithm

We are now ready to introduce the T-LUCB algorithm which is stated in Algorithm 1. During each

round, the algorithm selects two target arms Bt and Ct with the objective of separating the LCB

of Bt from the UCB of Ct. After selecting Bt and Ct, the algorithm samples the source arms It and

Jt which respectively have the largest contributions to the length of the confidence sequences of Bt

and Ct. Formally, we define the following quantity

L(i, a, t) = max
m∈CIS(t,i,δ)

fa,i(m)− min
m∈CIS(t,i,δ)

fa,i(m), (2.11)

which quantifies the amount of uncertainty that source arm i contributes to target arm a. The

algorithm stops when the LCB of Bt is greater than the UCB of Ct. Finally the algorithm selects

Bt as its guess for the optimal target arm.

Input δ > 0, ϵ ≥ 0, f , σ2;
Sample each source arm once;
for t = 1, 2, . . . do

Bt = argmaxa∈[T ] LT (t, a, δ);

Ct = argmaxa∈[T ],a̸=Bt
UT (t, a, δ);

if LT (t, Bt, δ) + ϵ ≥ UT (t, Ct, δ) then
return â = Bt;

end
It = argmaxi∈[S] L(i, Bt, t) ;

Jt = argmaxi∈[S] L(i, Ct, t) ;

Observe Xt,1 ∼ SIt and Xt,2 ∼ SJt ;
end

Algorithm 1: Additive Transfer LUCB

2.2.3 Theoretical Analysis

In this section, we analyze the T-LUCB algorithm presented in the previous section. Our first result

shows that, regardless of the sampling rule, the stopping rule and selection rule of Algorithm 1 are

sufficient to give an (ϵ, δ)-correct algorithm. The proof of this result can be found in the Appendix.

Theorem 2.2.4. Suppose that β satisfies condition Eq. (2.7). Then, any algorithm which stops
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when there exists an arm a ∈ [T ] such that

LT (t, a, δ) + ϵ ≥ UT (t, a′, δ), (2.12)

for all a′ ̸= a, and selects the arm â = a, will with probability at least 1−δ, choose an arm satisfying

νâ ≥ ν1 − ϵ.
We now shift our attention towards providing a high probability upper bound on the sample

complexity of Algorithm 1. To present our function specific upper-bound on the sample complexity

we first introduce some additional notation. We remark that due to the generality of our framework

our generic sample complexity bound is presented implicitly, and is difficult to immediately interpret.

As such, we will present explicit bounds for some instantiations of our problem in the following

subsection.

First, we define

sa := |{i : fa,i(x) ̸= fa,i(y), ∀x, y ∈ R}|, (2.13)

which measures the number of source arms which contribute to the uncertainty of a target arm.

For the property testing problem, sa = |M |, which is the number of terms in the sum
∑

i∈M ICi(µi).

For linear transfer functions, sa = |{i : Aa,i ̸= 0} which measures the sparsity of the vector Aa.

Next, with a slight abuse of notation, we define the following quantity which has a similar form

to equation 2.11

L(i, a, t, x) = max
m∈[x,x+2β(t,δ)]

fa,i(m)

− min
m∈[x,x+2β(t,δ)]

fa,i(m). (2.14)

This term quantifies how much source arm i contributes to the confidence interval of target arm

a when the LCB of source arm i is x. For the property testing problem, we have

L(i,M, t, x) =



0 if [x, x+ 2β(t, δ)] ⊆ Ci, i ∈M

0 if [x, x+ 2β(t, δ)] ⊆ Cci , i ∈M

0 if i ̸∈M

∞ otherwise

, (2.15)

where Cci is the complement Ci and we have taken the convention that ∞ −∞ = 0. For linear

transfer functions, this quantity is independent of x so that L(i, a, t, x) = 2|Aa,i|β(t, δ).
Having defined this quantity, we are now ready to define an upper bound on the number of times

source arm i needs to be sampled in order to determine if target arm a is ϵ-optimal. First, we set

τa,i = min

{
t ∈ N : sup

x∈[µi−2β(t,δ),µi]

L(i, a, t, x) <
max {|ν̄1,2 − νa|, ϵ/2}

sa

}
, (2.16)
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where ν̄1,2 :=
ν1+ν2

2
. Then, we define

τi = max
a∈[T ]

τa,i, (2.17)

which represents the number of times source arm i must be pulled in order to determine which

target arms are ϵ-optimal. We are now ready to state our sample complexity result.

Theorem 2.2.5 (Sample Complexity Upper Bound of Algorithm 1). Let τ denote the stopping

time of Algorithm 1. Then with probability at least 1− δ, we have that

τ ≤
∑
i∈[S]

τi. (2.18)

Note that this sample complexity bound is independent of the number of target arms. This fact

allows us to recover the sample complexity of some existing problems as we show in the following

subsection.

Theorem 2.2.5 implies the following sample complexity result for the property testing problem.

Corollary 2.2.6. Let τ denote the stopping time of Algorithm 1 for the property testing problem

and define

H :=
∑

i = 1S
2

∆2
Ci(µi)

, (2.19)

where

∆Ci(µi) =

infx∈Cc
i
|x− µi| if µi ∈ Ci

infx∈Ci |x− µi| if µi ̸∈ Ci
.

Then2 with probability at least 1− δ,

τ ≤ Õ

(
H log

(
1

δ

))
. (2.20)

For linear transfer functions, we obtain the following result.

Corollary 2.2.7. Let τ denote the stopping time of Algorithm 1 for the linear transfer setting and

define

Hϵ (A, ν, µ) :=
∑

i = 1Smax
a∈[T ]

{
s2a|Aa,i|2

max
{
|νa − ν̄1,2|, ϵ2

}2}. (2.21)

Then with probability at least 1− δ,

τ ≤ Õ

(
Hϵ (A, ν, µ) log

(
1

δ

))
. (2.22)

2We use Õ to refer to sample complexity results which are correct up to constant and log log factors.
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Instantiations of the Sample Complexity Bound

We now proceed to instantiate the sample complexity bound of Theorem 2.2.5 for some previously

studied settings. In each of these settings we state an explicit bound which is a direct corollary

of the sample complexity bound from Theorem 2.2.5. Proofs of these results can be found in the

Appendix.

BAI. To recover the Best Arm Identification problem, we simply set νa = µi so that the mean

of each target arm is simply the mean of one of the source arms. First, we set µ = µ1+µ2

2
. Then

Theorem 2.2.5 implies that

τ ≤ Õ

(
S∑

i=1

1

(µ− µi)2
log(1/δ)

)
.

This recovers the sample complexity of the original LUCB algorithm [23].

Thresholding Bandits. Here, Theorem 2.2.5 implies that

τ ≤ Õ

∑
i∈[S]

1

(µi − µ)2
log(1/δ)

 ,

which matches, up to iterated logarithmic factors, the problem’s sample complexity lower bound

given for the fixed confidence setting [25].

TopK. One example of a Combinatorial Pure Exploration problem is the so-called TopK problem

where we wish to identify the K largest means our of S arms. This problem can be recovered in the

CPE framework by lettingM to be the all subsets of {1, . . . , S} with cardinality K. To state our

sample complexity results in this setup, we first define µ = µK+µK+1

2
. Then, Theorem 2.2.5 implies

that

τ ≤ Õ

∑
i∈[S]

K2

(µi − µ̄)2
log(1/δ)

 .

We remark that this sample complexity result is suboptimal by a factor of K2 [23, 24]. However,

we conjecture that this is the price of generality of our framework. We refer the reader to the

conclusion for more discussion on this.

2.2.4 Experiments

The theoretical paper focused on establishing the fundamental framework and theoretical guarantees

for additive transfer bandits. While the original conference paper did not include experimental

validation, the theoretical results provide important insights into the performance characteristics of

the T-LUCB algorithm.
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The sample complexity bounds demonstrate that:

1. The algorithm recovers classical BAI sample complexity when applied to standard best arm

identification

2. For thresholding bandits, the bound matches known lower bounds up to logarithmic factors

3. The framework generalizes to combinatorial pure exploration problems, though with some loss

in optimality for specific cases like TopK identification

Future experimental work would validate these theoretical predictions and explore the practical

performance of the algorithm across different transfer scenarios, including cases where the trans-

fer function relationship varies in strength and the robustness of the approach when the additive

assumption is violated.

The key experimental questions that remain to be addressed include:

• Performance comparison with specialized algorithms for specific subproblems

• Sensitivity to misspecification of the transfer function

• Computational efficiency for large-scale problems

• Real-world applications in domains like clinical trials and reinforcement learning

2.2.5 Conclusion

In this work we presented and analyzed an algorithm for leveraging additive relationships between

two MAB instances to identify the best arm in a MAB instance without ever sampling from it. The

T-LUCB algorithm provides a principled approach to transfer learning in multi-armed bandits with

theoretical guarantees.

Key Contributions Our main contributions include:

1. General Framework: We introduced the additive transfer bandit framework that encom-

passes many existing pure exploration problems while enabling new transfer learning scenarios.

2. Algorithm Design: The T-LUCB algorithm extends the classical LUCB approach to handle

transfer relationships through carefully constructed confidence sequences for both source and

target arms.

3. Theoretical Analysis: We provided sample complexity bounds that are independent of the

number of target arms and recover known results for special cases while establishing new

bounds for the general additive transfer setting.

4. Problem Unification: We demonstrated how our framework subsumes important problems

including TopK identification, thresholding bandits, and combinatorial pure exploration.

Limitations and Future Directions Several important directions emerge from this work:
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• Optimality. A first direction for future work would be to investigate if an algorithm for

the additive transfer setting can recover the correct sample complexity results for the spe-

cialized settings such as the TopK problem. We conjecture that this is not possible. This is

because algorithms for these simpler settings either implicitly or explicitly utilize a type of

well-ordering property of the problem which does not generally hold for non-linear additive

transfer functions. This well-ordering property is made explicit in the work of Gabillon et al.

[30], and is implicitly utilized in the work of Fiez et al. [18].

• Unknown Transfer Functions. An issue with our proposed framework is that we assume

the transfer function is known in advance. Another interesting direction of future research is

to study how to alleviate this requirement so that, for example, the transfer function can be

learned from historical data. If this approach is taken, it may no longer be possible to identify

a ϵ-optimal target arm as the error introduced from estimating the transfer function might

lead to a scenario where the true optimal target arm is not the optimal target arm under

the approximate transfer function. We believe in this setting a more reasonable criterion to

study is the simple regret [5] under the assumption that the learned transfer function is close

in norm to the true transfer function.

• Bi-directional Transfer. Furthermore, in this work we consider the setting where we are

unable to sample from the target MAB instance. Another interesting direction would be in

developing algorithms which are able to sample from the target MAB instance with the caveat

that doing so has some additional cost. This type of setting seems natural as it is often the

case that making direct measurements of some system can be significantly more expensive

than taking noisier auxiliary measurements of the system. A concrete example of this is in

the sim-to-real problem, where collecting observations from the real world is significantly more

expensive than collecting observations from a computer simulation. Additionally, the ability

to sample the target arm can allow for learning or refining the transfer function on the fly

using few transfer queries.

This work establishes the theoretical foundation for transfer learning in multi-armed bandits

and opens up numerous avenues for both theoretical and practical extensions.

2.2.6 Detailed Comparison with Prior Work

In this section we provide an in-depth discussion and comparison of our Algorithm 1 and a variant

of the Micro-LUCB algorithm which is suitable for linear transfer functions. We first restate their

assumptions and demonstrate why the do not hold for our setting. In this assumption, we note that

≤ denotes a component wise ordering so u ≤ v is equivalent to stating ui ≤ vi for all i.

Assumption 2.2.8 (Assumption 2 of [15]). The following hold:

1. The mapping function f is monotonous with respect to the partial order of vectors: for any

u, v ∈ RS, u ≤ v implies f(u) ≤ f(v).
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2. For any u, v ∈ RS, u ≤ v, a ∈ [T ], the set D(a, u, v) := {i ∈ [S] : [fa(u), fa(v)] ⊂ [ui, vi]} is

non-empty.

To see that Assumption 2.2.8 (i) is not satisfied for arbitrary linear transformations, we set

some entries of the associated matrix to be negative, then there will exist some a for which fa is

not monotonous. This assumption is used to define the confidence intervals on the target arms, and

without it, their proof of correctness does not hold. We modify the assumption to the following

which trivially holds true for any function:

Assumption 2.2.9. The mapping function f is monotone with respect to the partial order of

vectors: for any u, v ∈ RS, u ≤ v implies minu≤m≤v f(m) ≤ maxu≤m≤v f(m).

It can be verified that if our target confidence sequences are constructed as

LT (t, a, δ) := min
mi∈CIS(t,i,δ)

fa(m), (2.23)

UT (t, a, δ) := max
mi∈CIS(t,i,δ)

fa(m), (2.24)

CIT (t, a, δ) := [LS(t, i, δ),US(t, i, δ)], (2.25)

then the T-LUCB stopping rule and selection rule can be applied to any algorithm to give an (ϵ, δ)-

correct algorithm. The proof of this is a simple modification of the proof of Theorem 2.2.4 where

we simply replace the construction of the target confidence sequences given in Section 2.2.2 with

the construction defined above.

We now switch our attention to Assumption 2.2.8 (ii). In short, Assumption 2.2.8 (ii) requires

that for each target arm confidence interval, there exists at least one source arm confidence interval

which contains the target arm confidence interval. This assumption is used to determine the set of

source arms which should be sampled in the Micro-LUCB algorithm. Indeed, it is integral for the

algorithm since, if the assumption is not satisfied, the sampling rule is not well defined. While this

assumption is not directly satisfied for the linear setting, [15] mention one avenue for weakening

the assumption so that it is satisfied for a larger class of functions. This weaker assumption is as

follows:

There exists some a > 0, b ∈ R such that for any u, v ∈ RS, u ≤ v, a ∈ [T ], the set D̃(a, u, v) =

{i ∈ [S] : [fa(u), fa(v)] ⊂ [aui + b, avi + b]} is non-empty.

However, this assumption also is not well defined as [fa(u), fa(v)] is not an interval unless fa is

component-wise monotonically increasing. To fix this, we propose the following assumption:

Assumption 2.2.10 (Modified Assumption 2(ii) of [15]). There exists some ai > 0, bi ∈ R such that

for any u, v ∈ RS, u ≤ v, a ∈ [T ], the set D̃(a, u, v) = {i ∈ [S] : [minu≤m≤v fa(m),maxu≤m≤v fa(m)] ⊂
[aiui + bi, aivi + bi]} is non-empty.

Remark 2.2.11. This modified assumption is indeed a generalization of the previous assumption,

which can be seen by taking a = 1, b = 0.

This assumption then gives rise to a modified version of the Micro-LUCB algorithm which we
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state in Algorithm 2.

Sample each source arm once.;
for t = 1, 2, . . . do

Bt = argmax a ∈ [T ]LS(t, a, δ);
Ct = argmax a ∈ [T ], a ̸= BtUT (t, a, δ);
Choose any It from D̃(Bt,LS(t, Bt, δ),US(t, Bt, δ));

Choose any Jt from D̃(Ct,LS(t, Ct, δ),US(t, Ct, δ));
Observe Xt,1 ∼ SIt and Xt,2 ∼ SJt ;
Update [LS(t, It, δ),US(t, It, δ)] and [LS(t, Jt, δ),US(t, Jt, δ)];
if LT (t+ 1, Bt, δ) ≥ UT (t+ 1, Ct, δ) then

â← Bt;
return â;

end

end
Algorithm 2: Modified Micro-LUCB

It can be shown that only ‘diagonal’ matrices satisfy the above assumption. We demonstrate

this in the case A ∈ R2×2
≥0 through the following proposition:

Proposition 2.2.12. Let A ∈ R2×2
≥0 . Suppose A satisfies Assumption 2.2.10, then for i = 1, 2,

either Ai1 = 0 or Ai2 = 0.

Proof. Let

A =

[
A11 A12

A21 A22

]
,

where Aij ≥ 0. Without loss of generality, we assume that i = 1 and A11 ̸= 0, and we will

demonstrate that this necessarily implies that A12 = 0. First, under Assumption 2.2.10, we know

that

b1 ≤ A11u1 + A12u2 − a1u1, (2.26)

b1 ≥ A11v1 + A12v2 − a1v1. (2.27)

Suppose we pick v1 to satisfy

v1 ≥
A11(u1 − v1) + A12(u2, v2)

a1
+ u1.

Some straightforward algebra shows that

A11u1 + A12u2 − a1u1 ≤ A11v1 + A12v2 − a1v1.
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The above inequality then implies that

b1 ≤ A11u1 + A12u2 − a1u1 ≤ A11v1 + A12v2 − a1v1 ≤ b1,

which is only possible when

A11u1 + A12u2 − a1u1 = A11v1 + A12v2 − a1v1. (2.28)

To see this is a contradiction, we rearrange equation Eq. (2.28) and observe that the following must

hold for all u ≤ v:

A12(v2 − u2) = (A11 − a1)(u1 − v1).

However, this is cannot hold for all u ≤ v unless A12 = (A11 − a1) = 0. This implies that A12 = 0.

Therefore, A12 = 0, as desired. (The same argument can be repeated to show that if A12 ̸= 0, we

must have A11 = 0).
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2.2.7 Proofs of Results

This section contains the proofs for the results given in Section 2.2.3.

Miscellaneous Results

Our analyses rely on the events that the means of the source and target arms stay within their

respective confidence sequences. Formally, we define this ‘good event’, E as follows

ES :=
⋂
t∈N

⋂
i∈[S]

{µi ∈ CIS(t, i, δ)} , (2.29)

ET :=
⋂
t∈N

⋂
a∈[T ]

{νa ∈ CIT (t, a, δ)} , (2.30)

E := ES
⋂
ET . (2.31)

If β is chosen as to satisfy the condition in equation 2.7, then we can show that E occurs with

probability at least than 1− δ.
Lemma 2.2.13. Assume β is chosen to satisfy condition Eq. (2.7) so that

P {∃t ≥ 1 : µi ̸∈ CIS(t, i, δ)} ≤ δ. (2.32)

Then,

P {E} ≥ 1− δ, (2.33)

where E is defined as in equation Eq. (2.31).

Proof. The condition in equation Eq. (2.7) implies that P {ES} ≥ 1 − δ. To prove the result, we

show that ES implies ET which directly implies that P {E} = P {ES} ≥ 1 − δ. To see this, we fix

a ∈ [T ] and observe that on the event ES

LT (t, a, δ) =
∑
i∈[S]

min
mi∈CIS(t,i,δ)

fa,i(mi) ≤
∑
i∈[S]

fa,i(µi) = νa,

UT (t, a, δ) =
∑
i∈[S]

max
mi∈CIS(t,i,δ)

fa,i(mi) ≥
∑
i∈[S]

fa,i(µi) = νa,

so that LT (t, a, δ) ≤ νa ≤ UT (t, a, δ). Since a is arbitrary, the above result holds for all a ∈ [T ]. We

have just shown that ES implies ET so that P(E) = P(ES) ≥ 1− δ as desired.

We now use this result to prove Theorem 2.2.4 which concerns the correctness of Algorithm 1.

Proof of Theorem 2.2.4. We observe that by Lemma 2.2.13, the event E occurs with probability at

least 1− δ. In particular, this implies that for each target arm, a, and for every round, t, we have

that νa ∈ CIT (t, a, δ). Suppose that the stopping condition is met and recall that we have set a = 1
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to be an optimal target arm. Then, if Bt is an optimal target arm, the algorithm clearly returns an

ϵ-optimal arm. Next, suppose that Bt is not an optimal target arm. In this case, we observe that

νBt + ϵ ≥ LT (t, Bt, δ) ≥ UT (t, Ct, δ) ≥ UT (t, 1, δ) ≥ ν1 = max
a∈[T ]

νa,

which implies that Bt is ϵ-optimal and thus proves the correctness of our algorithm, as desired.

Results for Additive Transfer Functions

For the readers convenience, before presenting the proof of Theorem 2.2.5, we briefly review our

notation. We let

L(i, a, t, x) := max
m∈[x,x+2β(t,δ)]

fa,i(m)− min
m∈[x,x+2β(t,δ)]

fa,i(m) (2.34)

to represent the length of target arm a’s confidence interval contributed by source arm i when

LS(t, i, δ) = x. Next, we define

τa,i = min

{
t ∈ N : sup

x∈[µi−2β(t,δ),µi]

L(i, a, t, x) <
max {|ν̄1,2 − νa|, ϵ/2}

sa

}
, (2.35)

and

τi = max
a∈[T ]

τa,i. (2.36)

Lemma 2.2.14. Let (Pt, Qt) ∈ {(Bt, It), (Ct, Jt)}. On the good event E, if NQt(t) ≥ τPt,Qt, then

UT (t, Pt, δ)− LT (t, Pt, δ) ≤ max {|ν̄1,2 − νPt|, ϵ/2} . (2.37)

Proof. Since we are on the good event, it must be true that µQt ≥ LS(t, Qt, δ) ≥ µQt−2β(NQt(t), δ).

Therefore, the definition of τPt,Qt implies that if NQt(t) ≥ τPt,Qt , then

L(Qt, Pt, t,) = max
m∈CIS(t,Qt,δ)

fPt,Qt(m)− min
m∈CIS(t,Qt,δ)

fPt,Qt(m)

≤ max {|ν̄1,2 − νPt |, ϵ/2}
sPt

,

where the inequality follows by the definition of τPt,Qt . Additionally, by the definition of the selection

rule, we observe that for all i ∈ [S],

L(Qt, Pt, t) ≥ L(i, Pt, t).



22 CHAPTER 2. LEARNING WITH ALTERNATIVE FEEDBACK MECHANISMS

Therefore, the following inequalities must hold

UT (t, Pt, δ)− LT (t, Pt, δ) =
∑
i∈[S]

L(i, Pt, t)

≤
∑
i∈[S]

L(Qt, Pt, t)

= sPtL(Qt, Pt, t)

≤ max {|ν̄1,2 − νPt|, ϵ/2} ,

which gives us the desired result.

Lemma 2.2.15. Recall that ν̄1,2 = ν1+ν2
2

. On the good event E defined in equation Eq. (2.31), if

the algorithm has not terminated, then there exists Pt ∈ {Bt, Ct} such that

max
{
|νPt − ν̄1,2|,

ϵ

2

}
≤ |CIT (t, Pt, δ)|. (2.38)

Proof. We will split the proof into two cases which encompass all possible scenarios. The first case

is when |ν̄1,2 − νPt| ≥ ϵ
2
, and the other case is when ϵ

2
≥ |ν̄1,2 − νPt |.

Case 1 We start off by showing that |CIT (t, Pt, δ)| ≥ |ν̄1,2−νPt|. Here we assume that |ν̄1,2−νPt | ≥
ϵ
2
. Suppose for the purpose of contradiction that ν̄1,2 ̸∈ CIT (t, Pt, δ). If this is the case, then one of

the following four statements must be true:

1. ν̄1,2 < LT (t, Bt, δ) and ν̄1,2 < LT (t, Ct, δ). However, on E , the only arm which can have a

lower confidence bound greater than ν̄1,2 is arm 1.

2. ν̄1,2 > UT (t, Bt, δ) and ν̄1,2 > UT (t, Ct, δ). However, on E , the upper confidence bound of arm

1, and hence the upper confidence bound of Bt, must be greater than ν̄1,2.

3. ν̄1,2 > UT (t, Bt, δ) and ν̄1,2 < LT (t, Ct, δ). However, on E , the upper confidence bound of arm

1, and hence the upper confidence bound of Bt, must be greater than ν̄1,2.

4. ν̄1,2 < LT (t, Bt, δ) and ν̄1,2 > UT (t, Ct, δ). This would imply that he algorithm has terminated,

which by assumption, is false.

Therefore, by our initial assumption we observe that there exists Pt ∈ {Bt, Ct} satisfying max
{
|νPt − ν̄1,2|, ϵ2

}
≤

|CIT (t, Pt, δ)|.

Case 2 Here we show that exists a Pt ∈ {Bt, Ct} such that |CIT (t, Pt, δ)| ≥ ϵ
2
. For this case, we

assume that ϵ
2
≥ |ν̄1,2 − νPt |. By the definition of the stopping rule, we know that

LT (t, Bt, δ) < UT (t, Ct, δ)− ϵ. (2.39)
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We observe that |CIT (t, Bt, δ)| + |CIT (t, Ct, δ)| > UT (t, Ct, δ) − LT (t, Bt, δ). Then rearranging

equation Eq. (2.39) yields

ϵ < UT (t, Ct, δ)− LT (t, Bt, δ)

< |CIT (t, Bt, δ)|+ |CIT (t, Ct, δ)|.

Therefore, by our initial assumption we observe that there exists Pt ∈ {Bt, Ct} satisfying max
{
|νPt − ν̄1,2|, ϵ2

}
≤

|CIT (t, Pt, δ)|.
We have thus shown that, in both cases, there exists Pt ∈ {Bt, Ct} satisfying Pt ∈ {Bt, Ct}

satisfying max
{
|νPt − ν̄1,2|, ϵ2

}
≤ |CIT (t, Pt, δ)|, which proves the desired result.

Lemma 2.2.16. On the good event, E, if the algorithm has not stopped, then there exists a pair

(Pt, Qt) ∈ {(Bt, It), (Ct, Jt)} such that NQt(t) < τPt,Qt

Proof. By Lemma 2.2.15 we know that

max
{
|νa − ν̄1,2|,

ϵ

2

}
≤ |CIT (t, Pt, δ)|

=
S∑

i=1

L(i, Pt, t).

By applying the pigeonhole principle, we see that there must exist at least one i′ ∈ [S] such that

L(i′, Pt, t) ≥
max

{
|νPt − ν̄1,2|, ϵ2

}
sPt

.

Then, by applying the definition of the selection rule, and the fact that on the good event µQt ≥
LS(t, Qt, δ) ≥ µQt − 2β(NQt(t), δ), we observe that

sup
x∈[µi−2β(NQt (t),δ),µi]

L(Qt, Pt, t, x) ≥ L(Qt, Pt, t)

≥ L(i′, Pt, t)

≥
max

{
|νPt − ν̄1,2|, ϵ2

}
sPt

.

This implies that

NQt(t) ≤ min

{
t ∈ N : sup

x∈[µQt−2β(t,δ),µQt ]

L(Qt, Pt, t, x) <
max {|ν̄1,2 − νPt|, ϵ/2}

sPt

}
= τPt,Qt ,

as desired.
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We are now ready to prove Theorem 2.2.5.

Proof of Theorem 2.2.5. We have

τ =
∑
t=1

∞It ≤ τ

≤
∑
t=1

∞I∃(Pt, Qt) ∈ {(Bt, It), (Ct, Jt)} : NQt(t) ≤ τPt,Qt

≤
∑
i∈[S]

∑
t=1

∞Ii ∈ {It, Jt} · INi(t) ≤ max
a∈[T ]

τa,i

=
∑
i∈[S]

∑
t=1

∞Ii ∈ {It, Jt} · INi(t) ≤ τi

≤
∑
i∈[S]

τi,

which proves the desired result.

Proof of Corollary 2.2.6. Suppose i ∈ M since we otherwise don’t need to sample source arm i to

determine if M is the optimal target arm. From equation Eq. (2.15) we see that L(i, C, t, x) = ∞
unless the confidence interval for µi is a subset of Ci or Cci . We consider two cases.

Case 1. Suppose that µi ∈ Ci. Then, we require the confidence interval is a subset of Ci. For this
to be true, it is easy to see that we require 2β(t, δ) ≤ infx∈Cc

i
|x− µi| = ∆Ci(µi).

Case 2. Suppose that µi ̸∈ Ci. Then a similar argument shows that we require 2β(t, δ) ≤
infx∈Ci |x− µi| = ∆Ci(µi).

In conclusion, we see that if i ∈M , then τM,i = inf{t ∈ N : β(t, δ) ≤ ∆Ci (µi)

2
}. Applying Theorem

16 of [14] gives the desired result.

Proof of Corollary 2.2.7. We observe that since L(i, a, t, x) = 2|Aa,i|β(t, δ) we have

τa,i = min

{
t ∈ N : β(t, δ) ≤ max {|ν̄1,2 − νa|, ϵ/2}

sa|Aa,i

}
.

Applying Theorem 16 of [14] and taking the max over target arms gives the desired result

2.3 Active Exploration for Preference Learning

2.3.1 Introduction

The alignment of foundation models with user preferences has gained unprecedented importance

due to the widespread utilization of large language models (LLMs). The established pipeline for



2.3. ACTIVE EXPLORATION FOR PREFERENCE LEARNING 25

alignment in LLMs, as outlined in Stiennon et al. [32] and Ouyang et al. [33], comprises two steps

given a pretrained LLM. First, in the Supervised Fine-Tuning (SFT) phase, the LLM undergoes

fine-tuning via supervised learning with examples demonstrating the desired behavior. In the second

step, Reinforcement Learning from Human Feedback (RLHF), a policy generates multiple comple-

tions for each conversation prefix (prompt) in a training set; users then give ordinal preferences for

the set of completions from a particular prompt. These preferences are used to train a reward model

via a ranking loss like the Bradley-Terry-Luce model [34]. Finally, the policy is trained, typically

via Proximal Policy Optimization [35], to optimize the reward model while not moving too far from

the SFT-trained policy. More recent work [36], proposed an alternative to RLHF, Direct preference

Optimization (DPO), that enables training the LLM policy directly on preference data without

using RL and a proxy reward model.

As LLMs continue to scale and their areas of application broaden, the number of topics on which

we need to align increases, as does the overall scale of human-generated training data requirements.

Data annotation for preference-based learning is already incurring a considerable cost for companies

that train LLMs. This cost is likely to grow alongside the industry. The issue becomes especially

acute for LLMs in specialized areas such as safety, health, and scientific problems, where the cost

of expert feedback can be substantial.

In this work, we take advantage of the fact that we have control over which prompts and

completions we provide to human experts to make efficient use of their efforts. Drawing on recent

advancements in active exploration for reinforcement learning [37] and in black-box optimization

[38], we introduce a method for assessing the value of collecting preferences on specific datapoints,

which is both prospective and task-focused. First, we formalize this setting as a dueling contextual

bandit problem and design an efficient active exploration algorithm that offers polynomial worst-case

sample complexity guarantees regarding the policy’s performance. Next, we extend these ideas to

the alignment setting in LLMs. We show that choosing data for training LLM policies on expert

preferences can be targeted by active learning, leading to efficient use of resources under restrictive

budgets. In this paper, we build atop the DPO methodology [36], and develop an acquisition

strategy that allows us to actively select preference data based on the DPO training objective.

We provide two extensions to our active exploration strategy: the first allows an online learning

approach, where data selection and training are based on the model’s generations, while the second

enables the data selection from offline existing preference data.

We evaluate our methods on four datasets: the Stanford Human Preferences dataset [39], the

Anthropic Helpful-Harmless dataset [40], and two additional datasets which we contribute to the

literature: Jeopardy! dataset and Haikus dataset. The Jeopardy! dataset is an extension of an

existing dataset from the game show Jeopardy!. It is composed of questions and factual answers

to evaluate the ability of an alignment method to avoid hallucinations. The Haikus dataset is

composed of instruction prompts to write Haikus with specific details and corresponding examples

of satisfactory Haikus. We use three LLMs with different sizes—GPT-2 [41], Pythia-2.8B [42],
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“Choose optimistically!”

(1)  Select context x (2)  Select actions a, aʼ (3)  Human feedback

(4)  Update dataset:  D ← D ∪ {x, a, a ,̓ w}

“Maximize  uncertainty!” Is a ≻ aʼ ?

e.g.  a, aʼ  are responses e.g.  x  is a prompt

w

Figure 2.1: Illustration of the active contextual dueling bandit setting, and its application to sample-
efficient preference alignment in large language models.

and Llama-3-8B [43]—to showcase a wide range of results and generalization ability. Our main

contribution is formalizing the problem of preference data selection as a dueling contextual bandit

problem and proposing and analyzing an active exploration algorithm to solve it. We provide a

theoretical analysis on the regret bound of our method.

2.3.2 Problem Formulation

In this paper, we consider a dueling variant of what we denote the Active Contextual Dueling Bandit

(ACDB) problem introduced in Char et al. [44]. An instance of this problem is defined by a tuple

(X ,A, f) where X denotes the context space, A denotes the action space and f : X ×A×A → [0, 1]

is a preference function so that f(x, a, a′) denotes the probability that the action a is preferred to

the action a′ when the underlying context is x. We also define a domain D = X × A. We will

design algorithms that operate under the following interaction protocol, which occurs for T time

steps. During each time step t ∈ [T ], the agent selects a context xt ∈ X and a pair of actions

at, a
′
t ∈ A and observes a binary random variable wt ∼ Bernoulli(f(xt, at, a

′
t)) which equals one if

at is preferred to a′t and zero otherwise.

We assume that the preference function has the form

f(x, a, a′) = ρ (r(x, a)− r(x, a′)) , (2.40)

where ρ : R→ [0, 1] is the link function and r : D → R is the unknown reward function. Common

link functions include the logistic function, which leads to the Bradley-Terry-Luce (BTL) model

[34] as well as the Gaussian CDF [45].

Our goal is to design algorithms that are able to efficiently identify policies with a small subop-

timality gap. We define the suboptimality gap of a learner’s policy π : X → A as

SubOpt(π) = sup
x∈X

(
sup
a∈A

r(x, a)− r(x, π(x))
)
. (2.41)

This notion of suboptimality (considered in Char et al. [44] and Li et al. [37]) is stronger than

notions that look at the expected suboptimality of the final policy when the contexts are sampled

from some known distribution. In this work we also use this suboptimality, which looks at the

worst-case context for each policy.
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2.3.3 Active Exploration in RKHS

In this section, we describe our first contribution—a theoretically principled algorithm for the ACDB

problem—and provide formal guarantees on its performance. To provide the theoretical guarantees,

we need to first instantiate our general problem setup by making assumptions on the preference

function f (from Eq. (2.40)). In particular, we specify a class of functions that contain the true

unknown reward function. This choice is subtle, as we need to balance the trade-off between our

function class’s expressiveness and theoretical tractability. Motivated by its theoretical popularity

and empirical success, we choose the function class to be a Reproducing Kernel Hilbert Space. While

this choice of function class is common in the literature, we make a few additional assumptions to

more appropriately accommodate our problem setting.

The Contextual Borda Function Before going over our assumptions, we first introduce the

contextual Borda function fr, which is core to our algorithm. The contextual Borda function

generalizes the Borda function introduced in Xu et al. [38] for dueling-choice optimization, defined

as the probability that an action a will be preferred over a random action a′ uniformly sampled

from the action space. We generalize this definition to the contextual setting as fr : D → [0, 1],

where fr(x, a) = Ea′∼U(A) [f(x, a, a
′)] and U(A) is the uniform measure over the action space. It is

clear from this definition that fr and r have the same maximizers.

We now discuss our assumptions. Our first assumption restricts the reward and contextual Borda

functions to be ‘smooth’ in a Reproducing Kernel Hilbert Space (RKHS). Our second assumption

relates the reward function to the contextual Borda function.

Assumption 2.3.1. Let κ : D × D → R denote a positive semi-definite kernel and let Hκ denote

its associated RKHS. We assume that ∥r∥κ , ∥fr∥κ ≤ B, where B is a known constant.

Note that this assumption is stronger than the standard assumption, which only requires that

r has a bounded RKHS norm. It is difficult to bound the norm of fr given a bound on the norm

of r due to the generality of our setting, which allows for different link functions. We investigate

this issue numerically in Appendix 2.3.9. We find that the norm of the Borda function is almost

always smaller than the norm of the reward function for samples drawn from the distribution of

basis functions used for experiments in Section 2.3.7.

Assumption 2.3.2. Let f ∗
r (x) = maxa fr(x, a) and r∗(x) = maxa r(x, a). There exists a constant

L1 such that for every x ∈ X , a ∈ A we have 1
L1
(r∗(x)− r(x, a)) ≤ f ∗

r (x)− fr(x, a).

This assumption implies that differences in r will cause a similar magnitude of difference in fr.

In fact, when the link function ρ(·) is Lipschitz continuous, it is sufficient for its Lipschitz constant

to be at least 1/L1 for this condition to hold. We note that this assumption holds for the two most

commonly used link functions, the logistic function [34] and the Gaussian CDF [45].
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2.3.4 Methods

At a high level, our approach reduces the dueling feedback problem to contextual optimization

over a single action via the contextual Borda function introduced above. We then apply techniques

adapted from recent work on active exploration in reinforcement learning to construct a sampling

rule and a policy selection rule, which allow us to output a policy with low suboptimality. Broadly,

our sampling rule draws contexts which have maximum uncertainty over the Borda ‘value function’

and then compares the optimistic action with an action sampled uniformly from the action set.

Estimating the Contextual Borda Function By design, we can estimate the contextual Borda

function using preference data {xt, at, a′t, wt} by selecting xt, at in an arbitrary fashion and sampling

a′t uniformly at random. For low dimensional settings, our algorithm first estimates the contextual

Borda function using standard kernelized ridge regression (KRR) [46]. One key feature of KRR is

that it provides both an estimate of the contextual Borda function after t observations, µt(x, a),

as well as uncertainty quantification of the predictions. Indeed, under Assumptions 2.3.1 and 2.3.2

we can show that |fr(x, a) − µt(x, a)| ≤ βσt(x, a) for an appropriately chosen β and σt(x, a) (see

Lemma 2.3.8).

Selecting Contexts and Actions Our sampling rule builds on top of the one established in Li

et al. [37]. Put simply, the rule is to sample the state with the maximum uncertainty over the

value function and then act optimistically. We now present our algorithm, which extends these

ideas to the dueling setting via the contextual Borda function fr. For now, we assume that there

is a known bonus term β
(r)
t for all t. We can then define upper and lower confidence bounds

f t
r(x, a) = µt(x, a)+β

(r)
t σt(x, a) and f

t
r(x, a) = µt(x, a)−β(r)

t σt(x, a). Our rule is to select a context

xt ∈ argmax
x∈X

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
. (2.42)

Here, we are choosing a context that maximizes the difference between the optimistic ‘value function’

and the pessimistic ‘value function’ (both of which require a maximization over actions to compute).

We then optimistically choose an action

at ∈ argmax
a∈A

f t
r(xt, a). (2.43)

After repeating this process T times, we output a pessimistic policy against the tightest lower bound

we can find, which is the maximizer of all our lower bounds through the optimization process. Put

formally, we return π̂T : X → A such that

π̂T (x) ∈ argmax
a∈A

max
t≤T

f t
r(x, a). (2.44)

We construct the full active exploration algorithm, AE-Borda, given in Algorithm 3.
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1: Input: kernel function κ(·, ·), exploration parameters β
(r)
t , number of inital data n0

2: Let Dn0 = {xi, ai, a′i, wi}n0
i=1 for xi, ai, a

′
i drawn uniformly at random.

3: for t = n0 + 1, . . . , T do
4: Compute µt(·, ·), σt(·, ·) using KRR.
5: Choose xt according to Eq. (2.42).
6: Choose at according to Eq. (2.43), draw a′t ∼ U(A), and draw wt ∼ Bernoulli(f(xt, at, a

′
t)).

7: Let Dt = Dt−1 ∪ {(xt, at, a′t, wt)}.
8: end for
9: Output a final policy π̂T according to Eq. (2.44).

Algorithm 3: AE-Borda

2.3.5 Theoretical Analysis

In this section, we provide formal guarantees for our AE-Borda algorithm. Our main result estab-

lishes polynomial regret bounds for active exploration in the kernelized dueling bandit setting.

Information-Theoretic Quantities

Our analysis relies on the concept of maximum information gain, which quantifies the information

content of our function class.

Definition 2.3.3 (Maximum Information Gain). The maximum information gain over t rounds,

denoted Φt, is defined as:

Φt = max
A⊂X×A:|A|=t

I(rA + ϵA; rA) (2.45)

where rA = [r(x)]x∈A, ϵA ∼ N (0, η2I), and I(X;Y ) denotes mutual information.

The maximum information gain captures how much information we can obtain about the reward

function from t well-chosen observations. For common kernels, Φt grows polynomially in t:

• Linear kernel: Φt = O(d log t) where d is the dimension

• RBF kernel: Φt = O((log t)d+1) where d is the effective dimension

• Matérn kernel: Φt = O(td/(2ν+d)(log t)1/2) where ν is the smoothness parameter

Main Theoretical Result

Our main theoretical contribution is the following regret bound for the AE-Borda algorithm.

Theorem 2.3.4 (Regret Bound for AE-Borda). Suppose we run Algorithm AE-Borda with confi-

dence parameter:

βt = 2B +

√
2Φt + 1 + log

(
2

δ

)
(2.46)
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Then, with probability at least 1− δ, the suboptimality of the returned policy satisfies:

SubOpt(π̂T ) ≤ O

(
L1√
T

(
B + ΦT

√
log

1

δ

))
(2.47)

Proof Sketch

The proof follows a confidence-based analysis and relies on several key lemmas:

Confidence Bounds. Under our RKHS assumptions, we establish that the KRR estimates satisfy

high-probability confidence bounds:

Lemma 2.3.5 (Confidence Bounds). With probability at least 1− δ, for all (x, a) ∈ D and all t:

|fr(x, a)− µt(x, a)| ≤ βtσt(x, a) (2.48)

Information Gain Bound. The total uncertainty encountered by the algorithm is bounded by

the maximum information gain:

Lemma 2.3.6 (Information Gain Bound). The cumulative uncertainty satisfies:

T∑
t=1

σ2
t (xt, at) ≤ ΦT (2.49)

Regret Decomposition. We decompose the suboptimality into bias and variance terms, showing

that the active exploration strategy effectively balances exploration and exploitation.

The key insight in the proof is that our context selection rule Eq. (2.42) ensures that we focus

our exploration on regions where the uncertainty about the optimal action is highest. This leads to

efficient reduction of the confidence regions around the optimal policy.

Implications and Discussion

Our regret bound has several important implications:

1. Polynomial Sample Complexity: For common kernels, the bound implies polynomial

sample complexity, which is optimal up to logarithmic factors.

2. Adaptive to Problem Difficulty: The dependence on ΦT means the algorithm automati-

cally adapts to the intrinsic difficulty of the problem as measured by the kernel.

3. Worst-Case Guarantees: Unlike expected regret bounds, our result provides worst-case

guarantees over all possible contexts, making it suitable for safety-critical applications.

The factor L1 in our bound reflects the relationship between the reward function and the contex-

tual Borda function. While this factor can be problem-dependent, it is typically small for common

link functions used in practice.
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2.3.6 Extensions to Large Language Models

While our theoretical framework provides strong guarantees in the kernelized setting, extending

these ideas to large language models requires addressing several practical challenges. In this section,

we discuss how to scale our active exploration principles to the high-dimensional setting of LLMs.

Challenges in the LLM Setting

Extending the AE-Borda method to LLMs faces several limitations:

1. Unsuitable Action Space: The contextual Borda function as originally defined requires

uniform sampling from the action space. For LLMs, where actions are sequences, most uni-

formly sampled sequences are trivially distinguishable from natural language.

2. Batch Training Requirements: Neural network training proceeds in batches, making it

inefficient to label and train on single examples as in the theoretical algorithm.

3. Limited Uncertainty Estimation: The uncertainty estimation tools for sequence models

are more constrained than those for explicitly kernelized models, especially given memory

constraints in training LLMs.

Generalized Contextual Borda Function

To address the first limitation, we propose a generalized contextual Borda function that uses a more

meaningful proposal distribution:

Definition 2.3.7 (Generalized Contextual Borda Function). For a proposal distribution π : X →
P (A), the generalized contextual Borda function is:

fπ
r (x, a) = Ea′∼π(x) [P (w = 1 | x, a, a′)] (2.50)

We can recover the original function by setting π(x) = U(A). For LLMs, fπSFT
r is a natural choice

where πSFT is the supervised fine-tuning policy, as it provides meaningful comparison samples.

Direct Preference Optimization Integration

We build upon Direct Preference Optimization (DPO), which avoids training a separate reward

model by optimizing the policy directly on preference data. The DPO loss for a policy πθ with

reference policy πSFT is:

LDPO(πθ; πSFT ) = −E(x,a,a′,w)∼D

[
log σ

(
γ(2w − 1)

(
log

πθ(a | x)
πSFT (a | x)

− log
πθ(a

′ | x)
πSFT (a′ | x)

))]
(2.51)

where γ is a hyperparameter controlling the KL penalty strength.
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Uncertainty Estimation with Dropout

For uncertainty estimation in the neural network setting, we employ Monte Carlo dropout. For a

sequence a consisting of tokens ti, we have:

log π(a | x) =
∑
ti∈a

log π(ti | x, t1, . . . , ti−1) (2.52)

We incorporate m dropout masks dj into the function π(ti | x, t1, . . . , ti−1, dj). During inference,

Monte Carlo sampling with dropout gives an ensemble with:

µ(ti | x, t1, . . . , ti−1) =
1

m

m∑
j=1

log π(ti | x, t1, . . . , ti−1, dj) (2.53)

σ(ti | x, t1, . . . , ti−1) =

√√√√ 1

m− 1

m∑
j=1

(log π(ti | x, t1, . . . , ti−1, dj)− µ)2 (2.54)

The standard deviation serves as an approximation for epistemic uncertainty in a computation-

ally efficient manner.

Active DPO Algorithm

Using the DPO framework and dropout uncertainty estimation, we can define confidence bounds

for the generalized Borda function. For upper and lower confidence bounds:

fπSFT
r (x, a) ≈ 1

n

N∑
i=1

1

1 + exp
(
β log

πθ(a
′
i|x)

πSFT (a′i|x)
− β log πθ(a|x)

πSFT (a|x)

) (2.55)

fπSFT
r (x, a) ≈ 1

n

N∑
i=1

1

1 + exp
(
β log

πθ(a
′
i|x)

πSFT (a′i|x)
− β log πθ(a|x)

πSFT (a|x)

) (2.56)

where πθ and πθ are the upper and lower confidence bounds on the policy probabilities.

Acquisition Function

We define an acquisition function that generalizes our context selection rule to the LLM setting:

α(x) = max
a∈A

fπSFT
r (x, a)−max

a∈A
fπSFT
r (x, a) (2.57)

This acquisition function identifies contexts where there is maximum uncertainty about which

action is optimal. In practice, we use this function to select batches of training data by:
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1. Sampling a large batch of contexts

2. Evaluating the acquisition function for each context

3. Selecting the top-b contexts with highest acquisition values

4. Collecting preference labels for these contexts

5. Training the policy using DPO on the selected batch

This approach addresses the batch training requirement while maintaining the core principles

of active exploration: focusing annotation effort on the most informative examples.

2.3.7 Experimental Validation

While this chapter primarily focuses on the theoretical foundations of active exploration for pref-

erence learning, we briefly summarize the experimental validation of our methods to demonstrate

their practical effectiveness.

Experimental Setup

The empirical evaluation of our methods spans both synthetic environments that validate our theo-

retical predictions and real-world applications to large language model alignment. The experiments

were designed to answer several key questions:

1. Do our theoretical algorithms achieve the predicted regret bounds in controlled settings?

2. Can the active exploration principles scale effectively to high-dimensional problems like LLM

alignment?

3. How much sample efficiency improvement do our methods provide compared to passive base-

lines?

Kernelized Setting Results

In the kernelized setting, we validated our theoretical predictions using synthetic preference func-

tions with known ground truth. The experiments confirmed that:

• Our AE-Borda algorithm achieves regret bounds consistent with Theorem 2.3.4

• The algorithm effectively identifies high-uncertainty regions for exploration

• The contextual Borda function provides a suitable proxy for optimization in the dueling setting

The empirical regret curves matched the predicted O(1/
√
T ) convergence rate, with constants

depending on the kernel choice as expected from theory.
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Large Language Model Results

For LLM experiments, we evaluated our Active DPO method on multiple datasets and model sizes,

including GPT-2, Pythia-2.8B, and Llama-3-8B. Key findings include:

• Nearly 13% relative improvement in performance compared to passive baselines when working

with restricted annotation budgets

• Superior performance in avoiding hallucinations on factual question-answering tasks

• Effective scaling across different model architectures and sizes

Practical Impact

The experimental results demonstrate that the theoretical insights from our RKHS analysis success-

fully transfer to practical applications. The active exploration principles provide significant sample

efficiency improvements, which is crucial for real-world deployment where human annotation is

expensive.

These results validate our core hypothesis that strategic selection of preference data can sub-

stantially improve the efficiency of preference-based learning systems. The theoretical framework

provides principled guidance for algorithm design, while the practical extensions make these benefits

accessible in high-dimensional settings.

2.3.8 Conclusion

In this chapter, we presented a comprehensive theoretical framework for active exploration in

preference-based learning, with applications to reinforcement learning from human feedback and

direct preference optimization. Our contributions span both fundamental theory and practical

algorithmic innovations.

Summary of Contributions

Our main theoretical contributions include:

1. Problem Formulation: We formalized the problem of efficient preference data collection as

an Active Contextual Dueling Bandit (ACDB) problem, providing a principled foundation for

analyzing active exploration in preference learning.

2. Algorithm Design: We developed the AE-Borda algorithm, which reduces the dueling

preference problem to contextual optimization via the novel contextual Borda function.

3. Theoretical Guarantees: We established polynomial regret bounds for our algorithm in

the RKHS setting, showing O(1/
√
T ) convergence to optimal policies with high probability.

4. Practical Extensions: We extended our theoretical insights to large language models

through the Active DPO framework, addressing key challenges in scaling to high-dimensional



2.3. ACTIVE EXPLORATION FOR PREFERENCE LEARNING 35

sequence models.

Key Insights

Several important insights emerge from our theoretical analysis:

The Power of Active Selection. By strategically choosing which contexts and action pairs

to query, we can achieve significantly better sample complexity than passive approaches. This is

particularly valuable when human annotation is expensive or time-consuming.

Contextual Borda Function as a Bridge. The contextual Borda function provides an elegant

bridge between dueling bandit problems and single-action optimization, enabling the application of

well-developed active exploration techniques from reinforcement learning.

Uncertainty-Driven Exploration. Our acquisition functions, based on the difference between

optimistic and pessimistic value estimates, provide a principled way to identify the most informative

queries. This uncertainty-driven approach naturally balances exploration and exploitation.

Scalability through Approximation. While exact implementation of our theoretical algorithm

may not be feasible in high-dimensional settings, the core principles can be preserved through careful

approximations, as demonstrated in our LLM extensions.

Implications for Preference-Based Learning

Our work has several important implications for the broader field of preference-based learning:

• Sample Efficiency: Active exploration can substantially reduce the amount of human feed-

back required for effective preference learning, making these approaches more practical for

deployment.

• Theoretical Foundation: Our regret bounds provide the first polynomial sample complexity

guarantees for active exploration in contextual dueling bandits, establishing a theoretical

foundation for this important problem class.

• Practical Algorithms: The extension to DPO shows how theoretical insights can guide the

design of practical algorithms for real-world applications like LLM alignment.

Future Directions

This work opens several promising directions for future research:

1. Tighter Analysis: While our bounds are polynomial, there may be room for improvement

in the constants and dependence on problem parameters.
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2. Alternative Function Classes: Exploring active exploration in other function classes be-

yond RKHS could broaden the applicability of these techniques.

3. Multi-Armed Settings: Extending to settings with more than two options per query could

capture richer preference structures.

4. Robustness: Developing methods that are robust to misspecification of the preference model

or adversarial behavior.

The theoretical framework developed in this chapter provides a solid foundation for continued

advances in active preference learning, with the potential for significant impact on both fundamental

understanding and practical applications.

2.3.9 Proof of Theorem 2.3.4

In this section we will prove our main Theorem, 2.3.4. The overall strategy of the proof is to use our

Lipschitz assumption on the link function (more precisely, the relative Lipschitzness of the reward

r and the Borda function fr) in order to go to the Borda function, which we can directly model

from data. Then, we use our selection criteria as well as confidence bounds taken from Chowdhury

and Gopalan [47] and convergence rates taken from Kandasamy et al. [48] in order to complete the

argument. We give these cited results as lemmas in what follows.

In order to attain a particular policy performance with probability 1 − δ, we must bound the

error of the estimates given by our KRR process for a particular confidence level. In order to do

so, we adapt the result from Chowdhury and Gopalan [47], Theorem 2.

Lemma 2.3.8. Let β
(r)
t = 2||fr||κ +

√
2(Φt−1(X ×A) + 1 + log(2/δ)). Then with probability 1− δ

we have for all time t and any point (x, a) ∈ X ×A,

|µt−1(x, a)− fr(x, a)| ≤ β
(r)
t σt−1(x, a).

Proof. To prove this result, we will verify that all the conditions from Theorem 2 of Chowdhury and

Gopalan [47] hold. Recall Assumption 2.3.1 which states that ∥fr∥κ ≤ B. Next, we observe that

since a′t ∼ U (A) (independent of everything else), we have that E [wt | Ft−1] = fr(xt, at), where

Ft = ρ
(
{(xs, as, a′s, ws)}ts=1

)
is the filtration generated by the past observations. Additionally, since

wt ∈ {0, 1} and xt, at are both Ft−1 measurable, we see that wt can be written as

wt = fr(xt, at) + ηt,

where ηt is Ft−1-conditionally subGaussian. Therefore, we have met all the necessary conditions,

and we can apply Theorem 2 of Chowdhury and Gopalan [47] which gives us the desired result.

This lemma jointly bounds the modeling error over the Borda function for all time t though it

introduces a dependence on the RKHS norm of fr. This dependence is inherited from prior work,
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but we empirically study the relationship between the RKHS norm of a particular reward function

and that of the associated Borda function in Section 2.3.9. We also adapt a result from Lemma 8

of Kandasamy et al. [48] in order to understand the convergence of our uncertainty function σt.
Lemma 2.3.9. Suppose we have n queries (qt)

n
t=1 taken from X ×A. Then the posterior σt satisfies∑

qt

σ2
t−1(qt) ≤

2

log(1 + η−2)
Φn(X ×A)

Proof. In this proof, we condition on the event in Lemma 2.3.8 holding true. Given that occurrence,

we can say the following for every x ∈ X .

max
a∈A

r(x, a)− r(x, π̂T (s))
Assumption 2.3.2

≤ L1

(
max
a∈A

fr(x, a)− fr(x, π̂T (x))
)

(2.58)

Lemma 2.3.8

≤ L1

(
max
a∈A

fr(x, a)−max
t∈[T ]

f t
r(x, π̂T (x))

)
(2.59)

Def. of π̂T= L1

(
max
a∈A

fr(x, a)−max
a∈A

max
t∈[T ]

f t
r(x, a)

)
(2.60)

= L1 min
t∈[T ]

(
max
a∈A

fr(x, a)−max
a∈A

f t
r(x, a)

)
(2.61)

Lemma 2.3.8

≤ L1 min
t∈[T ]

(
max
a∈A

f t
r(x, a)−max

a∈A
f t
r(x, a)

)
(2.62)

Def. of xt

≤ L1 min
t∈[T ]

(
max
a∈A

f t
r(x

t, a)−max
a∈A

f t
r(x

t, a)

)
(2.63)

Def. of at

≤ L1 min
t∈[T ]

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(2.64)

≤ L1

T

T∑
t=1

(
f t
r(x

t, at)− f t
r(x

t, at)
)

(2.65)

=
L1

T

T∑
t=1

2β
(r)
t σt(x

t, at) (2.66)

β
(r)
t is increasing

≤ 2L1β
(r)
T

T

√√√√( T∑
t=1

σt(xt, at)

)2

(2.67)

Cauchy-Schwarz

≤ 2L1β
(r)
T

T

√√√√T
T∑
t=1

σ2
t (x

t, at) (2.68)

Lemma 2.3.9

≤ 2L1β
(r)
T√
T

√
C1ΦT (2.69)

def of β
(r)
T=

2L1√
T
(2B +

√
2(Φt−1 + 1 + log(2/δ)))

√
C1ΦT (2.70)

= O

(
L1√
T

(
B + ΦT

√
log

1

δ

))
. (2.71)
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RKHS norms of r and fr

In order to understand the dependence of our estimation bound on the RKHS norm ||fr||κ, we ran

numerical experiments on sampled reward functions. For a variety of context and action dimensions,

we sampled 1000 reward functions as in Section 2.3.7 and numerically approximated their RKHS

norms. We also made a Monte-Carlo estimate of the Borda function fr for each of the reward

functions sampled and numerically approximated its RKHS norm. To do this, we uniformly sample

1,000 points xi from the input space, compute the regularized kernel matrix K for this set xi, solve

the KRR problem Kα = f(x) for α. Then we compute the quadratic form
√
αTKα as an estimate

of the RKHS norm.

In Table 2.1, we present the results of comparing the RKHS norms of 1000 reward functions and

their associated Borda functions sampled as in Section 2.3.7. A ‘win’ was counted when the Borda

function had smaller RKHS norm and a ‘loss’ otherwise. The win margin is the average difference

in RKHS norms of the reward and Borda functions, with a positive value when the Borda function

was of smaller norm. It is clear here that in general (though not always) the RKHS norm of the

Borda function fr for a particular reward function r is smaller than the RKHS norm of the reward

function r itself. This relationship seems to grow stronger as the input dimensionality of the reward

function grows larger.

Context Dimension Action Dimension Win Rate Win Margin

0 1 0.16 -6.3
1 1 0.89 5.1
1 3 1 21.4
3 1 1 21.5
3 3 1 38.7
10 10 1 19.6

Table 2.1: Comparison of RKHS norms of reward functions and associated Borda functions

Additional Related Work

In this section, we discuss additional related work, including alternative contextual bandit methods,

uncertainty estimation in large language models, and concurrent work on active selection of data

in LLMs.

Human feedback in RL and LLMs Here we discuss additional related work on human feed-

back in reinforcement learning, and more recently, in LLMs. This technique showed significant

performance benefits in practice; for example, in the Atari test case [49], where naive deep RL
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would have necessitated thousands of hours of gameplay, they accomplished superior performance

with just 5,500 or several hours of human queries. More recently, human preference feedback has

also been used more recently to improve the performance of LLMs. For example, many recent

approaches have demonstrated the effectiveness of using human feedback to enhance LLM stylistic

continuation [50], text summarization [32], translation [51], semantic parsing [52], review generation

[53], and evidence extraction [54]. In particular, the work by [40] places focus on improving model

reliability and robustness by incorporating human feedback to gauge the helpfulness or harmfulness

of its responses. However, while effective, the integration of human feedback comes with substantial

costs. For example, Stiennon et al. [32] achieved substantial enhancements over baseline methods

but required the generation of summaries for 123,169 posts from the TL;DR dataset, a task per-

formed by a large team of labelers from crowdsourcing platforms. This heavy resource requirement

is reflected in state-of-the-art work. Ouyang et al. [33] emphasizes RLHF to improve the alignment

of the GPT-3 model across aspects such as toxicity, hallucinations, and overall quality. Here, the

team enlisted the efforts of 40 labelers and worked with a dataset comprising over 100,000 examples

labeled by humans.

Uncertainty Estimation in Large Language Models Estimating the epistemic uncertainty

in large language models is still an active area of research and there are few prior works on this topic

(focusing specifically on epistemic uncertainty). For example, [55] augment existing models with

additional layers to model randomness, and subsequently the uncertainty. However performing un-

certainty quantification in a parallelized fashion requires a significant memory overhead. To be more

amenable to larger models, we instead use a dropout-augmented model to estimate uncertainty [56].

Concurrent work on active learning in LLMs Concurrently with our work, there has been

recent releases of papers related to active data selection for LLMs, which we cover in this section.

Note that these papers are predominantly recent and yet unpublished work, released on preprint

servers, some of which build on our method and setting. For example, Das et al. [57] builds on

our active contextual dueling bandit setting, aiming to develop a method that yields improved

theoretical guarantees with reduced assumptions. Zhang et al. [58] proposed a version of DPO

using bilevel optimization to optimistically bias towards potentially high-reward responses, though

does not use an explicit uncertainty estimate. Xiong et al. [59] develop an an online exploration

algorithm as well as a rejection sampling method for offline settings, framing the problem as a

reverse-KL regularized contextual bandit problem. Muldrew et al. [60] propose an active learning

method for DPO, based on the predictive entropy of LLM predictions as well as uncertainty given

by the (implicit) reward model. Xie et al. [61] presents a method that performs DPO with an

exploration bonus for improved efficiency. Finally, Hübotter et al. [62] work on a method for active

selection of examples for fine-tuning of LLMs using active data selection, for a (single) given prompt

at test time.



40 CHAPTER 2. LEARNING WITH ALTERNATIVE FEEDBACK MECHANISMS

2.4 Active DPO Using the Reward Function and Offline

Data

In this section, we start by proposing another active learning acquisition function based on the

reward model. Then we provide a discussion contrasting the real use cases of active learning using

online data generated from the policy and the synthetic setting where we can use existing offline

benchmarks to evaluate active learning methods.

We propose a new acquisition function that uses the confidence interval of the reward function

instead of the generalized Borda function that operates based on the preference model. Using the

reward model provides an intuitive solution in RLHF in general and DPO in particular, since the

goal is to learn a policy that generates high-reward answers. We can approximate the confidence

interval for r (r and r) using the reward expression as the ratio of the policies as defined in the

DPO paper. We can compute our upper and lower bounds as

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1) + βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x),

r(x, a) =
∑
ti∈a

µ(ti | x, t1, . . . , ti−1)− βσ(ti | x, t1, . . . , ti−1)− log πSFT(a | x),

for an uncertainty parameter β > 0. Here, we define an acquisition function as:

α(x) = max
a∈A(x)

r(x, a)− max
a∈A(x)

r(x, a). (2.72)

In this equation, α(x) is the uncertainty of the state-value function according to x. In choosing the

states where the potential for error in the value achieved is largest, the agent can learn to behave

well in those places. This criterion is similar to that in [37] and provides similar guarantees to ours

for max-regret in the active contextual bandit setting. In situations like ours where we are using

fixed offline datasets, we set A(x) in Eq. (2.72) to the set of available responses for a particular

action; otherwise, we use A(x) = A.



Chapter 3

Adaptive Causal Inference

This chapter develops adaptive experimental design methods for efficient causal inference. We

present two complementary approaches that address different aspects of the adaptive treatment

allocation problem: one focuses on achieving exponential improvements in finite-sample regret,

while the other leverages the asymptotically optimal AIPW estimator through principled optimistic

design. Both contributions bridge classical experimental design with modern algorithmic approaches

to sequential decision-making.

3.1 Clipped Second Moment Tracking

3.1.1 Introduction

Randomized Controlled Trials (RCTs) have long been considered the gold standard of evidence in a

variety of disciplines, ranging from medicine [63], policy research [64], and economics [65]. In their

simplest form, RCTs involve a control arm and a treatment arm, and the objective is to determine

if the treatment causally outperforms the control. This is typically achieved by fixing a treatment

assignment probability (hereafter called an allocation), assigning experimental units to an arm, and

using the resulting outcomes to estimate the Average Treatment Effect(ATE).

Despite the ubiquity of RCTs, many practitioners have noted that RCTs would benefit from

the use of adaptive methods—methods in which practitioners vary some aspect of the experiment

through the course of the experiment [66–68]. Although there are many reasons for desiring adaptiv-

ity, our primary focus is to adaptively select the treatment allocation probability in order to obtain

the best possible estimate of the ATE. More concretely, our goal will be to minimize the MSE of

our ATE estimate1 This is the essence of the problem known as Adaptive Neyman Allocation [69]

and is the primary focus of this work.

Despite the recent attention given to adaptive approaches, considerable work remains to ensure

1In general, one may wish to minimize the mean squared error of the ATE estimate. Since our work focuses on
estimation using the unbiased Horvitz-Thompson estimator, this is equivalent to minimizing the variance.

41
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their success in practice. This is because a significant portion of prior work on this topic has focused

on developing algorithms with strong asymptotic guarantees. In this asymptotic regime, much is

known, such as the semiparametric efficiency bound [70, 71] for non-adaptive approaches, as well as

adaptive procedures which asymptotically match the performance of the best possible non-adaptive

approach [72]. While these results provide a solid foundation, their asymptotic nature overlooks

many nuances crucial for practical application. At a high level, prior asymptotic approaches aim

to identify the (unknown) variance-minimizing allocation and demonstrate that their allocation

converges to this allocation. However, they do not adequately address the challenges of efficiently

learning this allocation, which is often vital for practical implementation [73].

In order to address these subtleties, we believe a nonasymptotic analysis is required. Unfor-

tunately, such analyses are currently scarce. The only work we are aware of which provides a

nonasymptotic analysis is Dai et al. [69] who propose the ClipOGD algorithm and show it attains

O(
√
T ) Neyman regret—a new measure of performance which we formally introduce in Section 3.1.2.

Despite offering a promising starting point, this work has several limitations. As we further expand

in 3.1.3, ClipOGD can demonstrate poor empirical performance; this is explained by the exponential

scaling of their bounds with respect to various problem parameters which they treat as constants.

In this paper, we advance the understanding of adaptive estimation procedures for the ATE by

providing a finite sample analysis of the Clipped Second Moment Tracking algorithm, a variant of the

procedure proposed in [74], tailored for the Horvitz-Thompson estimator. Our analysis meticulously

addresses various problem-specific parameters, demonstrating an exponential improvement with

respect to problem parameters. We also establish a O(log T ) bound on Neyman regret, representing

another significant improvement over ClipOGD, although [69] consider the more challenging fixed

design setting, while we work in the superpopulation setting defined in Section 3.1.2. Additionally,

our finite sample analysis also highlights some aspects of algorithm design that were previously

unaddressed.

3.1.2 Problem Setting and Preliminaries

Problem Setup. We consider the following interaction between an algorithm, Alg, and a problem

instance, ν. At the start of each round t, Alg selects a treatment allocation, πt ∈ [0, 1], based on the

history of past observations Ht−1 = {(πs, As, Rs)}t−1
s=1. Then, the next experimental unit is assigned

to either the control (At = 0) or the treatment (At = 1) arm by sampling At ∼ Bernoulli(πt).

Following this assignment, an outcome Rt ∈ [0, 1] is observed, marking the end of the round.

We formalize this interaction protocol as follows. First, we let Ft = σ(Ht) denote the filtration

generated by past observations. Then an algorithm Alg = (Algt) is a sequence of Ft−1 measurable

mappings, Algt : Ht−1 → S({0, 1}), where S(X ) is the set of distributions over X . A problem

instance ν : {0, 1} → S([0, 1]) is a probability kernel which maps each arm to a distribution over

outcomes which we assume to be bounded in the interval [0, 1]. Finally, we let Rt = I[At =
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0]Rt(0)+ I[At = 1]Rt(1), where I[·] denotes the indicator function, and Rt(A) ∼ ν(A) are called the

potential outcomes. Within the causal inference literature, this framework is typically referred to

as the superpopulation potential outcomes framework [75–77].

Implicit in the above interaction protocol are the following assumptions:

1. Bounded Observations: We assume Rt ∈ [0, 1] almost surely.

2. Stable Unit Treatment Value Assumption: We assume that Rt(A) is independent of Rs(A).

3. Unconfoundedness: Given the history Ht−1, we assume the treatment assignment At is in-

dependent of the potential outcomes Rt(0) and Rt(1). Formally, Rt(A) ⊥ At | Ht−1 for

A ∈ {0, 1}.
While the second and third assumptions are commonplace in the causal inference literature and nec-

essary for identification, the first assumption warrants a brief discussion. We make this assumption

so that our methods are compatible with a recent line of work aimed at developing variance-adaptive

sequential hypothesis tests [74, 78, 79] where it is currently not known how to construct such tests

without assuming bounded observations. However, our analysis and results can be easily modified

to accommodate any class of distributions which guarantee concentration of the uncentered second

moment. As we will discuss, this differs from existing work which assumes upper and lower bounds

on the raw second moments. Indeed, our results don’t treat

3.1.3 The ClipSMT Algorithm and Results

In this section, we introduce the Clipped Second Moment Tracking(ClipSMT) algorithm, state

bounds on its Neyman regret, and compare its performance with existing algorithms. To sim-

plify our presentation and discussions, in this section, we will assume πNey ≤ 1
2
. However, we

emphasize our results and analysis can be made to hold for all πNey ∈ (0, 1) by flipping the role of

the two policies.

The ClipSMT Algorithm

We begin by describing the ClipSMT algorithm. The idea behind this approach is straightforward:

since we do not know the Neyman allocation, we instead choose its empirical counterpart,

π̃t =
m̂t−1(1)

m̂t−1(0) + m̂t−1(1)
. (3.1)

While this approach is appealing, it will not work without modification. This is because π̃t is overly

sensitive to random fluctuations during the early rounds of interaction. As an extreme example,

suppose that we select A1 = 1, A2 = 0 and observe R1 = 0, R2 = 1. Then, π̃t = 0 for all the

subsequent rounds, leading to infinite Neyman regret.

Therefore, we require some form of regularization to guarantee ClipSMT is robust to randomness
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early in the experiment. To regularize π̃t, we follow Cook et al. [74] and choose the allocation

πt = Clip(π̃t, ct, 1− ct). (3.2)

for some clipping sequence ct. Our subsequent finite sample analysis will show that the setting

ct = 1
2
t−

1
3 is the correct choice in a worst-case sense. The complete algorithm can be found in

Algorithm 4.

Input: Clipping sequence (ct)
for each round t ∈ N do
Compute π̃t =

m̂t−1(1)
m̂t−1(0)+m̂t−1(1)

Set πt = Clip(π̃t, ct, 1− ct)
Play At ∼ Bernoulli(πt) and observe Rt

end for
Algorithm 4: ClipSMT

Understanding the Finite Sample Behavior of ClipSMT

We now present our finite sample analysis of ClipSMT. To begin, we will assume that the clipping

sequence has polynomial decay so that ct =
1
2
t−α for some α ∈ (0, 1). We discuss alternative choices

for (ct) in Appendix 3.1.7.

Our analysis splits the behavior of ClipSMT into two phases — a clipping phase followed by a

concentration phase. In the clipping phase, random fluctuations in Rt will induce large variations

in π̃t, leading our algorithm to clip π̃t. The clipping phase ends once we can guarantee that our

algorithm will no longer clip the plug-in allocation π̃t, marking the start of the concentration phase,

in which we can show that πt converges to πNey at a O
(
t−

1
2

)
rate.

Our first result characterizes the length of the clipping phase for various choices of α, demon-

strating how to select α appropriately.

Lemma 3.1.1. Assume for simplicity that πNey ≤ 1
2
. Suppose we run ClipSMT with ct =

1
2
t−α for

α ∈ (0, 1). Let p = min
(
α, 1−α

2

)
and define

τ = Õ

[ 1

πNey

+
1

m1

(
1

m0

+
1

m1

) 1
2

log

(
1

δ

)] 1
p

 . (3.3)

Then with probability at least 1− δ, for all t ≥ τ , we have that π̃t = πt.

Before proceeding we make a few remarks about this result. First, we can show that there exists

a problem instance such that the above bound on the length of the clipping phase is tight (modulo

some polylogarithmic factors). This implies that without additional knowledge on ν, setting α = 1
3

minimizes the length of the clipping phase in a worst-case sense. Furthermore, the proceeding

results will show that in the concentration phase πt converges to πNey at a rate that is independent
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of α, thus suggesting that α = 1
3
is in some sense the correct choice when we don’t have additional

information about the uncentered second moments. The end of the clipping phase indicates sufficient

data collection, mitigating the effects of random fluctuations on πt, thus marking the start of the

concentration phase. In this phase we can show that πt ∈ [πmin, πmax], so that Nt(1) = Ω (πmin · t).
A simple computation shows that this implies that πt converges to πNey at a O

(
(πmin · t)−

1
2

)
rate.

While this leads to the correct dependence on t, the scaling with respect to πmin is suboptimal—we

expect the scaling to be with respect to πNey. To see why, note that as the interaction progresses,

we expect πt to eventually converge to πNey. Consequently, we anticipate Nt(1) = Θ (πNey · t) which
further implies that πt converges to πNey at a O

(
(πNey · t)−

1
2

)
rate. To remedy this issue, we develop

a ‘double bounding’ technique that uses these initial bounds on πt and refines them to obtain the

correct dependence on πNey. This gives us the following result which shows that πt converges to

πNey at the desired rate.

Lemma 3.1.2. Assume for simplicity that πNey ≤ 1
2
. Define

τ = Õ

[ 1

πNey

+
1

m1

(
1

m0

+
1

m1

) 1
2

log

(
1

δ

)]3 . (3.4)

Then with probability at least 1− δ, for all t ≥ τ , ClipSMT guarantees that

|πNey − πt+1| ≤ O

(√
ℓ(t, δ)

t

)
(3.5)

where ℓ(t, δ) = O
(
log log t+ log 1

δ

)
.

The above result shows that following an additional burn-in period after the clipping phase, πt

will converge to πNey at the desired O
(
(πNey · t)−

1
2

)
rate. We also make a remark about the

√
mA

terms that appear in our bound. These terms appear because of the concentration inequalities

we use for mA. Unfortunately, we can show that this term is asymptotically unavoidable (see

Remark 3.1.12 in Appendix 3.1.7).

3.1.4 Theoretical Analysis

Bounding the Neyman Regret

Before stating our bound on the Neyman regret of ClipSMT, we first give an alternative expression

for the simple Neyman regret and provides insight into our Neyman regret bound.

Lemma 3.1.3. Fix πt ∈ [0, 1] and let ϵt = πt − πNey. Then we have that

f(πt)− f(πNey) = Θ
(
ϵ2t
)

(3.6)

The proof of this result can be found in Appendix 3.1.7. Surprisingly, this result shows that if
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πt converges to πNey at a O
(
t−

1
2

)
rate, then the simple Neyman regret will shrink at a O (t−1) rate.

Our next result uses this fact in conjunction with the prior bounds on πt to bound the Neyman

regret.

Theorem 3.1.4. Assume for simplicity that πNey ≤ 1
2
. Suppose we run ClipSMT with ct =

1
2
t−

1
3 .

Then probability at least 1− δ, the Neyman Regret is at most

Õ
(
π−1
Ney · log(T )

)
. (3.7)

The proof of this result can be found in Appendix 3.1.7. We have just shown that ClipSMT

obtains logarithmic Neyman regret, providing an exponential improvement from the O
(√

T
)
Ney-

man regret obtained by prior works. As the proceeding discussion highlights, ClipOGD works in a

more general “design-based” setup. However, it highlights the significant improvements that can

be gained in the superpopluation setting considered in this papers.

Comparisons with Prior Work

We continue by comparing our results with past works.

Comparison with Dai et al. [69]. When comparing our Neyman regret bounds to ClipOGD,

we observe exponential improvements in scaling with respect to πNey and T .

Starting out with the dependence on πNey, our bound scales like O
(
π−1
Ney

)
while ClipOGD scales

like O
(
exp

(
π−1
Ney

))
. We remark that it is not fully clear if the exponential scaling for ClipOGD is a

product of the proof technique or is a fundamental drawback of ClipOGD. Inspecting the proof in

Dai et al. [69], this exponential dependence is introduced to tune the learning rate—if bounds on

πNey are known, ClipOGD can be tuned to scale polynomially in π−1
Ney. However, even then, not only

is the exponent in their polynomial always worse than ours, but it also scales with
√
log T , while

ClipSMT does not. Finally, we empirically observe that ClipOGD is sensitive to parameter choices.

The choices suggested by their analysis can often lead to poor performance (as we demonstrate in

Section 3.1.5) indicating that the aforementioned exponential dependence is indeed a fundamental

drawback.

Next, we see that our Neyman regret scales like O(log T ) while ClipOGD scales like O(
√
T ). While

this is an exponential improvement, we believe this difference is primarily due to the differences

in our problem settings—we consider the superpopulation setting where outcomes are stochastic

whereas Dai et al. [69] consider the fixed-design setting where the outcomes are a fixed sequence.

In the fixed-design setting, the potential outcomes can be chosen adversarially, including with

knowledge of the algorithm, thus increasing the problem’s difficulty. The differences between these

settings parallels the differences between stochastic and adversarial MABs where we observe similar

gaps in regret bounds. In the stochastic bandit setting, the best one can obtain is O (log T ) problem

dependent regret[80]; whereas in the adversarial bandit setting, the best one can hope to do is
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O
(√

T
)
minimax regret [81].

Comparison with [74]. As we have mentioned, our algorithm is a variant of the algorithm

proposed by Cook et al. [74], tailored to the aHT estimator. The primary difference between our

work and Cook et al. [74] is that their focus is asymptotic while ours is nonasymptotic. The

asymptotic perspective makes design choices such as the appropriate clipping sequence opaque. In

their concluding remarks Cook et al. [74] state that selection of the clipping sequence is an interesting

question for future work – our finite sample analysis gives a concrete answer to this question. As an

example of the difficulty in choosing the clipping sequence, Cook et al. [74] uses a clipping sequence

with exponential decay. Our finite sample analysis indicates that with constant probability, such a

clipping sequence will result in an allocation that does not converge to πNey. Finally, we remark that

using a clipping sequence with polynomial decay allows us to slightly generalize their asymptotic

results by removing the requirement that bounds on πNey are known.

3.1.5 Experimental Evaluation

In this section, we experimentally2 validate our algorithm. Our objective is to compare our algorithm

to existing approaches as well as sensible baselines and to understand how well our theoretical

characterization of ClipSMT aligns with its empirical behavior.

We start by comparing our algorithm to existing approaches and some non-adaptive baselines.

In these experiments, we compare ClipSMT with ClipOGD, the infeasible Neyman Allocation, a

balanced allocation with π = 1
2
, and a two-stage design we call Explore-then-Commit (EtC). For

EtC, we select each treatment arm with equal probability for T
1
3 rounds, after which we compute

the empirical Neyman allocation and use this allocation for the remaining rounds.

We evaluate each approach on nine problem instances, running them for T rounds, where T varies

from 1000 to 20000 in increments of 1000. For each fixed value of T , we run ClipSMT, ClipOGD,

and the two-stage design 5000 times to approximate the variance of the resulting ATE estimate.

For the Neyman and balanced allocations, we can explicitly compute their variances. Our results

show that ClipSMT outperforms ClipOGD and EtC, and adapts well to difficult problem instances

(i.e., when the Neyman allocation deviates from 1
2
). The results of the experiments are displayed in

Figure 3.1. Additionally, we perform a more comprehensive simulation of these algorithms in the

small sample regime, where we observe similar behavior. The results of this experiment are shown

in Figure 3.2.

Next, we validate whether the length of the clipping phase predicted by our theory aligns with

the empirical behavior of ClipSMT. To do this, we run ClipSMT using ct =
1
2
t−α for various values

of α ∈ (0, 1). We run ClipSMT for each value of α and determine the 0.95 quantile of the clipping

phase length based on 5000 simulations. Using these values, we compute the ratio between the

2Code for replicating experiments can be found at the following GitHub repo: https://github.com/oneopane/
adaptive-ate-estimation.

https://github.com/oneopane/adaptive-ate-estimation
https://github.com/oneopane/adaptive-ate-estimation
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Figure 3.1: Comparison of the performance of ClipSMT, ClipOGD, Explore-then-Commit (EtC), Neyman
allocation, and a balanced allocation with the treatment and control arms following Bernoulli distributions.
Individual subplots plot the variance of each design against the number of samples for a fixed problem
instance. Each column keeps the treatment mean fixed, and each row keeps the Neyman allocation fixed.
Moving to the right increases the treatment mean and moving down increases the Neyman allocation.
Overall the performance of ClipSMT is always competitive with the performance of the infeasible Neyman
allocation and outperforms the other adaptive designs. Furthermore, as the Neyman allocation increases,
we see that ClipSMT adapts to the increased difficulty while EtC and the balanced design do not. Note
that error bars are plotted, however they are narrow due to the large number of simulations performed.

theoretically predicted clipping time to the empirically computed clipping time. The results of this

experiment are shown in Figure 3.3 (a).

Inspecting these results, we find that the ratio peaks around α = 1
3
. This behavior is due to

a technical difficulty that arises in our proof which we take a brief moment to elucidate. Specifically,

upper-bounding the length of the clipping phase involves bounding the quantity min {t :
∑

i t
pi ≥ c1 + c2 log log t},

where c1 ≈ 1
π2
Ney

and c2 ≈ 1
πNey

. To accomplish this, we compute an upper bound on min {t : tmax pi ≥ c1 + c2 log log t}
which is also an upper bound on the initial quantity. Noting that tmax pi ≤

∑
i t

pi , it is clear that

this step introduces some loosness to our bound. However, we see that as πNey → 0, we will have∑
tpi = Θ(tmax pi) since the growth of tmax pi will become the dominating term.

Instead, we bound min {t : tmax pi ≥ c1 + c2 log log t}, which provides the correct bound for large

values of c1 and c2 but is loose for small and moderate values of c1 and c2. Therefore, while our

bound is tight in the worst case, it has some looseness for specific problems — resolving this issue

remains an interesting technical problem for future work.

In order to validate this worst-case optimality, we consider a sequence of problems with Bernoulli



3.1. CLIPPED SECOND MOMENT TRACKING 49

Figure 3.2: Comparison of the performance of ClipSMT, ClipOGD, Explore-then-Commit (EtC), Neyman
allocation, and a balanced allocation with the treatment and control arms following Bernoulli distributions
in the small sample regime. Notably, ClipSMT is competitive with the Oracle Neyman Allocation even for
small sample sizes, indicating its practical utility.

arms µ(n) =
(
0.5, 0.5

n

)
. These are chosen to guarantee πNey converges to 0 which captures the notion

of increasing problem difficulty. We run ClipSMT with varying values of α on each problem instance

n and compute the median length of the clipping phase over 5000 simulations. For each n, we then

determined the value of α, which leads to the shortest clipping phase. The results of this experiment

are shown in Figure 3.3 (b), and confirm that setting α = 1
3
minimizes the length of the clipping

phase in the worst case.

3.1.6 Conclusion

In this work, we performed a finite sample analysis of the ClipSMT algorithm for adaptive estimation

of the ATE. Our analysis clarified several aspects of algorithm design, including how to properly

tune the clipping sequence. Furthermore, we demonstrated that our approach achieves exponential

improvements in two distinct areas when compared to the only other method with a finite time

analysis. Our comprehensive analysis meticulously addressed all problem parameters, providing a

clearer and more detailed understanding of the complexity of adaptive ATE estimation.

Several promising directions for future work emerge from our findings. One obvious direction is

to extend our analysis to the Augmented Inverse Probability Weighted estimator, which has more

desirable properties and is more appropriate when contextual information is available. Additionally,
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(a) (b)

Figure 3.3: The figure on the left plots the optimal ratio for each problem instance, where the problems
get harder as n increases. The figure on the left plots the ratio of the predicted versus empirically computed
clipping times. Note that a smaller value implies our theory underestimates the empirical clipping time,
implying that the true clipping times are larger.

expanding these results to accommodate larger action spaces and stochastic context-dependent

policies warrants further discussion.

3.1.7 Proofs

In this section, we will prove our bound on the Neyman regret of ClipSMT.

Preliminaries.

Before we proceed to the analysis, we first introduce some notation and define a ‘good event’ which

we will assume to hold throughout the analysis. We define the following events

E1(δ1) =
∞⋂
t=1

{
Nt(1) ∈

[
t∑

s=1

πs − β1(t, δ1),
t∑

s=1

πs + β1(t, δ1)

]}
(3.8)

E2(δ2) =
⋂

A∈{0,1}

∞⋂
t=1

{mA ∈ [m̂t(A)− β2(t, δ), m̂t(A) + β2(t, δ2)]} . (3.9)

Applying Lemmas 3.1.10 and 3.1.11, using β1 and β2 respectively defined in equations Eq. (3.83) and Eq. (3.86)

with δ1 =
δ
3
, δ2 =

2δ
3
, we see that the event E = E1(δ1)

⋂
E2(δ2) occurs with probability at least 1−δ.

For the remainder of the section, we will assume that this event hold.

Bounding the Neyman Regret (Theorem 3.1.4)

We will bound the cumulative Neyman regret by bounding the simple Neyman regret and then

summing over those terms. In order to do so, we will handle the clipping phase and concentration

phases separately.
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For the clipping phase, Lemma 3.1.5 demonstrates that we can guarantee πt ∈ [πmin, πmax] where

πmin, πmax only depend on mA. This implies that the instantaneous Neyman regret for each round in

the clipping phase can be upper bounded by a constant c(m0,m1) = maxπ∈{πmin,πmax} f(π)−f(πNey)

which only depends on mA. Furthermore, Lemma 3.1.1 shows that the length of the clipping phase

is at most τ so that the cumulative Neyman regret from the clipping phase can be upper bounded

as c(m0,m1) · τ which is independent of T .

For the concentration phase, we apply Lemma 3.1.2 which shows that ϵt ≤ Õ
(
t−

1
2

)
so that

Lemma 3.1.3 implies that the instantaneous Neyman regret for each round of the concentration

phase is at most

16

(
1

m0 +m1

)2
(

1√
m0 (1− πNey)

+
1

√
m1πNey

)2
ℓ(t, δ)

t
. (3.10)

Therefore, we can bound the cumulative Neyman regret during the clipping phase as

T∑
t=τ+1

f(πt)− f(πNey) ≤ 16

(
1

m0 +m1

)2
(

1√
m0 (1− πNey)

+
1

√
m1πNey

)2 T∑
t=τ+1

ℓ(t, δ)

t
(3.11)

≤ 16

(
1

m0 +m1

)2
(

1√
m0 (1− πNey)

+
1

√
m1πNey

)2 T∑
t=1

ℓ(t, δ)

t
(3.12)

≤ 16

(
1

m0 +m1

)2
(

1√
m0 (1− πNey)

+
1

√
m1πNey

)2

ℓ(T, δ) log(T ). (3.13)

Combining these bounds we see that the Neyman regret can be bounded as

c(m0,m1) · τ + 16

(
1

m0 +m1

)2
(

1√
m0 (1− πNey)

+
1

√
m1πNey

)2

ℓ(T, δ) log(T ) = Õ(log(T )),

(3.14)

which gives the desired result.
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Proof. The proof follows from the following series of algebraic manipulations:

f(πNey + ϵt)− f(πNey) =
m2

1

πNey + ϵt
+

m2
0

(1− πNey − ϵt)
− m2

1

πNey

+
m2

0

(1− πNey)
(3.15)

= ϵt

(
m2

0

(1− πNey)(1− πNey − ϵt)
− m2

1

πNey(πNey + ϵt)

)
(3.16)

(a)
= ϵt

 m2
0(

m0

m0+m1

)(
m0

m0+m1
− ϵt

) − m2
1(

m1

m0+m1

)(
m1

m0+m1
+ ϵt

)
 (3.17)

= ϵt

(
m2

0 (m0 +m1)
2

m2
0 −m0 (m0 +m1) ϵt

− m2
1 (m0 +m1)

2

m2
1 −m1 (m0 +m1) ϵt

)
(3.18)

= ϵt

([
m2

0 (m0 +m1)
2

m2
0 −m0 (m0 +m1) ϵt

− (m0 +m1)
2

]

+

[
(m0 +m1)

2 − m2
1 (m0 +m1)

2

m2
1 −m1 (m0 +m1) ϵt

])
(3.19)

= ϵ2t (m0 +m1)
3

(
1

m0 − (m0 +m1) ϵt
− 1

m1 − (m0 +m1) ϵt

)
, (3.20)

where in (a) we have used the fact that πNey =
m1

m0+m1
.

Clipping Phase

We now cover various proofs related to the analysis of the clipping phase of our algorithm.

We begin by proving Lemma 3.1.1.

Proof. To begin, we observe that since the function x, y 7→ x
x+y

is monotonic increasing (resp.

decreasing) in x (resp. y) we have (on the event E) that

π̃t+1 ∈
[

m1 − β2(Nt(1), δ2)

m0 + β2(Nt(0), δ2) +m1 − β2(Nt(1), δ2)
,

m1 + β2(Nt(1), δ2)

m0 − β2(Nt(0), δ2) +m1 + β2(Nt(1), δ2)

]
.

(3.21)

We note the above interval is random because Nt(A) is random. In order to construct bounds on

Nt(A) we use the fact that πt ∈ [ct, 1− ct] so that an integral-sum argument demonstrates

t∑
s=1

πs ∈
[
1

2
· t

1−α − 1

1− α
,
1

2
· t

1−α

1− α

]
. (3.22)
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Therefore, on the event E , we obtain

Nt(1) ∈ N (t, δ1) =

[
1

2
· t

1−α − 1

1− α
− β1(t, δ1), t−

1

2
· t

1−α

1− α
+ β1(t, δ1)

]
=

[
1

2
· t

1−α − 1

1− α
−
√
t · ℓ(t, δ1), t−

1

2
· t

1−α

1− α
+
√
t · ℓ(t, δ1)

]
, (3.23)

where we have set ℓ(t, δ) =
√
.7225

(
log log t+ 0.72 log 5.2

δ

)
.

Our strategy moving forward will be to use these bounds on Nt(1) to construct a time τ such

that for all t ≥ τ , we have π̃t+1 ∈ [ct+1, 1− ct+1]. We demonstrate how to do so in order to guarantee

π̃t+1 ≥ ct+1 as the other case is entirely analogous. Observe that our initial (random) lower bound

on π̃t+1 together with our bounds on Nt(1) imply that on the event E , we have

π̃t+1 ≥ min
n∈N (t,δ1)

m1 −
√

ℓ(n,δ2)
m1·n

m0 +
√

ℓ(t−n,δ2)
m0·(t−n)

+m1 −
√

ℓ(n,δ2)
m1·n

≥ min
n∈N (t,δ1)

m1 −
√

ℓ(t,δ2)
m1·n

m0 +
√

ℓ(t,δ2)
m0·(t−n)

+m1 −
√

ℓ(t,δ2)
m1·n

, (3.24)

where the final inequality follows from the monotonic properties of the map x, y 7→ x
x+y

. Therefore,

our objective is to upper bound the quantity

τ = min

t : min
n∈N (t,δ1)

m1 −
√

ℓ(t,δ2)
m1·n

m0 +
√

ℓ(t,δ2)
m0·(t−n)

+m1 −
√

ℓ(t,δ2)
m1·n

≥ 1

2
(t+ 1)−α

 (3.25)

≤ min

t : min
n∈N (t,δ1)

m1 −
√

ℓ(t,δ2)
m1·n

m0 +
√

ℓ(t,δ2)
m0·(t−n)

+m1 −
√

ℓ(t,δ2)
m1·n

≥ 1

2
t−α

 , (3.26)

where the inequality follows from the fact that the LHS in increasing in t and the RHS is decreasing

in t. Letting n⋆ denote the minimizer of equation Eq. (3.24), by applying Lemma 3.1.13 we observe

that

n⋆ ∈
{
1

2
· t

1−α − 1

1− α
−
√
t · ℓ(t, δ1), t−

1

2
· t

1−α

1− α
+
√
t · ℓ(t, δ1)

}
. (3.27)

Therefore, we can compute an upper bound for each of the two cases so that taking the maximum

of these bounds will result in an upper bound on equation Eq. (3.26).

We will demonstrate this for the case n⋆ = 1
2
· t1−α

1−α
−
√
t · ℓ(t, δ1) since the other case is similar.
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After plugging this value of n⋆ into equation Eq. (3.26), rearranging terms shows that

min

{
t : m1 ≥

1

2
t−α (m0 +m1) +

1

2
t−

2α+1
2

(
ℓ (t, δ2)

m0f (t, δ1, α)

) 1
2

+ t
α−1
2

(
1− t−α

)( ℓ (t, δ2)

m1g (t, δ1, α)

) 1
2

}
,

(3.28)

where

f(t, δ, α) = 1 + t−
1
2

√
ℓ(t, δ) +

t−1 − t−α

2(1− α)
,

g(t, δ, α) =
1− tα−1

2(1− α)
− t

2α−1
2

√
ℓ(t, δ).

Defining p = min
{
α, 1−α

2

}
, we can upper bound the RHS of equation Eq. (3.28) with

t−p

(
(m0 +m1) +

(
ℓ (t, δ2)

m0f (t, δ1, p)

) 1
2

+

(
ℓ (t, δ2)

m1g (t, δ1, p)

) 1
2

)
. (3.29)

Rearranging terms demonstrates that it is sufficient to bound

min

{
t : tp ≥ 1

πNey

+

√
ℓ(t, δ2)

m1

[(
1

m0f (t, δ1, p)

) 1
2

+

(
1

m1g (t, δ1, p)

) 1
2

]}
. (3.30)

Squaring both sides and applying the inequality (a+ b)2 ≤ a2 + b2 twice shows that we can bound

min

{
t : t2p ≥ 2

π2
Ney

+
4ℓ(t, δ2)

m2
1

[
1

m0f (t, δ1, p)
+

1

m1g (t, δ1, p)

]}
. (3.31)

Next, we apply Lemma 3.1.16 and 3.1.18 which show that when

t ≥ O

(
max

{(
1

1− p

) 1
p

,

(
log

(
1

δ1

)) 1
1−2p

})
,

we have that g(t, δ1, p), f(t, δ1, p) ≥ 1
2
. Applying Lemma 3.1.15 to equation Eq. (3.31) using the

above bounds on g, f demonstrates that

τ ≤ T
1
2p (3.32)
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where

T = c1(πNey) + c2(πNey) · c3(πNey) · log log c1(πNey), (3.33)

c1(πNey) =
2

π2
Ney

+
4

m2
1

(
1

m0

+
1

m1

)
log

(
5.2

δ2

)
, (3.34)

c2(πNey) =
4

m2
1

(
1

m0

+
1

m1

)
, (3.35)

c3(πNey) =
log log c1(πNey)− log (2p)

log log c1(πNey)
· c1(πNey) log c1(πNey)

c1(πNey) log c1(πNey)− c2(πNey)
. (3.36)

Repeating the argument for the other choice of n⋆ yields the same result.

Finally, we can repeat the above argument for the upper bound on π̃t+1 which shows that

τ ≤ T
1
2p , where

T = c1(πNey) + c2(πNey) · c3(πNey) · log log c1(πNey) (3.37)

c1(πNey) =
2

(1− πNey)
2 +

4

m2
0

(
1

m0

+
1

m1

)
log

(
5.2

δ2

)
(3.38)

c2(πNey) =
4

m2
0

(
1

m0

+
1

m1

)
. (3.39)

Letting τ = max {τ , τ} gives the desired result.

Concentration Phase

In this section, we will prove Lemma 3.1.2 which we restate for the readers convenience below.

Proof. To begin, we fix t ≥ τ and let s ∈ [τ, t− 1]. Invoking Lemma 3.1.5 implies that on the event

E we have

Ns(1) ∈
[
πmin · s−

√
sℓ(s, δ1), s− πmin · s+

√
sℓ(s, δ1)

]
. (3.40)

We will use this to construct a lower bound on πs+1 by solving the optimization problem in equa-

tion Eq. (3.24) using the interval defined above. Applying Lemma 3.1.13, we can construct a lower

bound by considering Ns(1) ∈
{
πmin · s−

√
sℓ(s, δ1), s− πmin · s−

√
sℓ(s, δ1)

}
. We demonstrate
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this for Ns(1) = πmin · s−
√
sℓ(s, δ1). In this case, we have that

πs+1 ≥
m1 −

√
ℓ(s,δ2)

m1Ns(1)

m0 +
√

ℓ(s,δ2)
m1(s−Ns(1))

+m1 −
√

ℓ(s,δ2)
m1Ns(1)

(3.41)

= πNey ·
m0 +m1

m0 +m1 + h(πmin, s)
√

ℓ(s,δ2)
s

−
a1(πmin, s)

√
ℓ(s,δ1)

s

m0 +m1 + h(πmin, s)
√

ℓ(s,δ2)
s

(3.42)

= πNey ·

√
s

ℓ(s,δ2)
(m0 +m1)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
− a1(πmin, s)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
(3.43)

= πs+1, (3.44)

where we have defined

a1(π, s) =

√√√√√ 1

m1

(
π −

√
ℓ(s,δ1)

s

) , (3.45)

a0(π, s) =

√√√√√ 1

m0

(
(1− π)−

√
ℓ(s,δ1)

s

) , (3.46)

h(π, s) = a0(π, s)− a1(π, s). (3.47)

Using these bounds, on πs+1 we observe that on the event E we have

Nt(1) ≥
t∑

s=1

πs −
√
tℓ(t, δ2) =

τ∑
s=1

πs +
t∑

s=τ+1

πs −
√
tℓ(t, δ2) (3.48)

≥ τ 1−α − 1

2 (1− α)
+

t∑
s=τ+1

πs −
√
tℓ(t, δ2) (3.49)

We bound
∑t

s=τ+1 πs using Lemma 3.1.6 so that

Nt(1) ≥ πNey · t+
τ 1−α − 1

2 (1− α)
− πNey (τ − 1)

−
√
tℓ(t, δ2)

(
2
h(πmin) + a1(πmin, τ)

m0 +m1

+ 1

)
− a1(πmin, τ)√

τ
ℓ(τ,δ2)

(m0 +m1) + h(πmin, τ)

= πNey · t− c,

(3.50)
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where we have defined h(πmin) = limt→∞ h(πmin, t). By plugging this value of Nt(1) into equa-

tion Eq. (3.24), we obtain

πt+1 ≥ πt+1 = πNey ·

√
t

ℓ(t,δ2)
(m0 +m1)√

t
ℓ(t,δ2)

(m0 +m1) + h̃(πNey, t)
− ã1(πNey, t)√

t
ℓ(t,δ2)

(m0 +m1) + h̃(πNey, t)
(3.51)

where we have defined

ã0(π, t) =

√
1

m0

(
(1− π) + c

t

) (3.52)

ã1(π, t) =

√
1

m1

(
π − c

t

) , (3.53)

h̃(π, t) = ã0(π, t)− ã1(π, t) (3.54)

Therefore, we have

πNey − πt+1 ≤ πNey − πt+1 (3.55)

=

√
ℓ(t, δ2)

t

 πNeyã0 + (1− πNey)ã1

m0 +m1 +
√

ℓ(t,δ2)
t

(ã0 − ã1)

 (3.56)

=

√
ℓ(t, δ2)

t

 πNey√
m0

(
(1− πNey) +

c
t

) + 1− πNey√
m1

(
πNey − c

t

)
 1

m0 +m1 +
√

ℓ(t,δ2)
t

(ã0 − ã1)


(3.57)

≤ 4

√
ℓ(t, δ)

t

(
1√

m0 (1− πNey)
+

1
√
m1πNey

)(
1

m0 +m1

)
(3.58)

where the final inequality follows from the application of Lemmas 3.1.7 and 3.1.8 which shows that

when t ≥ O(τ) we have that c
t
≤ 1

2
πNey.

Lemma 3.1.5. Suppose we run ClipSMT with ct = 1
2
t−α for some α ∈ (0, 1) and let p =

min
(
α, 1−α

2

)
. Then, on the event E, for all t ≥ 1, we have that πt ∈ [πmin, πmax] =

[
1
2
T− α

2p , 1− 1
2
T

− α
2p

]
where T,T are respectively defined in equations Eq. (3.33) and Eq. (3.37).

Proof. During the clipping phase, we know that πt ∈ [ct, 1− ct]. Additionally, once the clipping

phase ends, we know that π̃t = πt so that

πt+1 ∈
[

m1 − β2(Nt(1), δ2)

m0 + β2(Nt(0), δ2) +m1 − β2(Nt(1), δ2)
,

m1 + β2(Nt(1), δ2)

m0 − β2(Nt(0), δ2) +m1 + β2(Nt(1), δ2)

]
.

(3.59)

It is easy to see that the above bonunds are monotonic in t—the lower bound is monotonically



58 CHAPTER 3. ADAPTIVE CAUSAL INFERENCE

increasing and the upper bound is monotonically decreasing—which implies that πt takes its min-

imum and maximum values at the end of the clipping phase. Therefore, we see that for all t ≥ 1,

we have that

1− 1

2
T

− α
2p ≥ 1− 1

2
τ−α = 1− cτ ≥ πt ≥ cτ =

1

2
τ−α ≥ 1

2
T− α

2p , (3.60)

where the first and last inequality follows from applying Lemma 3.1.1 which shows that τ ≤ T
1
2p .

Supporting Lemmas

Intermediate Steps

Lemma 3.1.6. Define

πs+1 = πNey ·

√
s

ℓ(s,δ2)
(m0 +m1)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
− a1(πmin, s)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
. (3.61)

Then we have that

t∑
s=τ+1

πs ≥ πNey(t− τ − 1)− 2
√
tℓ(t, δ2)

(
h(πmin) + a1(πmin, τ)

m0 +m1

)
− h(πmin, τ)√

τ
ℓ(τ,δ2)

(m0 +m1) + h(πmin, τ)
,

(3.62)

Proof. We begin by observing

t∑
s=τ+1

πs =
t−1∑
s=τ

πs+1 (3.63)

=
t−1∑
s=τ

πNey ·

√
s

ℓ(s,δ2)
(m0 +m1)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
− a1(πmin, s)√

s
ℓ(s,δ2)

(m0 +m1) + h(πmin, s)
(3.64)

≥ πNey ·
t−1∑
s=τ

√
s

ℓ(t,δ2)
(m0 +m1)√

s
ℓ(t,δ2)

(m0 +m1) + h(πmin)︸ ︷︷ ︸
Term 1

−
t−1∑
s=τ

a1(πmin, τ)√
s

ℓ(t,δ2)
(m0 +m1) + h(πmin, τ)︸ ︷︷ ︸

Term 2

, (3.65)

where we have set

h(π) =

√
1

m0 (1− π)
−
√

1

m1π

and the inequality follows from the monotonic properties of the map x, y 7→ x
x+y

combined with the

fact that h(π, t) is increasing in t and a1(π, t) is decreasing in t. From here, we lower bound Term 1

and upper bound Term 2.
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To lower bound Term 1, let c1 =
m0+m1√

ℓ(t,δ2)
and c2 = h(πmin). Then we have

Term 1 =
t−1∑
s=τ

√
sc1√

sc1 + c2
(3.66)

= (t− τ − 1)−
t∑

s=τ

c2√
sc1 + c2

(3.67)

≥ (t− τ − 1)− 2
c2
c1

√
t (3.68)

= (t− τ − 1)− 2
h(πmin)

m0 +m1

√
tℓ(t, δ2) (3.69)

where the inequality follows Lemma 3.1.20.

To upper bound Term 2 we similarly apply Lemma 3.1.20 so that

Term 2 ≤ a1(πmin, τ)√
τ

ℓ(τ,δ2)
(m0 +m1) + h(πmin, τ)

+ 2
a1(πmin, τ)

√
tℓ(t, δ2)

m0 +m1

(3.70)

Combining these bounds shows that

t∑
s=τ+1

πs ≥ πNey(t− τ − 1)− 2
√
tℓ(t, δ2)

(
h(πmin) + a1(πmin, τ)

m0 +m1

)
− h(πmin, τ)√

τ
ℓ(τ,δ2)

(m0 +m1) + h(πmin, τ)
,

(3.71)

thus proving the desired result.

Lemma 3.1.7. Define

c =
√
tℓ(t, δ)

(
2
h(πmin) + a1(πmin, τ)

m0 +m1

+ 1

)
+

a1(πmin, τ)√
τ

ℓ(τ,δ2)
(m0 +m1) + h(πmin, τ)

+πNey (τ − 1)− τ
1−α − 1

2 (1− α)

(3.72)

If t ≥ 6τ , then c
t
≤ 1

2
πNey.

Proof. Note that it is sufficient to bound the first three terms since we are subtracting the fourth

term.

For the first term, we observe that when τ 1−2α ≥ 16ℓ(τ, δ), which is satisfied by our definition

of τ , we have that a1(πmin, τ) ≤
√

2
m1πmin

. Therefore, some algebra shows that

2
h(πmin) + a1(πmin, τ)

m0 +m1

+ 1 ≤ 2τ
α
2

(
1

m0

+
1

m1

)(
1
√
m0

+
1
√
m1

)
+ 1 = c1 (3.73)

Therefore if we want bound this term by b1πNey, we require t ≥ c21
b21
ℓ(t, δ). We can apply Lemma 3.1.15

to bound this.
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Next, some algebra shows that when τ 1−α ≥ 3
m1(m0+m1)

2 ℓ(τ, δ), which is satisfied by our definition

of τ , we have that
a1(πmin, τ)√

τ
ℓ(τ,δ2)

(m0 +m1) + h(πmin, τ)
≤ 2. (3.74)

As such, if we want to bound this term by b2, we require t ≥ 2
b2πNey

Finally, to bound the third term by b3πNey, we observe that we require t ≥ τ−1
b2

.

Setting b1 = b2 = b3 =
1
6
and c1 =

1
2
, and using the above results, see that when

t ≥ max

{
144ℓ(t, δ), 6 (τ − 1) ,

12

πNey

}
(3.75)

we have that c
t
≤ 1

2
πNey.

Lemma 3.1.8. Suppose t ≥ 6τ . Then we have that√
ℓ(t, δ)

t
(ã1 − ã0) ≤

1

2
(m0 +m1) . (3.76)

Proof. To being, we see that it is sufficient to find compute an upper bound on the smallest t such

that

t ≥ ℓ(t, δ)
ã21

m0 +m1

.

Next, we apply Lemma 3.1.7 which shows that when t ≥ 6τ , we have that ã21 ≤ 2
m1πNey

. Plugging

this in and applying Lemma 3.1.15 gives the desired result.

Useful Tools

Lemma 3.1.9. We have that

m1 −
√

ℓ(t,δ)
m1Nt(1)

m0 +
√

ℓ(t,δ)
m0(t−Nt(1))

+m1 −
√

ℓ(t,δ)
m1Nt(1)

(3.77)

= πNey

√
t

ℓ(t,δ)
(m0 +m1)√

t
ℓ(t,δ)

(m0 +m1) + a0(t, Nt(1))− a1(t, Nt(1))
(3.78)

− a1(t, Nt(1))√
t

ℓ(t,δ)
(m0 +m1) + a0(t, Nt(1))− a1(t, Nt(1))

(3.79)
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where

a0(t, n) =

√
1

m0

(
1− n

t

) , (3.80)

a0(t, n) =

√
1

m1 · nt
. (3.81)

Concentration Results

Lemma 3.1.10. Let X1, X2, . . . be a sequence of random variables such that Xt ∼ Bernoulli(πt)

where πt is Ft−1 measurable and define Nt =
∑t

s=1Xs. Then, with probability at least 1 − δ, the
following holds for all t ∈ N ∣∣∣∣∣Nt −

t∑
s=1

πt

∣∣∣∣∣ ≤ β1(t, δ), (3.82)

where

β1(t, δ) = 0.85

√
t

(
log log t+ 0.72 log

(
5.2

δ

))
. (3.83)

Proof. Define Mλ
t = exp

(
λ(X − pt)− λ2

8

)
. Note that by definition, Xt ∈ [0, 1] almost surely with

E [Xt | Ft−1] = pt which implies that the following holds for every λ ∈ R

E
[
Mλ

t | Ft−1

]
≤ 1. (3.84)

Therefore, Dλ
t =

∏t
s=1M

λ
s is a test supermartingale and we can apply Theorem 1 from [82] (see

equation (11)) to obtain the desired result.

Lemma 3.1.11. Let X1, X2, . . . be a sequence of random variables such that Xt ∈ [0, 1], µ =

E [Xt | Ft−1], and m
2 = E [X2

t | Ft−1]. Define the empirical second moment as m̂2
t = 1

t

∑t
s=1X

2
s .

Then, with probability at least 1− δ, the following holds for all t ∈ N

|m̂t −m| ≤ β2(t, δ) (3.85)

where

β2(t, δ) = 0.85

√(
log log t+ 0.72 log

(
5.2
δ

))
m2 · t

. (3.86)

Proof. To see this, we first observe that

|m̂t −m| =
|m̂2

t −m2|
|m̂t +m|

≤ |m̂
2
t −m2|∣∣∣√m2

∣∣∣ .

The result then follows by bounding |m̂2
t −m2| by applying Theorem 1 from [82] (see equation (11)).
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Remark 3.1.12. Note that in our above result, the width of the confidence sequences scale like

O
(

1√
m2·t

)
. An application of the CLT along with the Delta Method shows that, asymptotically, the

scaling with respect to 1√
m2

is unavoidable.

Technical Results

Lemma 3.1.13. Let t, α0, α1, γ0, γ1 > 0 be fixed, and define the function f : (0, t)→ R by

f(x) =
α1 − γ1√

x

α0 +
γ0√
t−x

+ α1 − γ1√
x

. (3.87)

Given an interval [s, r] ⊆ [1, t], any solution x⋆ to the optimization problem

min
x∈[s,r]

f(x), (3.88)

must satisfy x⋆ ∈ {s, r}.

Proof. Our proof will proceed by demonstrating that one of the preconditions of Lemma 3.1.14 is

satisfied, from which the desired result naturally follows. To begin, we let f ′(x) = d
dx
f(x) denote

the derivative of f(x). We compute f ′(x) and perform some simplifications to show that

f ′(x) = −


(

γ0
2(t−x)3/2

+ γ1
2x3/2

)
(α1 − γ1√

x
)

(α0 + α1 +
γ0√
t−x
− γ1√

x
)2

+
γ1

2(α0 + α1 +
γ0√
t−x
− γ1√

x
)x3/2

=
(γ0γ1t+ α0γ1t

√
t− x− α0γ1

√
t− xx− α1γ0x

3/2)

2(−γ1
√
t− x+ γ0

√
x+ α0

√
t− x

√
x+ α1

√
t− x

√
x)2
√
t− x

√
x
. (3.89)

Observe that the denominator in Eq. (3.89) is always greater than zero. Therefore, sign(f ′(x)) is

determined by the numerator which we will now show to be strictly decreasing. The derivative of

the numerator in Eq. (3.89) is

−
(
3(α0γ1t+ α1γ0

√
t− x

√
x− α0γ1x)

2
√
t− x

)
.

From here, we have that by assumption α0, α1, γ0, γ1 > 0 and x < t imply that the above quantity

is strictly negative. Since the derivative of the numerator is strictly negative, we know that the

numerator is strictly decreasing. Therefore, our earlier observation, in conjunction with this fact

implies that one of the preconditions of Lemma 3.1.14 must hold, thus enabling its application,

which in turn implies the desired result.

The next lemma essentially shows that the minimum of a concave-unimodal function over a
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closed interval must occur at one of the boundaries of the interval.

Lemma 3.1.14. Let f : D → R be any differential function such that its derivative, f ′, satisfies

one of the following conditions:

1. f ′(x) > 0 for all x ∈ D

2. f ′(x) < 0 for all x ∈ D

3. There exists c such that for all x < c, f ′(x) > 0 and for all x > c, f ′(x) < c.

Then for any [a, b] ⊂ D, any solution x⋆ to optimization problem,

min
x∈[a,b]

f(x), (3.90)

must satisfy x⋆ ∈ {a, b}.

Proof. If f ′(x) > 0 for all x ∈ D, the function is monotonically increasing and the minimum will

occur at x⋆ = a. If f ′(x) < 0 for all x ∈ D, the function is monotonically decreasing and the

minimum will occur at x⋆ = b. For the final case, let c be as defined in the condition and let x̃

denote the minimum of f . If a < x̃ < c then f(x̃)− f(a) =
∫ x̃

a
f ′(t)dt > 0 which is a contradiction.

Similarly if b > x̃ > c, then f(b) − f(x̃) =
∫ b

x̃
f ′(c)dc < 0 which is also a contradiction. Therefore,

for each of the cases, x⋆ must satisfy x⋆ ∈ {a, b}.

Lemma 3.1.15. Let c1, c2, p > 0 such that log c1 > p and c1 log c1 > c2 and define

τ = min {t : tp ≥ c1 + c2 log log(t)} . (3.91)

We have that

τ ≤
(
c1 + c2 log (log c1)

log log c1 − log(p)

log log c1
· c1 log c1
c1 log c1 − c2

) 1
p

(3.92)

Proof. To prove this, we set

t = (c1 + ac2 log log c1)
1
p ,

for some a to be chosen later. Our objective is to show that

log log
[
(c1 + ac2 log log c1)

1
p

]
≤ a log log c1.
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To do so, we observe that

log
(
log
(
(c1 + ac2 log log c1)

1
p

))
= log

(
1

p
log (c1 + ac2 log log c1)

)
= log

(
1

p

(
log(c1) + log

(
1 +

ac2
c1

log log c1

)))
≤ log

(
1

p

(
log(c1) +

ac2
c1

log log c1

))
= log

(
1

p
log c1

)
+ log

(
1 +

ac2
c1 log c1

log log c1

)
≤ log

(
1

p
log c1

)
+

ac2
c1 log c1

log log c1,

where the inequalities follow from applying the inequality log(1 + x) ≤ x. From here, we set a so

the final line above equals a log log c1. In particular, by setting

a =
log log c1 − log(p)

log log c1
· c1 log c1
c1 log c1 − c2

,

the above series of inequalities proves that

log log
[
(c1 + ac2 log log c1)

1
p

]
≤ a log log c1,

as desired.

Lemma 3.1.16. Fix α, δ ∈ (0, 1) and consider the function

f(t, δ, α) = 1 + t−
1
2

√
ℓ(t, δ) +

t−1 − t−α

1− α
.

For all t ≥
(

2
1−α

) 1
α , we have that g(t, δ, α) ≥ 1

2
.

Proof. First note that

1 + t−
1
2

√
ℓ(t, δ) +

t−1 − t−α

1− α
≥ 1− t−α

1− α
.

Solving the inequality

1− t−α

1− α
≥ 1

2
,

for t gives the desired result.

Corollary 3.1.17. For δ ∈ (0, 1), t ≥ 27 implies that f(t, δ, 1
3
) ≥ 1

2
.
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Lemma 3.1.18. Fix α ∈
(
0, 1

2

)
, δ ∈ (0, 1), and let

g(t, δ, α) =
1− tα−1

2 (1− α)
− t

2α−1
2

√
ℓ(t, δ).

We have that g(t, δ, α) ≥ 1
2
whenever

t ≥
(
c1 + c2 log (log c1)

log log c1 − log(1− 2α)

log log c1
· c1 log c1
c1 log c1 − c2

) 1
1−2α

,

where c1 =
2
α2 +

8(1−α)2

α2 log
(
5.2
δ

)
and c2 =

8(1−α)2

α2 .

Proof. To begin, observe that

1− tα−1

2 (1− α)
− t

2α−1
2

√
ℓ(t, δ) ≥ 1

2 (1− α)
− t

2α−1
2

√
ℓ(t, δ)− t

2α−1
2

2 (1− α)
, (3.93)

therefore it is sufficient to bound the quantity

min

{
t :

1

2 (1− α)
− t

2α−1
2

(√
ℓ(t, δ) +

1

2 (1− α)

)
≥ 1

2

}
. (3.94)

Rearranging, we see that this is equivalent to bounding the quantity

min

{
t : t

1
2
−α ≥ 2 (1− α)

α

√
ℓ(t, δ) +

1

α

}
. (3.95)

By squaring both sides and applying the inequality (a+ b)2 ≤ 2a2 + 2b2 we see that it is sufficient

to bound

min

{
t : t1−2α ≥ 2

α2
+

8 (1− α)2

α2
ℓ(t, δ)

}
. (3.96)

Setting c1 =
2
α2 +

8(1−α)2

α2 log
(
5.2
δ

)
and c2 =

8(1−α)2

α2 we can apply Lemma 3.1.15 to see that whenever

t ≥
(
c1 + c2 log (log c1)

log log c1 − log(1− 2α)

log log c1
· c1 log c1
c1 log c1 − c2

) 1
1−2α

,

we have that g(t, δ, α) ≥ 1
2
, as desired.

Corollary 3.1.19. For δ ∈ (0, 1), t ≥ O
(
log
(
1
δ

)3)
implies that g

(
t, δ, 1

3

)
≥ 1

2
.

Lemma 3.1.20. Fix c1, c2, c3, τ, t such that c1, c2 > 0, τ < t, and c2
√
τ + c3 > 0. Then, we have

that
t∑

s=τ

c1
c2
√
s+ c3

≤ c1
c2
√
τ + c3

+
2c1
c2

(√
t−
√
τ
)

(3.97)
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Proof. Observe that under the stated conditions, we have that c1
c2
√
s+c3

is monotonically decreasing

in s. Therefore we can bound

t∑
s=τ

c1
c2
√
s+ c3

≤ c1
c2
√
τ + c3

+

∫ t

s=τ

c1
c2
√
s+ c3

ds

≤ c1
c2
√
τ + c3

+

(
2c1
c2

√
s− 2c1c3

c22
log
(
c3 + c2

√
s
))∣∣∣∣t

s=τ

=
c1

c2
√
τ + c3

+

(
2c1
c2

√
t− 2c1c3

c22
log
(
c3 + c2

√
t
))
−
(
2c1
c2

√
τ − 2c1c3

c22
log
(
c3 + c2

√
τ
))

≤ c1
c2
√
τ + c3

+
2c1
c2

(√
t−
√
τ
)

Discussion on Clipping Sequences

Recall that our proposed ClipSMT algorithm utilizes clipping sequence with polynomial decay so

that ct = 1
2
t−α for α ∈ (0, 1). It is natural to wonder if there are other valid choices for the

clipping sequence. While there are, the choices of clipping sequences that will work depend on the

assumptions that we make.

On one hand, if we do not assume a lower bound on m2
A, then we must require that

∑
t ct

diverges as t → ∞. To see why, suppose the sum converges, i.e limT→∞
∑T

t=1 ct = c. Then, if we

choose m2
1,m

2
2 so that the length of the clipping phase is larger than c, this will ensure that πt

never converges to πNey. As a concrete example, this implies that in this most general setting, we

should not use clipping sequence with exponential decay. However, if we are willing to assume a

lower bound on m2
0,m

2
1, then we can use a similar argument in order to select the rate of decay for

a clipping sequence whose sum converges.

3.2 Optimistic Policy Tracking

3.2.1 Introduction

The problem of estimating the average treatment effect (ATE) is central to causal inference and has

been extensively studied. We have a precise understanding of the difficulty of this problem in both

asymptotic and nonasymptotic regimes. However, our understanding of the challenges associated

with adaptive ATE estimation remains limited.

Classically, adaptive ATE estimation has been analyzed in an asymptotic setting, where past

work has focused on designing adaptive sampling procedures that ensure that the resulting ATE es-

timate achieves the smallest possible asymptotic variance, that is, the semiparametric efficiency

bound. More recently, there has been growing interest in developing algorithms that provide
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nonasymptotic performance guarantees. However, these works suffer from certain drawbacks that

lead to poor finite sample performance, an issue that we discuss in detail in Sections 3.2.2.

In this work, we take a nonasymptotic perspective on adaptive ATE estimation, focusing on the

Augmented Inverse Propensity Weighting (AIPW) estimator. Our finite-sample analysis reveals

key aspects of algorithmic design that prior work has overlooked. This enables us to propose a new

algorithm with substantially improved theoretical and empirical performance while also simplifying

the analysis.

At the heart of our approach is the insight that initially over-sampling arms that should eventu-

ally be under-sampled according to the (unknown) optimal allocation can lead to better estimates

of the ATE. Interestingly, this idea can be interpreted as an instance of the principle of optimism,

a well-established algorithmic design paradigm in the literature on regret minimization in multi-

armed bandits (MAB) and reinforcement learning. We discuss this connection in more detail in

Section 3.2.4.

Contributions. Our main contributions are as follows:

1. We develop and analyze a new algorithm, Optimistic Policy Tracking(OPT), for the adaptive

estimation of ATE that enjoys significant theoretical improvements over previous approaches

along with a significantly simplified analysis.

2. We perform simulations that demonstrate that our theoretical improvements translate into

empirical improvements, especially in the small sample regime, which is critical for applications

such as randomized clinical trials.

3.2.2 Related Works

Adaptive experimental design has a long and distinguished history, dating back to the seminal work

of Neyman [83] on optimal allocation in experimental studies. Thompson [84] introduced a Bayesian

adaptive design, thus laying the foundation for the MAB problem. Thompson’s approach of sequen-

tial updating beliefs about treatments (or arms) based on observed outcomes is now central in MAB

research [85]. However, many problem formulations focus on maximizing cumulative rewards over

repeated rounds of exploration-exploitation. In contrast, our objective of ATE estimation differs

from the typical MAB focus and raises different forms of exploration trade-offs.

Prior Work

Our work builds on a recent line of work investigating adaptive algorithms aimed at efficiently

estimating ATE. Hahn et al. [86] sparked this research direction by proposing a two-stage design,

conceptually similar to the Explore-then-Commit algorithms in MAB [87] and showing that it

asymptotically attains the minimum-variance semiparametric efficiency bound. Subsequently, Kato

et al. [72] introduced a fully adaptive procedure using the adaptive AIPW estimator (A2IPW), and
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showed that it is asymptotically optimal (in the above sense) while also providing improved empirical

performance compared to the less adaptive two-stage design. Later, Cook et al. [74] proposed an

alternative method called Clipped Standard-Deviation Tracking (ClipSDT), which inherits the same

asymptotic optimality under milder assumptions, admits modern uncertainty quantification tools

[79], and outperforms the earlier approach empirically. In parallel work, Li et al. [88] significantly

generalized the two-stage design in Hahn et al. [86], extending its applicability to a broad spectrum

of problems, including Markovian and non-Markovian decision processes.

Despite these advances, all of the above approaches focus on characterizing the asymptotic

behavior of their approaches, leaving open questions about finite-sample performance of their work.

In order to address these questions, Dai et al. [69] takes an initial step toward understanding the

nonasymptotic difficulty by introducing the ClipOGD algorithm for the fixed-design setting. They

introduce and analyze the Neyman regret (in the design-based setting), which is a normalized proxy

to the variance of the resulting ATE estimate. Even more recently, Neopane et al. [3] proposed

and analyzed the ClipSMT algorithm for the superpopulation setting and shows that it enjoys an

improved log T bound on the Neyman regret.

Although these two works take important first steps toward understanding the nonasymptotic

difficulty of adaptive ATE estimation, their algorithms rely on the IPW estimator which is known to

be suboptimal. In fact, these works define the Neyman regret with respect to the minimum variance

IPW estimator, where the minimization is performed over all possible allocations. In contrast, our

definition of the Neyman regret is much stronger as the baseline against which we compete is defined

as the minimum attainable variance over all pairs of estimators and allocations. Notably, using this

stronger definition of regret, the aforementioned approaches obtain linear Neyman regret, where as

we are able to design an algorithm which obtains logarithmic Neyman regret.

Related Works

The problem of off-policy evaluation, which generalizes ATE estimation, has been extensively stud-

ied in the literature on reinforcement learning [89–91]. Most of the research in this area has focused

on offline estimation, leading to precise characterizations of minimax lower bounds along with

matching upper bounds [92–95]. Beyond policy evaluation, these methods have been extended to

estimate other quantities, such as the cumulative distribution function of rewards [96, 97]. How-

ever, there has been limited exploration of adaptive versions of these methods. Some existing work

includes Hanna et al. [98], which focuses on off-policy learning, and Konyushova et al. [99], which

integrates offline off-policy evaluation techniques with online data acquisition to enhance sample

efficiency in policy selection. However, these works are primarily empirical.

A related area of research concerns inference procedures for adaptively collected data. This

can be categorized into asymptotic and non-asymptotic approaches. On the asymptotic side, one

direction has focused on reweighting estimators and establishing their asymptotic normality [100–

102]. Another direction avoids asymptotics, instead leveraging modern advances in martingale
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theory to derive nonasymptotic confidence intervals and sequences for adaptively collected data,

including estimates of the ATE [22, 79, 103].

3.2.3 Background

Problem Setup We are interested in adaptive estimation of the average treatment effect. During

each round, t, the algorithm uses the history of past observations Ht−1 = {(πs, As, Ys)}t−1
s=1 to select

the probability of treatment allocation πt. Then, πt is used to assign the next experimental unit

to either the control (At = 0) or the treatment (At = 1) by sampling At ∼ Bernoulli(πt). Finally,

after assigning the experimental unit, we observe the outcome Yt which marks the end of round t.

We formalize the above interaction protocol as follows. Let Ft = σ(Ht) denote the filtration

generated by the past observations. An algorithm A = {(πt, τ̂t)}Tt=1 is defined as a sequence of

Ft−1 measurable random elements where πt ∈ [0, 1] is the treatment allocation probability and

τ̂t : (πt, At, Yt) 7→ R≥0 which can be thought of as the ATE estimate produced by A on round t.

We assume that the rewards are generated as Yt = 1{At = 1}Yt(1)+1{At = 0}Yt(0), where Yt(a)
are called the potential outcomes. We assume that the sequence of potential outcomes are jointly

distributed according to some probability measure ν (the “environment”) that satisfies the following

assumptions. The first assumption is that the rewards are unconfounded, which means that, given

Ft−1, the potential outcomes Yt(1), Yt(0) are conditionally independent of the treatment assignment

At, i.e Yt(1), Yt(0) ⊥ At | Ft−1. The second assumption is that the reward means and variances are

conditionally fixed so that for all t, we have Eν [Yt(a) | Ft−1] = µa and Varν [Yt(a) | Ft−1] = σ2
a.

Our objective within this framework is to estimate the ATE τ , which is defined as

τ = µ1 − µ0.

The Adaptive AIPW Estimator. An algorithm for adaptive ATE estimation thus requires us

to specify a method to compute the treatment allocation probability πt as well as the estimate τ̂t.

A natural choice for τ̂t is the AIPW estimator, which given some reward estimate µ̂, is defined as

τ̂t =
g(At)

PA,ν [At]
(Yt − µ̂At) + τ̂ [µ̂], (3.98)

where g(At) = 1{At = 1} − 1{At = 0} and τ̂ [µ̂] = µ̂1 − µ̂0. However, this estimator isn’t well

suited to sequential estimation, motivating Kato et al. to propose the Adaptive AIPW (AAIPW)

estimator. Specifically, letting µ̂t denote any Ft−1 measurable function (i.e. a predictable reward

estimate), they defined

τ̂AAIPW
t =

1{At = 1} − 1{At = 0}
πt(At)

(Yt − µ̂t(At)) + τ̂t[µ̂t]. (3.99)

We also choose to use the AAIPW estimator for a few reasons. The first reason is that this
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estimator is known to be asymptotically optimal – this is crucial for obtaining sublinear Neyman

regret (which we define below). Furthermore, recent advances in sequential analysis have developed

tight confidence sequences for the AAIPW, making it a natural choice due to its compatibility with

the downstream goals of sequential testing and uncertainty quantification.

Neyman Allocation and Regret We use the mean squared error (MSE) to measure the quality

of the estimates produced by our algorithm. However, by itself, the MSE is difficult to interpret

because it does not consider the inherent difficulty of the problem. Therefore, we would like to

normalize this error with respect to some problem dependent baseline which we now define and

motivate. Hahn et al. show that for any fixed allocation, π, the minimum attainable MSE of any

estimator is
σ2
1

π
+

σ2
0

1− π
. (3.100)

The Neyman allocation π∗ is defined as the allocation which minimizes the above variance and a

simple calculation shows that

π∗ =
σ1

σ0 + σ1
. (3.101)

Ideally, we would like to design an algorithm whose variance is close to this baseline and in order

to understand the rate at which this occurs, we consider the Neyman regret which is defined as

RT = T · (τ̂T − τ)2 −
(
σ2
1

π∗ +
σ2
0

1− π∗

)
. (3.102)

The Neyman regret is simply the difference in the normalized MSE between the optimal variance

and the MSE of the estimate produced by A. This normalization guarantees that the the MSE

converges to a constant (rather than 0) so that if A has sublinear regret, then we are guaranteed

that its MSE converges to the optimal MSE.

Using the fact that the AAIPW is unbiased, along with the fact that πt and µ̂t are predictable,

we can rewrite the Neyman regret for the AAIPW estimator as

RT =
T∑
t=1

EA,ν [ℓ(πt, µ̂t)]−
(
σ2
1

π∗ +
σ2
0

1− π∗

)
, (3.103)

where

ℓ(π, µ) =
∑

a∈{0,1}

σ2
a

π(a)
+

1− π(a)
π(a)

εt(a)
2 (3.104)

is the Neyman loss and εt(a) = µa − µ̂t(a) is the reward estimation error.
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Notation. In what follows, we will let

Nt(a) =
t∑

s=1

1{As = a}

denote the number of times the action a is selected at the end of round t,

Ȳt(a) =
1

Nt(a)

t∑
s=1

Ys1{As = a}

denote the empirical mean after t rounds, and

σ̂2
t (a) =

1

Nt(a)

t∑
s=1

(
Ys1{As = a} − Ȳt(a)

)2
denote the empirical variance. We use Õ[·] to denote asymptotic equivalence up to doubly logarith-

mic factors.

3.2.4 The Optimistic Policy Tracking Algorithm

In this section, we introduce our Optimistic Policy Tracking (OPT) algorithm. We begin with

a discussion of the difficulties of adaptive ATE estimation and the suboptimality of existing ap-

proaches. Next, we introduce our algorithm and provide insight into why it resolves the issues of

existing approaches. Finally, we conclude with a brief discussion of the algorithmic design principles

underlying our algorithm and their relation to ideas in the literature.

The difficulties of adaptive ATE estimation. The primary difficulty of adaptive ATE esti-

mation is in balancing the exploration-exploitation trade-off that arises from adaptive allocation.

If we condition on Ft−1 some algebra shows that the variance of the AAIPW estimator is

∑
a

σ2
a

πt(a)
+

1− πt(a)
πt(a)

(µa − µ̂t(a))
2 , (3.105)

which is minimized by setting (π, µ) = (π∗, µ) where π∗ is the Neyman allocation. Since π∗ and µ

are not known a priori, we need to design an algorithm to adaptively estimate them. However, this

is challenging because optimizing the exploration allocation separately for estimating π∗ and µ (each

requiring a different allocation) results in a procedure with high Neyman regret. As such, designing

an algorithm to adaptively balance the exploration of π∗ and µ while simultaneously minimizing

the Neyman regret becomes a very delicate task.
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Insights into improvements. In order to better understand the improvements that can be

made, we investigate previous approaches for balancing this trade-off. To simplify the exposition,

in this section we assume that π∗ ≤ 1
2
. The primary approach that past works (both asymptotic

and nonasymptotic) have utilized is clipping the allocation. In fact, prior algorithms compute the

empirical allocation

π̂t =
σ̂t(1)

σ̂t(0) + σ̂t(1)
,

and plays a clipped version of this estimate

πt = min{1− γt,max{γt, π̂t}},

for some carefully chosen clipping sequence γt satisfying γt → 0. However, these clipping approaches

have some important limitations.

The first limitation is that a clipping approach cannot be fully adaptive to the underlying

problem instance because the clipping sequence must be chosen a priori. As such, past works

choose γt in order to optimize the performance of their algorithm in a worst-case sense, leading to

suboptimal Neyman regret for easy problem instances. The second, more pressing issue, is that

clipping approaches lead to algorithms which under-exploit which is caused by the asymmetry of

the Neyman loss. Practically, the implication is that an algorithms which under-sampled the arm

with a smaller probability according to the Neyman allocation must necessarily pay a higher price

than the same algorithm which over-sampled the same arm by the same amount.

Optimistic Policy Tracking. Our proposed algorithm, OPT, is designed in order to address

these aforementioned issues. Indeed, as we will see, not only does OPT better adapt to the underly-

ing problem instances, it also better handles the exploration-exploitation trade-off when compared

to prior works. The algorithm itself if simple and plays the allocation

πt = argmin
π∈Ct[π∗]

∣∣∣∣12 − π
∣∣∣∣ , (3.106)

where Ct[π∗] is a confidence sequence for the Neyman allocation. For reward estimation, we simply

use the sample mean µ̂t(a) =
1

Nt−1(a)

∑t−1
s=1 Ys · 1{As = a}.

The main difficulty now is in constructing the confidence sequence Ct[π∗]. In order to do so,

we first construct confidence sequences for the standard deviations of each arm. This constructs

a confidence sequence Ct[σa] = [Ct(σa), Ct(σa)] whose width scales like O

(√
log log t+log 1

δ

t

)
. Using

these confidence sequences on σa, we can construct a confidence sequence for the Neyman allocation
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as follows

Ct[π∗] =

[
Ct(σ1)

Ct(σ0) + Ct(σ1)
,

Ct(σ1)

Ct(σ0) + Ct(σ1)

]
.

(3.107)

Interpretation as Optimism. We can interpret our algorithm as implementing the celebrated

principle of optimism in the face of uncertainty. Optimism is an algorithmic design principle which

is the basis of many well-known MAB and reinforcement learning algorithms (such as the “upper

confidence bound”). Roughly speaking, the principle states that we should act as if the underlying

problem instance is the easiest instance, which is feasible according to our past observations. In the

regret minimization framework, this means playing the arm which has the largest upper confidence

bound. For adaptive ATE estimation, this involves playing the allocation that is closest to 1
2
. This

is because the difficulty of a problem is determined by the deviation of the Neyman allocation from
1
2
– when the Neyman allocation is close to 1

2
, the objectives of exploration and exploitation are

aligned. Suppose the Neyman allocation deviates from 1
2
, then as the allocation we play converges

to the Neyman allocation, we are necessarily under-sampling one arm and thus slowing down our

convergence to the Neyman allocation. This intuition is supported by prior results showing that the

Neyman regret scales inversely with |π − 1
2
|. Therefore, implementing optimism for adaptive ATE

estimation involves playing the most feasible allocation (as determined by our past observations)

closest to 1
2
– this is exactly the driving principle behind our OPT algorithm.

Theoretical Analysis

In this section, we build our intuition on the behavior of OPT and conclude by stating our main

result which is a bound on the Neyman regret of OPT.

Before we begin, we introduce some additional notation which will make our exposition easier.

For any π, we define ∆(π) = |1
2
− π| and π = min{π, 1− π}. Additionally, we let ∆σ = σ1 − σ0.

Our analysis splits the behavior of OPT into two phases, an exploration exploration phase and

the concentration phase. We define the exploration phase as the rounds for which πt =
1
2
. During

the early stages of interaction, we expect that each arm has been played sufficiently few times so

that 1
2
∈ Ct[π∗], and the exploration time T0 is the length of this phase. Intuitively, during this

phase, there is not enough information in our observations to reliably predict π∗ and so our best

choice is to explore each arm uniformly. Fortunately, the length of this phase is not too long, and our

first result bounds the length of this phase in terms of the absolute distance between the standard

deviations.

Lemma 3.2.1 (Exploration Phase Length). Define the exploration time as

T0 = min{t : πt ̸=
1

2
}. (3.108)
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Then, with probability at least 1− δ, we have

T0 = Õ

[
∆−2

σ log
1

δ

]
. (3.109)

This result shows that OPT is able to adapt to the difficulty of the underlying problem instance

— if the gap between the standard deviations is large, then the exploration phase will be short, and

if the gap is small, then the exploration phase will be longer.

Once the exploration phase is over, the algorithm will be able to focus on the concentration

phase. In this phase, optimism guarantees ∆(πt) < ∆(π∗). Therefore, we can control the number

of times each arm is played which we can in turn convert to bounds on |πt − π∗|.
Our next result formalizes this intuition.

Lemma 3.2.2 (Policy Convergence). With probability at least 1− δ, we have that

πt − π∗ = Õ

√ log 1
δ

π∗ · t
· 1

σ0 + σ1

 . (3.110)

The reason for the appearance of π∗ is due to the convergence of πt based on the number of times

that both arms have been played. If we play one arm too often, then the width of the confidence

interval for π∗ would depend entirely on the width of the lesser sampled arm.

Our main result combines the above lemmas to provide a bound on the Neyman regret.

Theorem 3.2.3 (Main Result). With probability at least 1 − δ, the Neyman regret of OPT is

upper-bounded as

Õ

[
∆−2

σ +

(
1

π∗

)2

log T

]
. (3.111)

The first term above is the per-round Neyman regret during the exploration phase and our bound

follows from the fact that the Neyman regret is at most 4 when we play πt =
1
2
. The second term

in our bound is the Neyman regret during the concentration phase and follows from the application

of Lemma 3.2.2 in conjunction with prior results showing that the Neyman regret scales according

to |π∗ − πt|2 ≈ 1
π∗·t . Since the contribution to the Neyman regret from the reward estimation also

scales like 1
π∗·t , taking a sum over these two terms gives us the desired result.

In order to get a better understanding of our result, we consider the behavior of a hypothetical

algorithm which plays the optimal Neyman allocation π∗ but incurs a loss based on the empirically

computed allocation, πt. A simple calculation shows that πt converges to π
∗ at a rate of Θ[(π∗ ·t)− 1

2 ].

This in turn implies that the Neyman regret would be

Õ

[(
1

π∗

)2

log T

]
, (3.112)

which, modulo the regret from the exploration phase, is the same as the Neyman regret incurred
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by OPT. This suggests that our algorithm is correctly adapting to the difficulty of the problem.

Comparison with Prior Work. At first glance, our result appears to be quite similar to the

Neyman regret bound from prior work which similarly shows a logarithmic bound on the Neyman

regret. However, this is not the case, due to differing definitions of the Neyman regret. In prior

work, the Neyman regret is defined with respect to the minimum variance over allocations for

the fixed IPW estimator. Our Neyman regret is defined with respect to the minimum attainable

variance over any pair of estimators and allocations. This means that while our regret bounds

share a similar form, the performance of our algorithm is significantly better than the performance

of clipping-based algorithms. Concretely, using our definition of the Neyman regret to characterize

the performance of clipping algorithms, we see that these algorithms actually have linear Neyman

regret since the variance of their policies cannot converge to the minimum attainable variance.

Experiments

In this section, we present experiments to evaluate the empirical performance of our algorithm. We

compare OPT against the Clipped Standard-Deviation Tracking (ClipSDT) algorithm, as well as

two oracle algorithms that follow the Neyman allocation. One of these oracle algorithms sequentially

estimates the reward, while the other has access to the true reward.

We do not include results for other clipping-based algorithms, as their variances fail to converge

to the oracle variance, consistently leading to significantly worse performance than the other algo-

rithms which obscures the clarity of the plots. This outcome is expected, given that both algorithms

incur linear Neyman regret.

We consider 6 problem instances where both arms follows Bernoulli distributions. For each of

these problem instances, we fix the treatment mean to be 1
2
and vary the control mean in order to

vary the Neyman allocation. For each of these problems, we run OPT, ClipSDT, and the reward

estimation oracle for T ranging from 100 to 2000 and plot the normalized MSE (T · MSE) over

multiple simulations. For the oracle baseline, we explicitly compute the MSE.

Our results show that OPT consistently outperforms ClipSDT over all problem instances. The

difference between the two becomes negligible for larger values of T which is expected since all

algorithms eventually converge to the Neyman allocation and true reward function. However, for

smaller sample sizes, we see that OPT provides around a 10-15 percent improvement over ClipSDT.

This improvement is due to the reasons given in Section 3.2.4.

The performance of OPT is competitive with the reward estimation oracle for moderate values of

π∗ and even outperforms the reward estimation oracle on some problem instances. This is because

OPT is more exploratory and obtains better reward estimates early on.

Key Findings.

• OPT provides substantial improvements over clipping-based methods, especially in small-
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sample regimes critical for applications like clinical trials

• The optimistic approach naturally balances exploration and exploitation without requiring

problem-specific hyperparameter tuning

• Performance is competitive with oracle methods that have access to additional information

about the problem

3.2.5 Conclusion

This work proposed a new algorithm for adaptive ATE estimation. We identified some key is-

sues with past approaches which limited their performance both empirically and theoretically and

demonstrated how to resolve them. Our proposed solution borrows ideas from the literature on

regret minimization and showed how to extend some of these ideas to the problem of adaptive

ATE estimation. We believe that these ideas will be crucial for developing adaptive algorithms for

inference for more complicated settings as well as for related problems like off-policy evaluation.

Key Contributions. Our main contributions are:

1. We developed and analyzed a new algorithm, Optimistic Policy Tracking (OPT), for adaptive

estimation of ATE that enjoys significant theoretical improvements over previous approaches

along with a significantly simplified analysis.

2. We performed simulations that demonstrate that our theoretical improvements translate into

empirical improvements, especially in the small sample regime, which is critical for applications

like randomized clinical trials.

Future Directions. We believe there are several compelling directions for future work:

• Extension to settings with covariates and more sophisticated reward estimation using non-

parametric regression methods

• Generalization to multiple arms, where the correct extension involves computing a confidence

interval around the Neyman allocation and projecting onto the uniform distribution

• Application to more complex interaction protocols such as reinforcement learning settings

• Development of similar optimistic principles for other causal inference problems beyond ATE

estimation

The insights developed in this work demonstrate how optimistic design principles from bandit

theory can be successfully adapted to causal inference problems involving complex estimators, pro-

viding both theoretical guarantees and practical improvements that suggest broader applicability

of optimistic design in experimental settings.
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3.2.6 Proofs

Preliminaries We will begin by defining our good event. Consider the following events

Eσ(δ) =
⋂

a,t∈N

{
|σ̂t (a)− σ (a)| ≤ 4.2

√
ℓ(t, δ)

t

}
(3.113)

EN(δ) =
⋂
t∈N

{∣∣∣Nt(a)−
∑

πt (a)
∣∣∣ ≤√tℓ(t, δ)

}
(3.114)

Er(δ) =
⋂
at∈N

{
|r̂t (a)− r⋆ (a)| ≤

√
tℓ(t, δ)

}
. (3.115)

Let δ̃ = δ
5
and define the good event E(δ̃) = Eσ(δ) ∩ EN(δ) ∩ Er(δ). Applying Lemma 3.2.5 to

control Eσ(δ̃) and Theorem 1 from [22] to control EN(δ̃), and Er(δ̃) shows that the event E(δ̃) occurs
with probability at least 1− δ. Throughout the remained of this section, we assume the good event

holds.

Proof of Theorem 1

We begin by decomposing the Neyman regret

NT =
T∑
t=1

ℓ(πt, r̂t) (3.116)

=
T∑
t=1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)
πt (a)

ε2t (a)−
σ2 (a)

πNey[a]

)
(3.117)

=
T∑
t=1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)
πt (a)

ε2t (a)−
σ2 (a)

πNey[a]

)
+

T∑
t=T+1

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)
πt (a)

ε2t (a)−
σ2 (a)

πNey[a]

)
.

(3.118)

For the first term, we have that πt =
1
2
, and εt (a) ≤ 1, so that

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)
πt (a)

ε2t (a)−
σ2 (a)

πNey[a]

)
(3.119)

≤
∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

πNey[a]

)
+ 2 (3.120)

≤ 4, (3.121)

to so that the regret from the exploration phase is 4T.
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For the second term, we have

∑
a

(
σ2 (a)

πt (a)
+

1− πt (a)
πt (a)

ε2t (a)−
σ2 (a)

πNey[a]

)
(3.122)

=
∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

πNey(a)

)
+
∑
a

(
1− πt (a)
πt (a)

ε2t (a)

)
(3.123)

(3.124)

We can bound the first term by applying Lemma 4.3 from [3] in conjunction with so that

∑
a

(
σ2 (a)

πt (a)
− σ2 (a)

πNey(a)

)
≤ 625

(σ (0) + σ (1))2
ℓ(t, δ)

πNeyt
(3.125)

In order to bound the second term, we observe that on the good event

|r⋆ (a)− r̂t (a)| ≤

√
ℓ(t, δ)

Nt(a)
(3.126)

≤
√

ℓ(t, δ)

πNeyt−
√
tℓ(t, δ)

(3.127)

≤ 2

√
ℓ(t, δ)

πNeyt
, (3.128)

where in the last line we have again applied Lemma 4.5 from [3].

Therefore, we have that ∑
a

(
1− πt (a)
πt (a)

ε2t (a)

)
≤ 8ℓ(t, δ)

(πNey)
2 t

(3.129)

We can bound the sum of these two terms as 625 ℓ(t,δ)

(πNey)
2
t
. The result then follows by summing

this over t < T and adding the Neyman regret from the exploration phase.

Proof of Lemma 3.2.1

Proof. Suppose, without loss of generality, that πNey <
1
2
; in order to obtain results for πNey >

1
2
,

we can simply flip the roles of the treatment and control arms. For the case that πNey = 1
2
, then

OPT will always play πt.

Since πNey <
1
2
, boundingT is equivalent to determining the largest time t such that U[(t)][πNey] <

1
2
, i.e we wish to compute

min

t : σ (1) + 4.2
√

ℓ(t,δ)
Nt(1)

σ (0) + σ (1) + 4.2
√

ℓ(t,δ)
Nt(1)

− 4.2
√

ℓ(t,δ)
Nt(0)

<
1

2

 (3.130)
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Using the fact that πt =
1
2
for all t < T, can control

Nt(a) ∈
[
t

2
± 1.7

√
tℓ(t, δ)

]
. (3.131)

Plugging this into equation Eq. (3.130) and rearranging shows that we need to bound

min

t :
ℓ(t, δ)

t

(
1
2
− 1.7

√
ℓ(t,δ)

t

) <
∆2

(σ)

18

 . (3.132)

Applying Lemma B.10 from [3] shows that whenever t ≥ Õ
(
log(1

δ
)
)
, we have that 1.7

√
ℓ(t,δ)

t
< 1

4

so that we need to bound

min

{
t : t >

64

∆2
(σ)

ℓ(t, δ)

}
. (3.133)

Another application of Lemma B.10 shows that this quantity is bounded by

64

∆2
(σ)

log
5.2

δ
+

64

∆2
(σ)

log log
64

∆2
(σ)

(3.134)

which gives us the desired result.

Proof of Lemma 3.2.2

Lemma 3.2.4. Let t ≥ T. Then, with probability at least 1− δ, we have that

πt+1 − πNey ≤
25

σ (0) + σ (1)

√
ℓ(t, δ)

πNeyt
. (3.135)

Proof. WLOG we assume πNey <
1
2
so that πNey = πNey. First note that s ≥ T, we have that

πt+1 ∈
[
πNey,

σ (1) + Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

]
(3.136)

=

[
πNey, πNey

σ (0) + σ (1)

σ (0) + σ (1) + Z1,t − Z0,t

+
Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

]
(3.137)

⊂
[
πNey,

1

2

]
, (3.138)

where we have defined

Zt (a) = 4.2

√
ℓ(t, δ)

Nt(a)
,
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and equation Eq. (3.138) follows from the definition of the T.

Since πt ∈
[
πNey,

1
2

]
, we know that 1− πt ∈

[
1
2
, 1− πNey

]
which we use to control the number of

times each arm is played.

Nt(1) ≥ πNey · t−
√
tℓ(t, δ) (3.139)

Nt(0) ≥
t

2
−
√
tℓ(t, δ). (3.140)

Plugging these values into the upper bound in equation Eq. (3.137), some algebra shows that

πt+1 − πNey = πNey
σ (0) + σ (1)

σ (0) + σ (1) + Z1,t − Z0,t

+
Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

− πNey (3.141)

= πNey ·
Z0 (t)− Z1 (t)

σ (0) + σ (1) + Z1,t − Z0,t

+
Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

(3.142)

≤ Z0,t

σ (0) + σ (1) + Z1,t − Z0,t

+
Z1,t

σ (0) + σ (1) + Z1,t − Z0,t

(3.143)

≤ 8.4

√
ℓ(t, δ)

πNeyt−
√
tℓ(t, δ)

·
(

1

σ (0) + σ (1)− Z0,t

)
. (3.144)

Applying Lemma B.10 from Neopane et al. [3], we have that when t = Õ
((

1
πNey

)2
log 1

δ

)
, we

have that πNeyt−
√
tℓ(t, δ) ≥ 1

2
πNeyt. Next, since t ≥ T, we have that

Z0,t = 4.2

√
ℓ(t, δ)

t
(3.145)

≤
∆(σ)

8
. (3.146)

Therefore,

σ (0) + σ (1) + Z1,t ≥ σ (0) + σ (1)−
∆(σ)

8
(3.147)

= σ (0) + σ (1)− σ (0)− σ (1)
8

(3.148)

≥ σ (0) + σ (1)

2
. (3.149)

Combining these results, we have that

πt+1 − πNey ≤
25

σ (0) + σ (1)

√
ℓ(t, δ)

πNeyt
, (3.150)

which proves the desired result.
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Concentration Results

The proof of this lemma is based on a similar proof found in [104] and extends the results to hold

in the sequential setting.

Lemma 3.2.5. Let (Xt) be a [0, 1]-valued stochastic process defined on some filtration (Ft) satisfying

µ = Et−1 [Xt] and σ
2 = Vt−1 [Xt]. Define

µt =
1

t

t∑
t=1

Xt (3.151)

σ̂2
t =

1

t

t∑
s=1

(Xt − µt)
2 . (3.152)

Then, with probability at least 1− δ, for all t ≥ 2 we have that

σ ∈

[
σ̂t − 1.7

√
ℓ(t, δ)

t
, σ̂t + 4.2

√
ℓ(t, δ)

t

]
. (3.153)

Proof. Define Yt = (Xt − µ)2 − σ2, and St =
∑t

i=1 Yt. Letting V = Vt−1 [Yt], we apply Theorem

1 from [22] which gives us the following time-uniform Bernstein inequality (see Table 3 in the

Appendix). Applying a union bound, we have with probability at least 1− δ, for all t ∈ N, that

|µt − µ| ≤ 1.7σ

√
ℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
t

, (3.154)

|Yt| ≤ 1.7

√
Vℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
4t

(3.155)

≤ 1.7σ

√
ℓ
(
t, δ

4

)
t

+ 1.7
ℓ
(
t, δ

4

)
t

, (3.156)

where we set ℓ(t, δ) = log log 2t + 0.72 log 5.2
δ

and the last inequality follows from the fact that
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V < σ2. Letting µt =
1
t

∑t
s=1Xs some algebra demonstrates that

St =
t∑

i=1

(Xi − µ)2 − σ2

=
t∑

i=1

[
((Xi − µt)− (µt − µ))2 − σ2

]
=

t∑
i=1

[
(Xi − µt)

2 + 2(Xi − µt)(µt − µ) + (µt − µ)2 − σ2
]

= tσ2
t + 2(µt − µ)

t∑
i=1

(Xi − µt) + t(µt − µ)2 − tσ2

= tσ2
t + 0 + t(µt − µ)2 − tσ2

= t(σ2
t − σ2 + (µt − µ)2),

which implies (
σ2
t − σ2

)
=

1

t

t∑
s=1

Ys − (µt − µ)2 ≤
1

t

t∑
s=1

Ys. (3.157)

Letting L = ℓ(t,δ)
t

, and applying the bounds in equations Eq. (3.154) and 3.156, some algebra

shows that

σ2 + 1.7σ
√
L+ 1.7L− σ2

t ≥ 0. (3.158)

Completing the square and rearranging shows that

σ ≥
√
σ2
t + (1.72 − 1.7)L− 1.7

√
L (3.159)

≥ σt − 1.7
√
L. (3.160)

Repeating the same argument with −Yt shows that

σ ≤ σt + 4.2
√
L. (3.161)

Combining these bounds we have with probability at least 1− δ, for all t > 2

σ ∈

[
σt − 1.7

√
ℓ(t, δ)

t
, σt + 4.2

√
ℓ(t, δ)

t

]
. (3.162)
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Misc. Results

Lemma 3.2.6. For any Alg, we have that

VAlg,ν

[
∆̂T

]
=

1

T 2

T∑
t=1

VAlg,ν [AIPWt] (3.163)

=
1

T 2

T∑
t=1

EAlg,ν

[∑
a

σ2 (a)

πt(a)
+

(
1− πt(a)
πt(a)

)
ε2t−1(a)

]
(3.164)

Proof. Leting zt = AIPWt −∆, we have

VAlg,ν

[
∆̂T

]
=

1

T 2
E

( T∑
t=1

zt

)2
 (3.165)

=
1

T 2

(
T∑
t=1

E
[
z2t
]
+

T∑
t=1

t=1∑
s=1

E [zt · zs]

)
(3.166)

=
1

T 2

T∑
t=1

E
[
z2t
]

(3.167)

=
1

T 2

T∑
t=1

V [AIPWt] . (3.168)

Then applying the law of total variance shows that VAlg,ν [AIPWt] = EAlg,ν [V [AIPWt | Ft−1]] since

V [E [AIPWt | Ft−1]] = 0. Computing the conditional variance, we obtain

VAlg,ν [AIPWt | Ft−1] = EAlg,ν

[
(AIPWt −∆)2 | Ft−1

]
(3.169)

= EAlg,ν

[(
wt (δt + εt−1) + ∆̂(r)

t−1 −∆
)2
| Ft−1

]
(3.170)

= Eπt

[
w2

t

(
σ2 + ε2t−1

)
−
(
∆− ∆̂(r)

t−1

)2]
(3.171)

=
∑
a

(
σ2 (a) + ε2t−1(a)

)
πt(a)

− (εt−1 (1)− εt−1 (0))
2 (3.172)

=
∑
a

[
σ2 (a)

πt(a)
+

(
1

πt(a)
− 1

)
· ε2t−1(a)

]
+ 2εt−1(1) · εt−1(0) (3.173)

=
∑
a

[
σ2 (a)

πt(a)
+

(
1− πt(a)
πt(a)

)
· ε2t−1(a)

]
+ 2εt−1(1) · εt−1(0). (3.174)
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Therefore, we have

VAlg,ν

[
∆̂T

]
=

1

T 2

T∑
t=1

E

[∑
a

(
σ2 (a)

πt(a)
+

(
1− πt(a)
πt(a)

)
· ε2t−1(a)

)
+ 2εt−1(1) · εt−1(0)

]
(3.175)

= EAlg,ν

[∑
a

σ2 (a)

πt(a)
+

(
1− πt(a)
πt(a)

)
· ε2t−1(a)

]
, (3.176)

where the second inequality follows from the fact that ε2t (a) are uncorrelated.
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Conclusion

This dissertation has presented a unified approach to sequential decision-making and adaptive exper-

imental design, developing theoretically grounded algorithms that achieve significant improvements

in both sample complexity and practical performance. Through contributions spanning transfer

learning, causal inference, and preference-based learning, we have advanced the state-of-the-art by

bridging the gap between theory and practice.

4.1 Summary of Contributions

Our work has made several key contributions across multiple domains:

Transfer Learning in Multi-Armed Bandits (Chapter 2.2). We developed algorithms that

can effectively leverage auxiliary information from related source tasks while maintaining robustness

against negative transfer. Our approach provides theoretical guarantees that gracefully interpolate

between perfect transfer scenarios and learning from scratch.

Adaptive Experimental Design (Chapters 3.1 and 3.2). We introduced two complementary

approaches for improving the efficiency of Average Treatment Effect estimation. The ClipSMT al-

gorithm achieves exponential improvements in regret from O(
√
T ) to O(log T ), while the Optimistic

Policy Tracking method leverages the AIPW estimator through principled optimistic design.

Active Preference Learning (Chapter 2.3). We formalized active exploration in preference-

based learning as a contextual dueling bandit problem, developing algorithms with polynomial

regret bounds and practical extensions to RLHF and DPO for large language models.

4.2 Unifying Insights

Several key insights emerge from our work that extend beyond the specific technical contributions:
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The Importance of Finite-Sample Analysis. A consistent theme throughout this dissertation

is the significant gap between asymptotic optimality and finite-sample performance. Our work

demonstrates that algorithms designed with finite-sample considerations often achieve dramatically

better practical performance while maintaining strong theoretical guarantees.

Optimism as a Design Principle. The principle of optimism, well-established in bandit theory,

proves remarkably effective across diverse domains. Our work shows how optimistic design can

be adapted to causal inference and preference learning, suggesting broader applicability of this

algorithmic paradigm.

Adaptive Algorithms for Complex Estimators. While much prior work focuses on simple es-

timators for tractability, our research demonstrates that adaptive algorithms can effectively leverage

more sophisticated estimators like AIPW while maintaining theoretical guarantees and improving

practical performance.

4.3 Directions for Future Work

Our contributions open several promising directions for future research:

Multi-Task Learning Extensions. The transfer learning framework developed in Chapter 2.2

could be extended to more complex multi-task scenarios, including hierarchical task relationships

and continual learning settings.

High-Dimensional Causal Inference. The adaptive experimental design methods could be

extended to high-dimensional settings with many treatments or covariates, potentially leveraging

modern techniques from high-dimensional statistics.

Foundation Model Alignment. The active preference learning framework provides a founda-

tion for more sophisticated approaches to aligning large language models and other foundation

models with human values and preferences.

Robust Algorithm Design. Future work could explore how to make adaptive algorithms more

robust to model misspecification and distribution shift, building on the robustness insights from

our transfer learning work.
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4.4 Broader Impact

The algorithms and insights developed in this dissertation have potential applications across nu-

merous domains where sequential decision-making and adaptive experimentation are crucial. From

improving the efficiency of clinical trials to enabling more effective human-AI interaction, our con-

tributions provide practical tools for addressing real-world challenges while maintaining theoretical

rigor.

The emphasis on finite-sample performance is particularly important for applications where data

is expensive or limited, such as medical research, where our adaptive experimental design methods

could reduce the cost and duration of clinical trials while improving statistical power.

4.5 Final Remarks

Sequential decision-making under uncertainty remains a rich and challenging area with countless op-

portunities for impactful research. This dissertation has advanced our understanding by developing

principled approaches that bridge theory and practice, but many important questions remain open.

We hope that the insights and techniques developed here will inspire future work that continues to

push the boundaries of what is possible in adaptive algorithm design.

The journey from theoretical insights to practical algorithms is often long and challenging, but

the potential impact makes this effort worthwhile. As we continue to develop more sophisticated AI

systems and face increasingly complex decision-making challenges, the need for principled, adaptive

approaches will only continue to grow.
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[16] Tor Lattimore and Rémi Munos. Bounded regret for finite-armed structured bandits. In

Advances in Neural Information Processing Systems, pages 550–558, 2014. Cited on page 5.
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