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Abstract

Over the past decade, deep-learning models have achieved remarkable progress across many machine
learning tasks, largely by training ever larger architectures on massive, fairly homogenized datasets. In
practice, however, these models often ignore the “extra” information that accompanies real-world data and
rely exclusively on the primary data modality for generalization. This thesis argues that such auxiliary
signals can be systematically leveraged to improve accuracy, data efficiency, and interpretability.

The first part of the thesis focuses on natural language processing and reports three studies. I show
that (i) a simple symbolic-statistical model, combining a character-level language model with a clinical
lexicon, can improve spelling correction in noisy clinical notes, (ii) structural attention masks derived from
parse trees help Transformers handle hard compositional generalization splits, and (iii) linking discharge
summaries to time-stamped electronic health record tables refines clinical event timelines.

The second part turns to tabular data, where gradient-boosted trees still dominate many benchmarks.
First, I introduce a knowledge-enriched framework that injects deterministic information into tabular
learners, define concept kernels that encode relations between columns, and release a public benchmark of
tabular datasets equipped with column descriptions, embeddings, and concept kernels. Building on this, I
propose a concept-conditioned tabular model that represents each cell as a function of both its value and a
semantic embedding of the corresponding column, and pretrain it across an extended collection of datasets.
Together, these contributions aim to clarify how auxiliary domain knowledge can be turned into effective
inductive biases.
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1 Introduction
Recent advances in deep learning have been driven by large-scale models trained on massive, mostly
homogeneous data. However, these models typically overlook the rich auxiliary signals that accompany
real-world datasets—domain lexicons, syntactic parses, column descriptions, and other deterministic metadata.
Leveraging such side information offers three potential advantages: higher predictive accuracy, improved data
efficiency, and greater interpretability. This proposal investigates auxiliary signals in two complementary
settings:

1) In natural-language processing, where large language models already achieve strong baselines, I examine
whether targeted cues can yield measurable gains.

2) In tabular learning, a domain where gradient-boosted trees remain dominant, I study how explicit
column knowledge can be formalized as concept kernels and can enable multi-table training.

By integrating these signals into both language and tabular pipelines, the work aims to provide practical
methods for pushing neural models beyond purely data-driven training.

Overview of Thesis The first part of the thesis focuses on natural language processing and presents three
studies. (1) For clinical spelling correction, I build a symbolic-statistical model that combines a character-level
language model with a simple corruption rule and narrows the search space using a clinical vocabulary. (2)
For compositional generalization, I add structural attention masks derived from parse trees, which helps
Transformer to solve the hardest splits. (3) For clinical event timeline prediction, I design a multimodal model
that links events in discharge notes with time-stamped tables from EHR. These results show that symbolic
knowledge, structure, and cross-modal links are useful signal for NLP.

The second part of the thesis turns to tabular machine learning, where tree-based models such as
XGBoost are still set the standard. I introduce a knowledge-enriched framework that injects deterministic
side information into tabular models. As a first instantiation, I define kernel-enriched supervised learning,
in which a concept kernel, a kernel over columns encoding their semantic relationships, supplements the
usual training data. To make this line of work reproducible, I release KE-TALENT, a benchmark of 11 public
datasets, each bundled with column descriptions, embedding-based concept kernels, and training pipelines.
Building on this foundation, I then develop a concept-conditioned tabular model that represents each cell as a
function of both its value and a semantic embedding of the corresponding column, and I explore whether such
a model can be pre-trained across multiple tables using masked value prediction and contrastive objectives
before being fine-tuned on individual datasets.

Across both parts, the aim is to understand when and how auxiliary information about columns can be
translated into useful inductive biases for neural models, and to provide concrete recipes for combining
data-driven learning with richer side information in both NLP and tabular settings.
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Part I

Learning with Auxiliary Information in NLP



2 A Symbolic–Statistical Approach for Clinical Spelling Correction
This section is based on Kim et al. [2022].

2.1 Introduction
Spelling correction is an old problem in natural language processing and is especially essential in healthcare
environments that are rife with error-prone text. Estimates of spelling error rates in clinical notes range from
0.4% [Lai et al., 2015] to 7% [Tolentino et al., 2007]. Correcting misspelled words in clinical texts is crucial
since misspellings can have a notorious effect on downstream NLP tasks such as automatic diagnostic coding
(assigning diagnosis codes given the clinical note).

Such spelling correction in a clinical context has several challenges. First, the candidate generation
step, a critical component of most spelling correction methods, requires time complexity proportional
to the vocabulary size. Second, the context representations, such as n-gram and word embeddings, of
context-sensitive methods cannot properly handle rare words or words not in the embedding dictionary. In
healthcare settings, both issues above are more severe than in general English text because of more extensive
and specialized clinical vocabulary.

In this work, we propose a probabilistic model of correcting misspellings, named Conditional Independence
Model (CIM), where we compute the posterior probability of the correct word given the misspelled word
and the context. We assume that the misspelling is independent of the context given the correct word, and
under this assumption, the posterior probability can be decomposed into a language model component and a
corruption model component. Using a character-level language model and a simple edit-based corruption
model, we can naturally decode the correct word using beam search.

This simple approach addresses both of the caveats raised earlier. CIM generates output candidates in a
computationally inexpensive auto-regressive manner. And the deep language model provides the probability
of any candidate given the context, which solves the issue of rare or out-of-embedding words. Moreover,
our approach is modular, and allows for incorporating any advances in both language models, as well as
edit-based corruption models. We validate the effectiveness of CIM with the two healthcare misspelling
datasets and show CIM can be trained and tuned with fully unsupervised settings. To our knowledge, this
work is the first approach to the spelling correction problem with the noisy channel model combined with a
deep character-level language model.

2.2 Related Works
Spelling Error Correction Spelling correction, a sub-problem within spell checking, is the problem of
correcting a given misspelled word. One of the earliest attempts of spelling correction is based on edit distance
[Damerau, 1964]. A Bayesian approach to spelling correction is the noisy channel model [Kemighan et al.,
1990, Brill and Moore, 2000], which computes the correction posterior given a word prior and a corruption
model. As we detail later, our approach extends this to the more modern setting which includes word contexts.

In a more modern context, there have been several approaches to detect and correct misspellings with
deep neural networks. Li et al. [2018] uses a nested RNN to encode input from character-level embeddings.
Li et al. [2020] uses Transformer encoder at word- and character-level. Jayanthi et al. [2020] performed a
comprehensive comparison among deep models on synthetic and real misspelling correction dataset.

Compared to these approaches, we have several advantages in correcting misspellings. First, our model
adopts a character-level language model and easily generalizes to rare or even unseen words, which is highly
advantageous in a clinical setting where the size of the vocabulary is large. Previous models output corrections
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by |V |-way multi-class classification, where V is the vocabulary. Also, our approach requires a small labeled
misspelling dataset only for tuning hyper-parameters of the corruption model. Previous approaches require
a large number of labeled misspelling examples to train the classifier and resort to synthetically generated
training data, which has risk of distribution mismatch from real misspellings.

In healthcare settings, there have been several works on developing misspelling detection and correction
methods [Ruch et al., 2003, Tolentino et al., 2007, Lai et al., 2015]. Fivez et al. [2017] develops a spelling
correction algorithm using orthographic and phonetic edit distances and word embedding similarity. Lu
et al. [2019] develops a pipeline that detects and corrects various types of spelling errors using simple rules
and word embeddings. The two papers above also released real datasets of spelling errors to evaluate their
performance.

Contextualized Language Models Transfer learning from pre-trained deep language models have revo-
lutionized NLP in recent years, especially from the introduction of the Transformer architecture [Vaswani
et al., 2017]. BERT [Devlin et al., 2018] uses the Transformer encoder and solves auxiliary language tasks to
pre-train word embeddings. GPT [Radford et al., 2018] adopts the Transformer decoder to generate languages
in an autoregressive manner. Similar to BART [Lewis et al., 2020], our model uses both Transformer encoder
and decoder to take the context as input and output the correction word.

2.3 Methods
In this section, we introduce mathematical notations, the spelling correction problem, and our proposed
method, CIM.

2.3.1 Problem Setup

Let W = {w1, · · · , w|W |} be a set of characters. This includes characters and punctuation marks used in the
language of interest. The misspelled word y = [y1, ..., yNY

] ∈WNY , and its correction x = [x1, ..., xNX
] ∈

WNX are both sequences of characters. This character level representation of words is more suitable than
subwords in our problem since the typo and the correct words substantially differ when tokenized into
subwords.

Next, we define the context. We denote the vocabulary, the set of subwords used by a tokenizer, as V =
{v1, · · · , v|V |}. The context c = [cleft, cright] ∈ V L, where cleft = [c−Lleft , ..., c−1] and cright = [c1, ..., cLright ]
are part of the text occurring before and after the typo word. The overall length of the context L = Lleft +Lright
is typically constrained by language models such as BERT.

Spelling correction, the task of finding the correction given the misspelled word and the context, can be
written as the following probabilistic inference task:

x = argmax
x∈W≤N

p(x|y, c), (1)

where N is the maximum length of the correction. An illustrated example of misspelling correction problem
with the notation is shown in Figure 1.

2.3.2 Conditional Independence Model (CIM)

This subsection describes our method of spelling correction. Here, we make an assumption on the generative
process of the misspelling that it only depends on the correct word, not the context. Hence, the typo word is
independent to the context given the correct word: y ⊥⊥ c |x. This is a reasonable assumption given that
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◦ Input text: “... with hazy ground-glass opacity
in the lower lobes of the lugns . There is a small
amount of perihepatic ascites. The evaluation of
the abdomen ...”
◦ Correction: “lungs”
◦ Vectors:
• Misspelled word y = [l, u, g, n, s]
• Context c = [cleft, cright]

- cleft = [...,with, hazy, ..., lobes, of, the]
- cright = [“.”, there, is, ..., the, abdomen, ...]

• Correction x = [l, u, n, g, s]

Figure 1: An example of misspelling correction
problem

Figure 2: Graphical model of our conditional in-
dependence model. The context and the typo are
observed and the correct word is unobserved.

the most cause of misspellings (homophones, typographical errors, mispronunciations) are independent to
surrounding words. Please see Figure 2 for the model.

With this assumption, we can express the MAP estimator of the correction as follows:

x = argmax
x

p(x|y, c) = argmax
x

p(x,y, c)

= argmax
x

p(c)p(x|c)p(y|x) (2)

= argmax
x
{log p(x|c) + log p(y|x)}

Note that the proposed model is similar to the noisy channel model, but we include the word context which in
turn entails our specific conditional independence assumption.

The first term is the language model which is the probability distribution of the correct word given the
context. We model this as a transformer encoder-decoder architecture [Lewis et al., 2020], where the encoder
is bidirectional same as BERT, and the decoder outputs sequence of characters in an auto-regressive, or
left-to-right, manner.

The second term is the corruption model, the probability model of the typo word given the correct word.
This may take into account delicate mechanism such as proximity in keyboard layout or be learned if a large
dataset of misspelling is available. We adopt a simple approach that the probability is proportional to the
exponential of the character edit distance between the correct word and typo word:

log p(y|x) = −CdED(x,y), (3)

where dED(·, ·) is the Damerau-Levenshtein edit distance, and C is a hyper-parameter that balances between
the language model and the corruption model. We chose a simple corruption model for two reasons: to
demonstrate the efficacy of the overall approach even with a simple baseline, but also that it allows us to setup
a correction system with little or no data, since more complex corruption models require a training dataset of
“typical misspellings” which might not always be available.

Thus since the corruption model above does not require any training, our method only requires training
the character-level language model of the correct word, which can be performed with a large clinical corpus
and does not require a dataset of misspellings. We further note that our approach is modular, and allows for
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◦ Input text: “... in the lower lobes of the lugns . There is a small amount of perihepatic ...”
◦Misspelled word: “lugns”

Figure 3: Beam search of CIM on the Example 1 at time step t = 3. The beam candidates are ranked by the
sum of the language model score (LM) and the corruption model score (ED). The hyper-parameters of the
corruption model are C = 5.0 and n = 1. The beam width is chosen to B = 1 for clear visualization.

incorporating any future advances in either language models, or corruption models (for instance if large-scale
misspellings datasets become available).

2.3.3 Beam Search with the Two Model Components

After training the language model, we combine the two models at decoding phase to perform misspelling
correction. At the time step t of beam search, the model outputs candidates by expanding candidates from the
previous time step and sorting them by intermediate scores:

Bt = argmaxB
x:t∈(Bt−1×W )

{log p(x:t|c) + log p(y|x:t)} , (4)

where Bt is the set of candidates up to length t, B is the beam width, and argmaxk is top-k argmax.
The first term, the language model score can be obtained naturally. The second term, the corruption model

score is computed by the edit distance of the partial output and the first t+ n characters of the typo word:

log p(y|x:t) = −CdED(x:t,y:t+n). (5)

This prevents the edit distance score from advantaging the characters of the typo word far behind the t-th
position. The hyper-parameter n implicitly assumes how many characters can be inserted, at most, to corrupt
a word. Also, we restrict the possible set of the correct words to be the predefined dictionary. Combining the
two scores and the dictionary constraint, the beam search step of our method becomes as follows:

Bt = argmaxB
x:t∈(Bt−1×W )∩Dt

{∑t
i=1 log p(xi|x<i, c)− CdED(x:t,y:t+n)

}
, (6)

where Dt is the set of length-t substrings of the dictionary words. After generating the candidate words, we
choose the best candidate by the scores of the candidates normalized by their lengths, following the practice
of beam search. Please see Figure 3 for the visualization of the beam search of CIM.

2.4 Experiments
2.4.1 Datasets

There are few publicly available clinical misspelling datasets annotated by human experts. Here we describe
two datasets to tune and evaluate our method for misspelling correction.
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Method Acc(%)
Fivez et al. [2017] 92.10
CIM-Base (B=30) 95.07
CIM-Base (B=300) 95.99
CIM-Large (B=30) 95.65
CIM-Large (B=300) 96.56

Table 1: Accuracy results for the
MIMIC-III misspelling datasets
(B is the width of beam search).

Method Acc(%)
Lu et al. [2019] 54.70
CIM-Base (B=30) 67.07
CIM-Base (B=300) 69.51
CIM-Large (B=30) 65.68
CIM-Large (B=300) 67.60

Table 2: Accuracy results for the
CSpell test set (B is the width of
beam search).

Hparam Models
CIM-Base CIM-Large

Early stop 475k steps 300k steps
C 5.0 5.0
n 1 1

Table 3: Hyper-parameters of CIM
tuned on CSpell training dataset.

MIMIC-III Misspelling Dataset Fivez et al. [2017] released a manually annotated dataset of clinical
misspellings from the clinical notes in the MIMIC-III database. This single-set dataset contains 873 instances
of 357 non-word misspellings. After a carefully review of the examples by a medical doctor, we found that the
labels of 30 examples are incorrect, and updated the dataset.

CSpell Spelling Error Dataset Lu et al. [2019] released a dataset of various types of spelling errors. The
dataset is collected from consumer health questions to their QA system and covers a wide range of errors
other than misspellings, such as to-merge and to-split errors. Since we focus on evaluating misspelling
correction, we extract single-word misspellings that contain only alphabets. Their spelling checking software,
CSpell, both detects and corrects spelling errors. To make a fair comparison with CSpell, we further excluded
examples from the test set that are not detected by any of the detection modules of CSpell. As results, 409 and
574 examples are chosen from the training set and the test set, respectively.

2.4.2 Implementation

The implementation of the language model of CIM is based on the BART implementation of Hugging Face’s
Transformers [Wolf et al., 2020]. The encoder part is same as BERT [Devlin et al., 2018] and initialized with
BlueBERT [Peng et al., 2019], a clinical version of BERT. We use the same number of Transformer decoder
layers as the encoder. We denote the model with BlueBERT-Large (24-layer) as CIM-Large and the model
with BlueBERT-Base (12-layer) as CIM-Base. As a result, CIM-Base and CIM-Large have 132M and 403M
parameters, respectively. The reference dictionary is built by combining an English dictionary DWYL [2020]
and a medical lexicon, the LRWD and prevariants tables of Unified Medical Language System (UMLS).

We trained the language model of CIM on the clinical notes of the MIMIC-III dataset. Both CIM-Base
and CIM-Large are trained for 500k iterations with batch size 256 on 4×NVIDIA A100 GPU 40GB. We
follow the optimizer and learning rate schedule of BERT, except we reduced the learning rate of the encoder
since the encoder is initialized with BlueBERT while the decoder is randomly initialized. Hyper-parameter
search is performed over various values of C, n, and the training steps to maximize the correction accuracy
on the CSpell training set. The beam width is fixed to B=30 during the tuning for faster search.

2.5 Results and Analysis
In this section, we report the results of CIM on the two real datasets of clinical misspelling, and perform
additional analyses on CIM.
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(a) MIMIC-III example (success) (b) CSpell Test example (success) (c) CSpell Test example (failure)

Figure 4: Beam search decoding examples. For each example, we display the top 10 beam candidates. The
column next to the candidate (Score) shows the final beam score for each candidate.

2.5.1 Results on Clinical Misspelling Datasets

We report our results and those of baselines for the two real misspelling datasets in Table 1 and Table 2. The
hyper-parameters chosen for Beam search decoding are shown in Table 3. For both of the datasets, our method
outperforms the dataset baselines by large margin.

In all settings, the accuracy increases as the beam width increases. One interesting observation is that
CIM-Large performs better than CIM-Base on the MIMIC-III dataset but worse on the CSpell dataset. We
think that this is because CIM-Large overfits the word distribution of the MIMIC-III notes, which is different
from the health consumer questions.

Figure 4 shows some beam search examples of CIM. The candidates are generated and ranked by their
scores (Score) consisting of the language model score (LM) and corruption model score (ED). Figure 4b shows
an easy case where both modules give the highest scores to the correct word. In a more challenging example
such as Figure 4a, there is a candidate word (“noised”) that has a higher corruption model score than the
correct word (“noted”), but the language model gives a much higher score to the correct word. Figure 4c
shows a failure case of CIM, where the language model gave a low score to the correct word.

2.5.2 Analysis

Ablation Study of Model Components To see the effect of each component of our misspelling correction
model, we conducted an ablation study of the corruption model and the reference dictionary. For each
configuration, the hyper-parameters are tuned independently, and the evaluation was performed with the beam
width B = 300.

The first four rows of Table 4 shows the results of the ablation study. The most noticeable result is that the
corruption model contributes significantly to the model’s performance. This is predictable because, with only
the language model, the output would be any word that fits into the context, regardless of the misspelled word.
Another observation is that dictionary matching contributes to the model only when both the language model
and the corruption model are used. This is because the reference dictionary is unnecessary for the “LM only”
setting since the language model is trained to produce dictionary words. However, when combined with the
corruption model, the chance to output non-dictionary words increases, so the reference dictionary helps our
model.

Effect of Hyper-parameters To see the effects of the hyper-parameters, we evaluate our model with various
values of C and n. Table 5 shows the results of CIM-Base on the CSpell test set with various C and n. We
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Method \ Dataset MIMIC-III CSpell Test
Base Large Base Large

LM only 37.57 37.34 20.91 20.21
LM + Dict 37.57 37.34 20.91 20.21
LM + ED 93.24 92.67 66.72 66.03
LM + ED + Dict 95.99 96.56 69.51 67.60
Unsupervised 95.07 95.42 68.29 68.99

Table 4: Accuracy results of ablation study and unsupervised
setting. LM: language model, ED: corruption model, Dict:
dictionary matching, Unsupervised: tuning on the synthetic
dataset (B=300)

C \ n 0 1 2 ∞
2.0 64.29 64.63 63.94 61.32
5.0 66.03 67.07 66.20 63.94

10.0 56.97 58.01 57.32 52.96
20.0 46.34 49.83 48.78 44.25

Table 5: Accuracy results on the CSpell test
set with different values of C and n (CIM-
Base with B=30).

Dataset \ Semantic Type Substance Disease Symptom Other (Total)

MIMIC-III
Fivez et al. [2017] 91.24 89.87 94.83 91.52 92.10
CIM 95.62 96.20 98.28 96.34 96.56
Count 137 79 174 500 873

CSpell Test
Lu et al. [2019] 54.31 70.59 57.89 48.77 54.70
CIM 68.10 72.94 77.63 66.05 69.51
Count 116 85 76 324 574

Table 6: Results of subgroup analysis by UMLS Semantic Types

choose B = 30 for the beam search. We can see that the best accuracy is achieved when the hyper-parameters
are tuned to the CSpell train set (C = 5.0 and n = 1), which suggests the CSpell test distribution align with
the train set. Also, the accuracy decreases as the values of C and n move away from their optimal values.
This is predictable since these hyper-parameters balances the model’s preference for different candidates. In
other words, increasing C makes the model prefer candidates similar to the misspelled word, and decreasing it
makes the model prefer candidates fitting the context better.

Subgroup Analysis by Semantic Types To see the effectiveness of CIM on different types of words, we
computed the subgroup accuracy according to UMLS Semantic Type. We first chose three subtrees in the
UMLS Semantic Type hierarchy for three subgroups of words, namely “substance”, “disease”, and “symptom”.
Then, for each example, we query the correction word to UMLS for semantic types and include the example
into a subgroup if any semantic types of the correction word fall into the subgroup. We also grouped examples
that did not belong to any of the subgroups into “other” subgroup. Note that an example can belong to more
than one subgroup.

Table 6 shows the results of the subgroup analysis. In all subgroups of both datasets, CIM consistently
outperforms baselines. In the CSpell dataset, CIM performs better on “Disease” and “symptom” subgroups
than others, and similarly in the MIMIC-III test set, CIM shows the best accuracy on “Symptom” subgroup
and most significant improvement over baseline on “Disease” subgroup.

Results in Unsupervised Setting While we used a small set of real misspellings for the hyper-parameter
search, we can tune the hyper-parameters even in an unsupervised setting with a synthetic dataset of
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misspellings. From the MIMIC-III clinical notes, we randomly choose words that are in our reference
dictionary and corrupt them with random operations, which results in 10k examples of synthetic misspellings.
To corrupt words, up to two operations of character addition, deletion, substitution, or transposition can be
applied.

We performed the hyper-parameter search on this synthetic dataset, as we did with the CSpell training
set. The last row of Table 4 shows the results, and the test accuracy under the fully unsupervised setting is
comparable to the supervised setting.

2.6 Conclusion
The main contribution of the paper is to present a well-formalized spelling correction method that combines a
deep neural language model and the corruption model. Our experiments show that the method outperforms the
baseline methods, including an off-the-shelf software. Although the main concern of the paper is healthcare
text, our method can be applied to other areas with specialized lexicons or general misspelling correction.
Two important directions for improvement are to develop an improved corruption model and to extend the
model to deal with multiple-word spelling errors.
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3 Structured Attention for Compositional Generalization
This section is based on Kim et al. [2021].

3.1 Introduction
Compositional generalization is the ability of a system to systematically generalize to a new data distribution
by combining known components or primitives. For example, assume a system has learned the meaning of
“jump” and that “jump twice” means that the action “jump” has to be repeated two times. Upon learning the
meaning of the action “jax”, it should be able to infer what “jax twice” means. Although modern neural
architectures are pushing the state of the art in many complex natural language tasks, these models still
struggle with compositional generalization Hupkes et al. [2020].

In order to advance research in this important direction, in this paper we present two main contributions 1.
First, we present a binary classification dataset which is hard in a compositional way. This allows for studying
the compositional generalization ability of a larger range of models than sequence generation tasks, since
the task only requires an encoder, and not a decoder. Specifically, we present a methodology to convert an
existing semantic parsing dataset, CFQ Keysers et al. [2019], into a binary classification dataset that is also
compositionally hard.

Our second and main contribution is showing that a transformer-based model can better generalize
compositionally if we provide hints on the structure of the input. Specifically, we do so by modifying the
attention mask used by the model. This is an interesting result, as (except for two additions, which we elaborate
on in Section 3.4) attention masks do not “add” any attention capabilities to the model. Instead, it seems that
it is the removal of certain attention pairs that makes the difference. This suggests that vanilla Transformer is
having a hard time suppressing non-compositional attention.

3.2 Background
This section overviews existing work on compositional generalization and then some background on the
Transformer models used in this paper.

Compositional Generalization Compositional generalization can manifest in different ways Hupkes et al.
[2020] such as systematicity (recombination of known parts and rules) or productivity (extrapolation to longer
sequences than those seen during training), among others. Early work focused on showing how different deep
learning models do not generalize compositionally Liška et al. [2018], and datasets such as SCAN Lake and
Baroni [2018] or CFQ Keysers et al. [2019] were proposed to show these effects.

Work toward improving compositional generalization has proposed ideas such as Syntactic attention Russin
et al. [2019], increased pre-training Furrer et al. [2020], data augmentation Andreas [2019], or general purpose
sequential models such as Neural Turing Machines or Differential Neural Computers Graves et al. [2016].

Extended Transformer Construction For our experimental evaluation we use the ETC Ainslie et al. [2020]
Transformer model. ETC extends the standard Transformer model in 3 key ways: (1) it uses a global-local
attention mechanism to scale to long inputs, (2) it uses relative attention Shaw et al. [2018] and flexible
masking and (3) it uses a new pre-training loss based on Contrastive Predictive Coding (CPC) Oord et al.
[2018]. The last two extensions allow it to handle structured inputs containing, for example, hierarchical
structure. In this work, we rely on (2) to annotate the structure of the input.
1http://goo.gle/compositional-classification

11

http://goo.gle/compositional-classification


Figure 5: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance.
Note the model negative resembles the positive, while the random negative query differs considerably.

Figure 6: Negative example strategies. Different colors indicate different compound distributions.

3.3 The CFQ Classification Dataset
The Compositional Freebase Questions (CFQ) dataset [Keysers et al., 2019] is an NLU dataset to measure the
compositional capability of a learner. It is designed around the task of translating a natural language question
into a SPARQL query. The dataset has been automatically generated by a grammar and contains 239,357
sentence/query pairs. An example is shown in Figure 7a.

As shown in the original work of Keysers et al. [2019] in order to properly measure the compositional
generalization ability of a model, the train and test sets should be split with similar distributions of tokens
(atoms), but different distributions of their compositions (the compounds). In the CFQ dataset, to ensure
this, two divergences, namely atom divergence and compound divergence, between the train and dev/test set
are measured while constructing the splits. As a result, carefully selected splits called maximum compound
divergence (MCD) splits are hard for standard neural networks (they perform well in the train set, but poorly
in the test set), while the random splits are easier.

We convert the CFQ dataset into a dataset with a binary classification task. In this new dataset, the input
is a question and a SPARQL query, and the task is to determine whether these two sequences have the same
meaning or not. Two considerations must be made to ensure the resulting dataset requires compositional
generalization:

Negative Example Strategies: Positive instances of the binary classification task can be obtained directly
from the original dataset, but to obtain negatives, we use either of two strategies:

• Random negatives: We pair each question with a randomly chosen query.
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(a) A CFQ example

(b) Parse trees of the CFQ example (c) Hard mask (d) Soft mask

Figure 7: Structure annotations for a CFQ example. We extract the hierarchical structure of the question and
query of CFQ examples and use them to mask attention (hard mask) and/or provide relative attention labels
(soft). Different colors indicate different relative attention labels.

• Model negatives: Using baseline models (LSTM Hochreiter and Schmidhuber [1997], Trans-
former Vaswani et al. [2017], and Universal Transformer Dehghani et al. [2018]) trained on the
original CFQ dataset, we get top-k query predictions for each question. After filtering syntacti-
cally invalid queries and duplicates, we can get hard examples for classification from their incorrect
predictions.

Model negatives are important, as otherwise, the task becomes too easy and would likely not require
compositional generalization. See Figure 5 for examples of random/model negative instances.

Compound Distribution of Negative Examples: To prevent data leakage (e.g., compounds from the test
set of the original CFQ dataset leaking into the training set of the classification CFQ dataset), we carefully
choose the sampling set for random negatives and the train and inference set for model negatives. We generate
two splits of the original CFQ dataset. Each split contains three sets with 50% data on train, 25% on dev and
25% on test. The first is a random split of the data, and the second (MCD split), maximizes the compound
divergence between train and dev/test using the same method as in the original CFQ work. Then, we process
the examples in each of these sets generating positive and negative examples. For random negatives, we
sample negative queries for each questions from the set which the original example belongs to (train/dev/test).
For model negatives, to generate negatives for the training set, we divide it into two halves, train models
in one, and generate negatives with the other half. For dev/test, we train on dev and generate negatives on
test, and vice versa. Figure 6 illustrates this procedure, designed to ensure there is no leakage of compounds
between train and dev/test.

For both strategies, we make 1 positive and 3 negatives per original CFQ example. Also, we set aside 5%
of the train set as a hold-out set to check i.i.d. generalization.

3.4 Compositional Generalization via Structure Annotation
Our hypothesis is that part of the difficulty in compositional generalization is to parse the structure of the input.
To test this, we evaluate the performance of models when we provide annotations for two structural elements
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Model Random Split & Random Neg MCD Split & Model Neg
Train Hold-out Dev Train Hold-out Dev

LSTM 1.0000 0.9998 0.9998 1.0000 0.9972 0.8310
Transformer (2 layers) 0.9998 0.9997 0.9998 0.9988 0.9931 0.8789
Transformer (6 layers) 0.9999 1.0000 0.9999 0.9995 0.9931 0.8738

Table 7: AUC on the CFQ classification dataset generated with different methods

of the inputs: parse trees of both the natural language sentences and SPARQL queries, and entity cross links
(linking entity mentions from the natural language side to the corresponding mentions in the SPARQL query).

The parse trees of the questions are already given in the original CFQ dataset as constituency-based
parse trees. Since the trees include intermediate nodes indicating syntactic structures, we append tokens
representing them at the end of each question. We created a simple parser to generate dependency-based
parse trees for the SPARQL queries. We join the roots of the two trees to make a single global tree with the
<CLS> token as the root.

We represent the structure of the inputs by masking attention (“hard mask”) or with relative attention
[Shaw et al., 2018] labels (“soft mask”).

• Hard mask: We customize the binary attention mask of the original Transformer to only allow attention
between tokens connected by the edges of the parse tree.

• Soft mask: For every pair of input tokens, we assign relative attention labels based on which of
the following edge relationships applies: parent-to-child, child-to-parent, itself, from-or-to-root, or
entity-cross-link.

Additionally, we allow attention pairs in the masks connecting the entities appearing both in the question
and the queries. We call these links entity cross links, and they are found by simple string match (e.g. “M0”).
Notice that while relative attention labels and the additional tokens to represent the constituency parse tree of
the natural language add capabilities to the model, the “hard mask” structure annotations described above
(which result in the larger performance gains) do not add any attention capabilities to the model. Instead, they
simply remove non-structure attention edges. Figure 7b shows the parse trees, and Figure 7c and 7d show the
masks for an example.

3.5 Experiments
We used the ETC Ainslie et al. [2020] Transformer model implementation as it allows us to provide the hard
and soft masks described above in an easy way. In all experiments, we report AUC in the dev set as the
evaluation metric (we did not evaluate on the test set).

The CFQ Classification Dataset We generate two classification datasets: “random split & random negatives”
and “MCD split & model negatives”, and evaluate LSTM and Transformer models. For both datasets, we
evaluate AUC on the hold-out set (taken out of the training set as described above) to test i.i.d. generalization,
and on the dev set to test compositional generalization.

As shown in Table 7, models easily generalize on the hold-out set (AUC ≥ 0.99). All baseline models
also achieve almost 1.0 AUC in the dev set of the “random split & random negatives”. However, in the “MCD
split & model negatives” models cannot generalize well on the dev set, showing compositional generalization
is required. Note that random guessing achieves 0.5 AUC score.
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Model Mask
Type

Cross
link

MCD Split & Model Neg
Train Hold-out Dev

LSTM - 1.0000 0.9972 0.8310
Transformer - 0.9995 0.9931 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9994 0.9934 0.8868

Hard N 0.9999 0.9978 0.9061

Y
1.0000 0.9992 0.9656

Soft 0.9995 0.9936 0.8819
Both 1.0000 0.9991 0.9721

Table 8: AUC on the CFQ classification dataset (MCD Split & Model Neg) with various structure annotations

Structure Annotation Table 8 compares different ablations of our structure annotation approach compared
to the baseline models. The first (no masks and no cross links) just shows that adding tokens to the input
to represent the constituency parsing and moving to ETC only provide small gains (from 0.8738 to 0.8868
AUC). Adding a hard mask already helps the model (0.9061 AUC), and adding cross links on top of that
achieves very significant gains (0.9656 AUC). Finally, soft masks by themselves do not seem to help, but a
combination of soft and hard masks achieves our best result of 0.9721 AUC.

The interesting result here is that adding the hard mask with entity cross links only removes potential
attention pairs, so it does not increase model capacity in any way. In other words, the underlying transformer
model is in principle able to generalize compositionally to some extent but seems to struggle in suppressing
non-compositional attention.

3.6 Conclusions
The main contribution of this paper is to show that providing structure annotations in the form of attention
masks significantly helps Transformer models generalize compositionally. This is interesting for two main
reasons: first, it shows that neural network models do have the innate ability to generalize compositionally
to some extent, but need some guidance to do so (e.g., by providing attention masks as in our work). This
reinforces previous work showing that LSTMs also can, in principle, generalize compositionally, but they just
do so with very low probability Liška et al. [2018]. The second reason is that structure annotations, which
we provided manually, could be generated by another model in future work. We also presented a procedure
for generating classification datasets that require some degree of compositional generalization starting from
sequence generation datasets.
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4 Multimodal Modeling of Clinical Event Timelines
This section is based on Frattallone-Llado et al. [2024].

4.1 Introduction
Temporal data mining involves the extraction of temporal information from different sources and modalities
of data, and it has broad application in fields such as law, finance, and healthcare. For instance, in criminal
recidivism prediction, the event timeline for a defendant could be extracted from both texts in probation
office documents and tables in psychiatric health records Cheng et al. [2009]; In stock price movement and
volatility prediction, financial time series could be extracted from financial news, daily stock market price
tables, and verbal and vocal cues in earning calls Ang and Lim [2022]. In clinical risk prediction, patient
timeline could be extracted from electronic health records with both unstructured clinical notes and structured
tabular data Tayefi and et al. [2021]. This paper focuses on providing a multimodal extraction system and a
benchmark dataset for clinical timelines.

Precise clinical event timelines are crucial for prognosis and prediction tasks. These forecasting tasks
have been studied with varied prediction times and unstructured data sources Seinen et al. [2022]. Discharge
summaries provide the most complete information. In the 2012 Informatics for Integrating Biology and
Bedside (i2b2) Challenge Sun et al. [2013b], 310 discharge summaries were annotated with temporal
information, including clinical events, temporal expressions, and their temporal relations.

This approach yields a relative timeline of clinical events, rather than absolute, leaving many events
without the precise timing needed for forecasting tasks. To achieve a more complete event timeline, i2b2
events were annotated with absolute time values Leeuwenberg and Moens [2020], by bounding the events
with closed intervals in calendar times and temporal uncertainties on the bounds. Their annotation procedure
was unimodal, as annotators had access only to the discharge summary text.

Meanwhile, there is a consensus that the integration of structured and unstructured data has a significant
impact on constructing models and predicting target variables Seinen et al. [2022]. In this project, we take
advantage of the combination of unstructured and structured data in a multimodal approach, which has proven
beneficial in other applications Liu et al. [2022], Moldwin et al. [2021]. Our work adopts a version of the
probabilistic bounds described and applies them to discharge summaries from the i2b2 dataset in order to
generate absolute inpatient event timelines. We introduce the following: a visualization and annotation tool,
an annotation process with a three-pass system, two types of annotations to better represent the nature of
clinical events, and the multimodal annotation approach. By combining the information from unstructured
and structured data, this multimodal approach should yield a more precise (i.e., less uncertain) timeline for
inpatient events.

Our multimodal approach contributes the following: (i) we introduce absolute timeline intervals without
assumption of independence of endpoint uncertainties, (ii) we find that multimodal annotations lead to more
precise timelines than the unimodal annotations. (iii) we verify the annotation quality by mapping our
annotations to temporal relations, where our relations compare favorably against benchmark annotations
(i2b2), and (iv) we demonstrate that a fine-tuned multimodal encoder (BERT) architecture outperforms
fine-tuned unimodal encoder and off-the-shelf generative encoder-decoder architectures (Llama-2). Overall,
we show the importance of annotation from multimodal data sources, both in the annotation process and for
machine learning predictive performance.
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Figure 8: Flowchart of our method.

4.2 Methods
We use the i2b2 dataset Uzuner et al. [2011], a compendium of de-identified electronic health records from
Partner Healthcare and Beth Israel Deaconess Medical Center, containing discharge summaries with annotated
clinical time/events. We located i2b2 patient’s records in MIMIC-III with matching discharge summaries,
allowing us to collect both structured and unstructured records. Thirteen records were randomly selected
from the training set of the 2012 i2b2 temporal relations challenge data Sun et al. [2013b]. For each of these
records, a human annotator with medical experience identified clinical events in the discharge summary and
timestamped their endpoints on a timeline.

In our study, an annotation comprises a contiguous, highlighted text, representing a clinical event, and
a time interval. Based on the use of the structured and unstructured data, two annotation versions were
generated: multimodal and unimodal. In the unimodal version, the annotator only had access to the discharge
summary and the admission and discharge times. In the multimodal version, the annotator also had access
to the full structured data. Out of the total thirteen records, five were annotated using both unimodal and
multimodal versions, while the remaining records were annotated from only multimodal. Upon acceptance,
the annotation tool, the annotation files, and the analyses will be made public. A flowchart representation of
the process describes the steps of our annotation and analysis (Fig. 8).

4.2.1 Annotation Tool

The R Shiny annotation tool displays all the unstructured and structured data for any given record (Fig. 9). The
structured data is displayed on a graph, where the x-axis contains absolute time values and the y-axis contains
event identifiers. The user annotates time intervals by clicking and dragging on the graph (blue overlay).
Structured data events contained within this overlay are displayed in a table that the user can search and select
to be relevant. On the unstructured data, or discharge summary, section, the user selects the relevant span for
annotation by highlighting the text. The polarity of negative events is specified with a checkbox. Both types of
annotation (Bounds- and Probability- mode) require the user to generate an overlay on the graphical timeline.
In Bounds-mode annotation, either the lower or upper bound can be omitted by unchecking a box, which
represents indefiniteness. In Probability-mode annotation, users also select standard deviations to represent
their uncertainty about the lower bound, upper bound, and duration of the event. The choices are pre-defined
as follows: 1, 3, or 10 seconds; 1, 3, 10, or 30 minutes; 1, 2, 4, 6, 12, or 24 hours; 2 days; 1 or 2 weeks; 1
month; 1, 10, or 100 years.
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Figure 9: The web-based annotation tool. Figure 10: Two annotation modes

4.2.2 Annotation Process

The annotation process consisted of a three-pass system defined as follows: (1) the annotator peruses the
document in its entirety to become familiarized with its content, (2) the annotator makes annotations at
the paragraph level, setting lower and upper bounds that apply to all the events in that paragraph, and (3)
the annotator makes annotations on particular events, which could represent words or phrases. Events are
selected according to the i2b2 annotation guidelines Sun et al. [2013a]. For simplicity, the one event attribute
recorded is the polarity. As stated previously, two types of annotations are available: Bounds-mode and
Probability-mode. In Bounds-mode annotation, lower and upper bounds are defined, with the expectation that
the event(s) occurs at some point between them, and no information is specified about event duration or timing
uncertainty. One can omit either bound when the value is unknowable, as in the lower bound for certain
conditions from the past medical history. In this case, the bound defaults to negative or positive infinity, as
appropriate. Bounds-mode annotation is predominantly used in the second pass, because each paragraph may
contain various events with different timing attributes. In Probability-mode annotation, the selected lower
and upper bounds represent the mean values of two distributions. The mean value of the event’s duration is
calculated as their difference. All three distributions are assumed to be normal and the annotator must select
a standard deviation for each one. These standard deviations represent the annotator’s level of uncertainty
about the event’s timing and will serve as a surrogate of timeline precision for data analysis. Probability-mode
annotation is used predominantly in the third pass, where the duration and approximate bounds of particular
events may be reasonably determined.

4.2.3 Statistical Methods

The annotation process above was performed on the thirteen randomly-selected records from the i2b2 training
dataset Sun et al. [2013b]. Five records are annotated from both unimodal and multimodal data by performing
the process twice for each of these records, while the rest are annotated solely from the multimodal version of
the data. In total, eighteen annotation files were generated, comprising five unimodal and thirteen multimodal
versions. These files contain 4884 annotations in total, of which 1156 were in Bounds-mode and 3728 were in
Probability-mode.

We performed two descriptive analyses. For the first analysis, we focus on the ten annotation files originated
from both unimodal and multimodal data to study and compare the annotation practices across both versions.
We defined the main effect as the precision of the event timelines (multimodal vs unimodal), i.e., the difference
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Figure 11: Multimodal BERT model for clinical event timeline prediction

in uncertainty of events is obtained by comparing the standard deviation for the lower bound, upper bound,
and duration for multimodal and unimodal annotations. To compare these event timelines, we selected exact
matches from the Probability-mode annotations, and we performed a one-sided paired Wilcoxon signed-rank
test on the logarithmic transformation of the standard deviations. The resulting estimated differences between
the two versions correspond to a scaling factor, which reflects the degree of increase or decrease in uncertainty,
which we call precision factor. Confidence intervals were calculated using the bootstrap. To verify the
robustness of the results, a sensitivity analysis was performed by re-running the test while iteratively excluding
one record pair.

For the second analyses, we sought to assess the compatibility between our annotations and the i2b2
dataset. We aligned the events in the thirteen multimodal annotation files to the events in the corresponding
i2b2 dataset. Since the i2b2 dataset provides only temporal relations between two events – “BEFORE”,
“AFTER”, or “OVERLAP” – while ours provides the absolute time of events, we extracted those i2b2 temporal
relations where both text endpoints could be matched with our annotated events, and compared to the temporal
relations computed from our annotations. We used character-level intersection over union to match the text
span of the i2b2 events and ours. We restricted our events to be aligned to be Probability-mode and calculated
a pair of z-scores: one indicating the likelihood that one event precedes the other and another for the opposite
order. If exactly one z-score exceeds a predetermined threshold, we determined that one event precedes the
other, otherwise they overlap. After matching the temporal relations between our dataset and the i2b2 dataset,
we report the F1 score, inter-annotator agreement, and accuracy of the types of relations.

4.2.4 Multimodal Learning

To test the utility of multimodal data over single-modal data, we study a reduced version of our absolute
timeline prediction. The task involves binary classifications of whether the lower bound (LB) and upper
bound (UB) are finite, identifying the type of annotation (Bounds- or Probability-mode), and multi-class
classifications of the bounds and the standard deviations of LB, UB, and duration. Each of the bound and
standard deviation classifications consists of three classes defined as follows. Bounds are classified relative
to admission time, with thresholds at admission and 24 hours post-admission. Standard deviations for LB
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and UB are grouped into three classes: under 2 hours, 4 hours to 1 day, and over 2 days. Duration standard
deviations follow a similar pattern, classified as under 1 hour, 2 hours to 1 day, and over 2 days.

The experiment on the classification version of our dataset employed two BERT-based models. The
first model, named Unimodal BERT, is a span classification model Zhong and Chen [2021] where the
contextualized BERT embeddings of the annotated text span from clinical notes along with its context are fed
to a feedforward network for classification. The second model, named Multimodal BERT, also incorporates
the structured event data by applying multi-head attention. In this setup, the BERT embedding of the text
span serves as the query, and the keys and values are the contextualized embeddings of the names and the
one-hot encodings of the timestamps in the table. The resulting weighted sum of the one-hot encodings is
taken logarithm and then added to the logits of the mean predictions. The base BERT of both models is
initialized with the BlueBERT-Base Peng et al. [2020].

To fit the input length shorter than 128, the maximum sequence length of BlueBERT, we filtered out
paragraph-level events that were annotated in the second pass. The fourteen annotation files2 are split into
5 groups to perform 5-fold cross-validation, and we report the average of test performances across three
different random seeds. For all the experiments, we trained the models for 20 epochs with a learning rate of
5e-5. For comparison, we also report the performance of the majority selection baseline, the baseline using
Llama-2 (llama-2-13b-chat-hf) on the annotated clinical notes (same as Unimodal BERT) to generate the LB
and UB through few shot prompting Touvron et al. [2023], and the baseline selecting the LB and UB based on
the ground truth selection of the structured events.

4.3 Results
4.3.1 Comparison across different modalities

An exploratory data analysis of the 10 paired annotation files (5 multimodal and 5 unimodal) revealed a
total of 2718 annotations, of which 693 were in Bounds-mode and 2025 were in Probability-mode. For each
record, the number of annotations and their distribution between Bounds and Probability modes were very
similar between the unimodal and multimodal versions. Furthermore, 95.7% of the events were annotated as
exact matches across versions, meaning that the selected text had the same start and end positions, i.e., span,
regardless of annotation mode (Tab. 9a).

Across discharge summary sections, there were relatively more Bounds-mode annotations in the Medical
History (67% bounds) and Discharge (35%) sections, and fewer in the larger Hospital Stay (7%) and
Examinations and Findings (17%), indicating increased ability to annotate intraencounter events in Probability-
mode. Across sections, there was high agreement between unimodal and multimodal annotation, shown by
the proportion of exact matches (Tab. 9b).

All matching events annotated in Probability-mode were used to perform a Wilcoxon signed-rank test.
We compared the standard deviations annotated for lower bound, upper bound, and duration. The standard
deviations reported in the multimodal version were significantly smaller than those reported in the unimodal
version. This trend was consistent across the lower bound (p-value < 0.001), upper bound (p-value < 0.001),
and duration (p-value< 0.001). In general, we increased the precision on average by a factor of 1.42, 1.36, and
1.13 for the lower bound, upper bound, and duration, respectively. These values suggest that the uncertainty
in multimodal annotations was reduced by 42%, 36%, and 13%, compared to unimodal annotations for the
corresponding types of bounds and duration (Fig. 12).

Similarly, we conducted a comparison of the standard deviations pertaining to bounds and duration types
across various sections present in clinical notes (Fig. 12). Our findings indicate that, in the case of bounds,
2One additional annotation file that 2012 i2b2 dataset does not include is added.
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Comparison of Annotation Practices Across Versions
Bounds-Mode Probability-Mode Exact Matches

Record1 Version Annotations # ( % ) # ( % ) # ( %)
A Unimodal 161 45 ( 28.0% ) 116 ( 72.0% ) 156 ( 96.9%)
A Multimodal 165 46 ( 27.8% ) 119 ( 72.1% ) 156 ( 94.5%)
B Unimodal 379 53 ( 14.0% ) 326 ( 86.0% ) 354 ( 93.4%)
B Multimodal 380 60 ( 15.8% ) 320 ( 84.2% ) 354 ( 93.2%)
C Unimodal 182 58 ( 31.9% ) 124 ( 68.1% ) 167 ( 91.8%)
C Multimodal 180 58 ( 32.2% ) 122 ( 67.8% ) 167 ( 92.8%)
D Unimodal 352 125 ( 35.5% ) 227 ( 64.5% ) 347 ( 98.6%)
D Multimodal 361 115 ( 31.9% ) 246 ( 68.1% ) 347 ( 96.1%)
E Unimodal 278 64 ( 23.0% ) 214 ( 77.0% ) 276 ( 99.3%)
E Multimodal 280 69 ( 24.6% ) 211 ( 75.4% ) 276 ( 98.6%)

Total - 2718 693 ( 25.5% ) 2025 ( 74.5% ) 2600 ( 95.7%)
1Record numbers have been redacted

(a) Across Versions
Comparison of Annotation Practices Across Sections

Bounds-Mode Probability-Mode Exact Matches
Section Version Annotations # ( % ) # ( % ) # ( %)

Medical History Unimodal 244 161 ( 66.0% ) 83 ( 34.0% ) 234 ( 95.9%)
Medical History Multimodal 249 167 ( 67.1% ) 82 ( 32.9% ) 234 ( 94.0%)

Exams and Findings Unimodal 484 29 ( 6.0% ) 455 ( 94.0% ) 467 ( 96.5%)
Exams and Findings Multimodal 489 32 ( 6.5% ) 457 ( 93.5% ) 467 ( 95.5%)

Hospital Stay Unimodal 366 59 ( 16.1% ) 307 ( 83.9% ) 354 ( 96.7%)
Hospital Stay Multimodal 369 62 ( 16.8% ) 307 ( 83.2% ) 354 ( 95.9%)

Discharge Unimodal 248 96 ( 38.7% ) 152 ( 61.3% ) 234 ( 94.4%)
Discharge Multimodal 248 87 ( 35.1% ) 161 ( 64.9% ) 234 ( 94.4%)

(b) Across Sections

Table 9: Comparison of annotation practices across unimodal and multimodal versions (A) and across
discharge summary sections (B), with number of annotations per record/per section, their breakdown into
Bounds-mode and Probability-mode, and the exact match between the versions.

annotations exhibited an improvement in precision in all the sections. However, for the duration, there was no
observed change in uncertainty, except for the Medical History, Exams and Findings, and Discharge sections.

In the sensitivity analysis, the standard deviation effect estimates (lower, upper, and duration) remained
close to sample estimate, i.e., the effect of increased precision in the multimodal annotations was maintained.
The estimated precision factors were for lower bound, upper bound, and duration: 1.42 (95% CI [1.34-1.51]),
1.36 (95% CI [1.28-1.44]), and 1.13 (95% CI [1.10-1.17]) respectively. The Wilcoxon sign-rank test again
showed differences between both versions of annotation (p-value < 0.001).

4.3.2 Comparison with i2b2 dataset (2012)

The total number of events in the thirteen annotation files derived from the multimodal data is 3532, with 2721
in Probability-mode annotations. The corresponding i2b2 training data files have 1024 events (“EVENT”
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Figure 12: Precision factor between the two types of annotations. A value greater than 1 indicates a reduction
of uncertainty in multimodal annotations (p-values obtained from the Wilcoxon sign-rank test).

tag) and 2140 temporal relations (“TLINK” tag), with 901 comparing events only. Note these i2b2 files do
not cover the entire discharge summary. By aligning the text spans with the character-level IOU threshold
of 0.5, 761 of the Probability-mode events are matched with the i2b2 events, and 490 of the i2b2 temporal
relations can be mapped to our dataset. We use -1.0 for the threshold of z-scores to determine the temporal
relations between two Probability-mode events. The confusion matrix between the i2b2 temporal relations
and our annotations’ temporal relations is shown in Fig. 4. The accuracy, the macro F1-score, and the Cohen’s
kappa score between the i2b2 and our temporal relations are 0.698, 0.599, and 0.383, respectively. In other
words, 70% of the temporal links between the two events agree between our annotations and the i2b2 dataset.
The reason for the low kappa score is imbalanced distribution of the categories, leading to a high expected
agreement of random assignments.

To more thoroughly compare the temporal relations between the i2b2 dataset and ours, we conducted
human assessment. For each type of mismatched relation, we randomly selected three examples, resulting
in a total of 18 temporal relations. Then, a human with medical experience, who was not involved in the
annotation process, evaluated the selected examples by examining the input note. This individual was asked
to judge which annotation represented temporal relations more accurately. The results of the assessment are
shown in Table 2. Out of the 18 examples, 9 were found to be better annotated in our dataset, while 8 were
more accurately represented in the i2b2 dataset. This result suggests that the temporal relations solely from
textual information are not complete, emphasizing the importance of incorporating structured data, but also
suggests potential improvement in our multimodal based annotation process.
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Figure 13: Confusion matrix between the temporal
relations of the 2012 i2b2 dataset and our dataset

Temporal relation Judgment
(i2b2 / Ours) i2b2 Ours Both

BEFORE / AFTER 2 1 0
BEFORE / OVERLAP 2 1 0

AFTER / BEFORE 1 1 1
AFTER / OVERLAP 0 3 0

OVERLAP / BEFORE 2 1 0
OVERLAP / AFTER 1 2 0

Total 8 9 1

Figure 14: Human assessment on the 18 sampled
mismatched temporal relations

Classification Version of Absolute Timeline Prediction
Type Mean Std Dev

Method LB inf†1 UB inf†1 Anno†1 LB2 UB2 LB2 UB2 Dur2
Tabular (Oracle) - - - 0.594 0.789 - - -

Majority 0.859 1.000 0.840 0.224 0.238 0.220 0.207 0.267
Llama-2 - - - 0.374 0.441 - - -

Unimodal BERT 0.935 1.000 0.908 0.551 0.632 0.446 0.447 0.573
Multimodal BERT 0.936 1.000 0.912 0.604 0.680 0.433 0.436 0.579
†LB/UB inf: definiteness of LB/UB, Anno: Bounds- or Probability-mode
1Accuracy, 2Macro-averaged F1 score

Table 10: Results of the classification version of absolute timeline prediction on our dataset. The best results
among the non-oracle methods are highlighted in bold.

4.3.3 Multimodal Learning

Table 10 shows the results of the classification version of absolute timeline prediction. The F1 score of
the lower bound prediction (Mean-LB) and the upper bound prediction (Mean-UB) of Multimodal BERT
improved 10% (0.604 vs. 0.551) and 8% (0.680 vs. 0.632) from Unimodal BERT, respectively. This
improvements, stemming from the integration of multi-head attention into the final mean prediction logits,
demonstrate the benefits of integrating unstructured text with structured patient data. Comparing with Llama-2,
our Multimodal BERT shows 61% (0.604 vs. 0.374) and 54% (0.680 vs. 0.441) higher F1 score in bound
predictions. While the structured data baseline (Tabular (Oracle)) showed the best results in the upper bound
mean prediction, this was under the idealized assumption of perfect attention on the structured data. The
inferior lower bound mean prediction of the structured data baseline, compared to its upper bound, stems from
the mismatch in labels between events anchored to the admission and the admission time itself.
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4.4 Discussion and Conclusions
Clinical events from unstructured data provide information about the patient’s progression, but placing them
on an absolute timeline can be challenging. Yet while the timing of events in structured data is more certain,
the structured data may miss events or other predictive insights. When both types of data are in alignment
following the patient’s clinical course, their combination may generate more complete and precise event
timelines. Our work demonstrates the benefit of the multimodal approach, both in quality of annotation and
prediction.

When comparing Probability-mode annotations, statistical analysis revealed superior precision for the
multimodal version of the timeline in all three temporal entities (lower bound, upper bound, and duration).
The precision factor for the bounds was similar at 1.40 and 1.34 (lower and upper, respectively), whereas for
the duration it was at 1.13. This follows the intuition that the duration of many clinical events can be estimated
based on clinical knowledge. In particular, the specific position of events on a timeline is more uncertain
and depends on many factors that cannot be predicted with clinical knowledge alone, and having relevant
structured data with precise timestamps greatly reduced timing uncertainty for the lower and upper bounds of
events.

A subgroup analysis compared the precision factor of the timelines within different sections of the
discharge summary. In the case of the bounds, multimodal annotation increased precision in all sections, but
most prominently in the Hospital Stay and Medical History. The improvement in the Hospital Stay section is
expected since the vast majority of the structured data parallels the patient’s clinical course from admission to
discharge. The Medical History section usually describes events that occurred prior to admission. Likewise,
some of the structured data is generated during the patient’s time in the emergency department, prior to
admission. The Exam and Findings section also showed a moderate improvement in precision with the
multimodal version. It contains laboratory tests and imaging studies, which could frequently be referenced to
structured data with precise timestamps. Thus, the uncertainty of event timing is significantly reduced when
the structured data is aligned with the unstructured data,

In the case of event duration, the multimodal version yielded statistically significant improvement in
precision only in the Discharge and Hospital Stay section. Events in the Discharge section are very likely to
have their upper bound anchored to the time of discharge, a event that was also available in the unimodal
annotation. Thus, little improvement is seen in the precision of the upper bound when the rest of the structured
data is made available. This aligns with the result that the upper bound experiences less improvement than the
lower bound in the Hospital Stay since events here also extend until discharge.

This study has several limitations. First, one annotator was used, which precludes measurement of
inter-annotator agreement. Additionally, the uncertainties defined for the bounds and duration could violate
the positive semi-definite condition of a multivariate normal distribution, which may be oversimplified for the
annotator’s belief about the interval. Since a small sample size was used, the selected discharge summaries
may not be representative, e.g., due to differences in chief complaints, institutional policies, or note templates.
Finally, there was no functionality for adding additional meta-data to events or recording temporal relations
without established timelines.

The reported findings support the use of multimodal data to generate more precise event timelines when
compared to unstructured data alone. The benefit is especially prominent when a large quantity of structured
data aligns with the unstructured data. Further areas of study could include working with a larger sample size
and analyzing differences when subjects are measured more frequently, e.g., in critical care units versus the
hospital floor.

The compatibility analysis with the i2b2 dataset validated that our dataset provides a complement to the
existing text-based annotations. In the multimodal learning experiments, a BERT model leveraging structured
events through multi-head attention improved F1 scores for predicting lower and upper bounds over the
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unimodal BERT. This demonstrates how temporal localization of clinical events benefits from jointly modeling
text and structured data sources. Overall, these strongly support the enhanced utility of our multimodal
annotation approach for generating more precise absolute timelines of inpatient events.
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Part II

Knowledge-Enriched Tabular Learning



Tabular problems are those where typical deep learning methods still struggle, and gradient-boosted trees
continue to dominate [Grinsztajn et al., 2022], unlike other modalities like images, speech, and text. Because
tabular data drive decisions in areas ranging from banking and logistics to clinical care and public policy
forecasting, closing this gap would have enormous practical impact. We argue that a key reason for the gap is
that neural models, despite their capability to generalize, treat a table as an anonymous matrix of numbers,
ignoring the different types, scales, units and semantics of each column. In practice, every column carries
deterministic metadata: a textual description, a unit, a type, or a known relationship to other columns. Current
deep learning models for tabular data rarely leverage rich source of domain knowledge. Instead, they relearn
obvious structure from scratch, often leading to over-fitting and poor calibration. This motivates our call for
knowledge-enriched machine learning for tabular data.

In Section 5, we introduce knowledge-enriched machine learning, a framework that turns domain knowledge
into algorithm-usable signals for tabular data. As a concrete instance we define kernel-enriched supervised
learning, where a concept kernel, a kernel over columns encoding semantic relations among columns,
supplements the standard training set. To make the idea reproducible, we release KE-TALENT, a benchmark
of eleven diverse datasets, each bundled with column descriptions, embedding–based concept kernels, and
training pipelines. Finally, we study two routes for turning a concept kernel into row-level geometry: i)
smoothing the original inputs with respect to the kernel, and ii) constructing explicit value kernels over inputs
that are explicitly specified in terms of the concept kernel. Our experiments show that kernel-enriched models
demonstrate competitive performance and offer complementary feature representations, highlighting the
potential and challenges.

The second strand of this part, developed in Section 6, asks a complementary question: instead of using
concept kernels as an external source of structure, can we incorporate column semantics directly into a
neural tabular model and exploit them to perform cross-table pre-training? To explore this, we design a
concept-conditioned Transformer that represents each cell as a function of both its value and a learned
embedding of the column’s description, and we train it across the extended KE-TALENT benchmark with a
combination of masked value prediction and contrastive objectives before fine-tuning on each dataset. In this
“tabular foundation model” setting, pre-training improves downstream performance over training the same
architecture from scratch and yields models that outperform neural baselines on average.

Taken together, the two lines of work in this part, kernel-enriched learning and concept-conditioned
pre-training, map out a broader agenda for knowledge-enriched tabular modeling. The empirical results
are mixed rather than transformative, but they demonstrate that incorporating domain knowledge can yield
tangible gains and narrow, if not close, the gap to tree-based methods.
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5 Concept Kernels for Column Semantics
This section is based on Kim et al. [2025a].

5.1 Introduction
In areas such as vision and language, deep learning has achieved remarkable success, benefiting from a
combination of massive datasets and domain-appropriate inductive biases encoded into model architectures
[Krizhevsky et al., 2012, Hochreiter and Schmidhuber, 1997]. However, in areas such as tabular, relational,
and scientific machine learning, deep models lag behind tree-based methods like XGBoost [Grinsztajn et al.,
2022]. This is often blamed on smaller dataset sizes in such settings. But as we argue in this paper, another
critical reason is that the typical deep learning methods for tabular data do not leverage rich sources of
deterministic domain knowledge, such as column names. Note that doing so is particularly challenging given
the heterogeneity across datasets.

Overall, in many settings, rich sources of domain knowledge are indeed available, but what is lacking is
a general approach for encoding such domain knowledge into algorithmically-usable forms. In this paper,
we propose a general framework, which we call knowledge-enriched machine learning, to bridge this gap.
This framework, specifically geared toward tabular data, provides high-level scaffolding for a new class
of machine learning problems; as a paradigmatic example, we describe the problem of kernel-enriched
supervised learning which extends the standard machine learning paradigm by considering an additional
concept kernel as input to supervised learning algorithms.

To facilitate research in knowledge-enriched learning, we introduce KE-TALENT, a benchmark that
extends the subset of the TALENT benchmark [Ye et al., 2024a] by incorporating structured metadata. Our
benchmark consists of eleven datasets spanning diverse tasks and domains, with each dataset including column
description and concept kernels derived from sentence embeddings to encode semantic relationship between
columns. The codebase also provides training pipelines, enabling researchers to systematically compare
different knowledge-enriched learning approaches.

Given a concept kernel that provides a notion of geometry over the individual table columns or attributes,
a critical question is then how to translate to a notion of geometry over entire inputs (or table rows). As one
class of approaches, we provide an implicit notion of geometry over inputs by considering various forms of
smoothers of the input that smooth it with respect to the concept kernel. As another class of approaches, we
explicitly construct so-called value kernels over inputs that are explicitly specified in terms of the concept
kernel. Given geometry over inputs, we can then extract features and train performant supervised learning
models.

Our experiments show that kernel-enriched models demonstrate competitive performance and offer
complementary feature representations. These findings highlight both the potential and challenges of
integrating deterministic knowledge into tabular learning.

The remainder of this section is structured as follows. Section 5.2 introduces the knowledge-enriched
learning framework, formalizing the use of concept kernels. Section 5.3 describes KE-TALENT benchmark,
detailing dataset construction and concept kernel generation. Section 5.4 presents our geometric approaches
for knowledge-enriched learning. Section 5.5 provides experimental results, highlighting key findings and
limitations. Finally, Section 5.6 concludes with a discussion of future research directions.
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5.2 Knowledge-Enriched Learning Framework
We begin by introducing our general framework of knowledge-enriched machine learning. Broadly speaking,
this framework focuses on machine learning algorithms which take structured forms of deterministic
information as input, in addition to the standard input of a dataset.

Consider a standard supervised learning problem with input space X and output space Y . A supervised
learning algorithm is a (possibly random) mapping A : D 7→ m̂D, where D = {(x(i),y(i))}ni=1 is a dataset
and m̂D : X → Y is a prediction function. Put simply, a supervised learning algorithm A takes a dataset as
input and returns a prediction function as output.

We can easily extend this definition to the general notion of a knowledge-enriched supervised learning
algorithm, which again is a (possibly random) mapping A : (D, I) 7→ m̂D, where I is some structured
form of deterministic information (domain knowledge). To specialize this framework, we must specify the
structural form of the deterministic information I. In choosing the structure of I, one must carefully balance
the following goals:

• Flexibility: The structure should be flexible enough to encode many different forms of commonly-
available knowledge, such as logical rules, natural language descriptions, and relations from knowledge
graphs.

• Informativity: The structure should be complex enough to carry problem-specific information.
• Pragmatics: The structure of I provides a pragmatic layer of abstraction between potentially highly-

unstructured domain knowledge on one hand, and the practical constraints of algorithm design on the
other.

In this paper, we focus on a simple but flexible encoding of deterministic information in the form concept
kernels, designed with tabular data problems in mind.

5.2.1 Concept Domains and Values

Let C be an arbitrary set of concepts, e.g. in a table taken from a dating website’s database, the concepts
may correspond to column names, with C = {age, city, headshot, biography . . .}. Each concept c ∈ C is
associated with a concept domain, denoted Vc, which contains the possible values of that concept. In general,
the concept domains may be both rich and heterogenous, e.g. we may have Vheadshot = [0, 1]64×64×3 as the
set of all 64× 64 RGB images, and Vbiography as the set of all strings under 1,000 characters.

In these terms, a row in a table corresponds to assigning each concept to a value in its domain. When C
and (Vc)c∈C are clear from context, we define V :=

∏
c∈C Vc as the set of all possible assignments, termed

the value space.3 We use bold letters for assignments, and unbolded letters for values at specific concepts, e.g.
s ∈ V is an assignment and s(c) is the value for concept c.

5.2.2 Concept Kernels

To relate concepts to a dataset D, we require a correspondence between the concepts C and the input and
output spaces X and Y . Let Cin ⊂ C be a set of input concepts and Cout ⊂ C be a set of output concepts. Then,
we assume that X =

∏
c∈Cin
Vc and Y =

∏
c∈Cout

Vc, i.e., each x ∈ X assigns each concept to a value in its
domain, with x(c) ∈ Vc denoting the value assigned to concept c.

Finally, given a set of concepts C, a concept kernel on C is a symmetric function k : C × C → R. We are
now ready to define a specific form of knowledge-enriched algorithm.
3In other contexts, such as physics and signal processing, the concept domains are homogeneous (i.e., Vc = Vc′ for all c, c′ ∈ C), in
which case elements of V are called configurations, states, or signals.
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Definition 1. A kernel-enriched supervised learning algorithm is a (possibly random) mapping A : D × k 7→
m̂D, where k is a concept kernel over C, and each point in D belongs to the value space V =

∏
c∈C Vc.

It is crucial to note that k is a kernel over concepts rather than a kernel over values, i.e. in the tabular
setting, k measures the similarity between columns, not the similarity between rows. This fact distinguishes
our setup from the traditional usage of kernels in machine learning, e.g. in Gaussian process regression.

Kernel-enriched Stochastic Processes In general, a kernel-enriched supervised learning algorithm is
defined without any need to specify probabilistic assumptions on the dataset D. However, for theoretical
purposes, we must often specify a data-generating model for D.

Hence, we define a kernel-enriched stochastic process on C as a pair (k,S), where k : C × C → R is a
concept kernel, and S = (S(c))c∈C is a stochastic process, with the random variable S(c) taking values in the
domain Vc. Then, letting X = (S(c))c∈Cin and Y = (S(c))c∈Cout , we may assume that each pair (x(i),y(i))
in D is an independent sample from P(X,Y).

Constructing and Using Concept Kernels Thus far, we have discussed the general framework of knowledge-
enriched machine learning, and a more specific instantiation: kernel-enriched supervised learning. However,
several details remain. First, how can concept kernels be constructed from existing sources of problem-specific
information? Second, how can algorithms leverage concept kernels to improve performance?

Both questions are quite open-ended and constitute entire possible areas of research. To seed these
areas, the remainder of the paper offers several basic starting points. First, in Section 5.3, we introduce
a benchmarking suite, which consists of several datasets along with potentially useful concept kernels.
Then, in Section 5.4, we describe geometric approaches for leveraging concept kernels for the purpose of
kernel-enriched machine learning.

5.3 KE-TALENT Benchmark
While a few tabular machine learning benchmarks exist [Grinsztajn et al., 2022], none explicitly incorporate
deterministic information about column semantics. To address this, we introduce KE-TALENT, a benchmark
that extends a subset of the TALENT benchmark [Ye et al., 2024a], the most recent large-scale collection
of tabular datasets. Our benchmark enhances TALENT by including column descriptions and embeddings,
facilitating the use of prior knowledge in ML models.

We selected eleven datasets from TALENT where descriptive column names or metadata are available
from the original data sources. They cover a diverse range of tasks and configurations of numerical and
categorical input features. The dataset selection was determined prior to running our method to prevent
post-hoc selection bias. Table 11 provides an overview of the dataset statistics.

To facilitate the use of deterministic information, KE-TALENT includes the following for each dataset:
(1) original and preprocessed dataset, (2) metadata for each concept (column), (3) raw sentence embeddings
of each concept [Reimers and Gurevych, 2019], (4) several pre-computed concept kernels, and (5) code for
preprocessing, training, and evaluation. The benchmark will be continuously expanded to further enhance its
scope and applicability.

Concept kernels provided in KE-TALENT For a chosen dataset in our benchmark, let C denote its concepts,
which are in one-to-one correspondence with column indices. As indicated, KE-TALENT includes concept
embeddings (λc)c∈C ; these embeddings can be used to construct concept kernels k(c, c′) in several ways. We
provide multipe types of concept kernels, including inner product, distance-based, and group-centered inner
product kernels.
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Dataset Name Domain Task # class # sample # num # cat

Abalone Biology reg - 4177 7(7) 1(1/3)
Diamonds Geology reg - 53940 6(6) 3(3/20)
Parkinsons Telemonitoring Healthcare reg - 5875 18(18) 1(1/2)
Student Performance Education reg - 651 1(11) 29(19/53)
Communities and Crime Social Science reg - 1994 102(102) 0(0)

Bank Customer Churn Business bincls 2 10000 6(6) 4(4/9)
German Credit Data Business bincls 2 1000 7(7) 13(13/54)
Taiwanese Bankruptcy Business bincls 2 6819 95(95) 0(0)

ASP-POTASSCO Computer Science multicls 11 1294 140(140) 1(1/2)
Internet Usage Social Science multicls 46 10108 1(1) 69(69/423)
Student Dropout Education multicls 3 4424 17(17) 17(17/218)

Table 11: Statistics of the datasets in KE-TALENT. The Task column denotes the task type (reg = regression,
bincls = binary classification, multicls = multi-class classification). The # sample column denotes the number
of samples (rows). The # num column denotes the number of numerical columns, and the # cat denotes the
number of categorical columns. Numbers in parentheses indicate the number of columns and categories after
preprocessing.

5.4 Geometric Approaches & Empirical Results
A concept kernel specifies only a geometry over the concepts C (i.e., columns of a table), whereas in learning,
we need to specify an inductive bias over the values V (i.e., rows of a table). Thus, a critical question in
kernel-enriched learning is how to go from a geometry over coordinates to a geometry over values. Here, we
describe several classes of approaches which accomplish this goal.

Notation For simplicity, we assume C is finite, with input concepts ordered as Cin = {c1, c2, . . . , cD} for
some D ∈ N. From here, we only use the concept kernel over the input concepts k : Cin × Cin → R. Finally,
we will frequently represent k by a symmetric matrix K ∈ RD×D, where (K)ij = k(ci, cj).

We assume homogeneous input concept domains, with values in some finite-dimensional vector space,
i.e., Vc = RB for all c ∈ Cin, which enables vector-space operations4. We can think of each dimension b as a
channel. Then, we can identify each input value x ∈ X with a matrix Mx ∈ RD×B whose ith row equals
x(ci). This makes X a vector space, with X ∼= RD×B . We use x and Mx interchangeably and write xb for
the bth channel of x across all D concepts, i.e. xb = (Mx):,b.

5.4.1 Smoothing Approaches

In the first class of approaches, we use the concept kernel to implicitly specify a geometry over values by
specifying a transformation that takes each input value x ∈ X to a smoother value x̃ ∈ X .

1. Smoothness via kernel convolution A simple way to smooth x with respect to k is via kernel
4B = 1 in typical tabular data, but we introduce B to generalize notation for cases where feature encodings are applied. If the input
concept domains are heterogeneous, we can pre-process to make them homogeneous.
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convolution in value space, i.e., via the transformation (k ∗ −) : X → X defined as

(k ∗ x)(c) :=
∑

c′∈Cin
k(c, c′) · x(c′), (7)

Letting x̃ = (k ∗ x), we can represent in matrices as Mx̃ = KMx. To preserve scale, we can apply
either the row-normalized Krow = D−1K, or the symmetric-normalized K := D−1/2KD−1/2 kernels,
where D is the diagonal degree matrix Dii =

∑
jKij . Notably, the value x̃ = D−1Kx solves the

following kernel-weighted least variance objective at each input concept c:

(krow ∗ x)(c) = argmin
v∈Vc

∑
c′∈Cin

k(c, c′) · ∥x(c′)− v∥22 (8)

2. Smoothness via regularization Alternatively, one can use the concept kernel k to construct a smoothness
penalty R : X → R, and solve the regularized least squares problem

x̃ = argmin
v∈X

∑
c∈Cin
∥x(c)− v(c)∥22 + ξR(v), (9)

for a hyperparameter ξ ≥ 0. For example, if k is a Mercer kernel, so that all eigenvalues in its spectral
decomposition are nonnegative, then k induces the norm Rnorm(v) := ∥M⊤

vK
−1Mv∥22. In this case,

the optimum of Equation (9) is x̃ such that Mx̃ = K(K+ ξI)−1Mx.
Alternatively, we can use the kernel-weighted distance a smoothness penalty, i.e., Rlap(v) :=∑

c,c′∈C k(c, c
′) · ∥v(c) − v(c′)∥22, where k(c, c′) = d(c)−1/2k(c, c′)d(c′)−1/2. In this case, we

perform and analyze in the spectral domain of K. The optimum of Equation (9) is x̃ such that
Mx̃ = ((1 + ξ)I − ξK)−1Mx.

5.4.2 Value Kernel Approaches

In the second class of approaches, we explicitly specify a geometry over the input space X by constructing a
value kernel K : X × X → R. Given a concept kernel k, we start by using its spectral decomposition 5 to
construct a corresponding feature map Φ : Cin → RD:

Φ(c) :=
(√

λ1 · ψ1(c),
√
λ2 · ψ2(c), . . . ,

√
λD · ψD(c)

)
, (10)

so that k(c, c′) = ⟨Φ(c),Φ(c′)⟩. This feature map projects each concept c ∈ Cin into a D-dimensional
eigenspace associated with the concept kernel: ϕm : c 7→

√
λmψm(c) is the mth component of Φ.

Given such a feature map ϕm, an input value x ∈ X can be represented in terms of these concept features
xb =

∑D
m=1(αbm/

√
λm)ϕm. This decomposition by ϕm induces a value kernel

K(xb,x
′
b) =

∑D

m=1

αbm√
λm

α′
bm√
λm

=
∑D

m=1

1

λm
⟨xb,ψm⟩⟨x′

b,ψm⟩ = ⟨φ(xb), φ(x′
b)⟩, (11)

where φ is the value feature map, and we use the inner product ⟨f ,g⟩ =
∑
c∈Cin

f(c) · g(c) for any two
functions f : Cin → R and g : Cin → R.
5k(c, c′) =

∑D
m=1 λm⟨ψm(c), ψm(c′)⟩ for orthonormal eigenfunctions ψm : Cin → R and eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λD .
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Different spectral transformations s(·) from the smoothing approach lead to different value kernels, but all
share the same eigenfunctions ψm. Specifically, the choice of spectral transformation s(·) only introduces a
point-wise scaling to each value feature component:

φs(xb) =

(
1√
s(λ1)

⟨xb, ψ1⟩,
1√
s(λ2)

⟨xb, ψ2⟩, · · · ,
1√
s(λD)

⟨xb, ψD⟩
)
. (12)

In practice, we set s(·) = 1 when transforming input into value feature. This particular choice corresponds
exactly to the Fourier coefficients with respect to the concept kernel.

Combining value kernels As described, difference choices of concept kernel k lead to different value
kernels K. We can can combine entire value kernels K1 and K2 with value feature maps Φ1 : X → RD×B

and Φ2 : X → RD×B . We can concatenate the value feature maps, resulting in the value kernel K(x,x′) =
K1(x,x

′)+K2(x,x
′). Alternatively, we can convolve the value kernels as K(x,x′) = (K1 ∗K2)(x,x

′) :=∫
X K1(x,v)·K2(x

′,v)·dv, which amounts toΦ1 andΦ2 interacting through integration over an intermediate
space.

5.4.3 Partially Specified Concept Kernels

Thus far, we have united several potential approaches to kernel-enriched supervised learning, showing that we
can use the provided concept kernel k to construct a value kernel K. However, in many cases, the concept
kernel may be only partially specified, e.g. a binary sparsity pattern for k as B ∈ {0, 1}D×D. Also, even if
the concept kernel is fully available, we might wish to better model the concept relationship by binarizing the
kernel and learning from data.

In this scenario of a binarized kernel, we present this kernel as edges in a graph, where each concept acts
as a node. Graph Neural Networks (GNNs) [Kipf and Welling, 2017], specifically Graph Attention Networks
(GATs) [Veličković et al., 2017, Brody et al., 2022], naturally accommodate this setting. At each GAT layer,
attention weights can be dynamically learned based on both current node features and concept embeddings.
We refer to this variant as Concept Graph Attention Networks (CGATs). Formally, a CGAT layer with node
features H(l) ∈ RD×B and concept embeddings (λc)c∈C updates node features as:

h(l+1)
c =

∑
c′:Bcc′=1

αcc′W
(l)
t h

(l)
c′ , with

αcc′ = exp(score(l)cc′)/
∑
x:Bcx=1 exp(score(l)cx ) and

score(l)cc′ = a(l)⊤σ(W
(l)
s h

(l)
c +W

(l)
t h

(l)
c′ ) + (W

(l)
e λc)

⊤(W
(l)
e λc′),

(13)
where σ is a nonlinear activation, such as LeakyReLU, and W(l)

s ,W(l)
t ,W(l)

e , and a(l) are learnable parameters.
This approach can adaptively emphasize significant concept pairs based on both learned representations and
concept kernels. We can also apply a multi-head attention scheme to this.

5.4.4 Using Concept Kernels for Self-Supervised Learning

Concept kernels quantify similarities between the concepts or columns in tabular data. Leveraging this
property, we construct a self-supervised learning (SSL) objective by defining a value transition distribution,
which systematically swaps or replaces column values through a concept-based Markov chain. Specifically, we
row-normalize the concept kernel matrix6 to form the concept transition matrix T = D−1K, which defines
6We assume K is non-negative, or pre-process it by clamping negative values to zero.
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a Markov chain over concepts with a stationary distribution πK. Given this, we define the value transition
distribution as:

Q(x′ | x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc), (14)

where Qcc′ is the value swap distribution to better capture complex or negative correlations.
Using this transition process, we generate multiple augmented views of training samples. SSL objectives,

such as InfoNCE [Oord et al., 2018] or spectral contrastive loss [HaoChen et al., 2021], can then leverage
these views to learn feature representations that inherently respect the geometric structure encoded by the
concept kernel.

5.5 Experiments
Here, we evaluate the approaches of kernel-enriched learning discussed in Section 5.4 on KE-TALENT, and
compare them with strong tabular ML baselines. First, we describe the implemented models of knowledge-
enriched supervised learning and the baselines. Then, we outline the evaluation methodology to ensure a fair
comparison. Finally, we present and analyze the results.

5.5.1 Models

Smoothing models These models construct smoothed representations of input values by applying transfor-
mations derived from the concept kernel. Specifically, we explore three smoothing methods: (1) convolution
using the row-normalized kernel, (2) smoothing via norm regularization, and (3) smoothing with a Laplacian
penalty. After smoothing, the resulting representations are provided as input to an MLP prediction model7.

Value kernel model This method projects an input row onto spectral components derived from the concept
kernels. We use two concept kernels: the inner product kernel and the group-centered inner product kernel,
where concept groups are identified via HDBSCAN clustering. The model architecture consists of projection
matrices where the input is transformed into the spectral features, concatenation with the original input value,
and an MLP model.

Partially specified concept kernel (CGAT) In this approach, we construct a graph of columns where
edges are the top-p8 highest absolute values from the concept kernel matrix K. This graph is then utilized
by Concept Graph Attention Network (CGAT) described in Section 5.4.3. The model architecture includes:
a feature encoding layer from RealMLP to transform each column value into a dense embedding, multiple
GCAT convolution layers implemented with PyTorch Geometric [Fey and Lenssen, 2019], a max-pooling
operation over node features, and an MLP prediction head.

Self-supervised learning model Our SSL model consists of a feature encoder, which transforms an input
row into a fixed-length feature vector, and an MLP prediction head. We choose FT-Transformer [Gorishniy
et al., 2021] as the feature encoder. Training the SSL model is in two steps: initial contrastive learning on the
augmented dataset and finetuning on the supervised task.
7For the MLP architecture in smoothing and value kernel models, we re-implement RealMLP except data-driven initialization and
dropout schedule.

8p is selected by hyper-parameter search.
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Dataset Abalone Diamond ParkTel StuPerf Crime Churn Credit Taiwan ASP Internet StuDrop

Method \ Task reg/RMSE(↓) bincls/Acc(↑) multicls/Acc(↑)

RealMLP 2.1210 523.92 0.7337 2.9277 0.1381 0.8735 0.7157 0.9667 0.3861 0.5302 0.7655
CatBoost 2.1789 524.91 1.5994 2.9244 0.1336 0.8759 0.7430 0.9718 0.3815 0.5358 0.7782
TabR 2.1078 513.53 8.0521 2.9072 0.1437 0.8743 0.7240 0.9678 0.3750 0.5183 0.7493
FT-T 2.1078 532.83 8.3437 2.9642 0.1369 0.8709 0.7123 0.9674 0.3678 0.5348 0.7547

Smooth(kernel) 2.1718 938.03 2.4700 3.0651 0.1466 0.8657 0.7160 0.9722 0.3815 0.5042 0.7162
Smooth(norm) 2.0879 903.70 1.2112 2.9725 0.1401 0.8688 0.6960 0.9659 0.4013 0.5093 0.7579
Smooth(Laplacian) 2.0937 522.37 0.9530 2.8926 0.1397 0.8765 0.7193 0.9694 0.3900 0.5259 0.7673
Value kernel 2.0825 525.79 0.8676 2.9203 0.1394 0.8746 0.7157 0.9673 0.3761 0.5315 0.7665
CGAT 2.0876 677.33 1.4612 3.0397 0.1425 0.8764 0.7337 0.9675 0.3838 0.5275 0.7656
SSL 2.1584 534.12 1.1275 2.9178 0.1373 0.8757 0.7180 0.9655 0.3964 0.5327 0.7571

Table 12: Performance on KE-TALENT benchmark The table reports test set performance of various
baselines and kernel-enriched learning models. Results are averaged over 15 runs after hyper-parameter
tuning. Bold indicates the best-performing method per dataset. Underlined values denote methods statistically
indistinguishable from the best method using Welch’s t-test with p = 0.05 (↓: lower is better, ↑: higher is
better).

Dataset CatBoost SSL CatBoost (+SSL Feature)

ASP-POTASSCO 0.3815 0.3964 0.4067

Table 13: Combining SSL feature with CatBoost Integrating SSL feature with CatBoost outperforms
baseline CatBoost and SSL, suggesting that SSL representations complement tree-based models.

Baselines To assess the effectiveness of our methods, we compare the best models in their respective
model classes on the TALENT benchmark: RealMLP [Holzmüller et al., 2024], a multilayer perceptron
tailored for tabular data with tuned hyper-parameters; CatBoost [Dorogush et al., 2018], a gradient boosting
method handling categorical features via target statistics; TabR [Gorishniy et al., 2024], which integrates a
k-nearest-neighbor-like component into deep learning models; and FT-Transformer [Gorishniy et al., 2021],
combining feature tokenizers with Transformer layers.

5.5.2 Evaluation method

Our evaluation methodology directly follows TALENT to ensure a fair and consistent comparison across
models. For each dataset and knowledge-enriched model, we perform hyper-parameter optimization using
Optuna Akiba et al. [2019] for 100 trials based on validation performance. Each model is trained 15 times with
the optimal hyper-parameters to report average test performance. For the SSL model, hyper-parameter search
is conducted only during the fine-tuning step, optimizing the MLP prediction head and training parameters,
while the contrastive learning step follows the default FT-Transformer configuration from the TALENT
codebase. For the baseline models, we use the results from the TALENT benchmark.

5.5.3 Results

Performance on KE-TALENT benchmark Table 12 presents performance of our kernel-enriched models
and baselines on the KE-TALENT benchmark. CatBoost alone ranks best in four datasets, aligning prior
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findings that gradient boosting excels in tabular data settings. Nonetheless, kernel-enriched methods also
demonstrate competitive performance, showing the potential of knowledge-enriched learning: the smoothing
models achieves top on four datasets, and the value kernel notably excels on Abalone dataset. Despite these
successes, kernel-enriched models did not consistently surpass baselines, likely due to inefficiencies in concept
kernel construction or how kernel information was integrated.

Analysis: Combining SSL features with CatBoost To assess the effectiveness of features learned from
knowledge-enriched learning, we trained CatBoost using both the original tabular data and the feature from
the pre-finetuning SSL encoder outputs on ASP-POTASSCO, where SSL ranked second. As shown in Table
13, this hybrid approach outperforms both baseline CatBoost and SSL, achieving the highest accuracy. This
result suggests that SSL captures complementary metadata-driven features.

5.6 Discussion
Contributions In this paper, we outlined the general idea of knowledge-enriched machine learning, focusing
on supervised learning algorithms that take an additional input in the form of a concept kernel. We proposed
four meta-approaches that leverage concept kernels to inform their inductive biases. Additionally, we
introduced KE-TALENT, a new benchmark for kernel-enriched supervised learning on tabular data, evaulated
these approaches again strong tabular ML baselines. Our empirical results show that while kernel-enriched
methods did not consistently outperform tree-based baseline, they demonstrated competitive performance and,
in some cases, complementary feature representations.

Immediate future directions Our work opens the door to several future directions for knowledge-enriched
machine learning in different domains. Here, we discuss a few directions of immediate importance, restricting
our focus to the tabular data setting targeted by our benchmarking suite.

• Improved kernel construction: In our KE-TALENT benchmarking suite, we included several baseline
kernels constructed from sentence embeddings. As the understanding of LLM embeddings improves,
it may become possible to develop better methods for constructing kernels. Additionally, it may be
interesting to use other forms of prior knowledge for constructing kernels, e.g. using knowledge graph
embeddings [Ji et al., 2021].

• Improved handling of heterogeneity: Our datasets were carefully processed to ensure that the
concept domains are relatively homogenous. In cases where this is not possible, or to further improve
performance on these datasets, it may be necessary to enrich algorithms with other inputs, e.g. functions
relating heterogeneous concept domains Vc and Vc′ .

• Higher-order domain knowledge: In some cases, binary relationships may not be sufficient to capture
all domain knowledge. In these cases, it may be necessary to consider richer forms of knowledge
enrichment and use those in methods which leverage higher-order structure, e.g. simplicial neural
networks [Bodnar et al., 2021].
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6 Concept-Conditioned Tabular Foundation Models

6.1 Introduction
Despite recent progress in deep learning for tabular data, strong tree-based ensembles such as CatBoost and
XGBoost remain the dominant choice in practice, particularly on small- to medium-scale datasets with mixed
numerical and categorical features. In contrast, language and vision have seen a rapid shift toward foundation
models: large, self-supervised architectures that are pre-trained on massive corpora and then adapted to a
wide range of downstream tasks. A natural question is whether a similar “tabular foundation model” can be
built for heterogeneous tables, leveraging many datasets at once to learn general-purpose representations.

However, directly importing the foundation-model recipe into the tabular domain is challenging. Tabular
datasets differ widely in source domain, schema, column data types, and value distributions, and current
neural methods typically treat each table as an array of unnamed features. As a result, models trained on
one dataset do not transfer well to others, and pre-training across multiple tables is non-trivial. Multi-dataset
approaches such as XTab [Zhu et al., 2023] address this by introducing separate feature extractors or prediction
heads per dataset, but this causes the number of parameters to scale with the number of tables and columns,
limiting parameter sharing and generalization. Another line of work, in-context-learning-style tabular models,
including TabPFN [Hollmann et al., 2025], trains Transformers to perform inference directly in-context on
synthetic tasks generated from simple priors. While powerful, these methods rely on synthetic training
distributions and do not explicitly exploit rich column semantics present in real-world tables.

At the same time, many tabular datasets come with human-readable metadata: column names, textual
descriptions, and category labels that encode meaningful semantics (e.g., that glucose and insulin are
related medical measurements, or that churn is the prediction target). Recent work such as CARTE [Kim
et al., 2024] and TARTE [Kim et al., 2025b] begins to use such metadata, but typically relies on shallow word
embeddings and does not fully decouple model parameters from specific tables. Moreover, these approaches
do not directly incorporate detailed task descriptions or benefit from advances in modern instruction-tuned
language models.

In this work, we propose a concept-conditioned tabular foundation model designed to address these
limitations. Our model is a Transformer-encoder architecture that is explicitly parameterized by column
semantics. It consists of three components: (i) a concept-conditioned tokenizer that converts each cell value
and its column (or category) embedding into a token vector, (ii) a shared Transformer encoder that models
interactions between columns via self-attention, and (iii) a concept-conditioned predictor that uses the same
column embeddings to decode contextualized features into masked values or target outputs. Crucially, all
three modules share parameters across all tables and datasets, and the number of trainable parameters does
not depend on the total number of columns. Dataset- and column-specific information enters the model only
through fixed embeddings extracted from a sentence-level language model.

We instantiate this idea using instruction-aware column and category embeddings obtained from Qwen3-
Embedding-8B [Zhang et al., 2025], and train the model jointly across many heterogeneous tables. Pre-training
combines masked value prediction with a contrastive row-level objective, followed by dataset-specific fine-
tuning on each supervised target. To support this setting, we extend the KE-TALENT benchmark [Kim et al.,
2025a] to 37 datasets with task, column, and category descriptions, substantially increasing both the number
of concepts and the number of examples available for pre-training.

Empirically, we find that joint pre-training consistently improves downstream performance across model
sizes, and that moderate-capacity models benefit the most. When compared against the 26 TALENT baselines,
our best configuration (small, pretrain) ranks fourth overall—behind only CatBoost, LightGBM, and
XGBoost—and achieves the best performance among all neural network models. This result is especially
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significant considering that extended KE-TALENT heavily favors tree-based models. The remainder of this
paper formalizes the multi-dataset problem setup, describes the model architecture and training procedure,
introduces the extended KE-TALENT benchmark, and presents our experimental results.

6.2 Methods
In this section, we introduce our column-semantic, parameter-efficient tabular foundation model. We begin by
formalizing the tabular prediction setting in the multi-dataset regime, assuming access to column-level semantic
embeddings. We then describe the model architecture, which consists of a concept-conditioned tokenizer, a
Transformer encoder, and a concept-conditioned value predictor. Finally, we present our pre-training and
fine-tuning procedures across multiple heterogeneous tables.

6.2.1 Problem Setup

We build on the knowledge-enriched tabular learning framework of Kim et al. [2025a] and adopt similar
notation. Let C denote a universe of concepts, which we identify with table columns, and let each concept
c ∈ C have an associated domain Vc of possible values (e.g., real numbers or categorical labels). For a given
table, the input concepts form a finite subset C in ⊂ C, and there is an output (target) concept cout ∈ C. A row
in the table is then an assignment x ∈

∏
c∈Cin Vc and a label y ∈ Vcout .

We consider a multi-dataset setting with M tabular datasets

Dm =
{
(x(i)m , y(i)m )

}nm

i=1
, m = 1, . . . ,M,

where each Dm has its own input and output concepts C in
m and cout

m . The configuration of each dataset, i.e., the
number of columns |C in

m|, the mixture of numerical and categorical columns, and the number of examples nm,
may all vary across datasets.

We assume that for every concept c ∈ C we are given a fixed column embedding λc ∈ Rde , obtained
from textual descriptions of the column (e.g., column name, definition) using a sentence-level language
model [Reimers and Gurevych, 2019, Zhang et al., 2025]. These embeddings encode semantic information
about columns (e.g., that Glucose and Insulin are related), and can be used to construct a concept kernel
k(c, c′) = ⟨λc, λc′⟩ over columns. In contrast to prior work, which used k primarily as a fixed kernel to
smooth or augment inputs [Kim et al., 2025a], we use the embeddings {λc} directly inside a parametric
encoder and prediction head. For a categorical column c, similarly to the column embeddings, we assume
access to category embeddings {ηc,k}k∈Vc

⊂ Rde that embeds the semantics of each possible value.
Given a dataset Dm, the supervised tabular prediction task is to learn a predictor fm :

∏
c∈Cin

m
Vc → Vcout

m

that minimizes
Lsup
m (fm) = E(xm,ym)∼Dm

[
ℓ
(
fm(xm), ym

) ]
,

where ℓ is an appropriate task loss (e.g., L2 for regression, cross-entropy for classification). Our goal is to
learn a single tabular foundation model that can be pre-trained across D1, . . . ,DM using only input columns,
and then transferred and fine-tuned on each target dataset’s supervised task.

6.2.2 Model Overview

Our model follows the Transformer-encoder style that has proven effective in language and vision foundation
models [Devlin et al., 2018, Dosovitskiy, 2020] and recent tabular Transformers [Gorishniy et al., 2021, Zhu
et al., 2023]. It consists of three modules:
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Input Columns

1. credit_score: Credit Score
2. age: Age

…
9. country: Country of Residence (Spain/…)
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Figure 15: The overview of concept-conditioned tabular foundation model. Left: Given dataset with column
name and description, we extract column and category embeddings from a pre-trained sentence-level language
model. Right: Given an input row, we convert each column value and its column embedding into a feature
vector (tokenizer), contextualize the per-column features (Transformer encoder), and predict the value of
masked columns from their features (predictor).

1. Concept-conditioned tokenizer fθ: For a given row xm, the tokenizer maps each column value
vc = xm,c and its column embedding λc to a token vector zc ∈ Rdtoken . The tokenizer operates
independently per column and shares parameters across all columns, tables, and datasets.

2. Transformer encoder Tϕ: The per-column token vectors {zc}c∈Cin
m

are fed into a standard multi-layer
Transformer encoder [Vaswani et al., 2017] that contextualizes each column representation via self-
attention over all columns in the row. The encoder parameters are shared across datasets and do not
depend on the number or identity of columns.

3. Concept-conditioned predictor gψ: Given the contextualized representations {z̃c} from the Trans-
former, the predictor uses both z̃c and λc to predict masked column values (for self-supervised
pre-training) and target outputs (for supervised fine-tuning).

Crucially, the architecture is parameter-efficient: the number of trainable parameters in (θ, ϕ, ψ) does not
scale with the total number of columns or datasets. There are no column-specific parameters, and all such
column-specific information is injected only through the fixed column embeddings {λc}. Figure 15 shows the
architecture of our concept-conditioned tabular foundation model.

6.2.3 Concept-Conditioned Tokenizer and Predictor

We now describe our concept-conditioned tokenizer fθ and predictor gψ in more detail. Throughout, we write
dtoken for the token dimension.Figure 16 shows the architecture of the tokenizer and predictor.

Tokenizer Given a row xm from datasetDm and its input columns C in
m, the tokenizer processes each column

c ∈ C in
m independently, using its value vc = xm,c and column embedding λc. We first map raw values vc to a

dense value embedding hc ∈ Rdtoken as follows:
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• Numerical columns: For vc ∈ R, we apply a shared linear projection:

hc =Wnumvc + bnum, Wnum ∈ Rdtoken×1,

which yields a dtoken-dimensional embedding that encodes the magnitude of the value but is agnostic to
the column’s semantics9.

• Categorical columns: For vc being one of a finite set of categories, we assume each category k comes
with a category embedding ηc,k ∈ Rde , constructed analogously to column embeddings. Given the
active category k in the current row, we first map ηc,k to token space via a two-layer MLP with a
bottleneck:

hc =W2(W1ηc,k + b1) + b2,

where W1 ∈ Rr×de , b1 ∈ Rr, W2 ∈ Rdtoken×r, b2 ∈ Rdtoken , r ≪ min(de, dtoken). This low-rank
projection is also used in concept-conditioned modulation which will be described below.

• Masked columns: For masked value prediction and target prediction, we mask some columns of the input.
For these, we replace the value embeddings by a learnable mask embeddings hmask,num, hmask,cat ∈ Rdtoken .

To incorporate column semantics, we update hc using the column embedding λc through a low-rank,
feature-wise affine transformation reminiscent of FiLM [Perez et al., 2018] and parameter-efficient adapters [Hu
et al., 2022]. Specifically, we compute scale and bias vectors γc, βc ∈ Rdtoken from λc via low-rank projections:

rc = Uλc + br ∈ Rr, γc = Aγrc + bγ , βc = Aβrc + bβ ,

where U ∈ Rr×de , br ∈ Rr, Aγ , Aβ ∈ Rdtoken×r, and r ≪ min(de, dtoken) is a small rank. The concept-
conditioned token embedding is then

zc = γc ⊙ hc + βc,

with ⊙ denoting element-wise multiplication. This information-bottleneck mechanism allows the model to
explore low-dimensional linear projections from the space of language-model representations [Park et al.,
2024b] in a parameter-efficient manner.

Transformer encoder Collecting the tokens for all input columns, we obtain a sequence Zm = {zc}c∈Cin
m
∈

R|Cin
m|×dtoken , which we then feed to the Transformer encoder. We use a standard L-layer Transformer

encoder [Vaswani et al., 2017] that acts over column tokens within a row:

Z̃m = Tϕ(Zm),

where Z̃m = {z̃c}c∈Cin
m

denotes the contextualized representations. The encoder models interactions between
columns via multi-head self-attention.

Predictor The predictor gψ maps contextualized column features of the masked columns back to values.
For each masked column c, we again apply concept-conditioned modulation:

ẑc = γ′c ⊙ z̃c + β′
c,

where (γ′c, β
′
c) are computed from λc via a low-rank projection in the same form as in the tokenizer. This

serves as a light, concept-aware adapter before prediction.
9We pre-process each numerical column by standardizing using column mean and variance. Therefore, current implementation of hc is a
representation of the z-score
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Figure 17: Training procedure of concept-conditioned tabular foun-
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• Numerical columns: For a numerical column c, we predict a scalar via a shared linear head10:

v̂c = w⊤
numẑc + bnum.

• Categorical columns: For a categorical column c, we cast prediction as multi-class classification. To
remain parameter-efficient and consistent with the semantic embedding view, we obtain the weights for
the final classification layer from the category embeddings {ηc,k}k∈Vc

, similarly to the tokenization of
categorical columns. The logits for column c are given by

ℓc,k =
{
W ′

2(W
′
1ηc,k + b′1) + b′2

}⊤
ẑc, k ∈ Vc,

We note that we use the same modules for target prediction. For a dataset Dm, we treat the target column
as an additional concept in C in

m ∪ cout
m , append it to the input row, mask its value, and apply the predictor to

its contextualized representation. Thus the supervised predictor ŷm = fm(xm) is simply a special case of
masked value prediction applied to the designated target concept.

6.2.4 Training Procedure

We train the proposed model in two stages: (1) joint self-supervised pre-training and (2) fine-tuning on
individual tables. Figure 17 shows the two-step training procedure.

Stage 1: Joint self-supervised pre-training In the first stage, we pre-train (θ, ϕ, ψ) using only input
columns across all datasets {Dm}Mm=1 via a combination of masked value prediction and contrastive learning,
in the spirit of BERT-style masked language modeling [Devlin et al., 2018]. Note that this self-supervised
learning approach is already explored [Rubachev et al., 2022, Majmundar et al., 2022, Zhu et al., 2023], but
none of them have provided a tokenization and prediction module shared across all tables.
10During training we predict the z-score of vc with a squared loss objective. The evaluation metric (RMSE) is computed after rescaling

to the original distribution.
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For each row xm, we sample a subset of columns B(xm) ⊂ Cin
m to mask. The masked row x̃m replaces vc

by the mask token for c ∈ B(xm), while leaving other columns unchanged. We encode x̃m and predict the
masked values {v̂c}c∈B(xm). The masked value prediction loss is

LMVP =

M∑
m=1

Exm,B

[ ∑
c∈B(xm)

ℓrec
(
v̂c, vc

)]
,

where ℓrec is reconstruction loss (L2 for numerical, cross-entropy for categorical).
In addition, we apply a row-level contrastive loss to encourage invariance under column-wise augmentations.

For each row xm, we generate two augmented views x̃(1)m , x̃
(2)
m via noise injections.11 We encode them to row

representations r(1)m , r
(2)
m via average pooling over contextualized column tokens, and minimize an InfoNCE

loss [Oord et al., 2018]

LCL = −
M∑
m=1

Exm

[
log

exp(⟨r(1)m , r
(2)
m ⟩/τ)∑

x′
m∈batch exp(⟨r

(1)
m , r

′(2)
m ⟩/τ)

]
,

with temperature τ > 0 and negatives drawn from other rows of the same dataset in the mini-batch. The total
pre-training loss is Lpre = λMVPLMVP + λCLLCL with scalar weights λMVP, λCL.

Stage 2: Individual fine-tuning After self-supervised pre-training, we perform fine-tuning on individual
datasets. In this stage, for a dataset Dm, we introduce target information (i.e., target column embedding λcout

m

and category embeddings {ηcout
m ,k
} if the task is classification) to the model and train with a supervised loss

Lsup,m = E(xm,ym)

[
ℓ(fm(xm), ym)

]
,

where fm reuses the same (θ, ϕ, ψ) but put the mask token and applies the predictor to the target column cout
m .

6.2.5 Models & Implementation Details

We evaluate four configurations of our concept-conditioned tabular foundation model, which we refer to
as tiny, small, base, and large. These variants differ in the token dimension dtoken, the number of
Transformer encoder layers L, and the rank r of the low-rank concept-conditioned modulations. Table 14
summarizes the exact hyper-parameters used for each configuration.

We implement the concept-conditioned tokenizer and predictor as described in Section 6.2.3. Our
implementation of Transformer encoder is based on the FT-Transformer backbone [Gorishniy et al., 2021].

To jointly training on multiple tables, we sample mini-batches from the 37 datasets using a mixture
distribution over datasets. Let Nm denote the number of training examples in dataset Dm. We define mixture
weights wm ∝ Nα

m with exponent α = 0.5. This choice interpolates between uniform sampling (α = 0) and
sampling proportional to dataset size (α = 1), exposing smaller datasets more often. Within a batch, rows are
sampled i.i.d. from the mixture over {Dm}.

During joint self-supervised pre-training, we mask each column independently with probability 0.15 and
use a perturbation probability of 0.20 to generate contrastive views. When perturbing numerical columns, we
add Gaussian noise with standard deviation 0.2. For categorical columns, we randomly randomly replace
11We randomly select columns to perturb, inject Gaussian noise to numerical columns, and change categories of categorical columns

randomly.
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Table 14: Configurations of the concept-conditioned models. dtoken is the hidden dimension, r is the
low-rank dimension used in concept-conditioned modulation, L is the number of Transformer encoder layers,
H is the number of attention heads, and dmask is the hidden dimension of the predictor.

Model dtoken r L H dmask # Params

tiny 32 8 3 4 32 0.15M
small 64 16 4 4 128 0.44M
base 128 64 8 8 128 2.11M
large 256 256 16 8 256 12.83M

categories with other categories in the same column. We use the AdamW optimizer with a cosine learning
rate schedule and linear warm-up (for self-supervised pre-training) or a constant learning rate (for fine-tuning).

During individual fine-tuning, we perform hyperparameter search using Optuna [Akiba et al., 2019].
Since the model architecture is fixed by the configuration, we only optimize over the learning rate and the
weight decay for AdamW. For each dataset and model configuration, we run 100 trials of fine-tuning, selecting
the best hyperparameters based on validation performance. All reported test metrics are the average of 15
runs with the best configuration.

6.3 Experiments
6.3.1 Extended KE-TALENT Benchmark

The hypothesis of knowledge-enriched tabular learning is that wider coverage of the column embedding space
leads to better inductive biases for downstream tasks. In the original KE-TALENT benchmark, Kim et al.
[2025a] curated 11 tabular datasets with column-level semantic metadata. However, the number of distinct
concepts and domains was still limited, and many plausible relations between columns were not observed
during training. In this work, we extend KE-TALENT to a larger and more diverse collection of tables in
order to better probe and train concept-conditioned tabular models.

Starting from the 11 KE-TALENT datasets, we collect additional public tabular datasets from TALENT Ye
et al. [2024a] benchmark that satisfy the following criteria: (1) they have meaningful input and target column
names and, when possible, human-readable descriptions; (2) the number of input columns is not too small (at
least 5); and (3) the task is non-trivial (e.g., k-NN or a linear model does not achieve near-perfect performance).
This yields a total of 37 datasets. The number of distinct input concepts (columns) increases by a factor of
1.79 (from 538 to 962) and the number of examples increases by a factor of 4.58 (from 100k to 458k) in our
extended benchmark. Table 15 summarizes the basic statistics of the extended benchmark, including the
number of samples, numerical and categorical columns, and task type for each dataset.

Concept Embeddings For the column and category embedding extraction, we useQwen3-Embedding-8B [Zhang
et al., 2025] which is a instruction-aware embedding model. For each column c ∈ C in

m∪{cout
m }, we construct an

input prompt that with a short task description (e.g., “Predict whether an employee will leave the company.”)
to obtain the column embedding λc ∈ Rde(de = 3072). Similarly, for each categorical value k in column c,
we construct a phrase of the form “column-name is category-name” and encode it to obtain a category
embedding ηc,k ∈ Rde .
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Dataset Name Domain Task # class # sample # num # cat

Abalone Science reg - 4177 7 1(3)
Diamonds Retail reg - 53940 6 3(20)
Parkinsons Telemonitoring Healthcare reg - 5875 18 1(2)
Student Performance Education reg - 651 1 29(53)
Communities and Crime Social Science reg - 1994 102 0(0)
Bank Customer Churn Dataset Business bincls 2 10000 6 4(9)
German Credit Data Business bincls 2 1000 7 13(54)
Taiwanese Bankruptcy Business bincls 2 6819 95 0(0)
ASP-POTASSCO Computer Science multicls 11 1294 140 1(2)
Internet Usage Social Science multicls 46 10108 1 69(423)
Student Dropout Education multicls 3 4424 17 17(218)
1000-Cameras Dataset Retail reg - 1038 10 0(0)
Basketball Sports bincls 2 1340 11 0(0)
Used Fiat 500 Retail reg - 1538 6 0(0)
Bias Correction Science reg - 7725 21 0(0)
Brazilian Houses Real Estate reg - 10692 8 0(0)
CPMP-2015 Computer Science reg - 2108 23 2(7)
CPS1988 Economics reg - 28155 2 4(10)
Cardiovascular Disease Healthcare bincls 2 70000 5 6(14)
Customer Personality Analysis Marketing bincls 2 2240 16 8(25)
E-Commerce Shipping Logistics bincls 2 10999 6 4(13)
Employee Business bincls 2 4653 4 4(10)
Fitness Club Marketing bincls 2 1500 3 3(15)
Food Delivery Time Logistics reg - 45593 6 2(8)
INN Hotels Group Hospitality bincls 2 36275 12 5(20)
Job Profitability Business reg - 14480 22 6(14)
Kaggle Bike Sharing Demand Marketing reg - 10886 3 6(43)
MAGIC Telescope Science bincls 2 19020 9 0(0)
Miami Housing 2016 Real Estate reg - 13932 15 1(2)
NHANES Age Prediction Healthcare reg - 2277 4 3(7)
Online News Popularity Social Science reg - 39644 45 14(28)
Pima Indians Diabetes Healthcare bincls 2 768 8 0(0)
Superconductivity Science reg - 21197 81 0(0)
Water Quality and Potability Food bincls 2 3276 8 0(0)
Wine Quality (Red) Food reg - 1599 11 0(0)
Wine Quality (White) Food reg - 4898 11 0(0)
Shop Customer Data Marketing reg - 2000 4 2(12)

Table 15: Statistics of the datasets in extended KE-TALENT. The Task column denotes the task type
(reg = regression, bincls = binary classification, multicls = multi-class classification). The # sample column
denotes the number of samples (rows). The # num column denotes the number of numerical columns, and the
# cat denotes the number of categorical columns. Numbers in parentheses indicate the number categories.
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6.3.2 Experimental Settings

We now describe the experimental settings used to evaluate our concept-conditioned models and to compare
them against the TALENT baselines.

Experiment 1: Ablations within our model family Our main experiment addresses two research questions:
(i) how much does joint pre-training (Stage 1) improve downstream performance, and (ii) how does performance
vary with model size?

(RQ1) Effect of joint pre-training We compare two training methods for each model configuration:

• scratch: (Stage 2 only) train the model on target prediction on each tabular dataset from scratch.

• pretrained: (Stage 1→ 2) initialize the model with the weights obtained from joint self-supervised
pre-training, and fine-tune on the target prediction of each dataset.

This comparison isolates the contribution of joint pre-training to downstream performance.
(RQ2) Effect of model size. To study how capacity affects performance, we evaluate all four configurations

in Table 14: tiny, small, base, and large, under both training regimes above. This allows us to assess
whether increasing depth and width systematically improves performance and whether larger models benefit
more from pre-training.

For Experiment 1, we follow Grinsztajn et al. [2022] and report the average of min–max normalized scores
across datasets. Concretely, for each dataset we aggregate the performance of all 26 TALENT baselines with
all of our model variants, map each model’s score to [0, 1] by min–max normalization, and then average
the normalized scores over the datasets. All settings perform hyper-parameter search space for individual
fine-tuning.

Experiment 2: Comparison with baselines In the second experiment, we compare our best-performing
configuration against all 26 models from the TALENT benchmark, including strong tree-based, MLP-based,
and Transformer-based methods such as CatBoost, LightGBM, XGBoost, RealMLP, TabR, and FT-Transformer.
For each dataset, we rank all models (baselines and ours) by their test performance (rank 1 is best), then
compute the average rank across the 37 datasets. This aggregate rank summarizes how often each method is
competitive across diverse tabular tasks.

6.3.3 Results

Figure 18 and Table 16 summarize the ablations across model sizes and training regimes (Experiment 1).
Figure 19 reports the average ranks comparing our best model against all TALENT baselines (Experiment 2).

Effect of joint pre-training Across all model capacities, joint pre-training provides consistent and meaningful
improvements in downstream performance. For instance, (tiny,scratch) achieves a normalized score
of 0.438, whereas (tiny,pretrain) improves to 0.473. The benefit becomes even more pronounced for
larger models: (base,scratch) performs poorly (0.355), but (base,pretrain) attains one of the highest
normalized scores (0.519). These results show that self-supervised joint training benefits downstream
performance.
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Figure 18: Effect of joint pre-training and
model size.

Model scratch pretrain

tiny 0.4384 0.4733
small 0.4416 0.5229
base 0.3546 0.5185
large 0.3402 0.4757

Table 16: Normalized scores for our model
variants under scratch versus pre-trained
initialization. Pre-training yields substan-
tial gains across all capacities.
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Figure 19: Average rank across the 37 KE-TALENT datasets
comparing our best model (small, pretrain) against all TAL-
ENT baselines. Our model ranks fourth overall—behind only
CatBoost, LightGBM, and XGBoost—and achieves the best per-
formance among all deep-learning methods.

Effect of model size Model size exhibits a clear trend. Under the scratch setting, the tiny and small
models outperform the larger base and large variants. With pretraining, performance improves from
tiny to small and then declines, with the large model performing even worse than tiny. This pattern
suggests that the larger models exceed the amount of learnable signal available in the extended KE-TALENT
benchmark, leading to overfitting despite pretraining.

Comparison with baselines For Experiment 2, we compare our best-performing configuration, (small,pretrain),
against all 26 TALENT baselines using the average rank across the 37 KE-TALENT datasets. A key character-
istic of our benchmark is that it is more favorable to tree-based models: whereas the top methods in the full
TALENT benchmark are RealMLP, MNCA, CatBoost, TabR, LightGBM, and XGBoost (in that order), the
tree-based ensembles (CatBoost, LightGBM, and XGBoost) rank highest in our dataset selection.

Within this landscape, (small,pretrain) achieves an average rank of 8.32, placing it fourth overall
and, critically, first among all neural network models. It outperforms heavily tuned MLPs (RealMLP),
context-enhanced models (TabR), Transformer-based baselines (FT-Transformer, ExcelFormer), and all
remaining neural architectures in the TALENT benchmark. This ranking is particularly meaningful given that
RealMLP is the strongest baseline in the full TALENT benchmark.

Taken together, the results demonstrate that (i) joint pre-training is essential for achieving strong
generalization across heterogeneous tabular tasks, and (ii) our approach achieves state-of-the-art performance
among deep tabular models while remaining competitive with the strongest tree-based methods.
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6.4 Conclusions
Contribution In this work, we introduced a “concept-conditioned tabular foundation model” that uses
column and category semantics to enable parameter-efficient pre-training across many heterogeneous tables.
The architecture consists of three shared components–a concept-conditioned tokenizer, a Transformer
encoder, and a concept-conditioned predictor–that inject language-model embeddings of column and category
descriptions into both the input and output pipelines. Because all parameters are shared across columns and
datasets, the model size does not grow with the number of tables, making it naturally suited for joint training
and transfer in the multi-dataset regime.

To support this setting, we extended the KE-TALENT benchmark to 37 datasets with task, column,
and category descriptions, substantially increasing both the number of concepts and the total number of
training examples. On this extended benchmark, we pre-trained our model with masked value prediction and
contrastive objectives and then fine-tuned it on each dataset’s supervised task. Empirically, joint pre-training
consistently improved downstream performance across model sizes, and our best configuration (small,
pretrain) achieved the top average rank among all neural baselines in TALENT while remaining competitive
with strong tree-based ensembles such as CatBoost, LightGBM, and XGBoost.

Limitations This study has important limitations. Most notably, our approach currently applies only to
tabular datasets with semantically meaningful column names and descriptions from which high-quality
embeddings can be extracted. In many real-world settings, such metadata are missing, noisy, or inconsistent,
which limits the immediate applicability of our method without additional curation or metadata generation.

Future Works These observations suggest several directions for future work. First, on the data side,
we plan to further scale the benchmark by incorporating additional TALENT datasets with usable column
descriptions, potentially expanding from 37 to on the order of 100 tables after careful screening. Second, on
the modeling side, our framework can be combined with stronger numerical preprocessing techniques (e.g.,
power transformations or stretching of skewed features) to better match the inductive biases of tree-based
methods on challenging regression problems. Third, there is room for architectural refinement of the tokenizer
and predictor, such as tighter parameter sharing between the low-rank projections used for column embeddings
and category embeddings, or alternative mechanisms for coupling language-model representations with value
embeddings. We hope that these extensions (and the benchmark itself) serve as a foundation for future work
on tabular foundation models that truly generalize across heterogeneous, semantically rich tables.
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7 Conclusion
At a high level, this thesis has explored how auxiliary information–lexicons, syntactic structure, column
descriptions, and other deterministic metadata–can be turned into useful inductive biases for neural models.
Rather than treating these signals as peripheral, we asked when and how they can be integrated into otherwise
standard architectures to improve accuracy, data efficiency, and interpretability in both NLP and tabular
learning.

Learning with Auxiliary Information in NLP Across three studies, we showed that auxiliary information
improves NLP systems in distinct ways.

• Post-hoc spelling correction for clinical notes: Combining a character-level language model with an
explicit corruption model and a clinical vocabulary yielded a drop-in correction tool that reduced error
rates compared to purely statistical baselines.

• Guided compositional generalization: Augmenting a Transformer with attention masks derived from
parse trees provided just enough structural guidance to solve the hardest compositional splits that remain
challenging for vanilla sequence models.

• Multimodal event timelines: Enriching discharge summaries with time-stamped EHR tables allowed a
BERT-based encoder to localize event timing more precisely and to provide more interpretable temporal
alignments.

Together, these results highlight three complementary roles for auxiliary signals: additional modalities,
in-training guidance, post-hoc correction. Leveraging side signals (structured tables, syntactic masks, lexicons)
proved to raise the task accuracy with little to no cost, expose interpretability handles that explain model
behavior, and transfer to new domains where the same type of auxiliary resource exists.

Knowledge-Enriched Tabular Learning The second part of the thesis investigated tabular machine
learning, where gradient-boosted trees and carefully tuned MLPs still dominate many benchmarks. We first
introduced a knowledge-enriched framework that formalizes explicit column knowledge as concept kernels:
kernels over columns that encode semantic relations between table attributes. On top of this framework, we
released KE-TALENT, a benchmark of eleven public datasets packaged with column descriptions, concept
embeddings, and ready-to-use training pipelines, and we analyzed how concept and value kernels induce
useful row-level geometries. Building on KE-TALENT, we then proposed a concept-conditioned tabular
foundation model that represents each cell as a function of both its value and a semantic embedding of its
column, and extended the benchmark to 37 datasets to support cross-table pre-training. Using masked-value
and contrastive objectives, we pre-trained this model across many heterogeneous tables and showed that, while
it does not yet surpass the strongest tree-based baselines, pre-training consistently improves performance over
training the same architecture from scratch and outperforms strong neural baselines on average. These results
suggest that column semantics and cross-table structure can be translated into inductive biases that benefit
neural tabular models, even if they are not yet sufficient to displace existing methods.

Limitations This work has several limitations. On the NLP side, the auxiliary resources we exploit–clinical
lexicons, high-quality parses, aligned EHR tables–are not universally available and may be noisy or domain-
specific, which limits the direct applicability of the methods to lower-resource settings. On the tabular side,
both the concept-kernel and concept-conditioned approaches rely on sentence-level embeddings of column
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and category descriptions which may not be available and their quality can vary widely and is difficult to
evaluate directly. Moreover, despite empirical gains over comparable neural baselines, our tabular models still
lag behind well-established tree-based and pre-tuned MLP methods on average performance. Finally, the
computational budget for pre-training and hyperparameter search, while non-trivial, is modest compared to
contemporary foundation models; more aggressive scaling and add more datasets may reveal behaviors that
this thesis cannot fully characterize.

Future Work Several directions naturally follow from this thesis. In NLP, one avenue is to further integrate
symbolic and structural information into large language models in a way that is compatible with in-context
learning, for example by designing prompts or adapters that expose lexicons and parses without modifying the
base model. In tabular learning, richer concept representations–such as combining textual descriptions with
knowledge-graph structure or data-driven statistics–could yield more informative concept kernels and column
embeddings. Scaling concept-conditioned pre-training to larger model families and broader table collections,
and exploring hybrid architectures that combine knowledge-enriched encoders with gradient-boosted trees or
other non-parametric learners, are promising steps toward closing the gap with current tabular state of the art.
More broadly, the results in this thesis point to a design principle: auxiliary signals are rarely “free,” but when
they exist, carefully integrating them into model architecture and training can produce tangible benefits that
purely data-driven approaches leave on the table.
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A. Liška, G. Kruszewski, and M. Baroni. Memorize or generalize? searching for a compositional rnn in a
haystack. arXiv preprint arXiv:1802.06467, 2018.

S. Liu, X. Wang, and et al. Multimodal data matters: language model pre-training over structured and
unstructured electronic health records. IEEE Journal of Biomedical and Health Informatics, 27(1):504–514,
2022.

C. J. Lu, A. R. Aronson, S. E. Shooshan, and D. Demner-Fushman. Spell checker for consumer language
(cspell). Journal of the American Medical Informatics Association, 26(3):211–218, 2019.

K. Majmundar, S. Goyal, P. Netrapalli, and P. Jain. Met: Masked encoding for tabular data. arXiv preprint
arXiv:2206.08564, 2022.

A. Moldwin, D. Demner-Fushman, and T. R. Goodwin. Empirical findings on the role of structured data,
unstructured data, and their combination for automatic clinical phenotyping. AMIA Summits on Translational
Science Proceedings, 2021.

N. Muennighoff, N. Tazi, L. Magne, and N. Reimers. MTEB: Massive text embedding benchmark. In
Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, May 2023.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

K. Park, Y. J. Choe, Y. Jiang, and V. Veitch. The geometry of categorical and hierarchical concepts in large
language models. In ICML 2024 Workshop on Mechanistic Interpretability, 2024a.

K. Park, Y. J. Choe, and V. Veitch. The linear representation hypothesis and the geometry of large language
models. In International Conference on Machine Learning, 2024b.

Y. Peng, S. Yan, and Z. Lu. Transfer learning in biomedical natural language processing: An evaluation of
bert and elmo on ten benchmarking datasets. In Proceedings of the 2019 Workshop on Biomedical Natural
Language Processing (BioNLP 2019), pages 58–65, 2019.

53

https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703


Y. Peng, Q. Chen, and Z. Lu. An empirical study of multi-task learning on bert for biomedical text mining. In
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing, pages 205–214, 2020.

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a general
conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by generative
pre-training. 2018.

N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In
Conference on Empirical Methods in Natural Language Processing, 2019.

I. Rubachev, A. Alekberov, Y. Gorishniy, and A. Babenko. Revisiting pretraining objectives for tabular deep
learning. arXiv preprint arXiv:2207.03208, 2022.

P. Ruch, R. Baud, and A. Geissbühler. Using lexical disambiguation and named-entity recognition to improve
spelling correction in the electronic patient record. Artificial intelligence in medicine, 29(1-2):169–184,
2003.

J. Russin, J. Jo, R. C. O’Reilly, and Y. Bengio. Compositional generalization in a deep seq2seq model by
separating syntax and semantics. arXiv preprint arXiv:1904.09708, 2019.

B. Schölkopf. Learning with kernels: support vector machines, regularization, optimization, and beyond,
2002.

T. M. Seinen, E. A. Fridgeirsson, and et al. Use of unstructured text in prognostic clinical prediction models:
a systematic review. Journal of the American Medical Informatics Association, 29(7):1292–1302, 2022.

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 464–468, 2018.

W. Sun, A. Rumshisky, and O. Uzuner. Annotating temporal information in clinical narratives. Journal of
biomedical informatics, 46:S5–S12, 2013a.

W. Sun, A. Rumshisky, and O. Uzuner. Evaluating temporal relations in clinical text: 2012 i2b2 challenge.
Journal of the American Medical Informatics Association, 20(5):806–813, 2013b.

M. Tayefi and et al. Challenges and opportunities beyond structured data in analysis of electronic health
records. Computational Statistics, 2021.

A. Templeton. Scaling monosemanticity: Extracting interpretable features from Claude 3 Sonnet. Anthropic,
2024.

H. D. Tolentino, M. D. Matters, W. Walop, B. Law, W. Tong, F. Liu, P. Fontelo, K. Kohl, and D. C. Payne. A
umls-based spell checker for natural language processing in vaccine safety. BMC medical informatics and
decision making, 7(1):1–13, 2007.

H. Touvron, L. Martin, and et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint, 2023.
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Appendix A A Symbolic–Statistical Approach for Clinical Spelling
Correction

A.1 Data Processing
This section describes the data pre-processing procedure of the two real datasets in Section 2.5 and the
reproduction of the spelling correction methods suggested in the dataset papers.

MIMIC-III Misspelling Dataset The MIMIC-III misspelling dataset is the only misspelling dataset based
on the MIMIC-III clinical notes. However, there are several issues regarding their pre-processing code12. The
code is based on an older version, v1.3, of the MIMIC-III database and splits processes text by the lines in the
NOTEEVENTS.csv file, which leads to the risk to include the context from other notes in an example. After
reviewed by a medical professional, we found that the correction labels of 30 examples are incorrect. We
update these labels, some of which are multiple, and if an output is one of them, we marked it as correct. We
have released the pre-processing code which is compatible with the latest version of the MIMIC-III database
and revises the incorrect labels (link).

The baseline result in Table 2 is reproduced after running the word2vec training and hyper-parameter
tuning. The numbers are not matched with Fivez et al. [2017] because of the revised labels and the randomness
of the training and tuning.

CSpell Spelling Error Dataset The CSpell dataset contains various spelling errors: Grammatical,
Misspelling, Punctuation, RealWord, ToMerge, and ToSplit. These spelling errors or their corrections
can be multiple-word or contain non-alphabet characters or non-text entries, such as HTML entries. We only
choose the examples in which the input word and the correction are single-word and alphabet-only.

As mentioned, CSpell software performs both detection and correction of spelling errors, and the input to
the CSpell does not require the location of misspelled words. To find out which input word is detected, we
use the output from the debug mode activated by the “-d” command-line flag. To make a fair comparison
to our model, we excluded the CSpell test examples that the misspelled words are not detected by any of
the detection modules of CSpell. Note that such filtering is not done on the CSpell training set to prevent
our model from fitting to the CSpell’s selection bias. As result, 409 and 574 examples are chosen from the
training set and the test set of 1050 and 1924 examples, respectively.

The input texts of the CSpell dataset, consumer health questions, can contain multiple spelling errors, each
of which constitutes an example. When we evaluate each misspelling, other misspellings in the same input
text are corrected to clean the context and remove the interference of them. The output of CSpell software is
evaluated only based on whether the typo words have been corrected properly, regardless of the other words.

A.2 Training, Tuning and Evaluation
This section describes the training procedure, the hyper-parameter search, and the final evaluation of our
spelling correction method. Our character-level language model is based on the BART [Lewis et al., 2020]
implementation of Hugging Face’s Transformer [Wolf et al., 2020]. Both the Base and Large models are
trained for 500k iterations on the MIMIC-III clinical notes with batch size 256. We trained the model on
4×NVIDIA A100 GPU 40GB. We follow the optimizer and the learning rate schedule same as the original
12https://github.com/clips/clinspell
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Hyper-param Values

Early stopping {25000n : n = 1, ..., 20} steps
C {2.0, 5.0, 10.0, 20.0}
n {0, 1, 2, 3,∞}

Table 17: List of decoding hyper-parameters evaulated

Hyper-param
CSpell Training SyntheticLM only LM + Dict LM + ED LM+ED+Dict

Base Large Base Large Base Large Base Large Base Large
Early stopping 475k 450k 475k 450k 475k 475k 475k 300k 500k 500k

C - - - - 5.0 5.0 5.0 5.0 5.0 5.0
n - - - - 1 1 1 1 2 2

Table 18: The result of hyper-parameters search on different datasets and settings

BERT, except that the learning rate for the encoder part is reduced to one-tenth of the decoder since the
encoder is finetuned from BlueBERT.

We tuned the hyper-parameters on the correction accuracy on the CSpell training set. Hyper-parameters
of our method are only from the beam search decoding: the loss weight C and the number of characters
ahead n in the corruption model. Also, for early stopping, we evaluated our method for every 25k steps of
the training of the character-level language model. For the full model and each of the ablation studies, we
did the grid search on all possible values of C, n, and training steps, summarized in Table 17. The selected
hyper-parameter values are shown in the first eight columns of Table 18.

The time complexity of the beam search is proportional to the beam width B. B = 30 is chosen during
the hyper-parameter tuning for faster search, and we use B ∈ {30, 300} when evaluating our method on the
CSpell test set and the Clinspell set for better correction outputs.

A.3 Subgroup Analysis by UMLS Semantic Type
This section describes the grouping procedure of subgroup analysis by UMLS Semantic Types. We first
choose three subtrees from the hierarchy of the UMLS Semantic Types 13 with head nodes substance,
Pathologic Function, and Finding. Each subtree becomes a subgroup of Semantic Types that represents
a word category: “substance”, “disease”, and “symptom”. The Semantic Types of each subgroup are as
follows:

• Substance: Substance, Pharmacologic Substance, Antibiotic, Biomedical or Dental Material,
Biologically Active Substance, Hormone, Enzyme, Vitamin, Immunologic Factor, Receptor,
Hazardous or Poisonous Substance, Organic Chemical, Amino Acid, Peptide, or Protein,
Inorganic Chemical, Element, Ion, or Isotope, Body Substance, Food

• Disease: Pathologic Function, Disease or Syndrome, Mental or Behavioral Dysfunction,
Neoplastic Process

13https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
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• Symptom: Finding, Laboratory or Test Result, Sign or Symptom

Also, we made “other” subgroup for examples that do not belong any of three subgroups.
Then, we grouped examples into Subgroups with their correction words. Given an example, we retrieved

CUIs (Concept Unique Identifiers) of its correction word and related Semantic Types by quering to UMLS
API 14. If any of the example’s Semantic Types fall into a subgroup’s Semantic Types, then we put the example
into the subgroup. Note that examples can belong to more than one subgroup since a word can have multiple
UMLS Semantic Types. For example, a word “depression” fall into both “disease” and “symptom” subgroups.

A.4 Results in Unsupervised Setting
This section describes the procedure to generate the MIMIC-III synthetic misspelling dataset and the
hyper-parameter tuning results on it.

Due to the limited amount of public dataset of clinical typo, we build a dataset of synthetically generated
misspellings. From the MIMIC-III clinical notes, we randomly choose words that are in our reference
dictionary and corrupt them with random operations. To corrupt words, up to two operations of character
addition, deletion, substitution, or transposition can be applied. As a result, we generated 10k examples of
misspellings. In the 10k examples of syntactically generated data, 10% are unchanged from the original word,
45% are modified with a single operation (insertion, deletion, or substitution), and 45% are modified with two
operations. As a result, out of 8970 error examples, 3199 and 5771 are real and non-word errors, respectively.

We performed the hyper-parameter search on this synthetic dataset, as we did with the CSpell training set.
Since it takes much computation to evaluate CIM on the synthetic dataset, we did not search for early stopping
and choose the final language model. The grid search was performed on the other hyper-parameters, C and n.
The last two columns of Table 18 show the results.

A.5 Spelling Correction Example
Figure 20a to 20d show the beam search results of our spelling correction model on several examples of
the CSpell test set. For each example, we display the top 10 beam candidates (out of 300) of our Base and
Large model. Our model combines the language model score (LM) and the corruption model score (ED) and
normalizes it to get the final beam score (Score).

For easy cases such as Figure 20a, both the language model and the corruption model gives a high score
to the correct output. For the typo of a complex terminology like Figure 20b, there might be an incorrect word
(“proctectomy”) that has a smaller edit distance than the correct word (“prostatectomy”), but the language
model gives a high score to the correct word.

Also, we report some failure cases of our method. Figure 20c shows a failure case where the language
model fails. In Figure 20c, although both “having” and “facing” fit the context, the language model grants a
much lower score to “facing”, which makes “having” be the top candidate by the Base model. In Figure 20d,
although the correct word “tightening” gets the higher LM score, the corruption model gives a lower score it.
This implies that the corruption model needs to be improved to give a higher score to the correct word in such
cases.

14We use the latest version of UMLS, which is 2021AA
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Figure 20: Beam search decoding results for several examples of the CSpell test set. For each example, we
display the top 10 beam candidates. The column next to the candidate (Score) shows the final beam score for
each candidate.

(a) A success example.

(b) A success example.

(c) A failure example of the language model.

(d) A failure example of the corruption model.
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Appendix B Structured Attention for Compositional Generalization

B.1 Full Experimental Results
In this section, we report the full results on the CFQ classification dataset and the structure annotation
experiments. In all configurations, multiple evaluation metrics (accuracy, F1 score, and AUC) are computed
by averaging the results of two randomly initialized experiments. We test each network using only the val
set, not the test set, since the main purpose of the experiment is to compare the compositional generalization
ability, not to select best hyper-parameter. Accuracy and F1 score are computed with the threshold 0.5 of the
softmax output of label 1.

All the experiments of the CFQ classification datasets were run using the TensorFlow [Abadi et al., 2016]
framework. As we explain in the Section 3.5, we use the ETC Transformer Ainslie et al. [2020] code for
relative position embeddings. For the Transformer implementation, we use the code provided in a Tensorflow
tutorial. The training is run on the n1-highmem-8 instance (52GB RAM, 8 virtual cpus) of Google Cloud
Platform, extended with NVIDIA Tesla V100 GPUs.

Hyper-parameters used in the training of neural networks are listed in Table 19. One thing that we want
to clarify is that training steps are required number of steps to converge and the training did not last longer
than needed. Nevertheless, the experiments with structure annotations required more training steps than
LSTM/Transformer, especially when the network is using hard mask. We conjecture that training with the
hard mask of parse trees is slow since only a small part of the attention is not masked and hence propagating
the gradient via supervision at the <CLS> position is slow.

B.1.1 The CFQ classification Dataset

Table 20 shows the classification results of various methods of generating classification datasets, including one
additional configuration (MCD Split & Random Negatives). The dataset generated by this new configuration
has the train and the dev/test set that have different compound distributions, because it is based on the MCD
split. However, because of the method used in generating negative instances (random negatives), the binary
classification of correspondence can be easily generalizable to the dev set.

B.1.2 Structure Annotation

One possible annotation of the input structure is a mask to allow tokens of the question and SPARQL queries
to only attend within their segment. We call this mask as block attention and test it as an alternative to the
hierarchical attention structures (parse trees). This mask is denser than the attention mask from parse trees
and sparser than “no mask”. Figure 21 shows the block attention for the examples shown in the Figure 7.

Table 21 reports the full results of experiments on structure annotations. In all cases, entity cross links
improve compositional generalization on the dev set, but provide a significant gain only when combined with
the parse tree attention and the attention is guided by the “hard mask”. As we can see in the “hard mask”
experiments, block attention does not improve compositional generalization, which suggests a need for more
detailed attention mask of input structure.

B.2 Related Works on Compositional Generalization
In this section, we review prior works on improving compositional generalization in more detail.

Russin et al. [2019] proposed to split the attention mechanism into two separate parts, syntax and semantics.
The semantic part encodes each token independent of the context (this is a pure embedding look-up table),
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Figure 21: Block attention mask for the CFQ classification example of Figure 7. The dots at top-right and
bottom-left are from entity cross links.

and the syntactic part encodes each token by looking only at its context (without looking at the token itself).
In this way, the syntactic part tries to capture the syntactic role a token might play in a sequence. They show
improved compositional generalization on the SCAN dataset using LSTMs, with respect to using standard
attention. Compared to Russin et al. [2019] that uses LSTMs for the syntactic part, we use Transformer
architecture to handle the hierarchical structure of the input.

In their follow up work on the CFQ dataset, Furrer et al. [2020] showed that an increased amount of
pre-training helped Transformer models better generalize compositionally.

Another idea that has been proposed is to augment the training data, adding synthetic training examples to
give the model a compositional learning bias [Andreas, 2019] .

Finally, work also exists on using general-purpose models like Neural Turing Machines or Differential
Neural Computers Graves et al. [2016] that are often trained via reinforcement learning to solve compositional
generalization tasks. These models learn an “algorithm” that can solve the task at hand, rather than trying to
learn a direct input/output mapping as the Transformer models used in most other works do.

B.3 Examples of the CFQ classification dataset
In Figure 22, we present more examples of the CFQ classification datasets. In all cases, the random negative
queries substantially differ from the positive queries, implying that a learner can easily perform the task. On
the other hand, the model negative queries only differ by a token or a phrase, which demands a learner’s higher
ability.
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LSTM Transformer ETC
Hidden layers 2 {2,6} 6
Last dense layers 2 1 1
Hidden Size 512 128 128
Filter size - 2048 512
Number of heads - 16 16
Dropout 0.4 0.1 0.1
Batch size 1024 512 112
Training steps

Random & Random 20k 10k -
MCD & Random 20k 10k -
MCD & Model 30k 20k 200k

Optimizer Adam (0.85, 0.997) Adam (0.9, 0.997) Adam (0.9, 0.997)
Learning rate schedule Constant Inverse sqrt Inverse sqrt
Base learning rate 0.001 0.001 0.001
Warmup steps - 1000 1000
Weight decay 0.0 0.0 0.0

Table 19: Hyper-parameters used in training deep neural networks on the CFQ classification datasets

Dataset 1: Random Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9984 0.9967 0.9998 0.9982 0.9964 0.9998
Transformer (2 layers) 0.9988 0.9976 0.9998 0.9982 0.9964 0.9997 0.9988 0.9975 0.9998
Transformer (6 layers) 0.9992 0.9988 0.9999 0.9989 0.9978 0.9999 0.9990 0.9979 0.9999

Dataset 2: MCD Split & Random Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9999 0.9998 1.0000 0.9982 0.9965 0.9999 0.9546 0.9025 0.9923
Transformer (2 layers) 0.9982 0.9965 1.0000 0.9974 0.9948 0.9999 0.9942 0.9883 0.9996
Transformer (6 layers) 0.9986 0.9972 0.9999 0.9979 0.9958 0.9997 0.9889 0.9775 0.9991

Dataset 3: MCD Split & Model Negatives

Model Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer (2 layers) 0.9817 0.9639 0.9988 0.9592 0.9202 0.9931 0.8359 0.5835 0.8789
Transformer (6 layers) 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Table 20: Results of the CFQ classification dataset generated with different CFQ splits and negative example
strategies
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Model Mask
Type

Parse
Tree

Block
Attn

Cross
link

Train Train (hold-out) Dev
Acc F1 AUC Acc F1 AUC Acc F1 AUC

LSTM - 0.9990 0.9979 1.0000 0.9796 0.9604 0.9972 0.8226 0.5199 0.8310
Transformer - 0.9886 0.9776 0.9995 0.9582 0.9189 0.9931 0.8414 0.6191 0.8738

Transformer
w/ structure
annotations

(ETC)

No - 0.9874 0.9751 0.9994 0.9591 0.9199 0.9934 0.8434 0.6202 0.8868

Hard

Y N N 0.9955 0.9911 0.9999 0.9766 0.9543 0.9978 0.8628 0.6744 0.9061
Y N Y 0.9978 0.9956 1.0000 0.9866 0.9738 0.9992 0.9170 0.8269 0.9656
N Y N 0.9828 0.9659 0.9989 0.9567 0.9152 0.9928 0.8324 0.5874 0.8771
N Y Y 0.9871 0.9746 0.9993 0.9573 0.9171 0.9930 0.8386 0.6048 0.8881

Soft Y N N 0.9863 0.9728 0.9993 0.9588 0.9197 0.9933 0.8426 0.6017 0.8729
Y N Y 0.9891 0.9784 0.9995 0.9603 0.9226 0.9936 0.8482 0.6385 0.8819

Hard Y N N 0.9940 0.9882 0.9999 0.9743 0.9500 0.9973 0.8615 0.6697 0.9056
+Soft Y N Y 0.9975 0.9949 1.0000 0.9867 0.9739 0.9991 0.9249 0.8473 0.9721

Table 21: Results of the CFQ classification dataset (MCD split & model negatives) with different types of
structure annotations
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(a)

(b)

(c)

(d)

Figure 22: Examples of the CFQ classification dataset. Each query pairs with the question to form an instance.
Note the model negative resembles the positive, while the random negative query differs considerably. In the
model negative queries, the differences from the positive query are marked in bold.
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Symbol Domain Description

k Cin × Cin → R Concept kernel (restricted to input concepts)
x X A function mapping each input concepts to a values in its domain

x(c) Vc The function x evaluated at input concept c
D N Number of input concepts
K RD×D Matrix representing the concept kernel (restricted to input concepts)
B N Number of channels/bands in each concept domain
b {1, . . . , B} An index for the bth channel

xb Cin → R The function mapping each concept to its value on the bth channel
Mx RD×B The matrix representing the function x, with ith row equal to x(c)
m {1, . . . , D} An index for the mth mode of an eigendecomposition
λm R≥0 The mth largest eigenvalue of k
ψm Cin → R The mth eigenfunction of k

ψm(c) R The mth eigenfunction of k evaluated at input concept c
αbm R The mth Fourier coefficient of the bth channel of x
βbm R The mth Fourier coefficient of the bth channel of x̃
ξ R≥0 A regularization hyperparameter
Φ Cin → RD A concept feature map
ϕm Cin → R The mth component of the feature map Φ

φ xb 7→ RD A value feature map
W

(l)
{s,t,e} Rdin×dout Weight matrices in CGAT
a(l) Rdout Weight vector in CGAT

Table 22: Notation.

Appendix C Concept Kernels for Column Semantics
This appendix provides detailed constructions, algorithms, and extended results underlying Chapter 5,
including kernel construction, self-supervised learning pipelines, and additional empirical analyses.

C.1 Notation
Table 22 summarizes the notation used throughout the paper by listing symbols, their mathematical domains,
and concise descriptions for easy reference.

C.2 Constructing a Concept Kernel
As described in Section 5.4, concept kernels summarize deterministic information about columns and facilitate
the incorporation of domain knowledge into tabular machine learning. The effectiveness of knowledge-enriched
tabular machine learning heavily depends on the quality of these kernels, as they dictate the interaction
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between the columns. Here, we outline general approaches and key design choices for constructing concept
kernels from column metadata.

C.2.1 From concept metadata to concept embeddings

From concept metadata, we extract concept embeddings (λc)c∈C , where C is the set of concepts (or columns).
Concept embeddings serves the foundation for constructing concept kernels. There are multiple ways to
obtain these embeddings15.

In a case there is a direct mapping from columns to the nodes in a knowledge graph, we can obtain node
embeddings using a knowledge graph embedding method [Ji et al., 2021]. However, such direct mappings
are often unavailable. For example, in the “Communities and Crime” dataset of KE-TALENT, the columns
represent measurements such as “percentage of population that is 12-29 in age”, which do not correspond
directly to a node in a knowledge graph. A more general approach is to extract sentence embeddings from a
language model [Reimers and Gurevych, 2019], using textual descriptions of column names and metadata.
This method provides a flexible way to obtain concept embeddings without requiring predefined mappings.

For the datasets in KE-TALENT, either column descriptions or descriptive column names are available in
the original data sources. We extract sentence embeddings for each columns to obtain concept embeddings.
Categorical columns are preprocessed into one-hot encoding, where each category requires a separate
embedding. To generate meaningful presentations, we concatenate the column name with each category label.
For example, the category single under the column marital status is converted into marital status is single.
When a column description is available, it is appended to the column name before generating embeddings.

The choice of sentence embedding model influences the structure of the concept kernels. You can select
a model that performs well across various sentence embedding tasks [Muennighoff et al., 2023], or one
specialized for semantic textual similarity (STS) tasks. For sentence embedding models based on instruction
tuning, the kernel matrix is often asymmetric. This is because similarity is computed using cosine similarity
between query embeddings and document embeddings, with queries being prepended with instructions during
embedding extraction. Another consideration is that in many sentence embedding models, similarity scores are
more meaningful in terms of relative rankings rather than absolute values. We choose all-mpnet-base-v2
model due to its widespread adoption and strong performance in general-purpose sentence embedding tasks,
as noted in the Sentence-Transformer [Reimers and Gurevych, 2019] documentation.

We note that while our approach is general, there is ample room for improvement by refining column
descriptions and selecting a more suitable sentence embedding model through analysis of the concept kernel
matrix.

C.2.2 From concept embeddings to concept kernel

Given concept embeddings (λc)c∈C , we construct concept kernels k(c, c′) to provide structured similarity
between concepts (or columns). For each dataset, we provide the following concept kernels as baselines:

1. Inner product: Here, k(c, c′) = ⟨λc,λc′⟩.

2. Centered inner product: Let λ = 1
|C|

∑
c∈C λc. Then k(c, c′) = ⟨λc − λ,λc′ − λ⟩.

3. Exponential squared distance: Here, k(c, c′) = exp
(
−∥λc − λc′∥22

)
.

15Concept kernels can be directly obtained without explicit concept embeddings, in rare cases where columns have a direct mapping to
concepts in a knowledge graph with predefined similarities.
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Each of these standard kernels corresponds to a different interpretation of the geometry of the embedding
space [Schölkopf, 2002]. Understanding the geometry of sentence embeddings is an active area of research
[Park et al., 2024b,a, Templeton, 2024], and such research may pave the way to better ways of constructing
kernels for our datasets.

While kernel choice is not the primary focus of our work, we do remark on an important phenomenon.
Due to the nature of sentence embeddings, many of these constructions yield kernels which assign high
similarity to concept pairs such as c = the-color-is-red and c′ = the-color-is-blue. The associated random
variables X(c) and X(c′) will typically be highly dependent (in terms of mutual information), but they may
take on very dissimilar values, e.g., they will tend to have a large negative correlation.

Depending on how a method uses the concept kernel, it may be helpful to adapt the kernel to encode such
negative relationships. To this end, we provide for each dataset a concept partition, i.e. a division of C into
disjoint subsets of concepts C1, C2, . . . , CE . From such a partition, we construct an additional kernel:

4. Group-centered inner product: Let λe = 1
|Ce|

∑
c∈Ce

λc. Then

k(c, c′) =

{
⟨λc − λk,λc′ − λk⟩ c, c′ ∈ Ck
⟨λc,λc′⟩ otherwise

The provided concept partitions can also be used for more complex kernel constructions, e.g. using subspace
projections inspired by concept algebras [Wang et al., 2024]. Note that, unlike kernels 1-3, this kernel is not
necessarily positive definite; possibly limiting what algorithms are applicable.

C.3 Tabular Data Processing
In general, we pre-process tabular data to ensure robust training with ML models. Tabular datasets typically
contain two types of columns: numerical (continuous or ordinal values) and categorical (discrete labels).
Each type requires appropriate preprocessing to facilitate learning in a deep frameworks, and preprocessing is
dependent on the architecture.

Numerical columns can have varying ranges, units and scales (e.g., linear vs. logarithmic). To bring
them to a comparable scale while keeping preprocessing simple, we apply column-wise standardization,
i.e., subtracting the mean and dividing by the standard deviation. Standardizing numerical features aligns
well with extracting spectral components corresponding to smooth graph signals, or eigen functions, and
stabilizes training. One can also choose other forms of normalization such as min-max scaling, or, in case the
distribution is highly skewed, quantile transformation.

Categorical columns, being nominal, require separate handling. Simply assigning ordinal values to the
category labels may introduce arbitrary order to the labels, potentially degrading performance when combined
with models that assumes a meaningful order. To avoid this while applying to our various approaches
(smoothing, value kernel, and CGAT model), we apply one-hot encoding, representing each category as an
independent binary vector. During preprocessing, some of the categorical columns are moved into numerical
columns when they represent ordinal values.

C.4 Self-supervised Learning
In this section, we describe the method, implementation details of the pipeline, and key design choices involved
in building knowledge-enriched self-supervised learning models for KE-TALENT. The overarching objective
of knowledge-enriched SSL model is to learn feature representations from both the raw tabular dataset and the
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Algorithm 1 ConceptSSL

Require: Concept kernel k : C × C → R, dataset D = {(x(i),y(i))}ni=1, losses (ℓSSL, ℓtask), M ∈ N
Ensure: Encoder h : X → Rd, prediction head g : Rd → Y

1: ## Value transition distribution
2: Compute the concept transition matrix T and the stationary distribution πK from k
3: Compute the value swap distribution Qcc′ for each ci, cj ∈ C.
4: Define the value transition distribution Q(x′|x) using Equation 14
5: ## Dataset augmentation
6: Let Daug = ∅
7: for m = 1, . . . ,M do
8: Sample x and x′ uniformly and independently from D
9: Generate augmented views x1,x2 ∼ Q(·|x) and a negative sample x− ∼ Q(·|x′).

10: Add (x1,x2,x−) to Daug

11: end for
12: ## Self-supervised learning
13: Train h on LSSL(h) = E(x1,x2,x−)∼Daug

[
ℓSSL(fθ(x

1), fθ(x
2), fθ(x

−))
]

14: ## Fine-tuning
15: Train h and g on Ltask(h, g) = E(x,y)∼D

[
ℓtask(g(h(x)),y)

]

associated concept metadata while leveraging the prior knowledge encoded in concept metadata to improve
downstream task performance. Figure 23 illustrates the full pipeline and Algorithm 1 a step-by-step overview
of the SSL training procedure.

First, we show how the concept kernel k : C×C → R can be used to construct a value kernelK : X×X → R
using a self-supervised approach. In the following subsections, we will follow the steps in the figure that are
specific to the SSL approach, describing each steps in detail.

Constructing a value transition distribution To begin, assume that Kin has only nonnegative entries, let
D be a diagonal matrix with (D)ii =

∑din
j=1 kij , and let T := D−1Kin. Then T is a right stochastic matrix,

i.e., its rows sum to one. We call T the concept transition matrix, since it defines a concept Markov chain, i.e.,
a Markov chain over concepts. Assuming that T is irreducible and aperiodic, this Markov chain has a unique
stationary distribution which we can represent as a row vector πK. With some abuse of notation, we will use
πK to denote the stationary distribution, and we will use Ti to denote the transition distribution from concept
ci.

Now, we can use the concept Markov chain to define a Markov chain over the (potentially uncountable) set
of input values X . In particular, given any value x ∈ X , consider performing one or more iterations of the
following steps:

1. Sample ci ∼ πK. 2. Sample cj ∼ Ti. 3. Let x1 ← swap(x ; ci, cj).

Here, swap(· ; ci, cj) denotes the function which takes x as input and returns x′ such that x′(c) = x(c) if
c ̸∈ {ci, cj}, x′(ci) = x(cj), and x′(cj) = x(ci). Additionally, to handle (potentially negative) correlation
between column values, we further transform the swapped values in x1 via value swap distribution Qcc′ , a
(probabilistic) mapping from Vc to Vc′ . This process induces a transition distribution over values, which we
call the value transition distribution, denoted Q(X1 | X):

Q(x′ | x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc). (15)
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Concept metadata

Concept embeddings (λc)c∈C

Concept kernel k : C × C → R

Concept transition matrix T ∈ Rd×d

(a)

(b)

(d)

Raw tabular dataset

Pre-processed tabular dataset

Swap distributions
(
Qcc′ : Ṽc ⇝ Ṽc′

)
c,c′∈C

(c)

(e)

Value transition distribution Q : V ⇝ V

Augmented dataset Daug

Learned representations

(f) (f)

(g)

(h)

Deterministic info processing (C.2)

Tabular data processing (C.3)

Data augmentation (C.4.1)

Self-supervised learning (C.4.2)

Figure 23: Full pipeline of self-supervised learning This figure illustrates the complete pipeline for
knowledge-enriched supervised learning. The pipeline consists of multiple stages, including deterministic
information processing, tabular data processing, data augmentation, and self-supervised learning. Please refer
to the Sections C.2-C.4.2 for the detailed descriptions of each stage.
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A related work is Bahri et al. [2022], which augments tabular columns by sampling from marginal distributions,
whereas ours leverages concept kernels to incorporate column relationships.

Given the value transition distribution, one can perform augmentation-based self-supervised learning
in a number of ways, e.g. for any anchor value x ∈ X taken from our dataset, we can generate a positive
sample x1 ∼ Q(· | x). Then, we can minimize contrastive training objective over these pairs to pre-train a
value embedding function h : X → Z and use this representation in downstream algorithms. Intriguingly,
this process can be seen as transforming each x by a generalized Fourier expansion in the basis associated
with a specific kernel, as we now describe.

The value kernel and eigenspace extraction Given the value transition distribution Q(X1 | X) and a data
distribution P(X), we define the value kernel K : X × X → R as

K(x1,x2) :=

∫
Q(x1 | x) ·Q(x2 | x) · dP(x)

P(x1) · P(x2)
, (16)

also known as a positive-pair kernel [Johnson et al., 2023, Zhai et al., 2024]. Hence, we see that a kernel k
over concepts can be used to construct a kernel K over values, which more directly expresses an inductive
bias over prediction functions m : X → Y .

Fortunately, to utilize the value kernel K, we do not need to evaluate it, which would require estimating
the data distribution P(X) and approximating the potentially intractable integral in the numerator. Instead, we
may work directly with the eigenspace of this kernel, and there are several potential approaches to efficiently
extracting the eigenspace, utilizing its density ratio nature.

A popular class of such approaches is based on contrastive learning. For example, HaoChen et al. [2021]
define the spectral contrastive loss

Lsc(h) := −2 · E
[
h(X1)⊺h(X2)

]
+ E

[(
h(X1)⊺h(X−)

)2]
, (17)

where the joint distribution over
(
X1,X2,X−) is given by∫

Q(X1 | x) ·Q(X2 | x) ·Q(X− | x′) · dP(x) · dP(x′).

They show that, when h ranges over all possible functions, the minimum of Equation (17) yields the true
eigenspace of the positive-pair kernel.16 In practice, h is parameterized by a neural network, and the empirical
counterpart of Equation (17) is minimized, thus the eigenspace is not recovered perfectly. See Appendix C.4.2
for other options for self-supervised learning objectives.

C.4.1 Data augmentation

For steps (a)-(c) of Figure 23, we follow the procedures described in Section C.2 and C.3. In the remainder of
this section, we describe the data augmentation and feature representation learning steps specific to the SSL
approach.
16In particular, this follows from their Lemma 3.2, which relates the spectral contrastive loss to a low-rank approximation of the kernel.

See also Table 1 of Johnson et al. [2023].
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From concept kernel to concept transition matrix In (d), we transform the concept kernel into the
concept Markov chain that is needed in the value transition distribution. As described in Section 5.4.4, we
row-normalize the concept kernel matrix Kin to obtain the transition matrix T, from which the stationary
distribution πK is derived. The stationary distribution πK specifies the probability of selecting the concept to
be swapped, while T determines the probability to sample to a new concept based on the current one.

To ensure the concept kernels are nonnegative, we clamp negative entries in Kin to zero. Alternatively,
an element-wise transformation, such as exponentiation, can be applied to make all values positive while
preserving their relative order. Note that the (cosine) similarity of sentence embeddings, which is the choice
of concept kernel in our implementation, is better interpreted by relative order rather than by absolute values.

When selecting concepts to swap using the transition matrix T, we handle numerical and categorical
columns differently. When selected concept corresponds to a numerical column, we restrict to choose another
numerical columns since we swap the values. In this case, a single transition affects two numerical columns.

For categorical columns, the selected concept represents one of the categories within that column (or the
active category of one-hot encoded columns). There are several options for determining the replacement:

• Swap categories between two categorical columns: Choose another categorical column and exchange
their active categories.

• Replace the category within the same column: Select a different category from the same column and
replace the current category.

• Replace the category with one from any categorical column: Choose a category from any categorical
column and substitute it for the current one.

Note the first option modifies two categorical columns, while the latter two affect only a single column.

Learning swap distributions In (e), we define how the actual swapping of column values occurs after
columns are selected by the concept transition matrix. If we simply interchange the values between two
columns, the process becomes equivalent to directly using the concept kernels as the correlation of column
values. However, there are potentially more sophisticated methods that we can apply to better model the swap
distribution Qcc′ : Ṽc ⇝ Ṽc′ as a probabilistic mapping.

For numerical columns, one straightforward approach to model Qcc′ is to simply apply a linear transfor-
mation to the swapped column values. The weight and bias of this transformation can be pre-determined or
trained through self-supervised learning. Possible strategies include:

• Linear regression: Fix the weights and bias to the solution of the linear regression. Under standardiza-
tion, the weight corresponds to the correlation ρcc′ and the bias is set to zero.

• Correlation sign: Fix the weight to be the sign of the correlation and the bias to zero. This addresses
the problem of negative value correlation between two close concepts.

• Trainable weights: Initialize the weight and bias to those from linear regression and allow them to be
updated during training.

We chose the first option as the swap distribution on numerical columns. However, one can model Qcc′ in
a more complex manner, such as incorporating trainable weights or making it probabilistic by predictive
posterior variance.

Since we adopt FT-Transformer Gorishniy et al. [2021] as the feature encoder, each category in categorical
columns is represented as an embedding vector. Transition of categorical columns corresponds to changing
one embeddings to another. For simplicity and to keep the number of trainable parameters small, we use the
changed embedding directly without further transformations.
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Constructing the value transition distribution In (f), we construct the value transition distribution
Q : V ⇝ V by integrating the concept transition distribution T with the value swap distribution Qcc′ .
Specifically, given a concept c sampled from the stationary distribution πK and its paired transition concept
c′ ∼ Tc, the transition of values follows Qcc′(x′c|xc). Formally, the value transition distribution is defined as

Q(x′|x) =
∑
c,c′∈C

πK,cTcc′Qcc′(x
′
c|xc).

Data augmentation In (g), we construct the augmented dataset Daug, we apply the value transition
distribution Q to generate augmented views of samples in D. By applying Q to a given input instance (or
row) x, we obtain a transformed sample x′, which preserves the semantics while introducing controlled
perturbations. In Section C.4.1, Daug formulates a set of triplets (x1,x2,x−), where x1 and x2 are positive
pairs and x− is a negative sample, as structure particularly useful for spectral contrastive loss and other
triplet-based objectives. However, for InfoNCE loss where negative samples are implicitly drawn from the
batch rather than explicitly drawn from the mini batch, so different formulation of Daug is required.

For datasets with many columns, we allow multiple value transitions per sample, where the number of
transitions is selected based on the number of columns. Appendix C.5 describes the heuristics in determining
the number of transitions per different dataset to ensure sufficient augmentation. Also, note that additional
stochasticity can be incorporated into Daug to enhance diversity, such as introducing noise into numerical
columns.

C.4.2 Self-supervised representation learning

So far, we have obtained the augmented dataset Daug from value transition distribution. In (h), using this
dataset, we perform contrastive representation learning to learn feature representation of instances and to
perform supervised learning. The training process consist of two main steps:

• Contrastive learning to learn features: The feature encoder h(x) is initially trained on Daug using a
contrastive learning objective to extract meaningful representation.

• Fine-tuning (or transfer learning): The trained encoder is then fine-tuned with a prediction head for
the supervised task dataset D.

The choice feature encoder h(x) can be arbitrary as long as it produces a fixed-length feature from
tabular row. Therefore, various architectures can be employed. As described in Section 5.5.1, we choose
FT-Transformer as our main encoder due to its input encoding scheme (feature tokenizer). Alternatively,
GNN-based encoders or simple fully-connected networks can be adapted depending on the dataset of interest.

Several learning objectives can be used for SSL [Johnson et al., 2023, Bardes et al., 2022]:

• Spectral contrastive loss: As described above, this approach leverages spectral properties of the data.

• NT-Xent/NT-Logistic: These is a widely used class of objectives in contrastive learning that maximizes
similarity between augmented views of the same instance while minimizing similarity with negative
samples.

• Non-contrastive losses: One can factorize the positive-pair kernel using non-contrastive objectives,
which extend the Rayleigh quotient to this stochastic setting [Horn and Johnson, 2012]. A popular
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instance is the VICReg objective [Bardes et al., 2022], which is a Lagrangian objective towards solving:

Lnon-con(h) := E
∥∥h(X1)− h(X2)

∥∥2
2

s.t. Cov(h(Xi)) = I, i = 1, 2,
(18)

where the joint distribution over X1 and X2 is given by∫
Q(X1 | x) ·Q(X2 | x) · dP(x),

i.e., the distribution induced by first sampling x from the data distribution, then sampling X1 and X2

from the value transition distribution conditioned on x.

From several experiments, we found that the InfoNCE loss [Oord et al., 2018] which falls under NT-Xent,
shows better performance than the spectral contrastive loss.

Similar to the benchmark method in Ye et al. [2024a], we perform hyper-parameter tuning to benchmark
our methods. For our self-supervised learning method in Section 5.4.4, the training of our knowledge-enriched
model occurs in two steps, so we searched for hyper-parameters only in the second step. Please refer to Section
C.5 for details.

C.5 Hyper-parameter Search and Training Details
To optimize our methods to each dataset of KE-TALENT benchmark, we conducted hyper-parameter
optimization using Optuna Akiba et al. [2019] with the Tree-structured Parzan Estimator (TPE) sampler, the
default search strategy in Optuna, following Ye et al. [2024a]. The search process aimed to optimize the root
mean squared error (RMSE) for regression tasks and maximize the accuracy for classification tasks on the
validation set. After finding the optimal hyper-parameters for each dataset and model, we trained the model
15 times with different random seeds and reported the test set performance. The search space included both
architectural and training parameters as detailed in Table 23 for the hyper-parameter search space.

For the smoothing and value kernel models, which use RealMLP as their MLP architecture, we searched
over the same hyper-parameter space as the TALENT benchmark, except for narrowing the range of the
learning rate to prevent instability in training. We used the AdamW optimizer with β1 = 0.9, β2 = 0.95, a
batch size of 256, and a coslog4 learning rate scheduler. In our implementation of RealMLP, we omitted
data-driven weight initialization or a decaying dropout ratio due to the implementation complexity. Note that,
despite these simplifications, our version remains closer to the original RealMLP compared to its simplified
variant, RealMLP-TD-S.

For the concept graph attention network (CGAT) model, we used dataset-specific batch sizes. Specifically,
we use the largest possible batch size (a power of two, up to 1024) for each dataset that could fit within 48GB
of VRAM (NVIDIA RTX A6000 GPU).

For the self-supervised learning (SSL) model, hyper-parameter search was performed only during the
fine-tuning stage, as described in Appendix C.4.2, focusing on the MLP prediction head and optimizer settings.
During the SSL stage, we followed the TALENT codebase for default hyper-parameters of the encoder
(FT-Transformer) architecture. We employed the AdamW optimizer with a cosine learning rate scheduler with
warmup, where the base learning rate was set to 2× 10−5, and no weight decay. The model was trained with
a batch size of 1024, and the number of epochs was chosen as the minimum multiple of 100 that ensured
training for 1000 steps. The number of transition steps during data augmentation was adjusted per dataset to
ensure that approximately 20% of columns were modified in each augmentation step. For the InfoNCE loss,
we set the temperature parameter to τ = 0.1.
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Methods Parameters Grid

Smoothing

Smoothing ξ (Only for norm and Laplacian) LogUniform [0.1, 10.0]
Numerical embedding {none, pbld}
Dropout {0.0, 0.15}
Nonlinear activation {SELU, Mish}
MLP hidden layers {[256,256,256],[64,64,64,64,64],[512]}
PLR sigma LogUniform [0.05, 0.5]
Label smoothing (only for classification) {0.0, 0.1}
Learning rate LogUniform [0.02, 0.07]
Weight decay {0.0, 0.02}

Value kernel

Spectral decomposition matrix {Adjacency, Laplacian}
Numerical embedding {none, pbld}
Dropout {0.0, 0.15}
Nonlinear activation {SELU, Mish}
MLP hidden layers {[256,256,256],[64,64,64,64,64],[512]}
PLR sigma LogUniform [0.05, 0.5]
Label smoothing (only for classification) {0.0, 0.1}
Learning rate LogUniform [0.02, 0.07]
Weight decay {0.0, 0.02}

Concept
graph

attention
networks
(CGAT)

Input embed dim LogInt [16, 256]
Conv num layers UniformInt [1, 3]
Conv hidden dim LogInt [16, 64]
Concept attention dim LogInt [4, 16]
Num attn heads UniformInt [1, 4]
Edge active ratio Uniform [0.1, 0.9]
MLP num layers UniformInt [2, 5]
MLP hidden dim LogInt [16, 256]
MLP dropout 0.1
Learning rate LogUniform [3e-5, 1e-3]
Weight decay LogUniform [1e-6, 1e-3]

SSL

MLP num layers UniformInt [2, 5]
MLP hidden dim LogInt [16, 256]
MLP dropout 0.1
Learning rate LogUniform [3e-5, 3e-3]
Weight decay LogUniform [1e-6, 1e-3]

Table 23: Hyper-parameter space for knowledge-enriched supervised learning methods

C.6 Additional Results

C.7 Best result for each dataset
To provide a more complete picture, Table 24 lists extended KE-TALENT results, including the single best
score for every dataset in the original TALENT benchmark. We did not treat these methods as primary
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baselines because (i) they were not the overall top performer within their respective model families, or (ii)
their results became public only after our paper was written.

C.7.1 Concept kernel visualization

In Figures 24 to 26, we visualize the concept kernels for three datasets with 20–34 columns: Student
Performance, German Credit Data, and Student Dropout. Additionally, Tables 25 to 27, lists the top-5 nearest
columns (highest cosine similarity in the concept embedding space, excluding self) for each column in those
datasets. Many of these neighbor pairs are indeed semantically related. For example:

• Student Performance

– “number of school absences” and “number of past class failures”
– “weekend alcohol consumption” and “workday alcohol consumption”
– “extra educational support” and “family educational support”
– “mother’s education” and “father’s education”

• German Credit Data

– “Credit amount” and “Number of existing credits at this bank”
– “Present residence since” and “Present employment since”
– “Housing” and “Property”
– “Other installment plans” and “Installment rate in percentage of disposable income”

• Student Dropout

– “Mother’s qualification” and “Father’s qualification”
– “Previous qualification” and “Previous qualification (grade)”
– “Nationality” and “International”
– “Mother’s occupation” and “Father’s occupation”

Because the concept embeddings were generated by a pretrained language model, these findings further
demonstrate that modern LMs are effective at computing concept kernels that capture meaningful semantic
relationships among dataset columns.

75



st
ud

en
t's

 a
ge

ho
m

e 
to

 sc
ho

ol
 tr

av
el

 ti
m

e
we

ek
ly

 st
ud

y 
tim

e
nu

m
be

r o
f p

as
t c

la
ss

 fa
ilu

re
s

qu
al

ity
 o

f f
am

ily
 re

la
tio

ns
hi

ps
fre

e 
tim

e 
af

te
r s

ch
oo

l
go

in
g 

ou
t w

ith
 fr

ie
nd

s
wo

rk
da

y 
al

co
ho

l c
on

su
m

pt
io

n
we

ek
en

d 
al

co
ho

l c
on

su
m

pt
io

n
cu

rre
nt

 h
ea

lth
 st

at
us

nu
m

be
r o

f s
ch

oo
l a

bs
en

ce
s

st
ud

en
t's

 sc
ho

ol
st

ud
en

t's
 se

x
st

ud
en

t's
 h

om
e 

ad
dr

es
s t

yp
e

fa
m

ily
 si

ze
pa

re
nt

's 
co

ha
bi

ta
tio

n 
st

at
us

m
ot

he
r's

 e
du

ca
tio

n
fa

th
er

's 
ed

uc
at

io
n

m
ot

he
r's

 jo
b

fa
th

er
's 

jo
b

re
as

on
 to

 c
ho

os
e 

th
is 

sc
ho

ol
st

ud
en

t's
 g

ua
rd

ia
n

ex
tra

 e
du

ca
tio

na
l s

up
po

rt
fa

m
ily

 e
du

ca
tio

na
l s

up
po

rt
ex

tra
 p

ai
d 

cla
ss

es
 w

ith
in

 th
e 

co
ur

se
 su

bj
ec

t
ex

tra
-c

ur
ric

ul
ar

 a
ct

iv
iti

es
at

te
nd

ed
 n

ur
se

ry
 sc

ho
ol

wa
nt

s t
o 

ta
ke

 h
ig

he
r e

du
ca

tio
n

In
te

rn
et

 a
cc

es
s a

t h
om

e
wi

th
 a

 ro
m

an
tic

 re
la

tio
ns

hi
p

student's age
home to school travel time

weekly study time
number of past class failures

quality of family relationships
free time after school
going out with friends

workday alcohol consumption
weekend alcohol consumption

current health status
number of school absences

student's school
student's sex

student's home address type
family size

parent's cohabitation status
mother's education
father's education

mother's job
father's job

reason to choose this school
student's guardian

extra educational support
family educational support

extra paid classes within the course subject
extra-curricular activities
attended nursery school

wants to take higher education
Internet access at home

with a romantic relationship 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 24: Kernel heatmap of Student Performance dataset
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Figure 25: Kernel heatmap of German Credit Data dataset
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Figure 26: Kernel heatmap of Student Dropout dataset
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Dataset Abalone Diamond ParkTel StuPerf Crime Churn Credit Taiwan ASP Internet StuDrop

Method \ Task reg/RMSE(↓) bincls/Acc(↑) multicls/Acc(↑)

RealMLP 2.1210 523.92 0.7337 2.9277 0.1381 0.8735 0.7157 0.9667 0.3861 0.5302 0.7655
CatBoost 2.1789 524.91 1.5994 2.9244 0.1336 0.8759 0.7430 0.9718 0.3815 0.5358 0.7782
TabR 2.1078 513.53 8.0521 2.9072 0.1437 0.8743 0.7240 0.9678 0.3750 0.5183 0.7493
FT-T 2.1078 532.83 8.3437 2.9642 0.1369 0.8709 0.7123 0.9674 0.3678 0.5348 0.7547

Best 2.0888 492.58 2.5560 0.1325 0.7513 0.4448
(ResNet) (MNCA) (MNCA) (XGB) (LGBM) (XGB)

Smooth(kernel) 2.1718 938.03 2.4700 3.0651 0.1466 0.8657 0.7160 0.9722 0.3815 0.5042 0.7162
Smooth(norm) 2.0879 903.70 1.2112 2.9725 0.1401 0.8688 0.6960 0.9659 0.4013 0.5093 0.7579
Smooth(Laplacian) 2.0937 522.37 0.9530 2.8926 0.1397 0.8765 0.7193 0.9694 0.3900 0.5259 0.7673
Value kernel 2.0825 525.79 0.8676 2.9203 0.1394 0.8746 0.7157 0.9673 0.3761 0.5315 0.7665
CGAT 2.0876 677.33 1.4612 3.0397 0.1425 0.8764 0.7337 0.9675 0.3838 0.5275 0.7656
SSL 2.1584 534.12 1.1275 2.9178 0.1373 0.8757 0.7180 0.9655 0.3964 0.5327 0.7571

Table 24: Additional Results on KE-TALENT benchmark Additionally to Table 12, the table reports the
best method for each dataset in the “Best” row in case if the earlier four baselines didn’t achieve the best in
TALENT (MNCA: ModernNCA [Ye et al., 2024b], XGB: XGBoost [Chen and Guestrin, 2016], LGBM:
LightGBM [Ke et al., 2017]).
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Column Top-5 Nearest Columns

“student’s age” “student’s sex”
“student’s school”
“student’s guardian”
“number of school absences”
“student’s home address type”

“home to school travel
time”

“weekly study time”
“number of school absences”
“free time after school”
“student’s school”
“student’s home address type”

“weekly study time” “home to school travel time”
“free time after school”
“family educational support”
“extra-curricular activities”
“extra educational support”

“number of past class
failures”

“number of school absences”
“student’s age”
“extra paid classes within the course
subject”
“current health status”
“student’s sex”

“quality of family rela-
tionships”

“current health status”
“going out with friends”
“family size”
“family educational support”
“parent’s cohabitation status”

“free time after school” “extra-curricular activities”
“going out with friends”
“number of school absences”
“weekly study time”
“extra educational support”

“going out with
friends”

“weekend alcohol consumption”
“free time after school”
“quality of family relationships”
“workday alcohol consumption”
“with a romantic relationship”

“workday alcohol con-
sumption”

“weekend alcohol consumption”
“going out with friends”
“free time after school”
“current health status”
“quality of family relationships”

“weekend alcohol con-
sumption”

“workday alcohol consumption”
“going out with friends”
“current health status”
“free time after school”
“quality of family relationships”

“current health status” “quality of family relationships”
“weekend alcohol consumption”
“workday alcohol consumption”
“going out with friends”
“weekly study time”

Column Top-5 Nearest Columns

“number of school ab-
sences”

“number of past class failures”
“student’s age”
“student’s school”
“home to school travel time”
“free time after school”

“student’s school” “student’s sex”
“student’s age”
“student’s guardian”
“reason to choose this school”
“student’s home address type”

“student’s sex” “student’s age”
“student’s school”
“student’s guardian”
“student’s home address type”
“extra-curricular activities”

“student’s home ad-
dress type”

“student’s school”
“student’s age”
“student’s sex”
“student’s guardian”
“home to school travel time”

“family size” “quality of family relationships”
“family educational support”
“parent’s cohabitation status”
“number of school absences”
“student’s age”

“parent’s cohabitation
status”

“quality of family relationships”
“family educational support”
“family size”
“father’s job”
“student’s age”

“mother’s education” “father’s education”
“mother’s job”
“family educational support”
“wants to take higher education”
“attended nursery school”

“father’s education” “mother’s education”
“father’s job”
“family educational support”
“wants to take higher education”
“attended nursery school”

“mother’s job” “father’s job”
“mother’s education”
“father’s education”
“family educational support”
“student’s guardian”

“father’s job” “mother’s job”
“father’s education”
“mother’s education”
“student’s guardian”
“family educational support”

Column Top-5 Nearest Columns

“reason to choose this
school”

“student’s school”
“extra educational support”
“extra-curricular activities”
“attended nursery school”
“wants to take higher education”

“student’s guardian” “student’s school”
“student’s age”
“student’s sex”
“extra educational support”
“family educational support”

“extra educational sup-
port”

“family educational support”
“extra-curricular activities”
“extra paid classes within the course
subject”
“mother’s education”
“wants to take higher education”

“family educational
support”

“extra educational support”
“mother’s education”
“father’s education”
“wants to take higher education”
“student’s guardian”

“extra paid classes
within the course sub-
ject”

“extra educational support”
“extra-curricular activities”
“student’s school”
“wants to take higher education”
“family educational support”

“extra-curricular activi-
ties”

“extra educational support”
“free time after school”
“student’s school”
“extra paid classes within the course
subject”
“family educational support”

“attended nursery
school”

“student’s school”
“mother’s education”
“father’s education”
“wants to take higher education”
“extra-curricular activities”

“wants to take higher
education”

“mother’s education”
“father’s education”
“extra educational support”
“student’s age”
“family educational support”

“Internet access at
home”

“student’s home address type”
“home to school travel time”
“family educational support”
“free time after school”
“student’s school”

“with a romantic rela-
tionship”

“student’s sex”
“going out with friends”
“attended nursery school”
“wants to take higher education”
“extra-curricular activities”

Table 25: Top-5 nearest columns for each column in Student Performance dataset
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Column Top-5 Nearest Columns

“Duration” “Purpose”
“Job”
“Age”
“Present employment since”
“Property”

“Credit amount” “Number of existing credits at this
bank”
“Credit history”
“Installment rate in percentage of
disposable income”
“Other installment plans”
“Other debtors / guarantors”

“Installment rate in per-
centage of disposable
income”

“Other installment plans”
“Credit amount”
“Other debtors / guarantors”
“Savings account/bonds”
“Number of people being liable to
provide maintenance for”

“Present residence
since”

“Present employment since”
“Housing”
“Property”
“Credit history”
“Status of existing checking ac-
count”

“Age” “Job”
“Present employment since”
“Duration”
“Telephone”
“Personal status and sex”

“Number of existing
credits at this bank”

“Credit amount”
“Credit history”
“Status of existing checking ac-
count”
“Other debtors / guarantors”
“Other installment plans”

Column Top-5 Nearest Columns

“Number of people be-
ing liable to provide
maintenance for”

“Other debtors / guarantors”
“Housing”
“Number of existing credits at this
bank”
“Installment rate in percentage of
disposable income”
“Other installment plans”

“Status of existing
checking account”

“Number of existing credits at this
bank”
“Savings account/bonds”
“Credit history”
“Credit amount”
“Present residence since”

“Credit history” “Credit amount”
“Number of existing credits at this
bank”
“Other debtors / guarantors”
“Present employment since”
“Status of existing checking ac-
count”

“Purpose” “Job”
“Duration”
“Property”
“Telephone”
“foreign worker”

“Savings ac-
count/bonds”

“Status of existing checking ac-
count”
“Other installment plans”
“Other debtors / guarantors”
“Number of existing credits at this
bank”
“Installment rate in percentage of
disposable income”

“Present employment
since”

“Present residence since”
“foreign worker”
“Job”
“Credit history”
“Age”

“Personal status and
sex”

“Property”
“Housing”
“Job”
“Age”
“foreign worker”

Column Top-5 Nearest Columns

“Other debtors / guaran-
tors”

“Other installment plans”
“Credit history”
“Number of people being liable to
provide maintenance for”
“Number of existing credits at this
bank”
“Savings account/bonds”

“Property” “Housing”
“Present residence since”
“Purpose”
“Personal status and sex”
“Job”

“Other installment
plans”

“Installment rate in percentage of
disposable income”
“Other debtors / guarantors”
“Savings account/bonds”
“Credit amount”
“Number of existing credits at this
bank”

“Housing” “Present residence since”
“Property”
“Number of people being liable to
provide maintenance for”
“Telephone”
“Personal status and sex”

“Job” “foreign worker”
“Purpose”
“Present employment since”
“Age”
“Duration”

“Telephone” “Job”
“Housing”
“Property”
“Age”
“Purpose”

“foreign worker” “Job”
“Present employment since”
“Present residence since”
“Personal status and sex”
“Housing”

Table 26: Top-5 nearest columns for each column in German Credit Data dataset
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Column Top-5 Nearest Columns

“Previous qualification
(grade)”

“Previous qualification”
“Admission grade”
“Mother’s qualification”
“Father’s qualification”
“Curricular units 2nd sem (evalua-
tions)”

“Admission grade” “Previous qualification (grade)”
“Curricular units 2nd sem (evalua-
tions)”
“Curricular units 1st sem (evalua-
tions)”
“Curricular units 2nd sem (ap-
proved)”
“Curricular units 2nd sem (without
evaluations)”

“Unemployment rate” “Inflation rate”
“GDP”
“Previous qualification (grade)”
“Mother’s occupation”
“Admission grade”

“Inflation rate” “Unemployment rate”
“GDP”
“Admission grade”
“Tuition fees up to date”
“Previous qualification (grade)”

“GDP” “Unemployment rate”
“Inflation rate”
“Nationality”
“International”
“Displaced”

“Application order” “Application mode”
“Previous qualification”
“Previous qualification (grade)”
“Admission grade”
“Father’s qualification”

“Age at enrollment” “Tuition fees up to date”
“Curricular units 1st sem (en-
rolled)”
“Mother’s qualification”
“Curricular units 2nd sem (en-
rolled)”
“Previous qualification”

“Curricular units 1st
sem (credited)”

“Curricular units 2nd sem (cred-
ited)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 1st sem (ap-
proved)”
“Curricular units 1st sem (evalua-
tions)”
“Curricular units 1st sem (without
evaluations)”

...

Column Top-5 Nearest Columns

...
“Curricular units 2nd
sem (without evalua-
tions)”

“Curricular units 1st sem (without
evaluations)”
“Curricular units 2nd sem (evalua-
tions)”
“Curricular units 1st sem (evalua-
tions)”
“Curricular units 2nd sem (en-
rolled)”
“Curricular units 2nd sem (ap-
proved)”

“Marital Status” “Mother’s qualification”
“Gender”
“Father’s qualification”
“Mother’s occupation”
“Debtor”

“Application mode” “Application order”
“Mother’s occupation”
“Educational special needs”
“International”
“Marital Status”

“Course” “Scholarship holder”
“Debtor”
“Displaced”
“Gender”
“Curricular units 2nd sem (cred-
ited)”

“Daytime/evening at-
tendance”

“Curricular units 2nd sem (en-
rolled)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem (evalua-
tions)”
“Curricular units 2nd sem (cred-
ited)”
“Age at enrollment”

“Previous qualifica-
tion”

“Previous qualification (grade)”
“Mother’s qualification”
“Father’s qualification”
“Scholarship holder”
“Admission grade”

“Nationality” “International”
“Gender”
“GDP”
“Scholarship holder”
“Father’s occupation”

“Mother’s qualifica-
tion”

“Father’s qualification”
“Mother’s occupation”
“Previous qualification”
“Father’s occupation”
“Previous qualification (grade)”

“Father’s qualification” “Mother’s qualification”
“Father’s occupation”
“Previous qualification”
“Mother’s occupation”
“Previous qualification (grade)”

Column Top-5 Nearest Columns

“Mother’s occupation” “Father’s occupation”
“Mother’s qualification”
“Father’s qualification”
“Marital Status”
“Previous qualification”

“Father’s occupation” “Mother’s occupation”
“Father’s qualification”
“Mother’s qualification”
“Previous qualification”
“Marital Status”

“Displaced” “Debtor”
“Scholarship holder”
“GDP”
“Marital Status”
“Nationality”

“Educational special
needs”

“Curricular units 2nd sem (en-
rolled)”
“Scholarship holder”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem (evalua-
tions)”
“Mother’s qualification”

“Debtor” “Scholarship holder”
“Marital Status”
“Father’s occupation”
“Displaced”
“Gender”

“Tuition fees up to date” “Age at enrollment”
“Curricular units 2nd sem (en-
rolled)”
“Curricular units 1st sem (en-
rolled)”
“Curricular units 2nd sem (ap-
proved)”
“Curricular units 2nd sem (cred-
ited)”

“Gender” “Nationality”
“Marital Status”
“Mother’s occupation”
“International”
“Debtor”

“Scholarship holder” “Curricular units 2nd sem (cred-
ited)”
“Debtor”
“Curricular units 1st sem (cred-
ited)”
“Curricular units 2nd sem (en-
rolled)”
“Educational special needs”

“International” “Nationality”
“GDP”
“Gender”
“Educational special needs”
“Displaced”

Table 27: Top-5 nearest columns for each column in Student Dropout dataset We omitted several
redundant columns (from “Curricular units 1st sem (enrolled)” to “Curricular units 2nd sem (approved)”) due
to space constraints.
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