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Abstract

Tens of thousands of simultaneous statistical hypothesis tests are routinely con-
ducted in genomic studies to identify genes causally affected by disease. Recent ad-
vances in single-cell RNA sequencing and CRISPR technologies have enabled gene
expression to be measured at high resolution. However, these data are often sparse,
over-dispersed, and heterogeneous, posing substantial challenges for the reliable infer-
ence of multiple causal effects.

This thesis develops three complementary solutions.

(1) GCATE is a unified model-based framework for generalized linear models with
latent confounding. By exploiting orthogonal structure and linear projections,
GCATE enables consistent estimation and inference on direct effects under non-
linear models. In the high-dimensional regime when both sample and response
sizes approach infinity, we derive Type-I error control of asymptotic z-tests and
demonstrate false discovery rate control by the Benjamini-Hochberg procedure
empirically. By comparing single-cell RNA-seq counts from two groups of sam-
ples, we demonstrate the suitability of adjusting confounding effects when sig-
nificant covariates are absent from the model.

(2) causarray couples confounder estimation from GCATE and the semiparametric
framework for multiple derived outcomes. The approach extends beyond average
treatment effects to robust causal estimands and allows for flexible estimation
using machine learning, and the resulting doubly robust pipeline maintains FDR
or FDX control. Applications to an in vivo Perturb-seq screen of autism-risk
genes and to three Alzheimer’s transcriptomic datasets uncover clustered neu-
ronal pathways implicated in disease.

(3) Pii supplies assumption-lean post-integration inference by leveraging negative
control outcomes to adjust latent heterogeneity. The resulting doubly robust
estimators achieve consistency and efficiency under weak conditions, enabling
inference after integration with machine learning for data-adaptive estimation.
The empirical performance is evaluated via simulations using random forests and
further demonstrated on single-cell CRISPR datasets with potential unmeasured
confounding.

Together, these methods form a principled toolkit for causal inference in complex
genomic settings, addressing non-Gaussianity, heterogeneity, high-dimensionality, and
unmeasured confounding, and enabling reliable discovery of disease-related genes and
pathways.
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Chapter 1

Introduction

The advent of genomic research has transformed our understanding of biological processes and
disease mechanisms. Advances in single-cell RNA sequencing (scRNA-seq) have driven this rapid
progress, offering unprecedented insights into gene expression patterns at the cellular level [161].
The high resolution provided by scRNA-seq data is essential to elucidate cellular heterogeneity
and its implications for health and disease [50, 110, 164]. However, fully harnessing the potential of
these data requires robust analytical frameworks capable of moving beyond association to unravel
complex causal relationships at single-cell resolution [49, 92, 134]. The fundamental difference
between association and causation is that association assesses correlations between treatments
and outcomes, whereas causal inference aims to quantify the effect of a treatment on an outcome.
A popular framework for causal inference is the potential outcomes framework, which estimates
what would have happened if a different treatment had been assigned, the counterfactual [49, 71].
Causal inferences are crucial for understanding biological processes and disease mechanisms,
with important implications for treatments, precision medicine, genomic medicine, and related
fields [149, 155].

One of the primary challenges in leveraging scRNA-seq data for causal inference is its inher-
ent hierarchical organization and heterogeneity [38, 49, 134]. Cells from the same individual are
not independent observations. They share biological factors, such as correlated gene expression,
and technical factors, including batch effects introduced during storage and sequencing. These
dependencies violate the assumption of independent and identically distributed (i.i.d.) samples,
complicating statistical analyses and rendering traditional methods inadequate for handling het-
erogeneous data with unwanted variations [140, 147]. Furthermore, most genomic studies are
observational in nature. Unlike randomized controlled trials, observational studies lack com-
plete knowledge of the disease or treatment assignment mechanism, leading to potential biases in
counterfactual estimation.

CRISPR perturbation experiments, a more recent but rapidly expanding area, offer a new set
of challenging analysis scenarios [29, 68, 82]. For this experimental setting, perturbed cells are
contrasted with cells that receive a non-targeting perturbation. While there is some randomness
in the treatment assignment, it is not entirely random: continuous unmeasured confounders such
as variability in cell size or differential drug exposure can result in biased causal estimates. Ad-
ditionally, when such experiments are performed in vivo, the possibility of confounding increases
[79], further justifying the need for robust causal inference analysis.

In summary, the challenges of reliable causal inference for scRNA-seq and CRISPR analysis
lie in:
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(1) Noisy: scRNA-seq data exhibit sparsity, with a significant portion of the data consists
of zeros, indicating no detected expression for many genes across cells; and overdispersion,
with the variance of gene expression counts surpassing the mean, challenging conventional
assumptions of Poisson or binomial distributions for count data modeling.

(2) High-dimensional and intricate correlated: scRNA-seq data are inherently high-dimensional,
with the number of measured genes (variables) far exceeding the number of cells (observa-
tions), and this high-dimensionality is coupled with correlations among gene expressions that
require sophisticated joint modeling approaches for consistent estimation and valid inference.

(3) Observational: As these studies are typically observational, scRNA-seq data come with
inherent potential confounders and heterogeneity among cells or subjects. This heterogeneity
necessitates the deployment of advanced causal inference tools to manage these challenges
effectively, ensuring accurate interpretation and conclusions from both bulk-cell and single-
cell data analyses.

These characteristics necessitate the development and application of advanced statistical causal
inference methods that can jointly model these aspects, addressing sparsity, overdispersion,
high-dimensionality, correlation, and heterogeneity to extract meaningful biological insights from
single-cell data.

The problems of modelling and predicting the single-cell gene expressions have been exten-
sively studied in various works. For instance, Du et al. [41, 42] consider estimation and model
selection with ensemble methods, with the theoretical understandings of overparameterized en-
semble learning explored in a series of work [13, 135, 136], and Zhen and Du [187] consider
neighborhood prediction model using network information. The probabilistic deep generative
modeling of multi-modal single-cell datasets is also explored by Du et al. [40, 43], Moon et al.
[128], Zhou and Du [188]. A natural next step is to establish valid statistical inference for identi-
fying differentially expressed and causally expressed genes. In genomics, only a few methods have
been proposed for drawing conclusions about causal gene identification. The lack of reliable and
robust causal inference approaches for genomics discoveries inspires us to study the inferential
methods for causal inference with multiple outcomes in genomics.

In response to these challenges, this thesis explores three approaches for simultaneous causal
inference on multiple genes:

(1) GCATE [48]: a model-based framework for multivariate generalized linear models with latent
confounding. GCATE projects out unmeasured factors, applies sparsity-aware bias correc-
tion, and provides valid large-scale z–tests with false-discovery-rate (FDR) control even for
high-dimensional, over-dispersed count data.

(2) causarray [47, 49]: a two-stage procedure that (i) uses GCATE to estimate unobserved con-
founders and (ii) combines these estimates with doubly robust semiparametric estimators
to obtain causal contrasts. The pipeline accommodates flexible machine-learning nuisances,
handles heterogeneous single-cell and pseudo-bulk outcomes, and supports both FDR and
family-wise discovery-rate (FDX) control.

(3) Pii [45]: an assumption-lean post-integration inference approach that adjusts for latent het-
erogeneity via negative control outcomes. Pii delivers deterministic bias corrections and
doubly robust estimators that remain consistent and efficient under model misspecification,
mediation, and moderation, enabling reliable inference after data-adaptive integration.

The three methods will be detailed in the following three chapters, presented in order.
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Chapter 2

Simultaneous inference for
generalized linear models with
unmeasured confounders

Material in this chapter first appeared as Du et al. [48].

2.1 Introduction

To discover genes that are differentially expressed under different experimental conditions or
across groups of samples, large numbers of simultaneous hypothesis tests must be performed.
These tests are made more challenging by the presence of unmeasured covariates that bias the
analyses. In 2007, Leek and Storey [96, 97] presented their pathbreaking “surrogate variable”
approach to control for unmeasured confounding effects in differential expression (DE) studies
using microarray data. These confounders go by various names in the literature, including batch
effects, surrogate variables, latent effects, or simply unwanted variations [56, 98, 160]. Adjusting
for confounding effects is crucial because they may distort the correct null distribution of the test
statistics, and consequently, standard statistical approaches can be substantially biased [119, 175].
Due to burgeoning developments in the genomics field, DE testing has been dramatically expanded
to include a variety of genomic readouts beyond microarray, in which the normality of the observed
counts rarely holds. Inspired by modern-day omic studies, the concerns about confounding are
more urgent than ever, and there is a pressing need to adapt statistical approaches to changing
data types.

The problem of confounder adjustment has been an important topic in statistics in recent
years. To characterize the confounding effects, the pioneering work in this field assumes a linear
model Y = XB⊤ +ZΓ⊤ +E, where Y ∈ Rn×p is the gene expression matrix, X ∈ Rn×d is the
measured covariate matrix, B ∈ Rp×d is the direct effect to be estimated, Z ∈ Rn×r is the latent
factor matrix, Γ ∈ Rp×r is the latent factor loading, and E ∈ Rn×p is the additive noise. The
early investigations study the statistical inference problem under this model by further imposing
a linear relationship between X and Z, assuming either X causes Z as in Figure 2.1(a), i.e., Z is
a hidden mediator [59, 97, 175], or Z causes X as in Figure 2.1(b), i.e., Z is a hidden confounder
[62, 159].

In the presence of hidden mediators, where the observed covariates are the cause of the hidden
variables, Wang et al. [175] and Gerard and Stephens [59] study the statistical inference problem
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Figure 2.1: Causal diagrams on the generative models illustrating the relationship between the

covariate X, the latent variable Z, and the response Y . (a) Z is a hidden mediator when X

causes Z. (b) hidden confounder when Z causes X. Note that we do not require knowledge of the

relationship between X and Z for the analysis in this paper.

for multiple outcomes (p > 1) by assuming a linear relationship between the observed variables
and the hidden variables. In the context of hidden confounders and a single outcome (p = 1), Guo
et al. [62] propose a doubly debiased lasso estimator and establish asymptotic normality; Ćevid
et al. [22] propose a spectral de-confounding method; and Sun et al. [159] analyze non-asymptotic
and asymptotic false discovery control with high-dimensional covariates.

More recently, methods for estimating primary effects extend beyond linear dependence struc-
tures between covariates and confounders. For instance, Jiang and Ning [76] model the interaction
between the covariates and the confounders, and projection-based methods are employed to es-
timate the primary effects under arbitrary dependency [19, 95, 120]. For statistical inference,
McKennan and Nicolae [119] propose an estimator that is asymptotically equivalent to the or-
dinary least squares estimators obtained when every covariate is observed, and Bing et al. [20]
establish asymptotic normality, efficiency, and consistency.

The applicability of the aforementioned methods to the nonlinear model remains challenging.
Limited research has been done to address adjustments for confounding effects under the setting
of arbitrary confounding mechanisms, nonlinear models, and multiple outcomes. For empirical
studies, Salim et al. [147] propose a heuristic algorithm that utilizes a pseudo-replicate design
matrix and negative control genes to remove unwanted variations. For theoretical analysis, to the
best of our knowledge, the related literature that explores slightly broader settings is limited to
Feng [51], who studies nonlinear factor models concerning treatment effects with a single outcome
by PCA-based matching, and Ouyang et al. [131], who study the generalized linear models with
a single outcome and linear hidden confounders. However, both of these works assume the
covariates are some functions of the unobserved confounders.

Our work is inspired by the rapid developments in the field of genomics, particularly single-
cell omics [50]. For example, CRISPR perturbations with single-cell sequencing readouts have
promised extraordinary scientific insight [29, 68, 82]; due to the sparsity of outcomes and the
nature of the molecular readout, these data are not suitable for analysis by linear models under
Gaussianity assumptions [12, 150]. Hence, our development of generalized linear models for
confounding is timely.

In this paper, we adopt the term “confounder” to encompass a broad category of latent vari-
ables, including both mediators and confounders, as defined in the context of causal inference
literature. The purpose of this paper is to derive valid simultaneous inference for multivariate
generalized linear models in the presence of unmeasured confounding effects. Existing methods in
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this domain typically focus on Gaussian linear models [19, 20, 175] or necessitate direct modeling
of the relationship between covariates and confounders [51, 131]. To the best of our knowledge,
the proposed method is the first estimation and inference framework capable of (1) accommodat-
ing general relationships between observed covariates and unmeasured confounders, allowing for
arbitrary confounding mechanisms; (2) utilizing generalized linear models, allowing for nonlinear
modeling ; and (3) incorporating information from multiple outcomes. Our approach leverages the
orthogonal structures inherent in the problem, incorporating linear projection techniques into
both estimation and inference processes to effectively mitigate confounding effects and elucidate
primary effects. Notably, it exhibits significant utility in high-dimensional sparse count data, as
demonstrated through the analysis of single-cell datasets on systemic lupus erythematosus disease
in Section 2.6.

Our proposed procedure gcate (generalized confounder adjustment for testing and estima-
tion) consists of three main steps. In the first step, we use joint maximum likelihood estimation
[26, 27] to obtain the initial estimate of the marginal effects and uncorrelated latent components
by projecting the latent factor Z to the orthogonal space of X, from which we recover the column
space of Γ. In the second step, we use a similar strategy to obtain the estimates of both Z and
primary effect B, by constraining the latter to be orthogonal to the estimated latent coefficients
Γ̂ and using ℓ1-regularization to encourage sparsity. Lastly, the valid inference is guaranteed
by a bias-corrected estimator of B̂, which innovates a link-specific weight function, similar to
[21, 74], while incorporating projection-based score adjustments that combine the information
from multivariate responses.

In our theoretical framework of confounded generalized linear models, we establish conditions
for identifying the latent coefficients and direct effects. Furthermore, we provide non-asymptotic
estimation error bounds for these estimated quantities in high-dimensional scenarios where both
the sample size n and response size p tend to be infinity. In particular, we derive element-
wise ℓ2-norm and ℓ1-norm bounds for the estimation error of the primary effects by effectively
controlling the column-wise estimation errors of the latent components. Lastly, we demonstrate
the asymptotic normality of our proposed bias-corrected estimator and show the proper control
of statistical errors, thereby enabling the construction of valid confidence intervals and hypothesis
tests.

Organization and Notation. In Section 2.2, we set up our modeling framework, which ex-
tends existing results in the literature to the generalized linear model setting. In Section 2.3,
we describe our strategy for estimation and establish bounds on the estimation error of the pa-
rameters of interest. In Section 2.4, we motivate and construct asymptotically valid confidence
intervals and hypothesis tests. Finally, in Section 2.5 and Section 2.6, we study the empirical be-
havior of our estimators in realistic simulations and a study of gene expression in lupus patients.
Technical proof of the results is provided in the supplementary material.

Throughout our exposition, we will use the following notational conventions. For any ma-
trix A ∈ Rn×p, we use ai, Aj , and aij to denote its ith row, jth column, and (i, j)-th entry,
respectively, for i = 1, . . . , n, j = 1, . . . , p. For any matrix A ∈ Rn×p with full column rank,
let PA = A(A⊤A)−1A⊤ and P⊥

A = Ip − PA be the orthogonal projection matrices on the A’s
column space and its orthogonal space, respectively. For any square matrix A ∈ Rn×n, λi(A)
denotes its ith largest eigenvalue. The symbol “⊙” denotes the Hadamard product. We use “o”
and “O” to denote the little-o and big-O notations and let “oP” and “OP” be their probabilistic
counterparts. For sequences {an} and {bn}, we write an ≪ bn or bn ≫ an if an = o(bn); an ≲ bn
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or bn ≳ an if an = O(bn); and an ≍ bn if an = O(bn) and bn = O(an). Convergence in distribution

and probability are denoted by “
d−→” and “

p−→”.

2.2 Modeling Differential Expression

In the context of DE testing and related applied problems, the outcome variable can be a variety
of measures, including gene expression, protein abundance, and open chromatin. For simplicity
of exposition, we will describe our methods in the context of tests for differential gene expression.
These tests aim to contrast outcomes from case versus control samples, wherein case and control
observations may be derived from various study designs, spanning the spectrum from diseased
versus healthy subjects to perturbed versus non-targeted cells.

2.2.1 Generalized linear model with hidden confounders

Suppose the gene expression y ∈ Rp is a p-dimensional random vector containing conditional
independent entries from a one-dimensional exponential family with density:

p(yj | θj) = h(yj) exp (yjθj −A(θj)) ,

where θj ∈ R is the natural parameter, and A(·) and h(·) are functions that depend on the
member of the exponential family. We restrict ourselves to the regular families whose natural
parameter space is a nonempty open set and A is continuously thrice differentiable, which is
satisfied by most common exponential families as summarized in Table A.61. Because the one-
parameter exponential family is minimal, the natural parameter space is convex, and the log-
partition function A is strictly convex. If we know the distribution of y, then θ ∈ Rp is a
unique solution to the equation E[y |θ] = A′(θ), where A′ is the first derivative of A and applied
element-wise to θ; equivalently, θ = A′−1(E[y |θ]). In other words, we can recover θ based on
the information of the first moment of y and the log-partition function A.

To associate multiple outcomes with both covariates and hidden confounders, one can natu-
rally consider the generalized linear model, where the natural parameters are linear functions of
both the observed covariates x ∈ Rd and the unmeasured confounder z ∈ Rr:

θp×1 = Bp×dxd×1 + Γp×rzr×1.

Here, B and Γ are the linear coefficients. Denote Dx the linear projection of z onto x, where
D := E[zx⊤]E[xx⊤]−1 ∈ Rr×d is the projection coefficient and w = z − Dx is the residual
uncorrelated with x. To see how z may affect the inference on B, note that

θ = (B + ΓD)x+ Γw. (2.2.1)

When y is normally distributed, the confounding effects occur even when regressing the mean
response θ = E[y | θ] on x, which yields the confounded coefficient B + ΓD while the direct
effect of interest is B. When y comes from general exponential families, the confounding effects
are more intractable because all moments and cumulants of the response may be affected by the
colinearity of x and z.

In the context of genomic analysis, the problem of confounding is more severe when the
number of available covariates is limited. In particular, one typically encounters high-dimensional
scenarios characterized by a substantial number of genes, often surpassing the available numbers
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of covariates and hidden confounding factors. In this paper, we also consider such a challenging
scenario where the number of genes is much larger than the numbers of the observed covariates and
the unmeasured confounders, namely, p≫ d and p≫ r. Under such challenges, the first natural
and essential question one may ask is whether there is any hope to disentangle the confounding
effects and identify the direct effects.

The answer to this inquiry is affirmative. On the one hand, the column space of Γ can
be identified up to rotations if Cov(Γw) = ΓΣwΓ

⊤ has rank r, where Σw = Cov(w) is the
covariance of the uncorrelated latent factors. This fact originates from basic principles in linear
algebra, frequently employed in factor analysis [7, 8]. On the other hand, once the column space
of Γ is known, one can apply the orthogonal projections to remove the confounding effects based
on (2.2.1):

P⊥
Γ θ = P⊥

ΓBx,

where PΓ = Γ(Γ⊤Γ)−1Γ⊤ and P⊥
Γ = Ip−PΓ are the orthogonal projection matrices that project

vectors on to the image of Γ and the orthogonal complement of Γ, respectively. By regressing
P⊥
Γ θ on x, we can further obtain the unconfounded primary effects P⊥

ΓB = P⊥
ΓE[θx⊤]E[xx⊤]−1.

However, the other component, PΓB, often poses challenges in identifiability unless additional
conditions are imposed. Typically, extra assumptions on the spectrum of Γ and the sparsity of
B are necessary, to assert that Γ and B are asymptotically orthogonal, in the sense that PΓB is
negligible [20, 95, 175]. In that case, B can be well approximated by P⊥

ΓB. Below, we give one
sufficient identification condition.

Proposition 1 (Identification of B). Suppose there exists a sequence {τp}p∈N that is uniformly
lower bounded away from zero such that the following conditions hold:

λr(ΓΣwΓ
⊤) ≥ τp, max

1≤j≤p
(ΓΣwΓ

⊤)jj = O(1), max
1≤ℓ≤d

∥Bℓ∥1 = o(τp). (2.2.2)

Then as p tends to infinity, it follows that B = P⊥
ΓB+o(1) and ∥PΓB∥F ≲

√
p∥B∥1,1/τp, where

∥ · ∥1,1 is the element-wise ℓ1-norm. Further, PΓ and B can be identified from the first two
moments of x,y asymptotically.

As hinted above, the lower bound condition of ΓΣwΓ
⊤’s spectrum in (2.2.2) ensures that the

column space of Γ can be identified up to rotations. The second condition guarantees that the
diagonal entries of ΓΣwΓ

⊤ are balanced. Finally, the last condition in (2.2.2) can hold when B
is sparse, and its entry is bounded. Compared to Bing et al. [20, Theorem 1] where the response
y is normally distributed, the identifiability condition of Proposition 1 applies for exponential
families, which is of much broader generality. Furthermore, the smallest eigenvalue of ΓΣwΓ

⊤

can grow at a specific rate τp in Proposition 1. When τp = p, we can recover the result in Bing
et al. [20, Theorem 1]. Lastly, we also provide a norm bound for the residual PΓB, which is
helpful for later analysis of the estimation errors.

2.2.2 Random samples

While the preceding identification results are applicable when population moments are known,
practical scenarios involve the observation of independent and identically distributed (i.i.d.) sam-
ples. Consequently, statistical estimation becomes imperative to disentangle direct effects from
the confounding effects based on samples. Suppose (xi,yi) for i = 1, . . . , n are n i.i.d. samples
coming from the same distribution as (x,y), and let X ∈ Rn×d and Y ∈ Rn×p denote the design
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matrix and the gene expression matrix, respectively. The expression yij of the ith observation
and the jth gene has the density:

p(yij | θij) = h(yij) exp (yijθij −A(θij)) ,

where θij is the natural parameter. In matrix form, the natural parameters decompose as

Θ = XB⊤ +ZΓ⊤,

where B ∈ Rp×d, Z ∈ Rn×r, and Γ ∈ Rp×r are unknown. Note that yij ’s are conditionally
independent given the natural parameter Θ.

One natural way to estimate the unknown variable Z and parameters (B,Γ) is to perform
maximum likelihood estimation. Ignoring the constant terms, the negative log-likelihood function
of Y is given by

L(Θ) = L(B,Z,Γ) = − 1

n

n∑
i=1

p∑
j=1

(yijθij −A(θij)). (2.2.3)

The second notation L(B,Z,Γ) reflects the dependence of Θ on the model parameters B and
unknown quantities Γ,Z. Addressing the challenges of nonconvexity and high dimensionality
requires developing efficient algorithms to estimate these unknown quantities and analyze their
statistical properties.

To overcome the difficulty of estimation, one critical observation comes from the projection-
based decomposition and Proposition 1:

Θ = XB⊤ +ZΓ⊤

= (XB⊤P⊥
Γ +XB⊤PΓ) + (XD⊤Γ⊤ +WΓ⊤)

= XB⊤P⊥
Γ + PXZΓ⊤ + P⊥

XWΓ⊤ + oP(1),

where we replace the best linear projection XD with its empirical counterpart PXZ in finite
samples, which yield negligible terms that contribute to oP(1). It is worth noting that XB⊤P⊥

Γ

and PXZΓ⊤ + WΓ⊤ have orthogonal columns, while XB⊤P⊥
Γ + PXZΓ⊤ and P⊥

XWΓ⊤ have
orthogonal rows. Our analysis will then take advantage of such two-way structural orthogonality
to perform both estimation and inference for the parameters of interest, as detailed in the following
sections.

2.3 Estimation

From now on, we will use an asterisk on the upper subscript to indicate the population parameters
and the true latent factors. Specifically, we denote the underlying parameter as

Θ∗ = XB∗⊤ +Z∗Γ∗⊤ = X(B∗ + Γ∗D∗)⊤ +W ∗Γ∗⊤.

Let R ⊆ R be an open domain of θ such that A(θ) <∞ for all θ ∈ R. For a given C > 0, define
RC = R∩[−C,C] for Gaussian, Binomial and Poisson distributions andRC = R∩[−C,−1/C] for
Negative Binomial distributions. For our theoretical results, we assume the existence of constant
C > 1 such that the following common assumptions hold.
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Assumption 1 (Model parameters). Assume that Θ∗ ∈ Rn×pC with probability ιn for some
deterministic sequence ιn tending to one as n tends to infinity. The primary coefficient satisfies
that max1≤ℓ≤d ∥B∗

ℓ ∥0 ≤ s for some 1 ≤ s ≤ p and max1≤j≤p ∥b∗j∥2 ≤ C.
Assumption 2 (Covariates). Assume that x1, . . . ,xn are i.i.d. ν-sub-Gaussian random vectors
with second moment Σx := E[x1x

⊤
1 ] such that C−1 ≤ λp(Σx) ≤ λ1(Σx) ≤ C.

Assumption 3 (Latent vectors). Assume that the uncorrelated latent factors w∗
1, . . . ,w

∗
n are

i.i.d. ν-sub-Gaussian random vectors with zero means and covariance Σw, such that C−1 ≤
λr(Σw) ≤ λ1(Σw) ≤ C; and the factor loadings Γ∗ satisfy that C−1 ≤ λr(p

−1Γ∗Γ∗⊤) ≤ C and
max1≤j≤p ∥γ∗

j ∥2 ≤ C.
Like all nonlinear (nonconvex) analyses, the rows ofB∗ and Γ∗ are assumed to be in a bounded

set, as in Assumptions 1 and 3. The boundedness of the natural parameter Θ∗ is required to
control the tail probability of the response y conditional on observed covariates and latent factors.
In Assumption 2, the sub-Gaussian assumptions admit the particular case when xi1 = 1 for all
1 ≤ i ≤ n so that the intercept can be incorporated into our model. In Assumption 3, the
zero-mean condition on W ∗ is to simplify the theoretical analysis, which can be guaranteed if
we include the intercept and project Z∗ onto the linear span of the columns of [1n,X]. Finally,
the sparsity and boundedness assumptions of B∗ in Assumption 1, and the bounded spectrum
assumptions of Σw and Γ∗ in Assumption 3 imply the conditions of Proposition 1 with τp = p
therein. These assumptions are relatively lenient on the projection coefficient D∗, provided they
ensure that Θ∗ remains within a bounded set with high probability.

Remark 1 (The number of latent factors). For our theoretical results, we assume the number of
latent factors r is known in advance. Note that the joint-likelihood-based information criterion
(JIC) proposed by Chen and Li [26] can be utilized to select the number of latent factors. The
JIC value is the sum of deviance and a penalty on model complexity:

JIC(Θ̂(r)) = −2
∑

i∈[n],j∈[p]

log p(yij | θ̂(r)ij ) + ν(n, p, d+ r), (2.3.1)

where Θ̂(r) is the joint maximum likelihood estimator of the natural parameter matrix that mini-
mizes (2.2.3) with r latent factors and d observed covariates, and ν(n, p, r) = cJIC·r log(n ∧ p)(n ∧ p)−1

is the complexity measure with penalty level cJIC > 0. As shown by Chen and Li [26], minimiz-
ing the empirical JIC yields a consistent estimate for the number of factors in generalized linear
factor models with an intercept parameter. The utility of this metric in our problem setting is
also empirically examined for both the simulation in Section 2.5 and the real data analysis in
Section 2.6.

As motivated in Section 2.2.1, we consider the following optimization problem:

B̂, Ẑ, Γ̂ = argmin
B∈Rp×d,Z∈Rn×r,Γ∈Rp×r

L(B,Z,Γ) + λ∥B∥1,1

s.t. XB⊤ +ZΓ⊤ ∈ Rn×pC , PΓB = 0.

(2.3.2)

where the unregularized loss function L(B,Z,Γ) is defined in (2.2.3) and ∥ · ∥1,1 denotes the

element-wise ℓ1-norm. It is worth noting that for any feasible Γ̂ fixed, (2.3.2) reduces to a convex
optimization problem in variables B and Z:

B̂, Ẑ = argmin
B∈Rp×d,Z∈Rn×r

L(B,Z, Γ̂) + λ∥B∥1,1

s.t. XB⊤ +ZΓ̂⊤ ∈ Rn×pC , P
Γ̂
B = 0.

(2.3.3)
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Algorithm 1 gcate (generalized confounder adjustment for testing and estimation)

Input: A data matrix Y ∈ Rn×p, a design matrix X ∈ Rn×d, a natural number r ≥ 1 (the
number of latent factors)

1: Estimation of uncorrelated latent components WΓ⊤: Solve optimization problem
(2.3.4) to obtain Ŵ0Γ̂

⊤
0 and the initial estimate Θ̂0 = XF̂⊤ + Ŵ0Γ̂

⊤
0 by alternative maxi-

mization (Algorithm A.6.6) with initialization given in Appendix A.6.2:

F̂ , Ŵ0, Γ̂0 ∈ argmin
F∈Rp×d,W∈Rn×r,Γ∈Rp×r

L(XF⊤ +WΓ⊤)

subject to XF⊤ +WΓ⊤ ∈ Rn×pC , PXW = 0.

(2.3.4)

2: Estimation of latent coefficients Γ: Set Ŵ :=
√
nUΣ1/2 and Γ̂ :=

√
pV Σ1/2, where

Ŵ0Γ̂
⊤
0 =
√
npUΣV ⊤ is the condensed SVD with U ∈ Rn×r, Σ ∈ Rr×r, V ∈ Rp×r.

3: Estimation of direct effects B and latent factors Z: Solve optimization problem (2.3.5)
to obtain (B̂, Ẑ) by Algorithm A.6.6 with initialization given in Appendix A.6.2:

B̂, Ẑ = argmin
B∈Rp×d,Z∈Rp×r

L(XB⊤ +ZΓ̂⊤) + λ∥B∥1,1

subject to XB⊤ +ZΓ̂⊤ ∈ Rn×pC , P
Γ̂
B = 0.

(2.3.5)

4: Debiasing: Construct the debiased estimate (2.4.1) and its estimated variance (2.4.6), based
on (B̂, Ẑ, Γ̂). Compute p-values according to the asymptotic distribution (2.4.5).

Output: Return the p-values.

This motivates us to solve optimization problem (2.3.2) in two steps: (1) firstly obtaining a
good estimate of Γ̂ and (2) then based on Γ̂, obtaining good estimates for B∗ and Z∗. In
Algorithm 1, we incorporate the two-step procedure by solving two sub-problems (2.3.4) and
(2.3.5) consecutively. We next analyze the statistical properties of estimators in each step of
Algorithm 1.

2.3.1 Estimation of uncorrelated latent components

To estimate the marginal effects F ∗ = B∗ + Γ∗D∗ and the uncorrelated latent components
W ∗Γ∗⊤, we first solve optimization problem (2.3.4). This is also known as the joint maximum
likelihood estimation [27, 28], which is statistically optimal in the minimax sense when both the
sample size n and the response dimension p grow to infinity. From optimization problem (2.3.4),

we obtain the initial estimates of the natural parameter matrix Θ̂0 = XF̂⊤ + Ŵ0Γ̂
⊤
0 . The

following theorem characterizes the estimation error of the initial maximum likelihood estimate
Θ̂0.

Theorem 2 (Estimation error of Θ̂0). Under Assumptions 1–3, let Θ̂0 be any estimator such
that L(Θ̂0) ≤ L(Θ∗). For any constant δ > 1, when np ≥ 3, it holds with probability at least
1− (n+ p)−δ − (np)−δ − ιn that

∥Θ̂0 −Θ∗∥F = O
(√

(d+ r)((n ∨ p) ∨ δ3)
)
, max

1≤j≤p
∥(Θ̂0)j −Θ∗

j∥2 = O
(√

(d+ r)(n ∨ δ3)
)
.

In our specific setting, where the dimensions represented by d and r are orders of magnitude
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smaller compared to n and p, the estimation error is primarily dominated by the scale of the
larger dimensions n and p. Because the dimensions of natural parameters expand with both n
and p, the bound implies that the error associated with each entry is approximately on the order
of
√
(n ∨ p)/np. As demonstrated in the upcoming subsection, these results empower us to attain

robust estimates of the confounding effects.

2.3.2 Estimation of latent coefficients

From optimization problem (2.3.4), we obtain the initial estimates Ê = Ŵ0Γ̂
⊤
0 of the latent com-

ponents that are uncorrelated to the observed covariates. Though W ∗ and Γ∗ are only identified
up to rotations, we can use the condensed singular value decomposition of the normalized latent
components Ê/

√
np = UΣV ⊤ to obtain the final estimates through the following optimization

problem:

Ŵ , Γ̂ ∈ argmin
W∈Rn×r,Γ∈Rp×r

1

np
∥Ê −WΓ⊤∥2F

subject to
1

n
W⊤W =

1

p
Γ⊤Γ is diagonal.

(2.3.6)

A simple derivation yields the solution Ŵ =
√
nUΣ1/2 and Γ̂ =

√
pV Σ1/2 to the above problem.

The above procedure is also commonly used in the factor analysis literature for estimating factor
loadings from regression residuals [7, 20]. The following theorem guarantees that the above
estimate of the latent coefficients is provably accurate in recovering the column space of the true
coefficients.

Theorem 3 (Estimation error of P
Γ̂
). Under Assumptions 1–3, as n, p→∞, it holds that

∥P
Γ̂
− PΓ∗∥op = OP

(√
1

n ∧ p

)
, max

1≤i,j≤p
|(P

Γ̂
− PΓ∗)ij | = OP

(√
1

p2(n ∧ p)

)
.

Theorem 3 implies that the image of Γ∗ can be estimated well by Γ̂. Furthermore, the column-
wise error decays at a fast rate. The precise error control of each column individually enables us to
disentangle the intricate relationships within the confounder-adorned high-dimensional dataset.
However, these do not directly extend to error control for the latent factors Z∗ or the latent
coefficients Γ∗ themselves.

Under multivariate linear models, Bing et al. [20, Theorem 4] show the concentration of the
latent coefficients max1≤j≤p ∥γ∗

j−γ̂j∥2. Their results rely on the special structure of the regression

problem Yj = X(b∗j + D∗⊤γ∗
j ) + ϵj , where the regression coefficient can be decomposed into a

sparse component b∗j and a dense component D∗⊤γ∗
j . By using the lava estimator [31], they can

derive the estimation error of the residual ϵj , from whose covariance structure, ∥γ∗
j − γ̂j∥2 can be

further bounded. In the generalized linear model setting, we don’t have the flexibility to utilize
the additive noises’ covariance structure to directly estimate γj well. Instead, we need to rely on
joint maximum likelihood estimation to estimate them, as we illustrate below.

2.3.3 Estimation of latent factors and direct effects

Once the column space of confounding effects becomes distinguishable, the subsequent phase
entails retrieving direct effects by mitigating the influence of confounding variables and solving
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optimization problem (2.3.3). Through this, we can simultaneously obtain the estimates of latent
factors Z∗ and direct effects B∗. In the high-dimensional scenarios when p can be larger than n,
one natural approach to estimate the sparse coefficient B∗ is via ℓ1-regularization, as employed
in the optimization problem (2.3.5), which aims to obtain a sparse and consistent estimator B̂
by ℓ1-regularization while simultaneously removing the unmeasured effects. Next, we analyze the
properties of the two estimators Ẑ and B̂ in turn.

Latent factors. As previously alluded to, estimating latent factor Z∗ demands special consider-
ation. To bypass the technical difficulty, we will use the estimation errors of Θ̂0 and P

Γ̂
provided

by Theorem 2 and Theorem 3, respectively, coupled with one extra identifiability condition for the
latent factors Z∗ and their coefficients Γ∗. From Lin et al. [104, Proposition 5.1], there exists an
invertible matrix R ∈ Rr×r with bounded operator norm, such that V(Rz∗

1) and R−⊤γ∗
1γ

∗⊤
1 R−1

are the same diagonal matrix. The following assumption from Lin et al. [104] restricts the spacing
of V(Rz∗

1)’s eigenvalues.

Assumption 4 (Identifiability of latent factors). Assume there exists positive numbers c1 ≤ c2
and 1 < k1 ≤ k2 such that for all ℓ ∈ {1, . . . , r}, the eigenvalues of V(Rz∗

1) satisfy c1ℓ
−k1 ≤ λℓ ≤

c2ℓ
−k1 , and λℓ − λℓ+1 ≥ c1ℓ−k2 , with the convention that λr+1 = 0.

Intuitively, Assumption 4 guarantees that Z∗R⊤ can be recovered up to sign from the matrix
product Z∗Γ∗⊤. This implies that, if one can consistently estimate Z∗Γ∗⊤ with ẐΓ̂⊤, then Z∗

and Γ∗ can also be consistently estimated by appropriate transformations of Ẑ and Γ̂, respectively.
A simple consequence from Lin et al. [104, Proposition 5.2], coupled with Theorems 2 and 3, is
the following error bound on the columns of latent components.

Corollary 4 (Estimation of latent components). Let Γ̂ and Ẑ be solutions to optimization
problems (2.3.6) and (2.3.5), respectively. Under Assumptions 1–4, suppose min{B∈Rp×d|P

Γ̂
B=0}

L(XB⊤ + ẐΓ̂⊤) ≤ L(Θ∗) with probability tending to one. Then, as n, p→∞, it holds that,

max
1≤j≤p

1√
n
∥Ẑγ̂j −Z∗γ∗

j ∥2 = OP

√ log n

n
∨

√
r4k2−k1+4 log n

n ∧ p

 .

It’s important to note that, unlike the analysis for linear models in prior work [19, 20] that
projects the responses onto the orthogonal column space of Γ̂ and removes the effects of latent
factors Z, estimating Z is unavoidable under generalized linear models. In Corollary 4, we require
the joint maximum likelihood based on the estimated latent components to be higher than the
likelihood evaluated at the truth. This requires the estimated latent components derived from
(2.3.5) to exhibit stability and ensures that the maximum likelihood with the estimated latent
factors remains close to the joint maximum likelihood from (2.3.4). In the presence of nuisance
parameters Z∗ and Γ∗, the sharp control on estimation error of the column Z∗γ∗

j provided by

Corollary 4 helps control the estimation error of B̂.

Direct effects. In high-dimensional scenarios, controlling the estimation error of PΓ∗B∗ requires
the projection PΓ∗ does not excessively densify the primary effects B∗. To this end, we require
the ratio ∥PΓ∗B∗∥1,1/∥PΓ∗B∗∥F to be of smaller order than

√
p. Coupled with the previous

assumptions and results, the estimation error of B̂ returned by problem (2.3.5) can be controlled.

Theorem 5 (Estimation error of B̂). Suppose the assumptions in Corollary 4 hold and ∥PΓ∗B∗∥1,1 =
O(pk/2∥PΓ∗B∗∥F) for some constant k ∈ [0, 1). Then, as n, p→∞ such that

√
n/ log(nd) = o(p)

and log(p) = o(n), the estimate B̂ of optimization problem (2.3.5) with λ ≍ 8ν2 log(nd)n−1/2
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satisfies that

∥B̂ −B∗∥F = OP(rn,p), ∥B̂ −B∗∥1,1 = OP(r
′
n,p),

where the sequences rn,p and r′n,p are defined as:

rn,p :=

√
(sd log2(nd)) ∨ log(np)

n
+

√
n1/2

(n ∧ p)3/2 log(nd)
+

√
sd

n ∧ p1−k
,

r′n,p :=
√
sd rn,p +

√
n

(n ∧ p) log(nd)
.

In Theorem 5, the parameter k captures the deviation of the projected ℓ1-norm ∥P⊥
Γ∗B∗∥1,1

from ∥B∗∥1,1. The smaller k, the more information of B∗ is retained after projection, and the
signal-noise-ratio is larger. In the high-dimensional scenarios when n < p, the ℓ1-norm and ℓ2-
norm of the estimation error scale in OP(n

−1/2∧p(k−1)/2) when ignoring lower order factors. The
appearance of the response dimension p in the denominator reflects the blessing of dimensionality;
namely, having more responses than the sample size is not detrimental to consistency, provided
that p does not grow exponentially larger than n, as we numerically demonstrate in Figure A.73.

To prove Theorem 5, we establish the (approximate) optimal condition for (B̂, Ẑ, Γ̂) from the
two-step procedure to the joint optimization problem (2.3.2), as shown in Lemma A.4.1. This
relies on the optimality condition of optimization problem (2.3.5) and the convergence rate of
P⊥
Γ̂

provided by Theorem 3. It then allows us to establish the cone condition, obtain the upper
and lower bounds of the first-order approximation error of the loss function, and derive the error
rate in Appendix A.4. Compared to double machine learning in the presence of high-dimensional
nuisance parameters [32, 33], our estimation procedure does not require sample splitting. To
establish consistency, we only need the convergence rate of max1≤j≤p ∥Z∗γ∗

j−Ẑγ̂j∥2/
√
n to be the

parametric rate (n∧p)−1/2, as shown in the proof of Theorem 5; see also Remark 12 for discussion
on the connection to Neyman orthogonality. However, to derive the asymptotic distribution for
inference, one may need more stringent conditions or sample splitting, as illustrated next.

2.4 Inference

2.4.1 Projected and weighted bias correction

When evaluating uncertainty in high-dimensional inference, confidence intervals and statistical
hypothesis tests are required. After obtaining the initial estimate B̂, we need to remove the bias
caused by ℓ1-regularization to have valid inferences on the estimated coefficients. Without loss
of generality, we focus on testing the coefficients of the first covariate bj1 for j = 1, . . . , p. We
consider the following debiased estimator for each of them:

b̂dej1 = b̂j1 + u⊤ 1

n

n∑
i=1

xi(yi −A′(θ̂i))
⊤vi, (2.4.1)

where Θ̂ := XB̂⊤ + ẐΓ̂⊤ is the estimated natural parameter matrix, and u ∈ Rd and vi ∈ Rp
are projection vectors to be specified later, such that the correction term n−1u⊤∑n

i=1 xi(yi −
A′(θ̂i))

⊤vi is a reasonable estimate of the bias b∗j1 − b̂j1.
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By Taylor expansion of A′(θ∗ij) at θ̂ij := x⊤
i b̂j + ẑ⊤

i γ̂j , we have

A′(θ∗ij) = A′(θ̂ij) +A′′(θ̂ij)(θ
∗
ij − θ̂ij) +

1

2
A′′′(ψij)(θ

∗
ij − θ̂ij)2,

for some ψij between θ̂ij and θ∗ij . Then, the residual of the ith sample can be decomposed into
three sources of errors:

yi −A′(θ̂i) = ϵi︸︷︷︸
stochastic error

+ pi︸︷︷︸
remaining bias

+ qi︸︷︷︸
approximation error

(2.4.2)

where the three terms of errors are given by

ϵi = yi −A′(θ∗
i )

pi = A′′(θ̂i)⊙ (θ̂i − θ∗
i )

qi = −
1

2
[A′′′(ψij)(θ

∗
ij − θ̂ij)2]1≤j≤p.

If we let vi = ωidiag(A
′′(θ̂i))

−1P⊥
Γ̂
ej where ωi is the sample-specific weight and ej ∈ Rp is the

unit vector with jth entry being one, then substituting (2.4.2) into (2.4.1) yields that

b̂dej1 − b∗j1 = (̂bj1 − b∗j1) + u⊤ 1

n

n∑
i=1

xiϵ
⊤
i vi + u⊤ 1

n

n∑
i=1

xip
⊤
i vi + u⊤ 1

n

n∑
i=1

xiq
⊤
i vi

= u⊤ 1

n

n∑
i=1

xiϵ
⊤
i vi +

(
u⊤ 1

n

n∑
i=1

ωixix
⊤
i − e⊤1

)
(b∗j − b̂j) + Rem. (2.4.3)

The estimation error rates provided by Theorems 3 and 5 guarantee that ∥b∗j−b̂j∥1 = OP(r
′
n,p) and

the remaining term is Rem = OP(max1≤i≤n |u⊤xi|3r2n,p) for rn,p and r′n,p defined in Theorem 5.
Based on (2.4.3), the idea of debiasing is to choose u and ωi’s such that the second term and the
remaining term is of order oP(n

−1/2), while enabling the convergence of the average of primary
stochastic errors to a normal distribution by central limit theorem.

To facilitate our theoretical analysis, suppose we split the dataset into two parts D1 =
{(xi,yi), 1 ≤ i ≤ n} and D2 = {(xi,yi), n + 1 ≤ i ≤ 2n}, where D2 is used to obtain the
estimates B̂ and Γ̂, and D1 is used to remove the bias for B̂ induced by ℓ1-regularization. There
are also latent factors {z∗

i }ni=1 and {z∗
i }2ni=n+1 associated with D1 and D2, respectively. Fur-

ther, if ϵi’s are independent of the projection vectors u and vi (or equivalently ωi) conditional
on (xi, z

∗
i )’s and D2, then we can approximate the scaled conditional variance of the stochastic

errors as:

σ2j = V

(
u⊤ 1√

n

n∑
i=1

xiϵ
⊤
i vi

∣∣∣∣∣ {(xi, z∗
i )}ni=1,D2

)

= u⊤ 1

n

n∑
i=1

ω2
i xie

⊤
j P⊥

Γ̂
diag(A′′(θ̂i))

−1Cov(ϵi | θ∗
i )diag(A

′′(θ̂i))
−1P⊥

Γ̂
ejxiu

= u⊤ 1

n

n∑
i=1

ω2
i (e

⊤
j P⊥

Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej)xix

⊤
i u

≈ u⊤ 1

n

n∑
i=1

ωixix
⊤
i u =: σ̂2j ,
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by using a proper data-dependent weight ωi = ω̂i. Then, the projection vector û is constructed
by minimizing the variance proxy while controlling the bias and remaining terms in (2.4.3):

û ∈ argmin
u∈Rd

u⊤ 1

n

n∑
i=1

ω̂ixix
⊤
i u

s.t.

∥∥∥∥∥ 1n
n∑
i=1

ω̂ixix
⊤
i u− e1

∥∥∥∥∥
∞

≤ λn

max
1≤i≤n

|x⊤
i u| ≤ τn,

(2.4.4)

where λn ≍
√
log(nd)/n and τn ≍

√
log n. Based on ω̂i and û, the resulting bias-corrected estima-

tor (2.4.1) is similar to those used by Cai et al. [21], Javanmard and Montanari [74], van de Geer
et al. [168]; however, we need to incorporate information from multiple responses with projection
operator P⊥

Γ̂
to de-confound, in the spirit of proximal gradient descent. Under mild regularity

conditions, the following theorem shows that the debiased estimator b̂dej1 is asymptotically normal.

Theorem 6 (Asymptotical normality of B̂de). Under the same conditions in Theorem 5, for
j = 1, . . . , p, additionally assume the following conditions hold: (i) n/ log(nd) = o(p3/2) and
n = o(p2(1−k)); and (ii) ω̂i = ω(xi, z

∗
i ,D2) for some real-valued function ω that is uniformly

bounded away from 0 and ∞. Then as n, p→∞, it holds that

√
n
b̂dej1 − b∗j1

σj

d−→ N (0, 1). (2.4.5)

With fewer assumptions on the correlation between the covariate X and the confounder Z∗,
removing unmeasured confounders is only possible by utilizing multiple outcomes to disentangle
the primary effect B∗ and the latent coefficient Γ∗. In particular, because the estimation error
rates of B∗ and Γ∗ are related to (n ∧ p)−1, the number of outcomes p is expected to be larger
than n, so that these errors are primarily affected by the sample size n.

In Theorem 6, condition (i) requires that the response dimension p grows faster than n2/3 ∨
n1/(2(1−k)), which ensures the remainder term Rem in (2.4.3) vanishes in the limit. Specifically,
Rem has a magnitude associated with the convergence rate of ∥B̂ −B∗∥2F, as provided by The-
orem 5. To derive the asymptotic normality, Rem = oP(n

−1/2) is required; however, if n is too
large compared to p, the convergence rate of B̂ from the first two steps of the proposed procedure
is insufficient to establish the desired asymptotic normality. In this case, having a much larger
sample size does not help. When k ≤ 1/2, condition (i) is satisfied with n = o(p), which is
reasonable in most scientific scenarios of cohort-level differential expression analysis, as we shall
see later from the real data example in Section 2.6.

In terms of condition (ii), a proper sample-specific and link-specific weight function is required.
One can construct such weights ω̂i by sample splitting to fulfill this condition. For instance, using
sample splitting procedure in Algorithm A.5.5, one valid choice is ω̂i = A′′(θ̂ij). In Lemma A.5.3,
we show that such a choice of ω̂i satisfies the condition (ii) in Theorem 6 with probability tending
to one and the resulting variance estimator

σ̂2j = û⊤ 1

n

n∑
i=1

ω̂ixix
⊤
i û, (2.4.6)
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is also consistent with σ2j . Hence, Theorem 6 implies that tj =
√
n(̂bdej1 − b∗j1)/σ̂j

d−→ N (0, 1). We

reject the null hypothesis H0j : b
∗
j1 = 0 at level-α if |tj | > zα/2 := Φ−1(1 − α/2), where Φ is the

cumulative distribution function of standard normal. Numerically, we show that the efficiency
loss of sample splitting is negligible in Appendix A.7.1; and the proposed method performs
well without sample splitting and is statistically more efficient than the alternative methods in
Section 2.5.

Remark 2 (Inference without unmeasured confounders). In the special case when there are no
unmeasured confounders, the matrix P⊥

Γ̂
reduces to the identity matrix. Also, the projection

vector û is the jth column of (X⊤diag(A′′(XB̂1))X)−1, and σ̂j is the asymptotic variance

of b̂j1 under well-specified generalized linear models. In this case, (2.4.1) is simply a one-step
adjustment based on the score function. For Bernoulli distributed binary outcomes without
unmeasured confounders, the above choice of the weight function ω(θ) = A′′(θ) for optimization
problem (2.4.4) coincide with f ′(θ)2/(f(θ)(1− f(θ))), the one used in Cai et al. [21] with f = A′

being the link function. For Gaussian outcomes when A′ is the identity link with a choice of
weight ω̂i ≡ 1, the procedure above reduces to the debias method by Javanmard and Montanari
[74].

When there are unmeasured confounders, the main difficulty lies in taking account of the
rates of convergence of ∥B̂ −B∗∥1, ∥(Γ̂ − Γ∗)ej∥2, and ∥B∗⊤PΓ∗ej∥2 such that the remainder
term in (2.4.3) is oP(n

−1/2), which is essentially the idea of the proof for Theorem 6, as we have
alluded to after (2.4.3).

Remark 3 (Incorporate information from latent factors). In (2.4.1) and (2.4.4), we only use the
covariate X to adjust for the estimation bias. However, including the estimated latent factors
Z to construct a projection vector u of dimension d + r is also feasible. The validity of this
extension is also guaranteed by the sample splitting procedure in Algorithm A.5.5.

Remark 4 (Estimation and inference with non-canonical links). Through Sections 2.3 and 2.4,
we discuss the methodology to conduct inference on confounded generalized linear models (GLM)
with canonical link functions, as outlined in Table A.61. However, in practical scenarios, non-
canonical link functions may also be employed. For instance, the log link function is commonly
used with Negative Binomial GLMs. Fortunately, our method extends its applicability to GLMs
with non-canonical link functions, as exemplified in the case of the Negative Binomial GLMs
in Appendix A.6.4. Establishing theoretical guarantees for these scenarios may follow a similar
framework with suitable assumptions to address the non-convexity of the objective functions, as
elaborated in Appendix A.6.4.

2.4.2 Simultaneous inference

For j = 1, . . . , p, the asymptotic normality provided in Theorem 6 provides Type-I error controls
for individual hypothesis tests H0j : b∗j1 = 0. The following proposition shows that we can
also control the overall Type-I error and family-wise error rate (FWER) using the statistic tj =√
n(̂bdej1 − b∗j1)/σ̂j .

Proposition 7 (Simultaneous inference). Let Np = {j | b∗j1 = 0, j = 1, . . . , p} be the true null
hypotheses. Under the assumptions of Theorem 6, as n, p, |Np| → ∞, it holds that

1

|Np|
∑
j∈Np

1{|tj | > zα
2
} p−→ α, and lim sup P

∑
j∈Np

1{|tj | > z α
2p
} ≥ 1

 ≤ α.
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When p is large, controlling for the false discovery rate (FDR) is more desirable when per-
forming simultaneous testing. In that regard, Cai et al. [21, Section 2.3] provides insights on FDR
controls using different techniques. From simulations in Section 2.5, we also show that FDR is
usually well controlled by the Benjamini–Hochberg procedure empirically.

2.5 Numerical experiments

DE and related tests are frequently performed in two distinct settings in the genomic field.
One relies on counts of gene expression to contrast the expression of each gene in case versus
control observations. Typically, observations are either samples from RNA sequencing (RNA-seq)
[109] or pseudo-bulk cells obtained from single-cell sequencing by aggregating the expressions of
single cells in the same homogeneous groups [158]. Another setting is single-cell RNA-sequence
(scRNA-seq) CRISPR screening [12, 37], where the fundamental task is to test for association
between a designed genetic perturbation and gene expression [37]. In both settings, the measured
gene expression is often assumed to approximately follow a Poisson or Negative Binomial (NB)
distribution [150]. However, in the former, the mean expression per sample is much larger due
to molecular design, and the distribution is often approximated by a normal distribution with an
appropriate transformation. In the latter case, the observational unit is a single cell. Hence, the
mean of the gene expression is near zero, and the data is not well approximated with a normal
distribution.

Before we turn to the simulation details, we present a simulated bulk-cell dataset and a
simulated single-cell dataset corresponding to the above two distinct scenarios, respectively (Fig-
ure 2.2). The Poisson distribution can often model the former scenario, while the NB distribu-
tion is a better option for the latter because the counts are sparser and typically exhibit strong
overdispersion (Figure 2.2(a)-(b)). Furthermore, for single-cell data, the lower-expressed genes
are typically more dispersed, and this feature is captured in our simulated data set (Figure 2.2(c)).
In practice, both Poisson and NB models are available for analysis of either type of experiment;
however, to simplify exposition, we use a Poisson distribution for bulk samples in Section 2.5.1
and a NB distribution for single-cell samples in Section 2.5.2. In the subsequent experiments, we
adhere to the protocol described in Appendix A.6.3 for selecting both the hyperparameters and
the number of factors pertinent to the proposed methods.

2.5.1 Well-specified simulated datasets

We simulate expression data Y that consists of n ∈ {100, 250} cells and p = 3, 000 genes based
on the Poisson likelihood with natural parameter Θ. More specifically, we generate the covariate
x1 to be a centered binary variable, i.e., (x1+1)/2 ∼ Bernoulli(0.5). We also include an intercept
x2 = 1, so that the covariate vector x = [x1, x2]

⊤ has dimension d = 2. To allow for the most
general confounding scenarios without assuming causal relationships as in Figure 2.1, we directly
generate the latent factor matrix using Z = XD⊤+W ∈ Rn×r with the number of latent factors
being r ∈ {2, 10}. Here, to generate D and W , we first sample their entries independently from
N (0, 1) and further modify the singular values to be s1, . . . , sr where sk = a · (2− (k−1)/(r−1)),
with a = n−3/2 for D and a = (n/2)1/2 for W . For the latent loading matrix Γ, we follow Wang
et al. [175] to take Γ = Γ̃Λ where Γ̃ is a p×r orthogonal matrix sampled uniformly from the set of
all p× r orthogonal matrix and Λ = (p/2)1/2diag(λ1, . . . , λr) where λk = 2− (k−1)/(r−1). The
primary effect of x1 on gene j is sampled from (bj1 + 0.2)/0.4 ∼ Bernoulli(0.5) with probability
0.05 and set to be zero with probability 0.95. The coefficient for the intercept is set to be bj2 = 0.5.
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Figure 2.2: Overview of the simulated data. (a) The first and second rows show the summary of

one simulated dataset for bulk cells (Poisson) in Section 2.5.1 and single cells (Negative Binomial) by

Splatter in Section 2.5.2, respectively. The first column shows the overall distribution of the generated

counts; the second column shows the estimated dispersion parameters by methods of moments using

the mean estimates from GLM with Poisson likelihood. (b) The proportions of zero and non-zero

counts in the two datasets, colored in orange and blue, respectively. (c) The estimated dispersion

parameter versus the estimated mean for the simulated single-cell dataset.

Figure 2.3: The Type-I errors, false discovery proportions (FDPs), powers, and precision of different

methods on the simulated datasets over 100 runs, with varying numbers of samples n ∈ {100, 250}
and numbers of latent factors r ∈ {2, 10}. For glm, the maximum values of Type-I errors and FDPs

are clipped at 0.1 and 0.5, respectively. The blue dashed lines indicate the desired cutoffs.

Four methods are applied to the simulated datasets: (1) cate (confounder adjustment for
testing and estimation), which is a unified approach for surrogate variable analysis under linear
models [175] and operates on the log-normalized data. (2) glm-naive, which fits generalized linear
models with the Poisson likelihood method but only uses the measured covariates X without
adjusting for unmeasured confounders; (3) glm-oracle, which fits generalized linear models with
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Figure 2.4: False discovery proportion at different α levels for p-values adjusted by the Benjamini-

Hochberg procedure on 100 simulated datasets when n = 250. The left and right panels show the

results for different numbers of latent factors, (a) r = 2 and (b) r = 10, respectively. When r = 10,

the FDP of glm-naive is above 0.15; hence it is not shown in the figure.

the Poisson likelihood method and uses both observed and unobserved covariates (X,Z) for
estimation and testing; (4) gcate, our proposed method with the Poisson likelihood. For cate,
we use bi-cross-validation (BCV) [132] to select the number of factors, as suggested in their
original paper [175]. For gcate, we use JIC described in Remark 1 to select the number of
factors.

To evaluate different methods, we summarize the type-I error and FDP (false discovery pro-
portion) after the Benjamini-Hochberg procedure in Figure 2.3, where the desirable thresholds
for the two are set to be 5% and 20%, respectively. From Figure 2.3, we see that when the sample
size n is small, or the latent factor dimension r is large, the performance of all methods gets
slightly worse, especially those that are misspecified, which is expected. In all setups of (n, r),
because the multivariate-Gaussian assumptions of cate are violated, it does not provide proper
Type-I error control and FDP control. This suggests that cate may inflate test statistics and
cause anti-conservative inference. Similarly, glm-naive also fails to control the FDPs because
it cannot account for dependencies induced by the latent factors. On the other hand, gcate
performs as well as glm-oracle that has knowledge of the latent factors Z. This indicates that
our modeling helps to accurately remove unwarranted sources of confounding effects. Note that
variations of cate may yield improved performance using empirical nulls or negative controls,
but gcate requires no such tuning.

We further inspect the FDP control of different methods with varying thresholds. In the
ideal scenarios, FDP aligns closely with the specified α cutoffs. From Figure 2.4, glm-oracle
has FDP aligning closely with the specified α cutoffs and consistently performs admirably across
different levels of confounding effects. Conversely, the glm-naive approach struggles to control the
FDP effectively, and this discrepancy becomes increasingly pronounced as the number of latent
factors grows. However, in a commendable contrast to cate, our method gcate consistently
outperforms in terms of FDP control at various alpha cutoffs. This superiority can be attributed
to our method’s ability to model the data distribution accurately and eliminate unwarranted
variations.

Lastly, we also evaluate the statistical power and precision of different methods. Here, the
power is evaluated when the Type-I error threshold is 5%. We anticipate that both cate and
the glm-naive approach would yield higher power compared to other methods because they tend
to allow more discoveries without adequately controlling the Type-I errors (Figure 2.3). In Fig-
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Figure 2.5: Simulation results on 100 simulated scRNA-seq datasets generated by Splatter with

varying numbers of samples n ∈ {100, 200}. The four metrics are shown in four columns respectively.

The blue dashed lines indicate the desired cutoffs for the statistical errors.

ure 2.3, we observe that cate exhibits the lowest power among the considered methods. In
contrast, the glm-naive approach concurrently registers the most insufficient precision among all
the methods. As anticipated, the glm-oracle approach boasts the highest power and precision
because it operates in an ideal scenario without confounding effects. In contrast, our proposed
method, gcate, demonstrates a balanced and robust performance concerning power and preci-
sion. It achieves a competitive power level while maintaining a significantly higher precision than
the glm-naive method. Moreover, gcate outperforms cate regarding both power and preci-
sion. This suggests that correct modeling of confounding effects boosts the statistical power and
precision in high-dimensional datasets.

2.5.2 Misspecified simulated datasets using scRNA simulators

To better evaluate the performance of various methods, we use the single-cell RNA sequencing
data simulator Splatter [182] to generate simulated count datasets. Splatter explicitly models the
hierarchical Gamma-Poisson processes that give rise to data observed in scRNA-seq experiments
and can model the multiple-faceted variability. Thus, the simulated datasets generated by Splatter
are similar to real-world datasets and suitable for benchmarking differential expression testing
methods.

Using Splatter, n cells are sampled from two groups with equal probability for n ∈ {100, 200},
containing p = 10, 000 genes. Because of the sparse nature of the simulated single-cell datasets,
about 80% of the genes are only expressed in 10 cells. Hence, we exclude these lowly-expressed
genes and evaluate the methods for the remaining genes. We include d = 3 covariates for each
cell: the intercept, the group indicator ({±1}), and the logarithm of the library sizes, which
is the sum of expression across all genes. When simulating the datasets, we use Splatter to
generate four batches, introducing three major confounders. Because the data is not generated
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from well-specified GLMs, the oracle model is unknown and hence not included. For glm-naive
and gcate, we use the NB likelihood with log links to directly model the count data, where the
gene-level dispersion parameters are estimated by the method of moments based on the estimated
mean returned by using the Poisson likelihood; see Appendix A.6.2 for more details. For cate,
we normalize the counts in each cell by its library size, then multiply them by a scale factor of
104 and shift them by one, and finally, apply the logarithm transform, following the standard
preprocessing approach of single-cell data.

Compared to the previous bulk-cell simulation in Section 2.5.1, the simulated data from Splat-
ter is sparser and more noisy. From Figure 2.5, both cate and glm fail to control the Type-I
error at level 5% and have lower power than gcate in this more challenging setting. The primary
reason lies in the assumption underlying cate is significantly violated, while the glm approach
fails to account for confounding effects. Though glm may have reasonable control over the false
discoveries, its power and precision are highly affected by the confounders. On the contrary,
gcate obtain valid Type-I error and FDP controls and higher power and precision with small
sample sizes because of proper distributional modeling. The result of gcate is slightly conser-
vative because of model misspecification and zero inflation induced by the Splatter simulator,
which could bias the estimates of coefficients B towards zero. Additionally, the NB distribution
involves the additional challenge of estimating the overdispersion parameters.

2.6 Lupus data example

2.6.1 The dataset

Systemic lupus erythematosus (SLE) is an autoimmune disease predominantly affecting women
and individuals of Asian, African, and Hispanic descent. Perez et al. [137] developed multiplexed
single-cell RNA sequencing (mux-seq) to capture the complexity of immune cell populations
and systematically profile the composition and transcriptional states of immune cells in a large
multiethnic cohort. The dataset contains 1.2 million peripheral blood mononuclear cells from 8
major cell types and 261 individuals, including 162 SLE cases and 99 healthy controls of either
Asian or European ancestry. The cell-type-specific DE analysis aims to provide insights into the
diagnosis and treatment of SLE.

To remove the genes with small variations, we use the Python package scanpy [178] to pre-
process the single-cell data and select the top 2,000 highly variable genes (HVGs) within each
cell type. For each cell type, we aggregate expression across cells from the same subject to obtain
gene-level pseudo-bulk counts and then remove genes expressed in less than 10 subjects. The basic
information of the preprocessed datasets is provided in Appendix A.7.3. For each subject, the
recorded variables are SLE status (condition), the logarithm of the library size, sex, population,
and processing cohorts (4 levels). The latter 3 variables, which account for r = 5 degrees of
freedom, are considered to be the measured confounders.

2.6.2 Confounder adjustment

For each cell type, we compare four approaches glm, gcate, cate, and cate-mad. The first two
approaches are based on the NB GLM model, while the latter two are designed for linear models.
The last method uses an estimated empirical null [175] based on median absolute deviation
(MAD). For each method, we consider two variants, using a “subset” of covariates and a “full”
set of covariates, without and with measured confounders included, respectively. Only 5 cell types
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Figure 2.6: Results on the lupus datasets. Histograms of lupus z-statistics of different methods on

T4 cell type. The first row uses only a subset of the covariates, while the second row uses the full set

of covariates for all the methods. The orange curves represent the standard normal density.

(T4, cM, B cell, T8, NK) contain more than 50,000 single cells and have sufficient power to obtain
significant findings using the glm-full approach, so we restrict our comparisons to those types.
In particular, we display our results for the largest T4 cell type in this section, and similar results
for other cell types are included in Appendix A.7. To estimate the number of latent factors r, we
analyze the JIC values according to Remark 1. For a subset of covariates, as shown in Figure A.75,
the scree plot reveals a diminishing negative log-likelihood with increasing r, which plateaus for
r = 4 to r = 7, and the decrement becomes marginal beyond r = 7. Consequently, we recommend
selecting r = 7 for gcate-subset analysis, and similarly, r = 2 for gcate-full analysis. We also
conduct the sensitivity analysis for the number of latent factors in Appendix A.7.4.

Our first analysis is to treat glm-full as glm-oracle and inspect the performance of all four
methods without measured confounders included. The majority of the test statistics obtained
for glm-full are well approximated by a standard normal distribution, which suggests that the
experiment conducted by [137] was well controlled, and the impact of unmeasured confounders was
negligible (Figure 2.6). However, when we excluded the measured confounders, the glm-subset
statistics were poorly calibrated, indicating that controlling for these variables is essential to
proper analysis, either directly or indirectly. The cate statistics are even more poorly calibrated
than glm-subset, suggesting that these sparse data cannot be modeled using a linear model,
though restricting the test to the top 250 HVGs yields test statistics closer to the expected
distribution (Figure A.77). With the empirical null adjustment, cate-mad performed somewhat
better, but this adaptation is insufficient, suggesting that cate cannot remove the confounding
effects when the data are unsuitable for a linear model. Finally, the performance of gcate is
ideal: the majority of the statistics are well approximated by the standard normal, and a few
signals can be captured on the right tail. Similar results were obtained for each of the 5 biggest
cell types, as shown in Figure A.78.

For comparison, we label genes based on the glm-full analysis with FDR control at cutoff 0.2
as “true positives”, resulting in 72 significant genes for the T4 cell type. With FDR control at
cutoff 0.2, 15 of the 16 gcate’s statistics overlap with the true positives, indicating that the test
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loses power when the impact of confounders has to be removed using factor analysis. Still, the
test appears to control the error rate. To illustrate the performance of the 4 competing analysis
methods across all 5 large cell types, we calculate the precision and specificity using 0.2 as a
cutoff for false discovery rate control. As shown in Figure A.79, only gcate achieves uniformly
high precision and specificity.

To compare different methods in the biological significance of the discoveries, we conduct
gene ontology over-representation analysis to identify the related biological processes. As shown
in Figure A.710, both glm-full and gcate-subset discover genes that are pertinent to the immune-
response-related pathways, which also appear in prior studies on lupus [137, Fig. 3]. On the other
hand, though hundreds of significant genes are claimed by cate-mad, they are not associated
with meaningful biological pathways. The results indicate that gcate identifies scientifically
more relevant genes than cate under unmeasured confounders.

Our second analysis is to compare the four methods when all the measured covariates are
included. As shown in the second row of Figure 2.6, we observe similar performance for each of
the three methods (cate, cate-mad, and gcate) remains similar whether partial or all covari-
ates are included. In particular, we see that the test results of cate and cate-mad get more
anti-conservative. On the other hand, as shown in Figure A.711, the results of gcate are con-
sistent and more powerful with added covariates, although they exhibit lower power than glm.
This is expected as, in general, the estimated latent factors may remove some signals for con-
founder adjustment methods. Furthermore, the GO analysis of the biological processes given in
Figure A.712 aligns closely with the results in the first analysis using a subset of the covariates,
suggesting the biological relevance of the findings from gcate. Overall, gcate demonstrates
robust performance and consistency across various levels of confounding.
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Chapter 3

Causal Inference for Genomic Data
with Multiple Heterogeneous
Outcomes

Material in this chapter first appeared as Du et al. [47, 49].

3.1 Introduction

In observational studies, causal inference on multiple outcomes is increasingly prevalent in scien-
tific discoveries [71]. Recent advances in high-throughput techniques have enabled the collection of
large-scale repeated measurements across multiple subjects in various domains. However, subject-
level outcomes, such as averages or inter-correlations of measurements within each subject, are
often unobserved. Instead, researchers rely on repeated measurements to construct estimates
of these outcomes, referred to as derived outcomes (Figure 3.1). For example, advancements in
single-cell RNA sequencing (scRNA-seq) techniques [50] have enabled large-scale repeated gene
expression measurements across multiple cells for each individual. These measurements allow
researchers to construct derived outcomes (e.g., the sample average of gene expressions for an
individual) as proxies for subject-level outcomes (e.g., the true average gene expression for that
individual), facilitating individual-level comparisons [185]. The goal of subject-level causal infer-
ence is to determine which unobserved outcomes are causally affected by treatment by comparing
derived outcomes between treatment and control groups. However, challenges such as unobserv-
ability of outcomes, subject heterogeneity [139], and non-identical outcome distributions limit
the reliability of existing causal inference methods.

One major challenge of subject-level causal inference on scRNA-seq data is the unobservability
of the outcomes. Individual gene expression levels of subjects are not directly measurable; instead,
repeated measurements from heterogeneous cells are aggregated to serve as proxies. Additionally,
variability among subjects may arise from latent states unique to each individual that influence
gene expression patterns but remain hidden from direct observation [48]. Consequently, derived
outcomes often violate the classic assumption of being independent and identically distributed
due to biological processes, experimental conditions, and inherent cellular heterogeneity. To
analyze subject-level brain functional connectivities, prior work by Qiu et al. [139] attempts to
estimate average treatment effects (ATEs) using inverse probability weighting (IPW) estimators
[70, 167]. However, their approach relies on accurate propensity score modeling and assumes
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Figure 3.1: The causal diagram for the causal inference problems studied in this paper. (a)

Multiple outcomes. For a cell, its gene expression Y ∈ Rp is causally affected by the treatment

A ∈ R, the latent state S ∈ Rℓ and covariate W ∈ Rq such as batch effects. (b) Multiple derived

outcomes. In the subject-level studies, a subject’s overall gene expression Y is not directly observed.

Instead, repeated measurements of gene expressions X1, . . . ,Xm ∈ Rd of m cells from the subject

provides a proxy Ỹ for Y . See Section 3.3 for formal definitions. Note that the treatment effect

of A on Y (or Ỹ ) is mediated by the latent state S even conditioned on the covariate W . When

conditioned on W and A, the outcomes Y1, . . . , Yp within the same subject are still not independent

and identically distributed.

outcome homogeneity, which may not hold for genomic data.

A second challenge arises from the heterogeneity of gene expression data, which often exhibit
variable scaling and right-skewed distributions, complicating comparisons across outcomes. This
heterogeneity challenges the common use of ATEs since relying solely on mean differences in
counterfactual distributions can lead to misleading conclusions. To estimate the treatment effects,
one can rely on propensity score modeling or outcome modeling. For instance, one common
strategy in scRNA-seq analyses is to model outcomes directly using parameter models such as
Poisson or Negative Binomial models [150], or zero-inflated models [77]. While using either IPW
or regression estimators may seem intuitive, they are both sensitive to model specification.

Doubly robust (DR) estimators [143, 152] offer a promising solution to mitigate sensitivity
to model specification by combining IPW and outcome modeling. DR estimators are consistent
as long as either of the two nuisance estimators is consistent, and

√
n-consistent whenever the

nuisance estimators converge at only n−1/4 rates (or more generally if the product of their er-
rors is of the order n−1/2). Additionally, if both the nuisance models are correctly specified,
in the sense that the product of their errors is smaller order than n−1/2, the DR estimators
achieve the semiparametric efficiency bound for the unrestricted model, allowing the regression
and propensity score functions to be estimated flexibly at slower than n−1/2 rates in a wide variety
of settings [91, 167]. Recent work introduces a structure-agnostic framework for functional esti-
mation, demonstrating that DR estimators are optimal for estimating ATEs when only black-box
estimators of the outcome model and propensity score are available [10, 78]. These results suggest
that DR estimators cannot be improved upon without making additional structural assumptions.
Given these advantages, exploring doubly robust estimation in settings with multiple heteroge-
neous outcomes is crucial, as it mitigates model misspecification and enables reliable statistical
testing when nonparametric methods are used for outcome and propensity score estimation.

The unobservability of subject-level outcomes, heterogeneity in gene expression distributions,
and sensitivity to model specification collectively challenge traditional causal inference methods in
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scRNA-seq studies. To address these issues, we propose a semiparametric inference framework to
handle multiple derived outcomes effectively. Specifically, (i) we define causal estimands that cap-
ture meaningful counterfactual differences across multiple outcomes and establish identification
conditions under hierarchical models where outcomes of interest are unobserved (Figure 3.1(b));
and (ii) we develop robust and efficient estimators tailored for these estimands. Additionally,
we extend multiple-testing procedures to control statistical errors during simultaneous inference
on high-dimensional derived outcomes. Together, these methodological advancements provide a
unified approach incorporating doubly robust estimation to handle multiple derived outcomes
effectively.

Focusing on multiple derived outcomes, we first establish generic results on semiparametric
inference with doubly robust estimators. It also encompasses the usual setting of multiple out-
comes when the response of each unit is available. By utilizing finite-sample maximal inequality
for finite maximums, we obtain interpretable conditions of uniform estimation error control for
the empirical process terms and the asymptotic variances. We derive the uniform convergence
rates, in terms of only finitely many moments of the influence functions’ envelope and the max-
imum second moments of the individual estimation errors, allowing for the number of outcomes
p to be potentially exponentially larger than the sample size n.

To address the challenges of outcome heterogeneity in single-cell data, we further specialize
our analysis to standardized average treatment effects for comparing treatment effects across
different outcomes on a common scale and quantile treatment effects for robustness against out-
liers. This demonstrates how generic semiparametric inferential results for DR estimators derived
from von Mises expansions and estimating equations can be applied in high-dimensional settings.
Furthermore, we adapt Gaussian approximation results from Chernozhukov et al. [30] to DR
estimators and implement a step-down procedure to control false discovery (exceedance) rates
with guaranteed power [58].

Our exploration includes two real-world application scenarios of the proposed causal infer-
ence methods. (1) Single-cell CRISPR perturbation analysis: Gene expressions from single cells
are compared between perturbation and control groups in CRISPR experiments to identify tar-
get genes of individual perturbations and analyze the effects of perturbations [37], as shown in
Figure 3.1(a). (2) Individual level differential expression analysis: Aggregated gene expressions
from individual subjects under two conditions (case and control) are analyzed to identify genes
intrinsically affected by these conditions across subjects, corresponding to Figure 3.1(b). By ap-
plying our methods to these datasets, we demonstrate their practical utility while highlighting the
strengths and limitations of different causal estimands. These findings emphasize the importance
of suitable causal inference techniques for the accurate interpretation of genomic data.

Organization. In Section 3.2, we review and extend the classic semiparametric inference
framework to the setting of multiple outcomes. In Section 3.3, we set up the problem of interest
and discuss the identification conditions for the causal estimands. In Section 3.4, we analyze
two DR estimators for standardized and quantile treatment effects and study their statistical
properties. In Section 3.5, we study the statistical error of simultaneous inference and propose
a multiple testing procedure for controlling the false discovery rate. In Section 3.6, we conduct
simulations to validate the proposed simultaneous causal inference method. A detailed review of
related work is provided in Appendix B.1.

Notation. Throughout our exposition, we will use the following notational conventions. We
denote scalars in non-bold lower or upper case (e.g., X), vectors in bold upper case (e.g., X),
and matrices in non-italic bold upper case (e.g., X). For a, b ∈ R, we write a∨ b = max{a, b} and
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a ∧ b = min{a, b}. For any random variable X, its Lq norm is defined by ∥X∥Lq = (E[|X|q])1/q
for q = 1, . . . ,∞. For p ∈ N, [p] := {1, . . . , p}. For a set A, let |A| be its cardinality. For
(potentially random) measurable functions f , we denote expectations with respect to Z alone by
Pf(Z) =

∫
f dP, and with respect to both Z and the observations where f is fitted on by E[f(Z)].

The empirical expectation is denoted by Pnf(Z) = 1
n

∑n
i=1 f(Zi) for i.i.d. samples Z1, . . . , Zn of

Z. Similarly, the population and empirical variances are denoted by V and Vn, respectively.

We write the (conditional) Lp norm of f as ∥f∥Lp =
[∫
f(z)p dP(z)

]1/p
for p ≥ 1. We use “o”

and “O” to denote the little-o and big-O notations and let “oP” and “OP” be their probabilistic
counterparts. For sequences {an} and {bn}, we write an ≪ bn or bn ≫ an if an = o(bn); an ≲ bn
or bn ≳ an if an = O(bn); and an ≍ bn if an = O(bn) and bn = O(an). All the constants c, c1, c2
and C,C1, C2 may vary from line to line. Convergence in distribution and probability are denoted

by “
d−→” and “

p−→”.

3.2 Semiparametric inference with multiple outcomes

Prior to delving into our main topic, this section takes a brief excursion into the formulation
of semiparametric inference within the context of multiple outcomes, laying the foundation for
addressing our specific problem in subsequent sections.

Let Z1, . . . ,Zn be observations of i.i.d. samples from a population P. In the presence of
multiple outcomes, we are interested in estimating p target estimands τj : P 7→ R for j = 1, . . . , p.
Suppose τj admits a von Mises expansion; that is, there exists an influence function φj(z;P) with∫
φj(z;P) dP(z) = 0 and

∫
φj(z;P)2 dP(z) <∞, such that

τj(P)− τj(P) =
∫
φj(z;P) d(P− P) + TR,j ,

where TR,j is a second-order remainder term (which means it only depends on products or squares
of differences between P and P). The influence function quantifies the effect of an infinitesimal
contamination at the point z on the estimate, standardized by the mass of the contamination. Its
historical development and definition under diverse sets of regularity conditions can be found at
Hampel et al. [63, Section 2.1]. The above expansion suggests a one-step estimator that corrects
the bias of the plug-in estimator τj(P̂):

τ̂j(P) := τj(P̂) + Pn{φj(Z; P̂)}, (3.2.1)

where P̂ is an estimate of P. For many estimands, such as ATE and expected conditional covari-
ance, the one-step estimator is also a DR estimator. Although for certain estimands like expected
density, the standard one-step estimator is not doubly robust, it still has nuisance errors that
consist of a second-order term [87]. Then, the one-step estimator τ̂j of the jth target estimand
τj admits a three-term decomposition of the estimation error [84, Equation (10)]1:

τ̂j(P)− τj(P) = (Pn − P){φj(Z;P)}︸ ︷︷ ︸
TS,j

+(Pn − P){φj(Z; P̂)− φj(Z;P)}︸ ︷︷ ︸
TE,j

+TR,j . (3.2.2)

In the above decomposition, the first term after
√
n-scaling has an asymptotic normal distribution

by the central limit theorem. That is,
√
nTS,j

d−→ N (0,V[φj(Z;P)]). The higher-order term TR,j

1For certain estimands, such as average treatment effects and expected conditional covariance functionals, it is
usually more convenient to use the uncentered influence functions ϕj(Z;P) := φj(Z;P)+τj(P) in the decomposition.
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is usually negligible and has an order of oP(n
−1/2) under certain conditions. On the other hand,

the empirical process term TE,j will be asymptotically negligible (i.e., oP(n
−1/2)) under Donsker

assumption [169] or sample splitting [32, 86], because it is a sample average with a shrinking
variance. In our problem setting with an increasing number of outcomes, uniform control over
all the empirical process terms TE,j for j = 1, . . . , p is desired to facilitate the construction of
simultaneous confidence intervals. Below is an extension of Lemma 2 from Kennedy et al. [86,
Appendix B] to the setting of multiple outcomes.

Lemma 8 (Uniform control of the empirical process terms). Let Pn denote the emprical measure
over Dn = (Z1, . . . ,Zn) ∈ Zn, and let gj : Z → R be a (possibly random) function independent
of Dn for j = 1, . . . , p with p ≥ 2. Let G(·) := max1≤j≤p |gj(·)| denote the envelope of g1, . . . , gp.
If max1≤j≤p ∥gj∥L2 < ∞ and ∥G∥Lq < ∞ for some q ∈ N ∪ {∞}, then the following statements
hold:

E
[

max
j=1,...,p

|(Pn − P)gj |
∣∣∣∣ {gj}pj=1

]
≲

(
log p

n

)1/2

max
1≤j≤p

∥gj∥L2 +

(
log p

n

)1−1/q

∥G∥Lq .

The proof of Lemma 8 utilizes a finite-sample maximal inequality established in Kuchibhotla
and Patra [90] for high-dimensional estimation problems. When specified to particular target
estimands, Lemma 8 suggests that TE,j in (3.2.2) can be uniformly controlled over j = 1, . . . , p,
if one can derive the uniform L2-norm bound and the Lq-norm bound of the envelope for the

estimation error of the influence functions gj = φj(Z; P̂) − φj(Z;P). In particular, if gj ’s are
bounded, and log p · (max1≤j≤p ∥gj∥2L2

∨ n−1/2) = o(1), then we have that max1≤j≤p TE,j =

oP(n
−1/2), which is negliable after scaled by

√
n. This allows the number of outcomes p to be

potentially exponentially larger than the number of samples n. It is important to note that similar
bounds on the empirical process term can still be derived even when the nuisance functions are
not trained on an independent sample, provided certain complexity measures of the function class
Fj that gj belongs to are properly bounded; see Remark 14 in Appendix B.2.1 for more details.

Remark 5 (One-step estimator from estimating equations). Above, we construct the one-step
estimator based on the influence function φj of τj from von Mises expansion. One can also
construct efficient estimators of pathwise differentiable functionals through estimating equations,
which is related to the quantile estimand as we will discuss in Section 3.4.2.

When TE,j + TR,j = oP(n
−1/2), by central limit theorem we have that

√
n(τ̂j(P) − τj(P))

d−→
N (0, σ2j ) where σ2j = V[φj(Z;P)]. To construct confidence intervals, one can use the sample

variance σ̂2j = Vn[φj(Z; P̂)] to consistently estimate the asymptotic variance. To derive the
properties of test statistics and confidence intervals in high dimensions when p≫ n, it is necessary
to establish strong control on the uniform convergence rate of the variance estimates over j =
1, . . . , p; see, for example, Qiu et al. [139, Proposition 2] and Chernozhukov et al. [30, Comment
2.2]. In this regard, the following lemma provides general conditions for bounding the uniform
estimation error.

Lemma 9 (Uniform control of the variance estimates). Denote φj = φj(Z;P), φ̂j = φj(Z; P̂),
Φ = max1≤j≤p |φ̂j − φj |, and Ψ = max1≤j≤p |φj |. Suppose the following conditions hold:

(1) Envelope: max1≤j≤p |φ̂j + φj | ≲ 1 and ∥Ψ∥Lq +maxk=1,2 ∥Φk∥Lq ≲ r1n for some q > 1,

(2) Estimation error: max1≤j≤p ∥φ̂j − φj∥L2 ≲ r2n, max1≤j≤p |P[φ̂j − φj ]| ≲ r3n,

with probability tending to one. Then, it holds that

max
1≤j≤p

|σ̂2j − σ2j | ≲ OP

((
log p

n

)1−1/q

r1n +

(
log p

n

)1/2

r2n + r3n

)
.
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Note that r1n and r2n are allowed to potentially diverge. We will utilize Lemma 9 for the
purpose of multiple testing, as demonstrated in Section 3.5. Typically, to accommodate an expo-
nentially large number of outcomes p relative to n while maintaining valid statistical inference,
it suffices to ensure that variance estimates are consistent at any polynomial rate of the sample
size n; specifically, max1≤j≤p |σ̂2j − σ2j | = oP(n

−α) for some constant α > 0.

3.3 Subject-level causal inference with multiple outcomes

We consider an increasingly popular study design where scRNA-seq data are collected from
multiple individuals and the question of interest is to find genes that are causally differentially
expressed between two groups of individuals, based on repeated single-cell measurements.

3.3.1 Causal inference with multiple derived outcomes

Suppose a subject can be either in the case or control group, indicated by a binary random
variable A ∈ {0, 1} and we sequence the expressions X = [X1, . . . ,Xm]

⊤ ∈ Rm×d of d genes in
m cells2, along with subject-level covariates W ∈ Rq. Let X(a) denote the potential response
of gene expressions. To characterize the complex biological processes, suppose S(a) ∈ Rℓ is the
latent potential state after receiving treatment A = a, which fully captures the effects of the
treatment on the individual. We assume X1(a), . . . ,Xm(a) are conditionally independent and
identically distributed given S(a) and W 3. Marginally, however, they can be highly dependent
because of repeated measurements from the same individual. As an example of genomics data,
S can be the chromatin accessibility that governs the translation and expression of genes, while
Xm is the resulting expression level of those genes.

Suppose the collection of treatment assignment, covariates, subject level parameters, and
potential responses (A,W ,S(0),S(1),X(0),X(1)) is from some super-population P. We require
the consistency assumption on the observed response.

Assumption 5 (Consistency). The observed response is given by X = AX(1) + (1−A)X(0).

When comparing gene expressions between two groups of individuals, the p-dimensional
subject-level parameter of interest, is the potential outcome Y (a) ∈ Rp, a functional that maps
the conditional distribution of X1(a) given S(a) and W to Rp:

Y (a) = E [f(X1(a)) |S(a),W ] , (3.3.1)

for some prespecified function f : Rd → Rp. The choice of f should align with the user’s
research goals and the specific aspects of the data they intend to capture. For example, when
f is the identity map and p = d, the potential outcome Y (a) represents the conditional mean;
when f(X) = XX⊤ − E[XX⊤ | S(a),W ] and p = d, it represents the intrasubject covariance
matrix. When considering conditional means among the potential responses X1j(a)’s, it can
also be nodewise regression coefficients as considered in Qiu et al. [139]. Intuitively, Y (a) is an
individual / within-group characteristic that depends on the conditional distribution of X1(a)
given S(a),W . From Assumption 5, we also have Y = AY (1) + (1−A)Y (0). Compared to the
classical causal inference setting, the subject-level outcome Y is not observed for each subject,

2For notational simplicity, we treat the number of cell m as fixed across subjects, though the method also applies
when the number of cell mi varies for subjects i = 1, . . . , n.

3Technically, the potential response can be denoted as Xm(S(a)); however, because S(a) is unobservable and
the variable to intervene is A, we use a simplified notation Xm(a) to denote the potential response.
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while only the repeated measurements of gene expressions X from multiple cells are available and
can be used to construct a derived outcome Ỹ . For a given f , we consider a statistic Ỹ := g(X)
for some function g : (X1, . . . ,Xm) 7→ Ỹ . There can be different choices of g to estimate Y (a)
by Ỹ (a). For instance, if f is a linear function for the potential outcome Y (a) in (3.3.1), then g
can be a simple sample average as a natural choice of the derived outcome; alternatively, g can
also be the median-of-means estimator as the derived outcomes.

Under the derived outcomes framework, Qiu et al. [139] studied the IPW estimator for ATE:

τATE
j = E[Yj(1)− Yj(0)], j = 1, . . . , p. (3.3.2)

By focusing on the expected potential outcomes, we next describe the identification condition
and semiparametric inferential results based on derived outcomes Ỹ .

Identification. We require two extra classic causal assumptions for observational studies.

Assumption 6 (Positivity). The propensity score πa(W ) := P(A = a |W ) ∈ (0, 1).

Assumption 7 (No unmeasured confounders). A ⊥⊥ X(a) |W , for all a ∈ {0, 1}.
The above assumptions on the propensity score and the potential responses are standard for

observational studies in the causal inference literature [71, 84]. Assumption 6 suggests that both
treated and control units of each subject can be found for any value of the covariate with a
positive probability. Assumption 7 ensures that the treatment assignment is fully determined by
the observed covariate W . These assumptions are required to estimate functionals of X(a) with
observed variables (A,W ,X).

Let Z = (A,W ,X,Y ) denote the tuple of observed random variables and unobserved out-
comes Y . Because the outcome Y is not observed for each subject, we are interested in construct-
ing a proxy Ỹ = g(X) of Y from repeated measurements X1, . . . ,Xm from the same subject.
Analogously, we denote Ỹ (a) := g(X(a)) for the potential outcomes and quantify the bias as
∆m(a) := E[Ỹ (a) | W ,S(a)] − Y (a). Below, we introduce a notion of asymptotic unbiased
estimate in Definition 1, where the expected bias is negligible uniformly over multiple outcomes.

Definition 1 (Asymptotic unbiased estimate). For a ∈ {0, 1}, the derived outcome Ỹ (a) is
asymptotic unbiased to Y (a) if the bias tends to zero: max1≤j≤p |E[∆mj(a)]| = o(1) as m→∞.

Note that when Ỹ (a) is marginally unbiased, i.e., E[Y (a)] = E[Ỹ (a)], it also implies that
Ỹ (a) is asymptotically unbiased to Y (a). Therefore, our framework also includes the common
setting where all the outcomes Y (a) = Ỹ (a) = X1(a) (with m = 1) are observed. When Ỹ (a) is
an asymptotic unbiased estimate of Y (a), Lemma 1 from Qiu et al. [139] suggests that the coun-
terfactual of unobserved outcomes can be identified asymptotically, as detailed in Proposition 10.

Proposition 10 (Identification of linear functionals). Under Assumptions 5–7, if Ỹ (a) is asymp-
totically unbiased to Y (a), then E[Y (a)] can be identified by E[E[Ỹ |W , A = a]] as m→∞.

Semiparametric inference. When the target causal estimands are the expectation of the
potential outcomes τj = E[Yj(a)] for j = 1, . . . , p, one can adopt results from Section 3.2
to establish the asymptotic normality of certain estimators under proper assumptions on the
convergence rate of the nuisance function estimates. However, because Y is unobservable, we
are not able to directly estimate its influence function and hence its influence-function-based
one-step estimator (3.2.1). Instead, we can rely on the influence function of τ̃j = E[Ỹj(a)]:
φ̃j(Z;P) = 1{A = a}πa(W )−1(Ỹj − µaj(W )) + µaj(W )− τ̃j(P), where πa(W ) = P(A = a |W )
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and µaj(W ) = E[Ỹj | A = a,W ] for j = 1, . . . , p, are the propensity score and regression
functions, respectively. This, in turn, yields an analog of the one-step estimator (3.2.1):

τ̂j(P) := τ̃j(P̂) + Pn{φ̃(Z; P̂)},

which further implies the decomposition of the estimation error for the causal estimand τj :

τ̂j(P)− τj(P) = TS,j + TE,j + TR,j + E[∆mj ], (3.3.3)

where the sample average term TS,j , the empirical process term TE,j and the reminder term TR,j
are as in (3.2.2) with φj replaced by φ̃j . The asymptotic variance σ2j = V[φ̃j(Z; P̂)] can be

estimated by the empirical variance σ̂2j = Vn[φ̃j(Z; P̂)] analogously. However, the application of
Lemmas 8 and 9 would require the verification of conditions for the perturbed influenced function
φ̃j instead of φj . Similar ideas apply to the one-step and doubly robust estimators of other target
estimands.

3.3.2 Beyond average treatment effects

For single-cell gene expressions exhibiting different scales and skew-distributed, simply comparing
the average treatment effects (3.3.2) may not be reliable. One approach to improve on the naive
estimand is to consider standardized average treatment effects (STE):

τSTE
j =

E[Yj(1)− Yj(0)]√
V[Yj(0)]

, j = 1, . . . , p (3.3.4)

which allows for consistent and comparative analysis across different scales and variances, enhanc-
ing the interpretability and comparability of treatment effects in diverse and complex datasets
[85]. Another approach is to consider quantile effects (QTE):

τ
QTEϱ

j = Qϱ[Yj(1)]−Qϱ[Yj(0)], j = 1, . . . , p, (3.3.5)

where Qϱ[U ] denote the ϱ-quantile of random variable U . In particular, when ϱ = 0.5, the ϱ-
quantile equals the median Qϱ(U) = Med(U), and we reveal one of the commonly used robust

estimand τQTE
j = Med[Yj(1)] − Med[Yj(0)] for location-shift hypotheses. QTE may be more

robust and less affected by the outliers of gene expressions [23, 81].

Note that the identification condition and semiparametric inferential results in Section 3.3.1
do not apply directly to target estimands other than ATE. Therefore, efforts are required to
generalize the results to include STE and QTE for multiple derived outcomes. This demonstrates
the utility and validity of our semiparametric inferential framework on one-step estimators defined
through the von Mises expansion and the formulation of estimating equations, respectively, as
investigated next.

3.4 Doubly robust estimation

In this section, we analyze the DR estimators for STE and QTE, which exemplify the application
of general theoretical results in Section 3.2 to specific target estimands.
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3.4.1 Standarized average effects

Recall the standardized average treatment effects τSTE
j defined in (3.3.4), for j = 1, . . . , p. The

following lemma provides the identified forms of STE based on observational data.

Lemma 11 (Identification of standarized average effects). Under Assumptions 5–7, if V[Yj(0)] >
0 and Ỹj(a)

k is asymptotically unbiased to Yj(a)
k for k = 1, 2 and a = 0, 1 such that k + a ≤ 2,

i.e., the bias of the derived outcomes ∆mkj(a) := E[Ỹj(a)k | W ,S(a)] − Yj(a)
k satisfies that

δm := maxk,amax1≤j≤p |E[∆mkj(a)]| = o(1), then as m→∞, the standardized average treatment
effect τSTE

j can be identified by τSTE
j = τ̃STE

j + oP(1) where

τ̃STE
j :=

E[E(Ỹj | A = 1,W )]− E[E(Ỹj | A = 0,W )]√
E[E(Ỹ 2

j | A = 0,W )]− E[E(Ỹj | A = 0,W )]2
. (3.4.1)

As suggested by Lemma 11, estimating STE requires estimating the conditional expectation
of Ỹ k

j given A = a and W . For this purpose, we consider the DR estimator of treatment effect

E[Ỹj(1)]:

ϕ̃akj(Z;πa,µa) :=
1{A = a}
πa(W )

(Ỹ k
j − µakj(W )) + µakj(W ),

where µa : Rd → R2×p is the mean regression function with entry µakj(W ) = E[Ỹ k
j |W , A = a]

and πa(W ) = P(A = a |W ) is the propensity score function. By plugging in the DR estimators
for individual counterfactual expectations consisting in (3.4.1), we obtain a natural estimator for
the STE:

τ̂STE
j =

Pn{ϕ̃11j(Z; π̂1, µ̂1)− ϕ̃01j(Z; π̂0, µ̂0)}√
Pn{ϕ̃02j(Z; π̂0, µ̂0)} − Pn{ϕ̃01j(Z; π̂0, µ̂0)}2

, (3.4.2)

which is also the DR estimator of τ̃STE
j . The following theorem shows that under mild condi-

tions, the above estimator τ̂STE
j is doubly robust for estimating τSTE

j , with the remainder terms
uniformly controlled over all outcomes.

Theorem 12 (Linear expansion of STE). Under Assumptions 5–7 and the identification condi-
tion in Lemma 11, consider the one-step estimator (3.4.2), where Pn is the empirical measure over
D = {Z1, . . . ,Zn} and (π̂a, µ̂a) is an estimate of (πa,µa) for a = 0, 1 from samples independent
of D. Suppose the following hold for k = 1, 2 and a = 0, 1 with probability tending to one:

(1) Boundedness: There exists c, C > 0 and ϵ ∈ (0, 1) such that max{|Yj |, |Ỹj |} < C, max{∥µakj∥L∞ ,
∥µ̂akj∥L∞} < C, V[Yj(0)] > c for all j ∈ [p], and πa, π̂a ∈ [ϵ, 1− ϵ].

(2) Nuisance: The rates of nuisance estimates are maxj∈[p] ∥µ̂akj − µakj∥L2 = O(n−α) and ∥π̂a −
πa∥L2 = O(n−β) for some α, β ∈ (0, 1/2) such that α+ β > 1/2.

Then as m,n, p→∞, it holds that τ̂STE
j −τSTE

j = Pn{φ̃STE
j }+εj , j = 1, . . . , p, where the residual

terms satisfy maxj∈[p] |εj | = OP(n
−(α+β)+ϑSTE

√
(log p)/n+(log p)/n+δm) with ϑ

STE := n−(α∧β)

and the influence function is given by

φ̃STE
j =

ϕ̃11j − ϕ̃01j√
V[Ỹj(0)]

− τ̃STE
j

[
ϕ̃02j + E[Ỹj(0)2]− 2E[Ỹj(0)]ϕ̃01j

2V[Ỹj(0)]

]
. (3.4.3)
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The proof of Theorem 12 requires the analysis of the linear expansions for the individual
counterfactual expectations E[Y k

j (a)] (see Lemma B.4.1). It then requires the application of the
delta method to derive the uniform convergence rates of the residuals over multiple outcomes. For
the residuals’ rate, the term n−(α+β) is the product of the two nuisance estimation errors, which
shows the benefit of the double robustness property, while the term ϑSTE

√
(log p)/n+(log p)/n is

related to the empirical process terms of individual counterfactuals by applying Lemma 8. From
triangular-array central limit theorem (Lemma B.4.4), a direct consequence of Theorem 12 is the
asymptotic normality of individual STE estimators, as presented in Corollary 13.

Corollary 13 (Asymptotic normality). Under conditions in Theorem 12, when (ϑSTE∨n−1/4)
√
log p =

o(1), δm = o(n−1/2) and σ2j := V(φ̃STE
j (Z;π,µ)) ≥ c for some constant c > 0, it holds that,

√
n(τ̂STE

j − τSTE
j )

d−→ N (0, σ2j ), j = 1, . . . , p.

Compared to Definition 1, Corollary 13 requires a stronger condition on the rate of the bias
δm, which is mild. For instance, when X1(a), . . . ,Xm(a) are i.i.d. conditional on (W ,S(a)),
the bias is zero, i.e., E[∆mkj(a)] ≡ 0; when they are weakly dependent, for example, Qiu et al.
[139, Proposition S1] show that the bias is of order o(n−1/2) under the β-mixing condition when
n1/2 log p = o(m).

Because the influence function of STE (3.4.2) is a complicated function of all the nuisances and
the observations in D, it is hard to show usual sample variance of the estimated influence function
φ̂STE
j = φ̃STE

j (Z; {π̂a, µ̂a}a∈{0,1}) provides a consistent estimate. In the following proposition, we
thus rely on extra independent observations to estimate the asymptotic variance. However, one
can employ the cross-fitting procedure [32] on D to decouple the dependency of φ̂STE

j and the
observations used to compute the empirical variance. This ensures that the variance estimation
errors are of polynomial rates of n uniformly in p outcomes when log(p)/n ≤ Cn−c.
Proposition 14 (Consistent variance estimates). Under the same conditions in Theorem 12, let
φ̂STE
j be the estimated influence function (3.4.3) with (E[Ỹj(0)],E[Ỹj(0)2], τ̃STE

j ) estimated by the
doubly robust estimators on D , and P′

n be the empirical measure over a separate independent
sample D′ = {Zn+1, . . . ,Z2n}. Define the sample variance on D′ as σ̂2j = V′

n(φ̂
STE
j ). It holds that

maxj∈[p] |σ̂2j − σ2j | = OP(r
STE
σ ) where rSTE

σ =
√
log p/n+ ϑSTE.

3.4.2 Quantile effects

In practice, examining quantile effects offers a robust alternative to mean-based analysis, partic-
ularly when confronted with highly variable treatment assignment probabilities and heavy-tailed
outcomes. Estimating causal effects on the mean is a challenging problem in such scenarios be-
cause the signal-noise ratio is generally small. In cases where the mean is undefined but the
median exists (such as the Cauchy distribution), using the median may result in more powerful
tests for the location-shift hypothesis [36].

We first introduce the DR estimator for the median effect (3.3.5) when ϱ = 0.5, while the
proposal naturally extends to other quantile levels ϱ as well. For j ∈ [p], let θaj be the ϱ-quantile
of the counterfactual response Yj(a), which solves the following equation:

0 = E[ψ(Yj(a), θ)], where ψ(y, θ) := 1{y ≤ θ} − ϱ. (3.4.4)

Since the potential outcome Yj(a) is not directly observed, we need to rely on the counterfactual

derived outcomes Ỹj(a) to identify the quantile of Yj(a). The following lemma summarizes the
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identification results of general M-estimators for functionals of Yj(a) using the derived outcomes

Ỹj(a).

Lemma 15 (Identification of M-estimators). Under Assumptions 5–7, consider the causal esti-
mand θaj as the solution to the estimation equations:

Mj(θ) = E[Fj(Yj(a), θ)] = 0, j = 1, . . . , p,

where Mj is differentiable and the magnitude of its derivative |M ′
j | is uniformly lower bounded

around θaj : min1≤j≤p infθ∈B(θaj ,δ) |M ′
j(θ)| ≥ c > 0 for some constant δ > 0. Suppose Ỹj(a)’s are

derived outcomes such that Fj(Ỹj(a), θ) is asymptotically unbiased to Fj(Yj(a), θ), i.e. asm→∞,

∆mj(a, θ) = E[Fj(Ỹj(a), θ) | S(a),W ] − Fj(Yj(a), θ) satisfies that δm := maxj∈[p] supθ∈B(θaj ,δ)

|E[∆mj(a, θ)]| = o(1). Let θ̃aj ∈ B(θaj , δ) be the solution to the estimating equation

E[E[Fj(Ỹj , θ) | A = a,W ]] = 0,

then θaj can be identified by θ̃aj as m→∞ .

Under conditions in Lemma 15 with Fj(Yj(a), θ) = ψ(Yj(a), θ), we can focus on estimating

the quantile of Ỹj(a) to approximate the quantile of Yj(a). Specifically, consider a doubly robust

expansion of the above question: 0 = E[ψ(Ỹj , θ)] = −E[ωaj(Z, θ)], where the estimating function
is given by

ωaj(Z, θ) =
1{A = a}
πa(W )

(νaj(W , θ)− ψ(Ỹj , θ))− νaj(W , θ).

Here, νaj(W , θ) = E[ψ(Ỹj , θ) |W , A = a] = P(Ỹj ≤ θ |W , A = a)− ϱ is the excess (conditional)

cumulative distribution functions (cdfs) of Ỹj(a), and πa is the propensity score function as before.
One may then expect to obtain an estimator of θaj by solving the empirical version of (3.4.4) for
θ:

0 = Pn[ω̂aj(Z, θ)], (3.4.5)

where ω̂aj(Z, θ) =
1{A=a}
π̂a(W ) (ν̂aj(W , θ) − ψ(Ỹj , θ)) − ν̂aj(W , θ) is the estimated influence function

and (π̂a, ν̂aj + ϱ) are the estimated propensity score and cdf functions with range [0, 1].
However, directly solving (3.4.5) is not straightforward due to its non-smoothness and non-

linearity in θ. A reasonable strategy to adopt instead is a one-step update approach [167, 169]
using the influence function:

θ̂aj = θ̂initaj +
1

f̂aj(θ̂initaj )
Pn[ω̂aj(Z, θ̂initaj )], (3.4.6)

where θ̂initaj is an initial estimator of θaj and f̂aj(θ̂
init
aj ) is the estimated density of Ỹj(a) at θ̂

init
aj .

For a = 0, 1, let fa = (faj)j∈[p], θ̃a = (θ̃aj)j∈[p], and νa = (νaj)j∈[p] be the vectors of true den-

sity functions, the ϱ-quantiles, and the excess cdf functions cdfs of Ỹj(a), respectively. Moreover,

let f̂a = (f̂aj)j∈[p], θ̂a = (θ̂aj)j∈[p], and ν̂a = (ν̂aj)j∈[p] be the corresponding vectors of estimated

nuisances. Based on (3.4.6), an estimator for τQTE
j is given by

τ̂QTE
j = θ̂1j − θ̂0j . (3.4.7)

The following theorem provides the asymptotic normality of the one-step estimator (3.4.7).
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Theorem 16 (Linear expansion of QTE). Under Assumptions 5–7, suppose the identification
conditions in Lemma 15 hold with Fj = ψ defined in (3.4.4). Consider the one-step estimator
(3.4.7) for the median treatment effect, where Pn is the empirical measure over D = {Z1, . . . ,Zn}
and (θ̂init

a , f̂a, π̂a, ν̂a) is an estimate of (θ̃a,fa, πa,νa) from samples independent of D for a = 0, 1.
Suppose the following conditions hold for a = 0, 1 with probability tending to one:

(1) Boundedness: The quantile θaj is in the interior of its parameter space. There exists C, c > 0

and ϵ, δ ∈ (0, 1) such that max1≤j≤pmax{|Yj |, |Ỹj |} < C, and πa, π̂a ∈ [ϵ, 1 − ϵ], and faj is
uniformly bounded : c ≤ faj ≤ C for all j and has a bounded derivative in a neighborhood

B(θ̃aj , δ) for all j ∈ [p]: max1≤j≤pmax
θ∈B(θ̃aj ,δ) |f

′
aj(θ)| ≤ C.

(2) Initial estimation: The initial quantile and density estimators satisfy that maxj∈[p] |θ̂initaj −
θ̃aj | = O(n−γ) and maxj∈[p] |f̂aj(θ̂initaj ) − faj(θ̃aj)| = O(n−κ) with γ > 1/4, κ > 0 such that
γ + κ > 1/2.

(3) Nuisance: The rates of nuisance estimates satisfy maxj∈[p] supθ∈B(θ̃aj ,δ) ∥ν̂aj(·, θ)−νaj(·, θ)∥L2 =

O(n−α) and ∥π̂a − πa∥L2 = O(n−β) for some α, β ∈ (0, 1/2) such that α+ β > 1/2.

Then as m,n, p → ∞, it holds that τ̂QTE
j − τQTE

j = Pn{φ̃QTE
j } + εj , j = 1, . . . , p, where the

residual term satisfy maxj∈[p] |εj | = OP(ϑ
QTE

√
(log p)/n + (log p)/n + n−(α+β)∧(γ+κ)∧(2γ) + δm)

with ϑQTE := n−(α∧β∧κ∧ γ
2
) and the influence function is given by

φ̃QTE
j (Z; {θ̃a,fa, πa,νa}a∈{0,1}) = [f1j(θ̃1j)]

−1ω1j(Z, θ̃1j)− [f0j(θ̃0j)]
−1ω0j(Z, θ̃0j).

Appendix B.6.1 provide details for obtaining initial estimators for the quantiles and the cor-
responding densities. Similar to STE, we can also obtain individual asymptotic normality for the
DR estimator (3.4.7) of QTE and consistently estimate its variance.

Proposition 17 (Asymptotic normality of QTE). Under the conditions in Theorem 16, when
(ϑQTE ∨ n−1/4)

√
log p = o(1), δm = o(n−1/2) and σ2j := V(φ̃QTE

j ) ≥ c for some constant c > 0, it
holds

√
n(τ̂QTE

j − τQTE
j )

d−→ N (0, σ2j ), j = 1, . . . , p.

Define the sample variance σ̂2j = Vn(φ̂QTE
j ) for the estimated influence function φ̂QTE

j := φ̃QTE
j (Z; {θ̂init

a ,

f̂a, π̂a, ν̂a}a∈{0,1}). It further holds that maxj∈[p] |σ̂2j −σ2j | = OP(r
QTE
σ ) where rQTE

σ = (log p)/n+√
(log p)/nϑQTE + ϑQTE.

Apart from the mild rate requirement on the nuisance functions, no metric entropy conditions
are assumed in Theorem 16 and Proposition 17. This allows one to estimate nuisances with
machine learning methods and achieve asymptotical normality with cross-fitting. While the
doubly-robust estimators for QTE have also been considered by Chakrabortty et al. [23], Kallus
et al. [81] for a single outcome (p = 1), they both require metric entropy or Donsker class
conditions.

3.5 Simultaneous inference

3.5.1 Large-scale multiple testing

For a target estimand τj ∈ {τSTE
j , τQTE

j }, the asymptotic normality established in Corollary 13
and Proposition 17 can be utilized to test the null hypotheses H0j : τj = τ∗j for j = 1, . . . , p.
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This implies that one can control the Type-I error of the individual tests using the statistics tj =√
n(τ̂j−τ∗j )/σ̂j , with empirical variance given in Propositions 14 and 17. The confidence intervals

for individual causal estimates can also be constructed. To conduct simultaneous inference,
however, the tests above are too optimistic when multiple tests are of interest. Therefore, to
obtain valid inferential statements, we must perform a multiplicity adjustment to control the
family-wise error explicitly. This subsection provides simultaneous tests and confidence intervals
for causal effects with multiple outcomes.

For j ∈ [p], let φij = φ̃j(Zi) and φ̂ij = φ̂j(Zi) be the influence function value and its estimate
evaluated at the ith observation Zi = (Ai,Wi,Xi), as defined in Propositions 14 and 17 for
τj being τSTE

j and τQTE
j , respectively. We require a condition from Chernozhukov et al. [30,

Theorem J.1] for feasible inference.

Assumption 8 (Bounded variances and covariances). There exist a constant a, c1 ∈ (0, 1) and a
set of informative hypotheses A∗ ⊆ [p] such that |A∗| ≥ ap, maxj∈A∗c σ2j = o(1), minj∈A∗ σ2j ≥ c1
and maxj1 ̸=j2∈A∗ |Corr(φ1j1, φ1j2)| ≤ 1− c1.

When the value of σj is 0, the population distribution of the jth influence function is de-
generated and has no variability. In Assumption 8, the first condition precludes the existence
of such super-efficient estimators over A∗, which is commonly required even in classical settings
where the number of variables p is small compared to the sample size n [15]. In practice, one can
use a small threshold cn to screen out outcomes that have small variations and obtain a set of
informative outcomes A1 = {j ∈ [p] | σ̂j ≥ cn}.

For DR estimators derived in the previous section, the following Gaussian approximation
result over a family of null hypotheses allows for data-dependent choices of the set of hypotheses
and suggests a multiplier bootstrap procedure [30] for simultaneous inference.

Lemma 18 (Gaussian approximation for nested hypotheses). For τj = τSTE
j and ϑ = ϑSTE,

suppose conditions in Proposition 14 and Assumption 8 hold. Futher assume that there exist
some constants c2, C2 > 0 such that max{log(pn)7/n, log(pn)2ϑ,

√
n log(pn)δm} ≤ C2n

−c2 . For

all S ⊆ A∗ ⊆ [p], define MS = maxj∈S |
√
n(τ̂j − τj)/σ̂j |, φ̂i = (φ̂ij)j∈S , ÊS = n−1

∑n
i=1 φ̂iφ̂

⊤
i ,

and D̂S = diag((σ̂j)j∈S). Consider null hypotheses HS
0 indexed by S that ∀ j ∈ S, τj = τ∗j . As

m,n, p→∞, it holds that

sup
HS

0 :S⊆A∗
sup
x∈R
|P(MS > x)− P(∥gS∥∞ > x | {Zi}ni=1)|

p−→ 0,

where gS ∼ N (0, D̂−1
S ÊSD̂

−1
S ). The conclusion also holds for τj = τQTE

j and ϑ = ϑQTE under
conditions in Proposition 17 and Assumption 8.

When m is sufficiently large such that the error of derived outcomes δm is ignorable, the
rate conditions in Lemma 18 can be satisfied if the logarithm of the numbers of hypothe-
ses grows slower than n

1
7 ∧ ϑ−

1
2 for at least a polynomial factor of n. Lemma 18 suggests

that if A1 ⊆ A∗ only contains informative hypotheses, then the distribution of the maximal
statistic M1 = maxj∈A1 |tj | can be well approximated by g1 ∼ N (0,D−1

n1En1D
−1
n1 ), where

En1 = n−1
∑n

i=1 φ̂i1φ̂
⊤
i1 is the sample covariance matrix with φ̂i1 = (φ̂ij)j∈A1 and Dn1 =

diag((σ̂j)j∈A1) is the diagonal matrix of the estimated standard deviations. This allows us to
simulate the null distribution efficiently using the multiplier bootstrap procedure. To gener-
ate B bootstrap samples, for all b = 1, . . . , B, we first sample n standard normal variables

ε
(b)
11 , . . . , ε

(b)
n1

i.i.d.∼ N (0, 1) and then apply a linear transformation to obtain the multivariate

normal vectors g
(b)
1 = (

√
nDn1)

−1
∑n

i=1 ε
(b)
i1 φ̂i1. It is easy to verify that g

(1)
1 , · · · , g(B)

1
i.i.d.∼
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N (0,D−1
n1En1D

−1
n1 ) conditioned on {Zi}ni=1. Based on the bootstrap samples, we can estimate the

upper α quantile ofM1 by q̂1(α) = inf
{
x
∣∣∣B−1

∑B
b=1 1{∥g

(b)
1 ∥∞ ≤ x} ≥ 1− α

}
. To test multiple

hypotheses H0j : τj = τ∗j for j ∈ A1, we reject those in the set Â = {j ∈ A1 | |tj | > q̂1(α)}. The
next proposition shows that the informative hypotheses can be identified, and the family-wise
error rate (FWER) can be controlled.

Proposition 19 (Type-I error control). For (τj , rσ) being (τSTE
j , rSTE

σ ) or (τQTE
j , rQTE

σ ), suppose
conditions in Lemma 18 hold . Let V∗ = {j | H0j is false, j = 1, . . . , p} ∩ A∗ be the set of
informative non-null hypotheses. If max{rσ,maxj∈A∗c σ2j } = o(cn), then as m,n, p→∞, it holds

that lim P(A∗ = A1) = 1 and lim sup P(Â ∩ V∗c ̸= ∅) ≤ α.
As suggested by Proposition 19, because the lower bound of informative variance in Assump-

tion 8 is unknown, a slowly shrinking threshold cn is needed to recover the true candidate set
A∗ and control the FWER. In practice, one can set cn as a small value, such as 0.01, to exclude
uninformative tests. If lowly expressed genes have already been excluded, thresholding may not
be necessary.

3.5.2 False discovery rate control

When p is large, controlling for the false discovery proportion (FDP) or the false discovery rate
(FDR) is more desirable to improve the powers when performing simultaneous testing. The FDP
is the ratio of false positives to total discoveries, while the FDR is the expected value of the FDP.
To control the FDP, we adopt the step-down procedure [58] to test the sequential hypotheses,

H
(ℓ)
0 : ∀ j ∈ Aℓ, τj = τ∗j , versus H(ℓ)

a : ∃ j ∈ Aℓ, τj ̸= τ∗j , ℓ = 1, 2, . . .

where A1,A2, . . . is a sequence of nested sets. The proposed multiple testing method in Algo-
rithm 2 incorporates both the Gaussian multiplier bootstrap and step-down procedure, which
aims to control the FDP exceedance rate FDX := P(FDP > c), the probability that FDP sur-
passes a given threshold c at a confidence level α. This provides a strengthened control on FDP
and is asymptotically powerful, as shown in the following theorem.

Theorem 20 (Multiple testing). Under the conditions of Proposition 19, consider testing multi-
ple hypotheses H0j : τj = 0 versus Haj : τj ̸= 0 for j = 1, . . . , p based on the step-down procedure
with augmentation. As m,n, p → ∞, the set of discoveries V returned by Algorithm 2 satisfies
that

• (FDX) lim supP(FDP > c) ≤ α where FDP = |V ∩ V∗c|/|V|.
• (Power) P(V∗ ⊂ V)→ 1 if minj∈{j∈[p]|τj ̸=0} |τj | ≥ c′

√
log(p)/n for some constant c′ > 0.

Theorem 20 extend previous results by Belloni et al. [15] for many approximate means and
by Qiu et al. [139] for IPW estimators to DR estimators. On the one hand, Belloni et al. [15]
directly imposes assumptions on the influence functions and linearization errors, while we need
to analyze the effect of nuisance functions estimation for the doubly robust estimators. On
the other hand, Qiu et al. [139] requires sub-Gaussian assumptions and

√
n-consistency of the

maximum likelihood estimation for the propensity score to establish Gaussian approximation for
their proposed statistics, which does not apply to our problem setups.
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Algorithm 2 Multiple testing on doubly robust estimation of treatment effects

Input: The estimated centered influence function values φ̂ij , the estimated variance σ̂2j for i =
1, . . . , n and j = 1, . . . , p. The FDP exceedance threshold c and probability α, and the number
of bootstrap samples B.

1: Initialize the iteration number ℓ = 1, the candidate set A1 = {j ∈ [p] | σ̂2j ≥ cn}, the set of
discoveries V1 = ∅, and the statistic tj =

√
n(τ̂j − τ∗j )/σ̂j for j ∈ [p].

2: while not converge do

3: Draw multiplier bootstrap samples g
(b)
ℓ = (

√
nDnℓ)

−1
∑n

i=1 ε
(b)
iℓ φ̂iℓ, where ε

(b)
iℓ ’s are inde-

pendent samples from N (0, 1) for i = 1, . . . , n and b = 1, . . . , B.
4: Compute the maximal statistic Mℓ = maxj∈Aℓ

|tj |.
5: Estimate the upper α-quantile of Mℓ under H

(ℓ)
0 : ∀ j ∈ Aℓ, τj = τ∗j by

q̂ℓ(α) = inf

{
x

∣∣∣∣∣ 1B
B∑
b=1

1{∥g(b)
ℓ ∥∞ ≤ x} ≥ 1− α

}
.

6: if Mℓ > q̂ℓ(α) then
7: Set jℓ = argmaxj∈Aℓ

|tj |, Aℓ+1 = Aℓ \ {jℓ}, and Vℓ+1 = Vℓ ∪ {jℓ}.
8: else
9: Declare the treatment effects in Aℓ are not significant and stop the step-down process.

10: end if
11: ℓ← ℓ+ 1.
12: end while
13: Augmentation: Set V to be the union of Vℓ and the ⌊|Vℓ| · c/(1− c)⌋ elements from Aℓ with

largest magnitudes of |tj |.
Output: The set of discoveries V.

3.6 Simulation

We consider a simulation setting with p = 8000 genes and generate an active set of genes V∗ =
A∗ ⊂ [p] with size 200. We draw covariates W ∈ Rd with i.i.d.N (0, 1) entries and the treatment
A follows a logistic regression model with probability P(A = 1 | W ) = 1/(1 + exp(1⊤dW /(d +
1))). Then, we generate the counterfactual gene expressions. For a gene j, the single-cell gene
expression Xj(0) is drawn from a Poisson distribution with mean λj = exp(W⊤bj) ∈ R where
the entries of both the coefficients bj ∈ Rd with 1 as the first entry and the remaining entries
independently drawn from N (0, 1/4). The gene expressions Xj(1) for j ̸∈ V∗ are generated from
the same model, while for gene j ∈ V∗, we consider two treatment mechanisms that favor the
mean-based and quantile-based tests, respectively; see Appendix B.6.2 for more details about the
data generating processes.

Next, we draw m observations X1(A), . . . ,Xm(A) independently, which are summed up as
the overall gene expression Ỹ (A). Then, the observed gene expression matrix is given by X =
AX(1)+ (1−A)X(0) and analogously Ỹ = AỸ (1)+ (1−A)Ỹ (0). We then draw n independent
observed samples {(Ai,Wi,Xi, Ỹi)}ni=1. The parameters are set to be d = 5, m = 100, n ∈
{100, 200, 300, 400}. For nuisance function estimation, we employ Logistic regression to estimate
the propensity score and Poisson generalized linear model (GLM) with the log link to estimate
the mean regression functions. For quantile-based methods, the initial estimators of the quantile
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Figure 3.2: Simulation results of the hypothesis testing of p = 8000 outcomes based on different

causal estimands and FDP control methods for detecting differential signals under (a) mean shifts

and (b) median shifts averaged over 50 randomly simulated datasets without sample splitting. The

gray dotted lines denote the nominal level of 0.1.

and density are described in Appendix B.6.1.

To quantify the performance of different test statistics and multiple testing procedures, we
compare the empirical FDX, FDR, and power. We aimed to control FDX over 0.1 at 0.05, namely
P(FDP > 0.1) ≤ 0.05. We also compared with the Benjamini-Hochberg (BH) procedure with
targeting FDR controlled at 0.05. The experiment results are summarized in Figure 3.2 without
sample splitting and in Figure B.62 of Appendix B.6.2 with cross-fitting. As shown in Figure 3.2,
in the high signal-noise ratio (SNR) setting, the proposed method controls both FDX and FDR
at the desired level for all three causal estimands when the sample size is relatively large, i.e.,
n > 100. On the other hand, the BH procedure fails to control the FDX and FDP at any sample
sizes because the p-values are not close to uniform distribution (see Figure B.61), though the
gaps of FDP become smaller when the sample size gets larger. Though the BH procedure has
lower FDP with sample splitting (see Figure B.62), it still fails to control FDX for all estimands.
This indicates that the proposed multiple testing procedure consistently outperforms the BH
procedure by correctly accounting for the dependencies among the test statistics and providing
valid statistical error control.

In the low SNR setting, we see that the quantile-based estimand has larger powers than
mean-based tests, which is expected because of the designed data-generating process. Such a low
SNR scenario is often encountered with scRNA-seq data. In this case, the proposed method still
has better control of both FDX and FDR compared to the BH procedure. Although the QTE
test is slightly anti-conservative regarding FDX, it still controls the FDR well. Furthermore,
standardized tests are more powerful than unstandardized estimands, especially when the sample
size is small. Overall, the results in Figure 3.2 demonstrate the valid FDP control of the proposed
multiple testing procedure for various causal estimands and suggest that testing based on different
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estimands could be helpful in different scenarios. In contrast, the commonly used BH procedure
in genomics may be substantially biased due to the complex dependency among tests.

3.7 causarray

3.7.1 Doubly-robust counterfactual imputation and inference

Our objective is to determine whether a gene is causally affected by a “treatment” variable after
controlling for other technical and biological covariates, which may affect the treatment and
outcome variables. Here, we use the term treatment generally; in the narrow sense, it can mean
genetic and/or chemical perturbations [79, 118], such as CRISPR-CAS9, and, more broadly, it can
mean the phenotype of a disease [134]. We acknowledge that while many differentially expressed
genes can be considered a result of disease status, for most late-onset disorders, a smaller fraction
of genes could have initiated disease phenotypes. Our method aims to determine the direct effects
of treatments on modulated gene expression outcomes.

In observational data, the response variable can be confounded by measured and unmeasured
biological and technical covariates, making it difficult to separate the treatment effect from other
unknown covariates. As a consequence, it is challenging to draw causal inferences; even tests
of association may lead to an excess of false discoveries and/or low power. Fortunately, the
potential outcomes framework [143, 152] formulates general causal problems in a way that allows
for the treatment effect to be separated from the effects of other variables. However, even this
framework is challenged by unmeasured covariates. Before introducing our method for estimating
unmeasured confounders, we first outline the general potential outcomes framework.

Consider a study in which Y is the response variable and A is the binary treatment variable
for an observation. In the potential outcomes framework, Y (a) is the outcome that we would
have observed if we set the treatment to A = a. Naturally, we can only observe one of the two
potential outcomes for each observation, so

Y = 1{A = 1}Y (1) + 1{A = 0}Y (0),

In the context of a case-control study of a disease, this would answer the question: What is the
expected difference in gene expression if an individual had the disease (case, A = 1) versus if they
did not (control, A = 0)?

Doubly robust methods provide a powerful tool for estimating potential outcomes in obser-
vational studies where randomization is not possible [143, 152]. Specifically, we estimate two key
quantities: (1) µa(X), the mean response of the outcome variable conditional on treatment A = a
and covariates X = x, and (2) πa(X), the propensity score, which is defined as the probability of
receiving treatment A = a given covariates X, i.e., πa(X) = P(A = a | X). Using these estimates,
we compute potential outcomes as

Ŷ (a) =
1{A = a}
π̂a(X)

(Y − µ̂a(X)) + µ̂a(X).

The doubly robust estimator’s name comes from the fact that it provides a consistent estimate as
long as either the outcome model, µa(X), or the propensity score model, πa(X), is correctly spec-
ified. Given this estimate, we can easily perform downstream inference tasks such as computing
log fold change (LFC), and testing for causal effects on gene expressions (fig. 3.3a). An advan-
tage of this approach is that counterfactual imputation denoises/balances gene expression under
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Figure 3.3: Overview of the proposed causarray method. a, Illustration of the data gener-

ation process for pseudo-bulk and single-cell data. b, The gene expression matrix, Y , is linked to

the treatment, A, measured covariates, X, and confounding variables, U , via a GLM model. The

cell-wise size factor, s, and gene-wise dispersion parameter, ϕ, are estimated from the data, and

the unmeasured confounder U is estimated by Û through the augmented GCATE method. c, Gen-

eralized linear models and flexible machine learning methods including random forest and neural

network can be applied for outcome modeling (E[Y | A = a,X, Û ] = µ̂a(X, Û)) and propensity mod-

eling (P(A = a | X,U) = π̂a(X, Û)) The estimated outcome and propensity score functions give rise

to the estimated potential outcomes for each cell and each gene. d, Downstream analysis includes

contrasting the estimated counterfactual distributions, performing causal inference, and estimating

the conditional average treatment effects.

two different conditions. Additionally, having access to estimated potential outcomes facilitates
downstream analyses such as estimating causal effects conditional on measured confounders like
age.
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A key step in these types of analyses is estimating unmeasured confounders. To adjust for
confounding, factor models were popularized in surrogate variable analysis literature and have
since been widely adopted in bulk gene expression studies [96]. Recently, we extended this
approach to single-cell RNA-seq data using generalized linear models that better accommodate
pseudobulk and single-cell outcome variables [48]. Using this generalized factor analysis approach,
we estimate unmeasured confounders U alongside potential outcomes (fig. 3.3b-c), enabling direct
estimation of downstream quantities such as LFC (fig. 3.3d).

3.7.2 causarray applied to an in vivo Perturb-seq study reveals causal effects
of ASD/ND genes

An integrative analysis of multiple single perturbations Autism spectrum disorders and
neurodevelopmental delay (ASD/ND) represent a complex group of conditions that have been
extensively studied using genetic approaches. To investigate the underlying mechanisms of these
disorders, researchers have employed scalable genetic screening with CRISPR-Cas9 technology
[79]. Frameshift mutations were introduced in the developing mouse neocortex in utero, followed
by single-cell transcriptomic analysis of perturbed cells from the early postnatal brain [79]. These
in vivo single-cell Perturb-seq data allow for the investigation of causal effects of a panel of
ASD/ND risk genes. We analyze the transcriptome of cortical projection neurons (excitatory
neurons) perturbed by one risk gene or a non-targeting control perturbation, which serves as a
negative control.

Unmeasured confounders, such as batch effects and unwanted variation, are likely present
in this dataset due to the batch design being highly correlated with perturbation conditions
(fig. B.64ab). Additionally, the heterogeneity of single cells assessed in vivo introduces further
complexity. These confounding factors may reduce statistical power for gene-level differential
expression (DE) tests, as noted in the original study [79], which instead focused on gene module-
level effects. To address this limitation, we apply causarray to incorporate unmeasured confounder
adjustment and conduct a more granular analysis at the single-gene level. This approach enables
us to uncover nuanced genetic interactions and causal effects that may provide deeper insights
into the etiology of ASD/ND.

Functional analysis Gene module-level analyses have been shown to provide greater statistical
power for detecting biologically meaningful perturbation effects when fewer cells are available [79].
The original study adopted this approach but relied on a linear model rather than a negative
binomial model, potentially limiting its ability to detect broader signals at the individual gene
level. Here, we compare causarray with RUV and DESeq2 (without confounder adjustment)
to identify significant genes and enriched gene ontology (GO) terms associated with various
perturbations. The number of latent factors is set as 10, according to the joint-likelihood-based
information criterion (fig. B.65a).

In terms of significant gene detection, causarray identifies a comparable number of significant
genes to RUV across most perturbations, while DESeq2 consistently detects fewer significant
genes (fig. 3.4a). The variation in significant detections across different perturbed genes suggests
distinct biological impacts of each knockout. Functional analysis focuses on enriched GO terms on
the DE genes under each perturbation condition where discrepancies arise between causarray and
other methods. Genes identified by causarray are enriched for biologically relevant GO terms with
clear clustering patterns (fig. 3.4b-c, fig. B.64c). In contrast, RUV shows less distinct clustering
and enrichment patterns.
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Notably, while RUV identifies GO terms related to ribosome processes previously implicated
in ASD studies [107], these findings remain controversial. Some argue that dysregulation in trans-
lation processes and ribosomal proteins may reflect secondary changes triggered by expression
alterations in synaptic genes rather than direct causal effects [60]. In contrast, GO terms identified
by causarray align more closely with the expected causal effects of ASD/ND gene perturbations
[54, 93].

To further validate these findings, we examine the perturbation condition for Satb2, which
yields the largest number of significant genes identified by both methods (adjusted P value < 0.1)
and exhibits significant different estimated propensity scores (fig. B.65b). Satb2 is known to play
critical roles in neuronal development, synaptic function, and cognitive processes [173, 184]. Using
causarray, we detect enrichment for GO terms directly related to neuronal function and develop-
ment, such as “regulation of neuron projection development,” “regulation of synapse structure or
activity,” and “synapse organization” (fig. 3.4d). These findings are consistent with Satb2 ’s es-
tablished roles in neuronal development and synaptic plasticity [61, 73]. On the other hand, RUV
identifies enrichment for terms related to mitochondrial function and energy metabolism, such
as “mitochondrial electron transport,” “cellular respiration,” and “ATP synthesis” (fig. 3.4e).
While these processes are important for general cellular function, they are less directly relevant
to Satb2 ’s primary biological roles.

Overall, this analysis demonstrates that causarray provides greater specificity in detecting
biologically meaningful causal effects of gene perturbations. Its ability to disentangle confound-
ing influences while preserving relevant biological signals highlights its effectiveness in analyzing
complex genomic datasets.

3.7.3 causarray reveals causally affected genes of Alzheimer’s disease in a
case-control study

An integrative analysis of excitatory neurons We analyze three Alzheimer’s disease (AD)
single-nucleus RNA sequencing (snRNA-seq) datasets: a transcriptomic atlas from the Religious
Orders Study and Memory and Aging Project (ROSMAP) [116] and two datasets from the Seattle
Alzheimer’s Disease Brain Cell Atlas (SEA-AD) consortium [55], which include samples from the
middle temporal gyrus (MTG) and prefrontal cortex (PFC). Our objective is to compare the
performance of causarray and RUV in pseudo-bulk DE tests of AD in excitatory neurons.

To evaluate the validity, we perform a permutation experiment on the ROSMAP-AD dataset
by permuting phenotypic labels. Ideally, no significant discoveries should be made under this
null scenario. However, RUV produces a large number of false discoveries, with its performance
deteriorating as the number of latent factors increases. In contrast, causarray effectively controls
the false discovery rate (FDR), producing minimal false positives (fig. 3.5a). Additionally, we as-
sess coherence across datasets by examining effect sizes in SEA-AD (MTG) and SEA-AD (PFC).
Effect sizes estimated by causarray exhibit higher consistency across varying q-value cutoffs com-
pared to RUV (fig. 3.5b, fig. B.66b). When inspecting DE genes across all three AD datasets,
causarray identifies more consistent discoveries than RUV (fig. 3.5c), highlighting its robustness
in detecting causally affected genes.

Functional analysis We further compare functional enrichment results between causarray
and RUV using gene ontology (GO) terms associated with DE genes. Across the three datasets,
causarray identifies 165 common GO terms, significantly more than the 60 identified by RUV
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Figure 3.4: Statistical test results of the effects of CRISPR perturbation on gene expres-

sion in excitatory neuron data. a, Number of significant genes detected under all perturbations

using three different methods. The detection threshold for significant genes is FDR< 0.1 for all meth-

ods. b-c, Heatmaps of GO terms enriched (adjusted P value < 0.05, q < 0.2) in discoveries from

causarray and RUV, respectively, where the common GO terms are highlighted in blue. Only the

top 20 GO terms that have the most occurrences in all perturbations are displayed. d-e, Barplots of

GO terms enriched in discoveries under Satb2 perturbation from causarray and RUV, respectively.

(fig. 3.5d). Both methods detect GO terms relevant to neuronal development and synaptic func-
tions, which are critical for understanding AD pathology. However, causarray shows distinct en-
richment in categories such as “positive regulation of cell development” and “negative regulation
of cell cycle’, reflecting its increased sensitivity to synaptic and neurotransmission-related pro-
cesses. In contrast, RUV’s results exhibit more dataset-specific enrichments, such as biosynthetic
processes in SEA-AD (PFC), apoptotic processes in SEA-AD (MTG), and catabolic processes in
ROSMAP-AD (fig. B.66c). These findings suggest that causarray captures more generalizable
biological signals across datasets.

Both methods identify overlapping top functional categories related to key biological processes
associated with AD pathology (fig. B.66e). However, causarray associates a larger number of
genes with these categories, identifying 3393 DE genes compared to 3187 for RUV (fig. 3.5c).
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Figure 3.5: Comparison of DE genes discovered by causarray and RUV on excitatory

neurons for Alzheimer’s disease. a, The ratio of false discoveries to all 15586 genes of DE test

results with permuted disease labels on the ROSMAP-AD dataset. Three methods, causarray with

FDX control, causarray with FDR control, and RUV with FDR control, are compared. Data are

presented as mean values ± s.d. b, The similarity of estimated effect sizes on SEA-AD MTG and

PFC datasets. The slope is estimated from linear regression of effect sizes on the PFC dataset against

those on the MTG dataset. c, DE genes by causarray and RUV over 15586 genes (adjusted P value

< 0.1). d, Venn diagram of associated GO terms from causarray and RUV (adjusted P value < 0.05,

q < 0.2). e, Considering only the top 50 positively regulated and the top 50 negatively regulated DE

genes from causarray and RUV, we map them to the top 5 biological processes (the green nodes).

Additionally, causarray reveals 165 common GO terms across the three datasets, significantly
more than the 60 identified by RUV (fig. 3.5d). The visualization of the discovered networks, as
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a

b

Figure 3.6: Results of DE analysis of 10 selected genes by causarray. The top 5 up-

regulated and top 5 down-regulated genes in estimated LFCs (adjusted P value < 0.05) are visualized.

a, Estimated counterfactual distributions. The values are shown in the log scale after adding one

pseudo-count. b, Estimated log-fold change of treatment effects, conditional on age for selected

genes. The center lines represent the mean of the locally estimated scatter plot smoothing (LOESS)

regression, and the shaded area represents a 95% confidence interval at each value of age.

defined as the top 5 GO terms and associated genes included in the top 100 DE gene discoveries,
further highlights the enhanced sensitivity and comprehensiveness of causarray. Specifically, the
causarray network contains 17 gene nodes and 81 edges, compared to 14 gene nodes and 57 edges
in the RUV network (fig. 3.5e). This greater interconnectedness in the larger causarray network
suggests a more intricate and informative representation of underlying biological relationships,
emphasizing its ability to capture broader and more relevant genetic factors associated with AD
pathology.

Counterfactual analysis The counterfactual framework employed by causarray enables down-
stream analyses that directly utilize estimated potential outcomes. By examining counterfactual
distributions for significant genes (fig. 3.6a), we observe distinct shifts in expression levels be-
tween treatment (Y (1)) and control (Y (0)) groups. Downregulated genes show a shift toward
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lower expression levels under disease conditions, while upregulated genes exhibit increased ex-
pression. Conditional average treatment effects (CATEs) reveal age-dependent trends for these
genes (fig. 3.6b). For example, upregulated genes such as SLC16A6 and RFLNA show stronger
effects at extreme ends of the age distribution, while others like SLC38A2 and BAG6 display
nuanced changes across the aging spectrum.

These findings align with prior studies highlighting the roles of specific genes in aging-related
processes. For instance, ZFR2, RFLNA, BAG6, and RAD21 have been implicated in chromatin
remodeling, synaptic plasticity, and cellular stress responses critical for aging and neurodegen-
eration [67, 83, 94, 129]. While nonparametric fitted curves exhibit wider uncertainty bands,
particularly at the boundaries, which can be observed here, the significant trends observed for
key genes highlight their potential relevance in AD pathology. Overall, these results demonstrate
that causarray provides nuanced insights into age-dependent gene regulation mechanisms while
maintaining robust control over confounding influences.
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Chapter 4

Assumption-Lean Post-Integrated
Inference with Negative Control
Outcomes

Material in this chapter first appeared as Du et al. [45].

4.1 Introduction

In the big data era, integrating information from multiple heterogeneous sources has become
increasingly crucial for achieving larger sample sizes and more diverse study populations. The
applications of data integration are in a variety of fields, including but not limited to, causal infer-
ence on heterogeneous populations [157], survey sampling [179], health policy [133], retrospective
psychometrics [69], and multi-omics biological science [39]. Data integration methods have been
proposed to mitigate the unwanted effects of heterogeneous datasets and unmeasured covari-
ates, recovering the common variation across datasets. However, a critical and often overlooked
question is whether reliable statistical inference can be made from integrated data. Directly per-
forming statistical inference on integrated outcomes and covariates of interests fails to account
for the complex correlation structures introduced by the data integration process, often leading
to improper analyses that incorrectly assume the corrected data points are independent [101].

While data integration is broadly utilized in various fields, our paper focuses on a challenging
scenario with the presence of high-dimensional outcomes. Particularly in the context of genomics,
experimental constraints often necessitate the collection of data in multiple batches [111, 112].
Batch correction and data integration methods are commonly used in genomics to recover the low-
dimensional embeddings or manifolds of each observation from the high-dimensional outcomes.
The naive approach uses a batch indicator as a covariate in a regression model for inference, which
may not be sufficient for adjusting for batch effects and unmeasured covariates [101]. Instead, two-
step methods are commonly employed in practice as a separate data preprocessing step to produce
integrated data, which can then be utilized for downstream inference. For instance, design-based
methods, such as Combat [80] and BUS [112], combine the batch or unknown subtype indicator
into hierarchical Bayesian models and provide location and scale correction. Additionally, design-
free methods, including RUV [56] and SVA [99] directly estimate the latent confounding factors,
and users can use the estimated latent variables as extra covariates for the downstream inference.
These methods apply to samples that share the same underlying biological variability, which is
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Figure 4.1: Overview of the post-integrated inference problem. (a) Data integration utilizes mul-

tiple outcomes Y = (Y1, . . . , Yp)
⊤ and covariate X of interest to estimate the embeddings Û , and

provides integrated outcomes Ỹ = (Ỹ1, . . . , Ỹp)
⊤ for downstream analysis. (b) Inference on the

direct associations between Yj ’s and X, and those between Ỹj ’s and X may be biased because of

batch effects and observational dependency induced by data integration processes, respectively. (c)

Post-integrated inference includes two strategies: the design-based approach that includes a batch

indicator through a statistical model and the design-free approach that first estimates the latent

embeddings and then treats them as extra covariates for downstream inference (the batch indicator

can also be used as an observed confounder), where the latter is our focus.

our focus in this paper; see Figure 4.1 for an illustration.

Despite different procedures and output formats, nearly all batch correction methods utilize
information from multiple outcomes to estimate and align the underlying “embeddings” of ob-
servations. This approach is closely related to unmeasured confounder adjustment, particularly
when each observation is viewed as a single dataset. Over the past decades, researchers have ex-
plored various methods to address unmeasured confounders in statistical analysis. In the presence
of multiple outcomes, deconfounding techniques primarily employ two strategies: incorporating
known negative control outcomes or leveraging sparsity assumptions [175, 189]. Additionally, a
line of research on proximal causal inference uses both negative control outcomes and/or expo-
sures for deconfounding [124]; see a review of related work in Appendix C.1. This paper focuses
specifically on the negative control approach in the context of multiple outcomes, where the goal
is to directly estimate and adjust for latent factors that may confound the treatment outcome
relationships.

Mathematically, a high-dimensional outcome vector Y ∈ Rp is often related to a covariate
vector X ∈ Rd and an unobserved low-dimensional latent vector U ∈ Rr. Here, X includes
variables such as disease status or treatment, and U , frequently referred to as the embedding
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Figure 4.2: Histogram of t-statistics of PTEN perturbation on 8320 cells and 4163 genes by four

different confounder adjustment methods. The orange dashed curves represent the density of standard

normal distribution. See Section 4.5 for more details about the methods and experiment setting.

vector, captures both the batch effects and the unmeasured covariates. Both of them serve as a
compact representation of the outcome Y , with the dimensionality of the outcome space being
significantly larger than that of the covariate and latent space, i.e., p≫ d and p≫ r. Differences
in how data are collected across datasets can result in shifts or distortions in the distribution
of unobserved variable U , and can potentially affect the distribution of X as well. Our primary
interest lies in the direct associations or causal relationships between the outcome Yj and the
covariate X for j = 1, . . . , p, after adjusting for the difference induced by unwanted variation U .
When X and U are independent, the problem would be trivial because the direct effects can be
estimated by regressing Yj ’s on X. However, when X and U are dependent, the direct regression
approach targets the total effects and provides a biased estimate of the direct effects. Hence,
proper data integration methods need to estimate U for integrating the outcomes from different
sources and for multiple hypotheses testing.

Although two-step procedures are widely favored by practitioners, it is evident that the risk of
making mistakes is propagated by the two steps. Specifically, the estimation of latent embeddings
U and the subsequent statistical inference are both contingent on the assumptions made by their
respective models. If either model is misspecified, the final inference results can be significantly
biased. For instance, varying choices of hyperparameters, such as the latent dimension, can
affect the accuracy of the first-stage estimation. It is, therefore, critical to understand whether
such approaches work in more general settings and how to remedy these existing post-integrated
inference methods under possible misspecification.

In this paper, we rigorously investigate the validity of statistical inference on integrated data,
focusing particularly on the use of negative control outcomes to ensure reliable inference. Our
aim is to analyze the validity of two-step post-integrated inference under minimal assumptions
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Figure 4.3: Batch correction where the latent embedding U is (a) U is a mediator that contributes

to the indirect effect from X to Y ; (b) a confounder that affects both X and Y ; and (c) a moderator

that interacts with an independent variable X of interest to influence an outcome Y , but is not on

the causal pathway.

about the data-generating processes. Further, we aim to provide a framework that not only
ensures effective batch correction but also maintains the integrity and reliability of statistical
inference, addressing two key challenges using flexible machine learning algorithms. This will
allow researchers to retain the statistical power of their analyses while providing greater confidence
in the validity of their inferences from integrated data.

Post-Integrated inference To demonstrate the challenges in post-integrated inference, we
analyze high-throughput single-cell CRISPR data from a study on autism spectrum disorder-
related gene perturbations and their effects on neuronal differentiation (Section 4.5). In this
example, one cell can be viewed as a single dataset, where the heterogeneity among cells may not
be fully explained by observed covariates. Our analysis focuses on testing nonlinear associations
between 4163 genes and PTEN perturbation after accounting for covariates in neural development
and unwanted variations from heterogeneous observations.

Figure 4.2 illustrates t-statistic distributions from four different methods. The unadjusted
inference method yields overly conservative test statistic distributions compared to the expected
N (0, 1) distribution. While batch correction and confounder adjustment methods produce distri-
butions closer to the standard normal, some show anti-conservative tendencies. Importantly, only
about half of the significant tests (p-value< 0.05) are consistent across the three confounder ad-
justment methods, raising concerns about their reliability. This inconsistency stems from varied
model assumptions and algorithms tailored to specific data models, which may be misspecified
for sparse single-cell data or due to inaccurate estimation of the number of latent factors.

The goal of this paper is to construct a robust statistical framework that uses embeddings from
existing data integration methods to mitigate misspecification issues, ensuring valid statistical
inference and enhancing current post-integrated inference methodologies.

Main contributions Our work makes several key contributions. First, in Section 4.2, we
derive nonparametric identification conditions using negative control outcomes (Section 4.2.1),
enhancing causal interpretations and forming the basis for our post-integrated inference (PII)
method. In Section 4.2.2, introduce a robust and assumption-lean framework for post-integrated
inference that effectively addresses hidden mediators, confounders, and moderators (Figure 4.3).
This framework ensures reliable statistical inference despite possible confounding from batch ef-
fects and data heterogeneity. It eliminates confounding ambiguity (Remark 8), leverages negative
control outcomes for accurate embedding estimation (Remark 9), and exhibits resilience to model
misspecification, supporting model-free inference (Remark 10).
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Our second contribution in Section 4.3 analyzes the statistical error in target estimands using
estimated embeddings. In Section 4.3.1, we use martingale interpretations to assess the bias
caused by these embeddings. Under regularity conditions, we show in Theorem 22 that the
bias of the projected target estimand with estimated embeddings is primarily determined by the
L2-norm of the embedding estimation error, up to an invertible transformation. Furthermore,
Lemma 23 shows that bias in linear models can be deterministically evaluated using the operator
norm of projection matrices, regardless of latent dimensionality.

Our third main contribution, discussed in Section 4.3.2 and appendix C.5.3, involves devel-
oping efficient semiparametric inference methods for estimands with estimated covariates under
both linear and nonlinear functions. These methods advance the assumption-lean approach of
Vansteelandt and Dukes [171] to accommodate multiple treatments and outcomes. Specifically,
we derive finite-sample linear expansions for direct effect estimands (Theorem 24), provide a
uniform concentration bound for residuals, and establish the asymptotic distribution for both
linear and nonlinear effects under mild assumptions (Corollary 25, Theorem C.5.1) with triangu-
lar arrays. These results are essential for establishing guarantees related to multiple testing with
high-dimensional outcomes (Proposition 26).

4.2 Post-Integrated inference

4.2.1 Nonparametric identification with negative control outcomes

In this section, we consider post-integrated inference with negative control outcomes. Similar
to the causal inference analysis with observational data [71, 84], we consider the case when the
latent variable U is a confounder as in Figure 4.3(b). Let X ⊆ Rd and U ⊆ Rr be the support of
X and U , respectively. We use f to denote a generic (conditional) probability density or mass
function and require causal assumptions on the observational data (X,U, Y ) and counterfactual
outcome Y (x) when X is interpreted as treatment.

Assumption 9. 1. Consistency: when X = x, Y = Y (x).

2. Positivity: f(x | u) > 0 for all u ∈ U .
3. Latent ignorability: X ⊥⊥ Y (x) | U for all x ∈ X .
Assumption 91 requires that no interference among the subjects, meaning that a subject’s

outcome is affected by its treatment but not by how others are treated. Assumption 92 sug-
gests that X = x can be observed at any confounding levels of U with a positive probability.
Assumption 93 ensures that the treatment assignment is fully determined by the confounder U .
These assumptions are required to estimate the counterfactual distribution of Y (x) with observed
variables (X,U, Y ) by the g-formula fY (x)(y) =

∫
f(y | u, x)f(u) du. In our problem, because U

is not observed, all information contained in the observed data is captured by f(y, x), and one
has to solve for f(y, x, u) or equivalently f(u | y, x) from the integral equation:

f(y, x) =

∫
f(y, x, u) du. (4.2.1)

In general, the joint distribution f(y, x, u) cannot be uniquely determined. With an auxiliary
variable Z, the approach by Miao et al. [125, Theorem 1] identifies the treatment effect from any
admissible1 distribution under exclusion restriction, equivalence, and completeness assumptions.

1A joint distribution f̃(y, x, u) is admissible if it conforms to the observed data distribution f(y, x), that is,

f(y, x) =
∫
f̃(y, x, u) du.
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Because the negative control outcomes can also be viewed as a non-differentiable proxy of the
confounder, their result also applies to our problem if taking Z = YC ; however, when restricting to
negative control outcomes, we can extend their approach on the identification of the counterfactual
distributions with weaker assumptions. Now, we modify it as follows.

To present our first result on identification with negative control outcomes, we let f(y, x, u;α)
denote a model for joint distribution indexed by a possibly infinite-dimensional parameter α, and
conditional and marginal distributions are defined analogously. We require Assumption 10.

Assumption 10. The following hold for a set of control outcomes C ⊂ [p] and for any α:

1. (Negative control outcomes) (YCc , X) ⊥⊥ YC | U .

2. (Equivalence) any f̃(yC , u) that solves f(yC ;α) =
∫
f̃(yC , u;α) du can be written as f̃(yC , u) =

f(yC , v
−1(u);α) for some invertible but not necessarily known function v.

3. (Completeness) for all u ∈ U , f(u) > 0; for any square-integrable function g, E[g(U) |
YC , X = x;α] = 0 almost surely if and only if g(U) = 0 almost surely.

The causal diagram under Assumption 101 is given by Figure 4.4. Assumption 102 is a high-
level assumption stating that at any level of covariates, the joint distribution of control outcomes
and confounders lies in a class where each model is identified upon a one-to-one transformation
of U . In contrast to Miao et al. [125, Assumption 2 (ii)] that concern the joint distribution of
(X,U, YC), Assumption 102 only requires equivalence on the joint distribution of (U, YC); though
we also require an extra completeness assumption on U in Assumption 103 for recovering an
equivalent distribution of (X,U). The completeness property plays a pivotal role in statistics [100].

X

U YC

YCc

Figure 4.4: Causal di-

agram with negative con-

trol outcomes YC , from

which an embedding func-

tion YC 7→ U can be esti-

mated.

Intuitively, it precludes the degeneration of the (conditional) distribu-
tions on their supports, which guarantees the uniqueness of the solution
to certain linear integral equations. At different levels of X, Assump-
tion 102 requires that any infinitesimal variability in U is accompanied
by variability in YC , which implicitly requires the dimension of YC to be
larger than the one of U . The completeness is viewed as a regularity
condition, and more detailed discussions can be found in Miao et al.
[125, Appendix 2]. Building upon the approach by Miao et al. [125],
we propose a modified identification approach.

Theorem 21 (Nonparametric identification). Under Assumptions 9
and 10, for any admissible distribution f̃(yC , u) that solves f(yC) =∫
f̃(yC , u) du and let f̃(u) :=

∫
f̃(yC , u) dyC , there exist a unique solu-

tion f̃(x | u) to the equation

f(x) =

∫
f̃(x | u)f̃(u) du. (4.2.2)

Let f̃(yC , u | x) := f̃(yC , u)f̃(x | u)/f(x), then there exists a unique solution f̃(yCc | x, u) to the
equation

f(y | x) =
∫
f̃(yCc | x, u)f̃(yC , u | x) du, (4.2.3)

Further, the potential outcome distribution is identified by

fY (x)(y) =

∫
f̃(yCc | u, x)f̃(yC , u) du.
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Theorem 21 suggests that if the joint distribution of (YC , U) can be estimated up to inverse
transformation, then one can recover the joint distribution of potential outcome Y (x). Based on
Theorem 21, an operational strategy is given in two steps. The first step is to derive f̃(yC , u),
which retrieves a proxy of U using the information from multiple control outcomes YC . Given
f̃(yC , u), the conditional treatment distribution f̃(x | u) and the condition outcome distribution
can be obtained by solving integral equations (4.2.2) and (4.2.3). Even though f̃(yC , u) might not
be unique, the estimated condition distributions f̃(x | u) and f̃(yCc | x, u) are guaranteed to be
unique for any given f̃(yC , u). Motivated by the nonparametric identification condition presented
in Theorem 21, we will provide a detailed description of the deconfounding strategy for recovering
the true main effect under more relaxed assumptions in the next subsection.

Remark 6 (Deconfounding with negative control outcomes). The deconfounding strategy given
in Theorem 21 is similar to previous negative control outcome approaches [175, 189] under para-
metric modeling assumptions but somewhat different from Miao et al. [125, Theorem 1] under
nonparametric modeling assumptions. More specifically, Theorem 1 of Miao et al. [125] aims to
recover the joint distribution of three variables (Z,X,U), where Z is an auxiliary variable that
satisfies exclusion restriction condition Z ⊥⊥ YCc | (X,U). When Z is negative control outcome
YC , we are able to factorize the joint distribution into two conditional distributions of X | U and
YC | U . This property allows us to derive nonparametric identification with weaker assumptions
in Theorem 21.

Another related approach is the proximal causal inference framework that uses both negative
control outcomes and negative control exposures [126]. The key to their method is a bridge
function b(YC , a) such that

p(YCc | U,A = a) =

∫
b(yC , a)p(yC | U,A = a) dyC =

∫
b(yC , a)p(yC | U) dyC .

If the bridge function b is known, then the counterfactual distributions of YCc(a) can be recovered
under classical causal assumptions. The proximal causal inference framework aims to bypass
the estimation of the unmeasured confounders by estimating the bridge function using other
extra information (e.g. negative control exposures), while our strategy relies on multiple control
outcomes to estimate the distribution of confounders (up to invertible transformation) directly.
With multiple negative control outcomes as in Figure 4.4, one can also split these outcomes into
two nonoverlapping sets to serve the role of negative control outcomes and exposures in order to
apply the proximal causal inference method; however, our approach avoids the splitting.

Remark 7 (Deconfounding with multiple treatments). When there is a single outcome, and
the information of confounders solely comes from multiple treatments, we can marginalize the
unknown conditional distribution f(u | y, x) over the response y to obtain f(u | x) =

∫
f(u |

y, x)f(y | x) dy. This suggests a two-stage procedure as in [125], for successively identifying
solutions f(u, x) and f(y | u, x) from two integral equations: f(x) =

∫
f(u, x) du and f(y | x) =∫

f(y | u, x)f(u | x) du. The information used to estimate the confounders in their setting is
from multiple null treatments instead of multiple outcomes. For this reason, they require strong
assumptions to distinguish the set of confounded treatments associated with confounders.

4.2.2 Assumption-Lean semiparametric inference

The nonparametric identification results aim to reveal the counterfactual distributions from con-
founded observational data, which is useful for designing general deconfounding strategies, yet
remains impractical. When restricted to semiparametric models, however, one can design more
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efficient estimation and inferential procedures. A leading example of semiparametric regression
models is the partially linear regression [66, 144]:

E[Y | X,U ] = β⊤X + h(U), (4.2.4)

where Y is a high-dimensional vector of response, X is a low-dimensional vector of covariates (in-
cluding the treatment of interest), U ∈ Rr is a low-dimensional latent vector, i.e., an unmeasured
confounder, β ∈ Rd×p is the coefficient to be estimated, and h : Rr → Rp is an unknown function.
In the past decades, much attention has been on estimating and testing partially linear models.

X

U YC

YCc

Figure 4.5: The causal

relationship between X

and U in Figure 4.4 can be

further relaxed.

When U is known, the coefficient β can be obtained with the double
residual methodology [144], by noting that

E[Y | X,U ]− E[Y | U ] = β⊤(X − E[X | U ]),

More specifically, the double residual methodology proceeds in two
steps: (1) regressing Y on U to obtain the residual Y − Ê[Y | U ], and
regress X on U to obtain the residual X− Ê[X | U ]; and (2) regressing
the residual Y − Ê[Y | U ] on the residual X − Ê[X | U ]. Here, the
notation Ê denotes the estimated regression function. The resulting
regression coefficient is an estimator of β. Intuitively, this procedure
removes the confounding effect of U by taking the residuals, so that
the final regression only captures the relationship between X and Y
conditional on U , which is β under the partial linear model assumption.
In the special case with binary treatments, the resulting estimator is called E-estimator [142].

Even when the model (4.2.4) is misspecified, the estimator from the two-step procedure is
directly informative about the conditional association between X and U . Under mild moment
assumptions on the conditional covariance matrix of X given U , it returns a meaningful estimand

β = E[Cov(X | U)]−1E[Cov(X,E[Y | X,U ] | U)]

= E[Cov(X | U)]−1E[Cov(X,Y | U)], (4.2.5)

which itself does not crucially rely on the restrictions imposed by the outcome model (4.2.4).

Remark 8 (Relexation of causal relationship). Under the causal setting in Section 4.2.1, when
U is not a confounder but a moderator as in Figure 4.3, adjusting for U can also help to reduce
the variance. If U is a confounder, it is necessary to adjust for U to have a proper interpretation
of the main effect of X on Y . However, when U is missing, in general, we will not be certain
whether U is a confounder or not. In particular, each entry of U can either be a confounder, a
mediator, or a moderator (as in Figure 4.5). When targeting the estimand (4.2.5), we do not
need to impose specific causal assumptions. In contrast, (4.2.5) allows us to relax the relationship
between U and X, as long as the variability of X given U persists.

In summary, statistical inference targeting at projected direct effect (4.2.5) is model-free and
assumption-lean. Because U is unmeasured, we rely on the strategy offered by Theorem 21 to
estimate and perform inference with negative control outcomes. Our deconfounding procedure is
summarized in Algorithm 3 for general link functions. Below, we describe the main steps of the
procedure with an identity link as a special case.

(1) Reduction Suppose that C ⊆ [p] is the set of negative control outcomes such that βC = 0.
In the first step, we aim to estimate U from the negative control outcomes YC independently of
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Algorithm 3 Post-Integrated inference (Pii) with negative control outcomes

Input: A data set D that contains N i.i.d. samples of (X,Y ) ∈ Rd × Rp, a set of control genes C ⊂ [p],
and a user-specified link function g.

1: (Optional) Split sample D = D0 ∪ D1 with |D0| = m, |D1| = n and N = m + n; otherwise set
D = D0 = D1 and N = m = n.

2: Estimation of the embedding functional: Based on samples in D0, obtain an estimate f̂e : R|C| →
Rr for the embedding map fe : YC 7→ U .

3: Extract estimated latent embeddings: Compute Û = f̂e(YC) on D1.
4: Semiparametric inference of the main effect estimand: Use Algorithm C.5.7 to estimate

β̃·j = E[Cov(X | Û)]−1E[Cov(X, g(E[Yj | X, Û ] | Û))]], j ∈ Cc

and the empirical variance. Construct the confidence interval or compute p-values according to the
asymptotic distribution of β̃.

Output: Return the confidence intervals or p-values.

X. To distinguish from the previous causal setting, we call U as the embedding of YC . This
typically involves learning some (nonlinear) embedding map fe : R|C| → Rr with YC 7→ U .

One can use the same set of data to learn the embedding function f̂e and obtain the trans-
formed embedding Û = f̂e(YC). For example, perform the principle component analysis and use
the first few principal components as the estimation embedding Û . In a more general scenario, we
can also borrow extra datasets to estimate the embedding function. For genomic studies, many
single-cell atlas of healthy cells can be used to estimate it, which helps to improve the estimation
of latent embedding and is commonly used in practice for transfer learning [64].

Remark 9 (Negative control genes). For genomic studies, housekeeping genes can serve as neg-
ative control outcomes. Furthermore, even though most of the genes are measured, typically only
the top thousands of highly variable genes are used for the subsequent differential expression
testing. It is believed that the remaining genes with low expression behave similarly under differ-
ent experimental conditions. As we demonstrate later in Section 4.5, we can ideally utilize these
extra genes as pseudo-negative control outcomes to improve statistical inference. Of course, there
are chances that some of the genes with low expression are indeed affected by the conditions;
our framework would still provide reasonable interpretability as well as robustness against such
misspecification of the negative controls.

(2) Estimation In the second stage, recall that our target estimand is β in (4.2.5). Because
U is unobserved, the best we can do is to use Û as the estimated embedding and focus on the
estimand:

β̃·j = E[Cov(X | Û)]−1E[Cov(X,Yj | Û)], j ∈ Cc. (4.2.6)

This estimand quantifies the conditional associations of X and Y given Û . One would typically
restrict the estimation of main effects to the complement set of control genes Cc, while for nota-
tional simplicity, we simply set β̃·C = 0d×|C| and present the main effect matrix β̃ ∈ Rd×p in its
whole. Note that for j ∈ C, one always has β·j = 0d, because E[Yj | X,U ] = E[Yj | U ] does not
depend on X and the conditional covariance between X and E[Yj | X,U ] is always zero.

(3) Inference In the last step, to provide uncertainty quantification, we rely on the efficient in-
fluence function for β̃, similar to E-estimator [32] and two-stage least squares estimators [142, 171].
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The details of semiparametric inference will be given later in Section 4.3.2 and Appendix C.5.3
for linear and nonlinear link functions, respectively.

Remark 10 (Assumption-lean and model-free inference). The above procedure is minimally
dependent on assumptions regarding the data-generating process. It operates independently of
any underlying data model, making it truly model-free. To compute an estimate of (4.2.6),
arbitrary nonparametric methods can be employed to estimate the nuisance regression function.
Inference can then be performed using the efficient influence function within the semiparametric
framework [171]. As we will see in the next section, this approach only requires mild moment
conditions on the true regression function and consistency assumptions on the nuisance function
estimation.

The procedure is straightforward and easy to understand. However, caution is warranted for
nuisance regression functions and variance estimation [171]. To understand the exact conditions
under which this method is effective, a more sophisticated analysis is required to quantify the
bias using estimated latent embeddings. Additionally, theoretical guarantees of valid inference
need to take into account the presence of multivariate covariates and multiple outcomes. The
next section serves these purposes.

4.3 Statistical properties with estimated embeddings

4.3.1 Bias of main effects

Before presenting our analysis of the estimation errors, we introduce several technical assump-
tions. To begin with, we consider a common probability space (Ω,F ,P) and let Ûm explicitly
indicate the dependency of Û on m ∈ N, which is the sample size used to estimate the embed-
ding functional f̂e. In general, Ûm can have different dimensions than U ; to ease our theoretical
analysis, we will treat the latent dimension r as known so that Ûm ∈ Rr. As we will see later,
such a requirement can be weakened under certain working models. Let {Fm}m∈N be a filtration
generated by {Ûm}m∈N such that Fm = σ(Ûm) and F1 ⊆ F2 ⊆ · · · , and define the sub-σ-field
F∞ = σ(∪mFm) ⊆ F . We require the following assumption.

Assumption 11 (Latent embedding estimation). There exists a F∞-measurable and invertible
function v such that Ûm

a.s.−−→ v(U). Further, ℓm := ∥Ûm − v(U)∥L2
<∞.

In many scenarios when we have prior information on the embedding function fe, both the
number of latent dimensions and the embedding can be consistently estimated. For example,
consistent estimation of the number of latent variables has been well established under factor
models [9] and under mixture models [25]. Generally, a rate of ℓm = OP(m

− 1
2 ) can be obtained

for factor analysis when there are sufficient many negative control outcomes such that |C| > m [8].
For mixture models, this reduces estimating the cluster membership because one can treat the
one hot vector of cluster memberships as the embedding and the cluster centers as the loading,
akin to factor analysis. When fe is estimated nonparametrically by f̂e, the estimated embedding
Ûm can be viewed as nonparametrically generated covariates. In this context, Assumption 11 only
requires the (conditional) L2-norm of the estimation error f̂e− fe decays to zero in probability to
ensure meaningful and accurate estimation of U , which is weaker than Assumption 2 of Mammen
et al. [115] that requires the (conditional) L∞-norm of f̂e − fe is oP(1). Finally, we also remark
that one can use extra data sources to obtain a better estimate of f̂e with a larger sample size m.
In many applications, such as single-cell data analysis, the embedding function can be derived
from previous alas studies so that m will be sufficiently large enough.
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The following Assumption 12 imposes boundedness condition on the population quantities,
and Assumption 13 imposes smoothness assumption on the regression function.

Assumption 12 (Regularity conditions). There exists constants σ̄ ≥ σ > 0 and M > 0
such that σId ⪯ E[Cov(X | U)] ⪯ σ̄Id, σId ⪯ E[Cov(X | Ûm)], ∥β∥2,∞ ≤ M , ∥X∥L2

≤
M,maxj∈Cc ∥Yj∥L2

≤ M .

Assumption 13 (Lipschitzness of regression functions). The regression functions satisfy Lips-
chitz conditions:

∥E[X | U = u1]− E[X | U = u2]∥ ≤ LX∥u1 − u2∥
∥E[Yj | X,U = u1]− E[Yj | X,U = u2]∥ ≤ LY ∥u1 − u2∥, ∀ j ∈ Cc,

almost surely for all u1, u2 ∈ U and some constants LX and LY .

Assumption 13 imposes certain smoothness restrictions on the conditional expectation. In
certain applications, the Lipschitz condition holds for many continuous multivariate distributions.
For example, suppose W and V are jointly normally distributed with(

W
V

)
∼ N

((
µW
µV

)
,

(
ΣW ΣWV

Σ⊤
WV ΣV

))
.

Then h(v) = E[W | V = v] = µW + ΣWV Σ
−1
V (v − µV ) is L-Lipschitz in ℓ2-norm, with L =

∥ΣWV Σ
−1
V ∥. Other examples of such a regression function include the posterior mean of the ex-

ponential and Poisson distributions under their conjugate prior, as in Bayesian inference. Similar
conditions have been employed for nonparametric regression with generated covariates; see, for
example, Assumption 4 in Mammen et al. [115]. In particular, Mammen et al. [115] require dif-
ferentiability and Lipschitz condition in ℓ∞ of the condition expectation, which is much stronger
than Assumption 13.

Consider two population coefficients β and β̃ as defined in (4.2.5) and (4.2.6), respectively.
We next quantify the difference between the two in Theorem 22.

Theorem 22 (Bias for two-stage regression with estimated covariates). Under Assumptions 11–
13, when ∥E[X | Û ]− E[X | U ]∥L2

< σ/(2M), it holds that

max
j∈Cc
∥β̃·j − β·j∥ ≲

(
∥X∥L2

(L
1
2
X + L

1
2
Y ) + max

j∈Cc
∥Yj∥L2

L
1
2
Y

)
ℓm.

Theorem 22 suggests that the upper bound of estimation error using estimated embeddings
is related to the second moments of X and Y , as well as the accuracy of latent embedding
estimation. This deterministic result only concerns the population quantities. Given i.i.d. samples
of (X,U, Y ), the corresponding estimator of β·j based on finite samples is given by

b·j = (Pn{(X − Ê[X | U ])⊗2})−1Pn{(X − Ê[X | U ])(Yj − Ê[Yj | U ])}, (4.3.1)

where A⊗2 := AA⊤ denotes Gram matrix of A⊤, and Ê[X | U ] and Ê[Y | U ] are the estimated
nuisance functions. Because U is unobserved, we treat Û as the truth and estimate β̃·j with:

b̃·j = (Pn{(X − Ê[X | Û ])⊗2})−1Pn{(X − Ê[X | Û ])(Yj − Ê[Yj | Û ])}. (4.3.2)

As an example, we consider a special case when the regression functions are linear models.
To distinguish from previous notations, we use bold font to indicate the latent embedding matrix
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U ∈ Rn×r and its estimate Û ∈ Rn×r̂, where the latter may have a different dimension r̂ than
the truth r. Lemma 23 below shows that we are still able to quantify the empirical estimation
error of the main effects in terms of the estimation error of linear projection matrices in finite
samples.

Lemma 23 (Empirical bias with estimated embeddings under linear models). Define S =
Pn{(X − E[X | U ])⊗2}, S̃ = Pn{(X − E[X | Û ])⊗2}, and Γ = diag(Pn{Y Y ⊤}). Assume S and S̃
have full rank, and κ(S)∥P⊥

Û
− P⊥

U ∥ < 1, where for any matrix A ∈ Rn×p, PA = A(A⊤A)−1A⊤

denotes the projection matrix and κ(A) = ∥A∥∥A−1∥ denotes the condition number of matrix A.
When Ê[X | U ], Ê[X | Û ], and Ê[Y | U ] are linear functions, it holds that

max
j∈Cc
∥b̃·j − b·j∥ ≤

(
∥b∥2,∞ + ∥S∥−

1
2

op ∥Γ∥∞
)

κ(S)∥P⊥
Û
− P⊥

U ∥
1− κ(S)∥P⊥

Û
− P⊥

U ∥
,

where ∥A∥2,∞ = maxj∈[p] ∥A·j∥ is the maximum column euclidean norm for matrix A ∈ Rn×p.
Compared to Theorem 22, Lemma 23 suggests that the rate condition of Û can be weakened to

the rate condition of the linear projection P⊥
Û
. The conclusion of Lemma 23 is fully deterministic

and its proof relies on the backward error analysis in numerical linear algebra [166]. The dimension
of the estimated embedding is allowed to differ from the truth, as long as the column space of
Û captures essential information of the column space of U . Analogously, it is possible to relax
Assumption 11 to varying latent dimension settings for Theorem 22 under general data models.
In this regard, one can consider a decomposition of limm Ûm = T + A, where T and A are a
sufficient statistic and an ancillary statistic, respectively, as when U is viewed as a parameter.
We leave such an extension as future work.

4.3.2 Doubly robust semiparametric inference

In the previous section, we showed that the target estimands β̃ and β are similar whenever Û
is consistent to U up to any invertible transformation. Based on the estimated embedding Û ,
our target of estimation and inference becomes β̃ as defined in (4.2.6). To consider potential
nonparametric models for the nuisance functions, in what follows, we require the estimated nui-
sance functions Ê[X | U ] and Ê[Y | U ] to be computed from independent samples of Pn. The
required independence is very standard in recent developments of double machine learning and
causal inference [84, 171], because sample splitting and cross-fitting can be used to fulfill this
requirement, though one can also restrict to Donsker classes to avoid sample splitting [84].

Before we inspect the estimation error of b̃ to the target estimand β̃, we introduce one extra
assumption on the moments and consistency of nuisance estimation.

Assumption 14 (Bounded moments and consistency). There exists δ ∈ (0, 1], M > 0, such that

∥X − E[X | Û ]∥L
2(1+δ−1)

∨ ∥X − Ê[X | Û ]∥L
2(1+δ−1)

∨ ∥Y − E[Y | Û ]∥L
2(1+δ−1)

< M,

∥E[X | Û ]− Ê[X | Û ]∥L2(1+δ)
, ∥∥E[Y | Û ]− Ê[Y | Û ]∥∞∥L2(1+δ)

= oP(1).

Let O = (X, Û , Y ) ∈ Rd × Rr × Rp denote the observation when the estimated embedding
function f̂e is treated as fixed. The following theorem shows the linear expansion of the estimator
b̃ and gives the error bound of the residual term with high probability.
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Theorem 24 (Linear expansion). Consider the above inferential procedure, suppose Assump-
tions 12 and 14 hold and two nuisance functions Ê[X | Û ] and Ê[Y | Û ] are estimated from
independent samples of Pn. Then, the estimator b̃ admits a linear expansion:

√
n(̃b− β̃) =

√
nΣ̃−1(Pn − P){φ̃(O;P)}+ ξ,

where Σ̃ := E[Cov(X | Û)] and φ̃ is the influence function of Σ̃β̃ defined as

φ̃(O;P) := (X − E[X | Û ])((Y − E[Y | X])− β̃⊤(X − E[X | Û ]))⊤. (4.3.3)

For any ϵ > 0, there exists a constant C = C(ϵ, σ,M,L), such that with probability at least 1− ϵ,
the remainder term ξ satisfies that

∥ξ∥2,∞ ≤ C{∥(Pn − P){(X − E[X | Û ])⊗2}∥op
+ ∥E[X | Û ]− Ê[X | Û ]∥L2(1+δ)

+ ∥∥E[Y | Û ]− Ê[Y | Û ]∥∞∥L2(1+δ)
}

+ C
√
n{∥E[X | Û ]− Ê[X | Û ]∥2

L2

+ML∥E[Y | Û ]− Ê[Y | Û ]∥2
L2
,∞

+ ∥E[Y | Û ]− Ê[Y | Û ]∥L2
,∞∥E[X | Û ]− Ê[X | Û ]∥L2

}.

Theorem 24 provide a non-asymptotic uniform error bound for the residual terms over multiple
outcomes. With the law of large numbers and the consistency in Assumption 14, we know that the
first term of the upper bound is oP(1). On the other hand, the secondary term is also negligible
under specific rate conditions on the estimation errors of nuisances. Considering an asymptotic
regime when viewing m and p as sequences indexed by n and n,m, p → ∞, the above result
suggests the asymptotic normality, as presented in the following corollary.

Corollary 25 (Doubly robust inference with estimated emebeddings). Under conditions in The-
orem 24, if further, the estimation error rates of nuisance functions satisfy that ∥E[X | Û ]− Ê[X |
Û ]∥2

L2
= oP(n

− 1
2 ), ∥E[Y | Û ] − Ê[Y | Û ]∥2

L2
,∞ = oP(n

− 1
2 ), ∥E[Y | Û ] − Ê[Y | Û ]∥L2

,∞∥E[X |
Û ]− Ê[X | Û ]∥L2

= oP(n
− 1

2 ), then the estimator b̃ is asymptotically normal:

√
n(̃b·j − β̃·j)

d−→ Nd(0, Σ̃−1V{φ̃·j(O;P)}Σ̃−1), j = 1, . . . , p.

Furthermore, if the conditions of Theorem 22 hold with ℓm = o(n−
1
2 ), then we have

√
n(̃b·j − β·j)

d−→ Nd(0, Σ̃−1V{φ̃·j(O;P)}Σ̃−1), j = 1, . . . , p.

In the presence of estimated embedding Ûm, the influence function φ̃ implicitly depends
on the sample size m. Therefore, establishing the asymptotic normality requires verification
of the Lindeberg condition for triangular array of random variables. In Corollary 25, the rate
of estimation for the two nuisance functions may be slower than the parametric rate n−

1
2 , as

long as each individual estimation rate is faster than n−
1
4 . This flexibility enables us to employ

more versatile machine learning algorithms for nuisance function estimation while maintaining
the validity of our inference. Furthermore, Corollary 25 suggests that efficient influence regarding
the true main effect β is possible when the rate of consistently estimating the embedding is
ℓm = oP(n

− 1
2 ). As discussed above, under factor models, one has ℓm = OP(m

− 1
2 ), this requires
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Algorithm 4 Semiparametric inference for main effects

Input: Reponses Y , covariate X, and estimated latent embedding Û .
1: Use machine learning methods to obtain nuisance estimates Ê[Y | Û ] and Ê[X | Û ].

2: Fit a linear regression of Y − Ê[Y | Û ] ∼ X − Ê[X | Û ] without an intercept to obtain an estimate b̃

as defined in (4.3.2) of β̃ as defined in (4.3.2).

3: Estimate the variance of b̃·j by Ŝj/n based on Theorem 24, where Ŝj = Σ̂−1Vn{φ̃·j(O; P̂)}Σ̂−1 and

Σ̂ = Pn{(X − Ê[X | Û ])⊗2}.
Output: Confidence intervals and p-values based on asymptotic null distribution b̃·j

·∼ Nd(β̃·j ,
Ŝj

n ).

n = o(m), i.e., the factor loadings need to be estimated from more observations than those used
for the estimation and inference of b̃.

Based on Corollary 25, the data-adaptive procedure to obtain the confidence intervals and
p-values is given in Algorithm 4. To fulfill the independence assumptions, one can use cross-fitting
to ensure that different samples are used for step 1 and step 2. When this holds, the following
proposition shows that overall Type-I error control can be controlled at the desired level. In
Proposition 26, when the unit vector v is chosen to be the basis vector, it reduces to testing
whether a specific covariate has zero association with individual outcomes.

Proposition 26 (Multiple linear hypothesis testing). Let tj =
√
nVn{φ̃·j(O; P̂)}

1
2 Σ̂−1 (̃b·j − β̃·j)

be the standardized vector. For any unit vector v ∈ Rd, consider the hypothesis H0j : v
⊤β·j = 0.

Let Np = {j | v⊤β·j = 0, j = 1, . . . , p} be the true null hypotheses. Under the assumptions of
Corollary 25, asm,n, p, |Np| → ∞ such that ℓm = o(n−1/2), it holds that |Np|−1

∑
j∈Np

1{|v⊤tj | >
zα

2
} p−→ α.

Remark 11 (Multiple testing). The condition ∥∥E[Y | Û ] − Ê[Y | Û ]∥∞∥L2(1+δ)
= oP(1) in

Assumption 14 controls the envelope of the regression function estimation errors. This is useful
when the number of outcomes p grows in the number of sample size n, when multiple testing
procedures based on multiplier bootstrap can be applied to control both the family-wise error rate
and the false discovery rate [49]. Alternatively, one can simply apply the Benjamini–Hochberg
procedure for multiple testing corrections.

4.4 Simulation

We generate the data from generalized partial linear models. The covariate X ∈ R is sampled
from N (0, 1); the latent variable U = Xα + ϵ ∈ Rr is a linear function of X, where r = 10,
α1j ∼ Unif(−1, 1) and ϵj ∼ N (0, σ2ϵ ) independently for j ∈ [r]; and the response is generated
from generalized linear models with a Logistic link logit(E[Y | X,U ]) = Xβ + Uη, where β1j ∼
2 × Bernoulli(0.2) and

√
r · ηij ∼ Unif(−1, 1) independently for i ∈ [r] and j ∈ [p]. We set the

total number of outcomes to be p = 1000, and use 500 null outcomes as the negative outcomes.

We evaluate four methods: (1) Glm (X): naive generalized linear models that use Logistic
regression that only uses observed covariate X to predict Y ; (2) Glm (X,U): oracle Logistic
regression that uses both observed covariate X and latent variable U to predict Y ; (3) Pii
(X,U): the proposed post-integrated inference method that uses observed covariate X and latent
embedding U to predict Y ; and (4) Pii (X, Û): the proposal method that uses the first r PCs of
the outcome matrix are selected as Û .

For Pii, we use the random forest to estimate the nuisance functions E[X | U ], E[Y | X,U ],
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Figure 4.6: Simulation results with 500 negative control outcomes out of a total of 1000 outcomes.

For Pii, the nuisance functions are estimated using random forests. The data model is the Logistic

regression model. The first and second rows have noise levels σϵ = 0.8 and σϵ = 1, respectively, for

the latent variables.

and E[g(E[Y | X,U ]) | U ] and apply extrapolated cross-validation (Ecv) [44] to select the hy-
perparameter that minimizes the estimated mean squared error. Ecv allows us to use a smaller
number of trees for estimating the out-of-sample prediction errors based on out-of-bag observa-
tions and extrapolate the risk estimation up to a larger number of trees consistently without
sample splitting. In our experiment, we use 25 trees to perform ECV and the hyperparame-
ters we consider include: ‘max depth’ in {1, 3, 5} for the depth of each tree, ‘max samples’ in
{0.25, 0.5, 0.75, 1} for bootstrap samples and the number of trees in {1, . . . , 50}.

To compare the performance of different methods, the power, type-I error, and false discovery
proportion (FDP) for hypothesis testing are analyzed. For both the type-I error and power, we set
the significance level to be 0.05. For FDP, we use the Benjamini-Hochberg procedure with FDR
controlled at 0.05. As shown in the first two columns of Figure 4.6, the Glm-naive regression
method fails to control the inflated type-I error, resulting in numerous false positives. Further-
more, as the sample size increases, this method becomes even more anti-conservative. Conversely,
the Glm-oracle regression method exhibits tight control over type-I error, as expected. When
the latent embedding U is known, we observe that Pii also effectively controls type-I error. Ad-
ditionally, under certain conditions, Pii provides greater power than the Glm-oracle. This
may be attributed to Pii’s ability to address the effect of collinearity between X and U on the
nonlinear outcome models through a two-step procedure, whereas Glm-oracle does not, leading
to conservative results.

When the latent embedding U is unknown, we evaluate the performance of the estimated
Û . As shown in the third panel of Figure 4.6, the error of embedding projection matrix ∥P

Û
−

PU∥op decreases rapidly as the sample size n increases. When U can be well approximated, Pii

experiences a slightly inflated type-I error because it targets the modified main effect β̃ instead
of the true effect β. However, the statistical error remains reasonable, the FDP is controlled at
the desired level, and Pii achieves greater power compared to the oracle Glm in many cases.
Lastly, Pii exhibits greater power when the conditional variation of X given U is large (i.e., V(ϵ)
is relatively larger than the linear projected signal strength ∥γ∥). One could potentially use the
ratio of these two quantities as a metric to quantify the level of confounding.
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Figure 4.7: Histogram of t-statistics of PTEN perturbation by different methods. PCA with 50

components, Ruv4, Cate-nc, and Cate-rr.

4.5 Application on single-cell CRISPR data analysis

Background In a recent study by Lalli et al. [93], the molecular mechanisms of genes asso-
ciated with neurodevelopmental disorders, particularly Autism Spectrum Disorder (ASD), were
investigated using a modified CRISPR-Cas9 system. Experiments focused on 13 ASD-linked gene
knockdowns in Lund Human Mesencephalic neural progenitor cells, with gene expression changes
assessed through single-cell RNA sequencing. The progression of neuronal differentiation was
estimated via a pseudotime trajectory (Figure C.62), revealing that some genetic perturbations
impact this progression.

Confounders significantly affect the interpretation of single-cell CRISPR perturbation results,
as these experiments often resemble observational studies. Variables like cell size, cycle stage,
and microenvironment heterogeneity can alter gene expression patterns, obscuring true genetic
effects. To address these challenges, we use 4000 lowly variable genes as negative control outcomes
for adjustment, focusing on 4163 highly variable genes for differential expression analysis on 8320
cells. The data preprocessing procedure is detailed in Appendix C.6.2.

Compared methods and embedding estimation. We compare the proposed method with
four methods for hypothesis testing: (1) Glm: Score tests based on generalized linear models
with Negative Binomial likelihood and log link function. The covariance matrix is estimated
using the HC3-type robust estimator. This method does not adjust for potential confounding
effects. (2) Ruv4: A heuristic method proposed by Gagnon-Bartsch and Speed [56] that uses
principle components on the residual matrix of regressing the negative control outcomes on the
covariate of interest to estimate the latent embeddings. Based on heuristic calculations, the
authors claim that the RUV-4 estimator has approximately the oracle variance. (3) Cate-nc:
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Figure 4.8: Summary of significant genes (p-values< 0.05) associated with PTEN perturbation by

different confounder adjustment methods. (a) Upset plot of discoveries by three methods: Ruv4,

Cate-nc, and Cate-rr, as in Figure C.64. (b) Upset plot of discoveries by Pii with embedding

estimated by three methods: Ruv4, Cate-nc, and Cate-rr, as in Figure 4.7. (c) The Venn plot of

two sets of discoveries. One set includes 276 common discoveries by Ruv4, Cate-nc, and Cate-rr,

while the other includes 203 common discoveries by Pii with the same estimated embeddings given

by the three methods. (d) Gene ontology analysis of 137 distinct discoveries by Pii.

The deconfounding method Cate proposed by Wang et al. [175] with negative controls, which
uses maximum likelihood estimation to estimate the latent embedding. Under simplified Gaussian
linear models, they show that their estimator has asymptotical type I error control when the
number of negative controls is large. (4) Cate-rr: A variant of Cate method [175] with robust
regression, which is similar to the heuristic algorithm LEAPP [160] and utilizes the sparsity of
effects to estimate the latent embeddings.

For Pii, we use four methods to estimate the cell embeddings, including PCA, Ruv4, Cate-
nc, and Cate-rr. The first three methods use negative control to estimate the embedding,
while the last is only valid under the sparsity assumption on the effects. Before running PCA, we
follow the preprocessing procedure in single-cell data analysis to adjust the library size of each
cell to be 104, add one pseudo count, and take the logarithm. We then select the top 50 principal
components as the estimated embeddings. For the last three embedding estimation methods, we
supply all 13086 genes as input, specify the set of pseudo-negative control genes when applicable,
and set the number of factors to 10, a value commonly used by researchers based on empirical
evidence. Though not presented in the paper, we observed similar results with higher numbers
of factors.
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Results. The study by Lalli et al. [93] indicates that some perturbations affect changes in gene
expressions along pseudotime, potentially altering development speed. Using pseudotime as a
covariate allows us to examine if perturbations explain effects beyond developmental changes; see
Appendix C.6.2 for the extended background of the data. Biologically, we expect more signals
on pseudotime states (Figure C.63) than on perturbation conditions.

We focus on the target gene PTEN, which is crucial in neural development and differentiation
and influences other genes in a cascading manner when it is knockdown [93]. Examining the
empirical distribution of test statistics for perturbation conditions using Glm reveals conservative
results for genes like CTNND2, MECP2, and MYT1L (Figure C.64). This suggests that Glm
without adjusting for hidden confounders leads to biased hypothesis testing. Pii corrects these
biases (Figure 4.2, Figure 4.7), and even PCA-based simple embedding estimation effectively
calibrates test distributions. Comparing methods Ruv4, Cate-nc, Cate-rr with Pii, we see
Pii reduces distinct discoveries from 45.6% to 38.8% (Figure 4.8(a)), indicating more coherent
outcomes with Pii.

To further assess the biological significance of the discoveries, we examine 276 and 203 common
discoveries (Figure 4.8(a) and Figure 4.8(b)). Significant discrepancies are noted (Figure 4.8(c)).
The associated gene ontology terms on biological processes using clusterProfiler package with
default false discovery control threshold [181] reveal that unlike the 210 genes from Ruv4, Cate-
nc, and Cate-rr, which had no associated GO terms, the 137 genes unique to Pii align with
ribosome-related processes (Figure 4.8(d)), supporting studies on PTEN ’s impact on these pro-
cesses [34, 103].
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Chapter 5

Discussion

In Chapter 2, we presented novel estimation and inference procedures for multivariate general-
ized linear models with unmeasured confounders in the high-dimensional scenarios when both
the sample size n and response size p tend to infinity. Our approach consists of three main steps.
In the first step, we disentangle the marginal effects from the uncorrelated confounding effects,
recovering the column space of latent coefficients Γ̂ from the latter. We provide non-asymptotic
estimation error bounds for both the estimated natural parameter matrix Θ̂0 and the projection
onto the column space of Γ̂. In the second step, we estimate both latent factors Z and primary
effects B by solving a constrained lasso-type problem that confines B to the orthogonal space
of Γ̂. From the column-wise estimation error of the latent components, we obtain the estimation
error for the primary effects in the presence of nuisance parameters. In the third step, we design
an inferential procedure to correct the bias introduced by ℓ1-regularization and establish Type-I
error and family-wise error rate controls. Numerically, we demonstrate the usage of the proposed
method with Poisson and Negative Binomial likelihoods for bulk-cell and single-cell simulations,
respectively. Compared to alternative methods, the proposed method effectively controls the
Type-I error and false discovery proportion while delivering enhanced statistical power and pre-
cision as the count data get sparser and more over-dispersed. Furthermore, our analysis of real
single-cell datasets underscores the importance of accounting for confounding effects when major
covariates are unobserved. Notably, our proposed method consistently outperforms alternative
techniques, demonstrating superior precision and specificity, thus establishing its suitability for
high-dimensional sparse count data.

The present study, while offering valuable insights, is not without its limitations and oppor-
tunities for future exploration. Some of these include the development of hypothesis testing for
confounding effects, the theoretical guarantee of the FDR, and more robust criteria for selecting
the optimal number of latent factors. Recent works by Dai et al. [35] and Chen and Li [26]
offer promising insights that may contribute to resolving some of these challenges. Although we
have briefly touched upon the applicability of our proposed method under non-canonical link
functions in Appendix A.6.4, comprehensive theoretical guarantees remain an area deserving of
further research and investigation.

In Chapter 3, we inspect more flexible semiparametric approaches. The rapid growth of
high-throughput single-cell technologies has created an urgent need for robust causal inference
frameworks capable of disentangling treatment effects from confounding influences. Existing
methods, such as CINEMA-OT [38], have advanced the field by separating confounder and treat-
ment signals and providing per-cell treatment-effect estimates. However, these methods rely on
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the assumption of no unmeasured confounders, which is often violated in observational studies
and in vivo experiments. Additionally, many confounder adjustment methods, such as RUV
[140], depend on linear model assumptions that do not directly model count data or provide
robust differential expression testing at the gene level. Addressing these limitations, causarray
introduces a doubly robust framework that integrates generalized confounder adjustment with
semiparametric inference to enable reliable and interpretable causal analysis.

causarray directly models count data using generalized linear models for unmeasured con-
founder estimation, overcoming a key limitation of RUV in DE analysis. Unlike CINEMA-OT [38]
and CoCoA-diff [134], which rely on optimal transport or matching techniques, causarray employs
a doubly robust framework that combines flexible machine learning models with semiparametric
inference. This approach enhances stability and interpretability while enabling valid statistical
inference of treatment effects. In an in vivo Perturb-seq study of ASD/ND genes, causarray
uncovered gene-level perturbation effects that were missed by prior module-based analyses. It
identified biologically relevant pathways linked to neuronal development and synaptic functions
for multiple autism risk genes. Similarly, in a case-control study of Alzheimer’s disease using
three human brain transcriptomic datasets, causarray revealed consistent causal gene expres-
sion changes across datasets and highlighted key biological processes such as synaptic signaling
and cell development. These findings underscore the ability of causarray to provide biologically
meaningful insights across diverse contexts.

Despite its strengths, causarray has certain limitations. Its performance depends on the ac-
curate estimation of unmeasured confounders, which may vary with dataset complexity and ex-
perimental design. Furthermore, while causarray provides robust DE testing, its integration with
advanced spatial or trajectory analysis frameworks remains unexplored [43, 188]. Future research
could focus on extending causarray to incorporate prior biological knowledge or extrapolate to
unseen perturbation-cell pairs, similar to emerging methods like CPA [108]. Such advancements
would further enhance its applicability in single-cell causal inference on general omics.

In Chapter 4, a potential concern of the proposed method is whether the estimated embeddings
might act as colliders, especially if Û is influenced by both X and YCc . However, our fundamental
assumption is that YC is driven by a low-dimensional embedding U but not the covariate X, which
inherently mitigates the risk of Û becoming a collider. If this foundational assumption does not
hold, the direct effect estimand (4.2.5) might not align with researchers’ interests, necessitating the
use of domain knowledge to identify and investigate alternative target estimands. Despite design-
free deconfounding with negative control outcomes, other strategies exist (detailed comparison in
Appendix C.2). While our framework allows for flexible machine learning algorithms, it introduces
computational complexity, especially with increasing outcomes and hyperparameter tuning. For
practical applications, specialized models like variational autoencoders for joint outcome function
fitting [39, 127] and efficient cross-validation methods can be beneficial.

Further extensions involve incorporating interaction effects [171], developing tests for nonpara-
metric confounding [124]. Explorations into settings with high-dimensional latent embeddings and
covariates [125, 183] could also be of interest. In real data analysis, we use pseudo-negative control
outcomes, which can be viewed as one variant of the synthetic control approaches [1]. Provid-
ing theoretical guarantees for the valid construction of negative control outcomes and selective
importance features [46] in the presence of correlations from data remains an area of practical
interest.
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Appendix A

Simultaneous inference for
generalized linear models with
unmeasured confounders

A.1 Proof of Proposition 1

Proof of Proposition 1. Because the one-parameter exponential family is minimal, the natural
parameter space is convex, and the log-partition function A is strictly convex. Based on the
information of the first moment of y and the log-partition function A, we can identify Bx+Γz =
θ = A′−1(E[y]). Because Γw has zero mean and is uncorrelated to x, Cov(Γw) = ΓΣwΓ

⊤ can
be identified as the residual covariance of regression of θ on x.

Because λr(ΓΣwΓ
⊤) ≥ τp, Γ and Σw have full rank. Let UrΛrU

⊤
r be the reduced eigenvalue

decomposition of ΓΣwΓ
⊤ where Ur ∈ Rp×r. Note that

PΓ = ΓΣ1/2
w (Σ1/2

w Γ⊤ΓΣ1/2
w )−1Σ1/2

w Γ⊤

= UrΛ
1
2
r (Λ

1
2
r U

⊤
r UrΛ

1
2
r )

−1Λ
1
2
r U

⊤
r

= UrΛ
1
2
r (Λ

1
2
r Λ

1
2
r )

−1Λ
1
2
r U

⊤
r

= UrU
⊤
r .

Thus, PΓ can be recovered.

By the orthogonal decomposition, we have B = P⊥
ΓB + PΓB. Let ep,i = (δiℓ)1≤ℓ≤p and
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ed,j = (δjℓ)1≤ℓ≤d. We consider the (i, j)-th entry of PΓB:

|e⊤p,iPΓBed,j | = |e⊤p,iΓΣ1/2
w (Σ1/2

w Γ⊤ΓΣ1/2
w )−1Σ1/2

w Γ⊤Bej |

≤ ∥ΓΣ1/2
w (Σ1/2

w Γ⊤ΓΣ1/2
w )−1Σ1/2

w Γ⊤ep,i∥∞ · ∥Bed,j∥1
= max

ℓ∈[p]
|e⊤ℓ ΓΣ1/2

w (Σ1/2
w Γ⊤ΓΣ1/2

w )−1Σ1/2
w Γ⊤ep,i| · ∥Bed,j∥1

≤ max
ℓ∈[p]
∥Σ1/2

w Γ⊤ep,ℓ∥2 · ∥(Σ1/2
w Γ⊤ΓΣ1/2

w )−1Σ1/2
w Γ⊤ep,i∥2 · ∥Bed,j∥1

≤ max
ℓ∈[p]
∥Σ1/2

w Γ⊤ep,ℓ∥2 · ∥(Σ1/2
w Γ⊤ΓΣ1/2

w )−1∥op · ∥Σ1/2
w Γ⊤ep,i∥2 · ∥Bj∥1

≤ max
ℓ∈[p]
∥Σ1/2

w Γ⊤ep,ℓ∥2 · λr(ΓΣwΓ
⊤)−1 · ∥Σ1/2

w Γ⊤ep,i∥2 · ∥Bj∥1

= O
(
∥Bj∥1
τp

)
= o(1), (A.1.1)

where the first two inequalities are from Holder’s inequality; the third inequality holds because of

the sub-multiplicativity of the operator norm; and the last inequality holds because Σ
1/2
w Γ⊤ΓΣ

1/2
w

and ΓΣwΓ
⊤ have the same non-zero eigenvalues. Then we have

∥PΓB∥F ≤
√
p max
1≤i≤p

∥B⊤PΓep,i∥2 ≲
√
p∥B∥1,1
τp

.

Thus, the conclusion follows.

A.2 Estimation error of natural parameters by alternative max-
imization

In this section, we gather useful results to bound the estimation error for the natural parameter
matrix. Let EC = {Θ∗ ∈ Rn×pC } be the event that all the natural parameters are bounded. From
Assumption 1, we know that P(EC) = ιn → 1 as n→∞. Under event EC , because A is strictly
convex and trice continuously differentiable, we have that

κ1 := inf
θ∈RC

A′′(θ) > 0 and κ2 := sup
θ∈RC

A′′(θ) <∞. (A.2.1)

These facts enable us to derive Theorem 2, which will be used in Appendix A.3 for proving
Theorem 3 and in Appendix A.4 for proving Theorem 5.

A.2.1 Estimation error of natural parameters

Proof of Theorem 2. We split the proof into two parts under event EC .

Part (1) Bounding ∥Θ̂0 −Θ∗∥F. From the assumption of Theorem 2, we have

L(Θ∗)− L(Θ̂0) ≥ 0,
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which also holds when Θ̂0 is the maximum likelihood estimator. From Lemma A.2.1 it further
follows that

0 ≤
√

2(d+ r)∥Y −A′(Θ∗)∥op∥Θ̂0 −Θ∗∥F −
κ2
2
∥Θ̂0 −Θ∗∥2F.

Thus, we have

∥Θ̂0 −Θ∗∥F ≤
2
√

2(d+ r)

κ2
∥Y −A′(Θ∗)∥op.

Next, we bound the operator norm of Y − A′(Θ∗). Conditional on X and Z∗, observe that
eij := yij − A′(θ∗ij) (i ∈ [n] and j ∈ [p]) are independent, zero-mean, and sub-exponential with

parameters ν =
√
κ2 and α = 1/C2. To see this, note that its moment generating function

is E[exp(teij)] = exp(A(θ∗ij + t) − A(θ∗ij) − tA′(θ∗ij)) = exp(A′′(θ∗ij + t′)t2/2) for some |t′| < |t|.
By Assumption 1, we have E[exp(teij)] ≤ κ2t

2/2 for all |t| < C2, which shows that eij is sub-
exponential. By Lemma A.2.2, for any δ > 0, with probability at least 1− (n+ p)−δ − (np)−δ, it
follows that

∥Θ̂0 −Θ∗∥F ≤
2
√

2(d+ r)

κ2
(4ν
√
n ∨ p+ 2δ

3
2
√
c(α ∨ ν) log(np)

√
log(n+ p))

≲
√

(d+ r)(n ∨ p).

Part (2) Bounding max1≤j≤p ∥(Θ̂0)j −Θ∗
j∥2. Similarly to Part (1), by union bound, we have

max
1≤j≤p

∥(Θ̂0)j −Θ∗
j∥2 ≤ max

1≤j≤p

2
√
2(d+ r)

κ2
∥Yj −A′(Θ∗

j )∥2

≤
2
√
2(d+ r)

κ2
(4ν
√
n+ 2(δ + 1)

3
2
√
c(α ∨ ν) log(n)

√
log(n+ 1)),

with probability at least 1− p(n+ p)−δ−1 − p(np)−δ−1 ≥ 1− (n+ p)−δ − (np)−δ, for any δ > 0.
For δ > 1, taking union bound over the above two events and EC finishes the proof.

A.2.2 Technical lemmas

Lemma A.2.1 (Upper bound of likelihood difference). Suppose that Θ1 ∈ Rr1 ,Θ2 ∈ Rr2 with
rj = rank(Θj) for j = 1, 2. Define κ1 := infθ∈RA

′′(θ). Then it holds that

L(Θ2)− L(Θ1) ≤
√
r1 + r2
n

∥Y −A′(Θ2)∥op∥Θ1 −Θ2∥F −
κ1
2n
∥Θ1 −Θ2∥2F,

and

L(Θ2)− L(Θ1) ≤
√
r1 + r2
n

∥Y −A′(Θ1)∥op∥Θ1 −Θ2∥F +
κ2
2n
∥Θ1 −Θ2∥2F.

Proof of Lemma A.2.1. Recall that L(Θ) = n−1[− tr(Y ⊤Θ) + tr(1p×nA(Θ))]. Then we have

L(Θ2)− L(Θ1) =
1

n
tr((Y −A′(Θ2))

⊤(Θ1 −Θ2))

− 1

n
tr(1p×n(A(Θ1)−A(Θ2))−A′(Θ2)

⊤(Θ1 −Θ2)). (A.2.2)
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Next, we analyze the two terms separately.
For the first term, we have

tr((Y −A′(Θ2))
⊤(Θ1 −Θ2)) (A.2.3)

≤
√

rank(Θ1 −Θ2)∥Y −A′(Θ2)∥op∥Θ1 −Θ2∥F
≤
√
rank(Θ1) + rank(Θ2)∥Y −A′(Θ2)∥op∥Θ1 −Θ2∥F, (A.2.4)

where the first inequality is from the matrix norm inequality | tr(A⊤B)| ≤
√
rank(B)∥A∥op∥B∥F

and the last inequality is due to the fact that rank(A+B) ≤ rank(A) + rank(B).
For the second term, note that each entry inside the trace takes the form

A((Θ1)ij)−A((Θ2)ij)−A′((Θ2)ij)((Θ1)ij − (Θ2)ij) =
1

2
A′′(θ)((Θ1)ij − (Θ2)ij)

2

≥ κ1
2
((Θ1)ij − (Θ2)ij)

2

where the first equality is from Taylor expansion with θ lies between (Θ1)ij and (Θ2)ij and the
definition of κ1 := infθ∈RA

′′(θ) ≥ 0. Thus we have

tr(1p×n(A(Θ1)−A(Θ2))−A′(Θ2)
⊤(Θ1 −Θ2)) ≥

κ1
2
∥Θ1 −Θ2∥2F. (A.2.5)

Combining (A.2.2), (A.2.4), and (A.2.5) finishes the proof of the first inequality. Similarly,
we have

L(Θ2)− L(Θ1) =
1

n
tr((Y −A′(Θ1))

⊤(Θ1 −Θ2))

+
1

n
tr(1p×n(A(Θ2)−A(Θ1))−A′(Θ1)

⊤(Θ2 −Θ1))

≤
√
r1 + r2
n

∥Y −A′(Θ1)∥op∥Θ1 −Θ2∥F +
κ2
2n
∥Θ1 −Θ2∥2F,

which completes the proof of the second inequality.

Lemma A.2.2 (Operator norm of matrices with sub-exponential entries). LetX = (xij)i∈[n],j∈[p]
be a matrix with independent and centered entries such that xij ’s are (ν, α)-sub-exponential
random variables1 with parameters ν, α > 0:

E[exp(txij)] ≤ exp(t2ν2/2), ∀ |t| < 1

α
.

Then for all δ > 0, there exists a universal constant c > 0 such that, with probability at least
1− (n+ p)−δ − (np)−δ, when n, p are large enough, it holds that

∥X∥op ≤ 4ν
√
n ∨ p+ 2δ3/2

√
c(α ∨ ν) log(np)

√
log(n+ p).

Proof of Lemma A.2.2. We define a symmetric matrix

Z = (zij) =

(
0 X̃

X̃⊤ 0

)
∈ R(n+p)×(n+p),

1Here we adopt the definition from Wainwright [174, Definition 2.7]. In some literature, the term ‘sub-gamma’
is used interchangeably with ‘sub-exponential’ to refer to this definition.
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where X̃ := (x̃ij) = X − X ′ and X ′ =
(
x′ij

)
is an independent copy of X. Because x̃ij ’s

have symmetric distribution and are independent, it follows that zij ’s are also independent and

symmetric random variables, and ∥Z∥op = ∥X̃∥op. Because the tail event 1{∥X −X ′∥op ≥ t} is
a convex function on X ′, by Jensen’s inequality we have

1{∥X∥op ≥ t} = 1{∥X − EX′ [X ′]∥op ≥ t} ≤ EX′ [1{∥X −X ′∥op ≥ t}] = EX′ [1{∥X̃∥op ≥ t}].

By Fubini’s theorem, it follows that

P(∥X∥op ≥ t) ≤ EX,X′ [1{∥X̃∥op ≥ t}] = P(∥X̃∥op ≥ t) = P(∥Z∥op ≥ t).

Then, it suffices to bound the tail probability of ∥Z∥op.
We define a truncated random matrix Z(λ) of Z,

Z(λ) = (zij(λ))1≤i≤n,1≤j≤p = (zij 1 (|zij | ≤ λ))1≤i≤n,1≤j≤p
whose entries are independent, symmetric random variables bounded by λ. By Bandeira and van
Handel [11, Corollary 3.12], there exists a universal constant c > 0 such that

P

∥Z(λ)∥op ≥ 2
3
2 max
1≤i≤n+p

n+p∑
j=1

E[z2ij(λ)]

 1
2

+ t

 ≤ (n+ p) exp

(
− t2

cλ2

)
.

Note that

max
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n+p∑
j=1
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 1
2

≤ max
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n+p∑
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1/2

= max

max
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 p∑
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E[x̃2ij ]

 1
2

, max
1≤j≤p

(
N∑
i=1

E[x̃2ij ]

) 1
2


≤ max{√p,

√
n}max

i,j
E[x̃2ij ]

1
2

≤
√
2(n ∨ p)max

i,j
E[x2ij ]

1
2

≤ ν
√
2(n ∨ p),

where the first inequality is from the definition of the truncated variable, the second and the third
inequality is by Cauchy-Schwartz inequality, and the last inequality is because xij is (ν, α)-sub-
exponential. Thus, the above two inequality yields that

P
(
∥Z(λ)∥op ≥ 4ν

√
n ∨ p+ t

)
≤ (n+ p) exp

(
− t2

cλ2

)
.

Then we have

P
(
∥Z∥op ≥ 4ν

√
n ∨ p+ t

)
≤ P

(
∥Z(λ)∥2 ≥ 4ν

√
n ∨ p+ t

)
+ P

(
max

1≤i,j≤n+p
|zij | > λ

)
≤ (n+ p) exp

(
− t2

cλ2

)
+
∑

1≤i≤n

∑
1≤j≤p

P(|x̃ij | > λ)

≤ (n+ p) exp

(
− t2

cλ2

)
+ np

(
exp

(
− λ2

4ν2

)
∨ exp

(
− λ

2α

))
.
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where the last inequality follows because x̃ij = xij − x′ij is (2ν2, α)-sub-exponential. For all

δ > 0, let λ = 2(δ + 1)(α ∨ ν) log(np) and np ≥ 3, the second term is bounded by (np)−δ. Let
t = λ((δ+1)c log(n+ p))1/2, the first term is bounded by (n+ p)−δ. Combining these yields that

P
(
∥Z∥op ≥ 4ν

√
n ∨ p+ 2δ3/2

√
c(α ∨ ν) log(np)

√
log(n+ p)

)
≤ (n+ p)−δ + (np)−δ,

which completes the proof.

A.3 Estimation of latent coefficients

A.3.1 Preparatory definitions

Recall that Ŵ and Γ̂ are derived from the SVD of Ŵ0Γ̂0 from the first-stage optimization and we
have Ŵ Γ̂ = Ŵ0Γ̂0. Analogous to Bing et al. [20], we define H0 := (np)−1W ∗⊤W ∗Γ∗⊤Γ̂Σ−3/2

and

Γ̃ := Γ∗H0 = (np)−1Γ∗W ∗⊤W ∗Γ∗⊤Γ̂Σ−3/2, (A.3.1)

which is identifiable because it depends on both the data Γ̂Σ−3/2 and the identifiable quantity
Γ∗W ∗⊤W ∗Γ∗⊤. Note that

P
Γ̃
= Γ̃(Γ̃⊤Γ̃)−1Γ̃⊤

= Γ∗(W ∗⊤W ∗Γ∗⊤V )(V ⊤Γ∗W ∗⊤W ∗Γ∗⊤Γ∗W ∗⊤W ∗Γ∗⊤V )−1(V ⊤Γ∗W ∗⊤W ∗)Γ∗⊤

= Γ∗(Γ∗⊤Γ∗)−1Γ∗⊤

= PΓ∗ (A.3.2)

because both Γ∗⊤Γ∗ and W ∗⊤W ∗Γ∗⊤V ∈ Rr×r have full rank. Thus, to quantify the error
between P

Γ̂
and PΓ∗ , we can first analyze the error between Γ̂ and Γ̃.

A.3.2 Proof of Theorem 3

Proof of Theorem 3. We split the proof into three parts by bounding the operator norm, column-
wise ℓ2-norm, and the sup norm consecutively.

Part (1) Bounding the operator norm. From (A.3.2), we have that P
Γ̃
= PΓ∗ for Γ̃ defined

in (A.3.1). Then we have

∥P
Γ̂
− PΓ∗∥op

=∥P
Γ̂
− P

Γ̃
∥op

=∥Γ̂(Γ̂⊤Γ̂)−1Γ̂⊤ − Γ̃(Γ̃⊤Γ̃)−1Γ̃⊤∥op
≤∥(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op + ∥Γ̂((Γ̂⊤Γ̂)−1 − (Γ̃⊤Γ̃)−1)Γ̃⊤∥op + ∥Γ̂(Γ̂⊤Γ̂)−1(Γ̂− Γ̃)⊤∥op,

where the last inequality is from the triangle inequality. Next, we bound the three terms
separately. Recall Γ̃ is defined in (A.3.1) with ∥Γ̃∥op ≍ ∥Γ̂∥op ≍

√
p by Assumption 3 and

Lemma A.3.2. Then by Lemma A.3.1 and Assumption 3, for all δ > 0, the first term in the above
display is bounded

∥(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op ≤ ∥Γ̂− Γ̃∥op∥(Γ̃⊤Γ̃)−1∥op∥Γ̃∥op ≤ C ′(n ∧ p)−
1
2 ,
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with probability at least 1−2(n+p)−δ−2(np)−δ−exp(−n), for some constant C ′ > 0 and δ > 0.
Similarly, the third term is also bounded by OP

(
(n ∨ p)−1/2

)
. It remains to bound the second

term:

∥Γ̂((Γ̂⊤Γ̂)−1 − (Γ̃⊤Γ̃)−1)Γ̃⊤∥op
=∥Γ̂(Γ̂⊤Γ̂)−1(Γ̂⊤Γ̂− Γ̃⊤Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op
≤∥Γ̂(Γ̂⊤Γ̂)−1∥op · ∥(Γ̂⊤Γ̂− Γ̃⊤Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op

≲
1
√
p
∥(Γ̂⊤Γ̂− Γ̃⊤Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op

≤ 1
√
p
∥Γ̂⊤(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op +

1
√
p
∥(Γ̂− Γ̃)⊤Γ̃(Γ̃⊤Γ̃)−1Γ̃⊤∥op

≤ 1
√
p
∥Γ̂∥op∥(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤∥op +

1
√
p
∥Γ̂− Γ̃∥op∥PΓ̃∥op

≲O
(
(n ∧ p)−

1
2

)
,

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n). The proof for the operator norm is
completed by combing the above inequality.

Part (2) Bounding the column-wise ℓ2-norm. Let ej ∈ Rp be the unit vector such that its
i-th entry is one if i = j and zero otherwise. Similar to Part (1), note that

∥(P
Γ̂
− PΓ∗)ej∥2

≤∥(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤ej∥2 + ∥Γ̂((Γ̂⊤Γ̂)−1 − (Γ̃⊤Γ̃)−1)Γ̃⊤ej∥2 + ∥Γ̂(Γ̂⊤Γ̂)−1(Γ̂− Γ̃)⊤ej∥2.

The first term can be bounded analogously as

max
1≤j≤p

∥(Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤ej∥2 ≤ ∥Γ̂− Γ̃∥op∥(Γ̃⊤Γ̃)−1∥op max
1≤j≤p

∥Γ̃⊤ej∥2 ≤ C ′[p(n ∧ p)]−
1
2 ,

for some constant C ′ > 0, by noting that ∥Γ̃⊤ej∥2 = OP(1). The rest of the terms follow a similar
argument as in Part (1), under the same probabilistic events therein.

Part (3) Bounding the sup norm. The sup norm ∥·∥max can be upper bounded analogously:

∥P
Γ̂
− PΓ∗∥max

= max
i,j∈[p]

|e⊤i (PΓ̂ − PΓ∗)ej |

≤ max
i,j∈[p]

(|e⊤i (Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤ej |+ |e⊤i Γ̂((Γ̂⊤Γ̂)−1 − (Γ̃⊤Γ̃)−1)Γ̃⊤ej |+ |e⊤i Γ̂(Γ̂⊤Γ̂)−1(Γ̂− Γ̃)⊤ej |)

The first term can be bounded as

max
1≤j≤p

|e⊤i (Γ̂− Γ̃)(Γ̃⊤Γ̃)−1Γ̃⊤ej | ≤ ∥(Γ̂− Γ̃)ei∥op∥(Γ̃⊤Γ̃)−1∥op max
1≤j≤p

∥Γ̃⊤ej∥2 ≤ C ′[p2(n ∧ p)]−
1
2 ,

by involving both Part (1) and (2). The rest of the terms follow a similar argument as in Part
(1), under the same probabilistic events therein. This completes the proof.
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A.3.3 Technical lemmas

Lemma A.3.1 (Estimation error of Γ̂). Under Assumptions 1–3 and event EC , for all δ > 0 and
sufficiently large n and p, there exists a absolute constant C ′ > 0 such that

max
1≤j≤p

∥γ̂j − γ̃j∥2 ≤ C ′, ∥Γ̂− Γ̃∥op ≤ C ′
√
n ∨ p
n

,

with probability at least 1− 2(n+ p)−δ − 2(np)−δ − exp(−n).

Proof of Lemma A.3.1. Define E = W ∗Γ∗⊤ and Ê = Ŵ Γ̂⊤2. Then we have Ê = W ∗Γ∗⊤ +∆
where ∆ = (Θ̂0 −Θ∗)− (XF̂⊤ −XF ∗⊤). By the definition of Ê we have

1

np
Ê⊤Ê = V Σ2V ⊤.

Note that Γ̂ =
√
pV Σ1/2, we further have

1

np
Ê⊤ÊΓ̂ = Γ̂Σ2

and

1

n
√
p
Ê⊤ÊV Σ−3/2 = Γ̂.

It follows that

Γ̂− Γ̃ =
1

n
√
p
(E⊤∆+∆⊤E +∆⊤∆)V Σ−3/2.

Because the operator norm is sub-multiplicative, the ℓ2-norm of the jth row of Γ̂− Γ̃ is bounded
by

∥γ̂j − γ̃j∥2 ≤
1

n
√
p
(∥E⊤∆j∥2 + ∥∆⊤Ej∥2 + ∥∆⊤∆j∥2)∥V ∥op∥Σ−3/2∥op

≤ 1

n
√
p
(∥E∥op∥∆j∥2 + ∥∆∥op∥Ej∥2 + ∥∆∥op∥∆j∥2)∥Σ−3/2∥op, (A.3.3)

and

∥Γ̂− Γ̃∥op ≤
1

n
√
p
(2∥E∥op∥∆∥op + ∥∆∥2op)∥Σ−3/2∥op. (A.3.4)

To proceed, we split the proof into three parts.

2Throughout the manuscript, the notation ei is reserved for the unit vector and is not the i-th row of E. We
will only use the notations of E and Ej to denote the matrix of latent components and its j-th column.
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Part (1) Bounding operator noms of Σ, E, and ∆. Note thatE = W ∗Γ∗⊤ andw1, . . . ,wn

are mean-zero sub-Gaussian random vectors from Assumption 3. From Lemma A.3.2, for any
δ > 0, there exists CΣ > 0, such that

∥E∥op ≤ 2CΣ
√
np,

1

CΣ
≤ λr(Σ) ≤ λ1(Σ) ≤ CΣ,

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).
Because

∆ = E − Ê = P⊥
X(Θ∗ − Θ̂0) + PXE,

we have

∥∆∥op = ∥P⊥
X(Θ∗ − Θ̂0) + PXE∥op

≤ ∥P⊥
X∥op∥Θ∗ − Θ̂0∥op + ∥PXE∥op

≤ ∥Θ∗ − Θ̂0∥op + ∥PXE∥op.

On the one hand, from Theorem 2, it follows that when n, p are large enough,

∥Θ∗ − Θ̂0∥op ≤
√
c(d+ r)(n ∨ p)

with probability at least 1 − (n + p)−δ − (np)−δ for some constant c > 0. On the other hand,
notice that

PXE = PXW ∗Γ∗⊤ = X

(
X⊤X

n

)−1
X⊤W ∗

n
Γ∗⊤

where X⊤W ∗ =
∑n

i=1 xiw
∗⊤
i is the sum of n i.i.d. sub-exponential random matrices with zero

means. By the matrix Bernstein’s inequality, ∥X⊤W ∗/n∥op ≲
√
log(nd)/n. Thus, the second

term can be bounded as

∥PXE∥op ≲
√
n · 1 ·

√
log(nd)

n
· √p

with probability at least 1− n−δ. The above results suggest that

∥∆∥op ≤
√
c(d+ r)(n ∨ p)

Below, we condition on the two events above, which hold with probability at least 1 − 2(n +
p)−δ − 2(np)−δ − exp(−n) by union bound.

Part (2) Bounding ∥Ej∥2 and ∥∆j∥2 From Lemma A.3.3 and Assumption 3, we have

max
1≤j≤p

∥Ej∥2 = max
1≤j≤p

∥W ∗γ∗
j ∥2 ≤ ∥W ∥op max

1≤j≤p
∥γ∗

j ∥2 ≤ 2CΣ

√
n.

On the other hand, because Ŵ⊤Ŵ = nΣ and ∥γ̂j∥2 ≤ C2C
1/2
Σ for all j ∈ [p] from Lemma A.3.4,

we also have

max
1≤j≤p

∥Êj∥2 = max
1≤j≤p

∥Ŵ γ̂j∥2 = max
1≤j≤p

√
n∥γ̂j∥2 ≲ C2C

3/2
Σ

√
n.

Thus, by triangle inequality, we have

max
1≤j≤p

∥∆j∥2 ≤ max
1≤j≤p

(∥Ej∥2 + ∥Êj∥2) ≲ (2 + C2)CΣ

√
n.
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Part (3) Combining the previous results. From (A.3.3), (A.3.4) and the previous two
parts, we have

max
1≤j≤p

∥γ̂j − γ̃j∥2

≲
1

n
√
pCΣ

(2CΣ
√
np(2 + C2)CΣ

√
n+

√
c(d+ r)(n ∨ p)C

√
n+

√
c(d+ r)(n ∨ p)(2CΣ + C)

√
n)

≲2(2 + C2)CΣ

and

∥Γ̂− Γ̃∥2 ≤
1

n
√
pCΣ

(4CΣ
√
np
√
c(d+ r)(n ∨ p) + c(d+ r)(n ∨ p)) ≲ 4

√
c,

which finishes the proof.

Lemma A.3.2 (Spectrum of Σ). Under Assumptions 1–3 and event EC , for all δ > 0 and
sufficiently large n and p, there exists a absolute constant CΣ > 1 such that

1

CΣ
≤ λr(Σ) ≤ λ1(Σ) ≤ CΣ,

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).

Proof of Lemma A.3.2. By Weyl’s inequality, we have that for all k ∈ [r],∣∣∣∣λk(Σ)− 1
√
np
λk(W

∗Γ∗⊤)

∣∣∣∣ = 1
√
np

∣∣∣λk(Ŵ Γ̂⊤)− λk(W ∗Γ∗⊤)
∣∣∣

≤ 1
√
np
∥Ŵ Γ̂⊤ −W ∗Γ∗⊤∥op

=
1
√
np
∥P⊥

X(Θ̂0 −Θ∗)∥op

≤ 1
√
np
∥Θ̂0 −Θ∗∥op. (A.3.5)

We next bound λk(W
∗Γ∗⊤) and ∥Θ̂0−Θ∗∥op separately. Applying Lemma A.3.3 under Assump-

tion 3 yields that

1

C ′
0

≤ λr
(
1

n
W ∗⊤W ∗

)
≤ λ1

(
1

n
W ∗⊤W ∗

)
≤ C ′

0.

with probablity at least 1 − exp(−n) for some constant C ′
0 > 1. From Assumption 3 we further

have √
1

CC ′
0

≤ 1
√
np
λr(W

∗Γ∗⊤) ≤ 1
√
np
λ1(W

∗Γ∗⊤) ≤
√
CC ′

0. (A.3.6)

On the other hand, from Theorem 2 we have for all δ > 0, there exists C > 0 such that

1
√
np
∥Θ̂0 −Θ∗∥op ≤

1
√
np
∥Θ̂0 −Θ∗∥F ≤ C

√
r(n ∨ p)
np

=: Cn,p, (A.3.7)
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with probability at least 1− (n+ p)−δ − (np)−δ.

Condition on the above two events, applying triangle inequality on (A.3.5) and combining
(A.3.6) and (A.3.7), we have√

1

CC ′
0

− Cn,p ≤ λr(Σ) ≤ λ1(Σ) ≤
√
CC ′

0 + Cn,p.

Note that Cn,p = o(1) as both n and p tend to infinity. When n and p is such that Cn,p <
1/2
√
CC ′

0, setting CΣ = 3
√
CC ′

0/2 gives the desired bound. By union bound, this holds with
probability at least 1− (n+ p)−δ − (np)−δ − exp(−n), which finishes the proof.

Lemma A.3.3 (Spectrum of W ∗). Under Assumption 3, for sufficiently large n, there exists a
absolute constant C ′

0 > 0 such that

1

C ′
0

≤ λr
(
1

n
W ∗⊤W ∗

)
≤ λ1

(
1

n
W ∗⊤W ∗

)
≤ C ′

0,

with probability at least 1− exp(−n).

Proof of Lemma A.3.3. Note that W ∗ ∈ Rn×r is a random matrix whose rows w∗
1, . . . ,w

∗
n are

i.i.d. sub-Gaussian random vectors. From the concentration inequality of the operator norm of
the random matrices [172, Theorem 4.6.1, Exercise 4.7.3], for any u > 0 we have∥∥∥∥ 1nW ∗⊤W ∗ −Σw

∥∥∥∥
op

≤ CK2

(√
r + u

n
+
r + u

n

)
∥Σw∥op,

with probability at least 1 − 2 exp(−u), where C > 0 is some absolute constant and K =
maxi∈[n] ∥w∗

i ∥ψ2 . When n is sufficiently large such that 2CK2n−1/4 < 1, setting u = n1/2 and

C ′ = 2CK2n−1/4C0 yields that∥∥∥∥ 1nW ∗⊤W ∗ −Σw

∥∥∥∥
op

≤ CK2
(
n−

1
4 + n−

1
2

)
∥Σw∥op ≤ C ′ < C0.

By Weyl’s inequality, we have that,

max
k∈[r]

∣∣∣∣λk ( 1

n
W ∗⊤W ∗

)
− λk (Σw)

∣∣∣∣ ≤ ∥∥∥∥ 1nW ∗⊤W ∗ −Σw

∥∥∥∥
op

≤ C ′.

By triangle inequality and the boundedness of Σw’s spectrum from Assumption 3, it follows that

1

C0
− C ′ ≤ min

k∈[r]
λk

(
1

n
W ∗⊤W ∗

)
≤ max

k∈[r]
λk

(
1

n
W ∗⊤W ∗

)
≤ C0 + C ′,

with probability at least 1 − exp(−n). Setting C ′
0 = min{C0 + C ′, (C−1

0 − C ′)−1} finishes the
proof.

Lemma A.3.4 (Boundedness of latent factors and loadings). Under Assumptions 1–3 and event
EC , for all δ > 0 and sufficiently large n and p, there exists a absolute constant CΣ > 1 such that

∥γ̂∥2 ≤ C2C
1/2
Σ , with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).
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Proof of Lemma A.3.4. Recall that Ŵ0 and Γ̂0 are the solutions to the alternative maximiza-
tion problems which satisfy that ∥ŵ0,i∥2 ≤ C and ∥γ̂0,j∥2 ≤ C for i = 1, . . . , n and 1, . . . , p. Let

Ŵ0Γ̂
⊤
0 =
√
npUΣV ⊤ be the condensed SVD. Then Γ̂ is defined to be

√
pV Σ1/2 = Γ̂0Ŵ

⊤
0 UΣ1/2/

√
n.

From Lemma A.3.2, with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n), it holds that

∥γ̂j∥2 ≤ ∥Ŵ0/
√
n∥op∥U∥op∥Σ1/2∥op∥γ̂0,j∥2

≤ max
1≤i≤n

∥Ŵ0,i∥2 · 1 · C1/2
Σ · C

≤ C1/2
Σ C2,

which finishes the proof.

A.4 Estimation of latent factors and direct effects

A.4.1 Preparatory definitions

Towards proving Theorem 5, we first introduce the following notations. Recall that optimization
problem (2.3.2) is the multivariate lasso with nuisance parameter. Define the response vector

ỹ = vec(Y ) ∈ Rnp, the design matrices X̃ = (Ip ⊗X) ∈ Rnp×pd, β = vec(B∗), ζ = vec(Z∗Γ∗⊤),

and the projection matrix P̃Γ∗ = (PΓ∗ ⊗ Id) ∈ Rpd×pd. Here, symbol ‘⊗’ denotes the Kronecker
product. With slight abuse of notations, we use L(β, ζ) to denote the unregularized loss function
of (2.3.2). Let F = {(β, ζ) ∈ Rpd × Rnp | β = vec(B), ζ = vec(ZΓ⊤) for B ∈ Rp×d,Z ∈
Rn×r,Γ ∈ Rp×r such that PΓB = 0, X̃β + ζ ∈ RnpC } be the feasible set of β and ζ. Then the
joint optimization problem (2.3.2) is equivalent to

β̂, ζ̂ ∈ argmin
(β,ζ)∈F

L(β, ζ) + λ∥β∥1. (A.4.1)

Let (β̃∗, ζ̃∗) = (vec(P⊥
Γ∗B∗), vec(XB∗PΓ∗ + Z∗Γ∗⊤)), (β∗, ζ∗) = (vec(B∗), vec(Z∗Γ∗⊤)) denote

the tuples of target coefficients and note that (β̃∗, ζ̃∗) ∈ F .
The organization of the following subsections is summarized as below:
• Appendix A.4.2 proves Corollary 4, which controls the column-wise ℓ2-norm of the estima-
tion error of the latent component.

• Appendix A.4.3 proves Theorem 5. The proof of Theorem 5 consists of three main steps:

(1) Establish cone condition: We involve Lemma A.4.1 to show that the estimation from
the sequential optimization problems (2.3.4)-(2.3.5) obtain approximately optimality
condition to the joint optimization problem (2.3.2):

L(B̂, Γ̂, Ẑ) + λ∥B̂∥1,1 ≤ L(B∗,Γ∗,Z∗) + λ∥B∗∥1,1 + τn,p,

for some small order term τn,p with high probability. This enables us to derive the
cone condition.

(2) Obtain upper and lower bound of the first-order approximation error: We involve
Lemma A.4.2 to derive the upper bound, and Lemma A.4.3 to establish the locally
strong convexity and hence the lower bound.

(3) Derive the estimation errors: We compute the ℓ2-norm and ℓ1-norm estimation error
based on the previous two steps.

• Appendix A.4.4 gathers helper lemmas used in the current section.
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A.4.2 Proof of Corollary 4

Proof of Corollary 4. Define Ê = ẐΓ̂⊤ andE∗ = Z∗Γ∗⊤. Let B̂ = argmin{B∈Rp×d|P
Γ̂
B=0} L(XB⊤+

Ê) and Θ̂ = XB̂⊤ + Ê. Since L(Θ̂) ≤ L(Θ∗) as assumed in Corollary 4, from Theorem 2 we
have ∥Θ̂−Θ∗∥ ≲ OP(

√
n ∨ p). From Theorem 3, we further have

∥Ê −E∗∥F ≤ ∥(Θ̂−Θ∗)P
Γ̂
∥F + ∥Θ∗(P

Γ̂
− PΓ∗)∥F ≲ OP(

√
n ∨ p).

Then from Lin et al. [104, Proposition 5.2] we have that, up to sign,

1

n
∥Ẑ −Z∗R⊤∥2F ≲

r4k2−k1+4

n ∧ p
=: ηn,

with probability at least 1− n−c − p−c.
Recall the invertible matrix R with ∥R∥op = OP(1) from Assumption 4 and define the trans-

formed parameters Z̃∗ = Z∗R⊤ and Γ̃∗ = Γ∗R−1. Because Ej−E∗
j = Z̃∗(γj− γ̃∗

j )+(Z−Z̃∗)γj ,
with probability tending to one, it follows that

max
1≤j≤p

1√
n
∥Êj −E∗

j ∥2 = max
1≤j≤p

1√
n
∥Z̃∗(γ̂j − γ̃∗

j ) + (Ẑ − Z̃∗)γ̂j∥2

≤ max
1≤j≤p

1√
n
∥Z̃∗(γ̂j − γ̃∗

j )∥2 + max
1≤j≤p

1√
n
∥(Ẑ − Z̃∗)γ̂j∥2

≤ max
1≤j≤p,1≤i≤n

1√
n
∥z̃∗

i ∥∞∥γ̂j − γ̃∗
j ∥1 + max

1≤j≤p

1√
n
∥Ẑ − Z̃∗∥op∥γ̂j∥2

≲
log n√
n

+
√
ηn

≲
√
n−1 log n ∨ ηn

where the second last inequality is because that ∥γ̃∗
j ∥2 ≤ C from Assumption 3, ∥γ̂j − γ̃∗

j ∥1 ≤√
r∥γ̂j− γ̃∗

j ∥2 ≤ 2
√
rC from Lemma A.3.1, and z̃∗

i ’s are independent r-dimensional sub-Gaussian
random vectors from Lemma A.4.5 so that max1≤i≤n ∥z̃∗

i ∥∞ scales in log (nr).

A.4.3 Proof of Theorem 5

Proof of Theorem 5. Define ∆β = β̂−β∗, ∆ζ = ζ̂−ζ∗, and S = supp(β∗). Let gβ = ∇βL(β̂, ζ̂),
and gζ = ∇ζL(β̂, ζ̂) and analogously define g∗

β, g
∗
ζ .

(1) Cone condition. From Lemma A.4.1, we have the optimality condition

L(β̂, ζ̂) + λ∥β̂∥1 ≤ L(β∗, ζ∗) + λ∥β∗∥1 + τn,p,

with τn,p defined in Lemma A.4.1. Rearranging the above display, it follows that

λ∥β̂∥1 ≤ L(β∗, ζ∗)− L(β̂, ζ̂) + λ∥β∗∥1 + τn,p

≤∆⊤
β g

∗
β +∆⊤

ζ g
∗
ζ + λ∥β∗∥1 + τn,p

≤ ∥∆β∥1∥g∗
β∥∞ +∆⊤

ζ g
∗
ζ + λ∥β∗∥1 + τn,p, (A.4.2)
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where the second inequality is from the convexity of L, and the last is from Holder’s inequality.
The term involves nuisance parameters can be further bounded as

∆⊤
ζ g

∗
ζ =

1

n

np∑
ℓ=1

[ỹℓ −A′(x̃⊤
ℓ β

∗ + ζ∗ℓ )]δζ,ℓ ≤ 2C∥g∗
ζ∥∞ ≤

4cC2α log(2np)

n
, (A.4.3)

where the last inequality is from Lemma A.4.2 (2), which holds with probability at least at least
1− (n+p)−c− (np)−c− exp(−n) for some c > 0. On the other hand, the left hand side of (A.4.2)
is lower bounded as

∥β̂∥1 = ∥β∗ +∆β∥1
= ∥β∗

S +∆β,S∥1 + ∥∆β,Sc∥1
≥ ∥β∗

S∥1 − ∥∆β,S∥1 + ∥∆β,Sc∥1, (A.4.4)

where S = {j ∈ [pd] | β∗j ̸= 0} is the active set of the true coefficients. Combining (A.4.2),
(A.4.3), and (A.4.4) yields that

(λ− ∥g∗
β∥∞)∥∆β,Sc∥1 ≤ (λ+ ∥g∗

β∥∞)∥∆β,S∥1 +
(
4cC2α log(2np)

n
+ τn,p

)
.

Note that under the same probabilistic event above, from Lemma A.4.2 (1), we have

∥g∗
β∥∞ ≤ 4ν2

√
c log2(2nd)/n. (A.4.5)

When λ∗ ≍ 8ν2
√
c log2(2nd)/n ≥ 2∥g∗

β∥∞, this implies the approximate cone condition ∆β ∈
C(3,S), where

C(ξ,S) :=

{
∆β ∈ Rpd

∣∣∣∣∣ ∥∆β,Sc∥1 ≤ ξ∥∆β,S∥1 + τ∗n,p

}
, (A.4.6)

and

τ∗n,p =
C2α

ν2

√
c log2(2np)

n log2(2nd)
+

√
n

(n ∧ p) log(2nd)
+

√
(sd)2

n ∧ p1−k
.

From the cone condition (A.4.6), the ℓ1-norm bound follows by observing that

∥∆β∥1 ≤ ∥∆β,S∥1 + ∥∆β,Sc∥1
≤ 4∥∆β,S∥1 + τ∗n,p

≤ 4
√
sd∥∆β,S∥2 + τ∗n,p

≤ 4
√
sd∥∆β∥2 + τ∗n,p. (A.4.7)

(2) Upper and lower bound of the first-order approximation error. To quantify the
estimation of the coefficient, we next analyze the first-order approximation error of the normalized
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likelihood: E(β̂,β∗; ζ̂, ζ∗) = ∆⊤
β (gβ − g∗

β). By the first-order optimality condition of convex
optimization problem (2.3.3), we have

E(β̂,β∗; ζ̂, ζ∗) ≤ −∆⊤
β g

∗
β

≤ ∥∆β∥1∥g∗
β∥∞

≤ ∥∆β∥216ν2
√
csd log2(2nd)

n
+ 4C2α

√
c
log(2np)

n
, (A.4.8)

where the second inequality is from Holder’s inequality, and the last inequality is from (A.4.5)
and (A.4.7). This establishes the upper bound for E(β̂,β∗; ζ̂, ζ∗).

On the other hand, Lemma A.4.3 implies that E(β̂,β∗; ζ̂, ζ∗) is locally restricted strongly
convex over an augmented cone Ca(3,S, ηn), defined in (A.4.20):

inf
(∆β ,∆ζ)∈Ca(3,S,ηn)

E(β∗ +∆β,β
∗; ζ∗ +∆ζ , ζ

∗) ≥ κ1C
′

2
∥∆β∥22 − C ′′

√
log n

n
∨ ηn∥∆β∥1, (A.4.9)

for some constant C ′ > 0, with probability at least 1− 2 exp(−3 log n).

(3) Estimation error. From Part (2), (A.4.8) and (A.4.9) imply that

κ1C
′

2
∥∆β∥22 ≤ ∥∆β∥2

16ν2

√
csd log2(2nd)

n
+ 4C ′′

√
sd

n ∧ p


+ 4C2α

√
c
log(2np)

n
+
C ′′r4k2−k1+4

√
n ∧ p

τ∗n,p.

over Ca(3,S, ηn). This implies that, with probability at least 1− (n+ p)−c
′ − (np)−c

′ − exp(−n)
for some c′ > 0,

∥∆β∥2 ≤
2

κ1C ′

16ν2

√
csd log2(2nd)

n
+ C ′′

√
sd

n ∧ p


+

√
2

κ1C ′

√
4C2α

√
c
log(2np)

n
+
C ′′r4k2−k1+4τ∗n,p√

n ∧ p

≲

√
(sd log2(nd)) ∨ log(np)

n
+

n1/4

(n ∧ p)3/2 log1/2(nd)
+

√
sd

n ∧ p1−k
. (A.4.10)

To establish the ℓ1-norm bound, from (A.4.7) and (A.4.10), we have

∥∆β∥1 ≤ 4
√
sd∥∆β∥2 + τ∗n,p

≲

√
sd

(sd log2(nd)) ∨ log(np)

n
+

√
(sd)2

n ∧ p1−k
+

√
n

(n ∧ p) log(nd)
, (A.4.11)

which completes the proof.
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A.4.4 Technical lemmas

Lemma A.4.1 (Sequential and joint optimization). Under the same conditions in Theorem 5,
for any constant δ > 0 it holds with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n) that

L(β̂, ζ̂) + λ∥β̂∥1 ≤ L(β∗, ζ∗) + λ∥β∗∥1 + τn,p,

where

τn,p = O

(
1

n ∧ p
+ λ

√
(sd)2

n ∧ p1−k

)
.

Proof of Lemma A.4.1. From Assumption 1, the entry of B∗ is bounded because ∥B∗∥max =
max1≤i≤p,1≤j≤d |bij | ≤ max1≤i≤p ∥bi∥∞ ≤ max1≤i≤p ∥bi∥2 ≤ C. From Proposition 1 and Assump-
tion 1, we further have that

∥PΓ∗B∗∥F ≲
√
sd/p∥B∗∥max ≲

√
sd/p. (A.4.12)

Thus, from the assumption of Theorem 5, we have that

∥PΓ∗B∗∥1,1 = O(pk/2∥PΓ∗B∗∥F) ≲
√
sdp(k−1)/2. (A.4.13)

This ensures that ∥β̃∗∥1,1 is close to ∥β∗∥1,1.
From optimality condition of optimization problem (2.3.5), we have

L(β̂, ζ̂) + λ∥β̂∥1 ≤ L(β̃′, ζ̃′) + λ∥β̃′∥1,

where β̃′ = vec(P⊥
Γ̂
B∗) and ζ̃′ = vec(Θ∗P

Γ̂
). It follows that

L(β̂, ζ̂) + λ∥β̂∥1 ≤ L(Θ∗ −Z∗Γ∗⊤P⊥
Γ̂
) + λ∥B∗⊤P⊥

Γ̂
∥1,1. (A.4.14)

We next bound the first term in (A.4.14). From the proof of Lemma A.2.1, we have

L(Θ∗ −Z∗Γ∗⊤P⊥
Γ̂
)− L(Θ∗) ≤ 1

n
tr((Y −A′(Θ∗))⊤Z∗Γ∗⊤P⊥

Γ̂
)︸ ︷︷ ︸

T1

+
κ2
2n
∥Z∗Γ∗⊤P⊥

Γ̂
∥2F︸ ︷︷ ︸

T2

.

LetA = n−1Z∗Γ∗⊤P⊥
Γ̂
. From Lemmas A.4.4 and A.4.5, the second term T2 can be upper bounded

as

T2 =
κ2
2
n∥A∥2F =

κ2
2n
∥Z∗Γ∗⊤P⊥

Γ̂
∥2F ≤

κ2
2n
∥Z∗∥2op∥Γ∗⊤P⊥

Γ̂
∥2F = O

(
r

n ∧ p

)
,

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n). In the equality, we use the fact that
Z∗ is a matrix with independent sub-Gaussian rows to obtain similar results as Lemma A.3.2.

For the first term T1, note that yij − A′(θ∗ij) is mean-zero (ν, α)-sub-exponential random

variable when conditioned on (X∗,Z∗), where ν =
√
κ2 and α = 1/C2, as shown in the proof of

Theorem 2. To bound the first term T1, we apply Bernstein’s inequality [172, Theorem 2.8.2] to
obtain

P(|T1| ≥ t |X∗,Z∗) ≤ 2 exp

(
−min

{
t2

2ν2∥A∥2F
,

t

2α∥A∥max

})
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From the proof above, we have that ∥A∥max ≤ ∥A∥F = OP((nr(n ∧ p))−1/2). Therefore, by
choosing t ≍ (nr(n ∧ p))−1/2 log(np), we further have

|T1| = O
(√

r

n(n ∧ p)

)
.

with probability at least 1− (np)−δ. The above results imply that

L(Θ∗ −Z∗Γ∗⊤P⊥
Γ̂
) ≤ L(Θ∗) +O

(
r

n ∧ p

)
, (A.4.15)

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).
Consider the second term of (A.4.14), from Theorem 3 we also have

∥B∗⊤P⊥
Γ̂
∥1,1 − ∥B∗⊤P∗⊥

Γ ∥1,1 ≤ ∥B∗⊤(P⊥
Γ̂
− P∗⊥

Γ )∥1,1

≤
d∑
ℓ=1

∥(P⊥
Γ̂
− P∗⊥

Γ )B∗
ℓ ∥1

≤ dsCmax
j∈[d]
∥(P⊥

Γ̂
− P∗⊥

Γ )ej∥1

= O

(
ds√

p(n ∧ p)

)
, (A.4.16)

under the same probability event above.
Finally, combining (A.4.14)-(A.4.16), we have

L(β̂, ζ̂) + λ∥β̂∥1 ≤ L(Θ∗) + λ∥B∗⊤P⊥
Γ̂
∥1,1 +OP

(
1

n ∧ p

)
,

= L(β̃∗, ζ̃∗) + λ∥β̃∗∥1 +OP

(
1

n ∧ p

)
= L(β∗, ζ∗) + λ∥β∗∥1 +OP

(
1

n ∧ p
+ λ

√
(sd)2

n ∧ p1−k

)
,

where the last inequality is from (A.4.13). This completes the proof.

Lemma A.4.2 (Infinity norm of the gradient). Under the same conditions in Theorem 5, for
any constant c > 0 it holds that

(1) ∥∇βL(β∗, ζ∗)∥∞ ≤ 4ν2
√

c log2(2nd)
n ,

(2) ∥∇ζL(β∗, ζ∗)∥∞ ≤ 2cα log(2np)
n ,

with probability at least 1− (2nd)−c − (2np)−c.

Proof of Lemma A.4.2. Recall that

∇βL(β∗, ζ∗) =
1

n

np∑
ℓ=1

[ỹℓ −A′(x̃⊤
ℓ β

∗ + ζ∗ℓ )]x̃ℓ (A.4.17)

∇ζℓL(β
∗, ζ∗) =

1

n
[ỹℓ −A′(x̃⊤

ℓ β
∗ + ζ∗ℓ )], ℓ ∈ [np], (A.4.18)

where x̃ℓ is the ℓ-th row of X̃. We split the proof into different parts.
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Part (1). Conditioned on X and Z∗, the term ỹℓ − A′(x̃⊤
ℓ β

∗ + ζ∗ℓ ) is a zero-mean (ν, α)-
sub-exponential random variable, where ν =

√
κ2 and α = 1/C2, as shown in the proof of

Theorem 2. Let C ′ = maxℓ∈[np] ∥x̃∗
ℓ∥∞. Because x̃∗

ℓ are sparse vectors with ∥x̃∗
ℓ∥0 = d, we

have that [ỹℓ − A′(x̃⊤
ℓ β

∗ + ζ∗ℓ )]x̃ℓj is a zero-mean (ν, C ′α)-sub-exponential random variable for
j = k, k + p, . . . , k + p(d− 1) and zero otherwise, where k = ⌊p/d⌋. By Bernstein’s inequality, it
follows that

P

(
1

n

np∑
ℓ=1

[ỹℓ −A′(x̃⊤
ℓ β

∗ + ζ∗ℓ )]x̃ℓj ≤ t

)
≥ 1− 2 exp

(
−n
2
min

{
t2

ν2
,
t

C ′α

})
.

Applying union bound over j = k, k + p, . . . , k + p(d− 1) yields that

P (∥∇βL(β∗, ζ∗)∥∞ ≤ t) ≥ 1− 2d exp

(
−nmin

{
t2

2ν2
,

t

2C ′α

})
.

By setting t = C ′√2ν2c log(2nd)/n for some fixed constant c > 1, we have

P

(
∥∇βL(β∗, ζ∗)∥∞ ≤ C ′

√
2ν2c log(2nd)

n

)
≥ 1− (2nd)1−c,

when n is large enough such that t < ν2/(C ′α). By Lemma A.4.6, we also have C ′ = ∥X̃∥max ≤
2
√
2ν
√
c log(nd) with probability at least 1− (2nd)1−c. It follows that

P

∥∇βL(β∗, ζ∗)∥∞ ≤ 4ν2c

√
log2(2nd)

n

 ≥ 1− 2(2nd)1−c, (A.4.19)

which finishes the proof for Part (1).

Part (2). Because ỹℓ−A′(x̃⊤
ℓ β

∗+ζ∗ℓ )’s are zero-mean (ν, α)-sub-exponential random variables,
by union bound, we have

P (n∥∇ζL(β∗, ζ∗)∥∞ ≤ t) ≥ 1− 2np exp

(
−1

2
min

{
t2

ν2
,
t

α

})
,

or equivalently,

P (∥∇ζL(β∗, ζ∗)∥∞ ≤ t) ≥ 1− 2np exp

(
−1

2
min

{
(nt)2

ν2
,
nt

α

})
= 1− 2np exp

(
− nt
2α

)
when t ≥ ν2/(αn) is sufficiently large. Choosing t = max{2cα log(2np), ν2/α}/n for any constant
c > 1 yields that

P
(
∥∇ζL(β∗, ζ∗)∥∞ ≤

2cα log(2np)

n

)
≤ 1− (2np)1−c.

Finally, we obtain the tail probability as the lemma states by taking the union bound over
the above events.
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Lemma A.4.3 (Locally restricted strongly convexity). Under the same conditions in Theorem 5,
define the augmented cone

Ca(ξ,S, ηn) := {(∆β,∆ζ) ∈ Rpd × Rnp |∆β ∈ C(ξ,S),

max
j∈[p]

1

n
∥Zγj −Z∗γ∗

j ∥22 ≤
log n

n
∨ ηn, such that ζ = vec(ZΓ⊤)},

(A.4.20)

where the cone C(ξ,S) defined in (A.4.6) and ηn = o(1). Then, it holds that

inf
(∆β ,∆ζ)∈Ca(ξ,S,ηn)

E(β∗ +∆β,β
∗; ζ∗ +∆ζ , ζ

∗) ≥ κ1C
′

2
∥∆β∥22 − C ′′

√
n−1 ∨ ηn∥∆β∥1,

for some constant C ′ > 0, with probability at least 1− 2 exp(−ξ log n).

Proof of Lemma A.4.3. For all (∆β,∆ζ) ∈ Ca(ξ,S, ηn), let β = β∗ +∆β and ζ = ζ∗ +∆ζ . Let
∆βj ∈ Rd be the sub-vector containing the (j − 1)d-th to (jd − 1)-th entries of ∆ ∈ Rpd. It is

also equivalent to bj − b∗j , the j-th row of vec−1(β − β∗) ∈ Rp×d. Let E = vec−1(ζ) ∈ Rn×p and

E∗ = vec−1(ζ∗) ∈ Rn×p.
We begin by decomposing the error into different terms:

E(β,β∗; ζ, ζ∗) =

p∑
j=1

Ej(β,β∗; ζ, ζ∗),

where

Ej(β,β∗; ζ, ζ∗) =
1

n

n∑
i=1

[A′(x⊤
i bj + z⊤

i γj)−A′(x⊤
i b

∗
j + z∗⊤

i γ∗
j )]x

⊤
i ∆βj

=
1

n

n∑
i=1

[A′(x⊤
i bj + z⊤

i γj)−A′(x⊤
i b

∗
j + z⊤

i γj)]x
⊤
i ∆βj

+
1

n

n∑
i=1

[A′(x⊤
i b

∗
j + z⊤

i γj)−A′(x⊤
i b

∗
j + z∗⊤

i γ∗
j )]x

⊤
i ∆βj

=
1

n

n∑
i=1

A′′(θij)(x
⊤
i ∆βj )

2 +
1

n

n∑
i=1

A′′(θ′ij)(z
⊤
i γj − z∗⊤

i γ∗
j )x

⊤
i ∆βj

= T1j + T2j , (A.4.21)

where θij is between x⊤
i bj + z⊤

i γj and x⊤
i b

∗
j + z⊤

i γj , and θ′ij is between x⊤
i b

∗
j + z⊤

i γj and

x⊤
i b

∗
j + z∗⊤

i γ∗
j .

For the first term, because by Assumption 1, κ1 := infθ∈RA
′′(θ) > 0, we have

T1j ≥ κ1
1

n

n∑
i=1

(x⊤
i ∆βj )

2

≥ κ1λp
(
1

n
X⊤X

)
∥∆βj∥

2
2

≥ κ1
C
λp

(
1

n
Σ

− 1
2

x X⊤XΣ
− 1

2
x

)
∥∆βj∥

2
2,
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where the last inequality is from Assumption 2. From Vershynin [172, Lemma 10.6.6], we further
have that when n ≳ ξ log d

T1j ≥
κ1C

′

2
∥∆βj∥

2
2 (A.4.22)

over C(ξ,S) (which contains Ca(ξ,S, C0)), with probability at least 1 − 2 exp(−ξ log n) for some
absolute constant C ′ > 0.

For the second term, by Holder’s inequality, we have

|T2j | =
∣∣∣∣ 1n(Ej −E∗

j )
⊤diag(A′′(Θ′

j))X∆βj

∣∣∣∣
≤ 1

n
∥X⊤diag(A′′(Θ′

j))(Ej −E∗
j )∥∞ · ∥∆βj∥1 (A.4.23)

= max
1≤ℓ≤d

1

n
|(Ej −E∗

j )
⊤diag(A′′(Θ′

j))Xℓ| · ∥∆βj∥1,

whereΘ′
j = (θ′1j , . . . , θ

′
nj)

⊤. Recall thatE = ZΓ⊤ andE∗ = Z∗Γ∗⊤ are such that max1≤j≤d
1√
n
∥Ej−

E∗
j ∥2 ≲

√
(n−1 log n) ∨ ηn. From Corollary 4, we have

|T2j | ≤ κ2 max
1≤j≤d

1√
n
∥Ej −E∗

j ∥2 ·
1√
n
∥X∥op · ∥∆βj∥1

≲
√
(n−1 log n) ∨ ηn∥∆βj∥1, (A.4.24)

where the last inequality is because ∥X∥op ≲
√
n.

By combining (A.4.21), (A.4.22) and (A.4.24), we have that

Ej(β,β∗; ζ, ζ∗) ≥ κ1C
′

2
∥∆βj∥

2
2 − C ′′

√
n−1 ∨ ηn∥∆βj∥1,

for some constant C ′′ > 0. Thus,

E(β,β∗; ζ, ζ∗) ≥ κ1C
′

2
∥∆β∥22 − C ′′

√
n−1 ∨ ηn∥∆β∥1,

over the cone Ca(ξ,S, ηn).

Remark 12 (Neyman orthogonality). By coincidence, the proof above on T2j actually verifies the
uniform Neyman orthogonality of the empirical loss in semiparametric models [33, 53]. This relies
on the estimation error rates for the nuisance parameters E∗

j by using the consistent estimation
for the latent factors Z∗ with rate ηn as assumed in the cone condition (A.4.21). To see this, recall
that the pathwise derivative map of the gradient ∇bjL(β∗, ζ∗) evaluated at the true parameter
β∗ and nuisance component value ζ∗ (when t = 0) is given by

∂

∂t
∇bjL(β

∗, t(ζ − ζ∗) + ζ∗)
∣∣∣
t=0

=
1

n

∑
i∈[n]

A′′(x⊤
i b

∗
j + e∗ij)(eij − e∗ij)xi

=
1

n
X⊤diag(A′′(Θ∗

j ))(Ej −E∗
j ).

Compared to (A.4.23), up to a constant factor, (A.4.24) also suggest that the pathwise derivative’s
infinity norm vanishes with a rate of

√
n−1 ∨ ηn. In other words, at the true parameter value,

local perturbations of the nuisance component around its true value have a negligible effect on
the gradient of the loss with respect to the primary parameter, with high probability; see [33, 53]
for more detailed discussions about the Neyman orthogonality.
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Lemma A.4.4 (Bounds related to projection). Under assumptions in Theorem 5, it holds that

∥P⊥
Γ̂
Γ∗∥2F = O

(
r

n ∧ p

)
,

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).

Proof of Lemma A.4.4. From the proof of Theorem 3, the result follows by noting that

∥P⊥
Γ̂
Γ∗∥2F = ∥(P⊥

Γ̂
− P⊥

Γ∗)Γ∗∥2F

=
r∑
ℓ=1

∥∥∥∥∥∥
p∑
j=1

(P⊥
Γ̂
− P⊥

Γ∗)ej · γ∗j,ℓ

∥∥∥∥∥∥
2

2

≤ rpC2 max
1≤ℓ≤p

∥(P⊥
Γ̂
− P⊥

Γ∗)ej∥22

= O(r(n ∧ p)−1),

with probability at least 1− (n+ p)−δ − (np)−δ − exp(−n).

Lemma A.4.5 (Sub-Gaussianity of Z). Under Assumptions 1–3, z1, . . . ,zn are independent and
identically distributed sub-Gaussian random vectors.

Proof of Lemma A.4.5. Recall that z∗
i = D∗x∗

i + w∗
i is the linear function of two independent

sub-Gaussian random vectors. The mean is given by E[z∗
i ] = D∗E[x∗

i ]. It suffices to bound the
operator norm of D∗. From Θ∗ = XB∗⊤ +Z∗Γ∗⊤, we have X⊤Θ∗ = X⊤XB∗⊤ +X⊤Z∗Γ∗⊤.
Taking expectation over X and Z∗ yield that E[X⊤Θ∗/n] = Σx(B

∗⊤ +D∗⊤Γ∗⊤). Rearranging
the formula yields that

Γ∗D∗ =
1

n
E[Θ∗⊤X]Σ−1

x −B∗

and

D∗ = (Γ∗⊤Γ∗)−1Γ∗⊤
(
1

n
E[Θ∗⊤X∗]Σ−1

x −B∗
)
.

By the sub-multiplicative property of the operator norm, we have

∥D∗∥op ≤ ∥(Γ∗⊤Γ∗)−1Γ∗⊤∥op
(
1

n
∥E[Θ∗⊤X]∥op∥Σ−1

x ∥op + ∥B∗∥op
)

≲
1
√
p

(
1

n
E[∥Θ∗⊤∥op∥X∥op] +

√
p

)
≲

1
√
p

(√
np
√
n

n
+
√
p

)
≲ 1,

where in the second inequality, we use Jensen’s inequality and the norm inequality ∥B∥op ≤√
p∥B∥max. This finishes the proof.

Lemma A.4.6 (Infinity norm of the covariates). Under Assumption 2, it holds that ∥X̃∥max ≤
2
√
2ν
√
c log(2nd), with probability at least 1− (2nd)−c for any fixed constant c > 0.
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Proof of Lemma A.4.6. Let vec−1(eℓ) = en,ie
⊤
p,j where en,i is the unit vector of dimension n and

ep,j is defined analogously. Note that

x̃ℓ = (Ip ⊗X)⊤eℓ

= vec(X⊤vec−1(eℓ)Ip)

= vec(X⊤en,ie
⊤
p,j)

= vec(xie
⊤
p,j).

Because xi’s are ν-sub-Gaussian random vectors, we have

∥X̃∥max = max
ℓ∈[np]

∥x̃ℓ∥∞

= max
i∈[n],j∈[p]

∥xie⊤p,j∥∞

≤ max
i∈[n]
∥xi∥∞

≤ max
i∈[n],j∈[p]

|xij |

≤ 2
√
2ν
√
c log(2nd)

with probability at least 1− (2nd)−c for any fixed constant c > 0.

A.5 Asymptotic normality of the debiased estimator

A.5.1 Proof of Theorem 6

Proof of Theorem 6. Condition on D2, Theorem 3 and Theorem 5 imply that the following event
holds:

E1 =
{
max
1≤j≤p

∥(P
Γ̂
− PΓ∗)ej∥2 ≲ (p(n ∧ p))−1/2,

1

n
∥Ẑγ̂j −Z∗γ∗

j ∥22 ≲ rn,p,

∥B̂ −B∗∥1,1 ≲
√
sdrn,p, ∥B̂ −B∗∥F ≲ rn,p

}
.

where rn,p is defined in Theorem 5.
Recall that

b̂dej1 = b̂j1 + û⊤ 1

n

n∑
i=1

ω̂ixi(yi −A′(θ̂i))
⊤vi (A.5.1)

where vi = diag(A′′(θ̂i))
−1P⊥

Γ̂
ej . By Taylor expansion of A′(θ∗ij) at θ̂ij := x⊤

i b̂j + ẑ⊤
i γ̂j , we have

A′(θ∗ij) = A′(θ̂ij) +A′′(θ̂ij)(θ
∗
ij − θ̂ij) +

1

2
A′′′(ψij)(θ

∗
ij − θ̂ij)2,

for some ψij between θ̂ij and θ∗ij . Then, the residual of the ith sample can be decomposed into
three sources of errors:

yi −A′(θ̂i) = ϵi︸︷︷︸
stochastic error

+ pi︸︷︷︸
remaining bias

+ qi︸︷︷︸
approximation error

(A.5.2)
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where the three terms of errors read that

ϵi = yi −A′(θ∗
i )

pi = A′′(θ̂i)⊙ (θ̂i − θ∗
i )

qi = −
1

2
[A′′′(ψij)(θ

∗
ij − θ̂ij)2]j∈[p].

Substituting (A.5.2) into (A.5.1) yields that

b̂dej1 − b∗j1 = (̂bj1 − b∗j1) + u⊤ 1

n

n∑
i=1

ωixiϵ
⊤
i vi + u⊤ 1

n

n∑
i=1

ωixip
⊤
i vi + u⊤ 1

n

n∑
i=1

ωixiq
⊤
i vi

= u⊤ 1

n

n∑
i=1

ωixiϵ
⊤
i vi +

(
u⊤ 1

n

n∑
i=1

ωixix
⊤
i − e⊤1

)
(b∗j − b̂j)

+ u⊤ 1

n

n∑
i=1

xix
⊤
i B

∗⊤((P⊥
Γ̂
− P⊥

Γ∗)ej − PΓ∗ej)

+ u⊤ 1

n

n∑
i=1

xiq
⊤
i vi, (A.5.3)

In the second equality above, we use the properties that B̂ and B∗ are in the column spaces
of the orthogonal projections P⊥

Γ̂
and P⊥

Γ∗ , respectively. Denote the four terms in the right-

hand side of (A.5.3) by T1j , T2j , T3j , T4j , respectively. We will analyze each of them separately,
conditioning on D2 and X. Then the randomness is from ϵi’s and u. We will show that the T1
inherits

√
n-convergence rate and is asymptotically normally distributed, while the others have

faster convergence rates.
Part (1) T1j . From Lemma A.5.2, it follows that

√
n
T1j
σj

d−→ N (0, 1).

Part (2) T2j . By Holder’s inequality and the constraint of optimization problem (2.4.4), it
follows that

|T2j | ≤ λn∥b∗j − b̂j∥1 ≲
√

log(nd)

n
r′n,p,

with probability tending to one. Thus, we have
√
n|T2j |

p−→ 0 as n, p→∞.
Part (3) T3j . From Theorem 3 and (A.1.1) in the proof of Proposition 1, we have that

|T3j | ≤ ∥u∥2 ·

∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i

∥∥∥∥∥
op

(∥B∗∥op∥(P⊥
Γ̂
− P⊥

Γ∗)ej∥2 + ∥B∗⊤PΓ∗ej∥2)

≲

√
d

p(n ∧ p)
+
sd

p
,

with probability tending to one. Thus, if
√
n/p→ 0, we have

√
n|T3j |

p−→ 0 as n, p→∞.
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Part (4) T4j . The higher-order term is bounded as below:

|T4j | ≤
κ2
2κ1

max
1≤i≤n

|u⊤xi| ·
1

n

n∑
i=1

n∑
j=1

|x⊤
i (b̂j − b∗j )|2 · ∥P⊥

Γ̂
ej∥2

≲ max
1≤i≤n

|u⊤xi|3∥B̂ −B∗∥2F

≲ τ3nr
2
n,p,

with probability tending to one. Thus, if n/(log(nd)p3/2) → 0 and
√
n/p1−k → 0, we have√

n|T4j |
p−→ 0 as n, p→∞.

We are now combining the above four terms. Because when n/ log(nd) = o(p3/2) and n =

o(p2(1−k)), T2j , . . . , T4j = oP(1/
√
n), we have

√
n(̂bdej1 − b∗j1)/σj

d−→ N (0, 1).

A.5.2 Proof of Proposition 7

Proof of Proposition 7. By the definition of tj and (A.5.3) we have the decomposition

tj = ϑj + ςj ,

where

ϑj =
√
n
û⊤ 1

n

∑n
i=1 ω̂ixiϵijA

′′(θ̂ij)
−1

σ̂j
,

ςj =
√
n
û⊤ 1

n

∑n
i=1 ω̂ixiϵ

⊤
i diag(A

′′(θ̂i))
−1(P⊥

Γ̂
− Ip)ej

σ̂j
+
√
n
T2j + T3j + T4j

σ̂j
.

For the first component, note that ϑj for j = 1, . . . , p are independent conditional on {(xi, z∗
i )}ni=1

and D2. Furthermore, ϑj
d−→ N (0, 1) for j ∈ Np from Lemma A.5.2 by noting that σ̂j is also con-

sistent to the conditional variance of ϑj . For the second component, from the proof of Theorem 6
and Lemma A.5.3, we know that

max
1≤j≤p

√
n
T2j + T3j + T4j

σ̂j
= oP(1).

On the other hand, from Theorem 3 and Assumption 3, we also have

max
1≤j≤p

√
n
û⊤ 1

n

∑n
i=1 ω̂ixiϵ

⊤
i diag(A

′′(θ̂i))
−1(P⊥

Γ̂
− Ip)ej

σ̂j

= max
1≤j≤p

√
n
û⊤ 1

n

∑n
i=1 ω̂ixiϵ

⊤
i diag(A

′′(θ̂i))
−1(P⊥

Γ̂
− P⊥

Γ∗)ej

σ̂j

+ max
1≤j≤p

√
n
û⊤ 1

n

∑n
i=1 ω̂ixiϵ

⊤
i diag(A

′′(θ̂i))
−1PΓ∗ej

σ̂j

=OP

(
√
p max
1≤j≤p

∥(P⊥
Γ̂
− P⊥

Γ∗)ej∥2
)

+ max
1≤j≤p

∥∥∥∥∥√n û⊤ 1
n

∑n
i=1 ω̂ixiϵ

⊤
i diag(A

′′(θ̂i))
−1Γ∗

σ̂j

∥∥∥∥∥
2

∥(Γ∗⊤Γ∗)−1∥op∥γ∗
j ∥2

=OP(p
− 1

2 ) +OP(
√
rp · p−1 · 1)

=oP(1).
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where we use the subexponential concentration of ϵij conditional on {(xi, z∗
i )}ni=1 and D2. There-

fore, we have that max1≤j≤p |ςj | = oP(1).
The rest of the proof follows similarly to the proof of Wang et al. [175, Theorem 3.4]. We

present here for completeness.

Overall Type-I error control. Let ϱ = |Np|−1
∑

j∈Np
1
(
|tj | > zα

2

)
. To prove the overall

Type-I error control, we will show the expectation of ϱ tends to α and its variance tends to zero.
For the expectation, for any ϵ > 0, we have

E[ϱ] =
1

|Np|
∑
j∈Np

P
(
|tj | > zα

2

)
≤ 1

|Np|
∑
j∈Np

[P
(
|ϑj | > zα

2
− ϵ
)
+ P (|ςj | > ϵ)]

=
1

|Np|
∑
j∈Np

P
(
|ϑj | > zα

2
− ϵ
)
+

1

|Np|
∑
j∈Np

P (|ςj | > ϵ)

≤ 1

|Np|
∑
j∈Np

P
(
|ϑj | > zα

2
− ϵ
)
+ P

(
max
1≤j≤p

|ςj | > ϵ

)
→ 2

(
1− Φ

(
zα

2
− ϵ
))

,

where the last convergence is because the Cesaro mean converges to the same limit as limn,p P
(
|ϑj | > zα

2
− ϵ
)
=

2
(
1− Φ

(
zα

2
− ϵ
))

and the second term P(max1≤j≤p |ςj | > ϵ) varnishes. Similarly, we can also

show that lim infn,p→∞ E[ϱ] ≥ 2
(
1− Φ

(
zα

2
− ϵ
))

for all ϵ > 0. This implies that E[ϱ] → α as
n, p→∞.

Next, we analyze the second moment. For any ϵ > 0, the second moment can be upped
bounded as

E[ϱ2] =
1

|Np|2
∑

j,k∈Np

P
(
|tj | > zα

2
, |tk| > zα

2

)
=

1

|Np|2
∑
j∈Np

P
(
|tj | > zα

2

)
+

1

|Np|2
∑

j,k∈Np,j ̸=k
P
(
|tj | > zα

2
, |tk| > zα

2

)
≤ 1

|Np|2
∑
j∈Np

P
(
|tj | > zα

2

)
+

1

|Np|2
∑

j,k∈Np,j ̸=k
P
(
|ϑj | > zα

2
− ϵ, |ϑk| > zα

2
− ϵ
)
+ P (|ςj | > ϵ) + P (|ςk| > ϵ)

=
1

|Np|2
∑

j,k∈Np,j ̸=k
P
(
|ϑj | > zα

2
− ϵ, |ϑk| > zα

2
− ϵ
)
+ o(1)

=
1

|Np|2
∑

j,k∈Np,j ̸=k
E[P(|ϑj | > zα

2
− ϵ | C)P(|ϑk| > zα

2
− ϵ | C)] + o(1)

→
[
2
(
1− Φ

(
zα

2
− ϵ
))]2

,
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where the last equality is from the independence of ϑj and ϑk condition on C = {(xi, z∗
i )}ni=1∪D2.

We can similarly obtain the lower bound. This implies that E[ϱ2]→ α2 and V(ϱ)→ 0 as n, p→∞.

Combining the previous results yields that ϱ
p−→ α.

FWER control. To prove the second statement, note that

P (|Np|ϱ ≥ 1) =P
(
max
j∈Np

|tj | > Φ−1(1− α/(2p))
)

=P
(
max
j∈Np

|ϑj + ςj | > Φ−1(1− α/(2p))
)

≤P
(
max
j∈Np

|ϑj | > Φ−1(1− α/(2p))−max
j∈Np

|ςj |
)

≤P
(
max
1≤j≤p

|ϑj | > Φ−1(1− α/(2p))−max
j∈Np

|ςj |
)
,

which is asymptotically upper bounded by α, after applying Gaussian approximation [30, Lemma
2.3] and the valid control of Bonferroni correction for i.i.d. normal random variables, by noting
that Φ−1(1− α/(2p))→∞ as p→∞, and the result that maxj∈Np |ςj | = oP(1).

A.5.3 Technical lemmas

Lemma A.5.1. Under the same conditions as in Theorem 6, suppose event E1 holds, then the
solution to optimization problem (2.4.4) exists with probability at least 1− 2(nd)−c.

Proof of Lemma A.5.1. Define the matrix S = E[ω̂ixix⊤
i ]. We next show that (1) S is invertible

and (2) the j-th column u∗ of S−1 is feasible for the constraints of the optimization problem
(2.4.4) with high probability. We split the proof into two parts, as below.

Part (1) Because C−1 ≤ ω̂i ≤ C, we have C−1E[x1x
⊤
1 ] ⪯ S ⪯ CE[x1x

⊤
1 ]. On the other

hand, note that E[x1x
⊤
1 ] = Σx ⪰ λmin(Σx)Id. Thus, for any unit vector a ∈ Rd, we have

a⊤Sa ≥ C−1λmin(Σx) > 0. This establishes claim (1).

Part (2) Let u∗ be the j-th column of S−1. By definition, we have Su∗ = ej . Conditional on
D2, we have that ω̂iu

∗⊤xix
⊤
i ek for i = 1, . . . , n are independent random variables with mean δjk.

Because ω̂i is bounded, we further have that ω̂iu
∗⊤xix

⊤
i ek’s are independent sub-exponential

random variables. Applying Bernstein’s inequality as in the proof of Lemma A.4.2, we have with
probability at least 1− (nd)−c, ∥∥∥∥∥ 1n

n∑
i=1

ω̂iu
∗⊤xix

⊤
i − ej

∥∥∥∥∥
∞

≤ λn,

where λn ≍
√
log(nd)/n. This also holds after taking account of the randomness of D2.

On the other hand, because ωi is bounded away from zero and infinity, and ∥Σx∥op = O(1),
it follows that ∥S∥op = O(1) and ∥u∗∥2 = O(1). By the sub-Gaussianity of xi, we also have
∥Xu∗∥∞ = max1≤i≤n |x⊤

i u
∗| ≤ τn, with probability at least 1 − n−c. The above shows that u∗

is feasible for optimization problem (2.4.4), which establishes the claim (2).
Finally, taking the union bound over the two probabilistic events finishes the proof.

93



Lemma A.5.2 (Asymptotic normality). Under the conditions in Theorem 6, it holds that

√
n

n∑
i=1

σ−1
j û⊤xiϵ

⊤
i v̂i

d−→ N (0, 1),

where σ2j = n−1V
(
u⊤∑n

i=1 xiϵ
⊤
i vi | {xi, zi}ni=1,D2

)
.

Proof of Lemma A.5.2. Note that when conditioning on the natural parameters Θ∗, ϵij ’s are
independent (ν, α)-sub-exponential random variable as shown in the proof of Theorem 2. Define
ξi := σ−1

j û⊤xiϵiv̂i for i ∈ [n]. Then ξi’s are independent random variables with mean E[ξi |
D2,X] = 0 and variance V(ξi | D2,X) = 1. It suffices to check the bounded variance condition
and Lindeberg’s condition.

Part (1) Boundedness of σj. We first show the boundedness of the variance

σ2j = û⊤ 1

n

n∑
i=1

ω̂2
i (e

⊤
j P⊥

Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej)xix

⊤
i û.

Because A′′(θ) ≥ κ1 > 0 for all θ ∈ R, the quadratic term satisfies that

ejP⊥
Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej ≥ 0,

with equality holds if and only if P⊥
Γ̂
ej = 0p. On the other hand, we have

∥P⊥
Γ̂
ej∥2 = ∥ej − PΓ̂ej∥2 ≥ 1− ∥P

Γ̂
ej∥2 ≳ Ω(1− p−1/2),

where the last inequality is because

∥P
Γ̂
ej∥2 ≤ ∥PΓ∗ej∥2 + ∥(PΓ∗ − P

Γ̂
)ej∥2 ≲

1
√
p

from Assumption 3 and Theorem 3. This implies that, when n, p are sufficiently large,

c−1 ≤ ω̂i(e⊤j P⊥
Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej) ≤ c

for some constant c > 1, under event E1. Thus, it is equivalent to show the boundedness of
σ̂2j = û⊤Ŝû, where Ŝ = n−1

∑n
i=1 ω̂ixix

⊤
i . From Lemma A.5.1, we know that S = E[Ŝ] has a

bounded spectrum with high probability. The upper bound that σ̂2j ≤ Sjj with high probability
then follows by the sub-exponential concentration results as in the proof of Lemma A.5.1.

Next, we proceed to show the lower bound. Because û satisfies the constraint |e⊤j Ŝû−1| ≤ λn,
we have that σ2j ≥ û⊤Ŝû+ t((1− λn)− e⊤j Ŝû) for any t > 0. Note that minv∈Rd v⊤Ŝv + t((1−
λn)−e⊤j Ŝv) = −t2e⊤j Ŝej/4+ t(1−λn) where the minimum is obtained when Ŝv = tŜej/2. We

further have σ̂2j ≥ maxt≥0−t2e⊤j Ŝej/4+ t(1−λn) ≥ (1−λn)2/(e⊤j Ŝej). By the sub-Gaussianity

of xi, e
⊤
j Ŝej ≥ Sjj + oP(1). We then have σ̂2j ≥ 0.5/Sjj when n and p are large enough.

94



Part (2) Lindeberg’s condition. On the other hand, because

max
1≤i≤n

|ξi| ≤ max
1≤i≤n

|û⊤xi|∥ϵi∥2|σ−1
j |∥v̂i∥2 ≲

√
n,

with probability at least 1− 2(nd)−c, the Lindeberg’s condition holds that

lim
n→∞

1

n

n∑
i=1

E[ξ2i 1{|ξi| ≥ ϵ
√
n}] = 0

for all ϵ > 0. Applying Lindeberg’s central limit theorem yields that

√
n

n∑
i=1

σ−1
j û⊤xiϵiv̂i

d−→ N (0, 1),

which finishes the proof.

Lemma A.5.3 (Consistent estimators of σj). Under conditions in Theorem 5 and condition

(i) in Theorem 6, ω̂j = A′′(θ̂ij) satisfies condition (ii) of Theorem 6. Furthermore, for the
variance estimate defined in (2.4.6) using sample splitting procedure Algorithm A.5.5, it holds

that σ̂j
p−→ σj .

Proof of Lemma A.5.3. The boundedness of ω̂j follows from (A.2.1).
By the sample splitting procedure Algorithm A.5.5, we know that for a given response j ∈ [p],

Yj − A′(Θ∗
j ) ∈ Rn is independent of û, B̂, Γ̂, and Ẑ, when conditioning on X. However, noted

that B̂, Γ̂, and Ẑ may be specific to each j ∈ I. For the sake of simplicity, in the following proof,
we will assume that Y −A′(Θ∗) is independent of û, and a common set of estimators B̂, Γ̂, and
Ẑ when conditioning on X; or equivalently I = [p]. Note that, however, the proof still works for
the cases in Algorithm A.5.5, except the constructed debiased estimators only use responses in
the index set I; namely, b̂dej1 = b̂j1 + û⊤ 1

n

∑n
i=1 ω̂ixi([yi]I − [A′(θ̂i)]I)

⊤P⊥
Γ̂I
ej .

Recall that

σ2j = û⊤ 1

n

n∑
i=1

ω̂2
i (e

⊤
j P⊥

Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej)xix

⊤
i û,

and

σ̂2j = û⊤ 1

n

n∑
i=1

ω̂ixix
⊤
i û.

Let ai = ω̂2
i (e

⊤
j P⊥

Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej) and a′i = ω̂i. We begin by

bounding the difference between the two:

|σ̂2j − σ2j | =

∣∣∣∣∣ 1n
n∑
i=1

(a′i − ai) · (ûxi)2
∣∣∣∣∣

≤

√√√√ 1

n

n∑
i=1

(ûxi)4 ·

√√√√ 1

n

n∑
i=1

(a′i − ai)2

≲ τ2n ·

√√√√ 1

n

n∑
i=1

(a′i − ai)2,
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where the first inequality is from Holder’s inequality and the second inequality is due to the
second constraint of the optimization problem (2.4.4). For the second factor above, note that

1

n

n∑
i=1

(a′i − ai)2

=max
i∈[n]

ω̂4
i ·

1

n

n∑
i=1

(e⊤j P⊥
Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej −A′′(θ̂i))

2. (A.5.4)

Each term inside the square can be decomposed into

e⊤j P⊥
Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i ))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej −A′′(θ̂ij)

=e⊤j P⊥
Γ̂
diag(A′′(θ̂i))

−1diag(A′′(θ∗
i )−A′′(θ̂i))diag(A

′′(θ̂i))
−1P⊥

Γ̂
ej

− [2e⊤j PΓ̂A
′′(θ̂i)P⊥

Γ̂
ej + e⊤j PΓ̂A

′′(θ̂i)PΓ̂ej ]
= : T1 + T2. (A.5.5)

Now note that

1

n

n∑
i=1

T 2
1 ≲

1

n

n∑
i=1

(A′′(θ∗
ij)−A′′(θ̂ij))

2

=
1

n
(Θ̂j −Θ∗

j )
⊤diag(A′′′(Θ′

j))(Θ̂j −Θ∗
j )

≲
1

n
∥Θ̂j −Θ∗

j∥22, (A.5.6)

where the first inequality is due to the boundedness of A′′ on R, and the bounded spectral of the
projection matrix P⊥

Γ , and noting that ∥P
Γ̂
ej∥2 ≲ OP(p

−1/2); the second equality is from Taylor

expansion with Θ′
j = (θ′1j , . . . , θ

′
nj) and θ′ij being between θ̂ij and θ∗ij for i = 1, . . . , n; and the

second inequality is from the continuity and boundedness of A′′′ on RC .
On the other hand,

1

n

n∑
i=1

T 2
2 ≲ p−1 (A.5.7)

by noting that ∥P
Γ̂
ej∥2 ≲ OP(p

−1/2) again.

By applying triangle inequality on (A.5.4) and combining (A.5.5)-(A.5.7), we further have

1

n

n∑
i=1

(a′i − ai)2

≲max
i∈[n]

ω̂4
i ·

(
1

n

n∑
i=1

T 2
1 +

1

n

n∑
i=1

T 2
2

)

≲
1

n
∥Θ̂j −Θ∗

j∥22,
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Algorithm A.5.5 Data splitting procedure.

Input: Data (xi,yi) ∈ Rd × Rp for i = 1, . . . , 2n.
1: Split the full data into two disjoint datasets D1 = {(xi,yi) | i = 1, . . . , n} and D2 = {(xi,yi) |
i = n+ 1, . . . , 2n}.

2: Apply Algorithm 1 on D2 to obtain the estimates B̂ and Γ̂.
3: for j = 1, 2, . . . , p do
4: Select a subset I ⊆ [p] ∩ {j} and set Ic = [p] \ I.
5: Based on B̂ and Γ̂, use partial data (X,YIc) to estimate Ẑ, where X = [x1, . . .xn]

⊤,
Y = [y1, . . .yn]

⊤ and YIc = [Yℓ]ℓ∈Ic .
(Alternatively, Step 2-5 can be combined such that B̂, Γ̂, and Ẑ are estimated jointly for
gene j.)

6: Based on B̂, Γ̂, and Ẑ, estimate ω̂i’s and û on (X,YI).
7: Calculate the test statistics zj for gene j.
8: end for

Output: A set of test statistics {zj | j = 1, . . . , p}.

where in the last inequality, we also use the boundedness of ω̂i. This implies that

|σ̂2j − σ2j | ≲ τ2n

√
1

n
∥Θ̂j −Θ∗

j∥22

≲ τ2n

√
1

n
∥X(b̂j − b∗j )∥22 +

1

n
∥Êj −E∗

j ∥22

≲ τ2nrn,p

= oP(1),

where rn,p is defined in Theorem 5. Here the concentration of ∥X(b̂j − b∗j )∥22 is from Theorem 5

and the one of ∥Êj − E∗
j ∥22 is from (A.4.24) as in the proof of Lemma A.4.3. This implies that

σ̂2j
p−→ σ2j . The conclusion then follows by applying the continuous mapping theorem.
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A.6 Computational aspects

A.6.1 Exponential family

Some commonly used exponential families, the exact formulas of the log-partition functions and
other statistics, are summarized in Table A.61.

Distribution
Extra

parameter

Base
measure

h(y)

Sufficient
statistics

T (y)

Domain
dom(A(θ))

Log-
partition

A(θ)

Mean
µ = A′(θ)

Variance
A′′(θ)

Gaussian variance σ2 e
− x2

2σ2

√
2πσ

y

σ
R θ2

2
θ 1

Bernoulli 1 y R log(1 + eθ) 1

1 + e−θ
µ(1− µ)

Binomial
number of
trials m

(
m

y

)
y R m log(1 + eθ)

m

1 + e−θ
µ
(
1− µ

m

)
Poisson 1

y!
y R eθ eθ eθ

Negative
Binomial

number of
failures ϕ

(
y + ϕ− 1

y

)
y R− −ϕ log(1− eθ) ϕ

eθ

1− eθ
ϕ

eθ

(1− eθ)2

Table A.61: Summary of exponential family in canonical form.

A.6.2 Optimization details

Initialization. Our initialization procedure for optimalization problem (2.3.4) is inspired by
Lin et al. [105].

• Initialize the marginal effects F by solving a generalized linear model without considering
the latent variables. When the fitting of GLM is numerically unstable, one can also add a
small ridge penalty λ = 10−5.

• Initialize W and Γ using the SVD of the matrix log(Y + 1) = UYΣY V
⊤
Y for Poisson

likelihood or Negative Binomial likelihood with log link. Let W = (P⊥
XUYΣ

1/2
Y )1:r and

Γ = (VYΣ
1/2
Y )1:r be the first r columns of the corresponding matrices. Here the projection

P⊥
X ensures that W is uncorrelated with X. In particular, when the intercept is included

in the covariates, the initial value of W also has zero means per column.

To initialize variables for optimization problem (2.3.5):

• Initialize the direct effects B as P⊥
Γ̂
F̂ .

• Initialize Z and Γ using the SVD of the matrix XF̂⊤P
Γ̂
+ Ŵ Γ̂⊤ = U ′Σ′V ′⊤. Let Z =

(U ′Σ′1/2)1:r and Γ = (V ′Σ′1/2)1:r. Because the latter has the same column space as Γ̂, we
simply treat the latter as Γ̂ in optimization problem (2.3.5) with a light abuse of notation.

Alternative maximization The alternative maximization Algorithm A.6.6 is used to perform
nonconvex matrix factorization. In our setup where the objective function is convex in the
natural parameter, each iteration of Algorithm A.6.6 is simply solving two convex optimization
subproblems.
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Algorithm A.6.6 Joint maximum likelihood estimation by alternative maximization

Input: Data Y ∈ Rn×p from exponential family with log-partition function A, the regularization

parameter λ, and initial value l
(0)
i ∈ Dli , r

(0)
j ∈ Drj for i ∈ [n] and j ∈ [p].

1: Initialize the iteration number t = 0.
2: while not converged do
3: t← t+ 1.
4: for i = 1, 2, . . . , n do
5:

l
(t)
i ∈ argmax

l∈Dli

1

p

p∑
j=1

(
yijl

⊤r
(t−1)
j −A(l⊤r(t−1)

j )
)

6: end for
7: for j = 1, 2, . . . , p do
8:

r
(t)
j ∈ argmax

r∈Drj

1

n

n∑
i=1

(
yijl

(t)⊤
i r −A(l(t)⊤i r)

)
− λ∥r∥1

9: end for
10: end while
Output: L = [l

(t)
i ]⊤i∈[n] and R = [r

(t)
j ]⊤j∈[p] with LR⊤ being the estimated natural parameters.

By default, we use the inexact line search algorithm with an initial step size of 0.1 and a
shrinkage factor of 0.5 for each iteration. The search is stopped if the Armijo rule is satisfied with
tolerance 10−4 or the number of iterations reaches 20. We early stop the alternative maximization
if the objective value does not increase more than a tolerance of 10−4 for 20 iterations.

Estimation of dispersion parameters To estimate the dispersion parameter, we first fit
GLMs on the data and obtain the estimated mean expression of gene j, denoted as µ̂j for j =
1, . . . , p. Note that when yij comes from a Negative Binomial distribution, its variance is given
by

V(yij | θij) = µ (1 + αjµ)

where µ = E[yij | θij ] is the conditional mean while αj is the dispersion parameter of the NB1
form. In the form of exponential family in Table A.61 parameterized by the parameter ϕj , αj
is the reciprocal of ϕj , namely, αj = 1/ϕj . By methods of moments, we can solve the following

equation to obtain an estimator ϕ̂j for ϕj :

1

n

n∑
i=1

(yij − µ̂j)2 = µ̂j (1 + αµ̂j) .

Finally, we clip α̂j to be in [10−2, 102] and set ϕ̂j = 1/α̂j .

A.6.3 Choice of hyperparameters in practice

The main text provides theoretical results for the proposed method under certain assumptions.
The proposed algorithm Algorithm 1 requires the choice of hyperparameters, such as the rank
r, the regularization parameters λ in optimization problem (2.3.5), and (τn, λn) in optimization
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problem (2.4.4). Although the theoretical orders of some parameters are provided for consistency
and asymptotic normality, the choice of hyperparameters in practice is crucial for the performance
of the proposed method. Below, we discuss the choice of hyperparameters in practice.

Boundedness constant C. The boundedness constant C is a reasonably large constant that
ensures a finite solution to optimization problems exists. In our simulations, estimating the
model parameters is not sensitive to the choice of boundedness constant as long as it is set to be
sufficiently large; see also Chen and Li [26, Appendix D] for detailed discussions. Therefore, in
our implementation, instead of restricting the parameters to be bounded, we project the gradient
at each step of the alternative maximization onto the L2-norm ball with radius 2C ′ for some
constant C ′. A smaller value of C ′ equals decreasing the learning rates while improving the
numerical stability. We set C ′ to be 105 and 103 for experiments with Poisson and Negative
Binomial likelihoods, respectively.

Lasso penalty λ. For the lasso penalty λ = c1
√

log p/n, one can use cross-validation to tune the
lasso penalty for optimal log-likelihood. However, because the estimation results are insensitive
to the choice of this penalty, we simply set c1 to be 0.02 and 0.01 for experiments with Poisson
and Negative Binomial likelihoods, respectively.

The number of factors r. For the number of factors r, the joint-likelihood-based information
criterion (JIC) proposed by Chen and Li [26] can be utilized to select a proper number of latent
factors. The JIC value is the sum of deviance and a penalty on model complexity:

JIC(Θ̂(r)) = deviance + ν(n, p, d+ r)

= −2
∑

i∈[n],j∈[p]

log p(yij | θ̂(r)ij ) + cJIC ·
(d+ r) log(n ∧ p)

n ∧ p
,

where Θ̂(r) is the estimated natural parameter matrix with r latent factors and d observed co-
variates, and cJIC > 0 is a universal constant set to be one in all our simulations. As shown by
Chen and Li [26], minimizing the empirical JIC yields a consistent estimate for the number of
factors in generalized linear factor models. As an illustration, we compute the values of JIC at
different numbers of factors on simulated datasets and visualize them in Figure A.61. When the
unmeasured confounding effects are strong, the default choice of cJIC = 1 gives reasonable esti-
mates for the number of factors under both Poisson and Negative Binomial likelihoods. Because
the complexity term is a linear function in r, one can also inspect the increment of log-likelihood
compared to the increment of the complexity term as a function of r, as shown in the right panel
of Figure A.61. For real-world datasets, this can help to adjust the penalty level cJIC to select
a suitable value of r to achieve a sufficient reduction of negative log-likelihood while avoiding
overfitting.

Debiasing parameters (τn, λn). For inference, two parameters (τn, λn) are to be specified.
However, the parameter τn is less important because as long as both the covariate xi and the
projection direction u are bounded in L∞-norm, the second constraint in Equation (4.4) will
always be satisfied. For this reason, we can ignore the second constraint and solve the relaxed
optimization problem, similar to the implementation of Cai et al. [21]. Therefore, one only needs
to determine the parameter λn = c2

√
log(n)/n.

100



0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

1 2 3 4 5
Number of factors r

3.15

3.20

3.25

3.30

3.35

3.40

3.45

De
vi

an
ce

Deviance
JIC

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 3 4 5
Number of factors r

0.01

0.02

0.03

0.04

0.05

0.06

0.07 diff dev
diff 

Figure A.61: The left panel shows the deviance and the complexity penalty ν at different numbers

of factors r. The JIC is the sum of deviance and ν. The right panel shows the decrement of the

deviance and the complexity at different numbers of factors r. The values are computed from one

simulation in Section 2.5 with n = 100 and r∗ = 2 underlying factors.

To address this, Cai et al. [21] only implemented a single value for c2. However, we propose a
more effective heuristic method to guide the selection of c2. Specifically, we enumerate different
values of c2 ∈ {0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.1, 0.2, . . . , 1} and compute the median and me-
dian absolute deviation (MAD) of the corresponding empirical z-statistics. We then generate the
scree plot of the two summarized statistics. As shown in Figure A.62, as λn increases, both the
median and the MAD of the empirical null distribution change. Specifically, as λn increases, the
median decreases, while the MAD increases and then decreases. Therefore, when λn is too small,
the empirical null distribution concentrates around 0, and the resulting tests will be conserva-
tive. On the other hand, when λn is too large, the tests will be anti-conservative. Therefore, a
reasonable choice for λn is such that the absolute value of the median is not too large while the
MAD of the corresponding test statistics is near one.

For simulations with Poisson likelihood, according to the scree plot, the adaptive choice of
the value c2 would be the largest value that makes the median deviate from 0 by no more than a
threshold of 0.1. Analogously, we set the median deviation threshold to be 0.025 for the Negative
Binomial simulations. Note that any value below the selected λn also provides valid inference
results but with lower power.

A.6.4 Negative binomial likelihood with non-canonical link

While theoretically nice, the canonical link function for Negative Binomial distributions (NB-C)
is not recommended in general because its natural parameter value is always negative, but linear
predictors ought to be unbounded in general. Numerical instability may occur in the boundary
of the natural parameters. Furthermore, the NB-C model is sensitive to the initial values and
may converge to a local solution.

The common choice of a link function for generalized linear models with Negative Binomial
likelihood is the log link [3]. Below, we show how to incorporate non-canonical ink into our
framework.

For Negative Binomial distribution, recall that ϕ is a parameter that represents the number
of failures as in Table A.61. Define the Negative Binomial canonical link A′−1 and log link L−1,
such that A′(θ) = ϕeθ/(1− eθ) and L(ξ) = eξ.

101



1.066

1.068

1.070

1.072

1.074

M
AD

0.00 0.05 0.10 0.15 0.20
Penalty n

0.10

0.09

0.08

0.07

0.06

0.05

M
ed

ia
n

Median
MAD

Figure A.62: The median and MAD of the z-statistics as a function of the regularization parameter

λn computed from one simulation in Section 2.5.1 with n = 100 and r = 2. The shaded region

indicates feasible values of λn, for which the absolute values of the medians of the corresponding test

statistics are less than 0.1.

Let θ and ξ be the natural parameter and its representation under the log link; namely, the
mean µ can be obtained from them through the corresponding link functions:

µ = A′(θ) = L(ξ).

This gives rise to the transformation equations:

eξ = ϕ
eθ

1− eθ
, eθ =

eξ

ϕ+ eξ
,

and

θ = A′−1(L(ξ)) = log
eξ

ϕ+ eξ
. (A.6.1)

Note that the negative log-likelihood is given by

l(ξ) := −y · (A′)−1(L(ξ)) +A((A′)−1(L(ξ)))

= −y log eξ

ϕ+ eξ
− ϕ log ϕ

ϕ+ eξ
,

which has gradient and hessian:

∂l

∂ξ
=
∂l

∂θ

∂θ

∂ξ
= −(y −A′(θ))

ϕ

ϕ+ eξ
(A.6.2)

∂2l

∂ξ2
=
∂2l

∂θ2
∂θ

∂ξ
+
∂l

∂θ

∂2θ

∂ξ2

= A′′(θ)

(
∂θ

∂ξ

)2

+
∂l

∂θ

∂2θ

∂ξ2

≈ ϕeξ

ϕ+ eξ
(A.6.3)
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where the last line is because the conditional expectation on y − A′(θ) given θ is zero, E[∂l/∂θ |
θ] = 0, so that the second term is ignorable. The latter approximation approach is also used in
classic GLM to derive the asymptotic variance of the estimates.

For n i.i.d. samples (xi, zi,yi), the linear predictor reads that Ξ = XB⊤ +ZΓ⊤ when using
the log link. Based on the relationship (A.6.1), we can perform estimation and inference for the
log link function, as described below.

For estimation, the objective function (2.2.3) now becomes:

l(Ξ) = l(Γ,Z,B) = − 1

n

∑
i∈[n]

∑
j∈[p]

(yijA
′−1(L(ξij))− L(ξij)).

Even though the new objective is now nonconvex in the parameterΞ, the alternative maximization
algorithm Algorithm A.6.6 is still applicable to it, because the gradient can be computed based
on (A.6.2). If we initialize F̂ from GLM estimates and treat it as fixed, then solving optimization
problem (2.3.2) reduces to a nonconvex matrix factorization problem. Under this setting, there
is a rich literature on establishing the estimation error for W ∗ and Γ∗ given that the initial value
is close to the truth; see Lin et al. [105], Wang et al. [176] among the others. In other words, we
may also obtain error bounds on ∥Ξ∗ − Ξ̂∥2F by imposing additional conditions.

For inference, we simply apply the chain rule and (A.6.2)-(A.6.3) to rewrite (2.4.1) as:

b̂dej1 = b̂j1 + u⊤ 1

n

n∑
i=1

xi(yi −A′(θ̂i))
⊤diag

({
∂θ

∂ξ

∣∣∣
ξ=ξ̂ij

}
j∈[p]

)
vi,

with

vi = ωidiag

({
∂θ

∂ξ

∣∣∣
ξ=ξ̂ij

}
j∈[p]

)−2

diag(A′′(θ̂i))
−1P⊥

Γ̂
ej ,

ωi = E
[
∂2l

∂ξ2

∣∣∣ ξ = ξ̂ij

]
= A′′(θ̂ij)

(
∂θ

∂ξ

∣∣∣
ξ=ξ̂ij

)2

=
ϕeξ

ϕ+ eξ
.

Because when RC is bounded, the derivative function ∂θ/∂ξ is Lipschitz continuous, the estima-
tion error of it:

p∑
j=1

(∂θ/∂ξ|
ξ=ξ̂∗ij

− ∂θ/∂ξ|
ξ=ξ̂ij

)2 ≲ ∥ξ∗i − ξ̂i∥22

can be bounded if ξ∗i can be well estimated. Similarly, the estimation error ofΘ∗ can be controlled
because θ∗ij is a Lipschitz continuous function of ξ∗ij . Thus, Theorem 6 also applies if

∥Ξ∗ − Ξ̂∥2F ≲
√
n ∨ p (A.6.4)

max
1≤j≤p

1√
n
∥Z∗Γ∗⊤

j − ẐΓ̂⊤
j ∥F ≲

1√
n ∧ p

(A.6.5)

∥B̂ −B∗∥1,1 ≲
√
sd√
n ∧ p

(A.6.6)

∥B̂ −B∗∥F ≲
1√
n ∧ p

, (A.6.7)

where (A.6.4) requires an analysis tool from nonconvex matrix factorization, (A.6.5) is a direct
consequence from (A.6.4) similar to Corollary 4, and (A.6.6)-(A.6.7) requires non-asymptotic
analysis as in the proof of Theorem 5 but for nonconvex objectives instead.
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A.7 Extra experiment results

A.7.1 Efficiency loss of sample splitting

To evaluate the efficiency loss caused by sample splitting described in Algorithm A.5.5, we con-
duct the experiments with different splitting proportions and compare their results. To apply
Algorithm A.5.5, we split the p genes into 2 groups with equal sizes, so that I1 = {1, . . . , p/2} and
I2 = {p/2 + 1, . . . , p}. For each of the groups I, the optimization is jointly conducted based on
X, YIc and D2, and the inference is conducted for genes in I. As summarized in Table A.72, the
performance on Type-I error and FDP control is similar across different splitting ratios. How-
ever, the power and precision are affected when the ratio of observations reserved for inference
is too small. This suggests that one should leave more observations to conduct the debias step.
Lastly, we see similar performance even without sample splitting, suggesting that the validity of
the inferential procedure could be true even without sample splitting.

ratio split type-I error FDP power precision

0.2 0.050 0.200 0.454 0.610
0.4 0.049 0.193 0.755 0.920
0.6 0.050 0.191 0.901 1.000
0.8 0.051 0.195 0.963 1.000
no splitting 0.051 0.219 0.987 1.000

Table A.72: Performance with varying ratios of observations reserved for inference, under the same

data setup in Section 2.5.1 with n = 250 and r = 2. The values are medians over 100 simulated

datasets.

A.7.2 The blessing of dimensionality
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Figure A.73: The mean square error of B̂ with varying outcome dimension p and sample size

n, displayed on the log-log scale. When the outcome dimension p is sufficiently large (not growing

exponentially in n), the estimation error of B is mainly driven by the sample size n. The slope is

estimated using sample sizes larger than 100. The data generating process is given in Section 2.5.1.
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A.7.3 Information about lupus data

Cell type Number of samples n Number of genes p Proportion of non-zeros

T4 256 1255 0.398
cM 256 1208 0.434
B 254 1269 0.417
T8 256 1281 0.471
NK 256 1178 0.385

Table A.73: Summary statistics of the preprocessed lupus datasets in each cell type. The last

column represents the proportion of non-zero count in the gene expression matrix.
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Figure A.74: Histograms of expressions of 5 genes on the T4 cell type. The first row shows the raw

pseudo-bulk counts and the second row shows the counts after library size normalization and log1p

transformation, which is used for cate. Due to the sparsity of the gene expressions, some genes are

not distributed like normal after transformation.

A.7.4 Extra results on lupus datasets

Sensitivity analysis for the number of latent factors

We inspect the sensitivity of gcate-subset to the number of latent factors r. By utilizing JIC
(2.3.1), we have selected r = 7 for the T4 cell type, which is close to the number of major
covariates we drop. In Table A.74 and Table A.75, we examine the performance of gcate-subset
and gcate-full for different values of r. Remarkably, the resulting distributions of z-statistics
generated by gcate, across varying numbers of factors r, are similar to the standard normal
distribution when r ≥ 3 because the MAD is close to one. Thus, JIC can serve as a valuable
criterion for determining the appropriate number of latent factors for gcate. Furthermore, it is
noteworthy that the number of discoveries remains consistent when r falls within a reasonable
range. These observations collectively suggest the stability of gcate’s inferential outcomes within
this range of reasonable factor selections.
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r mean median mad num sig deviance JIC

1 0.348 -0.018 1.551 302 3.578 3.600
2 0.361 -0.040 1.539 313 3.565 3.592
3 0.141 -0.001 1.145 57 3.553 3.586
4 0.140 0.063 1.087 37 3.546 3.584
5 0.130 0.043 1.067 33 3.539 3.582
6 0.140 0.051 1.084 39 3.532 3.581
7 0.128 0.057 1.033 22 3.526 3.580
8 0.139 0.069 1.044 18 3.521 3.580
9 0.143 0.073 1.032 18 3.516 3.581

10 0.155 0.095 1.038 20 3.513 3.583

Table A.74: The summary of the z-statistics and model fitness for a varying number of latent factors

r for gcate-subset analysis. The metrics include the mean, median, median absolute deviation

(mad), and the total number of significant genes of q-value less than 0.2. The last two columns show

the deviance (2 times the negative log-likelihood) and the JIC model selection criteria (2.3.1) with

cJIC = 0.25.

r mean median mad num sig deviance JIC

1 0.242 -0.014 1.350 200 3.552 3.650
2 0.163 0.013 1.192 93 3.542 3.650
3 0.108 0.010 1.111 21 3.534 3.653
4 0.143 0.052 1.119 20 3.528 3.658
5 0.151 0.066 1.071 23 3.523 3.664
6 0.165 0.071 1.119 24 3.518 3.670
7 0.174 0.077 1.104 29 3.514 3.676
8 0.170 0.092 1.067 25 3.510 3.683
9 0.170 0.100 1.070 38 3.507 3.691

10 0.178 0.103 1.075 38 3.502 3.697

Table A.75: The summary of the z-statistics and model fitness for a varying number of latent factors

r for gcate-subset analysis. The metrics include the mean, median, median absolute deviation

(mad), and the total number of significant genes of q-value less than 0.2. The last two columns show

the deviance (2 times the negative log-likelihood) and the JIC model selection criteria (2.3.1) with

cJIC = 0.5.
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Selection of hyperparameters
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Figure A.75: The first and second rows show the results for gcate-subset and gcate-full, respec-

tively. The right panel shows the deviance and the complexity penalty ν at different numbers of

factors r, computed on the T4 cell type of the Lupus dataset. The JIC is computed with cJIC = 0.25

and 0.5, respectively. The right panel shows the decrement of the deviance and the complexity at

different numbers of factors r.
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Figure A.76: The median and MAD of the z-statistics as a function of the regularization parameter

λn computed from the T4 cell type of the Lupus dataset for gcate-subset and gcate-full analyses,

respectively. The shaded region indicates feasible values of λn, for which the MADs of the corre-

sponding test statistics are less than 1.13.
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Results on all cell types
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Figure A.77: Histograms of lupus z-statistics of cate on T4, cM, B, and T8 cell types, when

restricted to the top 250 highly variable genes. The preprocessing procedure is as described in

Section 2.6, but with genes expressed less than 5 subjects excluded. The result on the NK cell type

is not included because the fitting of cate fails due to sparsity of the gene expressions.
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Figure A.78: Histograms of lupus z-statistics of different methods on cM, B, T8 and NK cell types.
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Figure A.79: The precision and specificity for four methods computed across 5 major cell types on

the lupus datasets.
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(c)

Figure A.710: The treemap plot produced by rrvgo [151] of GO enrichment analysis results on (a)

significant genes by the glm-oracle method; (b) significant genes by both the glm-oracle and gcate

methods; and (c) significant genes by the cate-mad method but not the glm-oracle method.
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Figure A.711: Upset plot of the number of discoveries of gcate (subset), gcate (full) and glm-

oracle, with q-value cutoff 0.2. Here, “subset” and “full” indicate whether all of the measured

covariates are used by the corresponding methods.
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Figure A.712: The treemap plot produced by rrvgo [151] of GO enrichment analysis results on 24

significant genes by both the glm and gcate methods with all covariates included.
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Appendix B

Causal Inference for Genomic Data
with Multiple Heterogeneous
Outcomes

B.1 Related work

In the context of causal inference, assessing causal effects on multiple outcomes requires account-
ing for the association among outcomes [148]. Earlier work on this problem relies on outcome
modeling approaches based on linear mixed models or latent variable models [48, 113, 162, 163]
and scaled linear models [106, 146]. Pocock et al. [138], Yoon et al. [180] study hypothesis test-
ing of the treatment effects with the adjustment for multiplicities. Mattei et al. [117], Mealli
and Pacini [121], Mealli et al. [122], Mercatanti et al. [123] use multiple outcomes, coupled with
conditional independence assumptions, to address identification problems in causal studies with
intermediate/post-treatment variables. In most of the aforementioned work, the number of out-
comes is typically assumed to be low-dimensional.

The focus on multiple outcomes also shifts from outcome modeling to more general setups.
Flanders and Klein [52] propose a general definition of causal effects, showing how it can be
applied in the presence of multivariate outcomes for specific sub-populations of units or vectors
of causal effects. For randomized experiments, Li and Ding [102] establish finite population
central limit theorems in completely randomized experiments where the response variable may
be multivariate and causal estimands of interest are defined as linear combinations of the potential
outcomes. For observational studies with derived outcomes, Recently, Qiu et al. [139] propose
an inverse probability weighting estimator for testing multiple average treatment effects (ATEs),
which relies on the correct specification of the propensity score model and fast convergence rate
of the propensity score estimation.

Although ATE is the most fundamental and popular causal estimand [70, 167], other estimands
could be more robust to quantify the treatment effect between the counterfactual distributions.
In the canonical setting with a single outcome, Athey et al. [6] explore the application of quantile
methodologies to estimate the overall treatments within the context of randomized trials with
heavy-tailed outcome distributions. For studies based on observational data, Belloni et al. [14] and
Kallus et al. [81] introduce localized debiased machine learning techniques for quantile treatment
effects (QTEs), which incorporates multiple sample partitioning. Concurrently, Chakrabortty
et al. [23] study the estimation of QTEs within a semi-supervised framework. For a comprehensive
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overview of QTE estimation literature, the reader is directed to the references contained therein.
The above methods require sample splitting and/or metric entropy conditions to validate the
asymptotic normality of the proposed estimators, even for a single outcome.

For the analysis of multiple outcomes extending beyond ATEs, Kennedy et al. [85] propose
DR estimators designed to evaluate both scaled average treatment effects and scaled quantile
effects. These estimands are used to rigorously test the global hypothesis that all treatment
effects are equal. However, the asymptotic properties of the quantile-based estimators are not
analyzed. Further, they only consider a low-dimensional set of outcomes. In contrast, the current
paper focuses on high-dimensional settings when the number of outcomes could be potentially
exponentially larger than the sample size. This also requires correctly addressing the issue of
multiple hypothesis testing.

B.2 Proof in Section 3.2

B.2.1 Proof of Lemma 8

Proof of Lemma 8. Denote the scaled empirical process
√
n(Pn − P) by Gn. By Lemma B.2.1, it

follows that

E
[

max
j=1,...,p

|Gngj |
∣∣∣∣ g1, . . . gp] ≲√log p max

1≤j≤p
∥gj∥L2 +

(log p)1−1/q

n1/2−1/q
∥G∥Lq .

Dividing
√
n on both sides finishes the proof.

Remark 13. We note that Lemma 8 also provides a probabilistic bound:

max
j=1,...,p

|(Pn − P)gj | = OP

((
log p

n

)1/2

max
1≤j≤p

∥gj∥L2 +

(
log p

n

)1−1/q

∥G∥Lq

)
,

by applying Markov inequality on the non-negative random variable maxj=1,...,p |(Pn − P)gj |.
Remark 14 (Donsker condition). Without an independent sample, similar bounds on the empir-
ical process term can still be derived, provided certain complexity measures of the function class
Fj that gj belongs to are properly bounded. The complexity measure is related to the covering
number of Fj under the L2 norm induced by distribution Q, denoted by N (ε,Fj , L2(Q)). In
particular, if for some envelope function F ,∫ ∞

0
sup
Q

√
logN (ε∥F∥Q,2,Fj , L2(Q)) dε <∞,

and the supreme is taken over all probability distributions Q on Z, then Fj is P -Donsker for every
probability measure P such that P ∗F 2 <∞ under certain measurability conditions; see van der
Vaart and Wellner [170, Theorem 2.5.2] for the exact conditions. To control single empirical
process terms, a sufficient condition is that each Fj has a polynomial covering number:

sup
Q

N (ε, Fj , L2(Q)) ≤
(
K

ε

)V
, ∀ 0 < ϵ < 1,

where K,V > 0 are constants, which is similar to Chakrabortty et al. [23, Assumption 3.4]. If
further the functions gj = φj(Z; P̂)−φj(Z;P) are uniformly bounded, by using a Bernstein-type
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tail bound on the empirical process (e.g., van der Vaart and Wellner [170, Theorem 2.14.9]) and
a union bound argument, we can obtain a similar upper bound on maxj=1,...,p |(Pn − P)gj | as in
Lemma 1, with max1≤j≤p ∥gj∥L2 replaced by max1≤j≤p supg∈Fj

∥g∥L2 . When the function classes
Fj = F for all j are the same, this can be further improved to supg∈F ∥g∥L2 . However, verifying
such assumptions on metric entropy in practice is challenging, and training the nuisance functions
on an independent sample avoids this issue. Hence, in this paper, we use sample splitting instead
of Donsker-type conditions.

If the Donsker class condition is assumed, Theorems 12 and 16 can be established without
an independent sample. More specifically, the bias term TR,j in the decomposition (3.2.2) can
be bounded under the same rate conditions on the product of two nuisance estimations in Theo-
rems 12 and 16. This does not rely on independent sample splitting. Sample splitting is mainly
used to control the empirical process term TE,j via Lemma 8 for the proof of Theorems 12 and 16,
as described in Section 2.

B.2.2 Proof of Lemma 9

Proof of Lemma 9. Below, we condition on the event when conditions (1) and (2) hold. We begin
by decomposing the error into two terms:

σ̂2j − σ2j = Vn(φ̂j)− V[φj ]
= Pn[(φ̂j − Pn[φ̂j ])2]− P[(φj − P[φj ])2]
= Pn[φ̂2

j ]− (Pn[φ̂j ])2 − P[φ2
j ] + (P[φj ])2

= Pn[φ̂2
j − φ2

j ] + (Pn − P)[φ2
j ]− (Pn[φ̂j ]− P[φj ]) (Pn[φ̂j ] + P[φj ])

= T1j + T2j + T3j .

For the first term, we have

max
1≤j≤p

|T1j | = max
j
|Pn[(φ̂j − φj)(φ̂j + φj)]| ≲ max

j
|Pn[|φ̂j − φj |]| ,

where we use the boundedness of (φ̂j + φj)’s envelope.

For the third term, we have

max
1≤j≤p

|T3j | ≲ max
j
|(Pn − P)[φj ]|+max

j
|(Pn − P)[φ̂j − φj ]|+max

j
|P[φ̂j − φ̂j ]|.

Combining the above results yields that

max
1≤j≤p

|σ̂2j − σ2j | ≲ max
j
|(Pn − P)[φ̂j − φj ]|+max

j
|(Pn − P)[|φ̂j − φj |]|

+ max
k=1,2

max
j

∣∣∣(Pn − P)[φkj ]
∣∣∣+max

j
P[|φ̂j − φj |],

with probability tending to one.
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Define Ψ = max1≤j≤p |φ̂j − φj | and Φ = max1≤j≤p |φj |. By Lemma 8, it follows that

max
1≤j≤p

|σ̂2j − σ2j | ≲
(
log p

n

)1/2

max
j
∥φ̂j − φj∥L2 +

(
log p

n

)1−1/q

∥Ψ∥Lq

+

(
log p

n

)1/2

max
k=1,2

max
j
∥φkj ∥L2 +

(
log p

n

)1−1/q

max
k=1,2

∥Φk∥Lq

+max
j
∥φ̂j − φj∥L1

=

(
log p

n

)1/2

max
j

(
∥φ̂j − φj∥L2 + max

k=1,2
∥φkj ∥L2

)
+max

j
∥φ̂j − φj∥L1

+

(
log p

n

)1−1/q (
∥Ψ∥Lq + max

k=1,2
∥Φk∥Lq

)
,

which holds with probability at least 1− n−c.

B.2.3 Helper lemmas

Lemma B.2.1 (Maximal inequality adapted from Proposition B.1 of Kuchibhotla and Patra
[90]). Let X1, . . . ,Xn be mean zero independent random variables in Rp for p ≥ 1. Suppose
there exists q ∈ N such that for all i ∈ {1, . . . , n}

E [ξqi ] <∞ where ξi := max
1≤j≤p

|Xi,j |

and Xi := (Xi,1, . . . , Xi,p)
⊤. If Vn,p := max1≤j≤p

∑n
i=1 E

[
X2
i,j

]
, then

E

[
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Xi,j

∣∣∣∣∣
]
≤
√
6Vn,p log(1 + p) +

√
2(3 log(1 + p))1−1/q

(
2

n∑
i=1

E [ξqi ]

)1/q

.

B.3 Identification conditions

B.3.1 Proof of Proposition 10

Proof of Proposition 10. Note that

E(Ỹ | A = a,W )

=E(Ỹ (a) | A = a,W )

=E(Ỹ (a) |W )

=E[E[Ỹ (a) |W ,S(a)] |W ]

=E[Y (a) |W ] + E[∆m(a) |W ].

where the first equality is from the consistency and positivity assumption, and the second equal-
ity is from the unmeasured confounder assumption. From the asymptotic unbiasedness as in
Definition 1, it follows that

E[E[Ỹ | A = a,W ]] = E[Y (a)] + E[∆m(a)] = E[Y (a)] + o(1), (B.3.1)

where the little-o notation is with respect to m and uniform in p. This completes the proof.
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B.3.2 Proof of Lemma 15

Proof of Lemma 15. Define M̃j(θ) = E[Fj(Ỹj(a), θ)]. From the assumption, we have that

max
j∈[p]
|Mj(θ)− M̃j(θ)| = max

j∈[p]
|E[∆mj(a, θ)]|.

By Taylor expansion, we have

Mj(θ̃aj)−Mj(θaj) =M ′
j(θ̄aj)(θ̃aj − θaj).

for some θ̄aj between θ̃aj and θaj . These two results imply that

max
j∈[p]
|θ̃aj − θaj | = max

j∈[p]

1

|M ′
j(θ̄aj)|

|Mj(θ̃aj)−Mj(θaj)|

≤ 1

c
max
j∈[p]
|Mj(θ̃aj)|

=
1

c
max
j∈[p]
|M̃j(θ̃aj) +Mj(θ̃aj)− M̃j(θ̃aj)|

=
1

c
max
j∈[p]
|Mj(θ̃aj)− M̃j(θ̃aj)|

Similar to the proof of Proposition 10, we have that

M̃j(θ) = E[E[Fj(Ỹj , θ) | A = a,W ]] =Mj(θ) + E[∆mj(a, θ)].

Thus we have

max
j∈[p]
|θ̃aj − θaj | ≤

1

c
max
j∈[p]
|E[∆mj(a, θ̃aj)]| ≤

1

c
max
j∈[p]

sup
θ∈B(θaj ,δ)

|E[∆mj(a, θ)]| ≲ δm → 0

as m→∞.

B.4 Doubly robust estimation

B.4.1 Proof of Lemma 11

Proof of Lemma 11. For all i = 1, 2, and j = 1, . . . , p, define

ψaij = E[Yj(a)i], ψ̃aij = E[E[Ỹ i
j | A = a,W ]].
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From Proposition 10 we have that ψaij = ψ̃aij + o(1) as m→∞. It follows that

τ̃j =
E[E(Ỹj | A = 1,W )]− E[E(Ỹj | A = 0,W )]√
E[E(Ỹ 2

j | A = 0,W )]− E[E(Ỹj | A = 0,W )]2

=
ψ̃11j − ψ̃01j√
ψ̃02j − ψ̃2

01j

=
ψ11j − ψ01j + o(1)√
ψ02j − ψ2

01j + o(1)

=
ψ11j − ψ01j√
ψ02j − ψ2

01j

+ o(1)

= τj + o(1),

where the second last equality holds because V[Yj(0)] = ψ02j − ψ2
01j > 0 as assumed.

B.4.2 Proof of Theorem 12

Proof of Theorem 12. In this proof we will abbreviate τSTE
j as τj and denote

τ̃j =
E[E(Ỹj | A = 1,W )]− E[E(Ỹj | A = 0,W )]√
E[E(Ỹ 2

j | A = 0,W )]− E[E(Ỹj | A = 0,W )]2
.

We split the proof into three parts, conditioned on the event when the assumptions hold (which
holds with probability tending to one).

Part (1) Individual ATE estimators. Let βj = (β0j , β1j , β2j)
⊤ with

β0j = E[Yj(0)], β1j = E[Yj(1)], β2j = E[Yj(0)2],

Let β̃j =
(
β̃0j , β̃1j , β̃2j

)⊤
with

β̃0j = E[E(Ỹj | A = 0,W )], β̃1j = E[E(Ỹj | A = 1,W )], β̃2j = E[E(Ỹ 2
j | A = 0,W )],

and define the corresponding estimator β̂j = (β̂0j , β̂1j , β̂2j)
⊤ for

β̂0j = Pn
{
ϕ̃01j(Z; π̂, µ̂)

}
, β̂1j = Pn

{
ϕ̃11j(Z; π̂, µ̂)

}
, β̂2j = Pn

{
ϕ̃02j(Z; π̂, µ̂)

}
.

Let ϕj = (ϕ̃01j , ϕ̃11j , ϕ̃02j)
⊤ and

δm0 = max
1≤j≤p

|E[∆m1j(0)]|, δm1 = max
1≤j≤p

|E[∆m1j(1)]|, δm2 = max
1≤j≤p

|E[∆m2j(0)]|.

Similar to Lemma B.4.1, we can show that

β̂j − β̃j = (Pn − P) [ϕj(Z;π,µ)] + ϵj

where max1≤j≤p ∥ϵj∥∞ = O(rnp) and

rnp = (log p)1/2n−(1/2+α∧β) + log p/n+ n−(α+β).
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Part (2) Bounding τ̂j − τ̃j. Now since τ̂j = h(β̂j) := (β̂1 − β̂0)(β̂2 − β̂20)−1/2, an application
of Taylor’s expansion yields

τ̂j − τ̃j

= (Pn − P)
[
∇h(β̃j)⊤ϕj(Z;π,µ)

]
+∇h(β̃j)⊤ϵj +OP(∥β̂j − β̃j∥22)

= Pn

 ϕ̃11j − ϕ̃01j√
β̃2j − β̃20j

− τ̃j

 ϕ̃02j + β̃2j − 2β̃0jϕ̃01j

2
(
β̃2j − β̃20j

)

+∇h(β̃j)⊤ϵj +OP(∥β̂j − β̃j∥22). (B.4.1)

We denote the first term by Pn{φ̃j}. For remainder term ∇h(β̃j)⊤ϵj , by proof of Proposition 10
we have

max
1≤j≤p

∥β̃j − βj∥2 ≤
√
3 max
1≤j≤p

∥β̃j − βj∥∞ =
√
3δm

Thus, from the bounded variance assumption that V[Yj(0)] = βj2 − β2j0 ≥ c and

max
1≤j≤p

|E[∆mkj(a)]| = δm → 0,

when m is large, max1≤j≤p ∥∇h(β̃j)∥2 ≤ C for some constant C. We have

|∇h(β̃j)⊤ϵj | ≤ ∥∇h(β̃j)∥2∥ϵj∥2 ≤
√
3C∥ϵj∥∞,

max
1≤j≤p

|∇h(β̃j)⊤ϵj | ≲ E
[
max
1≤j≤p

∥ϵj∥∞
]
= O(rnp).

The second-order remainder is bounded as

∥β̂j − β̃j∥22 ≲∥(Pn − P) [ϕj(Z;π,µ)] ∥22 + ∥ϵj∥2∞,

where we have

∥(Pn − P) [ϕj(Z;π,µ)] ∥22
= |(Pn − P)

[
ϕ̃01j(Z;π,µ)

]
|2 + |(Pn − P)

[
ϕ̃11j(Z;π,µ)

]
|2 + |(Pn − P)

[
ϕ̃02j(Z;π,µ)

]
|2

Since ϕ̃01j , ϕ̃11j , ϕ̃02j are all bounded, by Lemma 8 with q =∞ we have

max
1≤j≤p

|(Pn − P)
[
ϕ̃01j(Z;π,µ)

]
|2 = O

(
log p

n

)
and same bound holds for ϕ̃11j , ϕ̃02j as well. This together with E[max1≤j≤p ∥ϵj∥∞] = O(rnp)
implies (note that rnp includes the log p/n term)

max
1≤j≤p

∥β̂j − β̃j∥22 = O
(
log p

n
+ r2np

)
= O(rnp). (B.4.2)

Combining the above bounds with (B.4.1) implies that

τ̂j − τ̃j = Pn{φ̃j}+ ε′j (B.4.3)

where the residual terms satisfy maxj∈[p] |ε′j | = O((log p)1/2n−(1/2+α∧β) + log p/n+ n−(α+β)).
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Part (3) Bounding τ̃j − τj. By Taylor expansion, we also have

τ̃j − τj = h(β̃j)− h(βj) = ∇h(β̄j)⊤(β̃j − βj)

where β̄j lies between β̃j and h(βj) so it also lies in the ball Bj(βj , δm) where δm = max{δm0, δm1, δm2}
is the maximum bias of derived outcomes. When m is large, we also have ∥∇h(β̄j)∥2 ≤ C. This
implies

max
1≤j≤p

|τ̃j − τj | ≲ ∥β̃j − βj∥2 ≲ δm.

Combining the above bounds with (B.4.3), we have

τ̂j − τj = Pn{φ̃j}+ εj ,

where the residual terms satisfy maxj∈[p] |εj | = O((log p)1/2n−(1/2+α∧β) + log p/n + n−(α+β) +
δm).

B.4.3 Proof of Proposition 14

Proof of Proposition 14. We next verify that the conditions in Lemma 9 hold the event when the
assumptions hold. Recall the centered influence function φ̃j = φ̃STE

j defined in Theorem 12. We

write φ̃j(Z;P) = φ̃j(Z;π,µ) and φ̃j(Z; P̂) = φ̃j(Z; π̂, µ̂). By the boundedness assumption, we
have that

max
j∈[p]
|φ̃j(Z;P) + φ̃j(Z; P̂)| = O(1).

From the proof of Lemma B.4.1, the individual influence functions satisfy that

max
1≤j≤p

∥ϕ̃akj(Z; P̂)− ϕ̃akj(Z;P)∥L2 = O(n−α∧β), a = 0, 1, k = 0, 1, 2,

The estimation error ∥φ̃j(Z; P̂) − φ̃j(Z;P)∥2 then depends on the slowest rate among ∥β̂j −
β̃j∥2, τ̂j − τ̃j and ϕ̃akj(Z; P̂)− ϕ̃akj(Z;P). By the proof in Appendix B.4.2, we have

max
1≤j≤p

∥β̂j − β̃j∥2 = O

(√
log p

n
+ rnp

)
,

max
1≤j≤p

|τ̂j − τ̃j | = O

(√
log p

n
+ rnp

)
.

Combining this with the positivity assumption of V[Ỹj(0)] implies that

max
1≤j≤p

∥φ̃j(Z; P̂)− φ̃j(Z;P)∥L2 = O

(√
log p

n
+ n−α∧β

)
. (B.4.4)

Therefore, by applying Lemma 9, we have that maxj∈[p] |σ̂2j − σ2j | = OP(
√
log p/n + n−α∧β)

as m,n, p→∞ such that log p = o(nmin( 1
2
,2α,2β)).
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B.4.4 Proof of Theorem 16

Proof of Theorem 16. We condition on the event when the assumptions hold. In the proof of
Proposition 15, we show

max
j∈[p]
|θ̃aj − θaj | ≤

1

c
max
j∈[p]

sup
θ∈B(θ̃aj ,δ)

|E[∆mj(a, θ)]| ≲ δm.

We first inspect the estimation error of counterfactual quantiles for a ∈ {0, 1}. Note that Condi-
tion 2 implies that

P(∩pj=1{θ̂
init
aj ∈ B(θ̃aj , δ)})→ 1.

Also, Conditions 1 and 2 imply that

max
j∈[p]

f̂aj(θ̂
init
aj ) = O(1) (B.4.5)

L̂np := max
j∈[p]
|f̂aj(θ̂initaj )−1 − faj(θ̃aj)−1| = O(n−κ) (B.4.6)

We begin by writing the estimation error as

θ̂aj − θ̃aj = θ̂initaj +
1

f̂j(θ̂initaj )
Pn[ω̂aj(Z, θ̂initaj )]− θ̃aj

= faj(θ̃aj)
−1Pn[ωaj(Z, θ̃aj)]

+ f̂aj(θ̂
init
aj )−1(Pn − P)[ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )]

+ f̂aj(θ̂
init
aj )−1P[ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )]

+ (θ̂initaj − θ̃aj) + f̂aj(θ̂
init
aj )−1Pn[ωaj(Z, θ̂initaj )]− faj(θ̃aj)−1Pn[ωaj(Z, θ̃aj)]

=: faj(θ̃aj)
−1Pn[ωaj(Z, θ̃aj)] + Tj1 + Tj2 + Tj3.

Next, we analyze the three residual terms separately.

Part (1) Tj1. This empirical process term can be uniformly bounded using Lemma B.4.2 with
(B.4.5):

max
j∈[p]
|Tj1| = O(max

j∈[p]
|(Pn − P){ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )}|)

= O

(√
log p

n
n−α∧β +

log p

n

)
.

Part (2) Tj2. This bias term can be uniformly bounded using Lemma B.4.2 with (B.4.5):

max
j∈[p]
|Tj2| = O(max

j∈[p]
|P{ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )}|)

= O
(
n−(α+β)

)
.
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Part (3) Tj3. This extra bias term can be decomposed into two terms:

Tj3 = (θ̂initaj − θ̃aj) + f̂aj(θ̂
init
aj )−1Pn[ωaj(Z, θ̂initaj )]− faj(θ̃aj)−1Pn[ωaj(Z, θ̃aj)]

= (θ̂initaj − θ̃aj) + faj(θ̃aj)
−1P[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)]

+ faj(θ̃aj)
−1(Pn − P)[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)]

+ [f̂aj(θ̂
init
aj )−1 − faj(θ̃aj)−1]Pn[ωaj(Z, θ̂initaj )],

where we use the fact that P{ωaj(Z, θ̃aj)} = 0. From Lemma B.4.3 and (B.4.6), we have that

max
j∈[p]
|Tj3| = O(n−2γ) +O

(√
log p

n
n−γ/2 +

log p

n

)

+O

(
n−κ

(
log p

n
+

√
log p

n
+ n−γ

))

= O

(
n−2γ + n−(γ+κ) +

log p

n
+

√
log p

n
n−

γ
2
∧κ

)
.

Combining the three terms yields

θ̂aj − θ̃aj = faj(θ̃aj)
−1Pn[ωaj(Z, θ̃aj)] +O

(
(log p)1/2

n1/2+α∧β∧κ∧
γ
2

+
log p

n
+ n−(α+β)∧(γ+κ)∧(2γ)

)
.

Setting φ̃QTE
j = f1j(θ̃aj)

−1Pn[ω1j(Z, θ̃1j)]− f0j(θ̃0j)−1Pn[ω0j(Z, θ̃0j)] gives that

τ̂QTE
j − τ̃QTE

j = Pn{φ̃QTE
j }+O

(
(log p)1/2

n1/2+α∧β∧κ∧
γ
2

+
log p

n
+ n−(α+β)∧(γ+κ)∧(2γ)

)

Recall we have

max
j∈[p]
|θ̃aj − θaj | ≤

1

c
max
j∈[p]

sup
θ∈B(θ̃aj ,δ)

|E[∆mj(a, θ)]| ≲ δm,

which implies

max
j∈[p]
|τ̃QTE
j − τQTE

j | = O(δm).

Because the above results hold with probability tending to one, it further implies that

τ̂QTE
j − τQTE

j = Pn{φ̃QTE
j }+OP

(
(log p)1/2

n1/2+α∧β∧κ∧
γ
2

+
log p

n
+ n−(α+β)∧(γ+κ)∧(2γ) + δm

)
,

which finishes the proof.

B.4.5 Proof of Proposition 17

Proof of Proposition 17. From Theorem 16, when log p = o(n2(
1
4
∧α∧β∧ γ

2 )) the asymptotic nor-
mality follows immediately from the triangular-array central limit theorem in Lemma B.4.4.
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We next verify that the conditions in Lemma 9 hold under the assumptions. For simplicity,
we drop the superscript QTE from φ̃QTE

j and write φ̃j . By the boundedness assumption, we have
that

max
j∈[p]
|φ̃j(Z;P) + φ̃j(Z; P̂)| = O(1).

Notice that

φ̃j(Z; P̂)− φ̃j(Z;P)

=
∑

a∈{0,1}

1

f̂aj(θ̂initaj )
ω̂aj(Z, θ̂

init
aj )− 1

faj(θ̃aj)
ωaj(Z, θ̃aj)

=
∑

a∈{0,1}

[(
1

f̂aj(θ̂initaj )
− 1

faj(θ̃aj)

)
ω̂aj(Z, θ̂

init
aj ) +

1

faj(θ̃aj)

(
ω̂aj(Z, θ̂

init
aj )− ωaj(Z, θ̂initaj )

)

+
1

faj(θ̃aj)

(
ωaj(Z, θ̂

init
aj )− ωaj(Z, θ̃aj)

)]
.

Then we have that

max
j∈[p]

P[|φ̃j(Z; P̂)− φj(Z;P)|]

≤ max
j∈[p]
∥φ̃j(Z; P̂)− φ̃j(Z;P)∥L2

≤ max
j∈[p]

∑
a∈{0,1}

[∣∣∣∣∣ 1

f̂aj(θ̂initaj )
− 1

faj(θ̃aj)

∣∣∣∣∣ ∥ωaj(Z, θ̂initaj )∥L2 +
1

faj(θ̃aj)
∥ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )∥L2

+
1

faj(θ̃aj)
∥ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)∥L2

]
= O(n−α∧β∧κ∧

γ
2 ).

where in the last equality, we use (B.4.11) and Lemma B.4.3. Therefore, by applying Lemma 9,
we have that maxj∈[p] |σ̂2j − σ̃2j | = OP(log p/n + (log p)1/2n−(1/2+α∧β∧κ∧γ/2) + n−α∧β∧κ∧γ/2) as

m,n, p→∞ such that log p = o(n2(
1
4
∧α∧β∧κ∧ γ

2 )).
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B.4.6 Helper lemmas

Recall that the uncentered influence function is defined as ϕj(Z;P) = φj(Z;P) + τj(P). The
lemma below provides results for the asymptotic normality of the one-step estimator of E[Yj(a)]
in the setting of multiple derived outcomes. It can be analogously adapted to the one of ATE,
which we omit for brevity.

Lemma B.4.1 (Counterfactual expectation). For a ∈ {0, 1}, suppose that Assumptions 5–7
hold and Ỹ (a) is asymptotically unbiased to Y (a). For j = 1, . . . , p, define τaj = E[Yj(a)],
πa(W ) = P(A = a |W ) and µaj(W ) = E[Ỹj | A = a,W ], the uncentered influence function as

ϕaj(Z;π,µ) =
1{A = a}
πa(W )

(Ỹj − µaj(W )) + µaj(W ),

and the one-step estimator as τ̂aj = Pn[ϕaj(Z; π̂, µ̂)], where Pn is the empirical measure over
D = {Z1, . . . ,Zn} and (π̂, µ̂) is an estimate of (π,µ) from samples independent of D.

Assume additionally the following holds for j ∈ [p] with probability at least 1− n−c for some
constant c > 0:

(1) Boundedness: Ỹj , µaj(W ) and µ̂aj(W ) are bounded in [−C,C] for some constant C.

(2) Bias of derived outcomes: ∆mj(a) := E[Ỹj(a) |W ,S(a)]−Yj(a) satisfies maxj∈[p] |E[∆mj(a)]| =
δm = o(n−1/2).

(3) Strict positivity: The true and estimated propensity score functions satisfy πa ≥ ϵ and π̂a ≥ ϵ
for some constant ϵ ∈ (0, 1/2).

(4) Nuisance: The rates of nuisance estimates satisfy ∥π̂a − πa∥L2 = O(n−α), maxj∈[p] ∥µ̂aj −
µaj∥L2 = O(n−β) for some α, β ∈ (0, 1/2), and α+ β > 1/2.

Then as m,n, p→∞ such that log p = o(nmin( 1
2
,2α,2β)), it holds that

(1) Asymptotic normality:
√
n(τ̂aj − τaj) =

√
n(Pn − P)ϕaj(Z;π,µ) +

√
nϵj

d−→ N (0, σ2aj),

where σ2aj = V[ϕaj(Z;π,µ)] and maxj∈[p] |ϵj | = OP((log p)
1/2n−(1/2+α∧β)+log p/n+n−(α+β)+

δm).

(2) Uniform control of variance estimation error: maxj∈[p] |σ̂2aj − σ2aj | = OP(n
−α∧β), where σ̂2j =

Vn[ϕj(Z; P̂)].

Proof of Lemma B.4.1. We write τ̃aj(P) = E[ϕaj(Z;π,µ)]. Note that τaj = τ̃aj+E[∆mj(a)] from
(B.3.1) in the proof of Proposition 10.

From Kennedy [84, Example 2], ϕaj is the efficient influence function of τ̃aj . Then, from
(3.2.2), we have a three-term decomposition

τ̂aj(P)− τaj(P) = τ̂aj(P)− τ̃aj(P) + τ̃aj(P)− τaj(P)
= TS,j + TE,j + TR,j + E[∆mj ], (B.4.7)

where

TS,j = (Pn − P){ϕaj(Z;P)}

TE,j = (Pn − P){ϕaj(Z; P̂)− ϕaj(Z;P)}

TR,j = P{ϕaj(Z; P̂)− ϕaj(Z;P)}.

From assumption 2, we know that the last term can be uniformly controlled as δm = maxj∈[p] |E[∆mj(a)]| =
oP(n

−1/2) as m,n, p tend to infinity.
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Part (1) Uniform control of empirical process terms. We next verify that the conditions
in Lemma 8 hold under the assumptions. Note that

ϕaj(Z; P̂)− ϕaj(Z;P) =
(
1− 1{A = a}

πa(W )

)
(µ̂aj(W )− µaj(W ))

+
1{A = a}

π̂a(W )πa(W )
(Ỹj − µ̂aj(W ))(πa(W )− π̂a(W )).

Then, by the boundedness assumptions, we have that

max
j∈[p]
∥ϕaj(Z; P̂)− ϕaj(Z;P)∥L2 ≤

1

ϵ
max
j∈[p]
∥µ̂aj − µaj∥L2 +

1

ϵ2
∥π̂a − πa∥L2 = O(n−α∧β)∥∥∥∥max

j∈[p]
|ϕaj(Z; P̂)− ϕaj(Z;P)|

∥∥∥∥
L∞

≤ 2C

ϵ2
,

From Lemma 8, when log p = o(nmin( 1
2
,2α,2β)), it follows that

max
j∈[p]
|TE,j | = O

(√
log p

n
n−α∧β +

log p

n

)
= o

(
n−1/2

)
. (B.4.8)

Part (2) Uniform control of remaining bias terms. From Kennedy [84, Example 54], it
follows that

TR,j = P
{(

1

πa
− 1

π̂a

)
(µaj − µ̂aj)πa

}
.

When π̂ ≥ ϵ, conditioned on nuisance estimators, by the Cauchy-Schwarz inequality, we have

max
j∈[p]
|TR,j | ≤

1

ϵ
∥π̂a − πa∥L2 max

j∈[p]
∥µ̂aj − µaj∥L2 = O(n−(α+β)) = o(n−1/2), (B.4.9)

where the second inequality is from the Cauchy-Schwarz inequality, and the last equality is from
the assumed rate for nuisance function estimation.

From (B.4.7)-(B.4.9), we have that

τ̂aj(P)− τaj(P) = (Pn − P){ϕaj(Z;P)}+ ϵj

such that maxj∈[p] |ϵj | = O((log p)1/2n−(1/2+α∧β) + log p/n+ n−(α+β) + δm) = o(n−1/2).

Part (3) Sample average terms. By Lemma B.4.4, it follows that

√
nTS,j

d−→ N (0, σ2aj).

Part (4) Uniform control of variance estimates. We next verify that the conditions in
Lemma 9 hold under the assumptions. Denote ϕ̂j = ϕj(Z; P̂) and ϕj = ϕj(Z;P). Note that by
the boundedness conditions, we have that

max
1≤j≤p

|ϕ̂j + ϕj | ≲ 1, max
1≤j≤p

|ϕ̂j − ϕj | ≲ 1, (B.4.10)
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which verifies the first condition of Lemma 9.
From Part (2), we also have

max
1≤j≤p

∥ϕ̂j − ϕj∥L1 ≤ max
1≤j≤p

∥ϕ̂j − ϕj∥L2 = O
(
n−α∧β

)
which verifies the last two conditions of Lemma 9.

Therefore, we are able to apply Lemma 9 to conclude that

max
j∈[p]
|σ̂2j − σ2j | = O

(
log p

n
+

√
log p

n
n−α∧β + n−α∧β

)
= O(n−α∧β).

when log p = o(nmin( 1
2
,2α,2β)).

Lemma B.4.2 (Error bounds of estimating equations). Under the event that the conditions in
Theorem 16 hold, it holds that

max
j∈[p]
|(Pn − P){ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )}| = O

(√
log p

n
n−α∧β +

log p

n

)
max
j∈[p]
|P{ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )}| = O

(
n−(α+β)

)
.

Proof of Lemma B.4.2. We begin by decomposing the estimation error as

ω̂aj(Z, θ̂
init
aj )− ωaj(Z, θ̂initaj ) =

(
1{A = a}
πa(W )

− 1

)
(ν̂aj(W , θ̂initaj )− νaj(W , θ̂initaj ))

+

(
1

π̂a(W )
− 1

πa(W )

)
1{A = a}(νaj(W , θ̂initaj )− ψ(Yj , θ̂initaj ))

+

(
1

π̂a(W )
− 1

πa(W )

)
1{A = a}(ν̂aj(W , θ̂initaj )− νaj(W , θ̂initaj ))

=: Dj1(Z) +Dj2(Z) +Dj3(Z).

Next, we split the proof into two parts.

Part (1) From the boundedness assumption 1, we have that∥∥∥∥max
j∈[p]
|ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )|

∥∥∥∥
L∞

≤ 2

(
1

ϵ
+ 1

)
+

4

ϵ
+

4

ϵ
≤ C ′,

for some constant C ′ > 0. This gives the L∞-boundedness of the estimation error.
We next derive the upper bound of the L2-norm by analyzing the three terms separately.

Condition 2 implies that

max
j∈[p]
∥Dj1∥L2 ≤

1

ϵ
max
j∈[p]

sup
θ∈B(θ̃aj ,δ)

∥ν̂aj(W , θ)− νaj(W , θ)∥L2 = O(n−α)

max
j∈[p]
∥Dj2∥L2 ≤

1

ϵ2
∥π̂a − πa∥L2 = O(n−β)

max
j∈[p]
∥Dj3∥L2 ≤

1

ϵ2
∥π̂a − πa∥L2 = O(n−β).
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Thus, we have

max
j∈[p]
∥ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )∥L2 = O(n−α∧β). (B.4.11)

From Lemma 8, we have that

(Pn − P){ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )} = O

(√
log p

n
n−α∧β +

log p

n

)
.

which finishes the proof of the first part of the lemma.

Part (2) On the other hand, because E[1{A = a} |W ] = πa(W ), we have that

P{Dj1(Z)} = 0.

Similarly, because E[ψ(Yj , θ̂initaj ) |W ] = νaj(W , θ̂initaj ), we also have that

P{Dj2(Z)} = 0.

For the third term, we have that

max
j∈[p]
|P{Dj3(Z)}| ≤ 1

ϵ
∥π̂a − πa∥L2 max

j∈[p]
sup

θ∈B(θ̃aj ,δ)
∥ν̂aj(W , θ)− νaj(W , θ)∥L2

= O(n−(α+β)).

Combining the above results, we have that

max
j∈[p]
|P{ω̂aj(Z, θ̂initaj )− ωaj(Z, θ̂initaj )}| = O(n−(α+β)).

Lemma B.4.3 (Error bounds of estimating equations evaluated with respect to the initial esti-
mators). Under the event that the conditions in Theorem 16 hold, it holds that

max
j∈[p]
|(θ̂initaj − θ̃aj) + faj(θ̃aj)

−1P[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)]| = O(n−2γ)

max
j∈[p]
|(Pn − P)[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)]| = O

(√
log p

n
n−γ/2 +

log p

n

)

max
j∈[p]
|Pn{ωaj(Z, θ̂initaj )}| = O

(
log p

n
+

√
log p

n
+ n−γ

)
.

Proof of Lemma B.4.3. We split the proof into different parts.
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Part (1) By Taylor’s expansion, we have that

P{ωaj(Z, θ̂initaj )} = −P{ψ(Ỹj(a), θ̂initaj )}

= −faj(θ̃aj)(θ̂initaj − θ̃aj) +O(|θ̂initaj − θ̃aj |2)

= −faj(θ̃aj)(θ̂initaj − θ̃aj) +O(n−2γ)

= O(n−γ), (B.4.12)

which is uniformly over j ∈ [p] by Conditions 1 and 2. Note that

P{ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)} = −Pψ{(Yj(a), θ̂initaj )}+ 0

= −Pψ{(Yj(a), θ̂initaj )}

= −faj(θ̃aj)(θ̂initaj − θ̃aj) +O(n−2γ).

Then, we have that

max
j∈[p]
|(θ̂initaj − θ̃aj) + faj(θ̃aj)

−1P[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)]|

=max
j∈[p]
|(θ̂initaj − θ̃aj) + faj(θ̃aj)

−1(−f(θ̃aj)(θ̂initaj − θ̃aj))|+O(n−2γ)

=O(n−2γ),

which finishes the proof of the first part.

Part (2) Note that

max
j∈[p]
∥ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)∥L2

= max
j∈[p]

[∥∥∥∥(1{A = a}
πa(W )

− 1

)(
νaj(W , θ̂initaj )− νaj(W , θ̃aj)

)∥∥∥∥
L2

(B.4.13)

+

∥∥∥∥1{A = a}
πa(W )

(1{Ỹj ≤ θ̂initaj } − 1{Ỹj ≤ θ̃aj})
∥∥∥∥
L2

]

≲ max
j∈[p]

[∥∥∥νaj(W , θ̂initaj )− νaj(W , θ̃aj)
∥∥∥
L2

+
∥∥∥1{Ỹj(a) ≤ θ̂initaj } − 1{Ỹj(a) ≤ θ̃aj}

∥∥∥
L2

]
. (B.4.14)

Since θ̂initaj is estimated from a separate independent sample, in the following analysis, we condition

on θ̂initaj . By Jenson’s inequality, we have

E[(νaj(W , θ̂initaj )− νaj(W , θ̃aj))
2]

=E[(P(Ỹj ≤ θ̂initaj |W , A = a)− P(Ỹj ≤ θ̃aj |W , A = a))2]

=E[(E[1{Ỹj ≤ θ̂initaj } − 1{Ỹj ≤ θ̃aj} |W , A = a])2]

≤E[E[(1{Ỹj ≤ θ̂initaj } − 1{Ỹj ≤ θ̃aj})2 |W , A = a]]

=E[E[1{Ỹj ≤ θ̂initaj }+ 1{Ỹj ≤ θ̃aj} − 21{Ỹj ≤ θ̂initaj ∧ θ̃aj} |W , A = a]]

=P(Ỹj(a) ≤ θ̂initaj ) + P(Ỹj(a) ≤ θ̃aj)− 2P(Ỹj(a) ≤ θ̂initaj ∧ θ̃aj)
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where the last equation follows from the identification equation E[E(1{Ỹj ≤ θ̃} | W , A = a)] =

P(Ỹj(a) ≤ θ̃). Since faj is uniformly bounded in B(θ̃aj , δ) from Assumption 1, by Taylor’s
expansion we have

P(Ỹj(a) ≤ θ̂initaj ) + P(Ỹj(a) ≤ θ̃aj)− 2P(Ỹj(a) ≤ θ̂initaj ∧ θ̃aj)

= |P(Ỹj(a) ≤ θ̂initaj )− P(Ỹj(a) ≤ θ̃aj)|

≲ |θ̂initaj − θ̃aj | = O(n−γ).

The upper bound is uniform over j ∈ [p] and we have

max
j∈[p]

∥∥∥νaj(W , θ̂initaj )− νaj(W , θ̃aj)
∥∥∥
L2

= O(n−γ/2).

Similarly, we have∥∥∥1{Ỹj(a) ≤ θ̂initaj } − 1{Ỹj(a) ≤ θ̃aj}
∥∥∥2
L2

=E[1{Ỹj(a) ≤ θ̂initaj }+ 1{Ỹj(a) ≤ θ̃aj} − 21{Ỹj(a) ≤ θ̂initaj }1{Ỹj(a) ≤ θ̃aj}]

=P(Ỹj(a) ≤ θ̂initaj ) + P(Ỹj(a) ≤ θ̃aj)− 2P(Ỹj(a) ≤ θ̂initaj ∧ θ̃aj)
=O(n−γ)

max
1≤j≤p

∥∥∥1{Ỹj(a) ≤ θ̂initaj } − 1{Ỹj(a) ≤ θ̃aj}
∥∥∥
L2

= O(n−γ/2).

From Lemma 8, we have that

max
j∈[p]
|(Pn − P){ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)}| = O

(√
log p

n
n−γ/2 +

log p

n

)
,

which finishes the proof of the second part.

Part (3) Note that

Pn{ωaj(Z, θ̂initaj )} = (Pn − P)[ωaj(Z, θ̂initaj )− ωaj(Z, θ̃aj)] + Pn[ωaj(Z, θ̃aj)] + P[ωaj(Z, θ̂initaj )].

Since ω is centered and bounded, by Lemma 8 we have

max
1≤j≤p

|(Pn − P)[ωaj(Z, θ̃aj)]| = O

(
log p

n
+

√
log p

n

)
= O

(√
log p

n

)
.

Combining it with (B.4.12) and Part (2), we further have

max
j∈[p]
|Pn{ωaj(Z, θ̂initaj )}| = O

(√
log p

n
n−γ/2 +

log p

n
+

√
log p

n
+ n−γ

)

= O

(
log p

n
+

√
log p

n
+ n−γ

)

which completes the proof.
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Lemma B.4.4 (Lindeberg CLT for triangular array). Let m = mn and p = pn be two sequences
indexed by n. Consider the influence-function-based linear expansion for estimator τ̂j of τj :

√
n(τ̂j − τj) =

√
n(Pn − P){φmnj}+ ϵmnj , j = 1, . . . , p

where φmnj is the influence function that depends on m and the residual ϵj ’s satisfy that
maxj∈pn |ϵmnj | = oP(1) as n → ∞. Let B2

n =
∑

i∈[n]V(φmnj(Zi)). Further assume that (i)
there exists a constant c > 0, such that V(φmnj(Z1)) ≥ c, and (ii) there exists a sequence
{Ln}n∈N such that maxi∈[n] |φmnj(Zi)| ≤ Ln and Ln/Bn → 0, then

√
n

τ̂j − τj
V{φmnj}1/2

d−→ N (0, 1)

Proof of Lemma B.4.4. Note that φmnj is the centered influence function such that E[φmnj(Z)] =
0. Let Xnk = φmnj(Zk). From assumption (ii) that maxk∈[n] |Xnk| ≤ Ln and Ln/Bn → 0, we
have that, for any ξ > 0,

lim
n→∞

1

B2
n

n∑
k=1

E
[
X2
nk 1{|Xnk| ≥ ξBn}

]
= 0.

This verifies Lindeberg’s condition for a triangular array of random variables. From Billingsley
[18, Theorem 27.2], it follows that

n(Pn − P){φmnj}
Bn

d−→ N (0, 1),

as n→∞. Because Zi’s are identically distributed, we have B2
n = nV(φmnj). This implies that

√
n(Pn − P){φmnj}
V(φmnj)

1/2

d−→ N (0, 1),

as n→∞.
From assumption (i) that V(φmnj) ≥ c > 0 and maxj∈pn |ϵmnj | = oP(1), we further have

max
j∈pn

|ϵmnj |
V(φmnj)

1/2
= oP(1)

as n→∞. Consequently, the conclusion follows.
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B.5 Multiple testing

B.5.1 Proof of Lemma 18

Proof of Lemma 18. We present the proof for τj = τSTE
j , and the proof for τj = τQTE

j follows
similarly, which we omit for simplicity. From Theorem 12 and Proposition 14, we have the
following expansion on the statistic:

√
n
τ̂j − τ∗j
σ̂j

=

√
n

σ̂j

1

n

n∑
i=1

φij +

√
nϵj
σ̂j

,

=

√
n

σj

1

n

n∑
i=1

φij +

(
1

σ̂j
− 1

σj

)
1√
n

n∑
i=1

φij +

√
nϵj
σ̂j

,

=

√
n

σj

1

n

n∑
i=1

φij + ϵ′j , (B.5.1)

where ϵ′j =
(

1
σ̂j
− 1

σj

)
1√
n

∑n
i=1 φij +

√
nϵj
σ̂j

. Note that the covariance matrix of the true scaled

influence function is given by

Cov

(
1√
nσj

n∑
i=1

φiS

)
= D−1

S ESD
−1
S ,

where ES = E[φiSφ⊤
iS ] and DS = diag((σ̂j)j∈S). The associated gaussian vector is defined as

g0S ∼ N (0,D−1
S ESD

−1
S ). We first consider one-sided test problems with the pair of maximum

statistics and the Gaussian vector based on linear expansion (B.5.1):

MS = max
j∈S

√
n
τ̂j − τ∗j
σ̂j

, WS = max
j∈S

(gS)j ,

and the pair based on the true influence functions and variances:

M0S = max
j∈S

1√
n

n∑
i=1

φij
σj
, W0S = max

j∈S
(g0S)j .

We next show that the distribution function of MS can be approximated by WS uniformly.

Step (1) Bounding difference between WS and W0S . From Theorem J.1 of Chernozhukov
et al. [30],

sup
S⊆A∗

sup
x
|P(WS > x)− P(W0S > x | {Zi}ni=1)|

p−→ 0. (B.5.2)

is implied if supS⊆A∗ ∥D̂−1
S ÊSD̂

−1
S − D−1

S ESD
−1
S ∥max = OP(n

−c) for some c > 0. Because

maxj∈S σ
2
j ≥ c > 0, when log p = o(n2(

1
4
∧α∧β)) and δm = o(n−1/2), we have that maxj∈S |σ̂−1

j −
σ−1
j | = OP(rσ) from the proof of Proposition 14, where rσ = n−α∧β +

√
log p/n. On the other
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hand, (B.5.1) also implies that,

sup
S⊆A∗

∥ÊS −ES∥max

= max
k,ℓ∈A∗

|Êkℓ − Ekℓ|

= max
k,ℓ∈A∗

∣∣∣∣∣ 1n
n∑
i=1

(φ̂ikφ̂iℓ − E[φikφiℓ])

∣∣∣∣∣
= max

k,ℓ∈A∗

∣∣∣∣∣ 1n
n∑
i=1

[φ̂ik(φ̂iℓ − φiℓ) + (φ̂ik − φik)φiℓ + (φikφiℓ − E[φikφiℓ])]

∣∣∣∣∣
≤ max

k,ℓ∈A∗

∣∣∣∣∣ 1n
n∑
i=1

φ̂ik(φ̂iℓ − φiℓ)

∣∣∣∣∣+ max
k,ℓ∈A∗

∣∣∣∣∣ 1n
n∑
i=1

(φ̂ik − φik)φiℓ

∣∣∣∣∣+ max
k,ℓ∈A∗

∣∣∣∣∣ 1n
n∑
i=1

(φikφiℓ − E[φikφiℓ])

∣∣∣∣∣
≤ max

k,ℓ∈A∗
max
i
|φ̂ik| ·

1

n

n∑
i=1

|φ̂iℓ − φiℓ|+ max
k,ℓ∈A∗

1

n

n∑
i=1

|φ̂ik − φik| ·max
i
|φiℓ|+OP

(√
log p

n

)
= OP (rφ)

where in the last inequality we use (B.4.4) with rφ = n−α∧β +
√
log p/n and the sub-Gaussianity

of φikφiℓ’s. Then we have

sup
S⊆A∗

∥D̂−1
S ÊSD̂

−1
S −D−1

S ESD
−1
S ∥max ≤ sup

S⊆A∗
∥D̂−1

S ÊSD̂
−1
S −D−1

S ÊSD̂
−1
S ∥max

+ sup
S⊆A∗

∥D−1
S ÊSD̂

−1
S −D−1

S ÊSD
−1
S ∥max

+ sup
S⊆A∗

∥D−1
S ÊSD

−1
S −D−1

S ESD
−1
S ∥max

= OP (rφ + rσ) .

Under the condition that log2(pn)max{log5(pn)/n, n−(α∧β)} = o(1), we have that (log p)2(rφ +
rσ) = o(1). Then, from Theorem J.1 of Chernozhukov et al. [30], it follows that (B.5.2) holds.

Step (2) Bounding difference between W0S and M0S . Under Assumption 8 and the con-
dition that log(pn)7/n ≤ C2n

−c2 , because E[φ2
ij ]/σ

2
j = 1 and constant c, C is independent of S,

from Corollary 2.1 of Chernozhukov et al. [30], we have that

sup
S⊆A∗

sup
x
|P(W0S > x)− P(M0S > x)| → 0. (B.5.3)

Step (3) Bounding difference between M0S and MS . We begin by bounding maxj∈S |ϵ′j |.
Because σj is uniformly lower bounded away from zero, we have |σ̂j − σj | = |(σ̂2j − σ2j )/(σ̂j +

σj)| ≲ |σ̂2j − σ2j |, which implies that maxj∈[p] |σ̂j − σj | ≲ rσ with probability tending to one from
the proof of Proposition 14. From the proof of Theorem 12 and the boundedness assumptions,
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we have

max
j∈S
|ϵ′j | ≤ max

j∈A∗
|ϵ′j | ≤ max

j∈A∗

∣∣∣∣∣ 1√
n

∑
i

φij
σj σ̂j

(σj − σ̂j)

∣∣∣∣∣+max
j∈A∗

∣∣∣∣√nϵjσ̂j

∣∣∣∣
= OP

(
max
j∈A∗

|σj − σ̂j |max
j∈A∗

∣∣∣∣∣ 1√
n

∑
i

φij

∣∣∣∣∣+max
j∈A∗

|
√
nϵj |

)
= OP

(
rσ
√
log p+ n−(α∧β)√log p+ (log p)/

√
n+ n1/2−(α+β) +

√
nδm

)
= OP

(
n−(α∧β)√log p+ (log p)/

√
n+ n1/2−(α+β) +

√
nδm

)
= oP(ξn),

where ξn = [n−(α∧β)√log p+ (log p)/
√
n+ n1/2−(α+β) +

√
nδm] log(n). Then,

sup
S⊆A∗

P(|M0S −MS | > ξn) ≤ P
(
max
j∈A∗

|ϵ′j | > ξn

)
→ 0. (B.5.4)

Then we have

|P(M0S > x)− P(MS > x)|
≤P(M0S ≤ x,MS > x) + P(M0S > x,MS ≤ x)

≤P(M0S > x− ξn,M0S ≤ x) + P(M0S ≤ x+ ξn,M0S > x) + 2P
(
max
j∈A∗

|ϵ′j | > ξn

)
≤P(x− ξn < M0S ≤ x+ ξn) + 2P

(
max
j∈A∗

|ϵ′j | > ξn

)
≤P(x− ξn < W0S ≤ x+ ξn) + 2P

(
max
j∈A∗

|ϵ′j | > ξn

)
+ 2 sup

S⊆A∗
sup
x
|P(W0S > x)− P(M0S > x)|

which implies that

sup
S⊆A∗

sup
x
|P(M0S > x)− P(MS > x)|

≤ sup
S⊆A∗

sup
x

P(x− ξn ≤W0S ≤ x+ ξn) + 2P
(
max
j∈A∗

|ϵ′j | > ξn

)
+ 2 sup

S⊆A∗
sup
x
|P(W0S > x)− P(M0S > x)|

≲ ξn
√
log(pn) + 2P

(
max
j∈A∗

|ϵ′j | > ξn

)
+ 2 sup

S⊆A∗
sup
x
|P(W0S > x)− P(M0S > x)|,

where the second inequality is from the anti-concentration inequality [30, Lemma 2.1]. Under the
condition that max{log(pn)7/n, log(pn)2n−(α∧β),

√
n log(pn)δm} ≤ C2n

−c2 , we have ξn
√
log(pn) ≲

n−c2 log n = o(1). This implies that

sup
S⊆A∗

sup
x
|P(M0S > x)− P(MS > x)| → 0. (B.5.5)
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Step (4) Combining results from previous steps. Finally, combining (B.5.2)-(B.5.5) yields
that

sup
S⊆A∗

sup
x
|P(M0S > x)− P(W0S > x | {Zi}ni=1)|

p−→ 0.

Analogously results also hold for M
′
S = maxj −

√
n(τ̂j − τj)/σ̂j , W

′
S = maxj −gj , M

′
0S =

maxj −n−1/2
∑n

i=1 φij/σj and W ′
0S = maxj −(g0)j , by applying the same argument. Thus,

we have

sup
S⊆A∗

sup
x
|P(MS > x)− P(∥gS∥∞ > x | {Zi}ni=1)|

≤ sup
S⊆A∗

sup
x
|P(MS > x)− P(WS > x | {Zi}ni=1)|

+ sup
S⊆A∗

sup
x
|P(M ′

S < x)− P(W ′
S < x | {Zi}ni=1)|

p−→ 0,

which finishes the proof.

B.5.2 Proof of Proposition 19

Proof of Proposition 19. We split the proof into different parts.

Part (1) Exact recovery of the active set. From the proof of Lemma 18, we have

max
1≤j≤p

|σ̂2j − σ2j | = OP(rσ). (B.5.6)

Recall A∗ = {j ∈ [p] | σ2j ≥ c1}. From Assumption 8, minj∈A∗ σ2j ≥ c1 for some constant c1 > 0.

To screen out noninformative coordinates, define cn as in Proposition 19 for some constant
c > 0 and

A1 = {j ∈ [p] | σ̂2j ≥ cn}

which is a random quantity because σ̂2j is the empirical variance. Then we have

P(A∗ ̸= A1) = P
(

max
j∈A1\A∗

σ̂2j ≥ cn
)
+ P

(
min

j∈A∗\A1

σ̂2j < cn

)
.

For the first term, we have

P
(

max
j∈A1\A∗

σ̂2j ≥ cn
)

=P
(

max
j∈A1\A∗

σ̂2j − min
j∈A1\A∗

σ2j ≥ cn − min
j∈A1\A∗

σ2j

)
≤P
(

max
j∈A1\A∗

|σ̂2j − σ2j | ≥ cn − min
j∈A1\A∗

σ2j

)
≤P
(
max
j∈[p]
|σ̂2j − σ2j | ≥ cn − max

j∈A∗c
σ2j

)
→ 0,

where we use the fact cn → 0,minj∈A∗ σ2j ≥ c1 and maxj∈[p] |σ2j − σ̂2j | = OP(rσ) = oP(cn) as
m,n, p→∞, from Assumption 8 and (B.5.6).
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For the second term, similarly we have

P
(

min
j∈A∗\A1

σ̂2j < cn

)
≤P

(
min

j∈A∗\A1

σ̂2j < cn,max
j∈[p]
|σ2j − σ̂2j | ≤ cn

)
+ P

(
max
j∈[p]
|σ2j − σ̂2j | > cn

)
≤P

(
min
j∈A∗

σ2j < 2cn

)
+ P

(
max
j∈[p]
|σ2j − σ̂2j | > cn

)
→ 0.

Thus, we have

P(A∗ = A1)→ 1.

Part (2) FWER. From Part (1), the family-wise error rate satisfies that

FWER = P(Â ∩ V∗c ̸= ∅)

= P(Â ∩ V∗c ̸= ∅,A∗ = A1) + o(1).

Recall the maximal statistic is defined asM1 = max
j∈Â1

|
√
n(τ̂j−τj)/σ̂j | and the null hypothesis is

rejected only if M1 > q̂1(α) where q̂1(α) is the multiplier bootstrap quantile. From Lemma B.5.1,
we have that

lim supP(Â ∩ V∗c ̸= ∅) ≤ lim supP
(
max
j∈A∗

|
√
n(τ̂j − τ∗j )/σ̂j | > q̂1(α),A∗ = A1

)
≤ α.

Since when A∗ = A1, q̂1(α) is also the bootstrap quantile of maxj∈A∗ |
√
n(τ̂j−τ∗j )/σ̂j |. Therefore,

combining the above results yields that

lim supFWER ≤ α,

which finishes the proof.

B.5.3 Proof of Theorem 20

Proof of Theorem 20. We split the proof into different parts.

Part (1) FDPex. Recall V is the output of the step-down and augment processes, and Mj

is the maximal statistic at step j. Let Vℓ∗ be the set of discoveries returned by the step-down
process. From Proposition 19 (1), the active set Aℓ+1 ⊆ Aℓ ⊆ A∗ for all ℓ = 1, 2, . . . , ℓ∗ − 1 with

probability tending to one. If Vℓ∗ ∩ V∗ ̸= ∅, then for the first H
(j)
0 generating false discoveries,

from Lemma B.5.1 and Proposition 19, under the null hypothesis H
(j)
0 , we always have

lim supFWER = lim supP(Mj > q̂j(α)) ≤ α

as m,n, p → ∞. This shows that the step-down procedure controls the family-wise error rate.
By Genovese and Wasserman [58, Theorem 1], it follows that the FDP after the augmentation
step satisfies that

lim supP(FDP > c) ≤ α,
which finishes the proof of the first conclusion.
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Part (2) Power. From the proof of Chang et al. [24, Corollary 1], the standard results on
Gaussian maximum imply that maxℓ=1,...,ℓ∗ q̂ℓ(α) = C

√
log p+ oP(1) for some constant C > 0.

We next show that if there exists a j0 ∈ Aℓ∗ ∩V∗, then the proposed maximum test on Aℓ∗ is
able to reject the null hypothesis that τj0 = τ∗j0 for τ∗j0 = 0, which implies the power is converging
to 1. Formally, Let q̂ℓ∗(α) be the corresponding estimated upper α quantile of the maximum
statistic from the multiplier bootstrap procedure at ℓ∗-th step. Let E denote the event that
stepdown process stops at ℓ∗-th step and by definition of ℓ∗ we have P(E) = 1. Notice that

P(Aℓ∗ ∩ V∗ ̸= ∅)

=P(Aℓ∗ ∩ V∗ ̸= ∅, E)

=P
(
max
j∈Aℓ∗

√
n
|τ̂j |
σ̂j

> q̂ℓ∗(α),Aℓ∗ ∩ V∗ ̸= ∅, E
)
+ P

(
max
j∈Aℓ∗

√
n
|τ̂j |
σ̂j
≤ q̂j0(α),Aℓ∗ ∩ V∗ ̸= ∅, E

)
By definition the stepdown process does not stop at ℓ∗-th step ifMℓ∗ = maxj∈Aℓ∗

√
n
|τ̂j |
σ̂j

> q̂ℓ∗(α).

Hence, the first term is zero. For the second term, suppose j0 ∈ Aℓ∗ ∩ V∗ and we have

P
(
max
j∈Aℓ∗

√
n
|τ̂j |
σ̂j
≤ q̂ℓ∗(α),Aℓ∗ ∩ V∗ ̸= ∅

)
≤P
(√

n
|τ̂j0 |
σ̂j0
≤ q̂ℓ∗(α),Aℓ∗ ∩ V∗ ̸= ∅

)

≤P

√n
∣∣∣τ̂j0 − τ∗j0∣∣∣

σ̂j0
≥
√
n

∣∣∣τ∗j0∣∣∣
σ̂j0
− q̂ℓ∗(α)

 ,

Because
∣∣∣τ∗j0∣∣∣ /σ̂j0 =

∣∣∣τ∗j0∣∣∣ /σj0 · (1+ oP(1)) ≥ c(log(p)/n)1/2 for large m and n, under the assumed

minimal signal strength condition, by Lemma 18 we have

P

√n
∣∣∣τ̂j0 − τ∗j0∣∣∣

σ̂j0
≥
√
n

∣∣∣τ∗j0∣∣∣
σ̂j0
− q̂ℓ∗(α)

→ 0,

as m,n, p→∞, when c > C. Therefore we have

P(Aℓ∗ ∩ V∗ ̸= ∅)→ 0,

and
P(V∗ ⊆ Vℓ∗)→ 1.

Because the augmentation step only adds more discoveries, Vℓ∗ ⊂ V, it does not decrease the
power. Therefore, the final set of discoveries V has power 1 asymptotically as m,n, p tend to
infinity.

B.5.4 Helper lemmas

Lemma B.5.1 (Quantile estimation based on Gaussian approximation). Suppose the conditions
of Lemma 18 hold. For gS ∼ N (0, D̂−1

S ÊSD̂
−1
S ), define the conditional α-quantile qS(α) :=

inf{t ∈ R | P(∥gS∥∞ ≤ t | {Zi}ni=1) ≥ α}. As m,n, p→∞, it holds that

sup
HS

0 :S⊆A∗
sup

α∈(0,1)
|P(MS ≤ qS(α) | {Zi}ni=1)− α|

p−→ 0.
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Proof of Lemma B.5.1. From (B.5.4) in the proof of Lemma 18, we know that condition (14) in
Chernozhukov et al. [30] holds for ∆1S = maxj∈[p] |MS −M0S | uniformly over S ⊆ A∗. On the
other hand, with probability tending to one,

∆2S ≤ ∆2A∗

= max
j∈A∗

Pn[(φij/σj − φ̂ij/σ̂j)2]

≤ max
j∈A∗

Pn[(φij − φ̂ij)2]/σ2j +max
j∈A∗

Pn[φ̂2
ij ](1/σj − 1/σ̂j)

2

≲ max
j∈A∗

Pn[(φij − φ̂ij)2] + max
j∈A∗

(σj − σ̂j)2

≲ max
j∈A∗

Pn[|φij − φ̂ij |] + max
j∈A∗

|σj − σ̂j |

= OP (rφ + rσ) ,

which follows similarly as in the proof of Step (1) for Lemma 18. Under the conditions that
max{log(pn)7/n, log(pn)2n−(α∧β)} ≤ Cn−c, we have

sup
S⊆A∗

P(log(pn)2∆2S > n−c) ≤ sup
S⊆A∗

P(log(pn)2∆2S > n−c/ log(n))→ 0,

which verifies condition (15) in Chernozhukov et al. [30]. From the proof of Corollary 3.1 in
Chernozhukov et al. [30], the conclusion follows.
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B.6 Experiment details

B.6.1 Estimation of QTE

Initial estimator

The initial IPW estimator θ̂initaj of the quantile Yj(a) can be obtained by solving the following
estimating equation:

Pn
{
1{A = a}
π̂a(W )

ψ(Yj , θ)

}
= 0

where ψ is defined in (3.4.4).

Counterfactual density estimation

Consider an unconfounded observational study with (W,A, Y ) ∼ P, where A is binary and Y is
continuous. Assume consistency, positivity, and exchangeability as usual. Below, we derive an
identifying expression and estimator for the density of Y (a) at a point.

Define V := 1{Y ≤ y}. Noting that the density of Y (a) is simply the derivative of P (Y (a) ≤ y).
Letting pY (a)(y) and pY (y) denote the densities of Y (a) and Y respectively, we have

pY (a)(y) =
d

dy
P (Y (a) ≤ y)

=
d

dy
E (V a) =

d

dy
E {E (V a |W )}

=
d

dy
E {E (V a |W,A = a)}

=
d

dy
E{E(V |W,A = a)}

= E
{

d

dy
P(Y ≤ y |W,A = a)

}
= E {pY (y |W,A = a)} ,

where the exchanging of integrals and derivatives is permitted by Leibniz’s integral rule combined
with the fact that V is bounded. As for estimation, we can reduce counterfactual density estima-
tion to statistical density estimation. A natural doubly robust analog for this problem [88] that
takes inspiration from one-step correction and kernel density estimation is given by

p̂Y (a)(y) :=
1

h
Pn
{
1{A = a}
π̂ (a,W )

(
K

(
y − Y
h

)
−K

(
y − µ̂ (a,W )

h

))
+K

(
y − µ̂ (a,W )

h

)}
where K is a kernel and h is the kernel smoothing bandwidth. Similar pseudo observations could
be used with IPW [81, Remark 4] or plug-in style techniques as well, but we omit them for brevity.

SQTE

When comparing the quantile effects among genes with different scales, one can also consider the
standardized quantile treatment effects (SQTE):

τ
SQTEϱ

j =
Qϱ(Yj(1))−Qϱ(Yj(0))

IQR(Yj(0))
, (B.6.1)
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where for a random variable U , Qϱ[U ] denote the ϱ-quantile of random variable U , and IQR(U) =
Q(0.75) − Q(0.25) denote the median and interquartile range of U with quantile function Q.
Typically, when ϱ = 0.5, the ϱ-quantile equals to the median Qϱ(U) = Med(U), and we reveal

the standardized median treatment effects τSQTE
j = (Med[Yj(1)]−Med[Yj(0)])/IQR(Yj(0)).

B.6.2 Extra experimental results

Simulation

Recall that λj is the mean of the couterfactuals Xj(0) for j ∈ [p] and Xj(1) for j ̸∈ V∗. To
generate the set of active genes V∗, we draw a sample from a Multinomial with 200 trials and
p = 8000 categories with probability

softmax({log(sd(exp(λj)))}j∈[p]).

where the sample standard deviation across cells i is used to estimate the above probability. The
setup suggests that genes with higher variations are more likely to be active. For a maximum
signal strength θmax, we first draw a relative signal strength rj ∼ Beta(1, βr) and set the final
signal strength to be sj := θmaxrj .

Then, we consider two simulation scenarios for Xj(1) with j ∈ V∗ in the treatment group.

(1) Mean shift with high SNR

In this case, we set (θmax, βr) = (1, 0.5) so that the more signals have magnitudes close to
θmax. Then, we adjust the effect sizes (λj) by adding or subtracting a signal (θ) with equal
probability. Specifically, this can be represented as:

Xj(1) ∼ Poisson(λj + sjδj), j ∈ V∗,

where δj ∼ Bernoulli(0.5).

(2) Median shift with low SNR

In this case, we set (θmax, βr) = (10, 2) so that the more signals have magnitudes close to 0.
Then we draw

Xj(1) ∼ [LogNormal(λj − s2j/2, sj)], j ∈ V∗,

which ensures that Xj(1) has the same mean as Xj(0), while their medians are different.
Above, [x] indicates rounding to ensure the generated expression levels are integers.

These DGPs aim to simulate complex data structures that reflect real-world phenomena, such
as varying levels of signal perturbation and the impact of such variations on statistical analyses,
particularly in the context of mean and median shifts in treated distributions.

We also inspect the effect of cross-fitting, which helps fulfill the sample splitting requirement
and improves the estimation and inference accuracy. More specifically, we randomly split n
observations into K disjoint folds N1, . . . ,NK . Then, for the kth fold Nk, we compute the
influence function values φ̂ij for i ∈ Nk with nuisance functions estimated from observations in
other folds N1, . . . ,Nk−1,Nk+1, . . .NK . We set the number of folds K = 5.

As shown in Figure B.62, the BH procedure for the ATE test controls the FDR at the desired
level. When a large sample size, the FDR for the STE test with the BH procedure also gets closer
to the desired threshold. This may be because the test statistics get more positively dependent on
cross-fitting. However, the BH procedure does not control the FDR for the QTE test. In terms
of FDX, the proposed multiple testing procedure gets tighter control, while the BH procedure
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still fails to control it. Finally, the power deteriorates with cross-fitting compared to results in
Figure 3.2.
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Figure B.61: The histogram of different statistics in one simulation of Figure 3.2 under mean shifts

with n = 100. In this experiment, the number of true non-nulls is 200, while BH produces 258

discoveries with a q-value cutoff of 0.1, yielding 30% false discoveries.
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Figure B.62: Simulation results of the hypothesis testing of p = 8000 outcomes based on different

causal estimands and FDP control methods for detecting differential signals under (a) mean shifts

and (b) median shifts averaged over 50 randomly simulated datasets with 5-fold cross-fitting. The

gray dotted lines denote the nominal level of 0.1.
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LUHMES data

gRNA Number of cells n Number of genes p
Number of

perturbed cells

PTEN 1014 1444 458
CHD2 756 1360 200
ASH1L 725 1360 169
ADNP 895 1416 339

Table B.61: The summary of sizes of data under different perturbations.

gRNA Common ATE only STE only

PTEN

PTH2, PTGDS,
NEFM, EEF1A1,
C21orf59, MFAP4,
ALCAM, NEFL,
ITM2C, EIF3E,

CRABP2, SLC25A6,
EIF3L, WLS,

PPP1R1C, GNB2L1,
SVIP, RGS10, H3F3A,

DRAXIN, GNG3,
TCP10L, EIF3K

PCP4, MYL1, RAI14,
DNER, MAP7, SNCA,

TSC22D1, NRP2,
SKIDA1

CCER2, PRDX1,
TCF12

CHD2
EEF1A1, NEFL,

GNG3, ID4, EEF2,
STMN2

PRDX1, TUBB4B PCP4

ASH1L
MT-CO1, MT-CYB,

FXYD7
PKP4

ADNP C21orf59, MAP1B
PTGDS, KLHL35,

LHX2

Table B.62: Sigfinicant genes for different guide RNA mutation on the late-stage cells. The last

three columns show the discoveries that are significant in (1) both the ATE and the STE tests, (2)

only the ATE tests, and (3) only the STE tests.
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Lupus data
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Figure B.63: Upset plot of discoveries by tests based on different causal estimands on the T4, T8,

NK, B, and cM cell types of Lupus data set.
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B.6.3 Perturb-seq data
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Figure B.64: Additional results on the Perturb-seq dataset. a, Barplot of the number of

cells in each perturbation. b, Heatmap of the number of cells in each batch and perturbation. The

batch design and the perturbation assignment of the Perturb-seq dataset are highly correlated. c,

Clustermaps of GO terms enriched in discoveries (FDR< 0.1) from causarray and RUV, respectively,

where the common GO terms are highlighted in blue. Only the top 40 GO terms that have the most

occurrences in all perturbations are displayed. d, Barplot of GO terms enriched in discoveries under

Mll1 perturbation from RUV.
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a

b

Figure B.65: Estimation results of causarray on the Perturb-seq dataset. a, The JIC

criteria suggests a number of latent factor r = 10. b, Histograms of estimated propensity score for

the top 4 perturbations (Satb2, Cul3, Ddx3x, and Asxl3) with most significant genes (adjusted P

value < 0.1).
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B.6.4 Alzheimer’s data
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Figure B.66: Extra experimental results in AD datasets. a, Histogram of estimated propen-

sity score in three AD datasets. b, Estimated effect sizes of DE genes (FDR < 0.001) in SEA-AD

datasets. The black dashed line represents the fitted linear regression model, and the red dotted

line represents the line y = x. c, Top gene ontology terms of the shared and distinct discoveries by

causarray and RUV. 146



Appendix C

Assumption-Lean Post-Integrated
Inference with Negative Control
Outcomes

Notation. Throughout our exposition, we will use the following notational conventions. We use
uppercase letters for random variables/vectors (e.g., Y,X,U) and lowercase for sample vectors,
respectively (e.g., y, x, u). For a matrix β ∈ Rd×p, its jth column is denoted by β·j . Sets are
denoted by calligraphic uppercase letters (A, C). Bold font is only used to denote design matrices
and response matrices (e.g., Y ,X,U) whose first dimension equals the sample size. For p ∈ N,
[p] := {1, . . . , p}. For a set A, let |A| be its cardinality.

For a random vector X ∈ Rp, PX denotes the projection in L2. For any matrix A ∈ Rn×p
with full column rank, let PA = A(A⊤A)−1A⊤ and P⊥

A = Ip − PA be the orthogonal projection
matrices on the A’s column space and its orthogonal space, respectively. For any square matrix
A ∈ Rn×n, λi(A) denotes its ith eigenvalue. The Gram matrix of A⊤ is denoted by A⊗2 := AA⊤.
Matrix Hadamard product is denoted by ⊙. For two symmetric matrices A,B ∈ Rn×n, we write
that A ⪯ B (A ⪰ B) if B − A (A − B) is positive semi-definite. For a ∈ Rm, ∥a∥q denotes the
ℓq-norm for q = 1, . . . ,∞. For a ∈ Rm, A ∈ Rm×n, ∥a∥ and ∥A∥ denote the ℓ2-norm and operator
norm, respectively. The condition number of A is defined as κ(A) = ∥A∥∥A−1∥. For any random
vector X, its Lq norm is defined as ∥X∥Lq

= E[∥X∥qq]1/q for q = 1, . . . ,∞.
For (potentially random) measurable functions f , we denote expectations with respect to Z

alone by Pf(Z) =
∫
f dP, and with respect to both Z and the observations where f is fitted on by

E[f(Z)]. The empirical expectation is denoted by Pnf(Z) = 1
n

∑n
i=1 f(Zi). Similarly, the popula-

tion and empirical variances (or covariance) are denoted by V and Vn, respectively. The identity

map is denoted by I. We write the (conditional) Lp norm of f as ∥f∥Lp
=
[∫
f(z)p dP(z)

]1/p
for

p ≥ 1.
We use “o” and “O” to denote the little-o and big-O notations and let “oP” and “OP” be

their probabilistic counterparts. For sequences {an} and {bn}, we write an ≪ bn or bn ≫ an
if an = o(bn); an ≲ bn or bn ≳ an if an = O(bn); and an ≍ bn if an = O(bn) and bn = O(an).
Convergence in distribution and probability are denoted by “

d−→” and “
p−→”. For a, b ∈ R, we write

a ∨ b = max{a, b} and a ∧ b = min{a, b}.
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C.1 Related work

Batch correction and data integration. Large-scale single-cell transcriptomic datasets of-
ten include samples that span locations, laboratories, and conditions, leading to complex, nested
batch effects in data [111, 165]. Batch correction specifically targets the removal of unwanted
variation due to differences in batches within a single study, ensuring that the remaining data is
comparable and reflects true biological differences. On the other hand, data integration focuses
on combining and harmonizing multiple datasets to enhance statistical power and provide a more
comprehensive analysis, dealing with both batch effects and between-dataset heterogeneity. De-
spite these differences, batch correction and data integration share the common goal of removing
unwanted variation and preserving biological variation [186]. The integrated data is then used
for downstream analysis, such as dimension reduction, clustering, and differential expressed gene
testing. Integrated cellular profiles are typically represented as an integrated graph, a joint em-
bedding, or a corrected response matrix. The main focus of the current paper is on the last
category.

Despite the efforts from the computational biology and machine learning community to achieve
better predictive power and data alignment, most existing batch correction methods are shown to
be poorly calibrated [5, 114]. For statistical inference, many heuristic methods have been proposed
to remove the batch effects and unwanted variations in the past decade. Leading examples include
Remove Unwanted Variation (RUV) [56] and Surrogate Variable Analysis (SVA) [99]. RUV/SVA
uses estimated factors of unwanted variation from unadjusted data, which works even if the batch
design is unknown. When the batch design is known, two-step procedures for batch correction
have also been proposed under parametric or mixture models [101, 112].

Unmeasured confounders adjustment and negative control outcomes. Over the past
decades, researchers have been exploring methods to address the issue of unmeasured confounders
in statistical analysis. In the presence of multiple outcomes, deconfounding techniques primarily
employ two strategies: incorporating known negative control outcomes or leveraging sparsity as-
sumptions [175]; while there is also another line of research on proximal causal inference, which
uses both negative control outcomes and/or exposures for deconfounding [124]. For a comprehen-
sive review of the literature on sparsity-based methods, readers are directed to Du et al. [48] and
Zhou et al. [189]. This paper focuses on the negative control approach in the context of multiple
outcomes.

Most existing works on confounder adjustment presume the knowledge of causal structure
when the unobserved variable U is a mediator [175] and when U is a confounder Miao et al. [125],
corresponding to Figure 4.3(a) and Figure 4.3(b), respectively. Recently developed sparsity-based
methods by Bing et al. [20], Du et al. [48] have tried to relax this assumption to allow for a more
flexible relationship between X and U . In particular, each entry of U can belong to different
cases in Figure 4.3.

Negative control outcomes are used in observational studies under the key assumption that
exposure has no causal effect on these outcomes. Rosenbaum [145] demonstrated that negative
control outcomes can be employed to test for the presence of hidden confounding in observational
studies. By introducing an additional variable known as a negative control exposure, Miao et al.
[124] further showed that the average causal effect can be identified nonparametrically. Building
upon this work, Shi et al. [156] developed a semiparametric inference procedure specifically for
scenarios involving a categorical latent confounder and a binary exposure. Under linear latent
models, Galbraith and Zinde-Walsh [57] use principal components of a set of potential controls
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to adjust for unmeasured confounding effects. Under nonparametric models for a single outcome
and multiple treatments Miao et al. [125] derive nonparametric identification conditions.

Assumption-lean semiparametric inference. There is increasing interest in deriving assumption-
lean inference by using projection-based estimators [16] or semiparametric estimators [171]. The
inferential problems we considered are also related to two-stage inference problems, such as post-
sufficient dimension reduction inference [89], post-imputation inference [127], and inference with
substituted covariate [2] or nonparametrically generated covariates [115]. While these related
methods offer valuable insights into two-stage inference processes, they do not directly extend to
address the challenges encountered in post-integrated inference problems.

C.2 Comparisons with related deconfounding approaches

C.2.1 Design-based approaches

As mentioned in the introduction, our paper mainly focuses on design-free data integration ap-
proaches. However, it is possible to relate the design-based approaches to design-free approaches
so that the proposed method can be applied, as we discuss below. Design-based data integration
approaches, such as Combat [80] and BUS [112], are usually based on a linear model:

Yj = αj +Xβj + γBj + ϵBj , j = 1, . . . , p,

where αj , βj ∈ R are coefficients for common variations while γBj ∈ R is the location and ϵBj ∈ R
is a mean-zero noise with scale differences across batches, respectively, for batch B ∈ [nB − 1]
(with group B = 0 being the baseline and γ0j = 0) and nB is the total number of batches. This
implies that

E[Yj | X,B] = αj +Xβj + γBj , j = 1, . . . , p.

Let UB ∈ {0, 1}nB be the one-hot vector with only the B-th entry being one and zero elsewhere.
Then, we can rewrite the above as

E[Y | X,UB] = α+ β⊤X + f(UB)

where f(UB) = γ⊤UB and γ = [γbj ]b∈[nB ],j∈[p]. In other words, the location-and-scale model
considered by Johnson et al. [80] and Luo and Wei [112] is a special case of partial linear models
with heterogenous noises, though they have utilized empirical Bayes shrinkage to improve the
estimates. For this reason, a generalized least square approach could be used to improve Combat,
as suggested by Li et al. [101].

In fact, when the additive noises are normal, we can decompose the noise as ϵBj = Uϵ+Zj for

B > 0 such that Uϵ ⊥⊥ ϵ′j and ϵ′j
d
= ϵ0j . To see this, define τ2 = V(ϵBj) and σ2 = V(ϵ0j). Without

loss of generality, we assume ϵ0j ≤ minb∈[nB ] ϵbj so that τ
2 ≥ σ2. If we define Uϵ := 1

τ(τ2−σ2)
ϵBj+Zj

and ϵ′j := ϵBj − Uϵ, where Zj ∼ N (0, σ2

(τ2−σ2)2
) is independent of ϵBj , then Uϵ and ϵBj − Uϵ are

independent because Cov(Uϵ, ϵBj − Uϵ) = (τ2(τ2 − σ2)2)−1V(ϵBj)−V(Zj) = 0. Here, we use the
fact that two jointly normal random variables are independent if they are uncorrelated. In other
words, we can rewrite the above model as

E[Y | X,U ] = α+ β⊤X + f(U),
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where f(U) = [γ,1{B > 0}]⊤U and U = [UB, Uϵ]. By absorbing part of the randomness of
the additive noises into U , we convert the problem with heterogeneous noises into one with
homogeneous noises studied in the current paper.

C.2.2 Unknown negative control outcomes

In this paper, we have focused on negative control outcomes to remove unwanted variations. When
the negative control outcomes are unknown in advance, there are still possibilities to estimate
the latent embedding and provide valid inferences. However, this typically requires extra sparsity
assumptions on the effects of the covariate on multiple outcomes rather than utilizing the negative
control outcomes. To illustrate the idea, we consider the following partial linear model:

E[Y | X,U ] = β⊤X + h(U).

Many methods start from the projected model

E[P⊥
XY | X,U ] = P⊥

Xh(U). (C.2.1)

If the function P⊥
Xh has a good structure, then one may be able to recover U from P⊥

XY . Al-
ternatively, we can linearize the problem and seek partial recovery of the effect, as demonstrated
below.

Example 1 (Linear models). If h is a linear function such that h : U 7→ η⊤U for η ∈ Rr×p, then

Y = [β η]⊤
[
X
U

]
+ E.

With n i.i.d. samples, we obtain the following equation in matrix form:

Y = Xβ +Uη +E. (C.2.2)

Early methods in the literature rely on the assumption of the functional relationship between X
and U . For example, Wang et al. [175] assume U to be a linear function of X with an additive
Gaussian noise:

U = Xα+W, (C.2.3)

in which case the sample counterpart of (C.2.1) reduces to

P⊥
XY = P⊥

X(W η +E). (C.2.4)

Because the orthogonal projection is rank-deficient, one can further eliminate d rows of the above
system of equations by elementary matrix transformation. For this purpose, Wang et al. [175]
use QR decomposition by Householder rotation to derive a linear system of n − d equations;
e.g., Equation (2.5) and Equation (4.5) in Wang et al. [175] for d = 1 and d > 1, respectively.
From this, η̂ is recovered from quasi-log-likelihood estimation. In the second step, the unknown
coefficient (α, β) is estimated from (C.2.4) by plugging in the estimate η̂.

Under more general confounding machinism when (C.2.3) does not necessarily hold, Bing et al.
[19, 20] rotate the original system to consistently estimate the marginal effect, under sparsity
assumption on β and proper moment assumptions. They then use the residual from the lava
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fit to uncover the column space of η. Finally, the partial coefficient βP⊥
η is recovered from the

rotated system:
Y P⊥

η = XβP⊥
η +EP⊥

η .

These results have been extended to generalized linear models by Du et al. [48] using joint
maximum likelihood estimation. When β is sparse, then it can be recovered by some estimator
of βP⊥

η asymptotically. Note that the above approaches do not have too many restrictions
on the observed covariate X and the latent embedding U , except for certain bounded moment
assumptions.

Inspired by the success of methodologies development under linear models Example 1, one
strategy for an extension to a nonlinear model is by linearizing the estimation problem. Specif-
ically, suppose h(U) = Uη + R(U) for some remainder term R that depends on U , similarly we
have a projection-based decomposition:

P⊥
XY = P⊥

XUη + P⊥
X(R(U) +E)

Y P⊥
η = XβP⊥

η + (R(U) +E)P⊥
η ,

from which one may seamlessly use the methods by Bing et al. [19, 20] and Du et al. [48] when
the remainder term can be well controlled.

Another possible strategy aligned with the angle of the current paper is to detect “weak”
negative control outcomes and perform post-integrated inference based on such pseudo-negative
control outcomes, as in Section 4.5. This approach is very similar to weak instrument detection
and invalid instrumental variables selection; see, for example, Andrews et al. [4] and Windmeijer
et al. [177]. We expect the rich literature on these related problems could lead to new method-
ological advances in post-integrated inference problems.
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C.3 Nonparametric identification

Proof of Theorem 21. Under the equivalence assumption (Assumption 10 2), for any admissible
distribution f̃(yC , u) we must have some invertible function v such that f̃(yC , u) = f{YC =
yC , v(U) = u}. Note that (4.2.2) has at least one solution f̃(x | u) = f(x | v−1(u)); when this is
the solution, define f̃(yCc | x, u) := f(yCc | x, v−1(u)). Then, f̃(yCc | x, u) is also one solution to
(4.2.3).

Because v(U) is invertible, the ignorability assumption (Assumption 9 3) Y (x) ⊥⊥ X | U
implies that Y (x) ⊥⊥ X | v(U); the completeness assumption Assumption 10 3 implies that
f̃(u) > 0 on u ∈ v(U) and f̃(u | yC , x;α) is also complete in yC . Further, from Assumption 9 2,
the positivity condition fX|v(U)(x | v(u)) ∈ (0, 1) also holds for all (x, u) ∈ X ×U . Then, we have

fY (x)(y) =

∫
fY (x)|U (y | u)f(u) du

=

∫
fY (x)|U,X(y | u, x)f(u) du (Assumption 9 2-3)

=

∫
f(y | u, x)f(u) du (Assumption 9 1)

=

∫
f(yCc | u, x)f(yC | u)f(u) du (Assumption 10 1)

=

∫
f(yCc | u, x)f(yC , u) du

=

∫
f̃(yCc | x, u)f̃(yC , u) du,

where the last equality follows from the same derivation of g-formula applied on random variables
(Y,X, v(U)). This completes the proof for the second conclusion.

We next show the uniqueness of the solutions to (4.2.2) and (4.2.3). For any candidate
solutions f̃1(x | u) and f̃2(x | u) to (4.2.2), we must have that∫

(f̃1(x | u)− f̃2(x | u))f̃(u) du = 0,

which implies that f̃1(x | U) − f̃2(x | U) = 0 almost surely because of the completeness of f̃(u).
Note that for any candidate solutions f̃1(yCc | x, u) and f̃2(yCc | x, u) to (4.2.3), we must have
that ∫

(f̃1(yCc | x, u)− f̃2(yCc | x, u))f̃(u | yC , x) du · f(yC , x) = 0.

By the completeness property, this implies that f̃1(yCc | x, U)− f̃2(yCc | x, U) = 0 almost surely.
Therefore, f̃(yCc | x, u) is uniquely determined from (4.2.3). This completes the proof.
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C.4 Nonlinear main effects with estimated embeddings

C.4.1 Proof of Theorem 22

Proof of Theorem 22. Denote A = E[Cov(X | U)], Â = E[Cov(X | Û)], B = E[Cov(X,E[Y |
X,U ] | U)], and B̂ = E[Cov(X,E[Y | X,U ] | Û)]. From Lemma C.4.1, we know that the error of
two linear regression coefficients ∥β̃·j − β·j∥ is governed by ∥A − Â∥ and ∥B·j − B̂·j∥, where the
subscript j indicates the jth column of the corresponding matrices.

Part (1) Covariance estimation errors. To apply Lemma C.4.1, we first derive the error
bounds for the two quantities. Note that Cov(X | U) = E[X⊗2 | U ]− E[X | U ]⊗2. We have

∥A− Â∥

=∥E[Cov(X | U)− Cov(X | Û)]∥

=∥E[E[X | U ]⊗2 − E[X | Û ]⊗2]∥

≤E[∥E[X | U ]⊗2 − E[X | Û ]⊗2∥] (Jensen’s inequality)

≤E[∥E[X | U ](E[X | U ]− E[X | Û ])⊤∥+ ∥(E[X | U ]− E[X | Û ])E[X | Û ]⊤∥]
(triangle inequality)

=E[∥E[X | U ]∥∥E[X | U ]− E[X | Û ]∥+ ∥E[X | U ]− E[X | Û ]∥∥E[X | Û ]∥]

≤(∥E[X | U ]∥L2
+ ∥E[X | Û ]∥L2

)∥E[X | Û ]− E[X | U ]∥L2
(Cauchy–Schwarz inequality)

≤2∥X∥L2
∥E[X | Û ]− E[X | U ]∥L2

. (Jensen’s inequality)

Similarly, the second covariance estimation error can be upper bounded as

∥B·j − B̂·j∥

=∥E[Cov(X,E[Yj | X,U ] | U)− Cov(X,E[Yj | X, Û ] | Û)]∥

=∥E[E[X | U ]E[Yj | X,U ]− E[X | Û ]E[Yj | X, Û ]]∥

≤E[∥E[X | U ]E[Yj | X,U ]− E[X | Û ]E[Yj | X, Û ]∥] (Jensen’s inequality)

≤E[∥E[X | U ](E[Yj | X,U ]− E[Yj | X, Û ])∥+ ∥(E[X | U ]− E[X | Û ])E[Yj | X, Û ]∥]
(triangle inequality)

=E[∥E[X | U ]∥|E[Yj | X,U ]− E[Yj | X, Û ]|+ ∥E[X | U ]− E[X | Û ]∥|E[Yj | X, Û ]|]

≤∥E[X | U ]∥L2
∥E[Yj | X, Û ]− E[Yj | X,U ]∥L2

+ ∥E[Yj | X, Û ]∥L2
∥E[X | Û ]− E[X | U ]∥L2

(Cauchy–Schwarz inequality)

≤∥X∥L2
∥E[Yj | X, Û ]− E[Yj | X,U ]∥L2

+ ∥Yj∥L2
∥E[X | Û ]− E[X | U ]∥L2

. (Jensen’s inequality)

Part (2) Coefficient estimation error in terms of covariance estimation errors. When
∥E[X | Û ]−E[X | U ]∥L2

< σ/(2M), from Part (1) we have κ(A)∥A− Â∥/∥A∥ = ∥A−1∥∥A− Â∥ <
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1. From Lemma C.4.1, we further have that

max
j∈Cc
∥β̃·j − β·j∥ ≤

maxj∈Cc κ(A)

(
∥β·j∥∥A− Â∥

∥A∥
+
∥Bj − B̂j∥
∥A∥

)

1− κ(A)∥A− Â∥
∥A∥

≲ ∥X∥L2
max
j∈Cc
∥β·j∥∥E[Yj | X, Û ]− E[Yj | X,U ]∥L2

+ (∥X∥L2
+max

j∈Cc
∥Yj∥L2

)∥E[X | Û ]− E[X | U ]∥L2
,

where in the last inequality, we use the boundedness of A’s spectrum from Assumption 12.

Part (3) Coefficient estimation error in terms of covariate estimation errors. From
Lemma C.4.3, it follows that

max
j∈Cc
∥β̃·j − β·j∥ ≲

(
∥X∥L2

(L
1
2
X + L

1
2
Y ) + max

j∈Cc
∥Yj∥L2

)
∥v−1(Û)− U)∥L2

,

with LY = maxj∈[p] LYj .

C.4.2 Proof of Lemma 23 (linear models)

Proof of Lemma 23. For observations (X,Y ,U) ∈ Rn×d × Rn×p × Rn×r and an estimate Û ∈
Rn×r̂ of U , we have S = X⊤P⊥

UX, S̃ = X⊤P⊥
Û
X, Ȳ = P⊥

UY , and Ỹ = P⊥
Û
Y . Furthermore,

the regression coefficient on (P⊥
UX, P⊥

UY ) can be expressed as

b = (X⊤P⊥
UX)−1X⊤P⊥

UY = S−1X⊤Ȳ /n,

and the regression coefficient on (P⊥
Û
X, P⊥

Û
Y ) can be expressed as

b̃ = (X⊤P⊥
Û
X)−1X⊤P⊥

Û
Y = S̃−1X⊤Ỹ /n.

From Lemma C.4.1, we have

max
j∈Cc
∥b̃·j − b·j∥ ≤

κ(S)

∥S∥op
maxj∈[p] ∥b·j∥∥S̃ − S∥+ ∥X⊤(Ỹ·j − Ȳ·j)/n∥

1− κ(S)∥S̃ − S∥
∥S∥op

. (C.4.1)

This requires verifying the assumptions therein. Specifically, we verify (C.4.4) below. Because

∥S̃ − S∥ = ∥X⊤(P⊥
Û
− P⊥

U )X/n∥

≤ ∥X⊤X/n∥∥P⊥
Û
− P⊥

U ∥

= ∥S∥op∥P⊥
Û
− P⊥

U ∥,

and κ(S)∥P⊥
Û
− P⊥

U ∥ < 1 as assumed, we have

∥S̃ − S∥
∥S∥op

<
1

κ(S)
,
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which verifies (C.4.4) of Lemma C.4.1. On the other hand, we also have

∥X⊤(Ỹ − Ȳ )∥2,∞ = ∥X⊤(P⊥
Û
− P⊥

U )Y ∥2,∞ ≤ ∥P⊥
Û
− P⊥

U ∥∥X∥op∥Y ∥2,∞.

Therefore, (C.4.1) implies that

max
j∈Cc
∥b̃·j − b·j∥ ≤

∥S∥op∥b∥2,∞ + ∥X∥op∥Y ∥2,∞/n
∥S∥op

κ(S)∥P⊥
Û
− P⊥

U ∥
1− κ(S)∥P⊥

Û
− P⊥

U ∥

≤ (∥b∥2,∞ + ∥S∥−
1
2

op ∥Y ∥2,∞n−
1
2 )

κ(S)∥P⊥
Û
− P⊥

U ∥
1− κ(S)∥P⊥

Û
− P⊥

U ∥

whenever ∥S∥op ̸= 0 and κ(S)∥P⊥
Û
− P⊥

U ∥ < 1.

C.4.3 Auxillary lemmas

Lemma C.4.1 (Backward error of perturbed linear systems). Let A ∈ Rn×n be nonsingular,
b ∈ Rn, and x = A−1b ∈ Rn. In the following, ∆A ∈ Rn×n and ∆b ∈ Rn are some arbitrary
matrix and vector. We assume that the norm on A satisfies ∥Ax∥ ≤ ∥A∥∥x∥ for all A ∈ Rn×n
and all x ∈ Rn. Suppose (A+∆A)x̂ = b̂ such that

b̂ := b+∆b ̸= 0 (C.4.2)

x̂ := x+∆x ̸= 0 (C.4.3)

∥∆A∥
∥A∥

<
1

κ(A)
, (C.4.4)

where κ(A) = ∥A∥∥A−1∥ is the condition number of A. Then, it holds that

∥∆x∥ ≤
∥x∥κ(A)∥∆A∥∥A∥ + κ(A)∥∆b∥∥A∥

1− κ(A)∥∆A∥∥A∥

.

If further, b ̸= 0 (or equiavlently x ̸= 0, then

∥∆x∥
∥x∥

≤
κ(A)

(
∥∆A∥
∥A∥

+
∥∆b∥
∥b∥

)
1− κ(A)∥∆A∥

∥A∥

.

Proof of Lemma C.4.1. We split the proof into two parts.

Part (1) We first show that when (C.4.4) is satisfied, A+∆A must be nonsingular. If A+∆A
is singular, then exists nonzero v such that (A + ∆A)v = 0. Since A is nonsingular, we have
A−1∆Av = −v. So

∥v∥ = ∥A−1∆Av∥ ≤ ∥A−1∥∥∆A∥∥v∥,

which implies that

∥∆A∥ ≥ 1

∥A−1∥
.
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On the other hand, since κ(A) = ∥A∥∥A−1∥, from (C.4.4) we have

∥∆A∥
∥A∥

<
1

∥A∥∥A−1∥
,

or equivalently,

∥∆A∥ < 1

∥A−1∥
.

This leads to contradictions. Therefore, A+∆A must be nonsingular.

Part (2) Since (A + ∆A)x̂ = b + ∆b and Ax = b, we have A∆x + ∆Ax̂ = ∆b. So ∆x =
A−1(∆b−∆Ax̂). Then we have

∥∆x∥
∥x̂∥

=
∥A−1(∆b−∆Ax̂)∥

∥x̂∥

≤ ∥A
−1∥(∥∆A∥∥x̂∥+ ∥∆b∥)

∥x̂∥

= ∥A−1∥∥A∥
(
∥∆A∥
∥A∥

+
∥∆b∥
∥A∥∥x̂∥

)
= κ(A)

(
∥∆A∥
∥A∥

+
∥∆b∥
∥A∥∥x̂∥

)
,

and

∥∆x∥ ≤ κ(A)
(
∥∆A∥
∥A∥

+
∥∆b∥
∥A∥∥x̂∥

)
∥x̂∥

= κ(A)

(
∥∆A∥
∥A∥

∥x̂∥+ ∥∆b∥
∥A∥

)
≤ κ(A)∥∆A∥

∥A∥
(∥x∥+ ∥∆x∥) + κ(A)

∥∆b∥
∥A∥

.

Rearrange the above inequality, we have(
1− κ(A)∥∆A∥

∥A∥

)
∥∆x∥ ≤ κ(A)∥∆A∥

∥A∥
∥x∥+ κ(A)

∥∆b∥
∥A∥

∥∆x∥ ≤
∥x∥κ(A)∥∆A∥∥A∥ + κ(A)∥∆b∥∥A∥

1− κ(A)∥∆A∥∥A∥

.

When x ̸= 0, we further have

∥∆x∥
∥x∥

≤
κ(A)∥∆A∥∥A∥ + κ(A) ∥∆b∥

∥A∥∥x∥

1− κ(A)∥∆A∥∥A∥

≤
κ(A)

(
∥∆A∥
∥A∥

+
∥∆b∥
∥b∥

)
1− κ(A)∥∆A∥

∥A∥

,

where the last inequality holds since ∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥.
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Lemma C.4.2. SupposeX,Y are two random vectors in Rd defined on probability space (Ω,F ,P),
and f : Rd → R is a F -measurable and satisfies the L-Lipschitz condition (in ℓq-norm) almost
surely. Then it holds that

∥f(X)− f(Y )∥Lq ≤ L1/q∥X − Y ∥Lq .

Proof of Lemma C.4.2. Note that

∥f(X)− f(Y )∥qLq
=

∫
|f(X)− f(Y )|q dP

≤
∫
L∥X − Y ∥qq dP (Lipschiz condition)

= L

d∑
j=1

∫
|Xj − Yj |q dP

= L∥X − Y ∥qLq

Then the conclusion follows by taking the q−1-power on both sizes.

Lemma C.4.3 (Error bound of regression function with estimated covariates). On a common
probability space (Ω,F ,P), consider a random vector W and a sequence of random vectors
{Vm}m∈N adapted to a filtration {Fm}m∈N such that Fm ⊆ Fm+1. Suppose that (i) ∥W∥L2

<∞,

(ii) Vm
a.s.−−→ V , and (iii) the function h(v) = E[W | V = v] satisfies the L-Lipschitz condition in

ℓ2-norm almost surely. Then, under (i)-(ii), it holds

E[W | Vm]
L2−→ E[W | V ],

and under (i)-(iii), it holds that

∥E[W | Vm]− E[W | V ]∥L2
≤ 2L

1
2 ∥Vm − V ∥L2

.

Proof of Lemma C.4.3. Define F∞ = σ(∪mFm). There exists some F∞-measurable function
h and Fm-measurable function hm such that h(V ) = E[W | V ] and hm(Vm) = E[W | Vm]
almost surely. Notice that (E[W | Vm])m∈N is a Doob martingale (because ∥W∥L1

< ∞). From
martingale convergence theorem, there exists V∞ = E[W | F∞] that is measurable with respect
to F∞ such that ∥V∞∥L1

< ∞ and E[W | Vm]
a.s.−−→ V∞. On the other hand, because Vm

a.s.−−→ V

from Assumption (ii), we know that V
a.s.
= V∞ is F∞-measurable. This implies that E[W | V∞] =

h(V∞) = h(V ) = E[W | V ] almost surely. Thus, we conclude that E[W | Vm]
a.s.−−→ E[W | V ]. By

Jensen’s inequality and Assumption (ii), we have ∥E[W | Vm]∥L2
≤ ∥W∥L2

< ∞, which implies
that the set of functions {E[W | Vm] : m ∈ N} is uniformly integrable. Thus, we further have

E[W | Vm]
L2−→ E[W | V ] from dominated convergence theorem.

Next, we need to derive the convergence rate. We have that

∥hm(Vm)− h(V )∥L2
≤ ∥hm(Vm)− h(Vm)∥L2

+ ∥h(Vm)− h(V )∥L2
. (C.4.5)

For the first term in (C.4.5), from the martingale property, the function representation
hm(Vm) = E[h(V ) | Fm] gives that

∥hm(Vm)− h(Vm)∥L2
= ∥E[h(V ) | Fm]− h(Vm)∥L2

≤ ∥h(V )− h(Vm)∥L2
(C.4.6)
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where the last inequality is from Jensen’s inequality.
Combining (C.4.5) and (C.4.6) yields that

∥hm(Vm)− h(V )∥L2
≤ 2∥h(Vm)− h(V )∥L2

≤ 2L
1
2 ∥Vm − V ∥L2

,

where the last inequality is from Lemma C.4.2 by noting that h satisfies the L-Lipschitz condition
from Assumption (iii).
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C.5 Doubly robust semiparametric inference

C.5.1 Proof of Theorem 24 and Corollary 25

Proof of Theorem 24 and Corollary 25. Theorem 24 is a special case of Theorem C.5.1 with non-
linear link functions. The proof follows by applying Theorem C.5.1 with g being identity. Mean-
while, the assumption in Theorem C.5.1 can be relaxed under this special case by noting that
E[Y | X,U ] can be replaced by Y because the residual Y −E[Y | X,U ] is orthogonal to mean-zero
functions of (X,U) in the L2 space so that η(O) = Y − E[Y | U ] under identity link.

C.5.2 Proof of Proposition 26

Proof of Proposition 26. From Theorem 24, we have

√
n(̃b− β̃) =

√
nΣ̃−1(Pn − P){φ̃(O;P)}+ ξ,

where the remainder term ξ satisfies that ∥ξ∥2,∞ = oP(1) under the rate conditions in Theorem 24.

Recall that tj =
√
nVn{φ̃·j(O; P̂)}

1
2 Σ̂−1(̃b·j − β̃·j). We have that

v⊤tj =
√
nv⊤Vn{φ̃·j(O;P)}

1
2 (Pn − P){φ̃·j(O;P)}

+ (
√
nv⊤(Vn{φ̃·j(O; P̂)}

1
2 − Vn{φ̃·j(O;P)}

1
2 )(Pn − P){φ̃·j(O;P)}+ v⊤Vn{φ̃·j(O; P̂)}

1
2 Σ̂−1ξ·j)

=: ϑj + ςj .

For the first component, note that ϑj for j = 1, . . . , p are independent conditional on (X,U)’s.

Furthermore, the self-normalizing term ϑj
d−→ N (0, 1) for j ∈ Np . By the strong law of

large number, Vn{φ̃·j(O;P)} a.s.−−→ V{φ̃·j(O;P)}, Vn{φ̃·j(O; P̂)} a.s.−−→ V{φ̃·j(O;P)} and Σ̂
a.s.−−→ Σ̃

when both m,n, p → ∞. This implies that maxj ∥Vn{φ̃·j(O; P̂)} − Vn{φ̃·j(O;P)}∥op
a.s.−−→ 0,

maxj ∥Vn{φ̃·j(O; P̂)} − V{φ̃·j(O;P)}∥op
a.s.−−→ 0, ∥Σ̃ − Σ̂∥op

a.s.−−→ 0, which follows from Patil et al.
[136, Lemma S.8.6 (1)] by noting that the variables O’s are iid in the triangluar array. For the
second component, we have that

max
1≤j≤p

|ςj | ≤ max
1≤j≤p

∥Vn{φ̃·j(O; P̂)}
1
2 − Vn{φ̃·j(O;P)}

1
2 ∥op · ∥

√
n(Pn − P){φ̃·j(O;P)}∥2

+ max
1≤j≤p

∥Vn{φ̃·j(O; P̂)}
1
2 Σ̂−1∥op∥ξ·j∥2

= oP(1)OP(1) +OP(1)oP(1)

= oP(1).

Let ϱ = |Np|−1
∑

j∈Np
1{
∣∣v⊤tj∣∣ > zα

2
}. To prove the overall Type-I error control, we will

show the expectation that ϱ tends to α, and its variance tends to zero. For the expectation, for
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any ϵ > 0, we have

E[ϱ] =
1

|Np|
∑
j∈Np

P
(∣∣∣v⊤tj∣∣∣ > zα

2

)
≤ 1

|Np|
∑
j∈Np

[
P
(
|ϑj | > zα

2
− ϵ
)
+ P (|ςj | > ϵ)

]
=

1

|Np|
∑
j∈Np

P
(
|ϑj | > zα

2
− ϵ
)
+

1

|Np|
∑
j∈Np

P (|ςj | > ϵ)

≤ 1

|Np|
∑
j∈Np

P
(
|ϑj | > zα

2
− ϵ
)
+ P

(
max
1≤j≤p

|ςj | > ϵ

)
→ 2

(
1− Φ

(
zα

2
− ϵ
))

,

where the last convergence holds because the Cesaro mean converges to the same limit as

lim
n,p

P
(
|ϑj | > zα

2
− ϵ
)
= 2

(
1− Φ

(
zα

2
− ϵ
))

,

while the term P(max1≤j≤p |ςj | > ϵ) varnishes. Similarly, we can show that lim infn,p→∞ E[ϱ] ≥
2
(
1− Φ

(
zα

2
− ϵ
))

for all ϵ > 0. Let ϵ→ 0+, it follows that E[ϱ]→ α as n, p→∞.

For any ϵ > 0, the second moment can be upped bounded as below:

E[ϱ2] =
1

|Np|2
∑

j,k∈Np

P
(∣∣∣v⊤tj∣∣∣ > zα

2
,
∣∣∣v⊤tk∣∣∣ > zα

2

)
=

1

|Np|2
∑
j∈Np

P
(∣∣∣v⊤tj∣∣∣ > zα

2

)
+

1

|Np|2
∑

j,k∈Np,j ̸=k
P
(∣∣∣v⊤tj∣∣∣ > zα

2
,
∣∣∣v⊤tk∣∣∣ > zα

2

)
≤ 1

|Np|2
∑
j∈Np

P
(∣∣∣v⊤tj∣∣∣ > zα

2

)
+

1

|Np|2
∑

j,k∈Np,j ̸=k
P
(
|ϑj | > zα

2
− ϵ, |ϑk| > zα

2
− ϵ
)
+ P (|ςj | > ϵ) + P (|ςk| > ϵ)

=
1

|Np|2
∑

j,k∈Np,j ̸=k
P
(
|ϑj | > zα

2
− ϵ, |ϑk| > zα

2
− ϵ
)
+ o(1)

=
1

|Np|2
∑

j,k∈Np,j ̸=k
P(|ϑj | > zα

2
− ϵ | X, Û)P(|ϑk| > zα

2
− ϵ | X, Û) + o(1)

→ 4
(
1− Φ

(
zα

2
− ϵ
))2

,

where the last equality is from the independence of ϑj and ϑk. We can similarly obtain the lower
bound. Let ϵ → 0+, it follows that E[ϱ2] → α2 and V(ϱ) → 0 as n, p → ∞. Combining the

previous results yields that ϱ
p−→ α.

C.5.3 Nonlinear modeling

The natural extension of partial linear models to the nonlinear cases is the generalized partially
linear models [65, 154]:

g(E[Y | X,U ]) = β⊤X + h(U), (C.5.1)
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by introducing a proper link function g, applied element-wisely on the conditional mean of the
outcomes. Similar to the results in the previous sections, a nonlinear counterpart of the main
effect estimand (4.2.5) is given by

β(P) = E[Cov(X | U)]−1E[Cov[X, g(E(Y |X,U)) | U ]]. (C.5.2)

Such an estimand has been considered in Newey and Robins [130], Robins et al. [141] with
the identity link and in Vansteelandt and Dukes [171] with a single treatment. When the model
(C.5.1) is correctly specified, (C.5.2) is equivalent to the regression coefficient under model (C.5.1).
On the other hand, when the model (C.5.1) is misspecified, estimand (C.5.2) still represents a
meaningful statistical quantity.

With a differentiable link function g, the influence function (for Σ̃β̃) analoguous to (4.3.3) is
given by:

φ̃(O;P) := (X − E[X | Û ])(η(O)− β̃⊤(X − E[X | Û ]))⊤,

where the main effect estimand with estimated embedding is defined as:

β̃ = E[Cov(X | Û)]−1E[Cov[X, g(E(Y |X, Û)) | Û ]], (C.5.3)

and the function η is defined as:

η(O) = g′(E[Y | X, Û ])⊙ (Y − E[Y | X, Û ]) + g(E[Y | X, Û ])− E[g(E[Y | X, Û ]) | Û ].

The doubly robust semiparametric inference results in Theorem 24 and Corollary 25 can be
extended to accommodate nonlinear link functions, as shown in the next theorem.

Theorem C.5.1 (Doubly robust inference with nonlinear link functions). Under a nonparame-
teric model and a differentiable link function g, define the estimator of β in (C.5.2) as:

β̂ = Pn{(X − Ê(X | Û))⊗2}−1Pn{(X − Ê(X | Û)) · (I− Pn){g(Ê[Y | X, Û ])}⊤}, (C.5.4)

which depends on empirical measure Pn and two nuisance functions Ê[X | Û ] and Ê[Y | X, Û ]
estimated from independent samples of Pn. Under Assumptions 12 and 14 and assume that

1. Local Lipschitzness: There exists L > 0 such that ∥g(E[Y | X, Û ])−g(Ê[Y | X, Û ])−g′(Ê[Y |
X, Û ])⊙ (E[Y | X, Û ]− Ê[Y | X, Û ])∥∞ ≤ L∥E[Y | X, Û ]− Ê[Y | X, Û ]∥2∞.

2. Boundeness and consistency: Assumptions 12 and 14 hold with additionally, ∥η(O)∥L
2(1+δ−1)

<

M and ∥∥η̂(O)− η(O)∥∞∥L2(1+δ)
= oP(1).

3. Rate condition: ∥E[X | Û ]− Ê[X | Û ]∥2
L2
, ∥E[Y | X, Û ]− Ê[Y | X, Û ]∥2

L2
,∞, and ∥E[g(E[Y |

X, Û ]) | Û ]− Ê[g(Ê[Y | X, Û ]) | Û ]∥L2
,∞∥E[X | Û ]− Ê[X | Û ]∥L2

are of order oP(n
− 1

2 ).

Then, the estimator b̃ is asymptotically normal:

√
n(̃b·j − β̃·j)

d−→ Nd(0, Σ̃−1V{φ̃·j(O;P)}Σ̃−1), j = 1, . . . , p.

Furthermore, if the conditions of Theorem 22 hold with ℓm = o(n−
1
2 ), then we have

√
n(̃b·j − β·j)

d−→ Nd(0, Σ̃−1V{φ̃·j(O;P)}Σ̃−1), j = 1, . . . , p.
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Algorithm C.5.7 Semiparametric inference for main effects with nonlinear link functions

Input: Reponses Y , covariate X, estimated latent embedding Û , and link function g.
1: Use machine learning methods to obtain nuisance estimates Ê[Y | X, Û ] and Ê[X | Û ].

2: Use a data-adaptive fit g(Ê[Y | X, Û ]) ∼ Û to obtain estimated regression function Ê[g(Ê[Y | X, Û ]) |
Û ]. If X is categorical with finite support |X | < ∞, this simply reduces to Ê[g(Ê[Y | X, Û ]) | Û ] =∑

x∈X g(Ê[Y | X = x, Û ])Ê[X = x | Û ].

3: Fit a linear regression of η̂(O) ∼ X − Ê[X | Û ] without an intercept to obtain an estimate b̃ as defined

in (C.5.4) of β̃ as defined in (C.5.3).

4: Estimate the variance of b̃·j by Ŝj/n based on Theorem C.5.1, where Ŝj = Σ̂−1Vn{φ̃·j(O; P̂)}Σ̂−1.

Output: Confidence intervals and p-values based on asymptotic null distribution b̃·j
·∼ Nd(β̃·j ,

Ŝj

n ).

Compared to Theorem 24, Theorem C.5.1 requires additional assumptions regarding the Lip-
schitzness of the link function around the true regression function, as noted by Vansteelandt and
Dukes [171]. It also requires boundedness and consistency assumptions on the first-order expan-
sion term η. Nevertheless, the overall conclusion is similar when both the estimators and the
influence functions have a different link function for a different target estimand. The double ro-
bustness still allows efficient semiparametric inference with data-adaptive estimation procedures.

Proof of Theorem C.5.1. From Lemma C.5.3, we have

√
n(̃b− β̃) =

√
nP{(X − E(X | Û))⊗2}−1(Pn − P){φ̃(O;P)}+ ξ̃

where φ̃ is defined as

φ̃(O;P) = (X − E[X | Û ])(η(O)− β̃⊤(X − E[X | Û ]))⊤ (C.5.5)

and the remainder term ξ̃ satisfies that ∥ξ̃∥2,∞ = oP(1). This proves the first statement.

When ∥Û − U∥L2
= oP(n

− 1
2 ), from Theorem 22 we have ∥β̃ − β∥2,∞ = oP(n

− 1
2 ). Therefore,

we further have

√
n(̃b− β) =

√
n(̃b− β̃) +

√
n(β̃ − β) =

√
nP{(X − E(X | Û))⊗2}−1(Pn − P){φ̃(O;P)}+ ξ,

with ∥ξ∥2,∞ = oP(1).
To establish the asymptotic normality, we apply the triangle-array CLT in Lemma C.5.4. This

requires verifying the sufficient condition of the Lindeberg condition. Because V{Σ̃−1φ̃·j(O;P)} =
Σ̃−1V{φ̃·j(O;P)}Σ̃−1, we have

E[∥V{Σ̃−1φ̃·j(O;P)}−
1
2 (Σ̃−1φ̃·j(O;P))∥2+

2
δ ]

=E[∥V{φ̃·j(O;P)}−
1
2 φ̃·j(O;P)∥2+

2
δ ]

≤∥V{φ̃·j(O;P)}−
1
2 ∥2+

2
δ

op · E[∥φ̃·j(O;P)∥2+
2
δ ]

≤∥V{φ̃·j(O;P)}−
1
2 ∥2+

2
δ

op · (E[∥(X − E[X | Û ])ηj(O)∥2+
2
δ ] + E[∥(X − E[X | Û ])⊗2β̃·j∥2+

2
δ ])

≤∥V{φ̃·j(O;P)}−
1
2 ∥2+

2
δ

op · E[∥X − E[X | Û ]∥1+
1
δ ∥η(O)∥1+

1
δ ] + ∥β̃·j∥2+

2
δ

≤σ−1− 1
δM2+ 2

δ + ∥β̃·j∥2+
2
δ .

Now applying Lemma C.5.4 finishes the proof.
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C.5.4 Auxillary lemmas

Lemma C.5.2 (Efficient influence function). Consider a random variable O = (X,U, Y ) ∈
Rd × Rr × Rp under a nonparameteric model and a differentiable function g, the main effect
estimand in Rd×p:

β = E[Cov(X | U)]−1E[Cov(X, g(E[Y | X,U ]) | U)],

(where g is applied entry-wisely) has an efficient influence function µ : Rr × Rd × Rp → Rd×p
given by:

φ(O) = E[Cov(X | U)]−1(X − E[X | U ])(η(O)− β⊤(X − E[X | U ]))⊤,

where η : Rr × Rd × Rp → Rp is defined as:

η(O) = g′(E[Y | X,U ])⊙ (Y − E[Y | X,U ]) + g(E[Y | X,U ])− E[g(E[Y | X,U ]) | U ].

Proof of Lemma C.5.2. The proof follows similarly as in Vansteelandt and Dukes [171, Theorem
1] for a univariate treatment and a univariate outcome, and extends the previous results to the
multivariate cases. Below, we present a simplified derivation of the influence function.

Under the nonparametric model for the observed data O = (X,U, Y ). We first calculate the
efficient influence function of

θ(β) = E[(X − E[X | U ]))(g(E[Y | X,U ])− β⊤(X − E[X | U ]))⊤]

=

∫
(X − E[X | U ]))(g(E[Y | X,U ])− β⊤X) dP (O),

where P (O) is the joint distribution of data. Note that by the definition of β, we have θ(β) = 0.
Consider a one-dimensional submodel of p(O) indexed by a scalar parameter t, and let St(o) =

∂ log dPt(o)/∂t |t=0 denote the score function of the submodel. Similarly, let St(Y | X,U),
St(X | U) and St(U) be the scores w.r.t. t in that parametric submodel, corresponding to the
distributions p(Y | X,U), p(X | U) and p(U), respectively Taking the derivative of θ w.r.t. t, we
obtain

∂θ(β)

∂t

∣∣∣
t=0

=

∫
∂(X − Et[X | U ])

∂t

∣∣∣
t=0

(g(E[Y | X,U ])− β⊤X)⊤ dP (O)

+

∫
(X − E[X | U ]))

(
g′(E[Y | X,U ])⊙ ∂E[Y | X,U ]

∂t

∣∣∣
t=0

)⊤
dP (O)

+

∫
(X − E[X | U ]))(g(E[Y | X,U ])− β⊤X)⊤

∂pt(X,U)

∂t

∣∣∣
t=0

dO

= −
∫
(X − E[X | U ])E[g(E[Y | X,U ])− β⊤X | U ]⊤St(X | U) dP (O)

+

∫
(X − E[X | U ]))(g′(E[Y | X,U ])⊙ (Y − E[Y | X,U ]))⊤St(Y | X,U) dP (O)

+

∫
(X − E[X | U ]))(g(E[Y | X,U ])− β⊤X)⊤St(X,U) dP (O),

where in the first equality, we apply the product and chain rules [84, Section 3.4.3]; and in
the second equality, we use the identity St(Z) = ∂ log pt(Z)/∂t = (∂pt(Z)/∂t)/pt(Z) for score
functions.
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Note that

St(O) = St(Y | X,U) + St(X | U) + St(U).

From the zero mean properties of scores and θ(β) = 0, we further have

∂θ(β)

∂t

∣∣∣
t=0

= −
∫
(X − E[X | U ])E[g(E[Y | X,U ])− β⊤X | U ]⊤St(O) dP (O)

+

∫
(X − E[X | U ]))(g′(E[Y | X,U ])⊙ (Y − E[Y | X,U ]))⊤St(O) dP (O)

+

∫
(X − E[X | U ]))(g(E[Y | X,U ])− β⊤X)⊤St(O) dP (O)

=

∫
(X − E[X | U ]))(η(O)− β⊤(X − E[X | U ]))⊤St(O) dP (O),

which implies that (X − E[X | U ]))(η(O) − β⊤(X − E[X | U ]))⊤ is an influence function for θ.
From a similar argument in the proof of Theorem 1 in Vansteelandt and Dukes [171], it is also
the efficient influence function of θ(β) under the nonparametric model. Consequently, by chain
rule ∂θ/∂t = (∂θ/∂β)(∂β/∂t), the conclusion follows by taking the inverse of ∂θ/∂β.

Remark 15 (Alternative expression of the estimand). Note that the first part of the influence
function also gives an alternative expression for β:

β = E[Cov(X | U)]−1E[(X − E[X | U ])η(O)⊤] (C.5.6)

because

E[(X − E[X | U ])(g′(E[Y | X,U ])⊙ (Y − E[Y | X,U ]))⊤] = 0, (C.5.7)

by the law of iterated expectation.

Lemma C.5.3 (Doubly robust estimation). Consider the setting in Lemma C.5.2. Define a
plug-in estimator of β:

β̂ = Pn{(X − Ê(X | U))2}−1Pn{(X − Ê(X | U)) · (I− Pn){g(Ê[Y | X,U ])}⊤}

which depends on empirical measure Pn and two nuisance functions Ê[X | U ] and Ê[Y | X,U ]
estimated from independent samples of Pn. Define the population and empirical variance by

Σ := P{(X − E(X | U))⊗2}

Σ̂ := Pn{(X − Ê(X | U))⊗2},

the empirical influence function (for Σβ) by:

φ(O; P̂) := (X − Ê[X | U ])(η̂(O)− β̂⊤(X − Ê[X | U ]))⊤.

Suppose the following conditions hold:
• (Regularity conditions) There exists σ > 0 such that Σ ⪰ σId, Σ̂ ⪰ σId.
• (Bounded moments and consistency) There exists δ ∈ (0, 1] and M > 0, such that

∥β∥2,∞ ∨ ∥X − E[X | U ]∥L
2(1+δ−1)

∨ ∥X − Ê[X | U ]∥L
2(1+δ−1)

∨ ∥η(O)∥L
2(1+δ−1)

< M

∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
, ∥∥η̂(O)− η(O)∥∞∥L2(1+δ)

= oP(1)
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• (Local Lipshitzness) There exists L > 0 such that

∥g(E[Y | X,U ])− g(Ê[Y | X,U ])− g′(Ê[Y | X,U ])⊙ (E[Y | X,U ]− Ê[Y | X,U ])∥∞
≤L∥E[Y | X,U ]− Ê[Y | X,U ])∥2∞. (C.5.8)

Then, it holds that

√
n(β̂ − β) =

√
nΣ−1(Pn − P){φ(O;P)}+ ξ,

where for any ϵ > 0, there exists a constant C = C(ϵ, σ,M,L), such that with probability at least
1− 3ϵ, the remainder term satisfies that

∥ξ∥2,∞ ≤ C{∥(Pn − P){(X − E[X | U ])⊗2}∥op + ∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
+ ∥∥η(O)− η̂(O)∥∞∥L2(1+δ)

}

+ C
√
n{∥E[X | U ]− Ê[X | U ]∥2

L2

+ML∥E[Y | X,U ]− Ê[Y | X,U ]∥2
L2
,∞

+ ∥E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ]∥L2
,∞∥E[X | U ]− Ê[X | U ]∥L2

},

When ∥E[X | U ] − Ê[X | U ]∥2
L2
, ∥E[Y | X,U ] − Ê[Y | X,U ]∥2

L2
,∞, and ∥E[g(E[Y | X,U ]) |

U ] − Ê[g(Ê[Y | X,U ]) | U ]∥L2
,∞∥E[X | U ] − Ê[X | U ]∥L2

are of order oP(n
− 1

2 ), we further have
that ∥ξ∥2,∞ = oP(1) and hence

√
n(β̂·j − β·j)

d−→ Nd(0,Σ−1V{φ·j(O;P)}), j = 1, . . . , p.

Proof of Lemma C.5.3. From the definition of β̂, we have Pn{φ(O; P̂)} = 0. Therefore, β̂ is also
a one-step estimator. We begin with a three-term decomposition of the estimation error (see, for
example, Du et al. [49, Equation (2.2)] and Kennedy [84, Equation (10)]):

Σ̂
√
n(β̂ − β) =

√
n(Pn − P){φ(O;P)}

+
√
n(Pn − P){φ(O; P̂)− φ(O;P)}+

√
n(Σ̂− Σ̃)(β̂ − β)

+
√
nΣ̃(β̂ − β) +

√
nP{φ(O; P̂)}

=: C + T1 + T2, (C.5.9)

where Σ̃ := P{(X − Ê[X | U ])⊗2}. By the central limit theorem, each entry of the first term C
is OP(1). We next derive finite-sample deviation bounds for the other terms and show that they
are oP(1) under the extra rate conditions as assumed.

Part (1) Controlling the empirical process term T1. We begin by decomposing T1:

φ(O; P̂)− φ(O;P) + (X − Ê[X | U ])⊗2(β̂ − β)

=(X − Ê[X | U ])(η̂(O)− β̂⊤(X − Ê[X | U ]))⊤ − (X − E[X | U ])(η(O)− β⊤(X − E[X | U ]))⊤

+ (X − Ê[X | U ])⊗2(β̂ − β)

=[(X − E[X | U ])⊗2 − (X − Ê[X | U ])⊗2]β + [(X − Ê[X | U ])η̂(O)⊤ − (X − E[X | U ])η(O)⊤]

= : S1 + S2.
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Note that each term above takes the form of âb̂− ab = â(̂b− b)+ (â− a)b, which we will next use
to derive the upper bound.

For the first term, we have

√
n∥(Pn − P)S1∥2,∞

=
√
n∥(Pn − P)[(X − Ê[X | U ])⊗2 − (X − E[X | U ])⊗2]β∥2,∞

=
√
n∥(Pn − P){A1}β∥2,∞,

where

A1 = (X − Ê[X | U ])⊗2 − (X − E[X | U ])⊗2.

From Lemma C.5.5, we have

√
n∥(Pn − P)S1∥2,∞ ≤ ϵ−

1
2E[∥A1∥2op∥β∥22,∞]

1
2 ≤ ϵ−

1
2E[∥A1∥2op]

1
2 ∥β∥2,∞,

with probability at least 1−ϵ. Now, it remains to derive the upper bound of the expected squared
operator norm:

E[∥A1∥2op]
1
2 ≤ E[∥E[X | U ]− Ê[X | U ]∥22(∥X − E[X | U ]∥2 + ∥X − Ê[X | U ]∥2)2]

1
2

≤ ∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
(∥X − E[X | U ]∥L

2(1+δ−1)
+ ∥X − Ê[X | U ]∥L

2(1+δ−1)
).

Therefore, we have

√
n∥(Pn − P)S1∥2,∞ ≤ 2M2∥E[X | U ]− Ê[X | U ]∥L2(1+δ)

with probability at least 1− ϵ.
For the second term, similarly, we have

√
n∥(Pn − P)S2∥2,∞

≤ϵ−
1
2 max
j∈[p]

E[∥(X − Ê[X | U ])[(η̂(O)− η(O))⊤]·j + (E[X | U ]− Ê[X | U ])[η(O)⊤]·j∥2]
1
2

≤ϵ−
1
2 (∥X − Ê[X | U ]∥L

2(1+δ−1)
∥∥(η̂(O)− η(O))⊤∥22,∞∥

1
2
L1+δ

+ ∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
∥η(O)⊤∥L

2(1+δ−1)
,∞)

≤ϵ−
1
2M(∥∥η̂(O)− η(O)∥∞∥L2(1+δ)

+ ∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
)

with probability at least 1− ϵ.
Combining the above results, with probability at least 1− 2ϵ, we have

∥T1∥2,∞ ≤ 2M2∥E[X | U ]− Ê[X | U ]∥L2(1+δ)

+M(∥∥η̂(O)− η(O)∥∞∥L2(1+δ)
+ ∥E[X | U ]− Ê[X | U ]∥L2(1+δ)

)

≤ 2M(M ∨ 1)∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
+M∥∥η̂(O)− η(O)∥∞∥L2(1+δ)

. (C.5.10)
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Part (2) Controlling the bias term T2. For the third term T2 in (C.5.9), we have

T2 =
√
nΣ̃(β̂ − β) +

√
nP{φ(O; P̂)}

=
√
nP{(X − Ê[X | U ])η̂(O)⊤} −

√
nΣ̃β

=
√
nP{(X − Ê[X | U ])(g′(Ê[Y | X,U ])⊙ (Y − Ê[Y | X,U ]) + g(Ê[Y | X,U ])− Ê[g(Ê[Y | X,U ]) | U ])⊤}

−
√
nΣ̃Σ−1Σβ, (C.5.11)

where the last equality is because of Equations (C.5.6) and (C.5.7). Denote the second-order
remaining term by Q = g(E[Y | X,U ])− g(Ê[Y | X,U ])− g′(Ê[Y | X,U ])⊙ (E[Y | X,U ]− Ê[Y |
X,U ]). Then, we further have

T2 = −
√
nP{(X − Ê[X | U ])(g(E[Y | X,U ]) + Ê[g(Ê[Y | X,U ]) | U ] +Q)⊤}

+
√
nP{(X − E[X | U ])(g(E[Y | X,U ])− E[g(E[Y | X,U ]) | U ])⊤}

+
√
n(Id − Σ̃Σ−1)Σβ

=
√
nP{(X − Ê[X | U ])Q⊤}

+
√
nP{(E[X | U ]− Ê[X | U ])(E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ])⊤}

+
√
n(Σ− Σ̃)β. (C.5.12)

Because by the law of iterative expectation,

P{(X − E[X | U ])(E[X | U ]− Ê[X | U ])⊤} = 0, (C.5.13)

we have

1− Σ̃Σ−1 = 1− P{(X − E[X | U ] + E[X | U ]− Ê[X | U ])⊗2}Σ−1

= −P{(X − E[X | U ])(E[X | U ]− Ê[X | U ])⊤} − P{(E[X | U ]− Ê[X | U ])(X − E[X | U ])⊤}

+ P{(E[X | U ]− Ê[X | U ])⊗2}Σ−1

= P{(E[X | U ]− Ê[X | U ])⊗2}Σ−1

and

∥Σ− Σ̃∥op = ∥(Id − Σ̃Σ−1)Σ∥op (C.5.14)

= ∥P{(E[X | U ]− Ê[X | U ])⊗2}∥op
≤ ∥P{(E[X | U ]− Ê[X | U ])⊗2}∥op (Jensen’s inequality)

≤ P{∥(E[X | U ]− Ê[X | U ])⊗2∥op}

= ∥E[X | U ]− Ê[X | U ]∥2
L2

(C.5.15)

Combining Equations (C.5.8), (C.5.12) and (C.5.15) yields that

∥T2∥2,∞ ≤
√
n∥Q∥L2

,∞∥X − Ê[X | U ]∥L2

+
√
n∥E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ]∥L2

,∞∥E[X | U ]− Ê[X | U ]∥L2

+
√
n∥Σ− Σ̃∥op∥β∥2,∞

≤
√
nML∥E[Y | X,U ]− Ê[Y | X,U ]∥2

L2
,∞

+
√
n∥E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ]∥L2

,∞∥E[X | U ]− Ê[X | U ]∥L2

+M
√
n∥E[X | U ]− Ê[X | U ]∥2

L2
. (C.5.16)
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Part (3) Combining the above results. Finally, from Equations (C.5.9), (C.5.10) and (C.5.16)

Σ̂
√
n(β̂ − β) =

√
n(Pn − P){φ(O;P)}+ ς

for some ς ∈ Rd×p with

∥ς∥2,∞ ≤ 2M(M ∨ 1)∥E[X | U ]− Ê[X | U ]∥L2(1+δ)
+
√
nM∥E[X | U ]− Ê[X | U ]∥2

L2

+M∥∥η̂(O)− η(O)∥∞∥L2(1+δ)

+
√
nML∥E[Y | X,U ]− Ê[Y | X,U ]∥2

L2
,∞

+
√
n∥E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ]∥L2

,∞∥E[X | U ]− Ê[X | U ]∥L2
.

Note that

∥Σ−1 − Σ̂−1∥op = ∥Σ̂−1(Σ̂− Σ)Σ−1∥op
≤ ∥Σ̂−1∥op∥Σ̂− Σ∥∥op∥Σ−1∥op
≤ σ2∥Σ̂− Σ∥op
≤ σ2∥(Pn − P){(X − E[X | U ])⊗2}∥op + σ2∥E[X | U ]− Ê[X | U ]∥2

L2
,

where the first equality is from Σ̂−1(Σ̂− Σ)Σ−1 = Σ−1 − Σ̂−1, the second inequality is from the
positivity assumption that ∥Σ̂−1∥op ≤ σ, ∥Σ−1∥op ≤ σ, and the last inequality is from (C.5.15).
We further have

√
n(β̂ − β) =

√
nΣ−1(Pn − P){φ(O;P)}+ ξ,

with

ξ =
√
n(Σ̂−1 − Σ−1)(Pn − P){φ(O;P)}+ Σ̂−1ς.

By multidimensional Chebyshev inequality and union bound, with probability at least 1− 3ϵ,

∥ξ∥2,∞ ≤ σ2(∥(Pn − P){(X − E[X | U ])⊗2}∥op + ∥E[X | U ]− Ê[X | U ]∥2
L2
)

· ∥E[X | U ]− Ê[X | U ]∥L
2(1+δ−1)

(∥η(O)∥L2(1+δ)
,∞ + ∥β∥2,∞) + σ∥ς∥2,∞

≤ 2σ2M2∥(Pn − P){(X − E[X | U ])⊗2}∥op
+ 2M(M ∨ 1)∥E[X | U ]− Ê[X | U ]∥L2(1+δ)

+M∥∥η̂(O)− η(O)∥∞∥L2(1+δ)

+
√
n2(σ2 ∨ 1)M(M ∨ 1)∥E[X | U ]− Ê[X | U ]∥2

L2

+
√
nML∥E[Y | X,U ]− Ê[Y | X,U ]∥2

L2
,∞

+
√
n∥E[g(E[Y | X,U ]) | U ]− Ê[g(Ê[Y | X,U ]) | U ]∥L2

,∞∥E[X | U ]− Ê[X | U ]∥L2
.

Under the extra rate conditions as assumed, we further have ∥ξ∥2,∞ = oP(1). This completes the
proof.

Lemma C.5.4 (Multivariate Lindeberg CLT for triangular array). Let m = mn and p = pn be
two sequences indexed by n. Consider the influence-function-based linear expansion for estimator
τ̂j of τj ∈ Rd: √

n(τ̂j − τj) =
√
n(Pn − P){φmnj}+ ςmnj , j = 1, . . . , p
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where φmnj is the influence function that depends on m and the residual ςj ’s satisfy that
∥ςmn∥2,∞ = oP(1) as n → ∞. Further assume that (i) there exists a constant c > 0, such

that V(φmnj(O1)) ≥ c, and (ii) maxk∈[n] E[∥V{φmnj(Ok)}−
1
2φmnj(Ok)∥2+

2
δ ] ≤M , then

√
nV{φmnj}−1/2(τ̂j − τj)

d−→ Nd(0, Id)

Proof of Lemma C.5.4. Note that φmnj is the centered influence function such that E[φmnj(O)] =

0. Let Xnk = V{φmnj(Ok)}−
1
2φmnj(Ok). From assumption (ii) that maxk∈[n] E[∥Xnk∥2+

2
δ ] ≤M ,

we have that, for any ξ > 0,

1

n

n∑
k=1

E
[
∥Xnk∥2 1{∥Xnk∥ ≥ ξ

√
n}
]
≤ 1

n1+
1
δ

n∑
k=1

E
[
∥Xnk∥2+

2
δ

]
≤M n

n1+
1
δ

→ 0.

This verifies Lindeberg’s condition for a triangular array of random variables. From the multi-
variate Lindeberg’s theorem (e.g., Billingsley [18, Theorem 29.5]), it follows that

√
nV{φmnj}−

1
2 (Pn − P){φmnj}

d−→ N (0, 1),

as n → ∞. From assumption (i) that V(φmnj) ≥ c > 0 and maxj∈pn ∥ςmnj∥ = oP(1), we further
have

max
j∈pn
∥V{φmnj}−

1
2 ςmnj∥ = oP(1)

as n→∞. Consequently, the conclusion follows.

Lemma C.5.5 (Matrix Chebyshev inequality). Let A denote a random matrix in Rd×r and
β ∈ Rr×p such that E[Aβ] = 0d×p. Then with probability at least 1− ϵ, it holds that

√
n∥(Pn − P){Aβ}∥2,∞ ≤ ϵ−

1
2E[∥A∥2op∥β∥22,∞]

1
2 ,

and
√
n∥(Pn − P){A}∥op ≤ ϵ−

1
2E[∥A∥2op]

1
2 .

Proof of Lemma C.5.5. By Chebyshev inequality, we have

P(
√
n∥(Pn − P){Aβ}∥2,∞ > t) ≤

nE[∥(Pn − P){Aβ}∥22,∞]

t2

≤
nE[∥Aβ − E[Aβ]∥22,∞]

nt2

=
E[∥Aβ∥22,∞]

t2
.

Choosing t = E[∥Aβ∥22,∞]
1
2 ϵ−

1
2 yields that, with probability at least 1− ϵ,

√
n∥(Pn − P){Aβ}∥2,∞ ≤ ϵ−

1
2E[∥Aβ∥22,∞]

1
2 ≤ ϵ−

1
2E[∥A∥2op∥β∥22,∞]

1
2 ,

which finishes the proof of the first statement.
Similarly, considering all unit vectors in the unit sphere Sr−1 (i.e., the set of vector v ∈ Rr

such that ∥v∥2 = 1), it holds that

P
(√
n∥(Pn − P){A}∥op > t

)
= P

(
sup

v∈Sr−1

√
n∥(Pn − P){Av}∥2 > t

)
≤

E[∥A∥2op]
t2

.

The second conclusion follows by choosing t = (E[∥A∥2op]/ϵ)
1
2 .
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C.6 Extra experimental results

C.6.1 Simulation

As in Theorem C.5.1, the nuisance functions need to be estimated fast enough such that valid
inference can be guaranteed. We first examine the convergence rate of the nuisance estimations.
The L2 consistency of random forests has been examined in various studies; see, for example,
[17, 153]. The rate of convergence is closely related to the minimax rate of OP(n

−2/(q+2)) for
nonparametric estimation involving q features. In a simplified setting, Biau [17] demonstrated
that this rate can be improved to OP(n

−0.75/(s+0.75)), where s represents the intrinsic dimension,
which can be substantially smaller than the total feature dimension q. By numerical exami-
nation of the convergence rate for nuisance estimation, our findings indicate a L2 convergence
rate of approximately n−1/4 for both nuisance functions on the simulated data, as illustrated in
Figure C.61. This supports the appropriate use of doubly robust estimators in our experiments.

C.6.2 Real data

Extended background In a recent single-cell CRISPR perturbation study, Lalli et al. [93]
investigated the molecular mechanisms of genes associated with neurodevelopmental disorders,
particularly Autism Spectrum Disorder (ASD). Using a modified CRISPR-Cas9 system, they
performed gene suppression experiments on 13 ASD-linked genes in the Lund Human Mesen-
cephalic (LUHMES) neural progenitor cells. The experiment comprised 14 groups: 13 treatment
groups with individual gene knockdowns and one control group. Single-cell RNA sequencing was
employed to assess gene expression changes resulting from each knockdown. The authors esti-
mated a pseudotime trajectory, which approximates the progression of neuronal differentiation.
The analysis of Lalli et al. [93] suggests that some perturbations cause changes in pseudotime
(slow or speed development); see Figure C.62. A scientific question of interest not answered by
Lalli et al. [93] is whether some perturbation explains anything beyond the changes in expression
levels caused by cell development.

In single-cell CRISPR perturbation experiments, confounding factors can significantly impact
the interpretation of results. Unlike controlled experiments, these studies often resemble observa-
tional data, where confounding variables such as cell size, cell cycle stage, or microenvironment
heterogeneity may influence gene expression patterns. These confounders can mask or mimic the
effects of the intended genetic perturbations, potentially leading to erroneous conclusions about
gene function or regulatory networks. Addressing these confounding issues is crucial for the ac-
curate interpretation of CRISPR perturbation data and for distinguishing true biological effects
from technical artifacts.

To adjust for possible confounding effects, we may take advantage of the multiple negative
control genes. Even though tens of thousands of genes are measured, one typically restricts the
differential expression analysis to the top thousands of highly variable genes. For the remaining
genes with low variations, it is believed that there will not be sufficient power to differentiate the
response from the null distribution. But even with low power, it is likely that, in total, one can
detect the impact of confounding. For this reason, we use such genes as “pseudo-negative control”;
even if this choice is incorrect, we still target meaningful statistical estimands, provided that the
estimated embedding captures the common variability of all cells under control. Alternatively,
we can also use housekeeping genes as negative control outcomes. The main goal here is to
demonstrate a practical procedure for post-integrated inference and show that our asymptotic
results are reasonably accurate in real data.
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Figure C.61: Estimation error of the nuisance regression function on simulated data using random

forests. The axes are shown in the logarithm scale and the slope represents the estimated rate

of convergence. The data-generating process is given in Section 4.4, and we use the true latent

embedding U so that the ground truth regression function is computable. The errors are computed

based on 1000 test observations without irreducible additive noises.

Data. After filtering out low-quality cells and genes that expressed in less than 10 cells, we
retained 8320 cells and 13086 genes under 14 perturbation conditions (including control) from
Lalli et al. [93]. Following the routine selection procedure of highly variable genes in genomics
[64], we select 4163 genes whose standardized variance is larger than 1, and the last 4000 genes
with the lowest standardized variances are treated as negative control outcomes. The covariates
we measured include the logarithm of library sizes, cell cycle scores (‘S.Score’ and ‘G2M.Score’),
batches (3 categories), and pseudotime states (normalized to range from 0 to 1). After one-hot
encoding of the categorical features, we have 19 covariates (including 13 perturbation indicators),
and 4163 genes for model fitting. For each highly variable gene, we aim to test whether its gene
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expressions vary along the pseudotime state under perturbation conditions.
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Figure C.62: Expression levels of marker genes in different estimated pseudotime states. Genes

MAP2 and DCX are neuronal markers (expressed in more differentiated cells) while genes TP53 and

CDK4 are progenitor markers (expressed in less differentiated cells).
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Figure C.63: Histogram of test statistics for main effects of pseudotime states on the expressions of

4163 genes. Many genes are significant because the expression levels are expected to change during

neural differentiation.
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Figure C.64: Histogram of test statistics on 4163 genes for 12 different perturbation conditions.

Different rows represent the results of different methods: Glm: Score tests by generalized linear

models with Negative Binomial likelihood and log link function. The covariance matrix is estimated

using the HC3-type robust estimator. Pii: The proposed post-integrated inference with 50 principal

components as the estimated embeddings.
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Figure C.65: Gene expressions of significant genes in the control group and the PTEN knockdown

group. Four genes with positive estimated effect sizes are selected with a p-value threshold of 0.01 for

both pseudotime states and PTEN knockdown for three Pii methods in Figure 4.8(b) and a median

expression level larger than zero.

When restricted to a small subset of significant genes discovered by Pii, their expression levels
are visualized as a function of pseudotime states and perturbation conditions in Figure C.65. We
observe an increasing trend of the expression and the overexpression in the perturbed group at the
very late stage of pseudotime. The significance suggests that these genes could be affected by not
only the cell development but also the PTEN repression. NEFM is involved in neurite outgrowth
and axon caliber [34], TUBB2B and TUBA1A encode critical structural subunits of microtubules
that are enriched during brain development [72], HN1 is related to cancer and senescence [75].
Given the role of PTEN on neural differentiation and related processes, these genes could be
affected. Further research would be needed to establish any direct links between PTEN repression
and the expression or function of these specific genes during neural differentiation.
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Thomas H Hutson, Rémi Hudelle, Taha Qaiser, Kaya J E Matson, Quentin Barraud, Ariel J
Levine, Gioele La Manno, Michael A Skinnider, and Grégoire Courtine. Confronting false
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