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Abstract

The ability to model the internal mental states of others — known as theory of
mind — is a crucial aspect of human social intelligence. In this work we present
an interpretable family of approaches to modeling theory of mind within artificial
agents based on concept learning, and explore this in the context of deep imitation
and reinforcement learning. We posit that endowing artificial agents with theory of
mind increases both model transparency and trust from a human perspective as well
as task performance with respect to navigating social dynamics in both competitive
and cooperative multi-agent scenarios.

The first part of this work focuses on theory of mind as a framework for mod-
eling artificial agents in imitation learning. Completed work develops a modular
neural framework to explicitly model theory of mind from observed trajectories, and
introduces concept whitening as an approach to ensuring interpretability of learned
policies. The efficacy of this approach is demonstrated with experiments on data
from human participants on a search and rescue task in Minecraft.

The second part of this work focuses on higher-level theory of mind inference
within the context of multi-agent reinforcement learning. Completed work extends
our concept-based approach to interpretability by introducing an information theoretic-
variant to concept learning via bottleneck while incorporating residual latent knowl-
edge. Experiments in a variety of cooperative, competitive, and mixed multi-agent
scenarios show that introducing higher-order theory of mind inference as an intrin-
sic reward for agents can lead to policies with improved coordination, strategy, and
efficiency of communication.

The final part of this work focuses on deception via theory of mind in zero-
sum games. We present an approach for improving performance in zero-sum Multi-
Agent Reinforcement Learning (MARL) by rewarding agents for being deceptive.
Our framework utilizes opponent theory of mind (ToM) modeling error over beliefs
and intents as a signal to induce deceptive behavior. We extend this framework to
higher-order ToM reasoning, where beyond Oth-order beliefs about the environment,
an agent aims to confound an opponent’s 1st and 2nd order beliefs (i.e. beliefs about
beliefs). We present empirical results in Barrage Stratego, Kuhn Poker, and Mafia,
where we find that higher-order deceptive policies consistently outperform baseline
and lower-order deceptive policies.
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Chapter 1

Introduction

Human intelligence is remarkable not just for the way it allows us to navigate environments
individually, but also how it operates socially, engaging with other intelligent actors. Humans
naturally build high-level models of those around them, and are able to make inferences about
their beliefs, desires and intentions (BDI) [Georgeff et al., 1998]. These inferences allow people
to anticipate the behaviors of others, use these predictions to condition their own behavior, and
then anticipate potential responses. In both psychology and machine learning this is referred
to as theory of mind (ToM) [Baker et al., 2011, Rabinowitz et al., 2018, Cuzzolin et al., 2020],
which aims to model not only the external behavior of other entities but their internal mental
states as well. The developmental psychology literature has found that children as young as 4
years old have already developed a ToM, a crucial ability in human social interaction [Astington
and Edward, 2010]. ToM can enable discovery of false or incomplete beliefs and knowledge and
can thus facilitate interventions to correct false beliefs. Therefore, work in enabling agents to
develop ToM is a crucial step not only in developing more effective multi-agent Al systems but
also for developing Al systems that interact with humans, both cooperatively and competitively
[Cuzzolin et al., 2020].

Traditionally, agent-modeling approaches within reinforcement learning (RL) and imitation learn-
ing largely ignore the idea of internal mental states, typically only focusing on reproducing the
external behavior [Foerster et al., 2018, Wen et al., 2019]. This limits their ability to reason in a
deeper way about entities that they interact with. While prior work has explored providing agents
with models of some aspect of a human’s mental state, such as reward [Choudhury et al., 2019]
or rationality [Shah et al., 2019], there is a growing body of work in the machine learning liter-
ature aimed towards developing artificial agents that exhibit theory of mind [Baker et al., 2011,
Rabinowitz et al., 2018, Jara-Ettinger, 2019, Fuchs et al., 2021]. Even beyond simply providing
a helpful inductive bias for modeling behavior, ToM reasoning has the potential to enable the
discovery and correction of false beliefs or incomplete knowledge, facilitate efficient communi-
cation and coordination, and improve human-agent teaming [Zeng et al., 2020, Sclar et al., 2022,
Oguntola et al., 2021].

The work of Aru et al. [2023] highlights key challenges regarding the difficulty of evaluating
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current deep learning ToM approaches. In particular, from a human perspective we may solve a
task using an already-developed internal theory of mind, whereas an artificial agent may be able
to learn simpler decision rules or take advantage of spurious correlations as shortcuts, and it is
difficult to determine whether ToM has actually been learnt.

Here we consider the inverse — rather than solving a task and hoping this implicitly induces a
theory of mind, we instead explicitly learn a theory of mind over semantically grounded beliefs
and intents, and then reason over them to solve the task (e.g. “I believe the door is locked, so
I pick up the key"); this can be understood as zero-order theory of mind [Hedden and Zhang,
2002]. But we can extend this to even higher-order reasoning: modeling the theory of mind of
another agent (i.e., my beliefs about your beliefs), or even modeling another agent’s model of
theory of mind of another agent (i.e. my beliefs about your beliefs about their beliefs).

Our fundamental research question is the following: can modeling other agents ToM help im-
prove performance and generalization — with respect to coordination, deception, exploitation of
false belief, etc — in multi-agent settings?

In this work we develop an approach that leverages concept-based interpretability methods to
ground semantically meaningful beliefs and intents within RL policies [Schwalbe, 2022]. We
then propose the use of ToM reasoning over the beliefs of other agents as intrinsic motivation
in multi-agent scenarios. We run experiments in both cooperative and adversarial competitive
environment and show results that indicate this approach improves multi-agent performance,
with respect to both coordination and deception. We provide a general framework for reasoning
about theory of mind in artificial systems, and introduce interpretable approaches for specifically
modeling beliefs and intents with concept learning.

Our core contributions are as follows:

* We create a method of concept learning with an residual disentangled based on minimizing
mutual information

* We formalize a unified framework for theory of mind in decision-making process via con-
cepts

* We introduce a modular approach to modeling theory of mind in RL policies via our
concept-residual method

* We extend this approach to cooperative scenarios by treating ToM modeling itself as a task
for intrinsic reward

* We extend this approach to adversarial / deceptive scenarios by treating the manipulation
of others’ ToM models as a task for intrinsic reward

* We demonstrate that higher-order ToM reasoning consistently improves performance in
tasks these with social dynamics, with diminishing returns past 2nd-order reasoning.



Chapter 2

Artificial Theory of Mind

The following survey provides a detailed overview of the current landscape of Theory of Mind
(ToM) in artificial intelligence and establishes the conceptual framework for three seminal pa-
pers: “Deep Interpretable Models of Theory of Mind,” “Theory of Mind as Intrinsic Motivation
for Multi-Agent Reinforcement Learning,” and “Deception Is Its Own Reward.” The central ar-
gument of this analysis is that the field is moving beyond mere behavioral mimicry towards the
development of systems with genuine, interpretable, and strategically motivated social intelli-
gence. This transition is not only a technical evolution but a response to foundational limitations
in traditional Al development.

This chapter first defines the multidisciplinary roots of ToM and situates its computational im-
plementation within the philosophical debates of the field. It then deconstructs three core weak-
nesses of contemporary Al: the Interpretability Dilemma, where models function as inscrutable
“black boxes”’; the Reward Problem, which highlights the limitations of extrinsic rewards in fos-
tering complex social behaviors; and the Strategic Reasoning Gap, where current benchmarks
fail to assess an agent’s ability to functionally apply ToM in dynamic, adversarial environments.

The work presented in this thesis is presented as a synergistic solution to these challenges. We
address the interpretability dilemma by proposing a framework that explicitly grounds and veri-
fies a model’s internal mental states. This provides a transparent foundation for trust and align-
ment. We tackle the reward problem by establishing that the very act of modeling an opponent’s
mind can serve as a potent intrinsic reward signal, thereby incentivizing complex social rea-
soning. Finally, we operationalize this intrinsic motivation in a challenging adversarial setting,
demonstrating that this approach can produce sophisticated, human-like deceptive strategies that
outperform traditional methods.

Collectively, this work represent a significant step toward a new paradigm of Al—one that is not
only capable of interacting with human-centric environments but also provides a transparent and
verifiable pathway to understanding the social complexities of those interactions. This sets the
stage for a critical discussion of the ethical implications and future research directions necessary
to ensure the safe and responsible development of socially intelligent Al
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2.1 The Foundations and Current State of Artificial Theory
of Mind

2.1.1 Theory of Mind: A Multidisciplinary Perspective

The concept of Theory of Mind (ToM) is foundational to understanding human social intelligence
and interaction. It is defined as the ability to attribute mental states—such as beliefs, desires, in-
tentions, and emotions—to oneself and others, and to understand that these mental states may
differ from one’s own or from reality itself [Premack and Woodruff, 1978, Wimmer and Perner,
1983]. This ability, first identified in a 1978 paper by David Premack and Guy Woodruff con-
cerning chimpanzees, is a cornerstone of human social cognition [Premack and Woodruff, 1978,
Baron-Cohen et al., 1985]. In developmental psychology, the emergence of ToM in children is
well-documented, with the capacity for explicit social reasoning, including the ability to solve
false-belief tasks, typically solidifying around ages four to five [Wimmer and Perner, 1983, Sam-
son et al., 2020]. This developmental understanding provides a roadmap for researchers seeking
to replicate these capabilities in artificial agents [Wimmer and Perner, 1983, Samson et al., 2020].

The computational implementation of ToM is rooted in a rich philosophical tradition, notably the
Computational Theory of Mind (CTM) [Fodor, 1975, Simon and Newell, 1972, Putnam, 1967].
CTM posits that the mind is a computational system and that cognition is a form of information
processing [Searle, 1980, Fodor, 1975, Putnam, 1967]. This view is often associated with func-
tionalism, a philosophical stance that defines mental states by their causal role or function within
a system, rather than by their physical composition [Putnam, 1980]. Functionalism’s central
concept, “multiple realizability,” suggests that a mind can be physically instantiated in various
substrates, from biological neurons to silicon processors, as long as the functional requirements
are met [Putnam, 1980]. This provides a theoretical basis for the very possibility of artificial
intelligence.

However, a fundamental challenge to this perspective is John Searle’s “Chinese Room Argu-
ment” [Searle, 1980]. Searle’s thought experiment argues that a system can manipulate symbols
to simulate understanding without truly possessing it. This critique is a direct refutation of the
“strong Al hypothesis,” which claims that a correctly programmed computer literally possesses
a mind [Searle, 1980]. The core issue here is the symbol grounding problem: how do abstract
symbols, manipulated purely by a computer, acquire intrinsic meaning and connect to real-world
objects or concepts? [Harnad, 2007]. This problem highlights the difference between a syntactic
system that can pass the Turing test and a system with genuine semantic understanding [Searle,
1980].

The interdisciplinary convergence of philosophy, psychology, and computer science highlights
that the pursuit of artificial ToM is not merely a technical challenge of replicating behavior. It is
an endeavor to address whether and how an artificial system can move beyond syntactic manip-
ulation to achieve genuine, grounded understanding [Harnad, 2007]. This is a crucial distinction
that informs the entire field, compelling researchers to develop methods that not only produce
intelligent behavior but also ensure the underlying computational processes are transparent and
semantically meaningful. The symbol grounding problem, far from being a purely academic
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debate, is a practical hurdle that necessitates new architectural designs and evaluation methods,
providing a direct conceptual foundation for the first paper discussed.

2.1.2 Computational Game Theory and Multi-Agent Systems

The development of Al has moved from single-agent systems, focused on maximizing rewards
in a static environment, to multi-agent reinforcement learning (MARL), which introduces the
profound complexities of social interaction [Zhang et al., 2021]. In MARL, the environment is
inherently non-stationary; an agent’s optimal strategy depends not only on its own actions but on
the unpredictable and evolving strategies of other agents [Wang et al., 2022]. This violates the
Markov property that underpins most traditional reinforcement learning algorithms and necessi-
tates a more sophisticated approach.

This is where computational game theory provides a critical lens for analysis. Games with in-
complete information, such as card games like poker or bridge, are situations where players lack
common knowledge about the game they are playing [Lanctot et al., 2017]. Hungarian economist
John Harsanyi developed the concept of Bayesian games to model strategic decision-making in
such environments [Harsanyi, 1967]. A Bayesian game replaces a game of incomplete informa-
tion with a game of complete information by treating a player’s private information (or “type”) as
a random variable with a known probability distribution [Harsanyi, 1967]. This approach allows
for the formal, mathematical analysis of games where players must reason about the beliefs and
strategies of their opponents without having perfect knowledge [Lanctot et al., 2017].

A primary response to this challenge has been the development of “agent modeling,” where
agents learn to form internal representations and predictions of other participants’ behavior, ef-
fectively implementing a computational form of ToM [Oguntola et al., 2021, Rabinowitz et al.,
2018]. Recent advancements demonstrate that mastering complex social dynamics is a pre-
requisite for achieving human-level performance in adversarial environments. The landmark
achievement of Meta AI’'s CICERO, the first Al to achieve human-level performance in the game
of Diplomacy, is a prime example [FAIR et al., 2022]. Unlike systems designed for perfect-
information games like chess or Go, CICERO’s success hinges on its ability to master communi-
cation, negotiation, and strategic deception within a zero-sum, incomplete-information environ-
ment.

This transition in research focus reveals a critical limitation of traditional MARL: a narrow def-
inition of success. The field has historically measured success by the maximization of extrinsic
rewards, often neglecting the complex social skills required to navigate human-like interaction.
This is problematic, as behaviors like cooperation, negotiation, and deception often involve de-
layed or sparse rewards that are difficult for a system to learn from. The shift from simply
winning a game (extrinsic reward) to demonstrating social competence is a re-evaluation of what
constitutes true intelligence in a multi-agent setting. This conceptualization of social compe-
tence, which moves beyond brute-force optimization to encompass an understanding and manip-
ulation of other agents’ mental states, creates a clear need for a new class of reward signals. This
provides the conceptual motivation for the second and third papers, which directly address this
gap by exploring how to explicitly and intrinsically reward socially intelligent behaviors.
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2.2 Core Weaknesses and Gaps in Machine Theory of Mind

2.2.1 The Interpretability Dilemma: From Black-Box Behavior to Internal
States

One of the most profound weaknesses in the field of Al, particularly in models like deep neural
networks and large language models (LLMs), is the “black box™ problem. While these systems
excel at performing complex tasks by mapping inputs to outputs, the internal processes that
produce their results are often opaque and inscrutable to human observers [Molnar, 2020]. This
opacity presents a significant barrier to the development of robust artificial ToM. While LLMs,
for instance, can demonstrate impressive performance on classic false-belief tasks, there is a
fundamental question of whether this behavior stems from genuine ToM reasoning or is merely a
product of statistical pattern matching and spurious correlations from their vast training corpora
[Kim et al., 2023, Chen et al., 2024]. This phenomenon, sometimes referred to as the “Clever
Hans” effect, implies that a model may be using shortcuts that do not reflect a true understanding
of the underlying social dynamics [Chen et al., 2024].

The field’s response to this problem has revealed a fundamental flaw in traditional evaluation
methods. Initial ToM evaluations for LLMs relied on narrative-based false-belief tasks, simi-
lar to the classic Sally-Anne test [Kosinski, 2024]. The impressive performance of models like
GPT-4 on these tasks led to claims that ToM-like abilities had “spontaneously emerged” as a
byproduct of improved language skills [Bubeck et al., 2023, Kosinski, 2024]. However, a skep-
tical community of researchers responded by developing more rigorous, adversarial benchmarks
to test whether models were truly reasoning or merely exploiting superficial patterns in the data
[Kim et al., 2023, He et al., 2023, Chen et al., 2024, Fan et al., 2025].

These new benchmarks, designed to stress-test ToM capabilities, include:

Table 2.1: New-Generation Benchmarks for Evaluating Machine ToM

Benchmark Key Purpose Primary Evaluation Method | Core Findings
Name
FANToM [Kim | To stress-test ToM in | Question answering on multi- | State-of-the-art
etal., 2023] information-asymmetric party conversations with dy- | LLMs perform sig-
conversational contexts. | namic character absences. nificantly worse than
Designed to identify an humans and lack
illusory sense of ToM . coherent reasoning.
ToMBench A systematic, automated, | Multiple-choice questions on | The most advanced
[Chen et al, | and bilingual benchmark | scenarios built from scratch to | LLMs like GPT-4
2024] to evaluate 31 specific | avoid data leakage. lag behind human
ToM abilities across 8 performance by over
tasks. 10 percentage points,
indicating a lack of
human-level ToM.




Table 2.1: New-Generation Benchmarks for Evaluating Machine ToM (cont.)

Benchmark Key Purpose Primary Evaluation Method | Core Findings
Name
SoMi-ToM To evaluate multi- | First- and third-person perspec- | Large Vision-
[Fan et al, | perspective  ToM  in | tive videos of embodied agents. | Language  Models
2025] embodied, multimodal (LVLMs)  perform
social interactions. De- significantly ~worse
signed to address the gap than humans, with a
between static text and performance gap of
real-world scenarios. over 26%.
Hi-ToM [He | To evaluate higher-order | Natural language question- | LLMs likely do not
etal., 2023] theory of mind reasoning | answering over various story | exhibit true ToM,
in LLMs. types. particularly in the
cases of higher-order
reasoning.

The results from these newer benchmarks have validated the concerns about the black-box prob-
lem. The consistent performance drop of state-of-the-art models when faced with these more
rigorous tests confirms that they often rely on spurious correlations rather than genuine, trans-
parent reasoning [Kim et al., 2023, Chen et al., 2024, Fan et al., 2025]. The existence of these
benchmarks represents a crucial shift in the field, moving from a focus on behavioral output
to a deeper investigation of the underlying mechanisms. The discovery that internal represen-
tations can be linearly decoded from neural activations is a promising development that points
toward a new way to solve the interpretability problem by directly probing a model’s internal
representations of belief [Herrmann and Levinstein, 2024, Zhu et al., 2024].

2.2.2 The Reward Problem: The Challenge of Inducing Complex Sociality

A significant limitation in multi-agent reinforcement learning (MARL) is the difficulty of reward-
ing complex social behaviors [Zhang et al., 2021]. Traditional RL relies on extrinsic rewards,
which are signals provided by the environment to guide an agent’s learning. While this is ef-
fective for simple tasks, it is fundamentally ill-suited for the nuanced and multifaceted nature
of human interaction, where behaviors like cooperation, negotiation, or deception often result
in sparse, delayed, or even non-existent external rewards [Zhang et al., 2021, Crites and Barto,
1998, Aubret et al., 2019, Ning and Xie, 2024]. This makes it extremely challenging for agents
to learn sophisticated strategies. Manual reward shaping, a common technique to address sparse
rewards, is a brittle solution that can lead to “reward hacking,” where an agent exploits the shaped
reward function in an unintended way, prioritizing a sub-goal over the main task objective [Zhang
et al., 2021, Aubret et al., 2019].

Intrinsic motivation (IM) offers a potential solution by rewarding agents for internal goals, such
as exploring novel states or reducing prediction error [Pathak et al., 2017, Aubret et al., 2019].
However, these general forms of IM are not tailored to the unique dynamics of social interaction.
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A generic curiosity-driven agent may be motivated to explore an environment, but it has no
explicit incentive to understand or influence the minds of the other agents within it [Oguntola
et al., 2023]. A reward is needed that is directly tied to the process of social reasoning itself
[Oguntola et al., 2023].

The fundamental problem is the absence of a mechanism to reward the mastery of social com-
plexity. The success of a strategic player often hinges on their ability to reason about and in-
fluence the internal states of their opponents, a process that is invisible to the environment’s
extrinsic reward function. This presents a major challenge to building socially capable Al.

2.2.3 The Strategic Reasoning Gap: Incomplete Information and Decep-
tion

A significant limitation of many traditional MARL agents is their inability to perform sophisti-
cated strategic reasoning in adversarial environments with incomplete information [Sandholm,
2015, Li et al., 2024]. In games like Kuhn Poker or Barrage Stratego, success is not determined
by simply maximizing one’s own direct reward but by influencing the opponent’s perception of
the game state [Kuhn, 1950, Federation, 2025]. Standard models, being optimized for direct re-
wards, do not inherently incentivize the manipulation of an opponent’s beliefs—a key aspect of
strategic depth in competitive settings [Chelarescu, 2021].

The inability to reason about an opponent’s beliefs and strategies—a form of ToM reasoning—
is a critical gap that prevents agents from achieving human-level strategic performance. While
some notable successes have been achieved, such as Meta AI’s CICERO in the game of Diplo-
macy, these are often bespoke, custom-engineered solutions that do not provide a generalizable
framework for developing strategic reasoning across a variety of domains. This highlights the
need for a fundamental shift in the training paradigm to one that proactively cultivates a deep
understanding of adversarial mental states, enabling agents to engage in sophisticated behaviors
like bluffing or feint attacks. The problem is not merely a lack of a reward signal, but a lack of
a framework that defines and quantifies complex, strategic behaviors like deception as a central
goal.



Chapter 3

Theory of Mind as Imitation Learning

In this chapter we explore theory of mind from the perspective of a pure observer. Here the
only task we are concerned with is interpretable agent modeling, and can be understood as a
form of imitation learning from observed trajectories. We will develop an interpretable modular
neural framework for modeling the beliefs, intentions, and behavior of observed actors, and
experimentally validate it over human participants in a Minecraft environment.

3.1 Neural ToM Framework

3.1.1 Purpose

It is important to note that the ToM framework is used by an observer to infer mental states of
an observed entity, but not to define the entity’s observable behavior. The action predictions
produced by the ToM model can be treated as a policy to forecast the entity’s future behavior,
and imitation learning can provide a training signal for the ToM model, but our purpose here is
not to train an agent to perform a task.

3.1.2 Overview

We develop a modular theory of mind framework for an observing agent to use to infer the mental
state of an observed human. As shown in Figure 3.1, we model the decision making process of
an observed entity as follows:

Belief Model The belief model m : B x O — B is responsible for updating the belief state.
Given current belief b € B and observation o € O, the belief model m outputs an updated belief
state bpe, = m(b,0).

Desire Model The desire model g : B — Z is responsible for calculating the intent z € 7
given updated belief b; that is, g(b) = z.
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|; Belief Model

belief state

y

Desire Model

intent

y

Action Model -«

action

Figure 3.1: Modular theory of mind (ToM) framework.

Action Model The action model f : B x Z — A is responsible for generating or predicting an
action a € A, given the belief state b and intent z; that is, f(b, z) = a.

The modules in our framework impose an inductive bias that reflects the BDI model of agency in
folk psychology [Georgeft et al., 1998]. Also, as we later describe, modularizing the framework
in this way allows for combining heuristic and data-driven components (e.g., neural networks).

In the context of our broader ToM framework, the observations are our inputs X, the actions are
our outputs Y;, and our latent variable consists of time-dependent belief and intent, Z; = V; over
domain B x Z. The action model explicitly models the conditional distribution p(Y; | Z;).

3.1.3 Combining Differentiable and Heuristic Components

Practically speaking, we need to make sure that the belief space B corresponds to something that
can be understood as belief, that the intent space Z corresponds to what can be understood as
intent, etc. If we were to implement all three components with neural networks and train end-
to-end, there is nothing that constrains the intermediate outputs to correspond to what we expect
(e.g. no way to ensure the desire model output actually represents an “intent").

We can mitigate this difficulty by imposing additional structure on the pipeline. The simplest
way to do this is to replace one or more of the models with rule-based models, and/or to impose
structural constraints on the input/output space of these models. Here we are primarily interested
in inferring intent, so we choose to model the desire model with a neural network, while modeling
the belief and action models with rule-based heuristics.

Given a planning task, we structure the belief state as a grid/graph of locations, and use a rule-
based belief model to update this belief state given an observation. Additionally, we replace
the action model with A* search, and structure the intents from the desire model as locations of
subgoals.

In the setup described above, the belief and action models are rule-based, and the desire model is
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the sole trainable component. The rule-based belief model does not pose any issue with respect
to the differentiability of the pipeline (one can think of it as simply preprocessing the input
observation). However, we cannot optimize for the final output in any gradient-based way, as the
output of the desire model is the input to the non-differentiable action model, which produces the
final output. Unless we have ground-truth intents, training the desire model becomes difficult.

3.1.4 Inverse Action Model

Given belief state b € B, observed action a € A, a set of intents Z, and non-differentiable action
model f : B x Z — A, we want to learn a desire model g to model a conditional distribution
p(z | b) such that

Ela | 0] = E.og[f (D, 2) | 0]

where z € 7 is the intent. However, we may not have access to any samples from such a
distribution (i.e. no ground truth z € Z for given b, a pairs).

Alternatively, we can learn to model the distribution p(z | b, a) with an “inverse action model" h.
This density of this distribution is proportional to

p(z | b,a) cxpla,z | b) = pla|b,2) - p(z | b) 3.1)
Because we have direct access to rule-based action model f we can sample from p(a | b, z), and
thus given some kind of prior p(z | b) we can sample from p(z | b, a) to learn h.

Once we have learned an inverse action model A, then for each belief-action pair (b, a) we can
then simply use & to sample intents from p(z | b, a), and use these sampled intents to train the
desire model g in a supervised manner.

3.1.5 Training

Training is done in two stages: the first stage trains the inverse action model, the second stage
trains the desire model. In each stage, once we gather the necessary data, we train using stochas-
tic gradient descent (SGD).

Training Inverse Action Model

To train the inverse action model, we first collect belief states by sequentially running obser-
vations from human trajectories through the rule-based belief model and storing the resulting
belief states at each timestep. These trajectories can be from human participants or potentially
even from artificial agents trained to perform the task.

Now that we have collected these belief states, for each belief state b, we sample an intent z given
some prior p(z | b), and create a set of b, z pairs. Next, for each belief-intent pair, we generate
an action a = f(b, z), creating a dataset of belief-action-intent triples (b, a, z). Finally, we train
the inverse action model on this dataset to predict intents given beliefs and actions; that is, using
our generated dataset of (b, a, z) tuples, given b, a, predict z.

Pseudocode for this training process is provided in Algorithm 1.
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Figure 3.2: Encoder-decoder architecture used for the desire and inverse-action models in our experiments,
inspired by U-Nets for image-segmentation [Ronneberger et al., 2015]. Blue indicates convolutional lay-
ers, green indicates pooling, brown indicates up-sampling, and yellow is a final linear layer.

Training Desire Model

To train the desire model, we first collect belief states by running the observations from hu-
man trajectories through the belief model. We also store the corresponding observed actions
for each belief state. We can then generate belief-intent pairs for the desire model by sampling
intents from our inverse action model z ~ h(b, a) for each belief-action pair. The target intents
are formed by combining a) the probability distribution from the inverse action model over the
previous belief state, and if available b) the next realized intent (from the future, in a post-hoc
manner). Finally we train the desire model on this data to predict intent given belief.

Pseudocode for this process is provided in Algorithm 2.

Algorithm 1: Training inverse action model

Input: set of human trajectories 7 = {71, 7, .. . }, belief model s, action model f
Dbaz — @

for r € T do
01,...,0p =T

by — Uniform
fort=1,...,ndo
bt — S(bt_l, Ot)
fori=1,...,mdo

2~ p(z ] b)

a=f (btv Zt)

Dbaz - Dbaz U {(bta a, Zt)}
end
end
end
Initialize neural network parameters 6,
Use SGD to train h(b, a | 0)) on dataset Dy,

3.2 Concept Whitening

Concept whitening (CW) is a mechanism introduced by Chen et al. [Chen et al., 2020] for
modifying neural network layers to increase interpretability. Broadly, it aims to enforce structure
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Algorithm 2: Training desire model

Input: set of human trajectories 7 = {7y, 72, ... }, belief model s, inverse action model
h
Dbz — @
for 7 € 7 do
(01,a1), ..., (0p,an) = T
by — Uniform
fort=1,...,ndo
bt — S(btfl, Ot)
Zr h(bt, at)
Dbz = Dbz U {(bt; Zt)}
end
end
Initialize neural network parameters 0,
Use SGD to train g(b | 6,) on dataset D,

on the latent space by aligning the axes with predefined human-interpretable concepts. While
this technique was developed for the purpose of image classification, here we adapt the idea in
the context of intent inference with the desire model. By explicitly defining a set of concepts
that can serve as “explanations” for intent inferences, we can use concept whitening to allow for
interpretability via identification of the most important concepts for any inference.

We also note that although we consider concept whitening in the context that can broadly be
categorized as behavioral cloning, our approach to interpretable agent-modeling is framework-
agnostic and could potentially be applied to other reinforcement learning and imitation learning
contexts.

3.2.1 Technical Details

Given latent representation Z € R"*%, let Z¢ € R™*? be the mean-centered latent representation.
We can calculate the ZCA-whitening matrix W € R%*¢ as in [Huang et al., 2019], and thus
decorrelate and standardize the data via whitening operation ¢/

W(Z) = WZc=W(Z—pl") (3.2)
where p = % >, z; is the latent sample mean.

Now say we are given concepts ¢ ... c that can be characterized by corresponding auxiliary
datasets X, ...X,,, and assume we have an orthogonal matrix Q € R%*? such that the data
from X, has high activation on the j-th axis (i.e. column q;). Then the concept-whitened
representation is given by:

7 =Q WZc (3.3)

Training alternates between optimizing for the main objective (i.e. the network’s final output)
and optimizing the orthogonal matrix QQ for concept-alignment. To optimize (), we maximize
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the following objective:

max Z > q 7., (3.4)

q1---9k
xc EX(»

where z Zy., denotes the concept-whitened latent representation in the model on data sample from
concept cj Orthogonality can be maintained when optimization is performed via gradient de-
scent and curvilinear search on the Stiefel manifold [Wen and Yin, 2013]. A more detailed

description of concept whitening and the optimization algorithm can be found in [Chen et al.,
2020].

3.2.2 Concept Whitening for Intent Prediction

We can modify this idea to the context of explanatory concepts for inferring intents. Specifically,
we consider the desire model (Fig. 3.2) and insert a concept whitening layer (see Fig. 3.3).

First we define a set of concepts C' = {cy,...,c;}; these concepts should correspond to ap-
propriate human-interpretable reasons or “explanations” for intent prediction given the problem
domain. We also must be able to identify a subset of timesteps from our trajectories where each
concept applies, either directly from the trajectory data, or from external labels.

Recall that the desire model’s inputs are belief states, which we can generate sequentially by
passing the observations from each trajectory timestep through the belief model. Then for each
concept ¢; we consider only the belief states from the timesteps where c; is known to apply, and
aggregate them into auxiliary dataset B, .

Then training alternates between:
1. Optimizing for intent prediction, given a belief state and a ground truth intent

2. Concept-aligning the CW orthogonal matrix Q by maximizing the activation along axis j
for each auxiliary dataset B,

Pseudocode for this process is provided in Algorithm 3.

3.3 Experiments

3.3.1 Task Domain

We consider a simulated search and rescue task in a Minecraft environment. The scenario sim-
ulates a damaged building after a disaster, with areas of the building layout perturbed with col-
lapsed rubble, wall openings, and fires. There are 34 injured victims within the building who
will die if left untreated. For convenience and simplicity, victims are represented as blocks. Out
of these victims, 10 of these are critically injured and will expire after 5 minutes. These critical
victims take 15 seconds to triage and are worth 30 points each. Other victims are considered
“non-critical", but will expire after 10 minutes. Non-critical victims take 7.5 seconds to triage
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Algorithm 3: Training desire model with concept whitening

D0
for 7 € T do
(01,a1),...,(0p,a) = T
bo — Uniform
fort=1,...,ndo
bt — BM(bt_l, Ot>
2y ~ TAM(by, ay)
D=DU{(b,2)}
end
end

fore =1, ..., num_epochs do
Train DM on D with gradient descent
if e mod 5 = 0 then

forj=1,....kdo

Maximize activation of B, on the j-th column of Q
2020])

end
end
end

(see [Chen et al.,
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Figure 3.3: Desire model with concept whitening.

15



and are worth 10 points each. The goal of the task is to earn as many points as possible within a
10 minute mission.

3.3.2 Human Data For Training and Evaluation

All experiments are performed using a set of 75 trajectories previously collected from human
participants [Huang et al., 2021].

Prior to each mission, participants were given information on the task and the original building
layout. However, the knowledge conditions of certain participants were manipulated by partially
withholding information. Some participants were not informed of the cost-benefit tradeoffs (i.e.
the knowledge that critical victims take 15 seconds to rescue and are worth 30 points and non-
critical victims take 7.5 seconds to rescue and are worth 10 points). Knowledge was also manip-
ulated via a beep signal that activated whenever the participant was near a room with a victim
(1 beep for non-critical victim, 2 beeps for critical victim); certain participants were not told the
meaning of the signal.

Participants were run in 3 knowledge conditions:
1. No knowledge of critical-victim tradeoff, no knowledge of signal meaning
2. Knowledge of critical-victim tradeoff but not of signal meaning

3. Knowledge of both critical-victim tradeoff and signal meaning

3.3.3 Intent Prediction

We represent intents as (x, y) positions the participant intends to navigate towards. Specifically,
we consider victims, doors, and room openings as locations-of-interest, which frames the intent
prediction task as predicting either the next room to be visited or the next victim to be triaged.
The predictions are accumulated at each timestep (~ 0.5 seconds per timestep) between visits of
locations-of-interest, and then their mode is evaluated against the ground truth. We evaluate on a
held-out test set of 20% of participant trajectories.

3.3.4 Concepts

We defined a set of 10 concepts related to mission timer, knowledge condition, and field of view
(see Table 3.1). We consider 3 subsets:

* Concept Set I is the full concept set
* Concept Set II omits the knowledge condition concepts
* Concept Set III omits both knowledge condition and mission timer concepts

The field of view and mission timer concepts were labeled directly from the data; the knowledge
condition concepts are labeled with external knowledge of the condition for each participant
trajectory.
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Table 3.1: Concepts

Concept Concept Sets
Mission timer between 0-3 minutes I, 1I
Mission timer between 3-5 minutes I, 1I
Mission timer between 5-8 minutes I, 1II
Mission timer > 8 minutes 1T

Knowledge condition 1 (no triage, no signal) I
Knowledge condition 2 (triage, no signal) I
Knowledge condition 3 (triage, signal) I
Door / opening in field of view I, 11, 111
Non-critical victim in field of view I, 11, III
Critical victim in field of view I, II, II1

)

3.3.5 Results

We compare the accuracy of ToM model intent predictions under 3 methods: training without
Concept Whitening (CW), training from scratch with CW, and transfer learning by initializing a
CW model with the weights of a pretrained non-CW model. Results are provided in Table 3.2,
where we see that introducing concept whitening for interpretability actually results in increased
accuracy of the model. The inductive bias produced by shaping the latent space to correspond to
our selected concepts improves performance.

Table 3.2: Intent Prediction Performance

Training Method \ Intent Prediction Accuracy

Without CW 73.0%
Cw 84.0%
CW + Transfer 84.1%

3.3.6 Concept Ablation

We also tested the effect of concept selection on performance (Table 3.3). In particular, we omit-
ted the knowledge condition (KC) concepts and/or the mission timer concepts, tested concept-
whitened ToM models both with and without transfer, and found noticeably diminished perfor-
mance.

Compared to the non-CW model, CW with reduced concept sets resulted in worse performance,
and while transfer from the non-CW model somewhat mitigated this effect, we still see a signifi-
cant drop from the performance with full concept set. This demonstrates the importance of good
concept selection for the resulting performance of concept-whitened ToM model.
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Table 3.3: Varying Concept Sets

Training Method | Concept Set  Acc.
Without CW N/A 73.0%
Ccw III 41.2%
Cw II 69.2%
Cw I 84.0%
CW + Transfer III 54.9%
CW + Transfer II 77.9%
CW + Transfer I 84.1%

3.4 Interpretability Analysis

Generally, using a deep model for a task such as intent inference makes interpreting model output
difficult due to the “black-box" nature of neural networks. Adding the concept whitening module
provides us with a direct mechanism that allows us to interpret the model output in terms of our
chosen concepts. For each observation and corresponding intent prediction made by our ToM
model, we can calculate the importance of each concept.

For example, if our ToM model observes that a player hears a beep and predicts the player intends
to bypass a particular door, we can examine the relative importance of concepts such as “critical
victim in field of view" or “no knowledge of the beep signal’s meaning" or “over 8 minutes
elapsed in mission timer" for our model’s prediction. If for instance the most important concept
is “no knowledge of beep signal’s meaning", an appropriate intervention could be to inform the
player of the signal’s meaning.

We can estimate the concept importance for each prediction via the activation for each column
of the CW orthogonal matrix Q, given by:

a; =q, % (3.5)

where z, is the concept-whitened latent representation for belief state b.

We can examine the activation vectors a = [a; ... ay| for different types of intent predictions
by the learned model (CW + transfer, full concept set). The mean normalized activations for
non-critical victims, critical victims, and doors / openings are visualized in Fig. 3.4.

These largely line up with intuition; unsurprisingly, the presence of an intent-relevant entity in
the field of view is an important concept for the model’s prediction of said intent. We also see
variability in the importance of different mission time intervals and of knowledge condition for
different intent predictions.
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(a) Mean concept activation for intent prediction of non-
critical victim. We can see that the presence of a non-
critical victim in the field-of-view is the most activated
concept.
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(b) Mean concept activation for intent prediction of criti-
cal victim. Here we see zero activation for mission timer
above 5 minutes (which corresponds with critical victims
expiring). We also see that the presence of a critical vic-
tim or room opening in field-of-view is a common reason
for predicting intent to triage a critical victim.
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(c) Mean concept activation for intent prediction of open-
ing. The presence of an opening in the field of view is the
most highly activated concept. We also see that compared
to the other mission timer concepts, the last 2 minutes sees
the timer become a more important reason for predicting
intent to go towards a door or opening.

Figure 3.4: Mean concept activations for different intent prediction types.
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Chapter 4

Concept-Based Reinforcement Learning

We now move to embodied theory of mind in agents. We more broadly examine concept learning
as a general way to approach the challenge of grounding semantically meaningful mental states
within policies, and use this approach to model theory of mind within policies.

4.1 Reinforcement Learning with Concepts

In deep reinforcement learning, policies are typically black-box neural networks that directly
map states to actions. Our approach follows the paradigm of concept learning, which involves
mapping or aligning the latent space of a model to a set of human-interpretable concepts (e.g.
“door 1s locked", “agent has key") [Schwalbe, 2022].

We present an approach to learning interpretable deep policies that make decisions directly in
terms of these concepts. Here we build on the concept-bottleneck model approach [Koh et al.,
2020], applying it to reinforcement learning, and extending it to incorporate residual state infor-
mation while maintaining model interpretability.

4.1.1 Framework

We model each multi-agent scenario as a stochastic game [Shapley, 1953]. A stochastic game
can be defined as a tuple (N, S, A, P, R,~) where N € N is the number of agents, S is the state
space shared by all agents, A = A; X ... X Ay is the joint action space, P: S x A x S — [0, 1]
is the transition function, R = {r;: S x A x & — R} indicates the reward functions for each
agent, and v € [0, 1] is the discount factor.

The stochastic game framework describes a multi-agent process with simultaneous agent actions,
where a trajectory takes the form 7 = (59 a® s a® ) where s® is the state at time ¢

and a® = [0\, .., al¥)] denotes the action taken by each agent at time ¢.

Definition 1 (Concept). A concept is a variable C' that takes on a value for each timestep in a
trajectory and corresponds to some semantically-meaningful property. Formally, a concept can
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Figure 4.1: Concept-residual policies with higher-level ToM inference. Ground truth concept values su-
pervise the concept predictor, and the residual network is regularized via mutual information minimization
with respect to concept values.

be defined as a measurable function C': T x N — Q) where T is the set of possible trajectories
and ) is the set of possible concept values.

Concepts may be discrete or continuous. For example, we can model an agent’s distance from
some goal location as a discrete concept Cyy;siance(7,t) = c taking on values ¢ € {close, far},
and we can model an agent’s 2D displacement from the goal location as a continuous concept
Clisplacement (T, t) = ¢ taking on values ¢ € R

4.1.2 Concept-Residual Policies

We consider policies of the form f(g(s),r(s)), where r: S — R? maps states to some latent
residual representation, g: S — C maps states into concept space (e.g. “door is locked", “agent
has key"), and f: C x R? — A maps concept values and residual representations into action
space (e.g. “move forward"). This compositional network structure is illustrated in figure 4.1.

Intuitively, we want these policies to make inferences about specific concepts in the environment
and make decisions based on these concepts, using residual information only when necessary.

Learning Concepts

Assume that at training time we are given access to ground truth concept values corresponding
to each encountered state in our trajectories. Then with each state s we can supervise a concept
predictor g(s) = ¢ directly on these ground truth concept values:

MSE(c,¢) if continuous
Lconcept = { ( ) (41)

CE(c,¢)  if discrete

where c is a vector of ground truth concept values, ¢ a vector of predicted concept values, MSE
is the mean-squared error, and CE is the cross entropy loss. These predicted concept values are
then used to generate an action.
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Learning Residuals

The benefit of the bottleneck approach is that it induces interpretability by constraining the action
to be determined entirely through predicted concept values (i.e. ¢ = g(s), a = f(c)).

However, depending on the selection of concepts, they alone may not be a sufficient signal to
learn a policy that successfully solves a given task. For instance, if an agent infers the concept
value “door is open", it would still need additional spatial information to effectively navigate to
the door.

We mitigate this by introducing a residual — a filtered, compressed representation of the input that
is concatenated to our concept values to provide any “extra information" needed to determine a
suitable action. This representation is learned via a neural network r(s) = z that generates
residual representation 2z given state s.

As the purpose of the residual is to act as a signal to help maximize the expected reward on the
task, the residual and actor networks are optimized jointly; during training, any policy loss is
backpropagated through both the actor and residual networks, while concepts are trained in a
supervised manner solely through the ground-truth signal c.

Disentangling Concepts and Residuals

While adding unsupervised concept dimensions or residual information to concept-based mod-
els has been demonstrated to improve performance, it can come at the cost of interpretability
[Mahinpei et al., 2021]. Models will tend to encode information about concept values and con-
cept distributions within the residual, a phenomenon known as “concept leakage". This com-
promises the interpretability of the model, as the concept predictions are no longer meaningful
explanations of the model’s true decision-making process.

To address this issue, we introduce the constraint that our residual and concept values must be
disentangled — that is, the residual should not contain any information about the concepts. We
approach disentanglement from a probability theory perspective, where the aim is to ensure that
concepts and residuals are statistically independent. This can be realized via optimization by
minimizing some measure of dependence between concept values and generated residuals, with
respect to residual network parameters.

Although the most common measure of statistical dependence is Pearson’s correlation coeffi-
cient, it has some significant limitations; in particular, it only captures linear relationships, and
thus zero correlation does not necessarily imply independence [Tjgstheim et al., 2022].

Instead we use mutual information, which is zero between random variables if and only if they
are independent. This measure can also be characterized as KL-divergence between the joint
distribution and the product of the marginal distributions:

[(C, Z) = DKL(IEDCZ H ]P)C ®]Pz) (42)

To minimize this quantity, we utilize the variational approach from [Cheng et al., 2020] and min-
imize a contrastive log-ratio upper bound. Given policy parameters ¢ and variational parameters
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Algorithm 4: Training concept-residual policies

input:
MyRLAlgorithm # (e.g. PPO)
concept_loss_fn # (CE or MSE)
f,9,7,¢ # neural networks
a, 8,6 # hyperparameters

for batch in MyRLAlgorithm.train():
s,c = batch.states, batch.concepts
¢ = g(s) # predicted concepts
z = r(s) # residual
Ly = —logg(z|c).mean ()
Update variational network ¢ to minimize £,
Leoncept = concept_loss_£n(c,¢)
pos = logg(z | c)
neg = logq(z | shuffle(c)) # batch-wise negative (product of marginals)
L,esidual = (pos — neg) .mean ()
¢ = add_noise(c,€) # noisy concepts
a = f(éz) # actions
Lpolicy = MyRLAlgorithm.loss (s,a)
‘CCRP = AC;Doli(:y + Ofﬁconcept + B‘Cresidual
Update networks f, g, 7 to minimize Logp

6, we have the following:

Ly(0) = —Ey,(cn)log qo(z | ©)] 4.3)
Cresidual(0-> = ]Epg(c,z) [IOg qo (Z | C)]
— Ep,(0Ep, @ [l0g 6(2 | €)] (4.4)

where c is the concept vector, z is the residual vector, p, represents the distribution of concepts
and residuals induced by the current policy in the environment, and ¢y(z | c) is a variational
approximation to the conditional distribution p,(z | c), modeled via a separate neural network
trained to minimize the negative log-likelihood L.

Learning the Task

Given concept values and the generated residual, the last link in the chain is the actor network
f(c,z) = a. The tuple (c, z) acts as an interpretable, disentangled state representation, while our
actor takes these state representations and produces actions aimed to maximize expected reward
from the environment.

The only constraint of our approach with respect to learning is the need for ground truth concept
values to supervise the concept predictor while learning the policy. If concept labels are given or
computable, this makes it straightforward to train these agents with essentially any model-free
deep reinforcement learning optimization algorithm; in policy-based and actor-critic methods f
models the policy and the actor respectively, and in value-based methods f models the estimated
value function or Q)-function. Given a selected RL algorithm, we adopt the corresponding policy
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loss (e.g. Lyoiicy = Lppo). Then the augmented concept-residual policy loss becomes:

ECRP = Epolicy + aﬁconcept + ﬂﬁresidual (45)

where «, 8 > 0 are hyperparameters.

During training, for each batch we optimize both the augmented policy loss Lo gp (With respect
to the policy parameters o) and the variational loss £, (with respect to the variational parameters
). We also note that we use the independent training paradigm from the bottleneck approach
[Koh et al., 2020], using (noisy) ground-truth concepts to train our actor network, and using con-

cept predictions at inference time. Pseudocode for this training process is provided in Algorithm
4.

4.2 Theory of Mind with Concepts

Learning concept-residual policies that are interpretable by design provides tremendous flexibil-
ity in the types of inductive bias we can impose on our agents. In particular, we can use concepts
to model theory of mind.

4.2.1 Beliefs and Intents

Concept-residual policies expose internal “mental states" in the form of their concept predictions,
which can be interpreted as beliefs.

Definition 2 (Belief). A belief over a concept is a prediction of the concept value for given state,
defined as a probability distribution over possible concept values.

Recall that our concepts are defined with respect to entire trajectories, rather than individual
states. This allows for “post-hoc" concepts that correspond to a property of the current timestep
but are determined by future portions of the trajectory. In particular, if we have a concept that
corresponds to future outcomes that can be influenced by the agent’s behavior, then the agent’s
belief about the outcome of its future behavior can be interpreted as intent (i.e. “I believe my
actions will result in X).

Intuitively, intents are treated as a special case of belief where the prediction is about future
states. For example, in an environment with multiple rooms, one could define a concept as “the
next room the agent will enter after time ¢". Although the ground truth concept value is not yet
determined at time ¢, the agent’s belief at time ¢ about which room it will enter next is considered
the intent.

Definition 3 (Intent). Let C: T x N — ZP(S) be a concept such that C(1,t) N F,, # 0 for all
T € T and for all t € N, where T is the set of possible trajectories, Z(S) is the powerset of
the state space, and F,; = {s"TV s+2) 1 denotes the set of future states in trajectory T after
time t. Then an agent’s belief over C'is an intent.
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4.2.2 Recursive Reasoning

Concepts provide us a flexible framework with which we can model and ground beliefs and
intents within policies. Assuming the policy’s decision-making process is truly interpretable
with respect to reasoning over these beliefs and intents, this can be considered zero-order theory
of mind [Hedden and Zhang, 2002].

In a multi-agent scenario where each agent makes predictions over the same set of concepts,
consider the idea of one agent predicting the value of another agent’s concept predictions (i.e. “I
believe that you believe X"). Similarly, agents may also make predictions about the 2nd-order
predictions of other agents (i.e. “I believe that you believe that they believe X"). This type of
recursive reasoning over beliefs can be extended to any arbitrary depth. An agent reasoning over
n-th order beliefs is considered to have an n-th order theory of mind.

Definition 4 (n-th Order Belief). Let zero-order belief refer to an agent’s belief over ground truth
concepts as defined in Definition 2. Then an n-th order belief is defined as one agent’s belief over
another agent’s (n — 1)-th order belief.

Intuitively, a concept can be understood as a mapping from each (trajectory, timestep) pair to an
element from a set of possible concept values. For a “ground truth” binary concept such as “door
is open”, it is a function where the set of possible concept values is {0, 1}. An agent’s belief
over this concept is a Bernoulli distribution over the discrete domain, parameterized by a single
continuous value p € [0, 1].

However, said agent’s belief over this ground truth concept can also be a concept in itself,
where the set of possible concept values is the set of possible Bernoulli distributions (i.e. the
continuous interval [0, 1]). Then another agent’s belief over this “higher-order concept” is a
probability distribution over elements of this new continuous domain. For simplicity, we just
use regression to directly predict the concept value, in which case the distribution is a delta
distribution, also parameterized by a single continuous value p € [0, 1].

It is important to note that the belief of an agent may be incorrect, in which case a correct higher-
order belief would successfully predict this false belief. For instance, consider a scenario where
a door is locked but agent 7 believes the door is unlocked. Agent ;7 should ideally have 1) the
zero-order belief that the door is locked, and 2) the first-order belief that agent ¢ thinks the door
is unlocked.

In the vanilla concept-residual policy, the concept prediction network g: S — C models zero-
order beliefs. To model n-th order beliefs over K agents, we can simply use a modified concept
prediction network g: S — CKX", where CX" is the K"-th Cartesian power of concept space C.

Now for each agent i we have n-th order beliefs g;(s) = C® as a tensor of rank n, where Cy)

is agent 7’s prediction of agent j’s (n — 1)-th order belief. Let C¥) be the n-th rank tensor given
by:
c = {CL L= (4.6)
- G s
Cj,... i #
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where c is a (broadcasted) (n — 1)-th rank tensor of ground truth concept values. Then the
concept loss term in Equation 4.5 becomes:

Econcept = gc (0(1)7 C(z)) (47)

where /. is the relevant loss function (see Equation 4.1).

4.2.3 Higher-Order Belief Example

CONCEPT VALUE 1ST-ORDER BELIEF
The ground truthiis ... As agent 1, | think ...

0.6 0.3 0.1

2ND-ORDER BELIEF 3RD-ORDER BELIEF
As agent 1, | think ... As agent 1, | think ...

Agent 1 thinks: ’ ° ‘ Agent 1 thinks: ’ ° ‘
06 03 01
0.6 0.3 0.1

Agent 1 thinks:

Asent2thinks: ‘ ° °

Agent 2 thinks: ’ o ‘ 05 03 02
05 03 02

e @ @ @

[ 05 05

Agent 2 thinks: ‘ ° ‘
05 03 02

Figure 4.2: Visualization of higher order beliefs. Here we have a discrete concept representing ground
truth value of an unknown card: J. From the perspective of agent 1: “I believe the unknown card is
probably J (1st-order belief), that Agent 2 is a little less certain (2nd-order belief), but that Agent 2 thinks
I don’t believe it is J at all (3rd-order belief).

Agent 2 thinks:

Intuitively, we use concepts to model information that may be unknown to agents. For example,
in a card game we can model the rank of the next card in the deck as a discrete concept Cy.qx (7, 1)
taking on a concept value ¢ € Q2 = {A,2,3,...,J,Q, K}.

Intuitively, an agent’s belief is a prediction of the concept value given the information known to
it at time ¢. Consider the previous example of the discrete concept C,..,.1. Given the current envi-
ronment state s(Tt), if an agent generates a distribution parameterized as a vector of probabilities

for each rank f(sgt)) = [pa, P2, D3, - - -, DJ, PO, DK ), then at each state we can consider b = f(sgt))
to be the agent’s belief.

We can also extend this idea to higher-order theory of mind reasoning. Returning to the card
game example, an agent may maintain a 1st-order belief about the rank of the next card in the
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deck. However, a skilled player may also infer their opponents’ beliefs about that card — this is a
2nd-order belief. Extending this further, an agent may attempt to model what others believe about
its own belief (3rd-order belief) and so on, leading to an implicit hierarchy of nested reasoning
(see Figure 4.2).

In our framework, we first define a collection of relevant concepts for an environment. Then each
agent policy has a corresponding belief network that takes in observations and generates concept
value predictions at each timestep. For every batch of experiences used for training the agent
policy, the corresponding ground truth concept values are used to supervise the agent’s belief
network (see Algorithm 4).

Again, consider the example of the discrete concept C,.,,,;. With n possible concept values. If
each agent ¢ generates a Ist-order belief as a generalized Bernoulli distribution parameterized by
b; € [0, 1], we can aggregate these belief parameters into a matrix B = [by, by, ..., b,]". Then
the 2nd-order belief of each agent 7 is a parameterized probability distribution over aggregated
Ist-order beliefs B. Similarly, we can aggregate 2nd-order belief distribution parameters and
generate 3rd-order beliefs distributions over these, and so on.

In this particular work, to reduce the number of parameters needed for higher orders, when k& > 1
we model each k-order belief as a joint distribution over independent (k — 1)-order beliefs,
parameterized directly by the marginal distribution parameters (i.e. the aggregated (k — 1)-order
belief distribution parameters). However, this can be adjusted to incorporate more complex joint
distributions if more expressivity is needed.

4.2.4 Bounded Recursion

The psychology literature suggests that humans tend to reason with 1st or 2nd-order theory of
mind [Camerer et al., 2004], and studies suggest limited benefit beyond 2nd-order reasoning on
most tasks [De Weerd et al., 2013a,b, 2017]. For this reason, and given that the dimensionality
of the concept prediction space grows exponentially with respect to the level of ToM reasoning,
the main body of this work considers up to a maximum order of n = 2.

4.2.5 Centralized Training

To supervise the predictions of a higher-order policy, we need access to relevant predictions
from all of the other policies, which requires centralized training. Centralized training with
decentralized execution (CTDE) has become a widely adopted framework in MARL, particularly
in actor-critic methods where a centralized critic network has access to observations from all
agents [Sharma et al., 2021].

Centralized ToM training can be understood along similar lines; at training time, each n-th order
prediction is supervised by the (n — 1)-th order prediction of the relevant agent. At test time,
the policy relies on its own predictions and does not require any access to ground-truth internal
states of other agents, allowing execution in multi-agent scenarios with any other types of agents,
including human actors.

28



We note a potential concern with centralized ToM training in competitive scenarios is that a
malicious agent may intentionally learn incorrect beliefs to confound other agents. However
we note that, as previously mentioned, we utilize the independent training paradigm from [Koh
et al., 2020]. This means that gradients resulting from generated actions are not backpropagated
through the concept prediction network, leaving beliefs to be supervised only by ground truth
and unaffected by any reward, avoiding the issue.
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Chapter 5

Cooperation

We now investigate using concept-residual policies as described in the previous chapter to model
theory of mind in cooperative and partially-cooperative multi-agent scenarios.

5.1 Theory of Mind as Intrinsic Motivation

In addition to introducing higher-order ToM inference as a directly supervised auxiliary predic-
tion task, we also propose using it as an intrinsic reward.

As previously described, the concept predictor is trained independently from the residual and
actor networks, and is supervised solely by Lconcepr (Equation 4.7). While adding this term to
the overall loss incentivizes an agent to predict others’ beliefs and intents at each current state,
treating it as an intrinsic reward incentivizes an agent to act in a way such that others’ beliefs and
intents will be predictable in the future. The idea here is to bias exploration towards states and
behaviors where agents can maintain or gain knowledge about other agents’ internal mental states
(including their higher-order beliefs), in a way that also able to achieve high task reward. For
example, as an agent in a cooperative task I may be incentivized to communicate effectively to
maintain knowledge of teammates’ intentions. As an agent in an adversarial scenario, however,
I may be incentivized to consistently confuse my opponent about my true beliefs and intentions
(e.g. behave in such a way that my opponent consistently has high entropy predictions of my
beliefs, thus allowing me to simply predict a uniform distribution as my second-order prediction
of their prediction).

The intrinsic reward for each agent is constructed similarly to the loss term in Equation 4.7.

Given K agents, let Y = [Cgl) C§2) o C%ﬂ} . Then the reward becomes:
Fiom = —Le (Y, €0) (5.1)
T = Tiask + )\Ttom (52)

where /. is the relevant concept loss function (see Equation 4.1), and A > 0 is a hyperparameter
that controls the balance between the intrinsic (ToM) and extrinsic (task) rewards.
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MultiGrid: LockedHallway ParticleWorld: Deception

agent 1 agent 2

adversary

'@

ParticleWorld: Spread

X

Figure 5.1: Environments used for experiments. The deception task is a mixed cooperative-competitive
scenario, while the spread and locked hallway tasks are fully cooperative.

5.2 Experiments

We evaluate the performance of Oth, 1st, and 2nd order concept-residual policies on a selection
of grid world and particle world environments.

As this approach can be integrated with other reinforcement learning optimization algorithms,
we consider actor-critic methods A2C [Mnih et al., 2016], PPO [Schulman et al., 2017], and IM-
PALA [Espeholt et al., 2018] implemented with centralized critics, and Rainbow DQN [Hessel
et al., 2018] with independent learners. We also consider QMIX for our cooperative environ-
ments [Rashid et al., 2020].

Within each environment, we use identical neural architectures for each concept-residual policy
configuration, except for the output dimension of the concept prediction network, which is given
by d. - k", where d. is the ground truth concept vector dimension, k is the number of agents, and
n is the ToM order of the concept-residual policy). We also compare to a purely neural policy
baseline without concepts (i.e. using residual only with concept output dimension 0). Baseline
and zero-order models have no intrinsic reward, and we note that for 1st-order and above our
hyperparameter search includes A = 0 (i.e. both with and without intrinsic reward).

For each environment, algorithm, and configuration we perform a hyperparameter grid search
and report the results for the best set, averaged across 5 random seeds and trained for 10 million
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timesteps each.

5.2.1 ParticleWorld: Deception

We use a modified version of the physical deception task described in [Lowe et al., 2017]. This
environment consists of N landmarks, N “good" agents and a single red adversary agent within
a 2D world; for our experiments we set N = 2.

In our variant, one of the landmarks is the “target", but neither the good agents nor the adversary
are initially told which one. The N good agents receive a joint reward based on the minimum
distance to the target landmark, with each agent’s contribution weighted by a randomly generated
reward coefficient 7; ~ Uniform|0, 1]. Similarly, the adversary is penalized based on its distance
from the target.

The episode ends either after a fixed time-limit, or when the adversary reaches any landmark. If
this is the target landmark, the adversary receives a positive reward, otherwise a negative penalty
(both time—scaled).

rQOOd(t) = - mﬁm {d(xi,ty Xtarget)} (53)
+ d(Xadv7 Xtarget)
Tadv (t) - _d<xadv7 Xtarget) 5.4

- ]I[Xadv = Xother](l - t/T)
+ H[Xadv = Xtarget](l - t/T)

where d is Euclidean distance, X;qrq¢; 1S the position of the target, X,y is the position of the
non-target landmark, x;; is the position of good agent ¢ at time ¢, X,q, ¢ 18 the position of the
adversary agent at time ¢, and 7' = 50 is the maximum episode length.

The adversary is incentivized to find and navigate to the target as quickly as possible. On the
other hand, the good agents are incentivized to keep the adversary uncertain as long as possible
while accumulating reward.

Concepts Agents reason over the following concepts:
* Whether each landmark is the target (belief)
* Reward coefficient for each good agent (belief)

In each configuration we train one policy for the good agents and one policy for the adversary
agent, varying the level of ToM inference (i.e. Oth order, 1st order, etc). We evaluate by matching
each configuration against baseline opposition (e.g. 1st-order good agents vs. baseline adversary,
Ist-order adversary vs. baseline good agents, etc); the results are reported in Table 5.1. We find
that agents are consistently better performing against baseline opponents as ToM order increases;
this phenomenon is observed for both the good agents and the adversary.
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Good Agents
Algorithm No ToM ToM-0 ToM-1 ToM-2

A2C 1.876 2.099  2.635 2.930
PPO 1.889 2314 2574 2943
IMPALA 1.721 2.180  2.678  2.908
DQN 1.918 2239 2563  2.725
Adversary Agent
Algorithm NoToM ToM-0 ToM-1 ToM-2
A2C -15.60 -15.26 -13.73 -12.77
PPO -1532  -15.01 -13.95 -12.49
IMPALA -14.85 -1473 -13.13 -11.34
DQN -15.36 -1499 -13.81 -12.38

Table 5.1: Performance against no-ToM opposition on ParticleWorld: Deception environment, in various
configurations. We report the mean cumulative reward of the final trained policies, averaged across 5
random seeds and 1000 episodes each. ToM-n indicates n-th order policies (i.e. with n-th order beliefs).
Bolded results are statistically significant improvements over baseline No ToM / ToM-0 (p-value less than
0.05).

5.2.2 ParticleWorld: Spread

We consider the cooperative navigation “spread” task described in [Lowe et al., 2017]. This
environment consists of /N landmarks and /N agents within a 2D particle world; for our experi-
ments we set N = 3. The goal is for the team of agents to learn to spread out and cover all the
landmarks while avoiding collisions. Specifically, all agents receive a joint reward based on how
far the closest agent is to each landmark (sum of the minimum distances), and are individually
penalized for collisions.

Concepts Each agent reasons over the following concepts:
* Whether the agent will visit each landmark within 10 timesteps (intent)

Here for each n-th order configuration we train homogeneous agents with shared parameters.
The mean episodic rewards (summed across all agents) achieved for each policy configuration
are shown in Table 5.2. We observe a noticeable and consistent improvement with Ist and 2nd
order policies compared to the Oth order and baseline models across all the algorithms used. The
2nd-order ToM tends to perform marginally better than the 1st-order ToM.

5.2.3 MultiGrid: LockedHallway

We further test our method on the locked hallway cooperative scenario in a multi-agent grid world
environment [Oguntola, 2023]. This environment consists of two agents in a grid containing 6
locked rooms with colored doors, each with a corresponding color key. Agents receive a joint
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Algorithm NoToM ToM-0 ToM-1 ToM-2

A2C -77.11 0 -74.11 -67.59  -66.30
PPO -75.13  -75.66 -67.45 -67.08
IMPALA -75.67  -74.33 -68.89 -67.01
QMIX -7450  -7547 -67.96 -66.80
DQN -76.41  -77.03 -68.86 -68.96

Table 5.2: Performance on ParticleWorld: Spread environment, in various configurations. We report the
mean cumulative reward of the final trained policies, averaged across 5 random seeds and 1000 episodes
each. ToM-n indicates n-th order policies (i.e. with n-th order beliefs). Bolded results are statistically
significant improvements over the baseline No ToM and ToM-0 (p-value less than 0.05).

Algorithm NoToM ToM-0 ToM-1 ToM-2

A2C 4.883 4.863 5295 5401
PPO 4.895 4.858 5317 5.339
IMPALA 4.890 4.806 5.334 5.418
QMIX 4.872 4.852 5315 5315
DQN 4.888 4.849 5325 5.378

Table 5.3: Performance on MultiGrid: LockedHallway environment, in various configurations. We re-
port the mean cumulative reward of the final trained policies, averaged across 5 random seeds and 1000
episodes each. ToM-n indicates n-th order policies (i.e. with n-th order beliefs). Bolded results are sta-
tistically significant improvements over baseline No ToM / ToM-0 (p-value less than 0.05).

reward for unlocking and opening each door. The goal of the task is to open all the doors as
quickly as possible.

Concepts Each agent reasons over the following concepts:
* Key that each agent currently has (if any) (belief)
* State of each door (i.e. open, closed, or locked) (belief)
* Whether the agent will visit each room within 20 timesteps (intent)

To bootstrap training in this environment we first trained a single agent (no-ToM) to perform the
task, then transfer to the multi-agent setting by initializing all agents in our experiments from
this pretrained model and finetuning with RL. Again, we train homogeneous agents with shared
parameters. The mean episodic rewards achieved for each n-th order policy configuration are
shown in Table 5.3. We find similar results to the particle world cooperative “spread" task, with
significant improvement between Oth and 1st order policies, and additional marginal improve-
ment between Ist and 2nd order policies.
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5.2.4 Qualitative Analysis

Outside of increased performance in terms of reward, we find that a qualitative assessment indi-
cates more complex and efficient strategies are exhibited by higher order policies, regardless of
which RL optimization algorithm was used.

ParticleWorld: Deception

Baseline and zero order good agents move towards a unique landmark and tend to stay nearby,
whereas 1st and 2nd-order good agents occasionally swap positions between landmarks. Base-
line and zero-order adversaries appear to drift randomly throughout thte episode, while 1st-order
and 2nd-order adversaries are more decisive, moving quickly to landmark.

ParticleWorld: Spread

Baseline and zero-order policies can be described on a per-agent level as greedily moving towards
closest landmark without any other agents nearby. With 1st-order and 2nd-order policies, agents
are quicker to visibly switch targets.

MultiGrid: LockedHallway

Trajectories from baseline and the Oth-order policies often exhibited inefficient behavior due to
overlapping intents, specifically both agents moving towards the same key to pick it up. Interest-
ingly enough, this was particularly evident in the policies with zero-order ToM, which although
were perhaps more equipped to handle individual taskwork, were also slightly worse at coordi-
nation. However with 1st and 2nd order policies, we observed a marked decrease in this type of
behavior; in situations with only one available key, one agent heads for the key while the other
tends to go directly to the corresponding door.

5.2.5 Takeaway

We consistently see a significant difference in the performance of 1st/2nd order ToM agents
compared to Oth-order ToM or vanilla RL policies. We tend to to see diminishing to marginal
returns moving from 1st to 2nd order agents.
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Figure 5.2: PPO learning curves for agents in ParticleWorld: Deception environments. Plots show episode
reward as evaluated against baseline agents, at various points during training. After every 1 million
timesteps of training, we run 100 additional evaluation episodes and analyze the reward of the current
policy. The curves show the mean reward at each stage of training, and the shaded portion for each curve
shows a 95% confidence interval (2 standard deviations). All environments show a statistically significant
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improvement in 1st / 2nd-order ToM over Oth-order / baseline agents.
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Chapter 6

Deception

We now turn our framework to specifically address deception in multi-agent scenarios. As arti-
ficial intelligence systems are increasingly deployed in environments where they must cooperate
or compete with both human and artificial agents, the ability to reason about and influence the
beliefs and actions of others becomes essential. This is particularly true in adversarial settings,
where the ability to mislead or deceive an opposing agent can offer a decisive competitive ad-
vantage.

Deception—the act of causing another to believe something that is false—is a pervasive and
fundamental aspect of many interactions, both in nature and human society. From camouflage
in the animal kingdom to strategic misdirection in warfare and sports, deceptive behaviors have
evolved as effective survival strategies. In artificial intelligence and machine learning, the abil-
ity to employ and recognize deception marks a significant step toward more sophisticated and
human-like reasoning, enabling systems to act strategically in complex, dynamic environments.

Traditional MARL approaches have largely focused on optimizing direct rewards from the envi-
ronment, often struggling to develop strategies that involve manipulating the beliefs or intentions
of other agents. This limitation becomes especially apparent in games of incomplete information,
where the ability to mislead opponents about one’s state or intentions can be a key determinant of
success. Games like Kuhn Poker and Barrage Stratego serve as prime examples of environments
where deception plays a central role in gameplay, requiring agents to reason not only about their
own decisions but also about the beliefs and strategies of their opponents [Kuhn, 1950, Federa-
tion, 2025].

To address this gap, we present a modification of our earlier approach where agents are not only
trained to maximize environmental rewards but also to induce incorrect beliefs in their opponents.
This is achieved by modeling the opponent’s mental state and using the discrepancy between
this model and reality as a reward signal. In turn, this enables agents to develop sophisticated
deceptive strategies that extend beyond simple reactive behaviors, allowing them to mislead their
opponents effectively.

Furthermore, we also extend this framework to higher-order ToM reasoning. In this extended
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model, agents reason not only about their opponent’s beliefs about the world (1st-order ToM)
but also about their opponent’s beliefs about the agent’s beliefs (2nd-order ToM), and potentially
even higher-order beliefs. This recursive reasoning allows for increasingly complex deceptive
strategies, mirroring the depth of strategic thinking observed in high-level human gameplay. The
ability to deceive an opponent’s higher-order beliefs provides a clear advantage in environments
like Kuhn Poker, where players must navigate incomplete information and make decisions based
on the perceived actions and mental states of others.

Our empirical results show that agents trained with our higher-order deceptive framework con-
sistently outperform both baseline MARL agents and those employing only first-order deceptive
strategies. These improvements are evident not only in win rates but also in the sophistication
and adaptability of the strategies used. The agents trained with higher-order ToM reasoning were
able to consistently outmaneuver their opponents, making more informed and strategic decisions
based on their understanding of the opponents’ beliefs and intentions.

The implications of this work extend far beyond game-playing Al. As Al systems are increas-
ingly deployed in complex, adversarial real-world scenarios—f{rom cybersecurity to autonomous
negotiation—the ability to reason about and influence the beliefs of other agents becomes criti-
cal. Our framework provides a step toward developing Al systems capable of engaging in these
scenarios with human-like strategic depth.

Moreover, this research contributes to our broader understanding of deception and strategic rea-
soning. By developing Al systems that can both employ and recognize sophisticated deceptive
strategies, we gain insights into the cognitive processes underlying such behaviors in humans
and other intelligent entities.

6.1 Related Work

6.1.1 Deception in Multi-Agent Systems

The study of deception in multi-agent systems has garnered significant attention across various
domains. Early work by [Castelfranchi, 1998] established foundational principles for model-
ing deception in artificial agents. [Arkin et al., 2011] later formalized these concepts within a
decision-theoretic framework, providing mathematical groundwork for deceptive behaviors in
autonomous systems.

Recent advances in deep learning have enabled more sophisticated approaches to deceptive be-
havior. The landmark achievement of Meta AI’s CICERO [FAIR et al., 2022] showed that large
language models could engage in natural language deception within the game of Diplomacy,
highlighting the potential for sophisticated strategic behavior.

6.1.2 Game-Theoretic Approaches to Deception

Game theory provides formal frameworks for analyzing deceptive behavior. Ettinger and Jehiel
[2010] developed theoretical foundations for modeling deception in games; recent work by Zhou
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et al. [2022] has connected game-theoretic principles with deep learning approaches.

In poker-specific domains, Brown and Sandholm [2019] demonstrated superhuman performance
in heads-up poker.

6.1.3 Deception in MARL

Deception in multi-agent reinforcement learning (MARL) has garnered significant attention as
researchers strive to develop agents capable of strategic interactions that mirror complex hu-
man behaviors. Deception, in this context, involves agents deliberately providing misleading
information or actions to manipulate the beliefs or behaviors of other agents to gain a strategic
advantage.

MARL has seen substantial advancement in recent years in competitive scenarios. Zhang et al.
[2021] provided a comprehensive survey of modern MARL techniques, while Hernandez-Leal
et al. [2019] focused specifically on deep MARL approaches. Notable achievements include
Vinyals et al. [2019]’s AlphaStar system and Berner et al. [2019]’s OpenAl Five.

The integration of opponent modeling in MARL has been explored by He et al. [2016] and
extended by Raileanu et al. [2018]. Foerster et al. [2018] introduced learning with opponent-
learning awareness (LOLA), while Wang et al. [2022] developed frameworks for cooperative
multi-agent learning.

A notable advancement in this field is Meta AI’s CICERO, the first Al agent to achieve human-
level performance in the game of Diplomacy. Diplomacy is a strategy game that requires players
to understand others’ motivations, negotiate, form alliances, and sometimes employ deception
to succeed. CICERO integrates natural language processing with strategic reasoning, enabling
it to engage in complex negotiations and deceptive tactics to achieve its objectives [FAIR et al.,
2022]. While CICERO’s integration of language and strategy is impressive, our work focuses on
environments where communication is implicit, and deception arises through actions rather than
explicit dialogue.

In another study, Aitchison et al. introduced a mixed competitive-cooperative MARL environ-
ment inspired by role-based deception games like Werewolf and Among Us. This environment
allows agents to learn deceptive behaviors by balancing cooperation and competition, providing
insights into how deception can emerge and be sustained in multi-agent interactions [Aitchison
et al., 2021]. Our approach differs by emphasizing the development of hierarchical policies that
enable agents to dynamically adjust their level of deceptive behavior based on the evolving game
context.

Furthermore, Chelarescu explored deception within the framework of social learning in MARL.
The study highlights how agents can reshape the reward functions of other agents to promote
cooperation but also warns of the increased risk of manipulation when agents are unaware of
being deceived into adopting policies not in their best interest [Chelarescu, 2021]. In contrast,
our work focuses on direct deceptive actions within competitive settings, without altering the
underlying reward structures of other agents.
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Additionally, Asgharnia et al. proposed a fuzzy multi-level reinforcement learning approach
to model deception in pursuit-evasion games. They utilized a two-level policy system where
the higher-level policy manages deception, and the lower-level policy controls goal-directed ac-
tions [Asgharnia et al., 2022]. While their hierarchical approach informs our methodology, our
work uniquely applies this concept to complex strategic games, demonstrating the scalability and
adaptability of hierarchical deception strategies.

These studies underscore the importance of deception in MARL, highlighting the need for agents
to develop sophisticated strategies that include misleading opponents to achieve their goals. Our
work contributes to this body of research by introducing a novel framework that combines hierar-
chical policy structures with dynamic deception strategies, enabling agents to effectively navigate
and manipulate complex multi-agent environments.

6.2 Deception with Theory of Mind

6.2.1 Definitions

We begin with some explicit definitions.

Definition 5 (Deception). Deception involves an agent acting to deliberately induce false beliefs
in other agents in order to gain a strategic advantage.

It also is important to define what we mean by a "deceptive agent".

Definition 6 (n-Order Deceptive Agent). We call an agent n-th order deceptive if it both models
and manipulates its opponents’ n-th order beliefs.

6.2.2 Learning Beliefs

Given a concept C', we assume that distributions over concept values are parameterized by d real
values. Given m agents, each agent ¢ maintains a belief network that processes observations and
generates a n-order belief tensor B§”) € R™ x --- x R™ x R? (i.e. what the agent’s beliefs
actually are).

For each agent 7, we recursively define the n-order belief target tensor Tg") (i.e. what the agent’s
beliefs should be):

TV = BY 6.1)
TE D 5=

Tz(? _ {B(k_l) L (6.2)
i J7t

Let /(c, b) denote the log-likelihood of ground truth concept value ¢ under a belief distribution
parameterized by b € RY, and let D be any statistical divergence measure between belief distri-
butions.
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Algorithm S: Training n-order deceptive policies

input:
{ # concept log-likelihood function
D # belief divergence function
fi,--y fm # belief networks
A # deception reward weight

for batch in MAPPO.run () :

B = stack ([f; (batch.obs[i]) for 1 =1 ... m]) # beliefs (x, m, ..., m, d)
T = get_belief_targets(B) # belief targets (x, m, ..., m, d)
# Train belief networks
for i =1 ... m:
# Calculate belief loss
Bl = diagonal (B[i]) # 1lst-order belief (x, d)
belief_losses[i] = —-f¢(batch.concepts, Bl) + D(T[i], B[i]).sum() / m

* (n-1)
belief losses[i] .mean () .backward()

# Add deception intrinsic reward

for i =1 ... m:
r = mean (belief_losses[]j] for J in opponents[i])
batch.rewards[j] += A * r

# Train agent policies
MAPPO.train_on_batch (batch)

Then the belief loss for agent 7 is given by:
Lot (BI”) = (.BY) + — Z D (1. B) (6.3)

" B e RY

7,0[’

where Z = {1,--- ,m}"! is the set of (n — 1) dimensional multi-indices and T\
are slices of the order-n tensors at (n — 1) dimensional multi-index o € Z.

The first term encourages Ist-order beliefs match ground truth concepts, and the second term
encourages higher-order beliefs to be consistent with lower-order beliefs.

In this particular work, we use categorical distributions with D as cross-entropy for discrete con-
cept values, and multivariate Gaussian distributions with D as L2 distance between distribution
means for continuous concept values.

As in previous sections, gradients from downstream action losses are not backpropagated into
agent belief networks, which are trained solely via this supervised loss.

6.2.3 Deception as Intrinsic Reward

Modeling agent beliefs as probability distributions gives us a natural way to frame deception: in-
ducing an agent’s belief distribution to diverge from the ground truth. The belief loss Lycjief(B;)
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Figure 6.1: Environments used for experiments.

from Equation 6.3 already provides us a natural way to quantify this.

For each deceptive agent, we propose adding an intrinsic reward for deception as the mean belief
loss of its opponents:

1
Tdeception = 777 Z ﬁbelief (Bz) (64)
| Zop| i€Tonp
T = Ttask + )\Tdeception (65)

where A > 0 is a hyperparameter.

Incorporating this intrinsic reward with higher-order beliefs creates the possibility for highly
sophisticated deceptive and counter-deceptive strategies. For instance, an agent may not only
attempt to deceive the opponent about hidden information (e.g. bluffing — 1st-order deception)
but to also deceive the opponent about the agent’s own beliefs (e.g. pretending to be deceived by
an opponent’s bluff — 2nd-order deception).

We also note that unless the agent’s beliefs are used as an additional auxiliary part of the agent
observation, the belief network is only needed for training and can be omitted during inference.

6.3 Experiments

We consider three partial-information games: Kuhn Poker, Mafia, and Barrage Stratego. We
also provide code for the environments and our IPPO / MAPPO implementations at https:
//github.com/ini/deception.

6.3.1 Kuhn Poker

Kuhn Poker, a simplified version of standard poker, is a finite, zero-sum game of imperfect infor-
mation [Kuhn, 1950]. We consider an n-player generalization with n+1 total cards {1, ...n+1},
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where each player is dealt a random card drawn uniformly at random, but has no knowledge of
the other players’ cards or of the remaining undealt card.

Kuhn poker serves as a fundamental testbed for deception due to its clear bluffing dynamics.
Bluffing occurs when a player with a weak hand bets to induce a fold from a stronger opponent.
Conversely, an opponent must reason about the likelihood of a bluff when deciding whether to
call.

Gameplay This is a sequential game that cycles through player turns. Initially players may
check or bet. Once any player has placed a bet, subsequent players must either call or fold. The
game proceeds to a showdown if all players check or at least one calls; otherwise, the betting
player wins uncontested. More specific environment implementation details can be found in the
supplementary material.

Concepts In this environment we have n discrete concepts: the card rank for each of the n
players. Each concept takes on a value ¢; € {1,...,n + 1}.

Architecture All policies are actor-critics with separate networks, implemented as MLPs with
2 hidden layers and 64 units per hidden layer, with the policy generating a discrete action: bet or
pass.

Training Our particular configuration uses n = 4 agents. We train a k-order deceptive ego
agent vs [-order deceptive opponents for £ = 0,1,2,3 and [ = 0. .. k, where 0-order indicates a
vanilla non-deceptive agent. Each environment is trained with two policies: one for ego agent,
and one for its opponents. All policies are trained via independent PPO for 10 million envi-
ronment steps Schulman et al. [2017]. Specific training hyperparameters can be found in the
supplemental material. Results are shown in Table 6.1 and Table 6.2.

6.3.2 Barrage Stratego

Barrage Stratego is a simplified variant of the classic board game Stratego [Federation, 2025]. It
1s a two-player, zero-sum game of imperfect information played on a 10 x 10 board where each
player knows the location, but not the rank, of its opponent’s pieces.

Gameplay In the initial phase, players arranges their pieces on their side of the board, with
piece ranks hidden from their opponent. Then players take turns, strategically maneuvering
pieces and engaging in battles. Battles are resolved by revealing the ranks of the opposing pieces,
with the higher-ranked piece winning unless special rules apply. The game ends when one player
captures the other player’s flag piece.

Concepts In this environment we have 100 discrete concepts: the rank of the piece at each cell.
Each concept takes on a value ¢; € {empty, flag, bomb, marshal, general, miner, scout, spy }.
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Stratego and its variants provide a structured setting to study planning under uncertainty, oppo-
nent modeling, and the use of misinformation as a tactical tool. As the hidden ranks of each
piece remains unknown to the opponent until revealed in battle, the ability to strategically dis-
guise high-value pieces and mislead the opponent about their position introduces an element
of deception akin to bluffing in poker; players must balance aggressive probing with defensive
concealment.

Architecture & Training We use the same network architecture (pyramid-style CNN), algo-
rithm (RNaD), observation space, and action space described in [Perolat et al., 2022], training for
100 million environment steps. We also evaluate against agents uniformly sampled from Vixen,
Celsius, and Asmodeus, existing bots designed capable of playing Barrage Stratego [Waate,
2012]. Results are shown in Table 6.4.

6.3.3 Mafia

Mafia (also known as Werewolf) is a social deduction game that involves two teams with asym-
metric information: the uninformed majority (the villagers, where each knows nothing about any
other players), the informed minority (the mafia, where each member knows which players are
or are not in the mafia) [Braverman et al., 2008].

Mafia is a natural environment for studying deception and inference. Mafia players must strategi-
cally mislead others about their identity while deducing the roles of others. Villagers must engage
in strategic reasoning under uncertainty, relying on imperfect signals such as voting patterns and
communication history.

In addition to the standard villager and mafia roles, we also include a detective — a villager who
can choose another player to investigate each night, and a doctor — a villager who can choose
another player to protect each night. Our particular configuration consists of 2 mafia, 1 doctor, 1
detective, and 5 standard villagers.

Gameplay Each game consists of two alternating phases: night and day. During the night
phase, the mafia covertly vote on a player to kill. During the day phase, the villagers discuss
and vote on a player to eliminate a suspected mafia member. The game ends when either team is
completely eliminated.

Communication during the day is modeled as projected belief conditioned on the output of each
agent’s belief network; villager roles communicate their raw 1st-order beliefs (i.e. cannot lie),
and all other roles communicate a learned transformation of their Ist-order beliefs (i.e. are
able to lie). For more on communication, observation spaces, and other details on the specific
environment implementation used, see the appendix.

Concepts In this environment we have n discrete concepts: the role of each of the n players.
Each concept takes on a value ¢; € {mafia, villager, detective, doctor}.
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Architecture All policies are actor-critics with separate networks, implemented as MLPs with
3 hidden layers and 64 units per hidden layer, with the policy generating both a integer from 1
to n players, indicating which player it is voting for (to kill, investigate, protect, eliminate, etc),
and a continuous vector indicating its (projected) k-order belief.

Training We train k-order deceptive Mafia agents vs [-order non-deceptive Town opponents
fork = —1,0,1,2and [ = —1...k, where and order of —1 indicates a vanilla agent without
ToM. In each configuration we train one policy per role; agents with the same role use the same
policy, with a centralized critic that takes in joint observations. All policies are trained via I-PPO
for 10 million environment steps Schulman et al. [2017]. Specific training hyperparameters can
be found in the supplemental material. Results can be found in Table 6.3.

Table 6.1: 4-Player Kuhn Poker average returns and 95% confidence interval (for row agent, playing
against column opponents). Results are from agents trained with 3 random seeds, averaged over 100
episodes. We see higher-order deceptive agents (as rows gow down) tend to perform better when the type
of opponent is fixed. We also see that a fixed deceptive agent tends to perform worse against higher-order
opponents (as columns move left to right). Both of these effects show diminishing returns once we reach
2nd-order.

NON-DECEPTIVE  OTH-ORDER 1ST-ORDER 2ND-ORDER
NON-DECEPTIVE - —0.03£0.012 —-0.044+£0.012 —-0.05+0.013
OTH-ORDER 0.09 £+ 0.036 - —0.01 £0.007 —0.01 £0.005
1ST-ORDER 0.13 £ 0.035 0.03 £0.021 - 0.00 £ 0.003
2ND-ORDER 0.14 + 0.040 0.03 £0.016 0.01 £ 0.010 -

Table 6.2: n-Player Kuhn Poker average returns and 95% confidence interval (for row deceptive agent,
playing against opponents randomly sampled from a population of all trained agents). Results are from
agents trained with 3 random seeds, averaged over 100 episodes. The table shows that agents with higher-
order Theory of Mind (ToM) consistently achieve greater normalized net winnings in deceptive settings,
with 2nd-order ToM agents outperforming all others across 3-player, 4-player, and 5-player games. Per-
formance improves with more players, suggesting that complex social reasoning provides greater strategic
advantage in larger groups. In contrast, non-deceptive and Oth-order ToM agents perform poorly or neu-
trally.

AGENT TYPE 3 PLAYERS 4 PLAYERS 5 PLAYERS
NON-DECEPTIVE | —0.01 &+ 0.008 0.00 £ 0.009 0.00 £0.011
OTH-ORDER 0.01 £0.007 —0.01£0.010 —0.0140.009
1ST-ORDER 0.07 £ 0.020 0.09 +0.018 0.10 +0.019
2ND-ORDER 0.11 £0.023 0.13 £ 0.025 0.15 £ 0.020

6.4 Mafia In Natural Language

The Mafia domain is intrinsically social: agents persuade, coordinate, and misdirect through
language. As detailed in the Appendix, our implementation of the Mafia environment models
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Table 6.3: Mafia environment mean win-rates (for the Mafia team) and 95% confidence interval. Results
are from agents trained with 3 random seeds, averaged over 100 episodes. Row header indicates the type
of Mafia agents (deceptive), and the column header indicates the type of Town agents (non-deceptive).
As Mafia agents become more advanced, their win rates improve across all Town types, showing that
higher-order ToM enhances deceptive ability. Conversely, as Town agents increase in ToM sophistication,
Mafia win rates drop, indicating stronger resistance to deception. Overall, performance is highest when
one agent’s ToM level exceeds the other’s, with deceptive agents gaining the most from this advantage.

VANILLA OTH-ORDER 1ST-ORDER 2ND-ORDER

VANILLA 0.204£0.05 0.15+£0.04 0.02+0.01 0.0140.01
OTH-ORDER | 0.27+0.05 0.19+£0.04 0.11+£0.04 0.0240.02
1ST-ORDER | 0.35£0.08 0.254+0.08 0.20+0.06 0.124+0.08
2ND-ORDER | 0.38 £0.09 0.27+0.10 0.264+0.09 0.21 £0.07

Table 6.4: Barrage Stratego environment mean win-rates and 95% confidence interval (for row agent
vs. column opponent). Baseline consists of uniformly sampled heuristic agents: Vixen, Celsius, and
Asmodeus. Unlike during training, games were not truncated (avoiding most draws). Results are from
agents trained with 3 random seeds, averaged over 100 episodes. We see higher-order deceptive agents
(as rows gow down) tend to perform better when the type of opponent is fixed. We also see that a fixed
deceptive agent tends to perform worse against higher-order opponents (as columns move left to right).
Both of these effects show diminishing returns once we reach 2nd-order.
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HEURISTIC RNAD-BASELINE OTH-ORDER 1ST-ORDER 2ND-ORDER

HEURISTIC - 0.29 £+ 0.08 0.23+0.10 0.114+0.10 0.10£0.08

RNAD-BASELINE | 0.70 + 0.08 - 0.35£0.07 0.13£0.09 0.13+£0.08

OTH-ORDER 0.77 4+ 0.10 0.65 4+ 0.07 - 0.40+0.08 0.39+0.13

1ST-ORDER 0.89 4+ 0.10 0.87 4+ 0.09 0.60 £ 0.08 - 0.44 £0.13
2ND-ORDER 0.90 £ 0.08 0.87 £ 0.08 0.61 +£0.13 0.554+0.13 -
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Figure 6.2: Illustration of projected belief as natural language in the Mafia environment. An agent option-
ally transforms their belief via a learned projection (if they play the Mafia role). The projected belief is fed
into an LLM (GPT 40) which distills the table of beliefs to a concise natural language description, which
becomes the agent messages. Once all agent messages are collected, these are used to update the table of
the agent’s actual beliefs, which are then fed into the RL actor to generate an action for the environment.

day-time “discussion” as each agent broadcasting a projected belief over player roles and then
voting. Here we render those broadcasts into short natural-language utterances (and back again)
to (i) make belief manipulation legible to humans and (ii) evaluate whether higher-order decep-
tion learned in belief space transfers to text. This interface preserves the same ToM/deception
objectives (Eq. 6.3, 6.4, 6.5).

6.4.1 Implementation

Speaking: From Beliefs to Utterances Each agent maintains an n-th—order belief tensor B(™)
over the per-player role concepts (mafia, villager, detective, doctor). During day phases, agents
emit a projected belief (™ and a vote. Projection is role-conditioned:

~(n) B™ (regular Villagers; truthful broadcast)
B p(B™)  (Mafia, Detective, Doctor; learned projection)
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where p,, is a learned “projection” module that can reshape what is said without changing the
underlying belief state.! The projected table B! is serialized into a short, conversational ut-
terance by a frozen off-the-shelf LLM—specifically, GPT-40—via prompting (no fine-tuning).
Intuitively, the prompt prints the top role probabilities and requests a concise hypothesis state-
ment (e.g., “X looks suspicious; Y seems townish; uncertain about Z”’). The LLM is used purely
as a non-differentiable encoder/decoder between structured beliefs and text.

Listening: From Utterances to Beliefs After a round of messages, each agent converts oth-
ers’ utterances back into a belief table using the same frozen GPT-40 with a complementary
extraction prompt that maps text spans to calibrated role probabilities. These parsed beliefs are
fused with the listener’s existing B! (and, through the supervised ToM heads, remain consistent
with B®), ...). Thus the LLM acts only as an external channel in the day-phase dynamics; no
gradients flow through it.

Training and Integration with ToM Belief networks are trained supervised as in Eq. 6.3
(separate from policy gradients). The actor and the projection module p,, are optimized with
I-PPO using the environment reward plus the deception intrinsic reward (Equation 6.5): agents
learn what to say (via p,) and how fo act so as to (i) win and (ii) increase opponents’ belief
losses. At test time we run the same speak/listen loop with a frozen GPT-40 translator and a
custom environment prompt.

Protocol Details We run a fixed number of day-phase message rounds. After each round,
agents (i) update beliefs from peers’ utterances and (ii) (re)cast votes. Regular Villagers must
broadcast their actual beliefs (identity projection); Mafia utterances are unconstrained beyond
D, s learned mapping. Messages are kept short and declarative so that the parser deterministically
recovers probability assignments (e.g., "70% mafia on A; mild town read on B"). This maintains
a tight coupling between the latent belief state and the human-readable text.

6.4.2 Analysis

Qualitative Behaviors in Language Rendering projected beliefs as text surfaces recognizable
tactics that align with higher-order deception (also see Figure 6.3):

* Over-justification vs. hedging: Lower-order deceivers tend to over-explain benign ac-
cusations ("I was solving just like everyone else"), which reads defensive and is often
punished by Town votes. Higher-order deceivers hedge and redirect to maintain plausible
deniability.

* False opposition: Coordinated Mafia sometimes stage on-record disagreement early (one
Mafioso publicly presses the other) to build credibility with Town before converging later;
this is an instance of higher-order deception ("I want you to think I don’t think they are my
partner").

I'This matches the belief-projection form b, = f;(b;,0;) with b, = b; for regular Villagers, introduced in
Appendix C.2.
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* Amplifying suspicions: A sophisticated deceiver nudges a hesitant Town villager’s weak
read into a stronger public stance via leading questions, then exploits the ensuing fric-
tion—language that mirrors the agent’s second-order belief that "you are about to believe
what I want others to believe."

Takeaway The belief <> language interface (i) preserves the formal ToM training loop, (ii) ex-
poses how deception is enacted to readers, and (iii) enables mixed human/Al evaluation without
retraining the policy. In Mafia, higher-order ToM not only improves win-rates but also yields
conversations that enact second-order manipulation of others’ beliefs—the precise behavior the
intrinsic deception reward 1s designed to elicit.

Human Experiments While we do not include them in this thesis, we will note that this mech-
anism allows the possibility of experiments with mixed human-agent gameplay.

6.5 Discussion

Our experiments demonstrate that higher-order belief modeling enables sophisticated deceptive
strategies that consistently outperform simpler approaches across multiple domains. The results
reveal several key insights about deception in multi-agent systems. Across domains we observe
increasing performance as ToM order increases, with consistent but diminishing returns from 1st
to 2nd order.

6.5.1 Emergent Deceptive Behaviors

Across all environments, we observed a variety of emergent deceptive behaviors that correspond
to strategies employed by skilled human players.

In Kuhn Poker, 1st and 2nd-order deceptive agents learned to employ mixed bluffing strategies
with weak hands while also occasionally slow-playing strong hands—a classic deception tactic
seen in expert poker players. This balance was achieved without explicit programming of these
strategies, emerging naturally from the belief modeling framework.

In Mafia, higher-order deceptive mafia agents demonstrated sophisticated coordination in their
voting patterns, often appearing to oppose each other in early rounds to establish credibility.
This emergent "false opposition" strategy is reminiscent of tactics used by expert human mafia
players. Meanwhile, town agents with higher-order belief modeling became more discerning in
their voting patterns, better identifying inconsistencies in mafia agent communications.

The Barrage Stratego environment also revealed complex emergent behaviors, with 1st and 2nd-
order deceptive agents developing "feint attacks" and sacrificial ploys to mislead opponents about
the value of hidden pieces. These agents would often initiate battles they were certain to lose,
but that would induce incorrect beliefs in their opponents about other pieces on the board.

Higher-order agents also demonstrated the ability to anticipate potential deceptive moves from
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[Town 1]: ok so [Mafia 1] was super quiet yesterday

[Mafia 1]: i was reading the chat, just thinking

[Town 3]: that's what mafia always says lol

[Mafia 1]: wtf no, i'm town. [Town 2] was way more sus voting
randomly

[Town 2]: i explained my vote though

[Mafia 1]: barely. and you switched last second too

[Town 4]: [Mafia 1] you're really going after [Town 2] hard rn
[Mafia 1]: because they're obviously mafia???

(a) Vanilla Mafia agents. [Mafia 1] gets too defen-
sive too quickly and immediately tries to deflect sus-
picion rather than naturally defending themselves.

The aggression felt forced.

[Town 1]: [Mafia 2] you've been way too agreeable

[Mafia 2]: what?? no i haven't, i've been solving just like
everyone else

[Mafia 1]: honestly [Town 1] has a point, [Mafia 2] you have
been pretty passive

[Mafia 2]: wtf [Mafia 1] why are you throwing me under the
bus?

[Mafia 1]: i'm not throwing anyone, just being honest about my
reads

[Town 4]: [Mafia 1] that's pretty bold if [Mafia 2] is your partner

(c) 1st-order deceptive Mafia agents. [Mafia 1]
attacks their own partner to build up their own cred-

ibility.

[Town 1]: [Mafia 2] you've been super agreeable this whole
game

[Mafia 2]: what? no i haven't. i voted [Town 4] day 1
remember? and i questioned [Town 3]'s claim yesterday. i've
been mafia-hunting just like everyone else. i mean look at my
posts, i've been trying to solve

[Town 4]: that's... a lot of defense for a simple observation
[Mafia 2]: i just don't want to be misread as passive when i'm
trying to help town win

(b) Oth-order deceptive Mafia agents. [Mafia 2]
over-explained when a simple denial would have
sufficed. The lengthy justification made them ap-
pear guilty and desperate.

[Town 1]: [Town 2] you seem pretty convinced it was random

[Town 2]: [Town 1] not convinced, just considering possibilities

[Mafia 1]: [Town 1] why are you saying [Town 2] seems convinced?
[Town 1]: [Mafia 1] just the way they said "or just random" felt dismissive

[Mafia 1]: [Town 1] do you think there's something suspicious about dismissing
strategy?

[Town 1]: [Mafia 1] maybe, like not wanting us to think too hard about it
[Mafia 1]: [Town 1] but your gut feeling is that [Town 2] was being dismissive?
[Town 1]: [Mafia 1] a little bit, yeah

[Town 2]: [Town 1] this is ridiculous, i mentioned one possibility
[Town 1]: [Town 2] you're getting defensive now

[Town 2]: [Town 1] classic mafia deflection

[Town 1]: pretty defensive for such a small comment

(d) 2nd-order deceptive Mafia agents. [Mafia 1]
noticed early on that [Town 1] had a slight suspicion
of [Town 2] but was hesitant to voice it. [Mafia 1]
used leading questions to encourage [Town 1] to ex-
press and escalate that suspicion, making [Town 1]
look like the aggressor while [Mafia 1] appeared to
be facilitating discussion. This backfired on [Town
1] and created lasting tension that [Mafia 1] later ex-
ploited.

Figure 6.3: Excerpts from Mafia chat logs via projected belief as natural language.
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opponents and adjusted their strategies accordingly. For instance, when suspecting that an oppo-
nent was feigning weakness by positioning low-ranked pieces aggressively, agents would:

* Cautious Engagement: Rather than attacking immediately, agents would maneuver to
gather more information about the opponent’s piece distribution, reducing the risk of
falling into traps.

* Pattern Manipulation: Establishing behavior patterns designed to be exploited by the
opponent and then breaking those patterns at a pivotal moment to create confusion and
capitalize on the opponent’s misjudgment.

6.5.2 Theoretical Implications

We find consistently that 1st and 2nd-order deception results in the highest win-rates across all
environments; this supports our theoretical framing of deception as belief manipulation, provid-
ing a quantifiable measure of deceptive success through the divergence between an opponent’s
beliefs and ground truth. This opens possibilities for analyzing deception in adversarial contexts
beyond the explicit reward structure of games.

Our results also suggest that 2nd-order belief modeling approaches a practical ceiling in perfor-
mance gains for the environments tested. The marginal improvement from 1st to 2nd-order was
smaller than from Oth to Ist-order in all environments, suggesting diminishing returns at higher
orders. This aligns with findings in human theory of mind research, where studies indicate hu-
mans typically reason effectively up to 2nd order in strategic interactions [Hedden and Zhang,
2002, Camerer et al., 2004].

6.5.3 Limitations and Challenges

Several limitations of our approach warrant further investigation. First, the computational com-
plexity increases substantially with higher-order belief modeling. The tensor representation
grows exponentially with the order of beliefs, limiting practical application to very large-scale
environments without further optimization.

Second, our current implementation assumes accurate lower-order beliefs when learning higher-
order beliefs. In many real-world scenarios, agents may have systematically biased or incomplete
lower-order beliefs, which could propagate errors to higher orders. Future work should explore
robust belief modeling that accounts for potentially inaccurate lower-order beliefs. Third, while
our framework enables effective deception, it requires supervised learning of belief networks,
which necessitates access to ground truth concept values during training. Self-supervised or
unsupervised alternatives would expand the applicability of our approach to environments where
ground truth is not available during training.
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6.6 Ethical Considerations

This approach promotes deceptive behavior in multi-agent systems to improve performance in
closed-domain games. While effective in these controlled environments, it raises ethical con-
cerns about the potential for similar strategies to be misapplied in real-world applications. The
framework is designed to deceive only other agents, not the system designers, but it highlights the
need for caution when applying such techniques outside of game settings. Careful consideration
is needed to ensure that deception is used responsibly and does not undermine trust, transparency,
or cooperation in broader contexts. In addition, although deliberately training agents to deceive
raises ethical questions, understanding how AI might learn to deceive is important for anticipat-
ing and mitigating such behavior in the wild.
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Chapter 7

Conclusions and Beyond

This thesis explored theory of mind (ToM) as a unifying scaffold for building interpretable
and strategically competent multi-agent systems. We developed a concept-based pipeline that
grounds beliefs and intents in human-interpretable variables, used these variables to steer coop-
erative behavior via intrinsic motivation, and finally operationalized deception as belief manipu-
lation in competitive settings. Together, these steps demonstrate a practical path from interpreting
minds, to using mind models for cooperation, to reasoning strategically against other minds.

Interpretable ToM for Agent Modeling In Chapter 3 we framed imitation as belief—intent
inference over a modular (BDI-inspired) observer and adapted concept whitening to make in-
tent prediction explanations legible. On human search-and-rescue trajectories, whitening both
improved interpretability and lifted accuracy from 73% to 84% (Table 3.2), with concept ac-
tivations aligning with domain intuition (Fig 3.4). This shows that interpretability can be an
inductive bias that improves modeling fidelity rather than a tax on performance.

Concept—Residual Policies for ToM Chapter 4 introduced concept—residual policies that keep
a compact residual for task-specific detail but constrain decisions to flow through explicit con-
cept beliefs. We formalized zero- to higher-order beliefs, enabling agents to predict not just
world facts but other agents’ beliefs about those facts (and so on). To protect interpretability, we
minimized an upper bound on the mutual information between concepts and residuals (Eq. 4.4,
4.5), ensuring concepts remain the primary explanatory channel.

ToM as Intrinsic Motivation for Coordination In Chapter 5 we rewarded agents for making
others’ beliefs and intents predictable (Eqs. 5.1-5.2). Across ParticleWorld: Spread & Decep-
tion and MultiGrid: LockedHallway, we found that 1st and 2nd order agents consistently outper-
formed both Oth-order agents and non-ToM baselines across A2C, PPO, IMPALA, QMIX, and
DQN (Tables 5.1-5.3; Fig 5.2). Gains from 1st to 2nd order were present but smaller, echoing
human limits on depth of recursive reasoning. Qualitatively, higher-order agents displayed more
decisive target switches, reduced intent collisions, and clearer division of labor.
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Deception as Belief Manipulation Chapter 6 defined deception as increasing divergence be-
tween an opponent’s beliefs and ground truth and turned this into an intrinsic reward, where
agents are rewarded for manipulating the beliefs of their opponents (Eq. 6.3, 6.4, 6.5). In Kuhn
Poker, Mafia, and Barrage Stratego, higher-order deceptive policies won more often and exhib-
ited recognizable tactics (mixed bluffing, false opposition, feints), while also being more robust
against opponents of equal or lower ToM order (Tables 6.1-6.4). As with cooperation, returns
diminished past 2nd order, suggesting a practical ceiling in these domains.

Takeaways First, interpretable concepts are not merely a reporting layer; they can structure
learning in ways that improve both transparency and performance. Second, reasoning about other
minds can be treated as a first-class training objective, as an auxiliary prediction task, and as an
intrinsic motivation that shapes exploration, communication, and strategy. Third, higher-order
ToM strengthens both coordination and deception but faces an efficiency/benefit trade-off beyond
the second order.

Limitations and Scope The concept space and belief tensors grow quickly with ToM order
and agent count; we therefore bounded recursion (n < 2) and used centralized training for
supervising higher-order predictions. Our approach assumes access to ground-truth concepts
during training (Appendix B.6) and relies on designs that separate belief supervision from policy
gradients to preserve well-behaved learning dynamics (4.2.5). These choices kept experiments
tractable but constrain immediate deployment to settings where such supervision (or reliable
proxies) is available.

Outlook Several extensions follow naturally. On the modeling side, factorizing belief tensors
(e.g., low-rank structure) and selective attention over agents/concepts could tame the combina-
torics of higher-order reasoning. On supervision, weak/self-supervised concept discovery and
cross-modal detectors would broaden applicability when simulators cannot supply labels. On
safety, deception-reward toggles and belief-divergence audits can help govern use in mixed hu-
man—Al settings. Regardless of path, the core insight holds: making minds explicit—then opti-
mizing over them—yields agents that are both more understandable and more capable in social
environments.
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Appendix A

Theory of Mind for Imitation Learning

A.1 Implementation Details

We consider Minecraft environments that can effectively be projected onto 2D grid representa-
tions (e.g., building interiors). The specification for each of the framework components is given
below.

Observations Observations are represented X X Y grids (where X and Y are dimensions of
the environment), and each (z, y) coordinate contains one of K different block types.

Belief States Each belief state b is represented by a X x Y x K grid, where the value at (x, y, k)
represents the probability of the block at position (x, y) having block type k.

Belief Model We use a rule-based belief model that aggregates observations into our belief
state with probability 1, and decay probabilities over time to a uniform distribution over block
types by b — llf}?e after each timestep, where b is a belief state grid, K is the number of block
types, and ¢ is a forgetfulness hyperparameter we set to 0.01.

Intents We represent each intent as an (z, y) position the player intends to navigate towards.

Intent Prior When generating data to train the inverse action model, for each belief state b,
we sample an intent (x,y) given some prior p(z,y|b), and create a set of b, (z,y) pairs. We
specifically use the prior p(x, y|b) = m if we belief a victim or door is at position (z,y), and
0 otherwise, where d,(x, y) is the L1 distance of point (x, y) from the player’s position.

Action Model We use A* search as our action model, A*(b, (z,y)) = a, where b is a belief
state, (x,y) represents the intent, and a is an action from discrete action set of: left_turn,
right_turn, toggle_door, toggle_lever, triage, or None.
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A.2 Neural Architectures

Inverse Action Model The inverse action model takes as input a belief state b and an action
a. It outputs an X x Y grid of log-probabilities for the intent at each grid cell. It is designed as
an encoder-decoder model, inspired by image-segmentation approaches, and uses the following
architecture (Fig 3.2):

* 3 encoder blocks each consisting of a convolutional layer, followed by max-pooling, ReL.U
activation and batch norm

* A bottleneck layer, concatenating the downsampled input and action before passing through
a linear layer

* 3 decoder blocks each consisting of:
* a deconvolutional upsampling layer
= aresidual connection with the output of the corresponding encoder block

= a convolutional layer, followed by ReLLU activation and batch norm

Desire Model The desire model takes a belief state b as input. It outputs an X x Y grid of
log-probabilities for the intent at each grid cell. Its architecture (Fig 3.2) is identical to that of
the inverse action model, except without concatenating the action in the bottleneck layer. When
training concept whitening, we replace batch normalization after the bottleneck layer with a
concept whitening layer.
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Appendix B

Theory of Mind as Intrinsic Reward

B.1 Model Architectures

Concept Predictor & Residual Networks In all of our policies, the concept predictor and
residual networks use identical architectures (except for the output dimension). In the Particle-
World environments this was a 3-layer MLP with 64 units in each hidden layer and tanh acti-
vations, while in the MultiGrid environment we used a CNN-LSTM: 3x3 kernel with 16 filters,
3x3 kernel with 32 filters, 3x3 kernel with 64 filters, 1-layer LSTM with 64 hidden units, and
finally a linear output layer. The output dimension of the residual network was set to 64 for all
experiments, while the output dimension of the concept predictor was given by d. - k", where d.
is the ground truth concept vector dimension, k is the number of agents, and n is the ToM order
of the concept-residual policy.

Actor & Critic Networks Our actor (and critic, whenever applicable) was a 2-layer MLP with
64 units in each hidden layer and tanh activations.

B.2 Hyperparameters

For all our experiments we used discount factor v = 0.99 and the Adam optimizer. For each
environment and RL algorithm, we first perform a grid search over baseline hyperparameters.
Using the best set of these hyperparameters, we then perform a search over a and 3 for Oth order
policies, and subsequently over A for 1st and 2nd order policies.

Baseline Hyperparameters
* Learning rate: [le-6, le-5, 1e-5, le-4, le-3, le-2]
* Lambda (GAE): [0.9, 0.95, 1]
* Entropy Coefficient: [0, 0.1, 0.01, 0.001]
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* Value Function Loss Coefficient: [0.5, 1.0]

Concept-Residual Hyperparameters
* Variational Learning Rate: 0.01 (with cosine annealing over period 1" = 100 iterations)
* « €[0.0001,0.001,0.01,0.1, 1, 10, 100, 10000]
* 4 €[0.0001,0.001,0.01,0.1, 1, 10, 100, 1000, 10000]
* A €[0,0.0001,0.001,0.01,0.1, 1, 10, 100, 10000]

B.3 Training

We use the Ray RLIib library for training our agents, and use their implementations of A2C,
PPO, IMPALA, DQN (Rainbow, or R2D2 if recurrent), and QMIX. When not specified by the
hyperparameter search grid, we use the default hyperparameters provided by RLIib for each
algorithm. Each configuration is trained for 10 million timesteps each.

The actor-critic methods (A2C, PPO, IMPALA) are trained with a centralized critic during train-
ing that has access to all other agents’ observations and actions, while execution is decentralized
with each agent using only its actor network for inference.

B.4 Learning Curves

The learning curves for each configuration of agents in our experiments can be found in Figures
B.1, B.2 and B.3.

B.5 Effect of Intrinsic Reward

The weight of the intrinsic reward with respect to to the task is controlled by hyperparameter \.
Our hyperparameter search includes A = 0 (i.e. no intrinsic reward), so to investigate the effect
of the intrinsic reward, we compare the results from the best set of parameters with A = (0 against
A > 0. Results are reported in Tables B.1, B.2 and B.3.

B.6 Additional Clarifications

Concept Predictions Consider a single binary concept “whether the red door is open", which
has at each timestep has a ground-truth value of either O or 1. Then the concept-prediction
network is trained to output probabilities from O to 1. For example, given K agents, a 2nd-order
agent outputs a K x K matrix where C’ij € [0, 1] is its prediction of agent i’s prediction of agent
J’s prediction of the ground truth.
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Figure B.1: Learning curves for agents in ParticleWorld: Deception environment (see Table 5.1). Plots
show episode reward as evaluated against baseline agents, at various points during training.
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Figure B.2: Learning curves for agents in ParticleWorld: Spread environment (see Table 5.2). Plots show
episode reward evaluated at various points during training.
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Figure B.3: Learning curves for agents in MultiGrid: Hallway environment (see Table 5.3). Plots show
episode reward evaluated at various points during training.
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Depth of Belief Hierarchy In this paper we are considering a “transitive" belief hierarchy, with
experiments from Oth-order (I think X) upto 2nd-order ToM (I think that you think that they think
X). We thank the reviewer for bring to our attention work that suggests human-belief hierarchy
is deeper than has previously been shown. For our specific tasks, the results show significant
increase in performance from Oth-order to 1st-order, and in most cases marginal increase from
Ist to 2nd-order. Preliminary experiments (not included here) with 3rd order ToM show marginal
to no improvement over 2nd-order across our tasks.

Coherency Beliefs (of all orders) are framed as a prediction problem; for Oth-order beliefs, the
ground truth is the actual concept value in the environment. For 1st-order beliefs, the “ground
truth” is the other agents’ Oth-order beliefs, and so on. We do not assume that “higher-order
beliefs automatically correct false beliefs". Rather, we set the target “ground truth" as coherent,
and use this to supervise learning each agent’s concept predictor. Our framework is a (partially-
observable) stochastic game, not a Bayesian game, where modeling another agent’s “type" is
analogous to modeling their entire action-observation history. Modeling n-th order beliefs is
much simpler by comparison.

Formalized Concepts In our formalism, a concept C is a function that maps a trajectory at
time ¢ to a concept value c. The set of possible concept values (i.e. the codomain of this function)
can be anything we want, depending on the particular concept. Typically it makes sense to just
use a discrete set like {1...n} or continuous set like R. Intents are treated as a special case
where each concept value is a subset of the state space (i.e. codomain is the powerset P(S)).

Ground truth concepts are defined with respect to entire trajectories, rather than individual
states. An agent’s concept predictions, however, can only be based on the current information
the agent has (i.e. the agent’s current state).

Our Claims The focus of our work is using ToM reasoning over beliefs to improve perfor-
mance; concepts are simply introduced as a way of grounding human-interpretable beliefs in
artificial agents. The paper does not claim that “/predicting] concepts [is] a means to enhance
performance". It does, however, claim that modeling the concept-predictions of other agents
enhances performance, which we believe is supported by our experimental results.

While we agree that explainable concepts in MARL is in itself a promising avenue, from the
very beginning this paper is focused on designing agents with ToM reasoning, and explainable
concepts are simply introduced in the context of providing these agents with interpretable mental
states, which can then be reasoned over by other agents.

Statistical Significance & Learning Curves We would also like to elaborate on the learning
curves presented in the supplemental material. After every 1 million timesteps of training, we
run 100 additional evaluation episodes and analyze the reward of the current policy. The curves
show the mean reward at each stage of training, and the shaded portion for each curve shows a
95% confidence interval. The curves after 10 million timesteps correspond to the results for the
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final policies reported in the main text, and show a statistically significant improvement in Ist /
2nd-order ToM over Oth-order / baseline agents.

Ground Truth Concepts Our approach assumes that the training algorithm has access to
ground truth concepts during training. In our experiments, the ground truth concepts are simple
and can be calculated directly from the internal state of the simulator. But in a more complex
environment one could easily feed the global state or combined agent observations into a larger
pretrained-model to generate “ground truth" concept values (e.g. Faster R-CNN, an LLM, CLIP,
etc, depending on the modality). As long as the concepts are consistent across agents, our recur-
sive ToM approach should still work just as effectively.

Higher-Order Beliefs Although our experiments only consider up to 2nd-order ToM, we ex-
plicitly describe how this method can be extended to arbitrarily higher-order beliefs by modify-
ing the concept prediction networks to output n-rank tensors instead of concept vectors, with an
analogous loss function.
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GOOD AGENTS

ALGORITHM A=0 A>0 A=0 A>0
ToM-1 ToM-1 | ToM-2 ToM-2
A2C 2.465 2.635 2.758 2.930
PPO 2.437 2.574 2.877 2.943
IMPALA 2.503 2.678 2.807 2.908
DQN 2.563 2.553 2.690 2.725
ADVERSARY AGENT
ALGORITHM A=0 A>0 A=0 A>0
ToM-1 ToM-1 | ToM-2 ToM-2
A2C -14.13  -13.73 | -13.05 -12.77
PPO -14.22 -13.95 | -12.53 -12.49
IMPALA -13.67 -13.13 | -11.90 -11.34
DQN -14.67 -13.81 | -12.81 -12.38

Table B.1: Mean (task) reward with best hyperparameters on ParticleWorld: Deception, averaged across
5 random seeds & 1000 episodes each. ToM-n indicates n-th order policies.

ALGORITHM A=0 A>0 A=0 A>0

ToM-1 ToM-1 | ToM-2 ToM-2
A2C -67.60 -67.59 | -66.75 -66.30
PPO -67.91 -67.45 | -67.41 -67.08
IMPALA -68.99 -68.89 | -68.27 -67.01
QMIX -69.18 -67.96 | -67.87 -66.80
DQN -68.95 -68.86 | -68.96 -68.96

Table B.2: Mean (task) reward with best hyperparameters on ParticleWorld: Spread, averaged across 5
random seeds & 1000 episodes each. ToM-n indicates n-th order policies.

ALGORITHM A=0 A>0 A=0 A>0

ToM-1 ToM-1 | ToM-2 ToM-2
A2C 5.172 5.295 5.087 5.401
PPO 5.106 5.317 | 5.141 5.339
IMPALA 5.123 5.334 5.137 5.418
QMIX 5.190 5.315 5.292 5.315
DQN 5.213 5.325 5.321 5.378

Table B.3: Mean (task) reward with best hyperparameters on MultiGrid: LockedHallway, averaged across
5 random seeds & 1000 episodes each. ToM-n indicates n-th order policies.
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Appendix C

Theory of Mind for Deception

This section provides additional details about the environments, implementation details, hyper-
parameters, and extended results for our paper on deception with theory of mind in multi-agent
reinforcement learning.

C.1 Kuhn Poker Implementation Details

Game Rules Kuhn Poker is a simplified poker variant played with n + 1 cards for n players.
The game proceeds as follows:

1.

Each player is dealt one card from a deck containing cards numbered 1 through n + 1.

2. Players take turns clockwise, starting from player 1.

3. The first player can either check or bet (place a single chip).
4.
5

If the first player checks, the next player can either check or bet.

. If a player bets, subsequent players must either call (match the bet) or fold (withdraw from

the game).

If all players check, or if at least one player calls after a bet, the game proceeds to a
showdown.

In a showdown, the player with the highest card wins all chips in the pot.

. If all players except one fold, the remaining player wins the pot without revealing their

card.

Observation and Action Spaces The observation space for each player consists of:

* Their own card (one-hot encoded)

* A vector representing the actions taken by all players so far
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* The current player’s turn indicator
* Betting history encoded as a sequence

The action space is discrete with two actions: check/call (0) and bet/fold (1). The interpretation
of these actions depends on the current game state.

Reward Structure The reward structure is zero-sum, with rewards normalized to the range
[—1,1]:

* Winning the pot: +1x (pot size / initial chips)
* Losing the pot: —1 X (bet size / initial chips)

* Folding: —1x (bet size / initial chips)

C.2 Mafia Implementation Details

Game Setup Our implementation uses 7 players with the following role distribution:
* 2 Mafia members

* 5 Town villagers

Game Phases The game alternates between two phases:
1. Night Phase:
* All living Mafia members secretly vote on a player to eliminate
* The player with the most votes is eliminated (ties broken randomly)
2. Day Phase:
* All players learn who was eliminated during the night
* Each living player communicates their beliefs about others’ roles
* All living players vote on a player to eliminate
* If there is a majority, the player with the most votes is removed

* If there is no majority, the player with the fewest number of votes is no longer a can-
didate for elimination, and communication / voting is repeated among the remaining
candidates

Communication Model Communication is modeled as belief projection:
* During the day phase, each player broadcasts a belief vector about every other player’s role

* Town-aligned roles can only communicate their true beliefs
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* Mafia members and special Town roles can communicate strategically modified beliefs
The communication model is implemented as follows:

b; = fi(bi, 0;) (C.1H
b, =b; for regular Villagers (C.2)

where b; is the agent’s true belief, b} is the communicated belief, and f; is a learned transformation
parameterized by 6;, supervised by the environment reward essentially as an independent RL
agent whose observations are beliefs, whose actions are transformed beliefs, and whose reward
is the same as the agent’s reward.

Observation and Action Spaces The observation space for each player includes:
* Their own role (one-hot encoded)
* A mask of living players
* For Mafia members, the identities of other Mafia members
* The history of eliminations
* The history of communicated beliefs from all players
The action space consists of:
* A discrete action selecting which player to vote for/investigate/protect

* A continuous vector representing the projected belief about each player’s role

Reward Structure Rewards are team-based and only provided at the end of the game:
* Town team wins (+1 for Town, —1 for Mafia): All Mafia members are eliminated

* Mafia team wins (—1 for Town, 41 for Mafia): Mafia members equal or outnumber Town
members

C.3 Barrage Stratego Implementation Details

Game Rules Barrage Stratego is played on a 10 x 10 board with the following pieces for each
player:

* 1 Flag

* 1 Bomb

* 1 Marshal (rank 10)
* 1 General (rank 9)
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* 1 Miner (rank 3)
* 2 Scouts (rank 2)
* 1 Spy (rank 1)
The objective is to capture the opponent’s Flag. Movement and combat follow these rules:
* Most pieces move one square orthogonally (not diagonally)
* Scouts can move any number of squares in a straight line
* Pieces cannot jump over other pieces or move through impassable terrain (i.e. lakes).
* When a piece moves to a square occupied by an opponent’s piece, combat occurs

* In combat, the higher-ranked piece wins and remains on the square; if pieces have equal
rank, both are removed

* Special rules: Miners can defuse Bombs, the Spy can defeat the Marshal if the Spy attacks

* Bombs and Flags cannot move

Observation and Action Spaces The implementation details for game mechanics, observa-
tion, and action spaces were implemented identically to Perolat et al. [2022].

C.4 Training Hyperparameters

C.4.1 PPO Hyperparameters

All experiments used the PPO hyperparameters in Table C.1 unless otherwise specified.

Parameter Value
Learning rate 2% 107°
Discount factor (v) 0.99
GAE parameter (\) 0.95
Value function coefficient 0.5
Entropy coefficient 0.01
PPO clip parameter 0.2
Minibatch size 128
Number of optimization epochs 10
Gradient norm clipping 0.5

Table C.1: PPO Hyperparameters used across experiments

C.4.2 Deception-Specific Hyperparameters

All experiments used the deception hyperparameters in Table C.2 unless otherwise specified.

70



Parameter Kuhn Poker | Mafia | Stratego
Deception reward weight (\) 0.2 0.5 0.3
Belief network learning rate 1x10°* 1x107* | 1x10™*
Belief network hidden size 64 128 N/A
Belief network layers 2 3 N/A

Table C.2: Deception-specific hyperparameters by environment. The Stratego belief model architecture is
identical to the one used for the value network in each policy.
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