
Learning to See by Moving:

Self-supervising 3D Scene Representations for

Perception, Control, and Visual Reasoning

Hsiao-Yu Fish Tung

March 2021

CMU-ML-21-100

Machine Learning Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Katerina Fragkiadaki, Chair

Tom Mitchell

Chris Atkeson

Jitendra Malik (Berkeley)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2021 Hsiao-Yu Fish Tung

Keywords: Embodied vision, Geometry-aware Recurrent Networks (GRNNs), Self-supervised

learning, Spatial reasoning, Language Grounding, Intuitive Physics, Concept Learning, Manipu-

lation

For my Family

iv

Abstract

We propose learning frameworks for artificial agents to learn several aspects of

visual common sense (instantiate and retrieve object concepts, reason about space

and 3D geometry, manipulate diverse objects) while moving and interacting with

3D environments. Current state-of-the-art visual systems can achieve human-level

object recognition performance on Internet photos, but their performance degrades

drastically when applied to videos captured by a moving camera. The performance

gap is due to the great difference in the image statistics: in Internet photos, objects

are centered, unoccluded, in canonical scales and poses; in photos captured by mo-

bile agents, objects come in a wide variety of scales, poses, locations, and occlusion

configurations. How can machines learn to see without relying upon humans to de-

tect and center the interesting content in images and videos?

We explore neural architectures and training schemes for learning visual scene

representations that can work under a moving camera, and can exploit the moving

camera viewpoint to self-improve without human annotations. This thesis re-visits

the paradigm of vision as inference of a 3D scene representation, also known as

“vision as inverse graphics”. Nevertheless, instead of inferring explicit 3D repre-

sentations such as meshes or pointclouds, we infer learnable 3D feature representa-

tions from RGB or RGBD inputs. The feature representations can be optimized by

training end-to-end with many task objectives, including object detection, view pre-

diction, object dynamics prediction, and object manipulation. The proposed models

integrate recent advances in Simultaneous Localization And Mapping (SLAM) and

deep learning. Similar to SLAM, our model generates stable 3D scene represen-

tations that retain information regarding size, shape, and spatial arrangements of

objects, which permit object permanence to emerge across camera viewpoints, de-

spite changes in the field of view. Different from SLAM, which constructs a 3D

point cloud map of a scene by piecing together multi-view images, our model learns

to infer a complete 3D scene feature map even from a single view. The feature map

encodes task-relevant semantic information, much more than just object occupancy

or 3D surfaces.

We demonstrate the effectiveness of the proposed differentiable 2D-to-3D fea-

ture mapping in multiple tasks, including detecting objects in 3D, predicting 3D ob-

ject interactions, manipulating diverse objects, recognizing visual concepts, ground-

ing language expressions, and generating 3D scenes that comply with a language

utterance. We show the proposed models can self-supervise themselves using unla-

belled data and outperform supervised models in the tasks above.

Acknowledgments

First and foremost, I am extremely grateful for my advisor Katerina Fragkiadaki for her

continuous support and guidance throughout my PhD. I thank her for providing me the freedom

to work on a diverse range of problems and, at the same time, try to guide me to work on the

critical and challenging problems. I also thank her for putting a high bar on the quality of all my

presentations and for spending a lot of time helping me improve. Katerina has great connections

inside and outside CMU, and she showed strong support when I told her I was thinking about

getting a job in academia. She has made a great influence on me in both research and in life.

I sincerely appreciate Jitendra Malik, Tom Mitchell and Chris Atkeson for serving as my

thesis committee. Jitendra, Tom and Chris are the most influential people in computer vision,

language understanding, robotics, AI, and beyond. It is my honor to have all of them on my

committee. I am extremely thankful for their support and valuable feedback on the content of

the thesis and the proposed work and the presentation. I especially thank Chris for providing

insightful and creative thoughts throughout our collaborations, and his support and help for job

search.

I also thank my master advisor, Alex Smola, for inspiring and helping me to pursue a career

in research. I would not be what I am today without his help. I was always in awe of his creativity

and boldness in generating cool research ideas. I think that still influences the way I do and think

about research today.

I am happy to have the opportunity to work with many amazing researchers through my PhD.

I am thankful for Abhinav Gupta and David Fouhey for encouraging me on my first project

in computer vision. Changing research field is usually a stressful decision for junior PhDs, but,

thanks to their help, the process was actually quite exciting and enjoyable. I am fortunate enough

to have the chance to intern at openAI with Wojciech Zaremba, Peter Welinder and the whole

OpenAI robotics team, from whom I learn about robotics, deep RL and vision for RL. A large

portion of my thesis is inspired by the summer project I had been working on. I thank Ersin

Yumer, who mentored me during my internship at Adobe, for teaching me many cool things in

computer graphics. I thank Sheng Li, my mentor at the intel AI lab, for being very patient to

me and teaching me valuable knowledge in computer architecture. I also want to show my great

appreciation to my Google mentor, Andrew Dai, for his patience and for teaching me things

about SOTA language models. I also thank Phillip Isola, Fuxin Li, Leila Wehbe, Jiajun Wu

for helping me and giving me good suggestions when we organized the CVPR common sense

workshop together.

During my undergraduate study at National Taiwan University, I had met amazing faculties

who inspired me to do research in machine learning. I want to thank Hsien-Tien Lin for designing

the first machine learning courses in NTU. I still remember I was stunned by the fact that we can

use mathematical equations to simulate “learning,” and I knew this is what I would love to spend

a large portion of my life studying. I was fortunate enough to work with Hsien-Tien Lin, Chih-

Jen Lin and Shou-De Lin on the KDD cup competitions. They taught us a lot of things about

problem solving with machine learning techniques. I also got to know many good friends who

were interested in ML, and I am happy that I can occasionally meet some of them in schools,

conferences and during internships.

My PhD wouldnt be so amazing without my colleagues in the lab. I thank Adam Harley for

vi

his help on the deadlines, proposals, writings, and all the things we need to do when we organize

the CVPR workshop. I thank Zhou Xian for teaching me many things about robots and hard-

wares, and for having deep talks about life and dreams. I feel so lucky to have the chance to

work with super talented and energetic junior students, Ricson Chang, Mihir Prahudasai, Shamit

Lal, Darshan Patil, Syed Ashar Javed, and Jingyun Yang, who all made significant contribution to

this dissertation. I also thank my collaborators during my PhD: William Seto, Liang-Kun Huang,

Gaurav Pathak, Ashwini Pokle, Yunchu Zhang, Maximilian Sieb, Emmanouil Antonios Platan-

ios, Fangyu Li, Shrinidhi K. Lakshmikanth, my sister Hsiao-Wei Tung, Dougal J. Sutherland,

Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Yining Wang, and Animashree Anandku-

mar. I thank them for their contributions and for everything they have taught me.

I also want to thank my friends in CMU. I thank Wei-Chiu Ma and Chen-Hsuan Lin, my

friends since undergraduate study, for all the long talks about research and life. I thank Po-Wei

Wang, Chieh Lin, Wei-Yu Chen, Leqi Liu, Yang Fang and many others, for their caring and for

the holiday dinners. I thank Aria Weng for helping me with the CVPR workshop. I also thank

my dear friends from SMoLa Lab: Manzil Zaheer, Jay-Yoon Lee, Zichou Yang, Chao-Yuan Wu,

Yining Wang, Adams Yu Wei, Mu Li, Yuxiang Wang for teaching me so many things when I was

a master student and for showing their supports even after they had graduated. I also thank my

close friends since master, Chia-Ying Tsai, Shih-Yun Lo, Ru-Shuan Hua, and Elain Chen, for all

the thanksgiving trips and girl talks. I also thank our department Mom, Diane Stidle, for helping

me throughout the study, and for all the wonderful events and holiday cards.

The thesis is dedicated to my family, Pao-Chao Tung, Yin-Yin Lin, Hsiao-Wei Tung, Hsiao-

Fan Tung, and Hsiao-Yen Tung, for all the years of your love and support. I especially thank

Hsiao-Wei Tung for taking care of me during the hardest time during my PhD, and for all the

long talks and hugs. I also thank my partner, Andrew Huang, for supporting me and giving me

great advice about life.

vii

viii

Contents

1 Introduction 1

1.1 Perception: Learning to see a stable world with objects 3

1.2 Action + Physics: Learning to imagine how objects can move and how to interact

with them . 5

1.3 Concept learning: Learning to construct memory and associate current observa-

tions with past memory . 6

1.4 Language understanding: Learning to interpret language through visual simulation 6

1.5 Dissertation structure . 7

I Perception: Learning to see a stable world with objects 9

2 Building Embodied Perception with Geometry-Aware Recurrent Networks 11

2.1 Introduction . 11

2.2 Geometry-aware recurrent networks . 13

2.2.1 View prediction . 15

2.2.2 3D object detection and segmentation 17

3 Learning to See Moving Objects without 3D Labels 21

3.1 Introduction . 21

3.2 Semi-supervised learning of 3D object detection 22

3.2.1 View-contrastive rendering . 23

3.2.2 Experiments . 24

3.3 Unsupervised 3D moving object detection . 25

3.3.1 Experiments . 26

II Action + Physics: Learning to imagine how objects can move and
how to interact with them 29

4 Learning View-invariant Intuitive Physics Models for Manipulation 31

4.1 Introduction . 31

4.2 Object-Factorized Environment Simulators (3D-OES) 32

4.2.1 3D Object Graph Neural Networks for Motion Forecasting 34

ix

4.2.2 Model Predictive Control with 3D-OES 35

4.3 Experiments . 35

4.3.1 Data collection details . 37

4.3.2 Action-Conditioned 3D Object Motion Forecasting 38

4.3.3 Visualization of the 3D motion predictions 39

4.3.4 Neural rendering and counterfactual simulations 40

4.3.5 Pushing with Model Predictive Control (MPC) 40

4.3.6 Sim-to-Real Transfer . 43

5 Visually-Grounded Library of Behaviors for Generalizing Manipulation Across Ob-

jects, Configurations and Views 45

5.1 Introduction . 45

5.2 Method . 47

5.2.1 Visually-Grounded Behavior Selector 48

5.2.2 Building a Library of Behaviors . 50

5.3 Experiments . 50

5.3.1 Simulation Experiment Setups . 51

5.3.2 Single Behavior versus a Library of Behaviors 52

5.3.3 The necessity of building the selector with the proposed view-invariant

and affordance-aware 3D Representations 53

5.3.4 Comparison with other grasping baselines 53

5.3.5 Real robot results . 55

III Concept learning: Learning to construct memory and associate cur-
rent observations with past memory 57

6 Unsupervised learning of 3D visual Concepts by Corresponding and Quantizing De-

tected Objects 59

6.1 Introduction . 59

6.2 3D Quantized-Networks (3DQ-Nets) . 61

6.2.1 Quantizing objects into prototypes . 63

6.2.2 Cross-scene 3D correspondence mining 64

6.2.3 Iterative learning of object detection, visual features, and clustering . . . 65

6.3 Experiments . 66

6.3.1 Few-shot object category labelling . 67

6.3.2 Clustering with 3D pose-aware quantization 67

6.3.3 3D feature learning with 3D correspondence mining 68

6.3.4 Joint training of 3D object detection, feature learning and clustering . . . 73

6.3.5 Scene parsing using prototypes . 73

7 Few-shot Concept learning and VQA with Disentangled 3D concepts 77

7.1 Introduction . 77

7.2 Disentangling 3D Prototypical Networks (D3DP-Nets) 79

x

7.2.1 Object shape/style disentanglement . 80

7.2.2 3D disentangled prototype learning . 81

7.3 Experiments . 82

7.3.1 Few-shot object shape and style category learning 82

7.3.2 Few-shot visual question answering . 84

7.3.3 3D scene generation from language utterances 86

IV Language understanding: Learning to interpret language through
visual simulation 89

8 Grounding Language in the Learned Visual simulator 91

8.1 Introduction . 91

8.2 Language grounding on 3D visual feature representations 93

8.2.1 Language-conditioned 3D visual imagination 94

8.2.2 Detecting referential expressions in 3D 95

8.2.3 Instruction following . 97

8.3 Experiments . 98

8.3.1 Language conditioned scene generation 99

8.3.2 Affordability inference of natural language utterances 99

8.3.3 Detecting spatial referential expressions 100

8.3.4 Manipulation instruction following . 102

9 Conclusion and Future Directions 103

Bibliography 107

xi

xii

List of Figures

1.1 What a baby sees when moving. As the baby moves around in the scene, this

can cause objects to come in and out of the field of view, to change size dramat-

ically. There are a lot of occlusions and objects are usually not in the center of

the images. Often, we cannot hardly tell what the objects are based on a single

image (see the last frame). Although the video is so noisy, somehow the baby

can make sense of it. The baby can do a lot things like navigating or playing, and

can learn a lot things from this type of noisy inputs. In this thesis, we study how

we can build artificial agents that can do the same. 2

1.2 Geometry-Aware Recurrent Networks (GRNNs) improve the way neural net-

works can aggregate information across video frames captured under camera

motion. During camera motion, objects and their features in the 2D feature maps

might present in different locations in the 2D pixel space. GRNNs learn to map

these features in different pixel locations to the same location in the 3D fea-

ture maps by explicitly estimating the relative camera poses between frames and

moving the features according the the camera pose estimation. 3

2.1 Internet vision versus robotic vision. Pictures taken by humans (top row) (and

uploaded on the web) are the output of visual perception of a well-trained agent,

the human photographer. The content is skillfully framed and the objects appear

in canonical scales and poses. Pictures taken by mobile agents, such as a NAO

robot during a robot soccer game (bottom row), are the input to such visual per-

ception. The objects are often partially occluded and appear in a wide variety of

locations, scales and poses. We present recurrent neural architectures for the lat-

ter, that integrate visual information over time to piece together the visual story

of the scene. 11

2.2 Geometry-aware Recurrent Neural Networks (GRNNs) integrate visual in-

formation over time in a 3D geometrically-consistent deep feature memory of

the visual scene. At each frame, RGB images are unprojected into correspond-

ing 3D feature tensors, which are oriented to the coordinate frame of the memory

map built thus far (2nd row). A 3D convolutional GRU memory is then updated

using the egomotion-stabilized features as input. 12

xiii

2.3 GRNN architecture. At each time step t, an RGB image It is the input to a 2D

U-net. The resulting 2D deep feature maps are unprojected to 4D tensors Vt,

which in turn are input to a 3D U-net (we do not show the optional combination

with unprojected depthmaps for clarity). The resulting 3D deep feature maps V̄
are oriented to cancel the relative camera motion between the current viewpoint

and the coordinate system of the 3D GRU memory state Mt−1, as estimated by

an egomotion estimation module. The resulting oriented 3D deep feature maps

V̄t’ update the 3D GRU memory state and output Mt. The updated state of

the GRU module is then projected from specific viewpoints and decoded into a

corresponding RGB image for view prediction, or fed into a 3D MaskRCNN to

predict 3D object bounding boxes and object voxel occupancies. 13

2.4 View prediction results for the proposed GRNNs and the tower model of Eslami

et al. [23]. Columns from left to right show the three input views, the groundtruth

image from the query viewpoint, the view predictions for GRNNs and for the

tower baseline. The first two rows are from the ShapeNet arrangement test set of

[11], the next two rows are from the Shepard-Metzler test set of [23], and the fol-

lowing two rows are from the Rooms-ring-camera dataset also from [23]. The

last four rows show generalization to scenes with four objects from the ShapeNet

arrangement dataset, while both models were trained only on scenes with two ob-

jects. GRNNs outperform the baseline by a large margin and strongly generalize

under a varying number of objects. 17

2.5 Scene arithmetic with GRNNs and the model of Eslami et al. [23] (tower).

Each row is a separate ”equation”. We start with the representation of the scene

in the leftmost column, then subtract (the representation of) the scene in the

second column, and add the (representation of the) scene in the third column.

We decode the resulting representation into an image. The groundtruth image is

shown in the forth column. It is much more visually similar to the prediction of

GRNNs than to the tower baseline. 18

2.6 3D object detection and segmentation with GRNNs. In the first and second row

on the left we show the input images over time, and their corresponding object

detection results for a top view, respectively. Blue voxels denote groundtruth

objects and the predicted bounding boxes are shown in red and green . On the

right, we show segmentation results for the third time step, visualizing the results

from two views. Predicted 3D boxes and their corresponding predicted masks are

show in red and green, and we show in blue the corresponding groundtruth. Best

seen in color. 19

3.1 Semi-supervised 3D object detection. Pre-training with view-contrastive pre-

diction improves results, especially when there are few object 3D bounding box

annotations. 233.2 3D feature flow and object proposals, in dynamic scenes. Given the input

frames on the left, our model estimates dense egomotion-stabilized 3D flow

fields, and converts these into object proposals. We visualize colorized point-

clouds and flow fields in a top-down (bird’s eye) view. 26

3.3 Unsupervised 3D moving object detection with a stationary camera. 27

xiv

3.4 Unsupervised 3D moving object detection with a moving camera 27

4.1 3D-OES predict 3D object motion under agent-object and object-object interac-

tions, using a graph neural network over 3D feature maps of detected objects.

Node features capture the appearance of an object node and its immediate con-

text, and edge features capture relative 3D locations between two nodes, so the

model is translational invariant. After message passing between nodes, the node

and edge features are decoded to future 3D rotations and translations for each

object. 33

4.2 Forward unrolling of our dynamics model and the graph-XYZ baseline. Left:

pushing. Right: falling. In the top row, we show (randomly sampled) camera

views that we use as input to our model. The second row shows the ground-truth

motion of the object from the front view. Rows 3, 4 show the predicted object

motion from our model and the graph-XYZ baseline from the same front camera

viewpoint. Our model better matches the ground-truth object motion than the

graph-XYZ baseline. The latter does not capture object appearance in any way. . 40

4.3 Neurally rendered simulation videos from three different views Left: groundtruth

simulation videos from the dataset. The simulation is generated by the Bullet

Physics Simulation. Right: neurally rendered simulation video from the pro-

posed model. Our model forcasts the future latent feature by explicitly warping

the latent 3D feature maps, and we pass these warped latent 3D feature maps

through the learned 3D-to-2D image decoder to decode them into human inter-

pretable images. We can render the images from any arbitrary views and the

images are consistent across views. 41

4.4 Neurally rendered simulation videos of counterfactual experiments. The first

row shows the ground truth simulation video from the dataset. Only the first

frame in this video is used as input to our model to produce the predicted sim-

ulations. The second row shows the ground truth simulation from a query view.

Note that our model can render images from any arbitrary view. We choose this

particular view for better visualization. The third row shows the future prediction

from our model given the input image. The following rows show the simulation

after manipulating an objects (in the blue box) according the instruction on the

left most column. 42

4.5 Collision-free pushing on a real-world setup. The task is to push a mouse to a

target location without colliding into any obstacles. Our robot can successfully

complete the task with 3 push attempts. 43

4.6 Real-world setup with Baxter . 44

4.7 Objects for real-world experiments . 44

5.1 We propose a novel policy representation that generalizes to unseen objects and

camera views. In contrast to prevalent approaches that learn state-to-action or

image-to-action mappings, our proposed model decomposes a policy into a be-

havior selection module that uses visual observations and a library of behaviors

to select from that uses abstract state representations as inputs. 46

xv

5.2 Overview of the proposed framework. Our model consists of (a) a behavior selec-

torG that learns to map RGB-D images I to an affordance-aware, view-invariant

3D feature space that reflects how objects change by applying a behavior, and

(b) a library of behaviors, where each behavior πi can either be a controller or a

policy learned via RL. 48

5.3 Visualization of a sample of behaviors and their corresponding object clusters. In

each section of the figure, the behavior described after the arrow is the output of

the affordance-aware behavior selector when it takes any of the objects visualized

in the section as input. 54

5.4 Real robot setup (left) and objects used (right). 55

5.5 Grasping Results on a real robot. The robot can successfully pick up different

objects and transfer it to a target location in the air. 56

6.1 Top: Model overview. Our model takes as input RGB-D images of scenes, and

outputs 3D prototypes of the objects. Bottom: Evaluation tasks. (a) Scene pars-

ing: Given a new scene, we match each detected object against the prototypes

using a rotation-aware check to infer its identity and pose. (b) Image generation:

We visualize prototypes with a pre-trained 3D-to-2D image renderer. (c) Few

shot object labelling: Assigning a label to a prototype automatically transfers

this label to its assigned instances. 60

6.2 Architecture for 3D Quantized-Networks (3DQ-Nets). Given multi-view RGB-

D images of scenes as input during training, our model learns to map a single

RGB-D image to a completed scene 3D feature map at test time, by training for

view prediction (b). The model additionally uses cross-scene and cross-object

3D correspondence mining and metric learning, to make the features more dis-

criminative (c). Finally, using these learned features, our model quantizes object

instances into a set of pose-canonical 3D prototypes using rotation-aware match-

ing (d). These learned prototypes help improve our object detector by providing

confident positive 3D object box labels (e) . 62

6.3 Cross-scene 3D correspondence mining. (a) We show that our approach relies

on part-level correspondences obtained by matching the features of the query

region (in pink) to a pool of object-centric 3D features maps. (b) These part-

level correspondences are verified based on how well their surrounding voxels

match with one another in a spatially consistent manner. (c) Finally we train our

2.5D-to-3D lifting module by doing metric learning using the verified positive

regions and randomly sampled negatives. 64

6.4 Detection improvement over 4 iterations. The first row shows the input im-

age and the proposals of the object detector. The second row shows the an-

notations assigned to the proposals using the 3D prototype distance and 3D

center-surround score. We show that our detector improves over time without

any ground truth 3D proposals. 66

6.5 (a) Unsupervised classification accuracy with varying length of prototype dic-

tionary in CARLA. (b) Scene reconstruction results using the learned proto-

types from our model and the baselines. 68

xvi

6.6 3D object retrieval results obtained by retrieving image patch using features

learned from different feature learning methods, including rgbocc, rgbocc+vcdict,

and rgbocc+3D correspondence mining (3DMine) methods. We visualize the re-

trieval results on CARLA, BigBIRD, and CLEVR datasets. The green boxes

indicate that the retrieved image patches belongs to the same object instance as

the query, but is in a different viewpoint. The blue boxes indicate instances with

the same ground truth object category labels. 70

6.7 3D object retrieval results obtained by rgbocc+3D correspondence mining on

Replica dataset. 70

6.8 Patch-Level retrieval results on CARLA, BigBIRD, and CLEVR datasets. For

each query-prediction row pair, the first row shows the input RGB images and the

second row shows bird’s eye view projection of the RGB-D point cloud. The blue

patches in the bird’s eye view visualizations (2nd row) show the 2D projection

of the query/retrieved 3D patch. 71

6.9 Patch based 3D object retrieval results on Replica dataset. 71

6.10 Rotational alignment results showing relative pose estimation between two

randomly posed RGBs of the same object category. For each of the 3 × 7 grids,

the first row shows 7 input RGB images of the same object category in differ-

ent poses. The second row shows the projection of the RGB-D point cloud in

a birds eye view. The last row shows the projection of the same RGB-D point

but warped to the pose that best matches with the object in the first. Results are

shown on CARLA, BigBIRD and CLEVR datasets. 72

6.11 Real world scene parsing results. 73

6.12 Scene parsing results for CARLA dataset. 74

6.13 Scene parsing results for CLEVR dataset. 75

6.14 Scene parsing results for Replica dataset. 76

7.1 Given a single image-language example regarding new concepts (e.g., blue and

carrot), our model can parse the object into its shape and style codes and ground

them with Blue and Carrot labels, respectively. On the right, we show tasks

the proposed model can achieve using this grounding.(a) It can detect the object

under novel style, novel pose, and in novel scene arrangements and viewpoints.

(b) It can detect a new concept like blue broccoli. (c) It can imagine scenes with

the new concepts. (d) It can answer complex questions about the scene. 78

7.2 Architecture for disentangling 3D prototypical networks (D3DP-Nets). (a)

Given multi-view posed RGB-D images of scenes as input during training, our

model learns to map a single RGB-D image to a completed scene 3D feature map

at test time, by training for view prediction. From the completed 3D scene feature

map, our model learns to detect objects from the scene. (b) In each 3D object

box, we apply a shape-style disentanglement autoencoder that disentangles the

object-centric feature map to a 3D (feature) shape code and a 1D style code.

(c) Our model can compose the disentangled representations to generate a novel

scene 3D feature map. We urge the readers to refer the video in the supplimentary

material for an intuitive understanding of the architecture 79

xvii

7.3 D3DP-VQA Modular Networks. Given a question-image pair and a list of

learned prototype dictionaries (left), D3DP-Nets parse the visual scene to object

shapes, styles, locations and sizes codes (top-right), while the semantic language

parser converts the question to an executable program. The generated program is

executed sequentially to answer the question (bottom-right). Note that in order

to associate different poses of the same shape (Filter Shape), our model does a

rotation-aware search between the indexed prototype and the candidate objects. . 82

7.4 Replica dataset. On the left, we show two objects in different scenes belonging

to the same shape cateogry ‘Plant‘. On the right, we show two objects belonging

to the same style category ‘Cream‘. 83

7.5 t-SNE visualization on styles codes. 84

7.6 (a) The left scene/question pair is from the in domain test set, and the right

scene/question pair is from the one shot test set. The colors, materials, sizes, and

spatial relationships tested in both splits are the same. The only difference is that

the one shot test set contains shapes the model did not see while training and was

only exposed to one example before the testing phase. (b) The prototype images

shown to the model before starting the one shot testing phase. 86

7.7 Generating novel scenes using only a single example for each style and content

class. 87

8.1 Embodied language grounding with implicit 3D visual feature representa-

tions. Our model associates utterances with 3D scene feature representations

obtained from GRNNs. We map RGB images to 3D scene feature represen-

tations and 3D object boxes of the objects present . (column 1). We map an

utterance and its dependency tree to object-centric 3D feature maps and cross-

object relative 3D offsets using stochastic generative networks (column 2). We

map a referential expression to the 3D box of the object referent (column 3).

Last, given a placement instruction, we 3D localize the referents in the scene and

infer the 3D desired location for the object to be manipulated (column 4). We

use predicted location to supply rewards for trajectory optimization of placement

policies. 92

8.2 Mapping language utterances to object-centric appearance tensors and cross-

object 3D spatial offsets using conditional what-where generative networks. . . 95

8.3 3D referential object detection. We exhaustively score all possible assignments

of noun phrases to detected 3D bounding boxes. Each assignment is scored based

on unary appearance scores and pairwise spatial scores, as described in the text. . 96

8.4 Language to scene generation (Rows 1,2,4) and Language to image genera-

tion (Row 3) from our model and the model of Deng et al [16] for utterances

longer than those encountered at training time. Both our model and the baseline

are stochastic, and we sample three generated scenes/images per utterance. . . . 98

8.5 Detecting referential spatial expressions. Given a scene and a referential ex-

pression, our model localizes the object being referred to in 3D, while our base-

line in 2D. 101

xviii

List of Tables

2.1 View prediction loss and the standard deviation for the ShapeNet arrangement

test set for two-object test scenes. Our model and baseline were trained on scenes

that also contain two objects with different object instances. 16

2.2 Mean Average Precision (mAP) for 3D object detection and 3D segmentation

for three different thresholds of Intersection over Union (IoU) (0.75,0.5,0.33) on

ShapeNet arrangement test set of [11]. 19

3.1 CARLA-to-KITTI transferability of view-predictive 3D feature representa-

tions. We train a 3D detector module on top of the inferred 3D feature maps M

using KITTI 3D object box annotations . 24

4.1 3D object motion prediction test error during object pushing in scenes with

two objects for 1,3, and 5 timestep prediction horizon. 39

4.2 3D object motion prediction test error during object falling in scenes with

three to four objects for 1,3, and 5 timestep prediction horizon. 39

4.3 Success rate for pushing objects to target locations. 43

5.1 Success rates on grasping and pushing unseen objects. 52

5.2 Success rates on grasping and pushing unseen objects using selector with varying

representations. 53

5.3 Success rates on grasping for unseen objects. 54

6.1 Few shot object category labelling accuracy 67

6.2 Unsupervised classification accuracy with dictionary size of 50 prototypes on

CLEVR and BigBIRD datasets. 68

6.3 Retrieval results (precision@10 nearest neighbors) for different architectures

and objectives for 2D and 3D visual representation learning. 69

6.4 Performance across training EM iterations of our model in CLEVR. Feature

learning is measured using the same technique as Table 6.3. Object quantization

uses the same measurement technique as Fig. 6.5 (a). Detection performance is

measured by meanAP at IoU = 0.5. 73

7.1 Five & one shot classification accuracy for shape and style concepts in CLEVR

[53], Real Veggie, and Replica datasets . 83

7.2 VQA results with model compared to ablations and 2D baselines in CLEVR [53]

dataset. 85

xix

8.1 Mean average precision for category agnostic region proposals. Our 3D RPN

outperforms the 2D state-of-the-art RPN of Faster R-CNN [100]. 101

8.2 F1-Score for detecting referential expressions. Our model greatly outperforms

the baseline with both groundtruth and predicted region proposals, especially for

novel camera views. 102

8.3 Success rates for executing instructions regarding object placement. Poli-

cies learnt using costs over 3D configurations much outperform those learnt with

costs over 2D configurations. 102

xx

Chapter 1

Introduction

The embodiment hypothesis is the idea that intelligence emerges in the interaction of an agent

with an environment [116]. While this is an intriguing hypothesis with compelling evidence from

psychological experiments [7, 41, 79], this statement has not been properly linked to results

from the machine learning side. Can the fact that we are moving agents and we are embodied

in a three-dimensional space affects the way we learn and perceive the world? In this thesis,

we attempt to answer this question by creating artificial agents that can develop human-like

intelligence through their interactions with the 3D world.

The goal of the thesis is to build machines that can work with and can learn from the data

captured by an embodied agent that physically moves in 3D scenes. This thesis focuses on

embodied agents that can learn and perceive the world from their visual inputs. When the agents

begin to move around, they start to observe sequences of images of the 3D environment around

them. In Figure 1.1, we show what an actual embodied agent – a baby – actually sees. The

images are less well-framed compared to ones we can find on the Internet. Many images do not

even have a target object in the center! However, somehow from these images, the baby can

effortlessly recognize the objects, their 3D geometry and properties. Later in his/her childhood,

the baby also understands how objects can interact with the other, what tasks it can achieve using

these objects, and how it can physically move these objects to complete the tasks.

Building embodied agents that can see, act, reason and continue to improve is challenging

since there are multiple crucial modules, e.g., visual/motor/cognitive modules, and these mod-

ules are interconnected and can change over time. To start with, our research strategy is to build

up an initial vision model that can start parsing the visual data into useful information that might

be beneficial for building other modules. There are three key problems we must address: (1)

How can we get an initial vision model that can extract useful information about the scene from

images? What should be the representations of the scene? (2) How can the agents use the scene

representations to improve other modules regarding acting, reasoning and language understand-

ing? (3) How can the development in these modules further improve the agents’ visual perception

so the whole system can continue to improve?

Current 2D Convolutional Neural Networks (CNNs), although prevalent in visual recogni-

tion, are not suitable for building visual perception for these moving agents. While these models

perform well In recognizing objects in internet photos where objects are carefully-centered and

scaled, their performance drops significantly on these noisy and shaky first-person videos where

1

Figure 1.1: What a baby sees when moving. As the baby moves around in the scene, this can

cause objects to come in and out of the field of view, to change size dramatically. There are a

lot of occlusions and objects are usually not in the center of the images. Often, we cannot hardly

tell what the objects are based on a single image (see the last frame). Although the video is so

noisy, somehow the baby can make sense of it. The baby can do a lot things like navigating or

playing, and can learn a lot things from this type of noisy inputs. In this thesis, we study how we

can build artificial agents that can do the same.

objects are present in a wide variety of scales, poses, locations, occlusion configurations. Ad-

ditionally, simply recognizing the objects in each individual frame is not enough for the agent

to have a holistic understanding of the scene! To be able to interpret and act in the scene, it is

critical that the embodied agents can integrate information across frames.

The proposed research provides solutions for building these embodied agents’ perceptual

capabilities that will empower these agents to see, act, reason, and understand about the physical

world more like humans. The first module we will explore is:

• Perception: How can objects, scenes, their 3D geometry and semantics emerge from raw

images captured by the moving agents?

In this dissertation, we propose novel neural network architectures that improves the way neural

networks can learn consistent and structured scene representations from the videos captured by a

moving agent. Our key idea is to stabilize the frames captured under different camera poses and

fuse them to a joint 3D space to construct a stable 3D scene representation. To demonstrate the

importance of stabilizing the frames and maintaining a 3D scene representation, we will show

how the representation can further improve the following modules:

• Action + Physics: Once the agent can parse the scene into objects, how does it learn to

interact with these objects? How does it learn how objects can interact with one another?

Can the agent identify the plausibility of an object configuration?

• Concept learning: Intelligence is not only about detecting and interacting with individ-

ual objects, intelligence is also about constructing memory and making association and

analogy between similar instances and configurations. How can the model learn the as-

sociation? How can the model use the association to bootstrap its learning in language

acquisition and manipulation?

• Language understanding: Language is a critical media for humans to think and commu-

nicate. How can the learned module affect the way we learn and understand language?

2

(b) Geometry-Aware Recurrent Networks(a) Recurrent Networks with 2D CNNs

Figure 1.2: Geometry-Aware Recurrent Networks (GRNNs) improve the way neural networks

can aggregate information across video frames captured under camera motion. During camera

motion, objects and their features in the 2D feature maps might present in different locations

in the 2D pixel space. GRNNs learn to map these features in different pixel locations to the

same location in the 3D feature maps by explicitly estimating the relative camera poses between

frames and moving the features according the the camera pose estimation.

1.1 Perception: Learning to see a stable world with objects

To integrate and extract information from the video captured by the embodied agent, my

solution is to build a 2D-to-3D inverse-graphics engine that can map the video frames into stable

3D representations of the physical scene. Having stable visual representations that do not change

during camera motion is beneficial for general scene understanding and reasoning, since the

agent can now focus on the change in the scene content as opposed to the change in the camera

viewpoints. Aside from stability, our representations can explicitly model objects or scenes as

entities living in a three dimensional space, which is critical for planning and manipulation in the

3D world.

Current deep Convolutional Neural Networks (CNNs) are actually not suitable for generating

stable and persistent representations from these noisy and shaky video frames from the moving

agents. In these videos, the pixel values can change rapidly from frame to frame. Since CNNs

directly operate in the pixel space, the activation maps of CNNs activations will fluctuate with the

change in the pixel space. In Figure 1.2 (a), we visualize such change.When the camera moves,

the activation maps of CNNs also show the objects as moving, even though the objects remains

static; when the camera zooms-in and out, they show the objects as becoming larger and smaller;

when the camera moves away or a person steps in front of an object, its detection disappears and

it is replaced by the objects detected in the new visual frame. CNNs neglect the basic principles

of object permanence and spatial awareness that a one-year-old child has developed. The lack

of object permanence is particularly problematic for the embodied agent to integrate information

over time, to piece together a complete story of a video scene.

3

To construct the stable representations of a physical scene, we propose Geometry-Aware

Recurrent Networks (GRNNs) [136] that disentangle camera motions from scene appearances

given an RGB or RGB-D video stream and integrate them into a persistent 3D feature map. To

achieve such disentanglement, GRNNs learn to estimate camera motion between views and use

the estimated camera motion to explicitly move and fuse the features in 3D, similar to many

SLAM (Simultaneous Localization and Mapping) methods [84]. The operation ensures features

coming from similar 3D location in the real world end up being aggregated and stored in similar

3D location in the 3D feature map. Such operation is implemented as differentiable geometry

operations that enables the model to be trained in an end-to-end fashion given a final end task.

In Figure 1.2(b), we show how the geometry operations can improve the way neural networks

integrate information across frames. Although an object can present in different locations in

the 2D pixel space, after the operations, the features for the objects will be mapped to the same

location in the 3D feature map.

GRNNs are network architectures that are suitable for the embodied agent to integrate ob-

servations across views, but how do we learn their weights? To learn the 3D representation of

GRNNs, we propose to train them in a self-supervised manner using the images and the

corresponding camera poses collected by an embodied agent while moving, which enforces

the model to learn to complete the missing information from a single view. Using the data as

supervision, GRNN learns to estimate camera motion between frames. Additionally, the agent

learns to predict, from a single image, how a scene looks from different viewpoints, which en-

forces the agent to learn to imagine and complete the missing information in the images. We

empirically show GRNNs can predict correctly how an occluded object looks from another view

and outperform previous state-of-the-art methods that do not explicitly use geometric opera-

tions. The learning component greatly differentiate our model from existing SLAM methods

[84] which aim to construct a 3D point cloud map of a scene by piecing together multi-view

images. Our model can learn to infer a complete 3D scene feature map even from a single view!

In addition, the feature map can encode task-relevant semantic information, much more than just

object occupancy or 3D surfaces.

[Seeing objects and their shapes] To understand a visual scene, one critical step is to detect

objects present in the scene and recognize their 3D shapes. Building upon the learned self-

supervised 3D scene representations, we further introduce modules that learn to detect objects

in the scene. Since the 3D scene feature maps are complete, i.e., objects features are complete

despite occlusions or camera viewpoints, learning a detector in this 3D scene feature space is

easier. We show GRNNs perform and generalize well in 3D object detection and 3D shape

estimation comparing to previous 2D CNN-based methods [136]. We further show GRNNs can

improve their object detection performance by co-learning this with view prediction objective

and can learn to detect objects without the need for any 3D annotation [35].

4

1.2 Action + Physics: Learning to imagine how objects can

move and how to interact with them

Beyond passively observing scenes and detecting objects, an agent would need to actively

interact with the environment to collect more interesting and informative data. To intelligently

act, it is critical to know how objects can move, and how they can interact with each others.

In my research, I explore how the learned visual representations can aid the learning of object

dynamics and manipulation.

To learn how objects can move, we enforce the model to learn a forward physics simulator

in the 3D feature space inferred from input images [137]. Our simulator can simulate how the

detected objects move in response to an action, and can identify whether an object configuration

is physically plausible or not. Our model has several advantages over existing image-based object

dynamics models. First, since the 3D feature representation remains persistent across camera

views, the resulting dynamics model also remains persistent across views: one can use images

captured from any camera viewpoint as input and the resulting prediction is consistent. Current

image-based methods are sensitive to viewpoint changes and can easily break when testing on

unseen views. Second, we empirically show that our model can predict much more accurate

object dynamics compared to methods that use 2D visual features. Additionally, our model is

more interpretable: we can render a video that reflects the physics simulation in the 3D feature

representation using the learned view prediction module. Lastly, in the 3D representation space,

it is easy to check whether two objects intersect in 3D by checking whether their 3D occupancy

masks overlap. With this simple rule, our model can correctly infer the feasibility of an object

configuration.

With the learned dynamics model, we show that the agent can successfully bring objects to

target locations [137]. The model encodes visual features so it can handle objects with varying

shapes and colors. More importantly, since our model can infer 3D object interpenetration,

our model generalizes to tasks that involve obstacles to avoid. we have empirically shown our

model outperforms existing state-of-the-art methods, and can successfully transfer to a real robot

platform.

While learning object dynamics is an important component for the agent to plan, manipulate

and conduct spatial reasoning, learning general object dynamics is still challenging. Can our

agents still learn to manipulate diverse objects even without explicitly modeling the underlying

object dynamics? How can we use the 3D feature representations to aid the learning in this setup?

To manipulate objects with diverse appearances and poses, we propose models that learn to

compose a library of expert policies (behaviors) where each expert policy only works on a subset

of objects. Our models learn to use the 3D feature presentations as retrieval keys to select a

behavior that will work under the current scene. While another straightforward appraoch will

be to learn a direct mapping from the visual representations to actions, as suggested by previous

works in model-free visuo-motor policy learning [67], we found this approach is ineffective in

learning a successful policy due to the huge computational bottleneck introduced by the 3D

feature representations. Thus, instead of learning to regress from the 3D feature representations

to the target action, we use the 3D feature representations to retrieval scene that is close to the

current scene and apply the corresponding expert policy. We show the resulting models can

5

handle diverse objects, arrangements, and input views, even without explicitly modeling the

underlying object dynamics. We further validate the effectiveness of the proposed model on a

real robot and show it can learn to push and pick-and-place objects of diverse appearance and

poses.

1.3 Concept learning: Learning to construct memory and as-

sociate current observations with past memory

Intelligence is not only about detecting and interacting with individual objects, but also about

forming memory and making association and analogy between similar instances and configu-

rations. In this thesis, we also explore how the 3D feature representation can improve the way

models learn about visual concepts and instance association.

We propose to learn visual concepts through associating objects with their 3D feature rep-

resentation inferred from images [93]. With the learned 3D feature representation, the model

can identify the same object or similar objects under varying scales, poses from images captured

from varying viewpoint: since our machine has object permanence, its perception is not affected

by the camera viewpoint change; since the visual representation is 3D-aware, the 3D feature

maps of two objects can be rotated and scaled appropriately before their features are compared

to handle object instances in a variety of 3D poses and scales. We show, without any human

labels, the model can learn to correctly associate similar objects and form visual concepts. When

given one example of a novel object, our model can recognize it when it presents in unseen poses

and locations. From a few labelled examples, the model can learn to name objects in unlabelled

scenes.

How effectively we can use existing knowledge depends much on how well we organize

them. To acquire new knowledge or concepts more efficiently, we need to improve the way we

organize existing knowledge. To achieve this, we propose to further factorize the learned whole-

object visual concepts into shapes, color, texture parts, and so on [95]. By splitting concepts into

smaller entities, the model can discover more shared concepts across object instances, and can

learn new concepts efficiently by exploiting the combinations between these factorized concepts.

We show our model can efficiently learn concepts about shapes and color from a few labelled

samples, and can use the learned concepts to conduct complex visual question answering.

1.4 Language understanding: Learning to interpret language

through visual simulation

Language is a critical media for humans to think and communicate. If the agents can correctly

interpret human languages, then they can learn more efficiently through human instructions and

documentations. How can the learned 3D visual representations, dynamic models, and concepts

affect the way the agent can learn and interpret language meaning?

Humans understand language regarding a scene through visual simulation. Consider the

following two sentences: “He used the newspaper to protect his face from the wind.” and “He

6

used the matchbox to protect his face from the wind.” Although both sentences are grammatically

and syntactically identical, we interpret them differently. From the first sentence, most humans

can mentally imagine a visual simulation of the scene, and the simulation will allow us to answer

millions of questions such as: “Does the man use two hands or one?” “Is the newspaper folded?”

“Is the man holding the newspaper?”

Inspired by the way humans learn, we propose a ground language in the developed 3D fea-

ture space where we can simulate how objects can move, and can reason about the physical

plausibility of a configuration [94]. In 3D, the model can reason about the physical plausibility

of a configuration by checking 3D non-intersection and object affordance. We introduce a lan-

guage grounding model that learns a mapping between 3d feature tensors and natural language

utterance. We have empirically shown that the models can successfully infer plausibility and

implausibility of statements, localize object referents robust to camera viewpoint, guide object

placement policies from natural language instructions, and outperform the existing 2D models

by a large margin in all the above tasks.

1.5 Dissertation structure

This thesis consists of four main parts regarding four key modules we wish an embodied agent

can have: perception, action, concept learning, and language understanding. The contributions

of this thesis are as follows:

Part I is about perception – we show how we can establish an initial visual perception mod-

ule that can start parsing image data collected by these moving agents into a persistent scene

representation with objects in it.

In Chapter 2, we introduce the key neural architectures, GRNNs, for parsing videos captured

by moving agents. We empirically evaluate the models in 3D object detection and novel view

prediction. In both tasks, we show that GRNNs outperform previous state-of-the-art methods

that do not explicitly use geometric operations and can generalize to complicated scenes with

more objects while previous work fails. This chapter was previously published as Tung et al.

[136].

In Chapter 3, we further show how GRNNs can improve their object detection performance

by co-learning with a self-supervised view prediction objective. We further explore unsupervised

methods using GRNNs that can segment moving objects and learn to detect them without the

need for any 3D annotations. This chapter was previously published as Harley et al. [35].

Part II is about learning object dynamics and manipulation – beyond object detection, we further

extend the model to understand how objects move and how the agents can interact with these

objects.

In Chapter 4, we propose dynamic models that learn on top the persistent 3D scene repre-

sentation. We show the models outperform previous vision-based dynamics models by a large

margin, and can generalize to images viewpoints outside the training distribution. We further

deploy the learned dynamics model on a real robotics platform and we show the models learned

in the simulation can directly transfer to real. This chapter was previously published as Tung

et al. [137].

7

In Chapter 5, we extend our learning framework to learn to manipulate diverse objects even

without explicitly modeling the underlying object dynamics. To handle objects with diverse

appearance and poses, we propose models that learn to compose a library of expert policies (be-

haviors) where each expert policy works only on a subset of objects/poses. To select a behavior

that would work under the current scene, our models learn to retrieve similar scene and corre-

sponding behavior using the learned 3D feature presentations. We show the resulting models can

handle diverse objects, arrangements, and input views. We further validate the effectiveness of

the proposed model on a real robot and show that it can learn to pick-and-place objects of diverse

appearance.

Part III is about learning visual concepts – we show how the agents can learn to construct visual

memory and associate observed objects with previously seen objects

In Chapter 6, we propose a few-shot concept learning module that learns to associate and

group detected objects into clusters by comparing them in the learned persistent 3D feature space.

We show our model can learn a new concept from a few labels by propagating the labels to

instances in the same cluster. This chapter was previously published as Prabhudesai et al. [93].

In Chapter 7, we extend the concept learning module to further factorize object representation

into attributes, and learn concepts on top of these attributes. We show our model can learn new

concepts and answer complex questions regarding visual inputs, from a few labelled images.

This chapter was previously published as Prabhudesai et al. [95].

Part IV is about language understanding – we show how the agents can understand language

and their affordability by grounding language in the learned 3D feature representation space that

supports spatial understanding and dynamics simulation.

In Chapter 8, we show how grounding language in the 3D feature space can improve the way

machines understand language. These models can successfully infer plausibility and implausibil-

ity of statements, localize object referents, guide object placement policies from natural language

instructions, and outperform existing 2D models by a large margin in all the above tasks. This

chapter was previously published as Prabhudesai et al. [94].

We conclude and discuss future directions in Chapter 9

8

Part I

Perception: Learning to see a stable world

with objects

9

Chapter 2

Building Embodied Perception with

Geometry-Aware Recurrent Networks

2.1 Introduction

Figure 2.1: Internet vision versus robotic vision. Pictures taken by humans (top row) (and

uploaded on the web) are the output of visual perception of a well-trained agent, the human

photographer. The content is skillfully framed and the objects appear in canonical scales and

poses. Pictures taken by mobile agents, such as a NAO robot during a robot soccer game (bottom

row), are the input to such visual perception. The objects are often partially occluded and appear

in a wide variety of locations, scales and poses. We present recurrent neural architectures for the

latter, that integrate visual information over time to piece together the visual story of the scene.

Current state-of-the-art visual systems [38] accurately detect object categories that are rare

and unfamiliar to many of us, such as gyromitra, a particular genus of mushroom (Figure 2.1

top left). Yet, they neglect the basic principles of object permanence or spatial awareness that

a one-year-old child has developed: once the camera turns away, or a person walks in front

of the gyromitra, its detection disappears and it is replaced by the objects detected in the new

visual frame. We believe the ability of current visual systems to detect rare and exquisite object

categories and their inability to carry out elementary spatial reasoning is due to the fact that

0This chapter is based on the paper published previously at CVPR 2019 [136].

11

?

3D GRU memory

Egomotion estimation

R, t

3D MaskRCNN
View Prediction

t

Unprojection

R, t

Stabilization

3D GRU memory

Figure 2.2: Geometry-aware Recurrent Neural Networks (GRNNs) integrate visual informa-

tion over time in a 3D geometrically-consistent deep feature memory of the visual scene. At each

frame, RGB images are unprojected into corresponding 3D feature tensors, which are oriented

to the coordinate frame of the memory map built thus far (2nd row). A 3D convolutional GRU

memory is then updated using the egomotion-stabilized features as input.

they are trained to label object categories from static Internet photos (in ImageNet and COCO

datasets) using a single frame as input. Our overexposure to Internet photos makes us forget

how pictures captured by mobile agents look. Consider Figure 2.1. Internet photos are skillfully

captured by human photographers, are well framed and show objects unoccluded, in canonical

locations, scales and poses (top row). Instead, photos captured by NAO robots during a soccer

game show objects in a wide variety of scales, poses, locations, and occlusion configurations

(bottom row). Often, it would not even make sense to label objects in such images, as most

objects appear only half-visible. In the case of Internet vision, the picture is the output of visual

perception of a well-trained visual agent, the human photographer. In the case of mobile robotic

vision, the picture is the input to such visual perception. Thus, different architectures may be

needed for each.

We present Geometry-aware Recurrent Neural Network architectures, which we call GRNNs,

that learn to “lift” and integrate over time 2D image features into 3D feature maps of the scene,

while stabilizing against the egomotion of the agent. They update over time a 3-dimensional

latent feature state: the latent feature vectors are arranged in a 3D grid, where every location of

the grid encodes a 3D physical location in the scene. The latent state is updated with each new

input frame using egomotion-stabilized convolutions, as shown in Figure 6.1. GRNNs learn to

map 2D input visual features to a 3D latent feature map, and back, in a differentiable manner. To

achieve such differentiable and geometrically-consistent mapping between the world scene and

the 3D latent feature state, they are equipped with differentiable geometric operations, such as

egomotion estimation and feature stabilization, 3D-to-2D projection, and 2D-to-3D unprojection,

as shown in Figure 6.1. Beyond being space-aware, we do not impose any other constraints on

the learned representations: they are free to encode whatever is relevant for the downstream task.

12

GRU

update

*

3D

feature

memory

ROIs

View prediction

class Id

query view

x

RPN

object

mask

3D MaskRCNN

ego motion

prediction

unprojection

3D

Unet

3D

Unet

m
t

m
t+1

t

t + 1
V

V̄

stabilization

V̄′ �

Vt
<latexit sha1_base64="sjiCfrAKNhB98/0aR2aqrlbSPtI=">AAAB9HicbVDLSgMxFL1TX7W+qm4EN8EiuCozbtRdQRcuKzhtoR1LJs20oUlmSDJKGeY/3LhQcesf+Aeu3Pk3po+Fth4IHM65l3tywoQzbVz32yksLa+srhXXSxubW9s75d29ho5TRahPYh6rVog15UxS3zDDaStRFIuQ02Y4vBz7zXuqNIvlrRklNBC4L1nECDZWuusIbAZKZI28m5m8W664VXcCtEi8GanUDj4/wKLeLX91ejFJBZWGcKx123MTE2RYGUY4zUudVNMEkyHu07alEguqg2ySOkfHVumhKFb2SYMm6u+NDAutRyK0k+OUet4bi/957dRE50HGZJIaKsn0UJRyZGI0rgD1mKLE8JElmChmsyIywAoTY4sq2RK8+S8vEv+0elF1b2wZVzBFEQ7hCE7AgzOowTXUwQcCCh7hGV6cB+fJeXXepqMFZ7azD3/gvP8AO+yUtg==</latexit><latexit sha1_base64="AY3GxVC+o82Ifsfufd/MBLOAnLs=">AAAB9HicbVC7TgJBFJ3FF+ILsTGxmUBMrMhio3YkUlhi4gIJrGR2mIUJM7ubmbsastn/sLFQo6V/4B9Y2fk3zgKFgieZ5OSce3PPHC8SXINtf1u5ldW19Y38ZmFre2d3r7hfaukwVpQ5NBSh6nhEM8ED5gAHwTqRYkR6grW98WXmt++Y0jwMbmASMVeSYcB9TgkY6bYnCYyUTFppP4G0X6zYVXsKvExqc1KpH35+lBpv5Wa/+NUbhDSWLAAqiNbdmh2BmxAFnAqWFnqxZhGhYzJkXUMDIpl2k2nqFB8bZYD9UJkXAJ6qvzcSIrWeSM9MZin1opeJ/3ndGPxzN+FBFAML6OyQHwsMIc4qwAOuGAUxMYRQxU1WTEdEEQqmqIIpobb45WXinFYvqva1KaOBZsijI1RGJ6iGzlAdXaEmchBFCj2gJ/Rs3VuP1ov1OhvNWfOdA/QH1vsPuTeV1A==</latexit><latexit sha1_base64="AY3GxVC+o82Ifsfufd/MBLOAnLs=">AAAB9HicbVC7TgJBFJ3FF+ILsTGxmUBMrMhio3YkUlhi4gIJrGR2mIUJM7ubmbsastn/sLFQo6V/4B9Y2fk3zgKFgieZ5OSce3PPHC8SXINtf1u5ldW19Y38ZmFre2d3r7hfaukwVpQ5NBSh6nhEM8ED5gAHwTqRYkR6grW98WXmt++Y0jwMbmASMVeSYcB9TgkY6bYnCYyUTFppP4G0X6zYVXsKvExqc1KpH35+lBpv5Wa/+NUbhDSWLAAqiNbdmh2BmxAFnAqWFnqxZhGhYzJkXUMDIpl2k2nqFB8bZYD9UJkXAJ6qvzcSIrWeSM9MZin1opeJ/3ndGPxzN+FBFAML6OyQHwsMIc4qwAOuGAUxMYRQxU1WTEdEEQqmqIIpobb45WXinFYvqva1KaOBZsijI1RGJ6iGzlAdXaEmchBFCj2gJ/Rs3VuP1ov1OhvNWfOdA/QH1vsPuTeV1A==</latexit>

V̄t
<latexit sha1_base64="NCohMtZXzrUUdjjQEFFhoRfqVdc=">AAAB/HicbVDLSsNAFL3xWesrPhaCm2ARXJXEjbor6MJlBdMWmhAm00k7dDIJMxOhhuCvuHGh4tadf+DKnX/jpO1CWw8MHM65l3vmhCmjUtn2t7GwuLS8slpZq65vbG5tmzu7LZlkAhMXJywRnRBJwignrqKKkU4qCIpDRtrh8LL023dESJrwWzVKiR+jPqcRxUhpKTD3vRipgYhzL0QibxVFkKsiMGt23R7DmifOlNQaB58foNEMzC+vl+AsJlxhhqTsOnaq/BwJRTEjRdXLJEkRHqI+6WrKUUykn4/TF9axVnpWlAj9uLLG6u+NHMVSjuJQT5ZZ5axXiv953UxF535OeZopwvHkUJQxSyVWWYXVo4JgxUaaICyozmrhARIIK11YVZfgzH55nrin9Yu6faPLuIIJKnAIR3ACDpxBA66hCS5guIdHeIYX48F4Ml6Nt8nogjHd2YM/MN5/AJC0l6w=</latexit><latexit sha1_base64="gf7nuJd1KuCXwEOROeqFRziCIQo=">AAAB/HicbVDNSsNAGNz4W+tfrB4EL0uL4KkkXtRbwR48VjBtoQlhs920SzebsLsRagi+ihcFFa/efANP3nwbN20P2jqwMMx8H9/sBAmjUlnWt7G0vLK6tl7aKG9ube/smnuVtoxTgYmDYxaLboAkYZQTR1HFSDcRBEUBI51gdFn4nVsiJI35jRonxIvQgNOQYqS05JsHboTUUESZGyCRtfPcz1TumzWrbk0AF4k9I7XG4edHpflUbfnml9uPcRoRrjBDUvZsK1FehoSimJG87KaSJAiP0ID0NOUoItLLJulzeKyVPgxjoR9XcKL+3shQJOU4CvRkkVXOe4X4n9dLVXjuZZQnqSIcTw+FKYMqhkUVsE8FwYqNNUFYUJ0V4iESCCtdWFmXYM9/eZE4p/WLunWty2iCKUrgCFTBCbDBGWiAK9ACDsDgDjyAZ/Bi3BuPxqvxNh1dMmY7++APjPcfDg6Yyg==</latexit><latexit sha1_base64="gf7nuJd1KuCXwEOROeqFRziCIQo=">AAAB/HicbVDNSsNAGNz4W+tfrB4EL0uL4KkkXtRbwR48VjBtoQlhs920SzebsLsRagi+ihcFFa/efANP3nwbN20P2jqwMMx8H9/sBAmjUlnWt7G0vLK6tl7aKG9ube/smnuVtoxTgYmDYxaLboAkYZQTR1HFSDcRBEUBI51gdFn4nVsiJI35jRonxIvQgNOQYqS05JsHboTUUESZGyCRtfPcz1TumzWrbk0AF4k9I7XG4edHpflUbfnml9uPcRoRrjBDUvZsK1FehoSimJG87KaSJAiP0ID0NOUoItLLJulzeKyVPgxjoR9XcKL+3shQJOU4CvRkkVXOe4X4n9dLVXjuZZQnqSIcTw+FKYMqhkUVsE8FwYqNNUFYUJ0V4iESCCtdWFmXYM9/eZE4p/WLunWty2iCKUrgCFTBCbDBGWiAK9ACDsDgDjyAZ/Bi3BuPxqvxNh1dMmY7++APjPcfDg6Yyg==</latexit>

V̄
0

t
<latexit sha1_base64="pTSoleXmVUzYqi5igf1h+t+hMfo=">AAAB/XicbVDLSsNAFL2pr1pfUXHlZrCKbiyJG3VX0IXLCqYtNCFMppN26OTBzEQoIeCvuHGh4tb/cOffOGm70NYDA4dz7uWeOUHKmVSW9W1UlpZXVteq67WNza3tHXN3ry2TTBDqkIQnohtgSTmLqaOY4rSbCoqjgNNOMLop/c4jFZIl8YMap9SL8CBmISNYack3D9wIq6GIcjfAIm8Xp4Wfq8I361bDmgAtEntG6s3j8xABQMs3v9x+QrKIxopwLGXPtlLl5VgoRjgtam4maYrJCA9oT9MYR1R6+SR+gU600kdhIvSLFZqovzdyHEk5jgI9WYaV814p/uf1MhVeeTmL00zRmEwPhRlHKkFlF6jPBCWKjzXBRDCdFZEhFpgo3VhNl2DPf3mROBeN64Z1r8u4hSmqcAhHcAY2XEIT7qAFDhDI4Rle4c14Ml6Md+NjOloxZjv78AfG5w/nrZcT</latexit><latexit sha1_base64="pyiK+Iad6729W0MxUw3Mjja9qLg=">AAAB/XicbVDNSsNAGNzUv1r/ouLJS7BKvVgSL+qtoILHCqYtNCFstpt26WYTdjdCWQO+ihcPKl59CU/efBs3bQ/aOrAwzHwf3+yEKSVC2va3UVpYXFpeKa9W1tY3NrfM7Z2WSDKOsIsSmvBOCAWmhGFXEklxJ+UYxiHF7XB4Wfjte8wFSdidHKXYj2GfkYggKLUUmHteDOWAx8oLIVetvJYHSuaBWbXr9hjWPHGmpNo4PIlqD9efzcD88noJymLMJKJQiK5jp9JXkEuCKM4rXiZwCtEQ9nFXUwZjLHw1jp9bR1rpWVHC9WPSGqu/NxSMhRjFoZ4swopZrxD/87qZjM59RViaSczQ5FCUUUsmVtGF1SMcI0lHmkDEic5qoQHkEEndWEWX4Mx+eZ64p/WLun2ry7gCE5TBPjgAx8ABZ6ABbkATuAABBZ7AC3g1Ho1n4814n4yWjOnOLvgD4+MHAbyYpw==</latexit><latexit sha1_base64="pyiK+Iad6729W0MxUw3Mjja9qLg=">AAAB/XicbVDNSsNAGNzUv1r/ouLJS7BKvVgSL+qtoILHCqYtNCFstpt26WYTdjdCWQO+ihcPKl59CU/efBs3bQ/aOrAwzHwf3+yEKSVC2va3UVpYXFpeKa9W1tY3NrfM7Z2WSDKOsIsSmvBOCAWmhGFXEklxJ+UYxiHF7XB4Wfjte8wFSdidHKXYj2GfkYggKLUUmHteDOWAx8oLIVetvJYHSuaBWbXr9hjWPHGmpNo4PIlqD9efzcD88noJymLMJKJQiK5jp9JXkEuCKM4rXiZwCtEQ9nFXUwZjLHw1jp9bR1rpWVHC9WPSGqu/NxSMhRjFoZ4swopZrxD/87qZjM59RViaSczQ5FCUUUsmVtGF1SMcI0lHmkDEic5qoQHkEEndWEWX4Mx+eZ64p/WLun2ry7gCE5TBPjgAx8ABZ6ABbkATuAABBZ7AC3g1Ho1n4814n4yWjOnOLvgD4+MHAbyYpw==</latexit>

Vt−1
<latexit sha1_base64="XZZPLryhnHkiXx4TuwWuiQqaQiU=">AAAB+nicbVA9T8MwFHwpX6VAScvIYlEhsVAlLMBWCQbGIpG2UhtFjuu0Vh0nsh1EFeWvsDAAYuWXsPFvcD8GaDnJ0unuPb3zhSlnSjvOt1Xa2Nza3invVvb2D6qHdq3eUUkmCfVIwhPZC7GinAnqaaY57aWS4jjktBtObmZ+95FKxRLxoKcp9WM8EixiBGsjBXZ9EGM9lnGed4oiyPW5WwR2w2k6c6B14i5Jo9WoVcGgHdhfg2FCspgKTThWqu86qfZzLDUjnBaVQaZoiskEj2jfUIFjqvx8nr1Ap0YZoiiR5gmN5urvjRzHSk3j0EzOkqpVbyb+5/UzHV35ORNppqkgi0NRxpFO0KwINGSSEs2nhmAimcmKyBhLTLSpq2JKcFe/vE68i+Z107k3ZdzCAmU4hhM4AxcuoQV30AYPCDzBM7zCm1VYL9a79bEYLVnLnSP4A+vzB48ElQY=</latexit><latexit sha1_base64="KnM+KxUArlrwy/pr/sY16ncubDs=">AAAB+nicbVC9TsMwGHTKXylQ0jKyGCokFqqEBdgqYGAsEmkrtVHkuE5r1XYi20FUUV6FhQEQK0/CxtvgtB2g5SRLp7vv03e+MGFUacf5tkpr6xubW+Xtys7uXnXfrtU7Kk4lJh6OWSx7IVKEUUE8TTUjvUQSxENGuuHkpvC7j0QqGosHPU2Iz9FI0IhipI0U2PUBR3oseZZ18jzI9JmbB3bDaTozwFXiLkij1ahVS0fXSTuwvwbDGKecCI0ZUqrvOon2MyQ1xYzklUGqSILwBI1I31CBOFF+NsuewxOjDGEUS/OEhjP190aGuFJTHprJIqla9grxP6+f6ujSz6hIUk0Enh+KUgZ1DIsi4JBKgjWbGoKwpCYrxGMkEdamroopwV3+8irxzptXTefelHEL5iiDQ3AMToELLkAL3IE28AAGT+AZvII3K7derHfrYz5ashY7B+APrM8fqoGV2w==</latexit><latexit sha1_base64="KnM+KxUArlrwy/pr/sY16ncubDs=">AAAB+nicbVC9TsMwGHTKXylQ0jKyGCokFqqEBdgqYGAsEmkrtVHkuE5r1XYi20FUUV6FhQEQK0/CxtvgtB2g5SRLp7vv03e+MGFUacf5tkpr6xubW+Xtys7uXnXfrtU7Kk4lJh6OWSx7IVKEUUE8TTUjvUQSxENGuuHkpvC7j0QqGosHPU2Iz9FI0IhipI0U2PUBR3oseZZ18jzI9JmbB3bDaTozwFXiLkij1ahVS0fXSTuwvwbDGKecCI0ZUqrvOon2MyQ1xYzklUGqSILwBI1I31CBOFF+NsuewxOjDGEUS/OEhjP190aGuFJTHprJIqla9grxP6+f6ujSz6hIUk0Enh+KUgZ1DIsi4JBKgjWbGoKwpCYrxGMkEdamroopwV3+8irxzptXTefelHEL5iiDQ3AMToELLkAL3IE28AAGT+AZvII3K7derHfrYz5ashY7B+APrM8fqoGV2w==</latexit>

mt−1
<latexit sha1_base64="ulAPpek4QJQv7ErO9JckWGHzT10=">AAAB+nicbVA9T8MwFHzhsxQoaRlZIiokFqqEBdgqwcBYJEIrtVHkuE5r1XYi20FUUf4KCwMgVn4JG/8Gp+0ALSdZOt29p3e+KGVUadf9ttbWNza3tis71d29/dqBXW88qCSTmPg4YYnsRUgRRgXxNdWM9FJJEI8Y6UaT69LvPhKpaCLu9TQlAUcjQWOKkTZSaDcGHOmx5HnOiyLM9ZlXhHbTbbkzOKvEW5Bmu1mvgUEntL8GwwRnnAiNGVKq77mpDnIkNcWMFNVBpkiK8ASNSN9QgThRQT7LXjgnRhk6cSLNE9qZqb83csSVmvLITJZJ1bJXiv95/UzHl0FORZppIvD8UJwxRydOWYQzpJJgzaaGICypyergMZIIa1NX1ZTgLX95lfjnrauWe2fKuIE5KnAEx3AKHlxAG26hAz5geIJneIU3q7BerHfrYz66Zi12DuEPrM8fsoGVHQ==</latexit><latexit sha1_base64="mLkgn+4MWWXnuiHRzwphccbRx2Q=">AAAB+nicbVC7TsMwFHXKq5RXWkaWQIXEQpWwAFsFDIxFIrRSG0WO67RWbSeybxBVlF9hYQDEypew8Te4jwFajmTp6Jx7dY9PlHKmwXW/rdLK6tr6RnmzsrW9s7tnV2sPOskUoT5JeKI6EdaUM0l9YMBpJ1UUi4jTdjS6nvjtR6o0S+Q9jFMaCDyQLGYEg5FCu9YTGIZK5LkoijCHU68I7brbcKdwlok3J/VmvbpbOrxKW6H91esnJBNUAuFY667nphDkWAEjnBaVXqZpiskID2jXUIkF1UE+zV44x0bpO3GizJPgTNXfGzkWWo9FZCYnSfWiNxH/87oZxBdBzmSaAZVkdijOuAOJMynC6TNFCfCxIZgoZrI6ZIgVJmDqqpgSvMUvLxP/rHHZcO9MGTdohjI6QEfoBHnoHDXRLWohHxH0hJ7RK3qzCuvFerc+ZqMla76zj/7A+vwBzf6V8g==</latexit><latexit sha1_base64="mLkgn+4MWWXnuiHRzwphccbRx2Q=">AAAB+nicbVC7TsMwFHXKq5RXWkaWQIXEQpWwAFsFDIxFIrRSG0WO67RWbSeybxBVlF9hYQDEypew8Te4jwFajmTp6Jx7dY9PlHKmwXW/rdLK6tr6RnmzsrW9s7tnV2sPOskUoT5JeKI6EdaUM0l9YMBpJ1UUi4jTdjS6nvjtR6o0S+Q9jFMaCDyQLGYEg5FCu9YTGIZK5LkoijCHU68I7brbcKdwlok3J/VmvbpbOrxKW6H91esnJBNUAuFY667nphDkWAEjnBaVXqZpiskID2jXUIkF1UE+zV44x0bpO3GizJPgTNXfGzkWWo9FZCYnSfWiNxH/87oZxBdBzmSaAZVkdijOuAOJMynC6TNFCfCxIZgoZrI6ZIgVJmDqqpgSvMUvLxP/rHHZcO9MGTdohjI6QEfoBHnoHDXRLWohHxH0hJ7RK3qzCuvFerc+ZqMla76zj/7A+vwBzf6V8g==</latexit>

mt
<latexit sha1_base64="MJHYRzqLSYRZDsOIQT8+zJpLZ5M=">AAAB+HicbVBNS8NAFHypX7V+Rb0IXhaL4KkkXtRbQQ8eKxhbaEPYbDft0t0k7G4KJeSfePGg4tW7/8CTN/+Nm7YHbR1YGGbe481OmHKmtON8W5WV1bX1jepmbWt7Z3fP3j94UEkmCfVIwhPZCbGinMXU00xz2kklxSLktB2Orku/PaZSsSS+15OU+gIPYhYxgrWRAtvuCayHUuS5KIog10Vg152GMwVaJu6c1JtHnx9g0Arsr14/IZmgsSYcK9V1nVT7OZaaEU6LWi9TNMVkhAe0a2iMBVV+Pk1eoFOj9FGUSPNijabq740cC6UmIjSTZU616JXif14309Gln7M4zTSNyexQlHGkE1TWgPpMUqL5xBBMJDNZERliiYk2ZdVMCe7il5eJd964ajh3powbmKEKx3ACZ+DCBTThFlrgAYExPMIzvFi59WS9Wm+z0Yo13zmEP7DefwCk1pYK</latexit><latexit sha1_base64="Jv9GML8L62dh8VvX//H6yMAVcFw=">AAAB+HicbVC9TsMwGHTKXyl/oSxILFYrJKYqYQG2SnRgLBKhldooclyntWo7ke1UqqK8CQsDRazsvAETG2+D03aAlpMsne6+T9/5woRRpR3n2yptbG5t75R3K3v7B4dH9nH1UcWpxMTDMYtlN0SKMCqIp6lmpJtIgnjISCcc3xZ+Z0KkorF40NOE+BwNBY0oRtpIgW33OdIjybOM53mQ6Tyw607DmQOuE3dJ6s3Tz49qa1ZrB/ZXfxDjlBOhMUNK9Vwn0X6GpKaYkbzSTxVJEB6jIekZKhAnys/myXN4bpQBjGJpntBwrv7eyBBXaspDM1nkVKteIf7n9VIdXfsZFUmqicCLQ1HKoI5hUQMcUEmwZlNDEJbUZIV4hCTC2pRVMSW4q19eJ95l46bh3JsyWmCBMjgDNXABXHAFmuAOtIEHMJiAJ/ACZlZmPVuv1ttitGQtd07AH1jvPyIwlyg=</latexit><latexit sha1_base64="Jv9GML8L62dh8VvX//H6yMAVcFw=">AAAB+HicbVC9TsMwGHTKXyl/oSxILFYrJKYqYQG2SnRgLBKhldooclyntWo7ke1UqqK8CQsDRazsvAETG2+D03aAlpMsne6+T9/5woRRpR3n2yptbG5t75R3K3v7B4dH9nH1UcWpxMTDMYtlN0SKMCqIp6lmpJtIgnjISCcc3xZ+Z0KkorF40NOE+BwNBY0oRtpIgW33OdIjybOM53mQ6Tyw607DmQOuE3dJ6s3Tz49qa1ZrB/ZXfxDjlBOhMUNK9Vwn0X6GpKaYkbzSTxVJEB6jIekZKhAnys/myXN4bpQBjGJpntBwrv7eyBBXaspDM1nkVKteIf7n9VIdXfsZFUmqicCLQ1HKoI5hUQMcUEmwZlNDEJbUZIV4hCTC2pRVMSW4q19eJ95l46bh3JsyWmCBMjgDNXABXHAFmuAOtIEHMJiAJ/ACZlZmPVuv1ttitGQtd07AH1jvPyIwlyg=</latexit>

Figure 2.3: GRNN architecture. At each time step t, an RGB image It is the input to a 2D

U-net. The resulting 2D deep feature maps are unprojected to 4D tensors Vt, which in turn are

input to a 3D U-net (we do not show the optional combination with unprojected depthmaps for

clarity). The resulting 3D deep feature maps V̄ are oriented to cancel the relative camera motion

between the current viewpoint and the coordinate system of the 3D GRU memory state Mt−1,

as estimated by an egomotion estimation module. The resulting oriented 3D deep feature maps

V̄t’ update the 3D GRU memory state and output Mt. The updated state of the GRU module is

then projected from specific viewpoints and decoded into a corresponding RGB image for view

prediction, or fed into a 3D MaskRCNN to predict 3D object bounding boxes and object voxel

occupancies.

2.2 Geometry-aware recurrent networks

GRNNs are recurrent neural networks whose latent state Mt ∈ R
w×h×d×c, t = 1 · · ·T learns a

3D deep feature map of the visual scene. We use the terms 3D feature map, which is indeed a 4D

tensor, to denote a set of feature channels, each of which is placed in a three-dimensional grid.

The memory map is updated with each new camera view in a geometrically-consistent manner,

so that information from 2D pixel projections that correspond to the same 3D physical point end

up nearby in the memory tensor, as illustrated in Figure 5.2. This permits later convolutional

operations to have a correspondent input across frames, as opposed to it varying with the motion

of the observer. We believe this is a key for generalization. The main components of GRNNs are

illustrated in Figure 5.2 and are detailed right below.

Unprojection At each timestep, we feed the input RGB image It to a 2D convolutional encoder-

decoder network with skip-connections (2D U-net [105]) to obtain a set of 2D feature maps

Ft ∈ R
w×h×c. We then unproject all feature maps to create a 4D feature tensor VI

t ∈ R
w×h×d×c

as follows: For each ”cell” in the 3D feature grid indexed by (i, j, k), we compute the 2D pixel

location (x, y) which the center of the cell projects onto, from the current camera viewpoint:

[x, y] = [f · i/k, f · j/k],

13

where f is the focal length of the camera. Then, VI
i,j,k,: is filled with the bilinearly interpolated

2D feature vector at that pixel location (x, y). All voxels lying along the same ray casted from

the camera center will be filled with nearly the same image feature vectors. We further unproject

the input 2D depthmap Dt into a binary voxel occupancy grid VD
t ∈ {0, 1}w×h×d that contains

the thin shell of voxels directly visible from the current camera view. We compute this by filling

all voxels whose unprojected depth value equals the grid depth value. When a depth sensor is

not available, we learn to estimate the depthmap using a 2D U-net that takes the RGB image as

input.

We multiply each 3-dimensional channel of the feature tensor VI
t with the binary occupancy

grid VD
t to get a final 4D feature tensor Vt ∈ R

w×h×d×c. The unprojected tensor Vt enters a 3D

encoder-decoder network with skip connections (3D U-net) to produce a resulting feature tensor

V̄t ∈ R
w×h×d×c.

Egomotion estimation and stabilization Our model orients the 3D feature memory to have

0◦ elevation using the absolute elevation angle of the first camera view. We assume this value

is given, but it can also be estimated using a 2D convnet. This essentially makes the memory

to always be parallel to the ground plane. The azimuth of the 3D feature memory is chosen to

be the azimuth of the first view in the input frame sequence. We assume the camera does not

translate, only rotates by varying two degrees of freedom, elevation and azimuth.

At each time step t, we estimate the relative elevation and azimuth between the current

frame’s viewpoint and the feature memory. Note that we can alternatively predict the (absolute)

elevation directly from each input view, without matching against the memory built thus far. For

the azimuth, since we need to estimate the relative azimuth to the first view, such cross-view

comparison is necessary. Specifically, the tensor V̄t is rotated by different azimuth and elevation

angles and results in a stack of rotated feature tensors V̄rot ∈ R
(L·K)×w×h×d×c, where L,K are

the total number of azimuths and elevation angles considered, respectively, after discretization.

Similar to the bilinear interpolation used during unprojection, to fill in each feature voxel in a

rotated tensor V̄rot
·,i,j,k,:, we compute the 3D location (X, Y, Z) where it is rotated from and insert

the bilinearly interpolated feature value from the original tensor V̄t. We then compare each of

the rotated feature maps with our current 3D feature memory Mt−1 ∈ R
w×h×d×c using matrix

inner products, to produce a probability distribution over azimuth and elevation pairs:

ρ̄t(r) = Mt−1 ∗ V̄rot(r, :, :, :, :), r ∈ 1 · · ·L ·K

ρt = softmax(ρ̄t),

where ∗ denotes matrix inner product. The resulting rotation r̄t is obtained by a weighted average

of azimuth and elevation angles where weights are in ρt. Finally, we orient the tensor V̄t to cancel

the relative rotation r̄t with respect to our 3D memory Mt−1, we denote the oriented tensor as V̄′
t.

Recurrent map update Once the feature tensor has been properly oriented, we feed V̄′
t as

input to a 3D convolutional Gated Recurrent Unit [12] layer, whose hidden state is the memory

Mt−1 ∈ R
w×h×d×c, as shown in Figure 5.2. This state update outputs Mt. The hidden state is

initialized to zero at the beginning of the frame sequence. For our view prediction experiments

14

where we use a fixed number of views T , we found that averaging, namely MT = 1
T

∑

t
¯̄V ′
t works

equally well to using the GRU update equations, while being much faster.

Projection and decoding Given a 3D feature memory Mt and a desired viewpoint q, we first

rotate the 3D feature memory so that its depth axis is aligned with the query camera axis. We then

generate for each depth value k a corresponding projected feature map pk ∈ R
w×h×c. Specifi-

cally, for each depth value, the projected feature vector at a pixel location (x, y) is computed by

first obtaining the 3D location it is projected from and then inserting bilinearly interpolated value

from the corresponding slice of the 4D tensor M. In this way, we obtain d different projected

maps, each of dimension w× h× c. Depth ranges from D− 1 to D+1, where D is the distance

to the center of the feature map, and are equally spaced.

Note that we do not attempt to determine visibility of features at this projection stage. The

stack of projected maps is processed by 2D convolutional operations and is decoded using a

residual convLSTM decoder, similar to the one proposed in [23], to an RGB image. We do not

supervise visibility directly. The network implicitly learns to determine visibility and to choose

appropriate depth slices from the stack of projected feature maps.

2.2.1 View prediction

Mobile agents have access to their egomotion, and can observe sensory outcomes of their mo-

tions and interactions. Training sensory representations to predict such outcomesis a useful form

of supervision, free of human annotations, often termed self-supervision since the “labels” are

provided by the embodied agent herself. Can spatial common sense, the notion of objects and

scenes, geometry, visibility and occlusion relationships, emerge in a self-supervised way in a

mobile agent that moves around and observes the world?

We train GRNNs to predict the image the agent would see from a novel viewpoint, given a

short view sequence as input. Given the 3D feature memory and a query viewpoint, we orient

the map to the query viewpoint, we project it to 2D and decode it to an RGB image, as described

above. We train our view prediction using a standard cross-entropy pixel matching loss, where

the pixel intensity has been squashed into the range [0, 1]. To test the how GRNNs perform in

this task, we consider the following simulation datasets:

i) ShapeNet arrangement from [11] that contains scenes with synthetic 3D object models from

ShapeNet [9] arranged on a table surface. The objects in this dataset belong to four object

categories, namely, cups, bowls, helmets and cameras. We follow the same train/test split of

ShapeNet [9] so that object instances which appear in the training scenes do not appear in

the test scenes. Each scene contains two objects, and each image is rendered from a viewing

sphere which has 3×18 possible views with 3 camera elevations (20◦, 40◦, 60◦) and 18 azimuths

(0◦, 20◦, . . . , 340◦). There are 300 different scenes in the training set and 32 scenes with novel

objects in the test set.

ii) Shepard-metzler shapes dataset from [23] that contains scenes with seven colored cubes stuck

together in random arrangements. We use the train and test split of [23].

iii) Rooms-ring-camera dataset from [23] that contains rooms with random floor and wall colors,

in which there are variable numbers of objects with different shapes and colors.

15

We compare GRNNs against the recent ”tower” architecture of Eslami et al. [23], a 2D

network trained under a similar view prediction loss. At each time step, the tower architecture

takes as input a 2D RGB image and performs a series of convolutions on it. The camera pose from

which the image was taken is tiled along the width and height axes and then concatenated with the

feature map after the third convolution. Finally, the feature maps from all views are combined via

average pooling. Both our model and the baseline use the same autoregressive decoder network.

For fairness of comparison, we use groundtruth egomotion rather than estimated egomotion in

all view prediction experiments, and only RGB input (no depth input of depth estimation) for

both our model and the tower baseline. In both the baseline and our model, we did not use any

stochastic units for simplicity and speed of training. Adding stochastic units in both is part of

our future work.

Test results from our model and baseline on test images of ShapeNet arrangements and

Shepard-metzler datasets are shown in Figure 2.4. Reconstruction test error for the ShapeNet

arrangement test set is shown in Table 2.1. GRNNs have a much lower reconstruction test error

than the tower baseline. In Figure 2.4, in the first four rows, the distribution of the test scenes

matches the training scene distribution. Our model outperforms the baseline in visual fidelity.

In Figure 2.4, in the last four rows, the test scene distribution does not match the training one:

we test our model and baseline on scenes with four objects, while both models are trained

on scenes with exactly two objects. In this case, our model shows strong generalization and

outperforms by a margin the geometry-unaware baseline of [23], the latter refuses to see more

than two objects present. We argue the ability to spatially reason should not be affected by

the number of objects present in the scene. Our results suggest that geometry-unaware models

may be merely memorizing views with small interpolation capabilities, as opposed to learning to

spatially reason.

Scene arithmetics The learnt representations of GRNNs are capable of scene arithmetics, as

we show in Figure 2.5. The ability to add and subtract individual objects from 3D scenes just by

adding and subtracting their corresponding latent representations demonstrates that our model

disentangles what from where. In other words, our model learns to store object-specific informa-

tion in the regions of the memory which correspond to the spatial location of the corresponding

object in the scene.

Tower GRNNs

(Baseline) (Ours)

ShapeNet 0.109± 0.029 0.084± 0.017
Shepard-Metzler 0.081± 0.017 0.073± 0.014

Table 2.1: View prediction loss and the standard deviation for the ShapeNet arrangement test

set for two-object test scenes. Our model and baseline were trained on scenes that also contain

two objects with different object instances.

16

input view v1, v2, v3
query

gt

S
a

m
e

 S
ta

ti
s
ti

c
s
 t

ra
in

/t
e

s
t

GRNNs

(Ours)

Tower

(Baseline)

S
tr

o
n

g
 g

e
n

e
ra

li
z
a

ti
o

n
 t

o
 s

c
e

n
e

s
 w

it
h

 m
o

re
 o

b
je

c
ts

S
tr

o
n

g
 g

e
n

e
ra

li
z
a

ti
o

n
S

a
m

e
 S

ta
ti

s
ti

c
s
 t

ra
in

/t
e

s
t

Figure 2.4: View prediction results for the proposed GRNNs and the tower model of Eslami et

al. [23]. Columns from left to right show the three input views, the groundtruth image from the

query viewpoint, the view predictions for GRNNs and for the tower baseline. The first two rows

are from the ShapeNet arrangement test set of [11], the next two rows are from the Shepard-

Metzler test set of [23], and the following two rows are from the Rooms-ring-camera dataset

also from [23]. The last four rows show generalization to scenes with four objects from the

ShapeNet arrangement dataset, while both models were trained only on scenes with two ob-

jects. GRNNs outperform the baseline by a large margin and strongly generalize under a varying

number of objects.

2.2.2 3D object detection and segmentation

We train GRNNs in a supervised manner to predict 3D object bounding boxes and 3D object

segmentation masks, using groundtruth 3D object boxes and 3D voxel segmentations from a

simulator. We adapt MaskRCNN [38], a state-of-the-art object detector/segmentor, to have 3D

input and output, instead of 2D. Specifically, we consider every grid location (X, Y, Z) in our

3D memory to be a candidate 3D box centroid. At each time step, the 3D feature memory

Mt is fed to a 3D region proposal network to predict positive anchor centroids, as well as the

17

(A) (B) (C)
query gt

(A-B+C)

GRNNs

(Ours)

Tower

(Baseline)

Figure 2.5: Scene arithmetic with GRNNs and the model of Eslami et al. [23] (tower). Each

row is a separate ”equation”. We start with the representation of the scene in the leftmost column,

then subtract (the representation of) the scene in the second column, and add the (representation

of the) scene in the third column. We decode the resulting representation into an image. The

groundtruth image is shown in the forth column. It is much more visually similar to the prediction

of GRNNs than to the tower baseline.

corresponding adjustment for the box center location and the box dimensions, width, height and

depth. Our 3D bounding box encoding is similar to the one proposed in VoxelNet [148]. We filter

the proposed boxes using non-max suppression to reject highly overlapping ones. We train with

a combination of classification and regression loss, following well established detector training

schemes [38, 101]. The proposed 3D bounding boxes that have Intersection of Union (IoU)

above a specific threshold with a corresponding groundtruth object box are denoted as Regions

of Interest (ROIs) and are used to pool features from their interior to predict 3D object voxel

occupancy, as well as a second refinement of the predicted 3D box location and dimensions.

Object permanence Even when an object is not visible in the current camera viewpoint, its

features are present in the 3D feature memory, and our detector detects and segments it, as we

show in the second column of Figure 2.6. In other words, object detections persist through

occlusions and changes of the field of view caused by camera motion. Applying the detector on

the latent 3D model of the scene as opposed to the 2D visual frame is beneficial. The latent 3D

model follows the physical laws of 3D non-intersection and object permanence, while 2D visual

observations do not.

We use the ShapeNet arrangement dataset, and the train/test scene split of [11]. We use

mean Average Precision (mAP) to score the performance of our model and baselines for 3D

object detection and 3D segmentation. Mean average precision measures the area under the

18

t

Input

views

Predicted

3D boxes

(top-view)

t = 3

Input

views

Predicted

3D boxes

(top-view)

t

View 1View1 View2

1 2 3

1 2 3

Predicted 3D boxes and segmentation
gt gt

t = 3

View 1View1 View2

Predicted 3D boxes and segmentation
gt gt

Figure 2.6: 3D object detection and segmentation with GRNNs. In the first and second row

on the left we show the input images over time, and their corresponding object detection results

for a top view, respectively. Blue voxels denote groundtruth objects and the predicted bounding

boxes are shown in red and green . On the right, we show segmentation results for the third

time step, visualizing the results from two views. Predicted 3D boxes and their corresponding

predicted masks are show in red and green, and we show in blue the corresponding groundtruth.

Best seen in color.

precision-recall curve. We vary the cutoff threshold of Intersection over Union (IoU) to be 0.33,

0.5 and 0.75 between our predictions and the groundtruth 3D boxes and masks. We consider

four ablations for our model: predicted egomotion (pego) versus groundtruth egomotion (gtego)

used, and predicted depth (pd) versus groundtruth depth (gtd) used as input. We use suffixes to

indicate the model we use.

detection 2DRNN-gtego-gtd GRNN-gtego-pd GRNN-gtego-gtd GRNN-pego-gtd

mAPd
0.75 0.364 0.471 0.816 0.549

mAPd
0.50 0.964 0.964 0.998 0.983

mAPd
0.33 0.998 0.994 0.999 0.999

segmentation 2DRNN-gtego-gtd GRNN-gtego-pd GRNN-gtego-gtd GRNN-pego-gtd

mAPm
0.75 0.003 0.024 0.058 0.023

mAPm
0.50 0.104 0.246 0.338 0.249

mAPm
0.33 0.244 0.429 0.485 0.384

Table 2.2: Mean Average Precision (mAP) for 3D object detection and 3D segmentation for three

different thresholds of Intersection over Union (IoU) (0.75,0.5,0.33) on ShapeNet arrangement

test set of [11].

We compare against the following 2D baseline model, which we call 2D-RNN: we remove the

unprojection, egomotion estimation and stabilization and projection operations from our model.

The baseline takes as input an image and the corresponding depth map, feeds it to a 2D encoder-

decoder network with skip connections to obtain a 2D feature tensor. The camera parameters

19

for this view are concatenated as additional channels to the 2D feature tensor and altogether

they are fed to another 2D encoder-decoder network to obtain the 2D feature tensor for a 2D

GRU memory update. We then feed the 2D memory feature tensor to an additional 2D encoder-

decoder network and reshape the channel dimension of its output into d feature vector of length

7 (one value for the anchor box prediction, six values for the 3D bounding boxes adjustments) to

form a 4D tensor of size w × h× d× 7 as prediction.

We show mean average precision for 3D object detection and 3D segmentation for our model

and the baseline in Table 2.2, and visualize predicted 3D bounding boxes and segmentations

from GRNNs (GRNN-gtego-gtd) in Figure 2.6. GRNNs significantly outperform the 2D-RNN.

Groundtruth depth input significantly helps 3D segmentation. This suggests that inferring depth

using a cost volume as in [56] would potentially help depth inference as opposed to relying on a

per frame depthnet [21] that does not have access to multiple views to improve its predictions.

20

Chapter 3

Learning to See Moving Objects without

3D Labels

3.1 Introduction

In the previous chapter, we have introduced Geometry-Aware Recurrent Networks (GRNNs),

neural architectures that construct end-to-end trainable view-invariant 3D feature represen-

tations for the scenes captured by the embodied agents. We have shown that GRNNs outperform

and generalize better than geometry-unaware baselines in 3D object detection and view predic-

tion. Here in this chapter, we want to move a step forward to answer another interesting question:

since our machines are embodied agents that can act in the world to collect more data, can they

learn or improve through their own collected data? To answer this question, we need to think

about what kind of data can mobile agents collect. Assuming these agents are in their initial stage

where they have not yet developed their visual perception and cannot even localize objects from

the scene, all they can do is move in random directions. Hopeless as it sounds, when the agents

move, they can observe a sequence of images capturing from different views. Besides, they will

have access to the pose and the displacement of their torques. Using the data, we propose to use

prediction as a self-supervisory signal in allowing agents to learn better visual representations

that will aid their generalization ability.

The first task we propose, which has been introduced in the previous chapter, is view pre-

diction: the agents learn to predict how a scene looks from various camera viewpoints given an

input view. Besides RGB images, learning the tasks require the camera positions where the im-

ages are taken from, because the models need to know which view to generate. Such information

is accessible to the agents since they can calculate the camera poses through forward kinematics

using the pose and the displacement of their torques. To be able to predict images from multiple

views, the models must learn to complete the features invisible from the input view so they can

generate the pixels correctly beyond what can be observed. In this sense, the features can become

consistent across views, making them truly view-invariant.

View prediction has been the center of much recent research effort. Most methods test their

models in single object scenes, and aim to generate beautiful images for graphics applications

[56, 107, 115, 128], as opposed to learning general-purpose visual representations. The work

0This chapter is based on the paper published previously at ICLR 2020 [35].

21

of [23] attempted view prediction in full scenes, yet only experimented with toy data contain-

ing a few colored 3D shapes. Their model cannot effectively generalize beyond the training

distribution, e.g., cannot generalize across scenes of a variable number of objects.

In the previous chapter, we have shown our models outperform the work of [23] and gener-

alize well in both 3D object detection and view prediction tasks. In this chapter, we show that,

with this self-supervised objective, we can further improve our 3D object detection performance.

However, we found out training view prediction by regressing the outputs to the target image

in the pixel space does not scale to complex scenes like real-world street views. To address the

problem, we introduce a novel view-contrastive loss that learns more semantically meaningful

features. With the learned features, we can discover objects in 3D from a single camera view-

point, without any human annotations of object boxes or masks.

3.2 Semi-supervised learning of 3D object detection

Can pre-training the models with the view prediction objective help to improve the object detec-

tion performance? To answer the question, we pre-train the GRNNs weights with view predic-

tion, and then train a 3D object detector module supervised to map a 3D feature volume M to 3D

object boxes. We compare the model with a model trained from random weight initialization,

i.e., without pre-training. After pre-training, we freeze the feature layers after view predictive

learning, and only supervise the detector module; for the fully supervised baseline (from random

initialization), we train end-to-end.

We train our models in CARLA [18], an open-source photorealistic simulator of urban driv-

ing scenes, which permits moving the camera to any desired viewpoint in the scene. We obtain

data from the simulator as follows. We generate 1170 autopilot episodes of 50 frames each (at 30

FPS), spanning all weather conditions and all locations in both “towns” in the simulator. We de-

fine 36 viewpoints placed regularly along a 20m-radius hemisphere in front of the ego-car. This

hemisphere is anchored to the ego-car (i.e., it moves with the car). In each episode, we sample 6

random viewpoints from the 36 and randomly perturb their pose, and then capture each timestep

of the episode from these 6 viewpoints. We generate train/test examples from this, by assembling

all combinations of viewpoints (e.g., N ≤ 5 viewpoints as input, and 1 unseen viewpoint as the

target). We filter out frames that have zero objects within the metric “in bounds” region of the

GRNN (32m × 32m × 4m). This yields 172524 frames (each with multiple views): 124256 in

Town1, and 48268 in Town2. We treat the Town1 data as the “training” set, and the Town2 data

as the “test” set, so there is no overlap between the train and test images.

We are interested in seeing the benefit of this pre-training across different amounts of label

supervision, so we first use the full CARLA train set for view prediction training (without using

box labels), and then use a randomly-sampled subset of the CARLA train set for box supervision;

we evaluate on the CARLA validation set. We varied the size of the box supervision subset across

the following range: 100, 200, 500, 1000, 10000, 80000. We show mean average precision (at

an IoU of 0.75) for car detection as a function of the number of annotated 3D bounding box

examples in Figure 3.1. As expected, the supervised model performs better with more labelled

data. In the low-data regime, pre-training greatly improves results.

However, we observe that the predicted images from this dataset are blurry and miss many

22

102 103 104 105

Number of annotated 3D object boxes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Pretrain view contrastive (ours)
Pretrain view regression (Tung et al., 2019)
Random weight initialization

Figure 3.1: Semi-supervised 3D object detection. Pre-training with view-contrastive predic-

tion improves results, especially when there are few object 3D bounding box annotations.

vital details, which raises the concern that learning view prediction through RGB regression

might be insufficient to obtain semantically meaningful features for complex scenes. To address

the problem, we sort to another option which makes predictions in a latent feature space. Re-

cently, [88] used a probabilistic contrastive objective that preserves mutual information between

the future bottom-up extracted features and the predicted contextual latent features. By training

with the contrastive objective, [88] shows the model can achieve strong performance in diverse

domains, including speech, text and image, text, and reinforcement learning in 3D environments.

The view-contrastive loss proposed in this work is a non-probabilistic version of their contrastive

objective. However, our work focuses on the video domain as opposed to image patches, and

uses drastically different architectures for both the contextual and bottom-up representations,

using a 3D representation bottleneck. In Figure 3.1, we show by pretraining the model with

view-contrastive losses, we can further improve the 3D object detection results when the number

of training data is limited. Next, we introduce in detail the view-contrastive loss.

3.2.1 View-contrastive rendering

Given a set of input RGBs, pointclouds, and camera poses (I(1),D(1),V (1)), . . . , (I(n),D(n),V (n)),

we train our model to predict feature abstractions of an unseen input (I(n+1),D(n+1),V (n+1)).We

consider two types of representations for the target view: a top-down one, T = f [(I(1),D(1),V (1)),

. . . , (I(n),D(n),V (n)),V (n+1)], and a bottom-up one, B = g[I(n+1),D(n+1)]. Note that the top-

down representation has access to the viewpoint V (n+1) but not to observations from that view-

point (I(n+1),D(n+1)), while the bottom-up representation is only a function of those observa-

tions.

We construct 2D and 3D versions of these representation types, using our architecture mod-

ules:
• We obtain T 3D = ⊗M (n) by encoding the set of inputs 1, . . . , n.
• We obtain B3D = ⊗F (n+1) by encoding the single input n+ 1.
• We obtain T 2D = M

(n)
viewn+1

by rendering ⊗M (n) from viewpoint V (n+1).

• We obtain B2D = F
(n+1)

by convolving I
(n+1)

with a 3-block 2D ResNet [37].
Finally, the contrastive losses pull corresponding (top-down and bottom-up) features close to-

23

gether in embedding space, and push non-corresponding ones beyond a margin of distance:

L2D
contrast =

∑

i,j,m,n

max
(
Y2D
ij,mn(‖T

2D
ij − B2D

mn‖2 − α), 0
)
, (3.1)

L3D
contrast =

∑

i,j,k,m,n,o

max
(
Y3D
ijk,mno(‖T

3D
ijk − B3D

mno‖2 − α), 0
)
, (3.2)

where α is the margin size, and Y is 1 at indices where T corresponds to B, and −1 everywhere

else. The losses ask tensors depicting the same scene, but acquired from different viewpoints,

to contain the same features. The performance of a metric learning loss depends heavily on the

sampling strategy used [111, 119, 120]. We use the distance-weighted sampling strategy pro-

posed by [140] which uniformly samples “easy” and “hard” negatives; we find this outperforms

both random sampling and semi-hard [111] sampling.

3.2.2 Experiments

Sim-to-Real (CARLA-to-KITTI) transfer

We evaluate whether the 3D predictive feature representations learned in the CARLA simulator

are useful for learning 3D object detectors in the real world by testing on the real KITTI dataset

[29]. Specifically, we use view prediction pre-training in the CARLA train set, and box supervi-

sion from the KITTI train set, and evaluate 3D object detection in the KITTI validation set. We

use the (single-view) object detection benchmark from the KITTI dataset [29], with the official

train/val split: 3712 training frames, and 3769 validation frames. Existing real-world datasets

do not provide enough camera viewpoints to support view-predictive learning. Specifically, in

KITTI, all the image sequences come from a moving car and thus all viewpoints lie on a near-

straight trajectory. Thus, simulation-to-real transferability of features is especially important for

view predictive learning.

Method
mAP@IOU

0.33 0.50 0.75

Random weight initialization .59 .52 .17

Pretrain view regress., frozen .64 .54 .15

Pretrain view regress., finetuned .65 .55 .18

Pretrain view contrast, frozen .67 .58 .15

Pretrain view contrast, finetuned .70 .60 .19

Table 3.1: CARLA-to-KITTI transferability of view-predictive

3D feature representations. We train a 3D detector module on

top of the inferred 3D feature maps M using KITTI 3D object box

annotations

We show simulation-

to-real transfer results in

Table 3.1. We com-

pare the proposed view

contrastive prediction pre-

training, with view regres-

sion pre-training, and ran-

dom weight initialization

(no pretraining). In all

cases, we train a 3D ob-

ject detection module su-

pervised using KITTI 3D

box annotations. We also

compare freezing versus

finetuning the weights of the pretrained inverse graphics network. The results are consistent with

the CARLA tests: view-contrastive pretraining is best, view regression pretraining is second, and

learning from human annotations alone is worst. Note that depth in KITTI is acquired by a real

24

velodyne LiDAR sensor, and therefore has lower density and more artifacts than CARLA, yet

our model generalizes across this distribution shift.

3.3 Unsupervised 3D moving object detection

Aside from improving the object detection results, here we propose an algorithm that can dis-

cover moving objects in an unsupervised manner using the learned features through view pre-

diction. Upon training, our model learns to map even a single RGB-D input to a complete 3D

imagination. Given two temporally consecutive and registered 3D maps ⊗F (t),⊗F (t+1)
reg , pre-

dicted independently using inputs (I(t),D(t)) and (I(t+1),D(t+1)
), we train a motion estimation

module to predict the 3D motion field ⊗W (t) between them, which we call 3D imagination flow.

Since we have accounted for camera motion, this 3D motion field should only be non-zero for

independently moving objects. We obtain 3D object proposals by clustering the 3D flow vec-

tors, extending classic motion clustering methods [8, 86] to an egomotion-stabilized 3D feature

space, as opposed to 2D pixel space.

Estimating 3D imagination flow

Our 3D FlowNet is a 3D adaptation of the PWC-Net (2D) optical flow model [124]. Note

that our model only needs to estimate motion of the independently-moving part of the scene,

since egomotion has been accounted for. It works by iterating across scales in a coarse-to-

fine manner. At each scale, we compute a 3D cost volume, convert these costs to 3D dis-

placement vectors, and incrementally warp the two tensors to align them. We train our 3D

FlowNet using two tasks: (1) Synthetic transformation of feature maps: We apply random ro-

tations and translations to ⊗F (t) and ask the model to recover the dense 3D flow field that

corresponds to the transformation; (2) Unsupervised 3D temporal feature matching: Lwarp =
∑

i,j,k ||⊗F
(t)
i,j,k −W(⊗F (t+1)

reg ,⊗W (t))i,j,k||, where W(⊗F (t+1),⊗W (t)) back-warps ⊗F (t+1)
reg to

align it with ⊗F (t), using the estimated flow ⊗W (t). We apply the warp with a differentiable

3D spatial transformer layer, which does trilinear interpolation to resample each voxel. This

extends self-supervised 2D optical flow [145] to 3D feature constancy (instead of 2D brightness

constancy). We found that both types of supervision are essential for obtaining accurate 3D flow

field estimates. Since we are not interested in the 3D motion of empty air voxels, we additionally

estimate 3D voxel occupancy, and supervise this using the input pointclouds; we set the 3D mo-

tion of all unoccupied voxels to zero. We describe our 3D occupancy estimation in more detail

in the appendix.

The proposed 3D imagination flow enjoys significant benefits over 2D optical flow or 3D

scene flow. It does not suffer from occlusions and dis-occlusions of image content or projection

artifacts [123], which typically transform rigid 3D transformations into non-rigid 2D flow fields.

In comparison to 3D scene flow [43], which concerns visible 3D points, 3D imagination flow

is computed between visual features that may never have appeared in the field of view, but

are rather inpainted by imagination.

3D moving object segmentation

We obtain 3D object segmentation proposals by thresholding the 3D imagination flow magni-

tude, and clustering voxels using connected components. We score each component using a 3D

25

Input RGBs

Input  

pointclouds

Estimated ego-

stabilized flow

Ground-truth  

object flow Moving object proposals

Color map

Figure 3.2: 3D feature flow and object proposals, in dynamic scenes. Given the input frames

on the left, our model estimates dense egomotion-stabilized 3D flow fields, and converts these

into object proposals. We visualize colorized pointclouds and flow fields in a top-down (bird’s

eye) view.

version of a center-surround motion saliency score employed by numerous works for 2D motion

saliency detection [28, 73]. This score is high when the 3D box interior has lots of motion but

the surrounding shell does not. This results in a set of scored 3D segmentation proposals for each

video scene.

3.3.1 Experiments

In this section, we test our model’s ability to detect moving objects in 3D without any 3D

object annotations, simply by clustering 3D motion vectors. We use two-frame video sequences

of dynamic scenes from the CARLA data, and we split the validation set into two parts for

evaluation: scenes where the camera is stationary, and scenes where the camera is moving. This

splitting is based on the observation that moving object detection is made substantially more

challenging under a moving camera.

We show precision-recall curves for 3D moving object detection under a stationary camera

in Figure 3.3. We compare our model against a model trained with RGB view regression and a

2.5D baseline. The 2.5D baseline computes 2D optical flow using PWC-Net [124], then proposes

object masks by thresholding and clustering 2D flow magnitudes; these 2D proposals are mapped

to 3D boxes by segmenting the input pointcloud according to the proposed masks. Our model

outperforms the baselines. Note that even with ground-truth 2D flow, ground-truth depth, and an

oracle threshold, a 2.5D baseline can at best only capture the portions of the objects that are in

the pointcloud. As a result, 3D proposals from PWC-Net often underestimate the extent of the

objects by half or more. Our model imagines the full 3D scene in each frame, so it does not have

this issue.

We show precision-recall curves for 3D moving object detection under a moving camera in

Figure 3.4. We compare our model where egomotion is predicted by our neural egomotion mod-

ule, against our model with ground-truth egomotion, as well as a 2.5D baseline, and a stabilized

2.5D baseline. The 2.5D baseline uses optical flow estimated from PWC-Net as before. To

26

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
3D flow, pretrain view contrastive (.518 mAP)
2.5D PWC-Net flow (.312 mAP)
3D flow, pretrain view regression (.184 mAP)

Figure 3.3: Unsupervised 3D moving object

detection with a stationary camera.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

GT-stabilized 3D flow (.444 mAP)
Estim.-stabilized 3D flow (.439 mAP)
Unstabilized 2.5D flow (.036 mAP)
GT-stabilized 2.5D flow (.001 mAP)

Figure 3.4: Unsupervised 3D moving object

detection with a moving camera

stabilize the 2.5D flow, we subtract the ground-truth scene flow from the optical flow estimate

before generating proposals. Our model’s performance is similar to its level in static scenes, sug-

gesting that the egomotion module and stabilization mechanism effectively disentangles camera

motion from the 3D feature maps. The 2.5D baseline performs poorly in this setting, as expected.

Surprisingly, performance drops further after stabilizing the 2D flows for egomotion. We con-

firmed this is due to the estimated scene flow being imperfect: subtracting ground-truth scene

flow leaves many motion fragments in the background. With ground-truth 2D flow, the baseline

performs similar to its static-scene level.

We have attempted to compare against the unsupervised object segmentation methods pro-

posed in [44, 61] by adapting the publicly available code accordingly. These models use an

inference network that takes as input the full video frame sequences to predict the locations of

2D object bounding boxes, as well as frame-to-frame displacements, in order to minimize view

prediction error in 2D. We were not able to produce meaningful results from their inference

networks. The success of [44] may partially depend on carefully selected priors for 2D object

bounding box location and object size parameters that match the moving MNIST dataset statis-

tics used in the paper, as suggested by the publicly available code. We do not assume knowledge

or existence of such object location or size priors for our CARLA data.

27

28

Part II

Action + Physics: Learning to imagine how

objects can move and how to interact with

them

29

Chapter 4

Learning View-invariant Intuitive Physics

Models for Manipulation

4.1 Introduction

In Part I, we have introduced neural architectures that would allow embodied agents to perceive

a stabilized scene while moving. We also introduce how the agents can learn to detect objects

in the scene representations. In this chapter, we want to discuss how the agents can develop a

deeper understanding of the scene beyond simple object detection. For the agents to intelligently

interact with scene or reason about what can happen in the scene, it is critical that they learn how

the environment reacts to their actions and interactions [36, 80].

Humans can effortlessly imagine how a scene will change as a result of their interactions

with the objects in the scene [15, 27]. What is the representation space of these imaginations?

They are not pixel accurate and, interestingly, they are not affected by occlusions. Consider a

teaspoon dipping inside a coffee mug. Though it will be occluded from nearly all viewpoints but

the bird’s eye view, we have no difficulty keeping it in our mind as present and complete. We

can imagine watching it from different viewpoints, increase or decrease its size, predict whether

it will fit inside the mug, or even imagine filling the mug with more spoons.

Inspired by humans capability to simulate scene changes in a viewpoint-invariant and occlusion-

resistant manner, we present 3D object-factorized environment simulators (3D-OES), an action-

conditioned dynamics model that predicts scene changes caused by object and agent interactions

in a viewpoint-invariant 3D neural scene representation space, inferred from RGB-D videos.

Using Geometry-Aware Recurrent Networks (GRNNs) introduced in Chapter 2, 3D-OES differ-

entiably maps an RGB-D image to a 3D neural scene representation, detects objects in it, and

forecasts their future 3D motions, conditioned on actions of the agent. A graph neural network

operates on the extracted 3D object feature maps and the action input and predicts object 3D

translations and rotations. Our model then generates future 3D scenes by simply translating and

rotating object 3D feature maps, inferred from the first time step, according to cumulative 3D

motion predictions. In this way, we avoid distribution shift in object features caused by forward

model unrolling, hence minimizing error accumulation.

0This chapter is based on the paper published previously at CoRL 2021 [137].

31

Our main insight is that scene dynamics are simpler to learn and represent in 3D than in 2D,

for the following reasons: i) In 3D, object appearance and object location are disentangled.

This means object appearance (what) does not vary with object locations (where). This what-

where disentanglement permits generating scene variations by simply translating and rotating 3D

object appearance representations. Scene generation by moving around objects is not possible

in a projective 2D image space, since objects change appearance due to camera viewpoint vari-

ation, occlusions or out-of-plane object rotations [19]. It is precisely the permanence of object

appearance in 3D that permits easy simulation. ii) In 3D, inferring free space and object colli-

sions is easy. Given a 3D scene description in terms of object locations and 3D shapes, we can

easily predict whether an object will collide with another or will be contained in another. Simi-

lar inferences would require many examples to learn directly from 2D images, and would likely

have poor generalization. Yet, extracting 3D scene representations from RGB or RGB-D video

streams is a challenging open problem in computer vision research [49, 65, 103, 104, 135]. We

build upon the recently proposed geometry-aware recurrent neural networks (GRNNs) [33, 135]

to infer 3D scene feature maps from RGB-D images in a differentiable manner, optimized end-

to-end for our object dynamics prediction task.

We evaluate 3D-OES in single-step and multi-step object motion prediction for object push-

ing and falling, and apply it for planning to push objects to desired locations. We test its gener-

alization while varying the number and appearance of objects in the scene, and the camera view-

point. We compare against existing learning-based 2D image-centric or object-centric models

of dynamics [32, 144] as well as graph-based dynamics learned over engineered 3D representa-

tions of object locations [108]. Our model outperforms them by a large margin. In addition, we

empirically show that training the 2D baselines under varying viewpoints causes them to dramat-

ically underfit on the training data, and be highly inaccurate in the validation set. This suggests

that different architectures are necessary to handle viewpoint variations in dynamics learning and

3D-OES is one step in that direction.

In summary, the main contribution of this work is a graph neural network over 3D object

feature maps extracted from convolutional end-to-end differentiable 3D neural scene represen-

tations for forecasting 3D object motion. Graph networks are widely used in 2D object motion

interaction predictions [5, 51, 58, 144]. We show that by porting such relational reasoning in an

3D object-factorized space, object motion prediction can generalize across camera viewpoints,

lifting a major limitation of previous works on 2D object dynamics. Moreover, future and coun-

terfactual scenes can be easily generated by translating and rotating 3D object feature represen-

tations. In comparison to recent 3D particle graph networks [69, 83, 109], our work can operate

over input RGB-D images and not ground-truth particle graphs. In comparison to recent scene-

specific image-to-3D particle graph encoders [70], our image to 3D scene encoder can generalize

across environments with novel objects, novel number of objects, and novel camera viewpoints,

Moreover, our model presents effective sim-to-real transfer to a real-world robotic setup.

4.2 Object-Factorized Environment Simulators (3D-OES)

The architecture of 3D-OES is depicted in Figure 6.2. At each time step, our model takes as

input a single or a set of RGB-D images of the scene along with the corresponding camera views

32

agent

M0
<latexit sha1_base64="/hFssVJMJhvco6yDrvoQa6ltXdI=">AAAB+3icbVBPS8MwHE3nvzn/TXf0EhyCp9GKoN6GXrwIE6wbrKWkWbqFJWlJUqGU+lW8eFDx6hfx5rcx3XrQzQeBx3u/H7+XFyaMKm3b31ZtZXVtfaO+2dja3tnda+4fPKg4lZi4OGaxHIRIEUYFcTXVjAwSSRAPGemH0+vS7z8SqWgs7nWWEJ+jsaARxUgbKWi2ci+MoMeRnkie3xZFYDeCZtvu2DPAZeJUpA0q9ILmlzeKccqJ0JghpYaOnWg/R1JTzEjR8FJFEoSnaEyGhgrEifLzWfgCHhtlBKNYmic0nKm/N3LElcp4aCbLlGrRK8X/vGGqows/pyJJNRF4fihKGdQxLJuAIyoJ1iwzBGFJTVaIJ0girE1fZQnO4peXiXvauezYd2ft7lXVRh0cgiNwAhxwDrrgBvSACzDIwDN4BW/Wk/VivVsf89GaVe20wB9Ynz+GZZQ7</latexit><latexit sha1_base64="/hFssVJMJhvco6yDrvoQa6ltXdI=">AAAB+3icbVBPS8MwHE3nvzn/TXf0EhyCp9GKoN6GXrwIE6wbrKWkWbqFJWlJUqGU+lW8eFDx6hfx5rcx3XrQzQeBx3u/H7+XFyaMKm3b31ZtZXVtfaO+2dja3tnda+4fPKg4lZi4OGaxHIRIEUYFcTXVjAwSSRAPGemH0+vS7z8SqWgs7nWWEJ+jsaARxUgbKWi2ci+MoMeRnkie3xZFYDeCZtvu2DPAZeJUpA0q9ILmlzeKccqJ0JghpYaOnWg/R1JTzEjR8FJFEoSnaEyGhgrEifLzWfgCHhtlBKNYmic0nKm/N3LElcp4aCbLlGrRK8X/vGGqows/pyJJNRF4fihKGdQxLJuAIyoJ1iwzBGFJTVaIJ0girE1fZQnO4peXiXvauezYd2ft7lXVRh0cgiNwAhxwDrrgBvSACzDIwDN4BW/Wk/VivVsf89GaVe20wB9Ynz+GZZQ7</latexit><latexit sha1_base64="/hFssVJMJhvco6yDrvoQa6ltXdI=">AAAB+3icbVBPS8MwHE3nvzn/TXf0EhyCp9GKoN6GXrwIE6wbrKWkWbqFJWlJUqGU+lW8eFDx6hfx5rcx3XrQzQeBx3u/H7+XFyaMKm3b31ZtZXVtfaO+2dja3tnda+4fPKg4lZi4OGaxHIRIEUYFcTXVjAwSSRAPGemH0+vS7z8SqWgs7nWWEJ+jsaARxUgbKWi2ci+MoMeRnkie3xZFYDeCZtvu2DPAZeJUpA0q9ILmlzeKccqJ0JghpYaOnWg/R1JTzEjR8FJFEoSnaEyGhgrEifLzWfgCHhtlBKNYmic0nKm/N3LElcp4aCbLlGrRK8X/vGGqows/pyJJNRF4fihKGdQxLJuAIyoJ1iwzBGFJTVaIJ0girE1fZQnO4peXiXvauezYd2ft7lXVRh0cgiNwAhxwDrrgBvSACzDIwDN4BW/Wk/VivVsf89GaVe20wB9Ynz+GZZQ7</latexit>

p̂
o

t+1 = p̂
o

t
+ δp̂

o

t
<latexit sha1_base64="jpcCtKkOtZCESMVPUr/g3sZuyEw=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI46GXQsUatiU+xz8kv1ew02ECyDeGtiwWvVLZrJoj4VljTUwZTVT3Su9OR9IkZBFQQbRuWWYMbkoUcCrYsOgkmsWE9kmXtTIbkZBpNx3tN8T7GengQKrsRIBH9PdESkKtB6GfdYYEenq6lsP/aq0EglM35VGcAIvo+KEgERgkzsPCHa4YBTHIDKGKZ3/FtEcUoZBFmodgTa88a+zD6lnVvD4q1y4maRTQLtpDB8hCJ6iGrlAd2Yiie/SIntGL8WA8Ga/G27h1zpjM7KA/Mj6+AKi8oks=</latexit><latexit sha1_base64="jpcCtKkOtZCESMVPUr/g3sZuyEw=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI46GXQsUatiU+xz8kv1ew02ECyDeGtiwWvVLZrJoj4VljTUwZTVT3Su9OR9IkZBFQQbRuWWYMbkoUcCrYsOgkmsWE9kmXtTIbkZBpNx3tN8T7GengQKrsRIBH9PdESkKtB6GfdYYEenq6lsP/aq0EglM35VGcAIvo+KEgERgkzsPCHa4YBTHIDKGKZ3/FtEcUoZBFmodgTa88a+zD6lnVvD4q1y4maRTQLtpDB8hCJ6iGrlAd2Yiie/SIntGL8WA8Ga/G27h1zpjM7KA/Mj6+AKi8oks=</latexit><latexit sha1_base64="jpcCtKkOtZCESMVPUr/g3sZuyEw=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI46GXQsUatiU+xz8kv1ew02ECyDeGtiwWvVLZrJoj4VljTUwZTVT3Su9OR9IkZBFQQbRuWWYMbkoUcCrYsOgkmsWE9kmXtTIbkZBpNx3tN8T7GengQKrsRIBH9PdESkKtB6GfdYYEenq6lsP/aq0EglM35VGcAIvo+KEgERgkzsPCHa4YBTHIDKGKZ3/FtEcUoZBFmodgTa88a+zD6lnVvD4q1y4maRTQLtpDB8hCJ6iGrlAd2Yiie/SIntGL8WA8Ga/G27h1zpjM7KA/Mj6+AKi8oks=</latexit>

r̂
o

t+1 = r̂
o

t
+ δr̂

o

t
<latexit sha1_base64="I3lXsUO+QpuosypRMlNZa/JqsZE=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI1dBLoWIN2xKf4x+S3yvY6TAB5BtDWxaLXqlsVs2R8KyxJqaMJqp7pXenI2kSsgioIFq3LDMGNyUKOBVsWHQSzWJC+6TLWpmNSMi0m472G+L9jHRwIFV2IsAj+nsiJaHWg9DPOkMCPT1dy+F/tVYCwamb8ihOgEV0/FCQCAwS52HhDleMghhkhlDFs79i2iOKUMgizUOwpleeNfZh9axqXh+VaxeTNApoF+2hA2ShE1RDV6iObETRPXpEz+jFeDCejFfjbdw6Z0xmdtAfGR9fsniiUQ==</latexit><latexit sha1_base64="I3lXsUO+QpuosypRMlNZa/JqsZE=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI1dBLoWIN2xKf4x+S3yvY6TAB5BtDWxaLXqlsVs2R8KyxJqaMJqp7pXenI2kSsgioIFq3LDMGNyUKOBVsWHQSzWJC+6TLWpmNSMi0m472G+L9jHRwIFV2IsAj+nsiJaHWg9DPOkMCPT1dy+F/tVYCwamb8ihOgEV0/FCQCAwS52HhDleMghhkhlDFs79i2iOKUMgizUOwpleeNfZh9axqXh+VaxeTNApoF+2hA2ShE1RDV6iObETRPXpEz+jFeDCejFfjbdw6Z0xmdtAfGR9fsniiUQ==</latexit><latexit sha1_base64="I3lXsUO+QpuosypRMlNZa/JqsZE=">AAACHnicbZDLSsNAFIYnXmu9VV26GSyCUCiJiJeFUHTjsoKxhSYNk+mkHTrJhJkToYS+iRtfxY0LFcGVvo1JW7y0/jDwz3fOYeb8fiy4BtP8NObmFxaXlgsrxdW19Y3N0tb2rZaJosymUkjV9IlmgkfMBg6CNWPFSOgL1vD7l3m9cceU5jK6gUHM3JB0Ix5wSiBDXunY6RFI1dBLoWIN2xKf4x+S3yvY6TAB5BtDWxaLXqlsVs2R8KyxJqaMJqp7pXenI2kSsgioIFq3LDMGNyUKOBVsWHQSzWJC+6TLWpmNSMi0m472G+L9jHRwIFV2IsAj+nsiJaHWg9DPOkMCPT1dy+F/tVYCwamb8ihOgEV0/FCQCAwS52HhDleMghhkhlDFs79i2iOKUMgizUOwpleeNfZh9axqXh+VaxeTNApoF+2hA2ShE1RDV6iObETRPXpEz+jFeDCejFfjbdw6Z0xmdtAfGR9fsniiUQ==</latexit>

p̂0 = 0
<latexit sha1_base64="V5XqJzJUce1VCL32gj3S6TOaGYk=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3WzC7qZQQv+JFw8qXv0p3vw3Jm0O2vpg4PHeDDPzwlRwbTD+tlZW19Y3Nmtb9vbO7t6+c3D4pJNMUebRRCSqExLNBJfMM9wI1kkVI3EoWDsc3ZV+e8yU5ol8NJOU+TEZSB5xSkwhBY7TGxKTp9MAoxuEbdsOnDpu4BnQMnErUocKrcD56vUTmsVMGiqI1l0Xp8bPiTKcCja1e5lmKaEjMmDdgkoSM+3ns8un6LRQ+ihKVFHSoJn6eyInsdaTOCw6Y2KGetErxf+8bmaiKz/nMs0Mk3S+KMoEMgkqY0B9rhg1YlIQQhUvbkV0SBShpgirDMFdfHmZeOeN6wZ+uKg3b6s0anAMJ3AGLlxCE+6hBR5QGMMzvMKblVsv1rv1MW9dsaqZI/gD6/MHAbeReQ==</latexit><latexit sha1_base64="V5XqJzJUce1VCL32gj3S6TOaGYk=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3WzC7qZQQv+JFw8qXv0p3vw3Jm0O2vpg4PHeDDPzwlRwbTD+tlZW19Y3Nmtb9vbO7t6+c3D4pJNMUebRRCSqExLNBJfMM9wI1kkVI3EoWDsc3ZV+e8yU5ol8NJOU+TEZSB5xSkwhBY7TGxKTp9MAoxuEbdsOnDpu4BnQMnErUocKrcD56vUTmsVMGiqI1l0Xp8bPiTKcCja1e5lmKaEjMmDdgkoSM+3ns8un6LRQ+ihKVFHSoJn6eyInsdaTOCw6Y2KGetErxf+8bmaiKz/nMs0Mk3S+KMoEMgkqY0B9rhg1YlIQQhUvbkV0SBShpgirDMFdfHmZeOeN6wZ+uKg3b6s0anAMJ3AGLlxCE+6hBR5QGMMzvMKblVsv1rv1MW9dsaqZI/gD6/MHAbeReQ==</latexit><latexit sha1_base64="V5XqJzJUce1VCL32gj3S6TOaGYk=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3WzC7qZQQv+JFw8qXv0p3vw3Jm0O2vpg4PHeDDPzwlRwbTD+tlZW19Y3Nmtb9vbO7t6+c3D4pJNMUebRRCSqExLNBJfMM9wI1kkVI3EoWDsc3ZV+e8yU5ol8NJOU+TEZSB5xSkwhBY7TGxKTp9MAoxuEbdsOnDpu4BnQMnErUocKrcD56vUTmsVMGiqI1l0Xp8bPiTKcCja1e5lmKaEjMmDdgkoSM+3ns8un6LRQ+ihKVFHSoJn6eyInsdaTOCw6Y2KGetErxf+8bmaiKz/nMs0Mk3S+KMoEMgkqY0B9rhg1YlIQQhUvbkV0SBShpgirDMFdfHmZeOeN6wZ+uKg3b6s0anAMJ3AGLlxCE+6hBR5QGMMzvMKblVsv1rv1MW9dsaqZI/gD6/MHAbeReQ==</latexit>

r̂0 = 0
<latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit><latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit><latexit sha1_base64="3JDdfaL1sZV3bbklt10yFC89wnI=">AAAB+HicbVBNS8NAEJ34WeNX1KOXxSJ4KhsR1INQ9OKxgrGFNoTNdtMu3XywuymU0H/ixYOKV3+KN/+NmzYHbX0w8Hhvhpl5YSa40hh/Wyura+sbm7Ute3tnd2/fOTh8UmkuKfNoKlLZCYligifM01wL1skkI3EoWDsc3ZV+e8yk4mnyqCcZ82MySHjEKdFGChynNyS6kNMAoxuEbdsOnDpu4BnQMnErUocKrcD56vVTmscs0VQQpbouzrRfEKk5FWxq93LFMkJHZMC6hiYkZsovZpdP0alR+ihKpalEo5n6e6IgsVKTODSdMdFDteiV4n9eN9fRlV/wJMs1S+h8UZQLpFNUxoD6XDKqxcQQQiU3tyI6JJJQbcIqQ3AXX14m3nnjuoEfLurN2yqNGhzDCZyBC5fQhHtogQcUxvAMr/BmFdaL9W59zFtXrGrmCP7A+vwBBNGRew==</latexit>

δp̂
o

t<latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit><latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit><latexit sha1_base64="fDCxxuB1yiba64eRs8cC9vxa20c=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEiiyyUPqg2mavtWwm/YUeJG0KtJAFTq+9eWGKc1jlgAVRKl+y87AK4gETgWbmG6uWEboiAxYX9OExEx5xfT8CT7WSoijVOpKAE/V3xMFiZUax4HujAkM1bxXiv95/RyiC6/gSZYDS+hsUZQLDCkus8Ahl4yCGGtCqOT6VkyHRBIKOrEyhNb8y4vEOW1eNu3bs0b7qkqjjg7RETpBLXSO2ugGdZCDKCrQM3pFb8aT8WK8Gx+z1ppRzeyjPzA+fwBI8ZSV</latexit>

δr̂
o

t<latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit><latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit><latexit sha1_base64="6cU2rbvusRjc/EdqAKHus2Gfn/Q=">AAAB/XicbVBNS8NAEN3Urxq/ouLJy2IRPJVUBPVW9OKxgrGFJobNZtMu3XywOxFKKPhXvHhQ8er/8Oa/cdPmoK0PBh7vzTAzL8gEV2Db30ZtaXllda2+bm5sbm3vWLt79yrNJWUOTUUqewFRTPCEOcBBsF4mGYkDwbrB6Lr0u49MKp4mdzDOmBeTQcIjTgloybcO3JAJINgdEijk5CH1wTRN32rYTXsKvEhaFWmgCh3f+nLDlOYxS4AKolS/ZWfgFUQCp4JNTDdXLCN0RAasr2lCYqa8Ynr+BB9rJcRRKnUlgKfq74mCxEqN40B3xgSGat4rxf+8fg7RhVfwJMuBJXS2KMoFhhSXWeCQS0ZBjDUhVHJ9K6ZDIgkFnVgZQmv+5UXinDYvm/btWaN9VaVRR4foCJ2gFjpHbXSDOshBFBXoGb2iN+PJeDHejY9Za82oZvbRHxifP0wHlJc=</latexit>

Graph

Networks

action

Graph

Networks

M̄t+1
<latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit><latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit><latexit sha1_base64="EvuELZ/Ddf4RSllF2Pko3KHJHTA=">AAACAXicbVBNS8NAEN3Urxq/op7ES7AIglASEdRb0YsXoYKxhSaEzXbTLt3dhN2NUELw4l/x4kHFq//Cm//GTZuDtj4YeLw3w8y8KKVEKsf5NmoLi0vLK/VVc219Y3PL2t65l0kmEPZQQhPRjaDElHDsKaIo7qYCQxZR3IlGV6XfecBCkoTfqXGKAwYHnMQEQaWl0NrzIyhyn0E1FCy/KYowV8duYZpmaDWcpjOBPU/cijRAhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7EOt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxTpoXTef2tNG6rNKog31wAI6AC85AC1yDNvAAAo/gGbyCN+PJeDHejY9pa82oZnbBHxifP5hllnA=</latexit>

M̄t+2
<latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit><latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit><latexit sha1_base64="KH43hOp7KNJbzUooY8Xsn0ycSRM=">AAACAXicbVBNS8NAEN34WeNX1JN4CRZBEEpSBPVW9OJFqGBsoQlhs920S3c3YXcjlBC8+Fe8eFDx6r/w5r9x0+agrQ8GHu/NMDMvSimRynG+jYXFpeWV1dqaub6xubVt7ezeyyQTCHsooYnoRlBiSjj2FFEUd1OBIYso7kSjq9LvPGAhScLv1DjFAYMDTmKCoNJSaO37ERS5z6AaCpbfFEWYq5NmYZpmaNWdhjOBPU/citRBhXZoffn9BGUMc4UolLLnOqkKcigUQRQXpp9JnEI0ggPc05RDhmWQT14o7COt9O04Ebq4sifq74kcMinHLNKd5a1y1ivF/7xepuLzICc8zRTmaLoozqitErvMw+4TgZGiY00gEkTfaqMhFBApnVoZgjv78jzxmo2LhnN7Wm9dVmnUwAE4BMfABWegBa5BG3gAgUfwDF7Bm/FkvBjvxse0dcGoZvbAHxifP5nslnE=</latexit>

action

EGRNN
<latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit><latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit><latexit sha1_base64="WW8T085LHisq+bZkV7828OE6z+w=">AAAB+XicbVBPS8MwHE3nvzn/dXr0EhyCp9GJoN6GInoaU6wbbKWkWbqFJWlJUmXUfhQvHlS8+k28+W1Mtx50+iDweO/34/fygphRpR3nyyotLC4tr5RXK2vrG5tbdnX7TkWJxMTFEYtkN0CKMCqIq6lmpBtLgnjASCcYn+d+555IRSNxqycx8TgaChpSjLSRfLt64ad9jvRI8vTyptXKMt+uOXVnCviXNApSAwXavv3ZH0Q44URozJBSvYYTay9FUlPMSFbpJ4rECI/RkPQMFYgT5aXT6BncN8oAhpE0T2g4VX9upIgrNeGBmcxTqnkvF//zeokOT7yUijjRRODZoTBhUEcw7wEOqCRYs4khCEtqskI8QhJhbdqqmBIa81/+S9zD+mnduT6qNc+KNspgF+yBA9AAx6AJrkAbuACDB/AEXsCr9Wg9W2/W+2y0ZBU7O+AXrI9vtHCT1g==</latexit>

: an input RGB-D image

 observed from viewpoint
I<latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit><latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit><latexit sha1_base64="4n98qf+lpcmyo3CE0LctotO/EpI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FL3prwdhCG8pmO2nXbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBjsYhVO6AaBZfoGW4EthOFNAoEtoLRzdRvPaHSPJb3ZpygH9GB5CFn1FipedcrV9yqOwNZJrWcVCBHo1f+6vZjlkYoDRNU607NTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sduiEnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+hmXSWpQsvmiMBXExGT6NelzhcyIsSWUKW5vJWxIFWXGZlOyIdQWX14m3ln1quo2zyv16zyNIhzBMZxCDS6gDrfQAA8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4ADUCMoA==</latexit> d

<latexit sha1_base64="493iywG9k3VTthaAR+vadVA7SLQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDabSbt2swm7G6GU/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLM8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxzeTv3WEyrNU3lvRhkGCe1LHnNGjZWaUa9SdWvuDGSZeAWpQoFGr/LVjVKWJygNE1TrjudmJhhTZTgTOCl3c40ZZUPax46lkiaog/Hs0Ak5tUpE4lTZkobM1N8TY5poPUpC25lQM9CL3lT8z+vkJr4KxlxmuUHJ5oviXBCTkunXJOIKmREjSyhT3N5K2IAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gA2EYy7</latexit><latexit sha1_base64="493iywG9k3VTthaAR+vadVA7SLQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDabSbt2swm7G6GU/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLM8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxzeTv3WEyrNU3lvRhkGCe1LHnNGjZWaUa9SdWvuDGSZeAWpQoFGr/LVjVKWJygNE1TrjudmJhhTZTgTOCl3c40ZZUPax46lkiaog/Hs0Ak5tUpE4lTZkobM1N8TY5poPUpC25lQM9CL3lT8z+vkJr4KxlxmuUHJ5oviXBCTkunXJOIKmREjSyhT3N5K2IAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gA2EYy7</latexit><latexit sha1_base64="493iywG9k3VTthaAR+vadVA7SLQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDabSbt2swm7G6GU/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLM8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxzeTv3WEyrNU3lvRhkGCe1LHnNGjZWaUa9SdWvuDGSZeAWpQoFGr/LVjVKWJygNE1TrjudmJhhTZTgTOCl3c40ZZUPax46lkiaog/Hs0Ak5tUpE4lTZkobM1N8TY5poPUpC25lQM9CL3lT8z+vkJr4KxlxmuUHJ5oviXBCTkunXJOIKmREjSyhT3N5K2IAqyozNpmxD8BZfXib+ee265jYvqvWbIo0SHMMJnIEHl1CHO2iADwwQnuEV3pxH58V5dz7mrStOMXMEf+B8/gA2EYy7</latexit>

v
<latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit><latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit><latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit>

v
<latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit><latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit><latexit sha1_base64="Xbf22Nq/OWFZr9NnZEG7MaKAtKY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMVYwttKJvtpF262YTdTaGU/gMvHlS8+pO8+W/ctDlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6SRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxze5n5zhErzRD6acYpBTPuSR5xRY6WHUblbqbo1dwayTLyCVKFAo1v56vQSlsUoDRNU67bnpiaYUGU4EzgtdzKNKWVD2se2pZLGqIPJ7NIpObVKj0SJsiUNmam/JyY01noch7YzpmagF71c/M9rZya6CiZcpplByeaLokwQk5D8bdLjCpkRY0soU9zeStiAKsqMDScPwVt8eZn457Xrmnt/Ua3fFGmU4BhO4Aw8uIQ63EEDfGAQwTO8wpszdF6cd+dj3rriFDNH8AfO5w+Fvozh</latexit>

predicted 3D

object motion

Figure 4.1: 3D-OES predict 3D object motion under agent-object and object-object interactions,

using a graph neural network over 3D feature maps of detected objects. Node features capture

the appearance of an object node and its immediate context, and edge features capture relative

3D locations between two nodes, so the model is translational invariant. After message passing

between nodes, the node and edge features are decoded to future 3D rotations and translations

for each object.

to capture them, and encodes these inputs into a 3D scene feature representation using Geometry-

Aware Recurrent Networks (GRNNs) introduced in Chapter 2. Then, it detects 3D object boxes

in the inferred 3D scene representation, and crops the scene representation to obtain a set of

object-centered 3D feature maps (see Section 2.2.2 for details of the object detector). A graph

neural network over the object nodes will take as inputs object appearances and the agent actions

and predict the future 3D rotation and translation for each object (Section 4.2.1). We will assume

for now rigid objects, and we discuss in Chapter 9 how to extend our framework to deformable

and articulated objects. Our model generates future scenes by warping object-centric 3D feature

maps with the predicted cumulative 3D object motion. These synthesized future 3D scene feature

maps, though not directly interpretable, can be decoded to RGB images from any desired camera

viewpoints via a neural renderer to aid interpretability. We use long-term simulations of 3D-

OES to generate action plans for pushing objects to desired locations in cluttered environments

using model predictive control (Section 4.2.2). We apply our model to learn dynamics of objects

pushed around on a table surface and objects falling on top of others. At training time, we assume

access to 3D object bounding boxes to train our 3D object detector.

Differentiable 2D-to-3D lifting with Geometry-Aware Recurrent Networks (GRNNs) Our

model use Geometry-Aware Recurrent Networks (GRNNs) introduced in Chapter 2 to infer 3D

scene feature representations from RGB-D images. We will denote the 3D scene feature as M ∈
R

w×h×d×c where w, h, d, c denote width, height, depth and number of channels, respectively.

Given an input video, GRNNs estimate the relative camera poses between frames, and transform

the inferred 3D features map Mt to a world coordinate frame to cancel the camera egomotion,

before accumulating it with 3D feature maps across time steps. In this way, information from 2D

pixels that correspond to the same 3D physical point end up nearby in the 3D neural map. We use

such cross-view registration in case we have access to concurrent multiple camera views for the

first timestep of our simulations. Upon training, GRNNs map RGB-D images or a single RGB-D

image to a complete 3D feature map of the scene they depict, i.e., the model learns to imagine

33

the missing or occluded information from the input view. We denote this 2D-to-3D mapping as

M = GRNN(I1, ..., It), where M ∈ R
w×h×d×c and It = {dt, vt} denotes the RGB-D image dt

and the corresponding camera pose vt at time step t. Note that the input can be a single RGB-D

view, in which case M = GRNN(I). For further details on GRNNs, please refer to Chapter 2.

View prediction for visualizing latent 3D neural simulations We train GRNNs end-to-end for

RGB view regression in videos of static scenes and moving cameras as proposed in Chapter 2

Section 2.2.1, by neurally projecting the 3D scene feature maps and mapping them to 2D images.

Our decoder involves a differentiable 3D-to-2D projection module that projects the 3D scene

feature representation after orienting it to the query camera viewpoint. The projected features

are then decoded into images through a learned decoder. In this way, the trained projection and

decoding module can be used to interpret and visualize the 3D latent feature space with view-

specific 2D images, given any desired camera viewpoint.

3D object detection Our model uses a 3D object detector to map the 3D scene neural map M to

a variable number of object axis-aligned 3D boxes and corresponding 3D segmentation masks,

i.e., binary 3D voxel occupancies: O = Det(M),O = {b̂o = (pox, p
o
y, p

o
z, w

o, ho, do) ∈ R
6,mo ∈

{0, 1}w
o×ho×do , o = 1 · · · |O|}, where pox, p

o
y, p

o
z stands for the 3D box centroid and wo, ho, do

stands for 3d box size. Its architecture is similar to Mask R-CNN [38] but uses 3D input and

output instead of 2D. Given an object 3D centroid pox, p
o
y, p

o
z, we crop the 3D scene feature map M

using a corresponding fixed-size axis-aligned 3D bounding box to obtain corresponding object-

centric feature maps Mo, o = 1 · · · |O| for all objects in the scene. Please refer to Chapter 2

Section 2.2.2 for more details about the object detector.

4.2.1 3D Object Graph Neural Networks for Motion Forecasting

Objects are the recipient of forces exercised by active agents; meanwhile, objects themselves

carry momentum and cause other objects to move. How can we model cross-object dynamic

relationships in a way that generalizes with varying number of objects and arbitrary chains of

interactions?

We consider a graph interaction network [5] over the graph comprised of the detected objects

and the agent’s end-effector. Inputs to the network are the object-centric feature maps, one per

object node, the objects’ velocities, the agent’s action represented as a 3D translation, as well as

edge features, which incorporate the relative 3D displacements between the nodes. The outputs

of the network are the 3D translations δp̂ and 3D relative rotations δr̂ of the object nodes at

the next time step. During message passing in the constructed graph, edge and node features are

encoded and concatenated, and messages from neighboring nodes are aggregated via summation.

Our graph network is trained supervised to minimize a standard regression loss for the next time

step.

Forward unrolling with object appearance permanence To predict long term results of

actions, as well as results of action sequences, the model needs to be unrolled forward in time as

commonly done in related works [5, 6, 51, 58, 144]. Different from previous works though, 3D-

OES can synthesize 3D neural scenes of future timesteps by warping (translating and rotating)

object feature maps obtained from the first timestep—as opposed to the ones obtained from

the predicted scene of the previous timestep—according to cumulative 3D motion predictions.

34

Specifically, given predicted 3D object motions (δp̂t, δr̂t) at an unrolling step t, we estimate the

cumulative 3D rotation and translation of the object with respect to the first timestep:

p̂t = p̂t−1 + δp̂t, r̂t = r̂t−1 + δr̂t, t = 1 · · ·T, p̂0 = 0 r̂0 = 0. (4.1)

where T denotes the number of unrolling steps thus far. Then, given 3D object segmentation

masks mo and object-centric 3D feature maps Mo obtained by the 3D object detector from the

input RGB-D image, we rotate and translate the object masks and 3D feature maps using the

cumulative 3D rotation r̂t and 3D translation p̂t using 3D spatial transformers. We synthesize

a new 3D scene feature map M̄t by placing each transformed object-centric 3D feature map at

its predicted 3D location: M̄t =
∑|O|

o=1 Dec(Rot(m
o, r̂ot) ⊙ Rot(Mo, r̂ot), p̂

o
t), where superscript

o denotes the object identity, Rot(·, r) denotes 3D rotation by angle r, ⊙ denotes voxel-wise

multiplication, and Dec(M, p) denotes adding a feature tensor M at a 3D location p. This syn-

thesized scene map is used for neural rendering to help interpret the predicted scene at t. To

obtain the inputs for our graph neural network at the next time step, we can potentially crop the

synthesized 3D scene map M̄t at the predicted 3D location. However, we find that directly using

object features obtained in the first time step and including accumulative relative object pose as

part of the object state works better in practice.

Our graph neural motion forecaster is trained through forward unrolling. Error of each time

step is back-propagated through time. More implementation details are included in Appendix

Section C.1.

4.2.2 Model Predictive Control with 3D-OES

Action-conditioned dynamics models, such as 3D-OES, simulate the results of an agent’s ac-

tions and permit successful control in zero-shot setups: achieving a specific goal in a novel

scene without previous practice. We apply our model for pushing objects to desired locations

in cluttered environments with model predictive control. Given an input RGB-D image I that

contains multiple objects, a goal configuration is given in terms of the desired 3D location of an

object xo
goal. 3D-OES infer the scene 3D feature map M = GRNN(I) and detects the objects

present in the scene. We then unroll the model forward in time using randomly sampled action

sequences, as described in Section 4.2.1. We evaluate each action sequence based on the Eu-

clidean distance from the goal to the predicted location x̂oT (after T time steps) for the designated

object. We execute the first action of the best action sequence and repeat [126]. Our model

combines 3D perception and planning using learned object dynamics in the inferred 3D scene

feature map. While most previous works choose bird’s eye viewpoints to minimize cross-object

or robot-object occlusions [24], our control framework can use any camera viewpoint, thanks

to its ability to map input 2.5D images to complete, viewpoint-invariant 3D scene feature maps.

We empirically validate this claim in our experimental section.

4.3 Experiments

We evaluate our model on its prediction accuracy for single- and multi-step object motion fore-

casting under multi-object interactions, as well as on its performance in model predictive control

35

for pushing objects to desired locations on a table surface in the presence of obstacles. We ablate

generalization of our model under varying camera viewpoints and varying number of object and

varying object appearance. Our model is trained to predict 3D object motion during robot push-

ing and falling in the Bullet Physics Simulator. For pushing, we have objects pushed by a Kuka

robotic arm and record RGB-D video streams from multiple viewpoints. We create scenes using

31 different 3D object meshes, including 11 objects from the MIT Push dataset [146] and 20

objects randomly selected from camera, mug, bowl, and bed object categories of the ShapeNet

dataset [9]. At training time, each scene contains at most two objects. We test with varying

number of objects. For falling, we use 3D meshes of the objects introduced in Janner et al. [51],

including a variety of shapes. We randomly select 1-3 objects and randomly place them on a

table surface, and let one object fall from a height. We train our model with three camera views,

and use either three or one randomly selected views as input during test time.

We compare 3D-OES against a set of baselines designed to cover representative models in the

object dynamics literature: (1) graph-XYZ, a model that mimics Interaction Networks [4, 5, 141].

It is a graph neural network in which object features are the 3D object centroid locations and their

velocities, and edge features are their relative 3D locations. (2) graph-XYZ-image, a model using

graph neural network over 3D object centroid locations and object-centric 2D image CNN feature

embeddings, similar to Ye et al. [144]. The model further combines camera pose information

with the node features. (3) Visual Foresight (VF) [20], a model that uses the current frame and

the action of the agent to predict future 2D frames by “moving pixels” based on predicted 2D

pixel flow fields. (4) PlaNet [32], a model that learns a scene-level embedding by predicting

future frames and the reward given the current frame.

We compare our model against baselines graph-XYZ and graph-XYZ-image on both motion

forecasting and model predictive control. Since VF and PlaNet forecast 2D pixel motion and do

not predict explicit 3D object motion, we compare against them on the pushing task with model

predictive control.

Implementation Details for Baselines Here we describe the baselines discussed in Section 4

in detail.

1. graph-XYZ, a model that uses the 3D object centroid (X, Y, Z) as object state, and incorpo-

rate cross-object interactions for forecasting 3D translation using graph convolutions over

a object graph, similar to Andrychowicz et al. [4] and Wu et al. [141]. Since the canonical

pose of an object is undefined, object orientation is not included in the object state. This

model neglects object shape and appearance. The graph networks used in all baselines fol-

low the exact design as the one we use in our model (4-layer MLPs for both the node and

edge encoder). The only difference is that its inputs do not contain any object appearance

features.

2. graph-XYZ-image, a model that uses the 3D object centroid (X, Y, Z) and object-centric

2D image feature embeddings for forecasting 3D translation. This baseline model extracts

2D CNN features from each image, concatenates the features with the camera viewpoint,

and transforms the combined features into an object appearance feature vector. The feature

vector is concatenated with the 3D object centroid and fed into a graph network (identical

to the one used in graph-XYZ) to predict future object 3D translation. When taking multiple

36

views as inputs, the model takes the average of the appearance feature vectors across views.

3. Visual Foresight (VF) [20], a model that uses the current frame and the action of the agent

to predict future 2D frames by “moving pixels” based on predicted 2D pixel flow fields. It

is based on the publicly available code of Ebert et al. [20] that uses such frame predictive

model to infer an action trajectory that brings an object pixel to the desired (2D) location

in the image space.

4. PlaNet[32], a model that learns a scene-level embedding by predicting future frames and

the reward given the current frame. PlaNet only deals with single-goal tasks and does not

apply to our multi-goal pushing task. We extend it to our setting by appending the goal state

to the observation. In practice, we augment the latent state vector produced from its state

encoders first fully connected layer with a randomly selected goal, and provide the model

with reward computed correspondingly. The reward at each timestep is the computed as

the negative of the distance-to-goal.

Note that both VF and PlaNet are self-supervised models that do not require ground-truth object

states during training. However, we believe that since such supervision is readily accessible in

simulation, we should leverage them to push the performance of the learned dynamics model.

Self-supervised models are more favored when trained directly in the real world, where strong

supervisions are not available, but as we showed in our experiments, our model trained solely in

simulation can transfer reasonably well to the real world without any fine-tuning. As a result,

we believe including the comparison with such self-supervised baselines is arguably fair and

reasonable.

4.3.1 Data collection details

Pushing Our training data contains RGB-D video streams where the robot pushes objects which

in turn can collide and push other objects on the table. We create scenes using 31 different 3D

object meshes, including 11 objects from the MIT Push dataset [146] and 20 objects selected

from four categories (camera, mug, bowl and bed) in the ShapeNet Dataset [9]. We split our

dataset so that 24 objects are used during training. At test time, we evaluate the prediction error

on the remaining 7 objects. At training time each scene contains at most two (potentially inter-

acting) objects. At test time, we vary the number of objects from one up to five. We randomize

the textures of the objects during training to improve transferability to the real world [130]. We

consider a simulated Kuka robotic arm equipped with a single rod (as shown in Figure 3 of the

main paper. The objects can move on a planar table surface of size 0.6m × 0.6m when pushed

by the arm, or by other objects. We collect training interaction trajectories by instantiating the

gripper nearby a (known) 3D object segmentation mask. We sample random pushing action se-

quences with length of 5 timesteps, where each action is a horizontal displacement of the robot’s

end-effector ranging from 3cm to 6cm, and each timestep is defined to be 200ms. We record

objects displacement 1 sec after the push. We place cameras at 27 nominal different views in-

cluding 9 different azimuth angels ranging from the left side of the agent to the right side of

the agent combining with 3 different elevation angles from 20, 40, 60 degrees. All cameras are

looking at the 0.1m above the center of the table, and are 1 meter away from the look-at point.

At each timestep, all cameras are purturbed randomly around their nominal viewpoints, and we

37

record all 27 views. At training time, our model consumes three randomly selected concurrent

camera viewpoints as input. At test time, we use the 3D object detector to predict the 3D object

segmentation mask, and our model is tested with either three or a single view as input, all ran-

domly selected. All images are 128 × 128. There are 5000 pushing trajectories in the training

data, and 200 pushing trajectories in the test data.

Falling We use the 3D meshes of the block objects introduced in Janner et al. [51], which in-

cludes cones, cylinders, rectangles, tetrahedrons, and traingles with a variety of shapes. We

randomly select 1-3 objects and initialize their position by placing them on the table surface, and

let one object falls freely from the air. One timestep is defined to be 40ms. All other settings are

identical to the settings for pushing.

4.3.2 Action-Conditioned 3D Object Motion Forecasting

We evaluate the performance of our model and the baselines in single- and multi-step 3D motion

forecasting for pushing and falling on novel objects in Tables 4.1 and 4.2 in terms of translation

and rotation error. We evaluate the following ablations: i) using 1 or 3 camera views at the first

time step, ii) using goundtruth 3D object boxes (gt-bbox) or 3D boxes predicted by our 3D detec-

tor, iii) varying camera viewpoints (random) versus keeping a single fixed camera viewpoint at

train and test time. Our model outperforms the baselines both in translation and rotation predic-

tion accuracy. When tested with object boxes predicted by the 3D object detector as opposed to

ground-truth 3D boxes, our model is the least affected. graph-XYZ-image performs on par with

or even worse than graph-XYZ, indicating that it does not gain from having access to additional

appearance information. We hypothesize this is due to the way appearance and camera pose

information are integrated in this baseline: the model simply treats camera pose information as

additional input, as opposed to our model, which leverages geometry-aware representations that

retain the geometric structure of the scene.

Multi-step forward unrolling The graph-XYZ baseline can be easily unrolled forward in

time without much error accumulation since it does not use any appearance features. Still, as

seen in Tables 4.1 and 4.2, our model outperforms it. graph-XYZ is oblivious to the appearance

of the object and thus cannot effectively adapt its predictions to different object shapes.

Varying number of camera views Our model accepts a variable number of views as input,

and improves when more views available; yet, it can accurately predict future motion even from

a single RGB-D view. The prediction error of our single view model is only slightly higher than

the model using three random views as input. As shown in Table 4.1, the graph-XYZ-image

baseline performs the worst and does not improve with more views are available. We believe

this is due to the geometry-unaware way of combining multiview information by concatenation,

though the model does have access to camera poses of the input images.

Varying camera viewpoint versus fixed camera viewpoint We show in Table 4.1 (last 2

rows) that graph-XYZ-image can achieve much better performance when trained and tested on

a single fixed camera viewpoint. This is a setting widely used in the recently popular learning-

based visual-motor control literature [20, 26, 90, 143], which restricts the corresponding models

to work only under carefully controlled environments with a fixed camera viewpoint, while ours

performs competitively to these model but also handles arbitrary camera viewpoints.

38

Table 4.1: 3D object motion prediction test error during object pushing in scenes with two

objects for 1,3, and 5 timestep prediction horizon.

Experiment Setting Model T=1 T=3 T=5

3 views (random, novel) graph-XYZ [5] translation(mm) 4.6 32.1 66.3

+ gt-bbox rotation(degree) 2.8 16.7 26.4

graph-XYZ-image [144] translation(mm) 6.0 39.3 69.7

rotation(degree) 3.4 29.8 30.7

Ours translation(mm) 3.6 22.5 43.4

rotation(degree) 2.5 12.0 20.6

1 view (random, novel) graph-XYZ-image [144] translation(mm) 6.0 39.3 69.7

+ gt-bbox rotation(degree) 3.4 29.8 30.7

Ours translation(mm) 4.1 23.6 43.8

rotation(degree) 3.1 12.2 20.3

1 view (random, novel) graph-XYZ [5] translation(mm) 6.7 35.4 68.2

+ predicted-bbox rotation(degree) 3.0 20.1 30.32

graph-XYZ-image [144] translation(mm) 6.6 43.1 71.2

rotation(degree) 3.6 31.8 32.4

Ours translation(mm) 4.3 25.2 47.0

rotation(degree) 2.7 12.1 19.7

1 view (fixed, same as train) graph-XYZ-image [144] translation(mm) 5.1 29.6 54.5

+ predicted-bbox rotation(degree) 2.6 11.0 16.9

Table 4.2: 3D object motion prediction test error during object falling in scenes with three

to four objects for 1,3, and 5 timestep prediction horizon.

Experiment Setting Model T=1 T=3 T=5

1views (random, novel) graph-XYZ [5] translation(mm) 5.2 11.7 278.6

+ predicted-bbox rotation(degree) 5.7 10.4 43.28

graph-XYZ-image [144] translation(mm) 8.4 17.0 620.2

rotation(degree) 9.2 16.6 117.9

Ours translation(mm) 5.0 13.1 16.4

rotation(degree) 6.1 12.6 18.7

4.3.3 Visualization of the 3D motion predictions

In Figure 4.2, we show qualitative comparison on long term motion prediction results produced

by unrolling our model and the baseline model forward in time. Our model generalizes to novel

objects and scenes with varying number of objects, though trained only on 2 object scenes. We

show in Figure 4.3 rendered physics simulation videos using the proposed model. The latent

3D feature map of the proposed model is interpretable in the sense that we can render human-

interpretable RGB images from the feature map using the learned neural image decoder. More

39

importantly, we can render such simulation videos from any arbitrary view, and the videos cap-

tured from different views are consistent with each other.

Input

views

(t0)

t5t3t0 t1

t0

t4 t5

GT

(front

view)

XYZ

Ours

t3

ont

)

t0 t1

Z

Ours

ut

ws

(t0)

t0

Input

views

(t0)

GT

(front

view)

XYZ

Ours

Graph-Graph-

Figure 4.2: Forward unrolling of our dynamics model and the graph-XYZ baseline. Left:

pushing. Right: falling. In the top row, we show (randomly sampled) camera views that we use

as input to our model. The second row shows the ground-truth motion of the object from the front

view. Rows 3, 4 show the predicted object motion from our model and the graph-XYZ baseline

from the same front camera viewpoint. Our model better matches the ground-truth object motion

than the graph-XYZ baseline. The latter does not capture object appearance in any way.

4.3.4 Neural rendering and counterfactual simulations

3D-OES not only can simulate the future state of the scene, it also provides us a way to interpret

the latent 3D representation and a space to run counterfactual experiements. We visualize the

latent 3D feature map by neurally projecting it from a camera viewpoint to an image through a

learned neural decoder, and show the resulting images in Figure 4.4. We also show that our 3D

representation allows us to alter the observed scene and run conterfactual simulations in multiple

ways.

4.3.5 Pushing with Model Predictive Control (MPC)

We test 3D-OES on pushing objects to desired locations using MPC and report the results in

Table 4.3. For our model and graph-XYZ-image, we use a single randomly sampled input view.

For VF and PlaNet, we use a fixed top-down view for both training and testing as we found they

only work reasonably well with a fixed viewpoint. Our model outperforms all baselines by a

large margin. Videos of pushing object to desired locations in the presence of multiple obstacles

are available on our project website: https://zhouxian.github.io/3d-oes/.

.

Implementation Details Pushing without obstacle We test the performance of our model

with MPC to push objects to desired locations. We run 50 experiments in the Bullet simulator.

For each testing sample, we place either 1 or 2 objects in the 0.6m× 0.6m workspace randomly,

40

https://zhouxian.github.io/3d-oes/

front

view

Input

views

(t0)

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

left

view

right

view

GT video from the dataset Neurally rendered video from
the latent 3D feature maps

front

view

Input

views

(t0)

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

left

view

right

view

front

view

Input

views

(t0)

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

left

view

right

view

t5

Figure 4.3: Neurally rendered simulation videos from three different views Left: groundtruth

simulation videos from the dataset. The simulation is generated by the Bullet Physics Simulation.

Right: neurally rendered simulation video from the proposed model. Our model forcasts the

future latent feature by explicitly warping the latent 3D feature maps, and we pass these warped

latent 3D feature maps through the learned 3D-to-2D image decoder to decode them into human

interpretable images. We can render the images from any arbitrary views and the images are

consistent across views.

41

GT

(Query

view)

GT

(Input

views)

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

Neural

Rendering

move the

object

to the right

shrink the

 object

move the

object

to the left

move the

object

forward

Figure 4.4: Neurally rendered simulation videos of counterfactual experiments. The first

row shows the ground truth simulation video from the dataset. Only the first frame in this video

is used as input to our model to produce the predicted simulations. The second row shows the

ground truth simulation from a query view. Note that our model can render images from any

arbitrary view. We choose this particular view for better visualization. The third row shows the

future prediction from our model given the input image. The following rows show the simulation

after manipulating an objects (in the blue box) according the instruction on the left most column.

and sample a random goal for each object. The maximum distance of the goal to the initial po-

sition for each object is capped at 0.25m. For our model and graph-XYZ-image, we use a single

randomly sampled view. For VF and PlaNet, we use a fixed top-down view for both training and

testing. We set the maximum number of steps for each action sequence to be 10, and evaluate

30 random action sequences before taking an action. We use planning horizon of 1 since greedy

action selection suffices for this task. The results are reported in Table 3 in the main paper. Note

that we also train and test variants of VF and PlaNet to take observations from varying camera

viewpoints, together with camera pose information. However, they both fail completely on this

task.

Collision-free pushing In order to test our models multi-step prediction performance, we evalu-

ate our model on pushing in scenes with randomly sampled obstacles, and the robot is required to

push an object to desired goal without colliding into any obstacle. For quantitative evaluation, we

randomly place an object of interest and a goal position in the planar workspace. One obstacle

object is placed between them with a small perturbation, so that there exists no straight collision-

free path to reach the goal. The distance from the object to its goal is uniformly sampled from

42

Table 4.3: Success rate for pushing objects to target locations.

graph-XYZ [5] graph-XYZ-image [144] VF[20] PlaNet[32] Ours Ours-Real

0.76 0.70 0.32 0.16 0.86 0.78

t

goal

Figure 4.5: Collision-free pushing on a real-world setup. The task is to push a mouse to a

target location without colliding into any obstacles. Our robot can successfully complete the task

with 3 push attempts.

the range [0.24m, 0.40m]. Similarly, we run 50 examples, and use only one randomly selected

camera view as input to our model. We evaluate 60 randomly sampled action sequences with

length of 25 steps, and use a planning horizon of 10 steps. We achieve a success rate of 0.68 for

this task.

We randomly place multiple obstacles in the scene for quantitative evaluation while ensuring

existence of collision-free path is non-trivial. For both with- and without- obstacle pushing, it

is considered a successful pushing sequence if all objects end up within 4cm (about half of the

average object size) from the target positions on average.

4.3.6 Sim-to-Real Transfer

We train our model solely in simulation and test it on object pushing control tasks on a real

Baxter platform equipped with a rod-shaped end-effector, similar to the setting in the Bullet

simulation (Figure 4.5). We attached a Intel RealSense D435 RGB-D camera to the robot’s left

hand, and use only one RGB-D view as input for this experiment. The pose of the camera is

different from those seen during training. Please refer to Appendix (Section C.3) for details

of our real-world setup, objects selection, and 3D detector training. We report the success rate

of real-world pushing in Table 4.3 (Ours-Real). Our model achieves similar success rates for

pushing in simulation and in the real world. Since geometry information is shared by simulation

and the real world by a large extent, and our model combines the viewpoint-invariant property

of the geometry-aware representation and an object-factorized structure, it presents good sim-

to-real transferrability. In Figure 4.5, we qualitatively show pushing objects along collision-free

trajectories in complex scenes in the real-world setup. More results are available on our project

website: https://zhouxian.github.io/3d-oes/.

Implementation Details We use a Baxter robot equipped with a rod-shaped end-effector at-

tached to its right hand, similar to the setting in the Bullet simulation. One Intel RealSense D435

43

https://zhouxian.github.io/3d-oes/

Figure 4.6: Real-world setup with Baxter
Figure 4.7: Objects for real-world experiments

RGB-D camera is attached to the robot’s left hand, and we use only one view for our experiment,

as shown in Figure 4.6.

Due to reachability considerations, we down-scaled the size of the planar workspace by twice

from the one in simulation, resulting a workspace of 0.3m×0.3m. For a fair comparison, we also

down-scaled with the same factor the object-to-goal distance, length of horizontal movement per

action step, and size of the tolerance for determining success/failure. We pick 20 objects with

size of 5 to 10cm, which are commonly seen in a office setting, including fruits, wooden blocks,

and stationery, and evaluate 5 pushing samples for each of them. Some of objects selected are

shown in Figure 4.7.

For object detection in the real-world, we train our 3D detector using simulated data, and

fine-tune it using a small set of real data (100 images capturing 25 distinct object configura-

tions) collected using 4 cameras. The ground truth bounding-boxes and segmentation masks are

obtained via background subtraction.

44

Chapter 5

Visually-Grounded Library of Behaviors

for Generalizing Manipulation Across

Objects, Configurations and Views

5.1 Introduction

In Chapter 4, we have talked about how we can do model-based control by learning a general 3D

object dynamics model that is robust to camera viewpoints. However, learning these dynamics

models requires supervised training on ground truth 3D object trajectories, which are hard to

obtain in many real world scenarios. Can our agent learn to manipulate objects even without

explicitly modeling the low-level object dynamics? In this Chapter, we study how the visual

representations can be used in a model-free manipulation setup.

When robots make their way out from factories into peoples houses, they are expected to be

able to manipulate a diverse set of objects that might appear in a house. Such a goal is challenging

since it is hard to predict what a robot might encounter during execution. Possibly, the robot

would need to grasp previously unseen objects placed in arbitrary locations, and it might be

difficult to observe an object in its most familiar views due to obstacles that might block certain

viewpoints. In this paper, we explore how we can best incorporate visual information to learn

robot behaviors that generalize to novel objects, configurations and views.

Current policy learning research focuses on discovering new behaviors rather than trans-

ferring behaviours across diverse objects and camera views. Existing works in reinforcement

learning (RL) mostly considers the same objects at training and test time and uses state repre-

sentations that retain 3D object locations and velocities [31, 89] but abstract away object shape,

color or texture, which might provide critical information regarding what types of friction and

contact models to use. Although such a state abstraction makes the state-to-action mapping eas-

ier to learn, it does not allow the policy to adapt across different objects. Methods that do attempt

to generalize across objects learn a mapping from images-to-action [67], depth-to-action [74] or

pointcloud-to-action [82, 96]. They have been successful in object grasping [74, 91] and object

pushing from a fixed camera view [2, 67]. Nevertheless, these methods have shown to be hard

to generalize across different camera viewpoints [14] and objects. Works that attempt to transfer

45

Policy Action
OBJ POS

(1.3, 0.7, 0.44)
OBJ QUAT

(1, 0, 0, 0)
…

Policy Action

3D centroids and 3D poses to action mappinga

Image to action mappingb

Behavior 1

Behavior 2

Behavior 3

Behavior
Library

Retrieval
Keys

Action

Query
(Visual Features)

V-BE (Ours): visually-grounded library of behaviorsc

Figure 5.1: We propose a novel policy representation that generalizes to unseen objects and

camera views. In contrast to prevalent approaches that learn state-to-action or image-to-action

mappings, our proposed model decomposes a policy into a behavior selection module that uses

visual observations and a library of behaviors to select from that uses abstract state representa-

tions as inputs.

visuomotor policies learned in simulation to the real-world often require identical placement of

the camera in the real world [50, 89].

Lack of generalization in existing visuomotor approaches is attributed to: (a) lack of state

abstraction and (b) occlusions, foreshortening, and other artifacts caused by camera projection in

images. For a policy to generalize to a new object, it is often useful to find a state abstraction, a

minimal subset of environment features useful for performing a task [62]. Abstractions facilitate

transfer by explicitly ignoring parts of the environment that are irrelevant to a particular skill.

For example, when opening a bottle, the size of the cap is a relevant feature, but the color of

the bottle itself is irrelevant. Policies that attempt to learn what features matter automatically

often require large amounts of training examples. Aside from a lack of state abstraction, existing

visuomotor policies are sensitive to changes in the pixel values in the image space. Appearance

and location of the object and the gripper and their relative arrangement, which are constant in

3D, varies with the viewpoint in 2D images, which causes these policies to fail under camera

viewpoint changes. Changing the inputs to 3D point clouds can potentially reduce the effect

from projection artifacts, yet the quality and completeness of the point cloud still depends on the

number of available views and the viewing angles.

To improve generalization, we propose Visually-grounded library of BEhaviors (V-BEs), a

policy representation that learns to perform manipulation tasks with varying objects, initial and

goal configurations, and under varying camera viewpoints. In place of prevalent approaches

of learning a flat image-to-action or object-to-action mapping (see Figure 5.1(a)(b)) which op-

erates on a single representation, our model learns to disentangle and operate on two separate

representations in a hierarchical setup (see Figure 5.1(c)). At the higher level of the hierarchy,

a selector selects an appropriate behavior to execute among a library of given behaviors, part

of the lower level of the hierarchy. This selector learns a 3D object feature representation that

captures the static object properties, such as object shape and affordances, via a combination of

self-supervised view-prediction and object interaction prediction. The former makes the repre-

sentation robust to changing camera views and occlusions by learning to complete the missing

information from current views, while the latter helps the representation encode affordance in-

formation (i.e., how objects change by applying a behavior). At the lower level of the hierarchy,

there are a library of distinct behaviors, each of which uses an abstracted state representation that

captures dynamic properties of entities in the environment such as object and gripper positions

46

at the current time step. Different behaviors can be redundant, use different state representations,

and be learned or manually engineered with different algorithms [3, 25, 71].

We test the proposed model in grasping and pushing a large pool of diverse objects. We

show it can generalize to unseen objects at test time with varying object starting positions, initial

poses, goal locations, and camera views and outperforms existing single-policy image-to-action

mapping [67] or object-to-action mapping that uses only the fast changing 3D object locations

[89]. We further show our model trained in simulator can be directly transferred to a real robotic

platform, and can significantly improve its performance by fine-tuning only on a handful of

interaction labels. In the real robot setup, the robot can use camera views that are totally different

from those used at training time in the simulator and still get good task performance.

5.2 Method

Our policy Π is a visually-grounded library of behaviors, as shown in Figure 5.2. V-BEs are

comprised of multiple behaviors {πi | i = 1, 2, . . . , K} and a behavior selector G. Each behav-

ior πi is either an open loop trajectory generator, or a closed-loop policy (feedback controller)

that tracks objects over time. Since most behaviors are developed using abstract state represen-

tations, namely, 3D object locations and 3D poses and do not take into account object shape or

appearance, each of them can handle only a subset of objects and their 3D orientations. To be

able to handle a diverse range of objects, we need to decide which behavior to use under which

circumstance. To achieve this, we propose a behavior selector which is a gating network that,

given the sensory observations øt, predicts the behavior that can best manipulate the object under

consideration to its desired configuration. Our sensory input to action mapping then, at each

time-step reads:

Π(at|ot, g) =
K∑

i=1

G(ot)iπi(at|ot, g), (5.1)

where g is the goal configuration to achieve, ot = {I
vt
,vt} is the sensory observation in the form

of one or more RGB-D images I
v
∈ R

Ĥ×Ŵ×4 captured from arbitrary but known camera poses

v ∈ R
7, and G(ot)i ∈ {0, 1} denotes the selector’s output for πi at time step t.

Our main contribution is the factorization of the visual properties of the object presented in

the sensory observation ot, so that, the behaviors {πi | i = 1, 2, . . . , K} and the selectorG operate

on separate object visual properties. The behaviors use as input dynamic visual properties that

change throughout the manipulation episode, such as object or part 3D positions, and abstract

away object appearance information. Let fπi(ot) denote the state abstraction behavior i uses.

In contrast, the selector G takes as input the static object visual properties. It takes the raw

sensory observation ot and transforms it into a location invariant visual representation of the

object fG(ot), which captures object appearance and 3D size, which remain constant throughout

the manipulation. With such a distinction on the representation used by the two modules, we can

rewrite Equation equation 5.1 into:

Π(at|ot, g) =
K∑

i=1

G(fG(ot))iπi(at|f
πi(ot), g). (5.2)

47

One advantage of having this decomposition is that each behavior πi can then use its own state

abstraction fπi(ot), such as object 6D-poses, axis-aligned bounding boxes (as used in this paper),

part-based 3D boxes, or object keypoints locations [97]. This framework supports integrating a

wide range of existing models, representations, and behaviors as selectable behaviors. This

architecture is also recursive, in that any behavior can consist of the same architecture replicated

at a lower level. We consider here single object manipulation skills but our formulation can

generalize to multiple objects.

Input Image

Crop &
Rotate

Visual Feature Space
(Illustrated in 3D)

Behavior Library

Behavior 1

Behavior 2

Behavior 3

Action

0.9

1.0

0.0

0.0

0.0

0.3

0.4

0.1 0.8

Behaviors

Robot interacts with
training objects using
behaviors to collect
success rates as
affordance labels.

Our framework learns affordance-aware 3D feature representations and retrieval keys for
behaviors using the collected labels and uses nearest neighbor to select a behavior at test time.

Figure 5.2: Overview of the proposed framework. Our model consists of (a) a behavior selector

G that learns to map RGB-D images I to an affordance-aware, view-invariant 3D feature space

that reflects how objects change by applying a behavior, and (b) a library of behaviors, where

each behavior πi can either be a controller or a policy learned via RL.

In the rest of this section, we first explain the architecture and training details of the behavior

selector in section 5.2.1, and then explain how we acquire a library of behaviors for the two robot

manipulation tasks we evaluate our framework on in section 5.2.2.

5.2.1 Visually-Grounded Behavior Selector

The behavior selector G is a nearest neighbor classifier that uses the visual feature representa-

tion of the object to manipulate fG(ot) as a query to retrieve the behavior that has the highest

propabability to manipulate the object successfully. Each behavior πi is associated with a learned

retrieval key κi.

View-invariant Feature Learning Self-supervised by View prediction: The behaviour selec-

tor should ideally be viewpoint invariant as behaviors should not depend on camera placement

in the environment in most cases. To achieve this, we design the selector G to operate on a 3D

viewpoint-invariant object-centric feature representation fG(ot) = Mo ∈ M = R
H×W×D×C ,

which is a set of 3-dimensional feature maps centered around the object of interest. The retrieval

key κ ∈ M is also learned in the same representation space. Both Mo and κ are with the size of

64× 64× 64× 32 in the experiments. We build upon recent advances in 3D perception and use

geometry-aware networks (GRNNs) [135] to map a single RGB-D image or a set of multi-view

images to a complete 3D feature representation of the scene the image(s) depict. GRNNs learn to

complete the missing information from a single view by optimizing end-to-end for view predic-

tion using multi-view data collected by the robot [135]: an input RGB-D image is un-projected

48

into an (incomplete) 3D feature grid, missing information is “inpainted” via a series of 3D con-

volutions, and the completed 3D feature grid is projected to a novel viewpoint and decoded to

the corresponding RGB-D image. The view prediction loss reads:

Lview-pred(φ) =
N∑

n=1

‖Pφ(GRNNφ(I
n
v
n ,vn), q)− Inq ‖2, (5.3)

where GRNN(I
v
,v) is a function that lifts RGB-D input images I

v
capturing from camera poses

v to a geometry-consistent 3D feature map M = R
W̄×H̄×D̄×C̄ with W̄ , H̄, D̄ denoting the spatial

dimension and C̄ denotes the feature dimension of the 3D feature map, P (M, q) is a projection

function that projects the 3D feature map from a query viewpoint q and decodes to a target image,

Inq is the target image to predict, and φ is the neural network weights of GRNN. From the scene

map M, we obtain object-centric feature representation Mo by cropping the scene map using a

fixed-size axis-aligned box, centered around the object we wish to manipulate.

Our selector G, given a 3D object feature representation Mo of the object to be manipu-

lated and a retrieval key κi for behavior πi, computes the probability Ĝi that πi can successfully

manipulate the object to its desired goal location:

Ĝ(Mo)i = σ(〈Mo, κi〉) ∈ [0, 1], (5.4)

where 〈·, ·〉 is the inner product operation and σ is the sigmoid function. It then selects the

behavior with the highest predicted probability:

G(fG(ot))i = G(Mo)i = ✶{i = argmaxi′Ĝ(M
o)i′}. (5.5)

Affordance-aware Feature Learning Self-supervised by Interaction: The 3D feature repre-

sentations obtained through view prediction capture how objects look, but not how they can be

manipulated. Our selector should operate over representations that capture information about

how an object can be used, and how it will react to an agent’s actions. We will use the term

affordance, coined by Gibson in 1966 [30], to denote this information.

We learn affordance-aware 3D feature representations by applying behaviors in the library

to the objects in the training set, and update the object representations and the retrieval keys

κi, i = 1 · · ·K for behaviors πi, i = 1 · · ·K according to the success rate a behavior achieves

on a particular training object, as shown in Figure 5.2. Let uij ∈ [0, 1] be the success rate after

Nattempt trials of behavior πi on object ωj , under potentially varying goals g. Here, we treat same

objects with different initial orientation as different objects since we assume that canonical poses

of objects are not given. Each trial encounters the same object in a potentially different initial

location, orientation and desired goal location. Our loss then reads:

Laffordance(κ1 · · ·κK , φ) =

K∑

i=1

|Ωtrain|∑

j=1

Nattempt∑

n=1

BCE
(
✶{uij ≥ δ}, 〈Rφ(I

ωj
n), κi〉

)
, (5.6)

where BCE(p, l) = −p · log(σ(l)) + (1− p) · log(1− σ(l)) is the standard binary cross entropy

loss, δ is a hyperparameter for thresholding the success rates, I
ωj
n are the initial RGB-D images

49

drawn from tasks with object ωj in the nth trial, R(I) is the 2D-to-3D visual feature extractor that

takes the cropped object-centric 3D feature representations from GRNNs, and φ is the GRNNs

weights. The final objective for training the affordance-based visual features is

minimize
κ,φ

L(κ, φ) = Lview-pred(φ) + λa · Laffordance(κ, φ), (5.7)

where λa is a hyperparameter for balancing the two losses.

5.2.2 Building a Library of Behaviors

The visually-grounded behavior selector selects plausible behaviors to manipulate a specific ob-

ject from a library of behaviors. But how can we obtain this library in the first place? Indeed,

any existing behaviors, whether engineered or learned using reinforcement learning or imitation

learning, can be included in our library. In this paper, we consider two common manipulation

tasks: pushing and grasping, and build appropriate behavioral libraries for each.

For pushing, the behaviors are deterministic goal conditioned policies at = π(st, g) that map

a state of the environment and the robot st = [set , s
r
t] to an action at time step t. In our case,

the state of the environment is the 3D object centroid set = f(ot, O) and the robot state (gripper

3D location, pose, and whether it is opened or closed). The action includes 3D motion, opening

(position control), and closing (force control) of the gripper. We use a total of 25 goal conditioned

policies – one is trained from the whole set of objects, while the others are trained on disjoint

subsets of object configurations organized based on object category and initial poses. We train

all policies using deterministic policy gradients (DDPG) [99] with goal relabelling (HER) [3]

while randomizing initial and goal object 3D locations.

For grasping, we design controllers π(at|g; p
grasp, qgrasp) which given a 3D grasping point

pgrasp ∈ R
3 relative to the center of the object and a grasping 3D angle qgrasp ∈ R

2 , move the

gripper (open loop) to the grasping 3D point location, close it, and move it to the desired goal

location. The grasping angle qgrasp consists of two numbers describing the yaw of the gripper

and the elevation angles between the gripper and the table surface. When the elevation angle

is smaller than 90 degrees (not top-down grasps), we constraint the gripper to point toward the

center of the object on the x-y plane. We manually select 30 different controllers including top-

down grasps with different yaw orientations (top-grasps) and grasps from the side with different

elevation angles of the gripper (side-grasps). We empirically found that these parameterized

controllers are quite stable and can be shared across multiple objects.

5.3 Experiments

Our experiments aim to answer the following questions: (1) Does the proposed library-based

approach outperform existing methods that use a single combined perception and policy module,

either using 2D images, 3D object locations, or 3D scene feature maps as input? (2) Is the

proposed view-invariant and affordance-aware 3D feature representation a necessary choice for

the selector? (3) How do V-BEs compare to state-of-the-art methods, specifically, in the grasping

domain? (4) Does the method work on a real robot? We test our model on grasping and pushing

50

a wide variety of objects in the MuJoCo simulator [131] and further test the grasping module on

a real-world Franka Panda robot arm.

5.3.1 Simulation Experiment Setups

Our simulated environment consists of a Fetch Robot equipped with a parallel-jaw gripper. The

robot is positioned in front of a table of height 0.4m. To obtain the visual observations, on

each episode we choose 3 random cameras from cameras placed at 30 nominal different views

including 10 different azimuths ranging from 0◦ to 360◦ combined with 3 different elevation

angles from 20◦, 40◦, 60◦. All cameras are looking at the center of the table top, and are 0.5

meter away from that point. All images have size 128× 128.

Task Descriptions: In the grasping task, the agent has to grasp an object and move it to a

specified target location above the table. We use 274 distinct object meshes from 6 categories in

ShapeNet [9] including toy buses, toy cars, cans, bowls, plates, and bottles. We randomly split

the dataset into 207 training objects, and 67 testing objects. After augmenting the meshes with

random scaling from 0.8 to 1.5 and random rotations around the vertical z-axis, we get a total of

800 distinct object configurations (object instance and pose), 600 for training and 200 for testing.

At the start of each episode, an object is placed in an area of 30cm× 16cm around the center of

the table, and a goal is sampled uniformly 10 ∼ 30cm away from the gripper’s initial position.

An episode is successful if the object centroid is within 5cm of the target at the final timestep.

In the pushing task, the agent has to push an object placed on the table to a specified target

location. We use 100 objects from 12 categories in ShapeNet [9]: baskets, bowls, bottles, toy

buses, cameras, cans, caps, toy cars, earphones, keyboards, knives, and mugs. After augmenta-

tion and splitting to train and test sets, we obtain 615 training object configurations and 200 for

testing. The initial and the goal position of the object are both uniformly sampled to be within

15cm of the center of the table along both x-axis and y-axis, although we resample if that loca-

tion is already in the goal area. An episode is successful if the object centroid is within 5cm of

the goal within 50 timesteps.

Baselines: We compare our method with various learning and non-learning based methods for

object manipulation:

(a) Single Behavior w/ Abstract 3D State (Abstract 3D) [3, 99]: a policy takes as input ground

truth 3D bounding box of the object and gripper and outputs actions.

(b) Single Behavior w/ Abstract 3D State and 2D Images (Abstract 3D + Image): a policy takes

both RGB-D images and the ground truth 3D bounding box as inputs and outputs actions.

Our architecture resembles that of [147], but we further include ground truth object position

as extra inputs to the model. For fair comparisons to other methods, the model only takes as

input the current state as opposed to the states in 5 past steps, as in [147].

(c) Single Behavior w/ 3D Feature Tensor (Contextual 3D): a policy that takes as an input RGB-

D images and the ground truth 3D bounding box and outputs actions. Different from (b), the

model first transforms the image into a view-invariant 3D feature tensor using GRNNs [135],

then converts the 3D feature tensor into a feature vector though three 3D-convolutional layers

and a fully connected layer, and finally concatenates it with the rest of the inputs to predict

actions.

51

(d) Ours, Library of Behaviors w/ Visual Selector (V-BEs): Our model takes the same input as

(b) and (c). The 3D bounding boxes are used as input to all the behaviors. The RGB-D

images are transformed into 3D affordance-aware visual features and treated as input to the

selector.

We train the baselines with different learning methods including behavior cloning [67], DDPG-

HER [3, 71] and DAGGER [106]. We report the best performance we got by training the model

with these different methods. We also attempt to make all the models to have similar number of

parameters so the comparison is fair. However, larger networks are empirically harder to train

and do not converge well, so we instead increase the number of parameters in a smaller networks

until its performance saturates. For pushing, we found that using DDPG-HER is enough to lean

a good Abstract 3D policy from scratch. For abstract 3D + Image, we found it is critical to use

behavior cloning from expert demonstrations to obtain good policies. The expert demonstrations

are obtained from trained expert policies on single objects. We follow the architectural design and

training of [147] to learn the image-to-action mapping. For Contextual 3D, we include DAGGER

to enforce behavior cloning during execution. To train the grasping policies, we further include

human demonstrations in the replay buffer when training it with DDPG-HER. Both abstract

3D + Image and Contextual 3D are trained with DAGGER since offline behavior cloning is

insufficient.

5.3.2 Single Behavior versus a Library of Behaviors

We compare the proposed model with models that do not use a library-based approach, i.e., sin-

gle behavior approaches. As shown in Table 5.1, our method outperforms all the single behavior

baselines. Abstract 3D performs well, but since it does not use any visual information, its per-

formance saturates at around 0.8 for pushing and 0.3 for grasping. Abstract 3D performs poorly

for grasping. The learned behaviors do not transfer well to new objects. Adding a 2D image

helps, but not dramatically (see Abstract 3D + Image in Table 5.1). Although 3D feature maps

obtained from GRNNs are semantically rich and can handle varying viewpoints, the mapping

to actions is harder to learn due to the higher dimensionality of the 3D scene map, resulting in

under-fitting models. Our model takes advantage of both abstract and semantically rich represen-

tation and thus can handle better object variability and transferability. The combinatorial nature

of the proposed method allows the model to capture the multi-modality in trajectory generation.

Single Behavior library of behaviors

Abstract 3D Abstract 3D Contextual 3D V-BEs

[3, 99] + Image (Ours)

grasping 0.30 0.35 0.20 0.78

pushing 0.83 0.70 0.10 0.88

Table 5.1: Success rates on grasping and pushing unseen objects.

52

5.3.3 The necessity of building the selector with the proposed view-invariant

and affordance-aware 3D Representations

Next, we show the importance of using view-invariant 3D visual feature representations and the

importance of self-supervised training with interaction labels. We compare our method with two

baselines: (a) a model with a selector that operates over 3D visual feature representation learned

only with the view and occupancy prediction loss, as suggested in [34, 135], without fine tuning

with interaction labels, and (b) learning the visual affordance features using 2D visual features

extracted from 2D CNNs. Our method significantly outperforms these two baselines, which

shows the importance of fine-tuning on the execution labels as well as the use of 3D feature

representations for behaviour selection.

2D Features Proposed Method Proposed Method w/o Fine-tuning

(3D Features) on Interatcion Labels [135]

Grasping 0.46 0.78 0.31

Pushing 0.81 0.88 0.46

Table 5.2: Success rates on grasping and pushing unseen objects using selector with varying

representations.

Visualizing Behavior Clusters To understand the learned affordance-aware visual feature rep-

resentations, we cluster the testing objects in the pushing task based on which behavior is selected

to be executed when the selector is presented by an object. We present a sample of behaviors

and the corresponding object clusters in Figure 5.3. As seen in the visualization, the learned

feature representation in the affordance-aware behavior selector represents objects that are close

in affordance in neighboring regions of the feature space. It is also robust to variations of object

colors, sizes, and semantic categories. For example, the behavior trained on knives (last row in

the figure) is predicted to be able to handle both very thin keyboards and knives; the behavior

trained on bottles (fourth row in the figure) is predicted to be able to handle both bottles and

small cans.

5.3.4 Comparison with other grasping baselines

We further compare the proposed model with current state-of-art methods in grasping: (a) DexNet

[74]: a state-of-the-art top-grasps method which, given a top-down depth map, generates grasps

as the planar position, angle, and depth of a gripper relative to an RGB-D sensor. (b) 6-DOF

Grasp-Net (GraspNet) [82]: a state-of-the-art grasping method that describes the grasp as a

full 6-degrees-of-freedom (DoF) pose. For (a)(b), we use the publicly released code and model

provided by the authors, finetune it with interactions in our training environments, and evaluate

it in our test environments. (c) Our Model with Only Top-grasps: an ablated baseline using

the proposed methods and include only the top-grasps. (d) Our Model with object detector:

our model performs with estimated object bounding box. To remove the effect of the detector,

all other baselines use ground truth object locations to obtain the corresponding depth images or

object locations.

53

Behavior trained on knives rotated 0°

Behavior trained on cans rotated 0°

Behavior trained on bottles

Behavior trained on keyboards rotated 90°

Behavior trained on baskets

Behavior trained on cameras

Figure 5.3: Visualization of a sample of behaviors and their corresponding object clusters. In

each section of the figure, the behavior described after the arrow is the output of the affordance-

aware behavior selector when it takes any of the objects visualized in the section as input.

As shown in Table 5.3, our method outperforms all baselines by a large margin, even with

an estimated object bounding box. Dexnet performs the best among the baselines, but it can

only handle depth maps from a top-down view while all other methods can use any camera view.

GraspNet, to our surprise, performs poorly, especially when we randomize object initial and goal

locations. Many grasps proposed by GraspNet often turn out to be unstable when the object is

placed close or far away from the robot. Our model handles variances in object locations well

because we include in the behavior library general top-down, left-hand, and right-hand grasping

behaviors that are more stable across object locations. Our approach outperforms these methods

by a large margin even only using very naive controllers in the behavior library.

DexNet GraspNet V-BEs w/ V-BEs V-BEs w/

[74] [82] Top-Grasps (Ours) detector

0.72 0.36 0.67 0.78 0.73

Table 5.3: Success rates on grasping for unseen objects.

54

Figure 5.4: Real robot setup (left) and objects used (right).

5.3.5 Real robot results

To demonstrate that our V-BEs representation works in a real robot setup, we measure the per-

formance of our model on a real 7-DOF Franka robot arm equipped with a parallel-jaw gripper

for the grasping task (see Figure 5.4). We set up 4 realsense RGB-D cameras that have full

view of the workspace around the the center of the table. In each trial, an object is placed in a

20cm × 10cm region on the table, and a goal is sampled uniformly away from the objects start

position from −20cm to 20cm in all x, y, and z dimensions. An episode is considered successful

if the object centroid is within 5cm of the goal position.

We use the same set of grasping behaviors as in our simulated experiments. We randomly

select 3 views from 4 possible camera views to obtain RGB-D images as inputs to the learned

selector. We randomly split 56 objects including computer-mouses, bananas, bowls, mugs and

wooden bricks (see Figure 5.4) into a training set and a test set, each with 28 objects. Without

further fine-tuning, our model trained in simulated environments achieves success rate of 46.4%
on the test set, even though the camera views and objects are unseen at training time. To improve

model performance in the real world setup, we collect interaction labels by running the grasping

behaviors on the training objects and use the labels to finetune the visual selector with the objec-

tive specified in Equation equation 5.7. After fine-tuning, our model can achieve success rate of

82.1% on the test set. Qualitative results are shown in Figure 5.5.

55

t t + 1

Figure 5.5: Grasping Results on a real robot. The robot can successfully pick up different

objects and transfer it to a target location in the air.

56

Part III

Concept learning: Learning to construct

memory and associate current observations

with past memory

57

Chapter 6

Unsupervised learning of 3D visual

Concepts by Corresponding and

Quantizing Detected Objects

6.1 Introduction

The goal of this chapter is to explore how the unsupervisedly learned 3D feature representations

can be used for recognizing unseen objects and infer the objects’ 3D poses in 2D images. The

ability to recognize objects under varying poses, sizes, lighting conditions, and camera view-

points is fundamental for humans and animals to track and interact with diverse objects.

While humans and animals acquire this ability through evolution and interacting with the

world under a moving visual sensor—their eyes—, most existing computer vision models still

rely on supervised training on massive labelled images to learn to recognize objects and their

poses [39, 132]. In robotics, most works assume a closed world of predefined 3D object models,

e.g., 3D object meshes, and do not handle objects that cannot be explained by a 3D model [85].

Some works propose to learn a mapping from the images to the parameters of the 3D models,

but these models usually need the 3D models of the objects in the first place, to generate a large

synthetic dataset with 3D poses and category annotations for learning the mapping [75, 122, 125].

Few-shot object detection methods [60, 118, 138] use a support sample to quickly classify a

query sample, but remain in 2D image space and do not infer 3D object orientation, rather object

label. Recognizing familiar objects and detecting their 3D locations, poses and scales in images

without 3D annotations remains elusive.

Our key intuition in this work is to represent objects in terms of 3D feature representations

inferred from the input RGBD images, and infer alignment between two objects by explicitly

rotating and scaling their representations during matching. While current state-of-the-art (SOTA)

models for object detection and pose estimation represent an object as a feature vector or 2D

feature maps [39, 78, 98], our model represents objects as a 3D feature representation inferred

from 2.5D (RGBD) input images, which can be explicitly scaled, rotated and compared in 3D.

Different from methods in robotics research that infer explicit 3D geometry of an object in terms

0This chapter is based on the paper published previously on CVPR 2020 MVM workshop [93].

59

Figure 6.1: Top: Model overview. Our model takes as input RGB-D images of scenes, and

outputs 3D prototypes of the objects. Bottom: Evaluation tasks. (a) Scene parsing: Given a new

scene, we match each detected object against the prototypes using a rotation-aware check to infer

its identity and pose. (b) Image generation: We visualize prototypes with a pre-trained 3D-to-2D

image renderer. (c) Few shot object labelling: Assigning a label to a prototype automatically

transfers this label to its assigned instances.

of meshes or poinclouds from multi-view data [85, 92, 129] and depend heavily on a sufficient

number of views, our model learns to infer the 3D object feature representation from a single

view upon self-training.

We propose 3D quantized-Networks (3DQ-Nets), a model that can detect objects in 3D and

that can iteratively establish accurate object correspondences without human labels or 3D anno-

tations. 3DQ-Net first maps 2.5D images to 3D feature maps using Geometry-Aware Recurrent

Networks (GRNNs) introduced in Chapter 2. We initialize its feature representations by pre-

training on self-supervised view prediction task introduced in section 2.2.1.Since the inferred 3D

visual feature map is view-invariant, an object can obtain the same representation when inferred

from images captured under different camera distances and angles. 3DQ-Nets further improve

the features through automated cross-scene correspondence mining. The step is critical for es-

tablishing more accurate correspondence between objects. 3DQ-Nets then cluster objects in a

pose-aware manner into several clusters of similar-looking objects. We call the learned cluster

centers prototypes, since they correspond to aggregates of object instances across 3D poses and

scales. Given a scene, our model learns to parse the scene in terms of objects associated to pro-

totype identities and their corresponding 3D poses (see Figure 6.1 (a)). The learned prototypes

can be explicitly rotated, and can be rendered into images through a learned neural decoder (see

Figure 6.1 (b)). We demonstrate the usefulness of our framework in few-shot learning: our model

60

can recognize and name objects from one or a few samples (see Figure 6.1 (c)). Once given a

labelled instance, the model propagates the label to all the instances in the same cluster.

Whether the model can infer correct correspondence from the object-centric 3D feature rep-

resentation depends on the quality of two key components: the learned visual features and the

3D object detector. 3DQ-Nets aim to iteratively optimize these two components. The weights of

the encoder, decoder, 3D object detector, and prototypes are optimized using a mix of end-to-end

backpropagation and expectation-maximization (EM) steps, and we show 3D object detection

and prototype learning improve over time and help one another.

We empirically show that individual modules of our model benefit one another and are es-

sential for learning to recognize objects and their 3D orientation without supervision: the 3D

object detector benefits from 3D visual prototypes by discarding bounding boxes not matching

to prototypes; learning better object detection results in more accurate inference of finding ob-

ject correspondences; better inferred object correspondences result in better learning of visual

feature representations; and better visual feature improves clustering by inferring accurate pose-

equivariant alignment of objects to prototypes.

We test our model in diverse environments including photo-realistic simulators and real world

videos captured by a Kinect camera. We empirically show our model can effective learn to name

new objects in a few-shot setting by propagating provided labels through the learned clusters.

Our model outperforms by a large margin numerous baselines that do not infer a 3D feature

space, rather, detect and cluster objects in a 2D feature space using CNN feature representations

pretrained on ImageNet and finetuned with the few supplied labels, or do not mine cross-scene

correspondences. We ablate each module of the proposed model and quantify its contribution in

the performance of our full model.

The main contribution of this work is matching objects in a 3D-aware representation space

inferred from images without any 3D annotations. The proposed model learns the representa-

tions by unsupervised view prediction and automated correspondence mining. With the learned

representations, objects are clustered into 3D prototypes which form then the basis for recog-

nition: prototype identity inference and 3D pose with respect to the prototype’s orientation. To

the best of our knowledge, this is the first system that demonstrates that pose-aware 3D object

recognition emerges without any 3D annotations in RGB-D images.

6.2 3D Quantized-Networks (3DQ-Nets)

We depict the architecture of our model in Fig. 6.2. Given a set of RGB-D images of a static

scene and the corresponding camera poses for capturing these images, our model constructs a

3D scene feature representation using geometry-aware recurrent networks (GRNNs) introduced

in Chapter 2 . Our model detects objects in the inferred 3D scene representation (see Section

2.2.2 for details about the object detector) and matches the 3D object feature tensors against a set

of 3D prototypes by searching over 3D rotations (Section 6.2.1). Concurrently, our model uses

the detected 3D boxes to improve the 3D visual feature representation by iteratively inferring

3D part correspondences across objects detected in different scenes, and using metric learning to

supervise the feature representation to reinforce the inferred correspondences (Section 6.2.2).

Our model iteratively optimizes over weights of the encoder, decoder, 3D detector module

61

and prototypes, and uses individual modules to bootstrap the learning of the others. We pretrain

the weights of the encoder and decoder of GRNNs by view prediction. We detail each module in

their respective section and present the learning of the model in Section 6.2.3.

Figure 6.2: Architecture for 3D Quantized-Networks (3DQ-Nets). Given multi-view RGB-D

images of scenes as input during training, our model learns to map a single RGB-D image to

a completed scene 3D feature map at test time, by training for view prediction (b). The model

additionally uses cross-scene and cross-object 3D correspondence mining and metric learning, to

make the features more discriminative (c). Finally, using these learned features, our model quan-

tizes object instances into a set of pose-canonical 3D prototypes using rotation-aware matching

(d). These learned prototypes help improve our object detector by providing confident positive

3D object box labels (e) .

2.5D-to-3D mapping using Geometry-Aware Recurrent Networks (GRNNs) Our model

first use Geometry-aware Inverse Graphics Networks (GRNNs), introduced in Chapter 2 to “lift”

RGB-D images of static world scenes to 3D scene feature maps. We will denote the 3D feature

map inferred from an input RGB-D image I as M = GRNN(I) ∈ R
w×h×d×c, where w, h, d, c

denote the width, height, depth and number of channels, respectively. In this chapter, all our

experiments use (w, h, d, c) = (72, 72, 72, 32).

3D feature learning by predicting views We pre-train the encoder and decoder of GRNNs

by predicting views using our multiview RGB-D image set with groundtruth camera poses, as

introduced in Section 2.2.1. By training GRNNs to predict a query view given a single view

input, we enforces the model to complete the missing or occluded information from the image.

Different from the objective used in Section 2.2.1, we further include a occupancy prediction

loss. Specifically, to predict a novel view, the scene feature map M is oriented to a sampled

query viewpoint vq and decoded to an RGB image and occupancy grid, and then compared with

the ground truth RGB (Iq) and occupancy (Oq) respectively:

Lv =‖DecRGB(M, vq)− Iq‖1 + log(1 + exp(−Oq ·Dec
occ(M, vq))), (6.1)

The RGB output is trained with a regression loss, and the occupancy is trained with a logistic

classification loss. Occupancy labels are computed through raycasting.

62

3D object detection A 3D detector operates on the output of the geometric encoder GRNN
and predicts a variable number of object boxes with associated confidences: O = Det(M) ∈
{(b̂oloc, c

o)|b̂oloc ∈ R
6, co ∈ [0, 1]}. See Section 2.2.2 for details of the object detector. We provide

our detector with a “warm start” by pre-training it with 3D box annotations computed from trian-

gulated 2D category-agnostic proposals from a publicly-available 2D objectness detector [142].

A detector trained with noisy annotations obtained from triangulation is expected to perform

poorly, but it is sufficient for our system to start learning something useful. In Sec. 6.2.3 we

describe how our model can self-training the detector for it to gradually learn and outperform its

initialization.

6.2.1 Quantizing objects into prototypes

Our model learns a set of 3-dimensional prototypes ek ∈ R
wp×hp×dp×c, k ∈ K = {1, . . . , K}

by clustering object-centric 3D feature maps. Each prototype represents a set of similar objects.

The prototype serves as the cluster center of the set. To learn them, our model clusters objects in

the scene in a pose-equivariant and scale-equivariant manner: similar object instances that vary

in scale and pose are mapped to the same prototype. We crop the 3D scene feature map M given

a detected box to obtain object 3D feature tensors, and resize it to match the common size of

the 3D prototypes Mo = resize(crop(M, bo), [wp, hp, dp]). Our experiments use (wp, hp, dp) =
(16, 16, 16). We match detected objects’ 3D feature tensors to prototypes using a rotation-aware

feature matching. Specifically, we exhaustively search across rotations R, in a parallel manner,

considering increments of 10◦ along the vertical axis:

(zoid, z
o
R) = argmin

k∈K,R∈R
‖ek − Rot (Mo,R) ‖2, ∀o ∈ O, (6.2)

where Rot (M,R) explicitly rotates the content in feature map M with angle R through trilin-

ear interpolation. Having assigned objects to oriented prototypes, we update our prototypes to

minimize their Euclidean distance to the assigned oriented and scaled object tensors:

L3DQ(e) =

|O|
∑

o=1

‖ezo
id
− Rot(Mo, zoR)‖2 (6.3)

We initialize our prototype dictionary with a set of exemplars. To ensure prototype diversity at

this initial stage, we build the dictionary incrementally, and only use an exemplar as a prototype if

its feature distance to the already-initialized prototypes is higher than a threshold. Equations 6.2

and 6.3 can be seen as expectation maximization steps iterating between exemplars-to-prototypes

assignment and prototype updates.

Implementation details Each object prototype is a 3D feature tensor of size 16×16×16×32.

We initialize these prototypes incrementally and assign an exemplar as a prototype only if its

feature distance to the already-initialized prototypes is lower than a cosine distance of 0.8. This

ensures diversity of prototypes during initialization. While associating exemplars to a prototype,

we check over 36 different rotations along the vertical axis at 10◦ increments. We keep our

prototype dictionary size K as 50 for all the datasets. Empirically from Figure 3(a)(main paper)

we have found that, K should be large enough to cover the object variability in the dataset.

63

Figure 6.3: Cross-scene 3D correspondence mining. (a) We show that our approach relies on

part-level correspondences obtained by matching the features of the query region (in pink) to a

pool of object-centric 3D features maps. (b) These part-level correspondences are verified based

on how well their surrounding voxels match with one another in a spatially consistent manner.

(c) Finally we train our 2.5D-to-3D lifting module by doing metric learning using the verified

positive regions and randomly sampled negatives.

6.2.2 Cross-scene 3D correspondence mining

Whether the model can establish the correct correspondence between objects and learn meaning-

ful clusters relies on the quality of the visual features. To improve the visual features our model

exploits visual similarity not only within scenes, but also across scenes. While the view pre-

diction objective of Eq. 6.1 exploits different views of the same scene to learn the features, our

model further exploits part-based correspondence between objects in different scenes to further

improve the learned features. We adopt the correspondence mining method of ArtMiner [113]

to operate in 3D as opposed to 2D: Part based correspondences are hypothesized within detected

objects and are verified by voting of their surrounding context voxels. If the original match is

verified, hard-positive matches are then suggested in the surrounding of the match. Using the

mined hard positive matches and randomly sampled negatives, we finetune the weights of our

encoder GRNN using metric learning. We empirically found that training with such cross-scene

part-based correspondences helps improve the features.

Implementation details We randomly select 2000 object instances from our training data to

create two pools (Query Pool & Target Pool) of size 1000 each. Each pool maintains object-

centric 3D features of spatial size 16 × 16 × 16 extracted from the 3D feature map using the

detected boxes. As shown in Figure 6.3, for each training iteration, we randomly select a 2×2×2
patch on an object sampled from the Query Pool, and by doing exhaustive search (across 36

different orientations along the vertical axis) and verification in the target pool object features we

mine positive patches for metric learning training.

Searching over all the possible patches (we extract 4 patches from each object) for all 1000

objects in the target pool with all the 36 poses is computationally heavy. To reduce computation,

we first complete a rough search at the object-level to retrieve objects which are similar to the

query object, then we do fine-grained search at the part-level by searching over possible patches

64

from these objects of interest. We do this by ranking objects based on their cosine distance (we

take the maximum cosine distance across 36 rotations) with the query object, and take only the

top 30 objects to perform fine-grained search on the patch-level.

For each target object, we extract 4 patches to compare with the query patch. For each

patch, we conduct a spatial consistency check similar to the work of [113]: instead of computing

inner product between the patches, we compare the surrounding patches of these patches. We

take the patches 6 unit Manhattan distance away from the patch center and compute an inner

product on these surrounding patches. The summation of the inner product between all the

surrounding patches serve as the final matching score for center patches. We take the top 200

patch retrievals based on the score, and take the 8 corners from their surroundings as positives.

We create negatives by randomly selecting a pair of patches from the pool. However, training

with naively sampled negatives on the fly is unstable. Following the suggestion from the work

of [40], we maintain a dictionary of size 100,000 for the negatives examples, and do momentum

update on our 2.5D-to-3D lifting module.

6.2.3 Iterative learning of object detection, visual features, and clustering

Since the initialized object detector is sub-optimal due to the lack of groundtruth 3D boxes and

can affect the rest of the modules, it is critical that we have a mechanism to improve it over time.

To achieve this, we iterate our model over the following steps: (i) 3D object detection (Section

6.2). This generates a set of 3D object proposals. (ii) Cross-scene object part correspondence

mining and learning (Section 6.2.2). This updates the encoder weights GRNN using metric

learning on inferred cross-scene correspondence on the detected objects. (iii) Prototype update

(Section 6.2.1). This assigns detected object instances to prototypes and updates the prototypes

e by backpropagating the clustering loss in Eq. 6.3. (iv) Object detector update. We label 3D

object proposals as positives or negatives using a combination of 3D center-surround saliency

score and matching to prototypes score. After the object detector is updated, we can iterate from

step one to improve the rest of the modules.

Specifically, we keep the 3D object proposals that have a good matching score against the

learned prototypes and discard the 3D object proposals whose 3D center-surround feature match

score is below a threshold. The intuition is trust detection that either detects something that

occurs often or has high saliency score. Center-surround saliency heuristic is used by numerous

works for 2D and 3D object detection [54, 59]. We then train the 3D object detector module

to emulate such labels through standard gradient descent. In Fig. 6.4-(a), we visualize the self

annotations and improvement made by our self-improving detector over 4 iterations.

Inplementation details. For every cropped object tensor, we calculate the cosine distance

which is maximum amongst all the prototypes in the dictionary. If this calculated distance for

a proposal is greater than 0.8 then we keep it as a valid proposal. We find the invalid proposals

using 3D center-surround saliency. Specifically, we calculate the average cosine-distance of the

cropped object tensor with its surrounding (top, down, left, right, front, behind) across all 3 axes.

If the average cosine-distance is above 0.65 then we consider that proposal as invalid. We use

the valid and invalid proposals as pseudo ground truths to further train the detector.

65

Figure 6.4: Detection improvement over 4 iterations. The first row shows the input image

and the proposals of the object detector. The second row shows the annotations assigned to

the proposals using the 3D prototype distance and 3D center-surround score. We show that our

detector improves over time without any ground truth 3D proposals.

6.3 Experiments

We test our framework in a variety of simulated environments and real world scenes. In simula-

tion, RGB, depth and egomotion are provided by the simulator, whereas in the real world, RGB

and depth are provided by Kinect sensors and egomotion is computed using camera calibration.

Our experiments aim to answer the following questions:

1. Do 3DQ-Nets recognize objects better than CNN models pretrained on large labelled im-

age datasets?

2. How does the proposed pose-aware 3D clustering compare against 2.5D pose-aware clus-

tering, 3D pose-unaware clustering, or raw 3D point cloud registration?

3. Does cross-scene 3D correspondence mining improves features over view-predictive train-

ing, and how much?

4. In 3DQ-Nets, do feature learning, object clustering to prototypes, and 3D object detection

improve over training iterations?

We benchmark our model on three datasets: (i) CLEVR veggie dataset: we build upon the

CLEVR dataset [53] and add 17 vegetable object models bought from Turbosquid. (ii) CARLA

dataset: we created scenes using all 26 vehicle categories available in the CARLA simulator of

Dosovitskiy et al. [18] (iii) BigBIRD [114]: a publicly available dataset that contains multiview

shots for 125 different objects rotating on a table. We assign the objects to 41 different object

categories, combining similar objects into a single category.

We further qualitatively evaluate our model on two datasets: (iv) Replica [121] dataset: we

render images from the indoor meshes provided by Replica in AI Habitat simulator [110]. The

views are selected by moving the agent around randomly selected objects. (v) Real world desk

scenes dataset: training setup consists of 8 Kinect sensors surrounding the table to capture

multiview RGB-D data. During test time, we only use a single Kinect sensor.

66

Datasets. ResNetRet ResNetClass 3DQ-Nets

CARLA 0.27 0.58 0.71

CLEVR 0.80 0.72 0.75

BigBIRD 0.40 0.67 0.82

Table 6.1: Few shot object category labelling accuracy

6.3.1 Few-shot object category labelling

In this experiment, we use ground-truth 3D bounding boxes during training of our model to

isolate errors caused by the 3D object detection module. Out task is to classify object-centric

image crops into object categories, when supplied with only two labelled object-image crop per

category. This means, that e.g., in the CARLA dataset, we use 52 labelled object image crops.

Note, the objects can be at any orientation. We evaluate the ability of our model and baselines to

retrieve objects of the same category when supplied with these few labelled examples.

Given an annotated instance, our model finds the prototype that has minimum rotation-aware

feature distance to the object instance, and it propagates the label to all the instances that are

assigned to the same prototype. If a prototype is matched with more than one label, then the

label which has matched the most is assigned to the prototype. Note that the small labelled set is

not used to update our features or prototypes. In Table 7.1, we compare 3DQ-Nets against two 2D

baseline models using pretrained ResNet-18 on ImageNet as their backbone: (i) Finetuning the

top layer of ResNet-18 with our training examples (ResNetClass), (ii) using the top average pool

layer activations of ResNet-18 to retrieve and copy the label of the nearest neighbor instance

from the training examples (ResNetRet), i.e., not finetuning at all the weights. We show the

results in Table 7.1. Our model outperforms both ResNetClass and ResNetRet. Despite the fact

the ResNet features are pre-trained on a large set of annotated images, our model can self-adapt

in the new domain of each dataset, and thus learn more meaningful object distances, captured in

the inferred 3D feature representations. On CLEVR-veggie dataset, ResNetRet performs slightly

better than 3DQ-Nets. We suspect this is because the object categories in CLEVR-veggie appear

in ImageNet, so the ImageNet pertaining likely provides discriminative features for these objects.

6.3.2 Clustering with 3D pose-aware quantization

In this experiment, we evaluate the importance of 3D pose-aware quantization for 3D object

clustering. We compare our model against three baselines: (i) 2.5DQ-Nets, a 2D CNN model

that takes concatenated RGB and depth as input and quantizes detected 2D image patches into a

discrete set of 2D prototypes by optimizing an autoencoding objective. During quantization, the

model conducts 2D rotation search. (ii) no-rot-3DQ-Nets, a model similar to ours except that it

assigns instances to 3D prototypes without rotation search. (iii) Pointcloud registration [81], a

method that uses registered point clouds as prototypes and conducts 3D rotation aware search to

infer the identity of the closest 3D poincloud prototype and the 3D pose of the object instance

with respect to the prototype. For our model and baselines we consider ground-truth 3D and 2D

object boxes to isolate the error from different detectors.

To evaluate the unsupervised classification accuracy using prototypes, we use LIN-MATCH,

67

a bipartite graph matching method [63], that finds the permutation of prototype indices that

minimizes the classification error. We show these comparisons with varying length of the pro-

totype dictionary in Figure 6.5 (a). We see in Figure 6.5 (a) that models that use 3D representa-

tion achieve significantly higher accuracy compared to models using 2D representation. Further

adding rotation search in 3D during clustering improves the performance since the operation en-

forces objects with similar appearance but with different poses to be clustered together. We also

show that being able to inpaint objects from a single view during inference helps our model in

outperforming the Pointcloud registration baseline that needs to handle incomplete input object-

centric poinclouds. In Figure 6.5 (b) we show the scene reconstruction results of our models and

the neural baselines after replacing the object in the scene with its best matched prototype under

the inferred pose and rendering the 3D feature map through the learned decoder. We further

include the unsupervised classification accuracy when testing on the the CLEVR and BigBIRD

datasets in Table 6.2. For this experiment we set the number of prototyes (K) as 50.

(a)

GT

No-rot-

3DQ-

Nets

3DQ-

Nets

(b)

2.5DQ-

Nets

Figure 6.5: (a) Unsupervised classification

accuracy with varying length of prototype dic-

tionary in CARLA. (b) Scene reconstruction

results using the learned prototypes from our

model and the baselines.

Datasets. 2.5DQ-

Nets

no-rot-

3DQ-Nets

Pointcloud

registration

3DQ-

Nets

CLEVR 0.23 0.73 0.51 0.77

BigBIRD 0.28 0.81 0.57 0.83

Table 6.2: Unsupervised classification accu-

racy with dictionary size of 50 prototypes on

CLEVR and BigBIRD datasets.

6.3.3 3D feature learning with 3D correspondence mining

In this experiment, we evaluate the contribution of 3D mining in feature learning, by evaluating

the features in object category few shot retrieval. We compare it against the following feature

learning methods: (i) Resnet-18 pretrained on Imagenet dataset (ResNet), where we average-pool

features within the projected (ground-truth) 2D object boxes to represent the objects. (ii) GRNNs

trained with RGB view and occupancy prediction (rgb-occ) of [135]. (iii) GRNNs trained with

object-centric view contrastive prediction (rgbocc+VC) of [33]. (iv) We improve (iii) by using

the same metric learning loss function [40] as our model (rgbocc+VC*). (v) GRNNs trained

additionally with cross-scene 3D mining (ours). For (ii),(iii),(iv),(v), we use the cropped 3D fea-

ture maps from 3D object boxes to represent the objects. We randomly sample 1000 objects and

retrieve their nearest neighbors by considering the maximum inner product across 36 rotations

against a pool of another 1000 objects. For (i), we consider 2D rotation search as opposed to 3D.

68

Datasets ResNet rgbocc rgbocc+VC rgbocc+VC* ours

CARLA 0.49 0.62 0.55 0.67 0.80

CLEVR 0.87 0.74 0.71 0.74 0.81

BigBIRD 0.47 0.44 0.69 0.77 0.73

Table 6.3: Retrieval results (precision@10 nearest neighbors) for different architectures and

objectives for 2D and 3D visual representation learning.

We show category-level retrieval precision within the first 10 retrieved nearest neighbors (i.e.,

precision@10) in Table 6.3.

As shown in Table 6.3, cross-scene correspondence mining improves the retrieval results. In

the CLEVR dataset, ResNet outperforms our model. Our model performs the best among the

unsupervised methods.

Object Level Retrieval. Figure 6.6 shows the qualitative results for object level retrieval. Here,

we compare the object retrieval results on object-centric (cropped and resized) 3D features maps

which are learned from the proposed method (rgbocc + 3D correspondence mining) and 2 other

baselines: rgbocc and rgbocc+vcdict, which are detailed in Section 4.3(main paper). We show

the results on 3 datasets: CARLA, BigBIRD, and CLEVR. For each query image, shown in the

first column, we show the top 5 retrievals for the three methods mentioned above. The green

box signifies that the retrieved image belongs to the same object category as the query, but is in a

different viewpoint of the same scene. Blue box depicts retrieval of the same object category from

a completely different scene. As can be seen, our method (rgbocc+3D mining) gives much more

accurate retrievals (more number of blue and green boxes) compared to the other two baselines

across all datasets. We show the object level retrieval results for this method on Replica dataset

in Figure 6.7.

Patch-Level Retrieval. Figure 6.8 shows the 3D object patch retrieval results using the learnt

3D features from the proposed cross-scene 3D correspondence mining technique. We visualize

the top 5 object part retrievals given a query object patch and a pool of target objects. For each

query image, we first unproject it in the 3D space, detect objects in the scene, and randomly se-

lect a 3D patch on one of the objects. The first column for each dataset represents the query and

the next 5 columns show the corresponding top 5 retrieved patches. For each query-prediction

row pair, the first row shows the input RGB images and the second row shows bird’s eye view

of the same RGB images unprojected in 3D space. The blue patches in the bird’s eye view vi-

sualizations (2nd row) show the 2D projection of the query/retrieved 3D patch. We additionally

show patch based retrieval results on Replica dataset in Figure 6.9. We show the top 5 retrieved

3D patches that best matched the corresponding query patch using verification from surround-

ing voxels technique described in Figure 6.3 (b). As can be seen, patch based retrievals seem

meaningful when surrounding context is given importance.

Rotation Matching. Finding the rotation transformation between two randomly posed RGB

images is a crucial step for our model. As mentioned in Section 3.2(main paper), to do pose-

69

Figure 6.6: 3D object retrieval results obtained by retrieving image patch using features

learned from different feature learning methods, including rgbocc, rgbocc+vcdict, and rg-

bocc+3D correspondence mining (3DMine) methods. We visualize the retrieval results on

CARLA, BigBIRD, and CLEVR datasets. The green boxes indicate that the retrieved image

patches belongs to the same object instance as the query, but is in a different viewpoint. The blue

boxes indicate instances with the same ground truth object category labels.

Figure 6.7: 3D object retrieval results obtained by rgbocc+3D correspondence mining on

Replica dataset.

70

Figure 6.8: Patch-Level retrieval results on CARLA, BigBIRD, and CLEVR datasets. For

each query-prediction row pair, the first row shows the input RGB images and the second row

shows bird’s eye view projection of the RGB-D point cloud. The blue patches in the bird’s eye

view visualizations (2nd row) show the 2D projection of the query/retrieved 3D patch.

Figure 6.9: Patch based 3D object retrieval results on Replica dataset.

71

equivariant quantization, we need to first align the input object 3D feature tensors with an object

prototype. The quality of our quantization relies on the quality of the features that will yield the

correct rotation alignment. We show the qualitative performance of such rotation assignment on

CARLA, BigBIRD and CLEVR datasets in Figure 6.10. For each of those 3 × 7 grids, the first

row shows the input RGB images of the same object category in different poses, the second row

shows the bird’s eye view of the same RGBs unprojected in 3D space, and the third row shows

the bird’s eye view of the same unprojected RGBs but warped to the pose that best matches

with the object in the first. We conduct this matching on top of our 3D feature space by doing a

rotation aware search. As shown in the visualizations, our model can warp the objects in different

orientations to an orientation in the vicinity of the pose of the target object.

Figure 6.10: Rotational alignment results showing relative pose estimation between two ran-

domly posed RGBs of the same object category. For each of the 3× 7 grids, the first row shows

7 input RGB images of the same object category in different poses. The second row shows the

projection of the RGB-D point cloud in a birds eye view. The last row shows the projection of the

same RGB-D point but warped to the pose that best matches with the object in the first. Results

are shown on CARLA, BigBIRD and CLEVR datasets.

72

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Task

Iterations
Iter 0 Iter 1 Iter 2 Iter 3

Feature Learning 0.72 0.76 0.79 0.79

Quantization 0.51 0.63 0.65 0.66

Detection 0.43 0.48 0.51 0.52

Table 6.4: Performance across training EM iterations of our model in CLEVR. Feature learning is

measured using the same technique as Table 6.3. Object quantization uses the same measurement

technique as Fig. 6.5 (a). Detection performance is measured by meanAP at IoU = 0.5.

6.3.4 Joint training of 3D object detection, feature learning and clustering

Table 6.4 shows evaluations of our different modules during 4 iterations of EM. We see that

the performance of all our modules improves over iterations. To initialize the weights for the

modules (Iteration 0), we warm-start the 3D scene features using RGB view and occupancy

prediction (rgbocc), and use the 3D object proposals provided by triangulated 2D boxes from

2D objectness detector to train the detector, visual features and prototypes. From Iteration 1

onwards, we use the 3D detected boxes from the trained detector as inputs, and use 3D mining to

update the features. We subsequently improve the detector and the rest of the modules iteratively.

We show that all modules can boostrap one another and continually improve over iterations. We

further show our detector improvement over time in Figure 6.4. More results are available on our

project website: https://shamitlal.github.io/project pages/3DQ Nets/3dq nets.html.

6.3.5 Scene parsing using prototypes

Figure 6.11: Real world scene parsing results.

Our learnt prototypes capture each object instance in its canonical pose. We use these proto-

types for task of scene parsing. Given a new scene, we first detect all the objects and extract their

features from the scene. Then, we match the object-centric feature maps with all the prototypes

using a rotation aware similarity check explained in Section 6.2.1. For each detected object in-

stance in the scene, we visualize the matched prototype number (C) and the respective rotation

angle along vertical axis (R) as seen in Figure 6.11, Figure 6.12, Figure 6.13, and Figure 6.14.

We also visualize the respective prototypes by neurally rendering them to images.

73

https://shamitlal.github.io/project_pages/3DQ_Nets/3dq_nets.html

Figure 6.12: Scene parsing results for CARLA dataset.

74

Figure 6.13: Scene parsing results for CLEVR dataset.

75

Figure 6.14: Scene parsing results for Replica dataset.

76

Chapter 7

Few-shot Concept learning and VQA with

Disentangled 3D concepts

7.1 Introduction

In the previous chapter, we show how an agent can learn to correspond the same or similar objects

in images without explicit annotations from humans. Since the agent knows to how to correspond

objects that it has seen in the past, it becomes possible for the agent to recognition a new object

from one or a few samples. In this chapter, we want to push the idea forwards: instead of learning

to recognize the whole objects, can our model learns to recognize more general concepts, such

as color, shapes, and textures?

Humans can learn diverse concepts from just one or a few samples. Consider the example

in Figure 7.1. Assuming there is a person who has no prior knowledge about blue and carrot,

by showing this person an image of a blue carrot and telling him “this is an carrot with blue

color”, the person can easily generalize from this example to (1) recognizing carrots of varying

colors, 3D poses and viewing conditions and under novel background scenes, (2) recognizing

the color blue on different objects, (3) combine these two concepts with other concepts to form a

novel object coloring he/she has never seen before, e.g., red carrot or blue tomato and (4) using

the newly learned concepts to answer questions regarding the visual scene. Motivated by this,

we explore computational models that can achieve these four types of generalization for visual

concept learning.

We propose disentangling 3D prototypical networks (D3DP-Nets), models that learn to dis-

entangle RGB-D images into objects, their 3D locations, sizes, 3D shapes and styles, and the

background scene, as shown in Figure 7.2. Our model can learn to detect objects from a few

3D object bounding box annotations and can further disentangle objects into different attributes

through a self-supervised view prediction task. Specifically,D3DP-Nets use Geometry-Aware

Recurrent Networks (GRNNs), introduced in Chapter 2 to transform an input RGB-D (2.5D)

image to a 3D scene feature map. From the scene feature map, our model learns to detect objects

and disentangles each object into a 3D shape code and an 1D style code through a shape/style

disentangling antoencoder. We use adaptive instance normalization layers [47] to encourage

0This chapter is based on the paper published previously on ICLR 2021 [93].

77

Figure 7.1: Given a single image-language example regarding new concepts (e.g., blue and

carrot), our model can parse the object into its shape and style codes and ground them with Blue

and Carrot labels, respectively. On the right, we show tasks the proposed model can achieve

using this grounding.(a) It can detect the object under novel style, novel pose, and in novel scene

arrangements and viewpoints. (b) It can detect a new concept like blue broccoli. (c) It can

imagine scenes with the new concepts. (d) It can answer complex questions about the scene.

shape/style disentanglement within each object. Our key intuition is to represent objects and

their shapes in terms of 3D feature representations disentangled from style variability so that

the model can correspond objects with similar shape by explicitly rotating and scaling their 3D

shape representations during matching.

With the disentangled representations, D3DP-Nets can recognize new concepts regarding ob-

ject shapes, styles and spatial arrangements from a few human-supplied labels by training con-

cept classifiers only on the relevant feature subspace. Our model learns object shapes on shape

codes, object colors and textures on style codes, and object spatial arrangements on object 3D

locations. We show how the features relevant for each linguistic concept can be inferred from a

few contrasting examples. These concept classifiers learn to attend to the discriminative property

of the concept and ignore irrelevant visual features. By attending only to the relevant features,

they can generalize with far fewer examples and can recognize novel attribute compositions not

present in the training data.

We test D3DP-Nets in few-shot concept learning, visual question answering (VQA) and

scene generation. We train concept classifiers for object shapes, object colors/materials, and spa-

tial relationships on our inferred disentangled feature spaces, and show they outperform current

state-of-the-art [45, 77], which use 2D representations. We show that a VQA modular network

that incorporates our concept classifiers shows improved generalization over the state-of-the-art

[77] with dramatically fewer examples. Last, we empirically show that D3DP-Nets generalize

their view predictions to scenes with novel number, category and styles of objects, and compare

against state-of-the-art view predictive architectures of [23].

The main contribution of this paper is to identify the importance of using disentangled 3D

feature representations for few-shot concept learning. We show the disentangled 3D feature

representations can be learned using self-supervised view prediction, and they are useful for de-

78

Figure 7.2: Architecture for disentangling 3D prototypical networks (D3DP-Nets). (a)

Given multi-view posed RGB-D images of scenes as input during training, our model learns

to map a single RGB-D image to a completed scene 3D feature map at test time, by training for

view prediction. From the completed 3D scene feature map, our model learns to detect objects

from the scene. (b) In each 3D object box, we apply a shape-style disentanglement autoencoder

that disentangles the object-centric feature map to a 3D (feature) shape code and a 1D style code.

(c) Our model can compose the disentangled representations to generate a novel scene 3D fea-

ture map. We urge the readers to refer the video in the supplimentary material for an intuitive

understanding of the architecture

tecting and classifying language concepts by training them over the relevant only feature subsets.

The proposed model outperforms the current state-of-the-art in VQA in the low data regime and

the proposed 3D disentangled representation outperforms similar 2D or 2.5D ones in few-shot

concept classification.

7.2 Disentangling 3D Prototypical Networks (D3DP-Nets)

The architecture of D3DP-Nets is illustrated in Figure 7.2. D3DP-Nets consists of two main com-

ponents: (a) an image-to-scene encoder-decoder, and (b) an object shape/style disentanglement

encoder-decoder. Next, we describe these components in detail.

Image-to-scene encoder-decoder D3DP-Nets use Geometry-Aware Recurrent Networks (GRNNs),

introduced in Chapter 2, to map an input RGB-D image I to a 3D feature map M = GRNN(I) ∈
R

w×h×d×c, of the scene, where w, h, d, c denote width, height, depth and number of channels,

respectively. To initialize the weights of the encoder, we follow the same unsupervised view pre-

diction and occupancy prediction loss used for pretraining 3DQ-Nets (Chapter 6 Equation 6.1).

79

Specifically, to predict a novel view and a complete occupancy map, the scene feature map M

is oriented to a sampled query viewpoint vq and decoded to an RGB image and occupancy grid,

and then compared with the ground truth RGB (Iq) and occupancy (Oq) respectively:

Lv =‖DecRGB(M, vq)− Iq‖1 + log(1 + exp(−Oq ·Dec
occ(M, vq))), (7.1)

The RGB output is trained with a regression loss, and the occupancy is trained with a logistic

classification loss. Occupancy labels are computed through raycasting. To disentangle attributes

of an object, it is critcial that the model can detect the object in the first place. To detect objects,

we train a 3D object detector that takes as input the scene feature map M and predicts 3D axis-

aligned bounding boxes using groundtruth 3D bounding boxes. Details for the object detector

are provide in Chapter 2 Section 2.2.2.

7.2.1 Object shape/style disentanglement

As the style of an image can be understood as a property which is shared across its spatial

dimensions, previous works [48, 57] use adaptive instance normalization [47] as an inductive

bias to disentangle style and contents in the images, and use the disentangled embeddings to

do style transfer between a pair of images. D3DP-Nets uses this same inductive bias in its

decoder to disentangle the style and 3D shape of an object. The 3D shape we consider here is

not analogous to 3D occupancy. It is a blend of 3D occupancy and texture (spatial arrangement

of color intensities).

Given a set of 3D object boxes {bo|o = 1 · · · |O|} where O is the set of objects in the scene,

D3DP-Nets obtain corresponding object feature maps Mo = crop(M, bo) by cropping the scene

feature map M using the 3D bounding box coordinates bo. We use ground-truth 3D boxes at train-

ing time and detected boxes at test time. Each object feature map is resized to a fixed resolution of

16×16×16, and fed to an object-centric autoencoder whose encoding modules predict a 4D shape

code zoshp = Eshp(M
o) ∈ R

w×h×d×c and a 1D style code zosty = Esty(M
o) ∈ R

c. A decoder D
composes the two using adaptive instance normalization (AIN) layers [47] by adjusting the mean

and variance of the 4D shape code based on the 1D style code: AIN(z, γ, β) = γ
(

z−µ(z)
σ(z)

)

+ β,

where z is obtained by a 3D convolution on zshp, µ and σ are the channel-wise mean and standard

deviation of z, and β and γ are extracted using single-layer perceptrons from zsty. The object

encoders and decoders are trained with an autoencoding objective and a cycle-consistency ob-

jective which ensure that the shape and style code remain consistent after composing, decoding

and encoding again (see Figure 6.2 (b)):

Ldis =
1

|O|

|O|
∑

o=1






‖Mo −D(Eshp(M

o),Esty(M
o))‖2

︸ ︷︷ ︸

autoencoding loss

+
∑

i∈O\o
Lc−shp(Mo,Mi) + Lc−sty(Mo,Mi)

︸ ︷︷ ︸

cycle-consistency loss






,

(7.2)

where Lc−shp(Mo,Mi) = ‖Eshp(M
o)−Eshp(D(Eshp(M

o),Esty(M
i)))‖2 is the shape consistency

loss and Lc−sty(Mo,Mi) = ‖Esty(M
o)−Esty(D(Eshp(M

i),Esty(M
o)))‖2 is the style consistency

loss.

80

We further include a view prediction loss on the synthesized scene feature map M̄, which is

composed by replacing each object feature map Mo with its re-synthesized version D(zoshp, z
o
sty),

resized to the original object size, as shown in Figure 6.2(c). The view prediction reads: Lview−pred−synth =
‖Dec

(
Rot(M̄, vt+1)

)
− It+1‖1. The total unsupervised optimization loss for D3DP-Nets reads:

Luns = Lview−pred + Lview−pred−synth + Ldis. (7.3)

7.2.2 3D disentangled prototype learning

Given a set of human annotations in the form of labels for object attributes (shape, color, material,

size), our model computes prototypes for each concept (e.g. ”red” or ”sphere”) in an attribute,

using only the relevant feature embeddings. For example, object category prototypes are learned

on top of shape codes, and material and color prototypes are learned on top of style codes. In

order to classify a new object example, we compute the nearest neighbors between the inferred

shape and style embeddings from the D3DP-Nets with the prototypes in the prototype dictionary,

as shown in Figure 7.3. This non-parametric classification method allows us to detect objects

even from a single example, and also improves when more labels are provided by co-training the

underlying feature representation space as in [117].

To compute the distance between an embedding x and a prototype y, we define the following

rotation- aware distance metric:

〈x, y〉R =

{

〈x, y〉 if x, y are 1D

maxr∈R〈Rot(x, r), y〉 if x, y are 4D
(7.4)

where Rot(x, r) explicitly rotates the content in 3D feature map x with angle r through trilinear

interpolation. We exhaustively search across rotations R, in a parallel manner, considering in-

crements of 10◦ along the vertical axis. This is specifically shown in the bottom right of Figure

7.3 while computing the Filter Shape function.

Our model initializes the concept prototypes by averaging the feature codes of the labelled in-

stances. We build color and material concept prototypes, e.g., red or rubber, by passing the style

codes through a color fully connected module and a material fully connected module respec-

tively, and then averaging the outputs. For object category prototypes, we use a rotation-aware

averaging over the (4D) object shape embeddings, which are produced by a 3D convolutional

neural module over shape codes. Specifically, we find the alignment r for each shape embed-

ding that is used to calculate 〈z0, zi〉R, and average over the aligned embeddings to create the

prototype.

When annotations for concepts are provided, we can jointly finetune our prototypes and

neural modules (as well as D3DP-Net weights) using a cross entropy loss, whose logits are

inner products between neural embeddings and prototypes. Specifically, given P (oa = c) =
exp(〈fa(zo),pc〉R)∑

d∈Ca
exp(〈fa(zo),pd〉R)

where 〈·, ·〉R represents the rotation-aware distance metric, fa is the neural

module for attribute a, Ca is the set of concepts for attribute a, and oa is the value of attribute a
for object o, and pc is the prototype for concept c. The loss used to train prototypes is:

Lprototype = −
1

|O|

∑

o∈O

∑

a∈A

∑

c∈Ca

✶oa=c logP (oa = c) + ✶oa 6=c logP (oa 6= c) (7.5)

81

Figure 7.3: D3DP-VQA Modular Networks. Given a question-image pair and a list of learned

prototype dictionaries (left), D3DP-Nets parse the visual scene to object shapes, styles, loca-

tions and sizes codes (top-right), while the semantic language parser converts the question to

an executable program. The generated program is executed sequentially to answer the question

(bottom-right). Note that in order to associate different poses of the same shape (Filter Shape),

our model does a rotation-aware search between the indexed prototype and the candidate objects.

where A is the set of attributes.

7.3 Experiments

We test D3DP-Nets in few-shot learning of object category, color and material, and compare

against state-of-the-art 2D and 2.5D shape-style disentangled CNN representations (Sections

7.3.1). We integrate these concept classifiers in a visual question answering modular system (see

Figure 7.3) and show it can answer questions about images more accurately than the state-of-the-

art in the few-shot regime (Section 7.3.2). In addition, we test D3DP-Nets on novel 3D scene

generation. Furthermore, we show our model can generate a 3D scene (and its 2D image renders)

based on a language utterance description (Section 7.3.3).

7.3.1 Few-shot object shape and style category learning

We evaluate D3DP-Nets in its ability to classify shape and style concepts from few annotated

examples on three datasets: i) CLEVR dataset [53]: it is comprised of cubes, spheres and cylin-

ders of various sizes, colors and materials. We consider every unique combination of color and

material categories as a single style category. The dataset has 16 style classes and 3 shape classes

82

Shape concept category: Plant Style concept category: Cream

Figure 7.4: Replica dataset. On the left, we show two objects in different scenes belonging to

the same shape cateogry ‘Plant‘. On the right, we show two objects belonging to the same style

category ‘Cream‘.

CLEVR Real Veggie Data Replica

5 shot 1 shot 5 shot 1 shot 5 shot 1 shot

Style Shape Style Shape Style Shape Style Shape Style Shape Style Shape

D3DP-Net 0.79 0.86 0.61 0.70 0.61 0.52 0.53 0.44 0.48 0.58 0.46 0.51

3DP-Net 0.14 0.64 0.09 0.57 0.38 0.18 0.31 0.19 0.31 0.45 0.27 0.42

2D MUNIT 0.50 0.54 0.41 0.47 0.43 0.48 0.39 0.38 0.30 0.60 0.23 0.42

2.5D MUNIT 0.47 0.58 0.46 0.55 0.41 0.32 0.39 0.33 0.23 0.42 0.20 0.40

GQN 0.09 0.52 0.11 0.45 0.24 0.41 0.22 0.34 0.25 0.31 0.19 0.26

D3D-Net 0.43 0.48 0.26 0.40 0.31 0.28 0.18 0.24 0.23 0.29 0.10 0.14

MB(Supervised) 0.60 0.89 0.36 0.75 0.42 0.71 0.35 0.67 0.33 0.32 0.19 0.24

Table 7.1: Five & one shot classification accuracy for shape and style concepts in CLEVR [53],

Real Veggie, and Replica datasets

in total. ii) Real Veggie dataset: it is a real-world scene dataset we collected that contains 800

RGB-D scenes of vegetables placed on a table surface. The dataset has 6 style classes and 7

shape classes in total. iii) Replica dataset [121]: it consists of 18 high quality reconstructions

of indoor scenes. We use AI Habitat simulator [76] to render multiview RGB-D data for it. We

use the 152 instance-level shape categories provided by Replica. Due to lack of style labels, we

manually annotate 16 style categories. Figure 7.4 shows one example for both shape and style

category.

We train D3DP-Nets self-supervisedly on posed multiview images in each dataset and learn

the prototypes for each concept category. During training, we consider 1 and 5 labeled instances

for each shape and style category present in the dataset. During testing, we consider a pool of

1000 object instances.

In this experiment, we use ground-truth bounding boxes to isolate errors caused by different

object detection modules. We compare D3DP-Nets with 2D, 2.5D and 3D versions of Proto-

typical Networks [117] that similarly classify object image crops by comparing object feature

embeddings to prototype embeddings. Specifically, we learn prototypical embeddings over the

visual representations produced by the following baselines: (i) 2D MUNIT [48] which disentan-

gles shape and style within each object-centric 2D image RGB patch using the 2D equivalent

83

of the shape-style disentanglement architecture of our model, and learns using an autoencoding

objective (ii) 2.5D MUNIT an extension of 2D MUNIT which uses concatenated RGB and depth

as input. (iii) 3DP-Nets, a version of D3DP-Nets where object shape-style disentanglement is

omitted, this version corresponds to the scene representation learning model of Tung et al. [135],

introduced in Chapter 2. (iv) Generative Query Network GQN of Eslami et al. [22] which en-

codes multiview images of a scene and camera poses into a 2D feature map and is trained using

cross-view prediction, similar to our model. (v) D3D-Nets, a version of D3DP-Nets where pro-

totypical nearest neighbour retrieval is replaced with a linear layer which predicts the class prob-

abilities. (iv) Meta-Baseline MB of Chen et al. [10] is the SOTA supervised few-shot learning

model, pre-trained using ImageNet.

All baselines except MB are trained with the same unlabeled multiview image set as our

method. All models classify each test image into a shape, and style category.

Few-shot concept classification results are shown in Table 7.1. D3DP-Nets outperforms all

unsupervised baselines. Interestingly, D3DP-Nets give better classification accuracy on the 1-

shot task than almost all of the unsupervised baselines on the 5-shot task. Figure 7.5 shows a

visualization of the style codes produced by D3DP-Nets (left) and 2.5D MUNIT baseline (right)

on 2000 randomly sampled object instances from CLEVR using t-SNE [72]. Each color repre-

sents a unique CLEVR style class. Indeed, in D3DP-Nets, codes of the same class are placed

together, while for the 2.5D MUNIT baseline, this is not the case.

7.3.2 Few-shot visual question answering

Figure 7.5: t-SNE visualization on styles codes.

We integrate concept detectors built on the

D3DP-Nets representation into modular neu-

ral networks for visual question answering, in

which a question about an image is mapped

to a computational graph over a small num-

ber of reusable neural modules including ob-

ject category detectors, style detectors and

spatial expression detectors. Specifically, we

build upon the recent Neuro-Symbolic Con-

cept Learner (NSCL) [77], as shown in Fig-

ure 7.3. In NSCL, the input and output of

different neural modules are probability distri-

butions over 2D object proposals denoting the

probability that the executed subprogram is referring to each object, and their object category,

color and material classifiers also use nearest neighbors over learnt prototypes. For example, in

the question “How many yellow objects are there?”, the model first uses the color classifier to

predict for all objects the probability that they are yellow, and then uses the resulting probability

map to give an answer.NSCL learns 1D prototypes for object shape, color and material categories

and classifies objects to labels using nearest neighbors to these prototypes. In our D3DP-Nets-

VQA architecture, we have 3D instead of 2D object proposals, and disentangled 3D shape and

1D color/material and spatial relationship prototypes instead.

We compare D3DP-VQA against the following models: i) NSCL-2D (with and without Ima-

84

VQA Model

In domain test set One shot test set

Number of Training Examples Number of Training Examples

10 25 50 100 250 10 25 50 100 250

Our full model 0.809 0.872 0.902 0.923 0.939 0.775 0.836 0.834 0.828 0.845

without 3D shape prototypes 0.798 0.858 0.538 0.905 0.932 0.410 0.410 0.517 0.745 0.771

without shape/style disentanglement 0.458 0.407 0.616 0.806 0.788 0.457 0.402 0.616 0.807 0.792

without 3D shape prototypes and

without shape/style disentanglement
0.718 0.829 0.849 0.868 0.894 0.608 0.681 0.688 0.692 0.701

Entangled disentangled features 0.648 0.565 0.899 0.917 0.928 0.619 0.542 0.812 0.831 0.813

InstanceNorm disentangled features

+ rotation-aware check
0.606 0.831 0.875 0.894 0.905 0.627 0.775 0.832 0.836 0.861

2D NSCL [77] 0.733 0.927 0.959 0.978 0.990 0.594 0.708 0.703 0.789 0.743

2D NSCL [77]

without ImageNet pretraining
0.514 0.624 0.682 0.844 0.931 0.467 0.502 0.553 0.624 0.679

2.5D NSCL [77] 0.594 0.737 0.828 0.881 0.925 0.528 0.633 0.651 0.633 0.633

2.5D NSCL [77] disentangled 0.436 0.486 0.640 0.735 0.842 0.430 0.462 0.517 0.561 0.564

Table 7.2: VQA results with model compared to ablations and 2D baselines in CLEVR [53]

dataset.

geNet pretraining) the state of the art model of Mao et al. [77] that uses a ResNet-34 pretrained on

ImageNet as input feature representations ii) NSCL-2.5D, in which the object visual representa-

tions for shape/color/material are computed over RGB and depth concatenated object patches as

opposed to RGB alone. This model is pretrained with a view prediction loss using the CLEVR

dataset in Sec. 7.3.1 iii) NSCL-2.5D-disentangle that uses disentangled object representations

generated by our 2.5D MUNIT disentangling model, iv) D3DP without 3D shape prototypes, a

version of D3DP-Nets that replaces the 3-dimensional shape codes with 1D ones obtained by

spatial pooling v) D3DP without disentanglement, that learns prototypes for shape, color and

material on top of entangled 3D tensors.

We consider the same supervision for our model and baselines in the form of densely anno-

tated scenes with object attributes and 3D object boxes. We use ground-truth neural programs so

as to not confound the results with the performance of a learned parser.

VQA performance results are shown in Table 7.2. We evaluate by varying the number of

training scenes from 10 to 250. For each training scene we generate 10 questions. The original

CLEVR dataset included 70,000 scenes and 700,000 questions, so even when training with 250

scenes, we are training with 0.35% the number of original scenes. Our full model outperforms

all of the alternatives, showing the importance of both the 3D feature representations as well

as disentanglement of shape and style. To test our model’s one shot generalization ability on

questions about object categories it had not seen in the original training set, we introduce a new

test set consisting of only novel objects. We generate a test set of 500 scenes in the CLEVR

environment with three new objects: “cheese”, “garlic”, and “pepper” and introduce them to

our model and baselines using one example image of each, associated with its shape category

label. In Figure 7.6, we show example scene/question pairs for the in domain test set and one

shot test set. The results described in Table 7.2 indicate that our model is able to maintain its

ability to answer questions even when seeing completely novel objects and with very few training

85

In	domain	test	split One-shot	test	split

Q:	What	is	the	shape	of	the	shiny	red
	object	in	front	of	the	yellow	sphere?
A:	cube

Q:	What	is	the	shape	of	the	shiny	red
object	behind	the	large	yellow	pepper?
A:	cheese

Pepper CheeseGarlicPepper CheeseGarlicPepper CheeseGarlic

(a) (b)

Prototype imagesOne-shot test splitIn domain test split

Figure 7.6: (a) The left scene/question pair is from the in domain test set, and the right

scene/question pair is from the one shot test set. The colors, materials, sizes, and spatial re-

lationships tested in both splits are the same. The only difference is that the one shot test set

contains shapes the model did not see while training and was only exposed to one example be-

fore the testing phase. (b) The prototype images shown to the model before starting the one shot

testing phase.

examples. The SOTA 2D model outperforms our model on the in domain test set because it is

able to exploit pretraining on ImageNet, which our models are unable to do. However, our model

is able to adapt much better than both the 2D and 2.5D baselines when operating at the extremely

low data regime or the one shot generalization setting.

7.3.3 3D scene generation from language utterances

We test D3DP-Nets on the task of scene generation from language utterances.Given annotations

for each prototype,our model can generate 3D scenes that comply with a language utterance, as

seen in Figure 7.7 (b). We assume the parse tree of the utterance is given. Our model generates

each object’s 3D feature map by combining shape and style prototypes as suggested by the ut-

terance, and placing them iteratively on a background canvas making sure it complies with the

spatial constraints in the utterance [94]. Our model can generate shape and style combinations

not seen at training time. We neurally render the feature map to generate the RGB image.

86

“Green cube to the left of brown
sphere to the front of brown sphere
to right front of blue sphere”

“Gray cube to the left of blue sphere to
the left of cyan cylinder to the top of
green sphere to the top of purple
sphere to the bottom right of blue
cylinder”

“Blue cube to the left front of cyan cube
to the left front of purple sphere to the
front of purple cylinder to the right of
green cube to the right of yellow cube to
the behind of purple cube”

“Green cylinder to the right of cyan
sphere to the top of yellow sphere to
the left of cyan sphere”

“Green sphere to the left of cyan
cylinder to the top left of yellow cube”

“Green sphere to the top of red sphere
to the bottom of purple cube to the
right of red cylinder”

“Blue cube to the bottom of purple
cube to the bottom of yellow sphere to
the left of green cylinder to the top of
cyan cube to the left of purple sphere
to the bottom of purple cylinder”

Natural Language Utterance Neural Renders

View 1 (Ref view) View 2

“Blue cylinder to the top left of cyan
sphere to the top left of brown sphere
to the bottom of red cylinder to the
right of cyan sphere to the bottom right
of brown sphere”

Figure 7.7: Generating novel scenes using only a single example for each style and content class.
87

88

Part IV

Language understanding: Learning to

interpret language through visual

simulation

89

Chapter 8

Grounding Language in the Learned

Visual simulator

8.1 Introduction

Consider the utterance “the tomato is to the left of the pot”. Humans can answer numerous

questions about the situation described, as well as reason through alternatives, such as, “is the

pot larger than the tomato?”, “can we move to a viewpoint from which the tomato is completely

hidden behind the pot?”, “can we have an object that is both to the left of the tomato and to

the right of the pot?” , and so on. How can we learn computational models that would permit a

machine to carry out similar types of reasoning that humans are capable of? One possibility if to

treat the task as text comprehension [17, 42, 55, 139] and train machine learning models using

supervision from utterances accompanied with question / answer pairs. However, information

needed for answering the questions is not contained in the utterance itself; training a model to

carry out predictions in absence of the relevant information would lead to overfitting. Associ-

ating utterances with RGB images that depict the scene described in the utterance, and using

both images and utterances for answering questions provides more world context and has been

shown to be helpful. Consider though that information about object size, object extent, occlusion

relationships, free space and so on, are only indirectly present in an RGB image, while they are

readily available given a 3D representation of the scene the image depicts. Though it would take

many training examples to learn whether a spoon can be placed in between the tomato and the

pot on the table, in 3D such experiment can be mentally carried out easily, simply by consid-

ering whether the 3D model of the spoon can fit in the free space between the tomato and the

pot. Humans are experts in inverting camera projection and inferring an approximate 3D scene

given an RGB image [87]. This paper similarly builds upon inverse graphics neural architectures

for providing the 3D visual representations to associate language, with the hope to inject spatial

reasoning capabilities into architectures for language understanding.

We propose associating language utterances to space-aware 3D visual feature represen-

tations of the scene they describe. We infer such 3D scene representations from RGB images of

the scene. Though inferring 3D scene representations from RGB images, a.k.a. inverse graphics

0This chapter is based on the paper published previously at CVPR 2020 [94].

91

goal location

“Put the green rubber cylinder
behind the blue bowl”

behind

blue bowl

Parse tree

on the right of

3D object

feature map

blue bowl

Parse tree

“The green rubber cylinder is on
the right of the blue bowl”

WhatGenNet

3D spatial offset

WhereGenNet

3D object

feature map

assembled 3D feature canvas

green rubber cylinder

green rubber cylinder

blue bowl

green rubber cylinder

WhereGenNet

behind

3D spatial offset

GRNNs

3D detector

3D feature map

3D object boxes

image

image to 3d boxes language to 3D feature map referential expression to 3D object box instruction to goal location

“The green rubber cylinder on
the right of the blue bowl”

on the right of

blue bowl

Parse tree

GRNNs

3D detector

3D feature map

image

search over noun phrase to box

assignments using unary and

pairwise scores

green rubber cylinder

image

WhatGenNet

RefDetNet

Figure 8.1: Embodied language grounding with implicit 3D visual feature representations.

Our model associates utterances with 3D scene feature representations obtained from GRNNs.

We map RGB images to 3D scene feature representations and 3D object boxes of the objects

present . (column 1). We map an utterance and its dependency tree to object-centric 3D feature

maps and cross-object relative 3D offsets using stochastic generative networks (column 2). We

map a referential expression to the 3D box of the object referent (column 3). Last, given a

placement instruction, we 3D localize the referents in the scene and infer the 3D desired location

for the object to be manipulated (column 4). We use predicted location to supply rewards for

trajectory optimization of placement policies.

is known to be a difficult problem [64, 103, 134], we build upon recent advances in computer

vision [135] that consider inferring from images a learnable 3D scene feature representation in

place of explicit 3D representations such as meshes, pointclouds or binary voxel occupancies

pursued in previous inverse graphics research [64, 103, 134]. Such learnable 3D scene feature

map emerges in a self-supervised manner by optimizing for view prediction in neural architec-

tures with geometry-aware 3D representation bottlenecks, as described in previous work of Tung

et al. [135]. After training, these architectures learn to map RGB video streams or single RGB

images to complete 3D feature maps of the scene they depict, inpainting by imagination oc-

cluded or missing details of the 2D image input. The contribution of our work is to use such

3D feature representations for language understanding and spatial reasoning. We train

modular generative networks that condition on the dependency tree of the utterance and predict

a 3D feature map of the scene the utterance describes. They do so by predicting appearance and

relative 3D location of objects, and updating a 3D feature workspace, as shown in Figure 8.1, 2nd

column. We further train modular discriminative networks that condition on a referential expres-

sion and detect the object referred to in the 3D feature map of the input RGB image, by scoring

object appearances and cross-object spatial arrangements, respectively, as shown in Figure 8.1,

3rd column. We call our model embodied since training the 2D image to 3D feature mapping

92

requires supervision from a mobile—or more generally embodied—agent that moves around in

the 3D world, collects (posed) images and learns to predict visual results of its motion.

We demonstrate the benefits of associating language to 3D visual feature scene representa-

tions in three basic language understanding tasks:

(1) Affordability reasoning Our model can classify affordable (plausible) and unaffordable

(implausible) spatial expressions. For example, “A to the left of B, B to the left of C, C to the right

of A” describes a plausible configuration, while “A to the left of B, B to the left of C, C to the left

of A” describes a non-plausible scene configuration, where A, B, C any object mentions. Our

model reasons about plausibility of object arrangements in the inferred 3D feature map, where

free space and object 3D intersection can easily be learnt/evaluated, as opposed to 2D image

space.

(2) Referential expression detection Given a referential spatial expression, e.g., “the blue

sphere behind the yellow cube”, and an RGB image, our model outputs the 3D object bounding

box of the referent in the inferred 3D feature map, as shown in Figure 8.1 3rd column. Our 3D

referential detector generalizes across camera viewpoints better than existing state-of-the-art 2D

referential detectors [46] thanks to the view invariant 3D feature representation.

(3) Instruction following Given an object placement instruction, e.g., “put the cube behind

the book”, our referential 3D object detector identifies the object to be manipulated and our

generative network predicts its desired 3D goal location, as shown in Figure 8.1 4rth column.

We use such 3D goal location in trajectory optimization of object placement policies. We show

our model successfully executes natural language instructions.

In each task we compare against existing state-of-the-art models: the language-to-2D image

generation model of [16] and the 2D referential object detector of [46], which we adapt to have

same input as our model. Our model outperforms the baselines by a large margin in each of the

three tasks. We further show strong generalization of natural language learnt concepts from the

simulation to the real world thanks to the what-where decomposition employed in our generative

and detection networks, where spatial expression detectors only use 3D spatial information, as

opposed to object appearance and generalize to drastically different looking scenes without any

further annotations. Our model’s improved performance is attributed to i) its improved general-

ization across camera placements thanks to the viewpoint invariant 3D feature representations,

ii) its improved performance on free-space inference and plausible object placement in 3D over

2D. Many physical properties can be trivially evaluated in 3D while they need to be learned by

a large number of training examples in 2D with questionable generalization across camera view-

points. 3D object intersection is one such important property, very useful for spatial reasoning

of plausible object arrangements. Our datasets and code will be made publicly available upon

publication to facilitate reproducibility of our work.

8.2 Language grounding on 3D visual feature representations

We consider a dataset of 3D static scenes annotated with corresponding language descriptions

and their dependency trees, as well as a reference camera viewpoint. We further assume access

at training time to 3D object bounding boxes and correspondences between 3D object boxes

and noun phrases in the language dependency trees. The language utterances we use describe

93

object spatial arrangements and are programmatically generated, same as their dependency trees,

using the method described in [52]. We infer 3D feature maps of the world scenes from RGB

images using Geometry-aware Recurrent Neural Nets (GRNNs) In Section 8.2.1, we describe

our proposed generative networks that condition on the dependency tree of a language utterance

and generate an object-factorized 3D feature map of the scene the utterance depicts. In Section

8.2.2, we describe discriminative networks that condition on the dependency tree of a language

utterance and the inferred 3D feature map from the RGB image and localize in 3D the object

being referred to. In Section 8.2.3, we show how our generative and discriminative networks of

Sections 8.2.1,8.2.2 can be used for following object placement instructions.

8.2.1 Language-conditioned 3D visual imagination

We train generative networks to map language utterances to 3D feature maps of the scene they

describe. They do so using a compositional generation process that conditions on the dependency

tree of the utterance (assumed given) and generates one object at a time, predicting its appearance

and location using two separate stochastic neural modules, what and where, as shown in Figure

8.2.

The what generation module GA(p, z;φ) is an stochastic generative network of object-centric

appearance that given a noun phrase p learns to map the word embeddings of each adjective and

noun and a random vector of sampled Gaussian noise z ∈ R
50 ∼ N (0, I) to a corresponding

fixed size 3D feature tensor M̂
o
∈ R

w×h×d×c and a size vector so ∈ R
3 that describes the width,

height, and depth for the tensor. We resize the 3D feature tensor M̂
o

to have the predicted size

so and obtain Mo = Resize(M̂
o
, so). We use a gated mixture of experts [112] layer—a gated

version of point-wise multiplication—to aggregate outputs from different adjectives and nouns,

as shown in Figure 8.2.

The where generation module GS(s, z, ψ) is a stochastic generative network of cross-object

3D offsets that learns to map the one-hot encoding of a spatial expression s, e.g., “in front of”,

and a random vector of sampled Gaussian noise z ∈ R
50 ∼ N (0, I) to a relative 3D spatial offset

dX(i,j) = (dX, dY, dZ) ∈ R
3 between the corresponding objects. Let boi denote the 3D spatial

coordinates of the corners of a generated object.

Our complete generative network conditions on the dependency parse tree of the utterance

and adds one 3D object tensor Mo
i , i = 1...K at a time to a 3-dimensional feature canvas accord-

ing to their predicted 3D locations, where K is the number of noun phrases in the dependency

tree: Mg =
∑K

i=1 DRAW(Mo
i ,X

o
i), where DRAW denotes the operation of adding a 3D feature

tensor to a 3D location. The 3D location X
1 of the first object is chosen arbitrarily, and the

locations of the rest of the object is based the predicted cross-object offsets: Xo
2 = X

o
1 + dX(2,1).

If two added objects intersect in 3D, i.e., the intersection over union of the 3D object bounding

boxes is above a cross-validated threshold of 0.1, IoU(boi , b
o
j) > 0.1, we re-sample object loca-

tions until we find a scene configuration where objects do not 3D intersect, or until we reach

a maximum number of samples—in which case we infer the utterance is impossible to realize.

By exploiting the constraint of non 3D intersection in the 3D feature space, our model can both

generalize to longer parse trees than those seen at training time—by re-sampling until all spatial

constraints are satisfied—as well as infer plausibility of utterances, as we validate empirically in

Section 8.3.2. In 3D, non-physically plausible object intersection is easy to delineate from phys-

94

the red shiny sphere is to the right of the gray rubber cylinder which is in front of…

red N(0,1) shiny N(0,1) sphere N(0,1)

Encode object

Gated  

pointwise 

product

Incrementally add objects

to the 3D scene tensor
right N(0,1)

Encode position

prev. object

position

(or 0,0,0 for 

 first object)

+

Render to an image

3D-to-2D

neural

projection

Generate language parse tree, and queue objects for visual imagination.

Color VAE Attribute VAE Shape VAE

3D object

feature

Position VAE

object 1 object 2

Figure 8.2: Mapping language utterances to object-centric appearance tensors and cross-

object 3D spatial offsets using conditional what-where generative networks.

ically plausible object occlusion, something that is not easy to infer with 2D object coordinates,

as we show empirically in Section 8.3.2, or at least you would need a much much larger number

of annotated training examples to do so. Given the 3D coordinates of two 3D bounding boxes

3D intersection over union is easy to learn with a classifier, but we simply use thresholding of

the computed 3D intersection over union.

We train our stochastic generative networks using conditional variational autoencoders.

8.2.2 Detecting referential expressions in 3D

We train discriminative networks to map spatial referential expressions, e.g., “the blue cube to

the right of the yellow sphere behind the green cylinder” and related RGB images, to the 3D

bounding box of the objects the expressions refer to. They do so using a compositional detection

process that conditions on the dependency tree of the referential expression (assumed given) and

predicts a 3D appearance detector template for each noun phrase, used to compute an object

appearance score, and 3D spatial classifier for each spatial expression, used to compute a spatial

compatibility score, as we detail below. Such compositional structure of our detector is necessary

to handle referential expressions of arbitrary length. Our detector is comprised of a what detec-

tion module and a where detection module, as shown in Figure 8.3. The what module DA(p; ξ) is

a neural network that given a noun phrase p learns to map the word embeddings of each adjective

and noun to a corresponding fixed-size 3D feature tensor f = DA(p; ξ) ∈ R
w×h×d×c, we used

w = h = d = 16 and c = 32. Our what detection module is essentially a deterministic alterna-

tive of the what generative stochastic network of Section 8.2.1. The object appearance score is

obtained by computing inner-product between the detection template DA(p; ξ) and the cropped

object 3D feature map CropAndResize(M, bo), where M = GRNN(I) and bo the 3D box of the

object. We feed the output of the inner product to a sigmoid activation layer.

The where detection module DS(s, b
o
1, b

o
2;ω) takes as input the 3D box coordinates of the

hypothesized pair of objects under consideration, and the one-hot encoding of the spatial utter-

ance s (e.g., “in front of”, “behind”), and predicts a score whether the two-object configuration

matches the spatial expression.

We train both the what and where detection modules in a supervised way. During training,

95

“The green rubber

cylinder on the right of the

blue bowl”

on the right of

green rubber cylinderblue bowl

dependency tree

0.9

0.2

0.95

0.05
0.8

pairwise spatial

arrangement score

unary object

matching score

img-to-3d

DA(p; ξ)
DA(p; ξ) DA(s, bo

1
, bo

2
; ω)

Figure 8.3: 3D referential object detection. We exhaustively score all possible assignments

of noun phrases to detected 3D bounding boxes. Each assignment is scored based on unary

appearance scores and pairwise spatial scores, as described in the text.

96

we use ground-truth associations of noun phrases p to 3D object boxes in the image for positive

examples, and random crops or other objects as negative examples. For cropping, we use ground-

truth 3D object boxes at training time and detected 3D object box proposals from the 3D object

detector at test time. We use positive examples from our training set and negative examples from

competing expressions as well as synthetic 3D object boxes in random locations.

Having trained our what and where detector modules, and given the dependency parse tree of

an utterance and a set of bottom up 3D object proposals, we exhaustively search over assignments

of noun phrases to detected 3D objects in the scene. We only keep noun phrase to 3D box

assignments if their unary matching score is above a cross-validated threshold of 0.4. Then, we

simply pick the assignment of noun phrases to 3D boxes with the highest product of unary and

pairwise scores. Our 3D referential detector resembles previous 2D referential detectors [13, 46],

but operates in 3D appearance features and spatial arrangements, instead of 2D.

8.2.3 Instruction following

Humans use natural language to program fellow humans e.g., “please, put the orange inside

the wooden bowl”. We would like to be able to program robotic agents in a similar manner.

Most current policy learning methods use manually coded reward functions in simulation or

instrumented environments to train policies, as opposed to visual detectors of natural language

expressions [133]. If visual detectors of “orange inside the wooden basket” were available, we

would use them to automatically monitor an agent’s progress towards achieving the desired goal

and supply rewards accordingly, as opposed to hard-coding them in the environment.

We use the language-conditioned generative and detection models proposed in Section 8.2.1,8.2.2

to obtain a reliable perceptual reward detector for object placement instructions with the follow-

ing steps, as shown in Figure 8.1 4rth column: (1) We localize in 3D all objects mentioned in

the instruction using the aforementioned 3D referential detectors. (2) We predict the desired

3D goal location for the object to be manipulated x
o
goal using our stochastic spatial arrangement

generative network GS(s, z;ψ)). (3) We compute per time step costs being proportional to the

Euclidean distance of the current 3D location of the object xo
t and end-effector 3D location x

e
t

assumed known from forward dynamics, and the desired 3D goal object location x
o
goal and end-

effector 3D location x
e
goal: Ct = ‖xt−xgoal‖

2
2, where xt = [xo

t ;x
e
t] is the concatenation of object

and end-effector state at time step t and xgoal = [xo
goal;x

e
goal]. We formulate this as a reinforce-

ment learning problem, where at each time step the cost is given by ct = ‖xt − xgoal‖2. We

use i-LQR (iterative Linear Quadratic Regulator) [127] to minimize the cost function
∑T

t=1 Ct. I-

LQR learns a time-dependent policy πt(u|x; θ) = N (Ktxt + kt,Σt), where the time-dependent

control gains are learned by model-based updates, where the dynamical model p(xt|,xt−1,ut) of

the a priori unknown dynamics is learned during training time. The actions u are defined as the

changes in the robot end-effector’s 3D position and orientation about the vertical axis, giving a

4-dimensional action space.

We show in Section 8.3.4 that our method successfully trains multiple language-conditioned

policies. In comparison, 2D desired goal locations generated by 2D baselines [133] often fail to

do so.

97

Sample 1 Sample 2 Sample 3

Natural  

 language

utterance

Ours

(Neural

Renders)

Ours

(Blender

Renders)

“red cylinder to the right of yellow sphere to
the left-front of green sphere to the right of

blue sphere to the left-front of yellow sphere”

Sample 1 Sample 2 Sample 3

Natural  

 language

utterance

“pomegranate to the right behind of yellow
lemon to the left front of Saturn peach to the

right of yellow lemon to the left behind of plum
to the front of headphone”

Ours

(Neural

Renders)

“red apple to the front of yellow lemon to the
right front of saturn peach to the behind of plum
to the right front of water bottle to the behind of
pomegranate the right front of yellow lemon to

the behind of yellow lemon”

“green cylinder to the left behind of red sphere to
the right behind of blue sphere”

Baseline

Figure 8.4: Language to scene generation (Rows 1,2,4) and Language to image generation

(Row 3) from our model and the model of Deng et al [16] for utterances longer than those

encountered at training time. Both our model and the baseline are stochastic, and we sample

three generated scenes/images per utterance.

8.3 Experiments

We test the proposed language grounding model in the following tasks: (i) Generating scenes

based on language utterances (ii) classifying utterances based on whether they describe possible

or impossible scenes, (iii) detecting spatial referential expressions, and, (iv) following object

placement instructions. We consider two datasets: (i) The CLEVR dataset of Johnson et al. [52]

that contains 3D scenes annotated with natural language descriptions, their dependency parse

trees, and the object 3D bounding boxes. The dataset contains Blender generated 3D scenes

with geometric objects (Figure 8.1). Each object can take a number of colors, materials, shapes

and sizes. Each scene is accompanied with a description of the object spatial arrangements, as

well as its parse tree. Each scene is rendered from 12 azimuths and 4 elevation angles, namely,

{20o, 40o, 60o, 12o}. We train GRNNs for view prediction using the RGB image views in the

98

training sets. The annotated 3D bounding boxes are used to train our 3D object detector. We

generate 800 scenes for training, and 400 for testing. The language is generated randomly with

a restriction to have maximum 2 objects for the training scenes. (ii) A veggie arrangement

dataset we collected in the real world. We built a camera dome comprised of 8 cameras placed in

a hemisphere above a table surface. We move vegetables around and collect multiview images.

We automatically annotate the scene with 3D object boxes by doing 3D pointcloud subtraction at

training time, we use the obtained 3D boxes to train our 3D object detector. At test time, objects

are detected from a single view using our trained 3D detector. We further provide category labels

for the vegetable present in single object scenes to facilitate association of labels to object 3D

bounding boxes. More elaborate multiple instance learning techniques could be used to handle

the general case of weakly annotated multi-object scenes [77]. We leave this for future work. We

show extensive qualitative results in the veggie arrangement dataset as a proof that our model

can effectively generalize to real world data if allowed multiview embodied supervision and

weak category object labels.

8.3.1 Language conditioned scene generation

We show language-conditioned generated scenes for our model and the baseline model of Deng

et al. [16] in Figure 8.4 for utterances longer than those encountered at training time. The model

of Deng et al. [16] that generates a 2D RGB image directly (without an intermediate 3D rep-

resentation) conditioned on a language utterance and its dependency tree. It predicts absolute

2D locations and 2D box sizes for objects and their 2D appearance feature maps, warped in pre-

dicted locations, and neurally decoded into an RGB image. We visualize our model’s predictions

in two ways: i) neural renders are obtained by feeding the generated 3D assembled canvas

to the 3D-to-2D neural projection module of GRNNs, ii) Blender renders are renderings of

Blender scenes that contain object 3D meshes selected by small feature distance to the language

generated object 3D feature tensors, and arranged based on the predicted 3D spatial offsets.

Our model re-samples an object location when they detect the 3D intersection-over-union

(IoU) computed from the predicted 3D object boxes of the newly added object with existing

ones is higher than a cross-validated threshold of 0.1. The model of Deng et al. [16] is trained

to handle occluded objects. Notice though that it generates weird configurations as the number

of objects increase. We tried imposing constraints of object placement using 2D IoU threshold

in our baseline, but ran into the problem that we could not find plausible configurations for strict

IoU threshdolds, and we would obtain non-sensical configurations for low Iou thresholds. Note

that 2D IoU cannot discriminate between physically plausible object occlusions and physically

implausible object intersection. Reasoning about 3D object non intersection is indeed much

easier in a 3D space.

8.3.2 Affordability inference of natural language utterances

We test our model and baselines in their ability to classify language utterances as describing

sensical or non-sensical object configurations. We created a test set of 100 NL utterances, 50 of

which are affordable, i.e., describe a realizable object arrangement, e.g., “a red cube in front of

a blue cylinder and in front of a red sphere, the blue cylinder is in front of the red sphere.”, and

99

50 are unaffordable, i.e., describe a non-realistic object arrangement, e.g., “a red cube is behind

a cyan sphere and in front of a red cylinder, the cyan sphere is left behind the red cylinder”.

In each utterance, an object is mentioned multiple times. The utterance is unaffordable when

these mentions are contradictory. Answering correctly requires spatial reasoning over possible

object configurations. Both our model and baselines have been trained only on plausible

utterances and scenes. We use our dataset only for evaluation. This setup is similar to

violation of expectation [102]: the model detects violations while it has only been trained on

plausible versions of the world.

Our model infers affordability of a language utterance by generating the 3D feature map of

the described scene, as detailed in Section 8.2.1. When an object is mentioned multiple times

in an utterance, our model uses the first mention to add it in the 3D feature canvas, and uses

that pairwise object spatial classifier DS of Section 8.2.2 to infer if the predicted configuration

also satisfies the later constraints. If not, our model re-samples object arrangements until a

configuration is found or a maximum number of samples is reached.

We compare our model against a baseline based on the model of Deng et al. [16]. Similar

to our model, when an object is mentioned multiple times, we use the first mention to add it in

the 2D image canvas, and use pairwise object spatial classifiers we train over 2D bounding box

spatial information—as opposed to 3D—to infer if the predicted configuration also satisfies the

later constraints. Note that there are no previous works that attempt this language affordability

inference task, and our baseline essentially performs similar operations as our model but in a 2D

image generation space.

We consider a sentence to be affordable if the spatial classifier predicts a score above 0.5

for the later constraint. Our model achieved an affordability classification accuracy of 95%
while the baseline 79.3%. The result suggests an improved ability to reason about affordable

and non affordable object configurations in 3D as opposed to 2D image space.

8.3.3 Detecting spatial referential expressions

We use the same dataset and train/test split of scenes as in the previous section. For each anno-

tated scene, we consider the first mentioned object as the one being referred to, that needs to be

detected. In this task, we compare our model with a variant of the modular 2D referential object

detector of Hu et al. [46] that also takes as input the dependency parse tree of the expression.

We train the object appearance detector for the baseline same as for our model using positive and

negative examples but the inner product is on 2D feature space as opposed to 3D. We also train

a pairwise spatial expression classifier to map width, height and x,y coordinates of the two 2D

bounding boxes and the one-hot encoding of the spatial expression, e.g., “in front of” to a score

reflecting whether the two boxes respect the corresponding arrangement. Note that our pairwise

spatial expression classifier use 3D box information instead which helps it to generalize across

camera placements.

Our referential detectors are upper bounded by the performance of the Region Proposal Net-

works (RPNs) in 3D for our model and in 2D for the baseline, since we compare language-

generated object feature tensors to object features extracted from 2D and 3D bounding box pro-

posals. We compare RPN performance in Table 8.1. An object is successfully detected when

the predicted box has an intersection over union (IoU) at least 0.5 with the groundtruth bounding

100

mAP ours RGB-D [100] RGB-D ours RGB [100] RGB

2D 0.993 0.903 0.990 0.925

3D 0.973 - 0.969 -

Table 8.1: Mean average precision for category agnostic region proposals. Our 3D RPN

outperforms the 2D state-of-the-art RPN of Faster R-CNN [100].

Object

Proposals

Detected

object

query

Baseline

Ours

“find red metal cylinder to the left
 behind of red rubber cylinder”

“find yellow metal sphere to the
right behind of green rubber sphere ”

“find purple rubber cube to the
left behind of green metal sphere”

Object

Proposals

Detected

object

Object

Proposals

Detected

object

query “find sellotape to the right front
of the plum”

“find bowl to left front of strawberry ”
“find green apple to the right of

pomegranate”

Ours

Figure 8.5: Detecting referential spatial expressions. Given a scene and a referential expres-

sion, our model localizes the object being referred to in 3D, while our baseline in 2D.

box. For our model, we project the detected 3D boxes to 2D and compute 2D mean average pre-

cision (mean AP). Both our model and the baseline use a single RGB image as input as well as a

corresponding depth map, which our model uses during the 2D-to-3D unprojection operation and

the 2D RPN concatenates with the RGB input image. Our 3D RPN that takes the GRNN map M

as input better delineates the objects under heavy occlusions than the 2D RPN of faster-RCNN

[100].

We show quantitative results for referential expression detection in Table 8.2 with groundtruth

as well as RPN predicted boxes, and qualitative results in Figure 8.5. In the “in-domain view”

scenario, we test on camera viewpoints that have been seen at training time, in the “out-domain

view” scenario, we test on novel camera viewpoints. An object is detected successfully when

the corresponding detected bounding box has an IoU of 0.5 with the groundtruth box (in 3D

for our model and in 2D for the baseline). Our model greatly outperforms the baseline for two

reasons: a) it better detects objects in the scene despite heavy occlusions, and, b) even with

groundtruth boxes, because the 3D representations of our model do not suffer from projection

artifacts, they better generalize across camera viewpoints and object arrangements.

101

Ours [46] Ours - GT 3D boxes [46] - GT 2D boxes

in-domain view 0.87 0.70 0.91 0.79

out-domain view 0.79 0.25 0.88 0.64

Table 8.2: F1-Score for detecting referential expressions. Our model greatly outperforms

the baseline with both groundtruth and predicted region proposals, especially for novel camera

views.

8.3.4 Manipulation instruction following

We use the PyBullet Physics simulator [1] with similar setup as our CLEVR scenes. We use a

simulated KUKA robot arm as our robotic platform. We use a cube and a bowl, using the same

starting configuration for each scene, where the cube is held by the robot right above the bowl.

We fix the end-effector to always point downwards, and we assume the object to be in robot’s

hand at the beginning of each episode.

We compare our model against the 2D generative baseline of [16] that generates object loca-

tions in 2D, and thus supply costs of the form: C2D(xt) = ‖x2D
t −x

2D
goal‖

2
2. We show in Table 8.3

success rates for different spatial expressions, where we define success as placing the object in

the set of locations implied by the instruction. Goal locations provided in 2D do much worse in

guiding policy search than target object locations in 3D supplied by our model. This is because

2D distances suffer from foreshortening and reflect planning distance worse than 3D ones. This

is not surprising: in fact, the robotics control literature almost always considers desired locations

of objects to be achieved to be in 3D [66, 68]. In our work, we link language instructions with

such 3D inference using inverse graphics computer vision architectures for 2D to 3D lifting in

an implicit learnable 3D feature space.

Language Exp. left left-behind left-front right right-behind right-front inside

Baseline 4/5 1/5 3/5 0/5 2/5 0/5 1/5

Ours 5/5 3/5 5/5 5/5 5/5 3/5 5/5

Table 8.3: Success rates for executing instructions regarding object placement. Policies

learnt using costs over 3D configurations much outperform those learnt with costs over 2D con-

figurations.

102

Chapter 9

Conclusion and Future Directions

Overview

In this thesis, we have introduced key modules that would enable embodied agents to work and

to learn from the visual data collected from their own body motion. Three key questions we try to

answer in the beginning of the thesis are: (1) How should we parse the visual data into structured

representations of the physical scene? What should be the representations? (2) How can we use

the scene representations for the agents to see, act, reason, and learn language? (3) How can the

learning of other modules improve the agent’s visual perception?

We answered the first question by showing that representing scenes as egomotion-stabilized

3D feature representations has several advantages over non-stabilized representations since it can

better capture the bias of object permanence. To infer the representations from image observa-

tions, we proposed neural architecture and objective function that will allow the model to obtain

the representations by learning from self-collected data through moving around. Next, we moved

on to answer the second question by showing the learned representations are suitable for learning

many downstream tasks regarding seeing, acting, reasoning, and learning language and concepts.

Lastly, We answered the third question by demonstrating how the agents can learn and improve

their object detection and visual representations by jointly training with these downstream tasks.

The work present in the thesis serves as an initial step towards building embodied agents that

can extract information and learn from their first-person experience with the 3D environments.

It opens up many questions we can ask as how to deploy more and more intelligent agents.

General understanding of third-person images/videos

To efficiently learn, humans not only rely on our own personal experience to learn, we also try

to learn by watching how other people behave. Fortunately, it is very easy to access such data

on the Internet nowadays. We can see people doing all kinds of things on Youtube and social

media. While the current trend in Computer vision is to understand these internet images/videos

by learning only from passively collected data, we believe that learning visual parsing and per-

ception on these active embodied agents might actually make the problem easier since the agents

now can collect rich and dense data around the objects they care about. One key question then

103

is how can we deploy the visual understanding we have developed on these embodied agents for

them to understand these images and videos available on the internet, so the agents can scale up

their knowledge acquisition?

Here are some key limitations in the present work that hinders us to directly apply our visual

perception module on internet images and videos. One limitation of the current model is that it

requires reliable camera pose estimation to aggregate frames across different viewpoints. While

camera poses are directly accessible on a physical agent through inverse kinematics, they are

unavailable in Internet videos and they need to be estimated. Additionally, in our work, we show

having reliable depth sensors can boost the performance of the model, but this again needs to be

estimated for an internet video. Having a robust and generic camera pose and depth estimator

will be critical to run the model on these Internet videos. Another key limitation is the need of

storing and applying computation on a 4D tensor latent space. Exploiting the sparsity of our 4D

tensors to save GPU memory is an important direction for scaling up our model to large scenes.

Parsing Objects into functional parts

Being able to use existing knowledge to explore is good, but how effectively we can use exist-

ing knowledge depends much on how well we organize them. To acquire new knowledge or

concepts more efficiently, we need to improve the way we organize existing knowledge. In the

thesis, we discuss how to correspond rigid objects based on their appearance. To push forward, I

think we should further factorize the learned whole-object visual concepts into functional parts.

By splitting concepts into smaller entities, the model can discover more shared concepts across

object instances, and can learn new concepts efficiently by exploiting the combinations between

these factorized concepts. By learning about functional properties of the part, the model can

organize objects in a way that will aid their learning in intelligently interacting with objects.

Learning diverse and discrete concepts further provides the machines the ability to formulate

discrete numbers of hypotheses, which enable them to collect informative data in a systematic

way.

Integrating other sensor modalities

In this thesis, we only consider how to aggregate and parse information visual inputs, however,

there are a lot more sensors that we can quipe on an embodied agent and they all can contribute

unique information about the world. For instance, by having a haptic and force sensor, the

agents can easily understand invisible physics properties, such as weights and friction; by having

audio sensor, the agents can sense critical event that is hard to observe purely from the change

in the visual observations, e.g., pushing the button on a toy to make it play music. The 3D

feature representation space we proposed is a suitable representation space for us to ground

jointly information coming from all senses.

104

Handling deformable and articulated objects

In both our concept learning and dynamics learning work, we consider rigidly moving objects.

Learning object dynamics and concepts of soft bodies, articulated structure and fluids would em-

power the agents knowledge about how objects actually work and how to act efficiently to them.

Learning about these more complex object dynamics will require forecasting dense 3D motion

fields, or considering sub-object (part or particle) graphs. For learning concepts and object cor-

respondence, we will require adding not non-rigidly deformation between the category template

and the instances. Adding such deformable parametrization would increase the expressiveness

of the prototype dictionary.

Improving Exploration through Visual Parsing

To continually and efficiently collect more informative data, the agents need to find better ways

to explore. Inspired by the findings in psychology, I propose to use the developed visual cues to

guide the exploration in skill learning. When the agents encounter new objects, they should use

the learned visual parsing to parse the objects into meaning parts and structure, or use the learned

visual features to retrieve relevant acquired skills to aid current skill deployment. Being able to

reuse existing skills and use visual cues to guide exploration is a key and interesting venue to

efficient skill acquisition.

Learning from other research disciplines

Most of my works are inspired by reading and talking to people outside the region of machine

learning and computer vision. I believe to answer those three questions we state upfront, we will

need to bring together insights and findings from multiple research disciplines in artificial intel-

ligence including machine learning, computer vision, robotics, linguistic and psychology. De-

velopmental psychology studies what cognitive or motor abilities an intelligent agent (humans)

possess, in which order, and how they get developed throughout a persons lifespan. Robotics

research tells us how to make things work on physical robots, and what type of visual parsing

outputs will enable that. Linguistics explains how humans think in terms of symbols, and how it

is related to our actual experience with the world. Notice how related these findings are related

to the questions we seek to answer! We already can get many potential answers from the existing

works and theories in these research disciplines. I hope to see how learning these disciplines can

provide new insights to my research. I also hope to see what we find in my research can provide

new insights in these fields.

105

106

Bibliography

[1] http://bulletphysics.org/wordpress/. 8.3.4

[2] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning

to poke by poking: Experiential learning of intuitive physics. CoRR, abs/1606.07419,

2016. URL http://arxiv.org/abs/1606.07419. 5.1

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight

experience replay. CoRR, abs/1707.01495, 2017. URL http://arxiv.org/abs/

1707.01495. 5.1, 5.2.2, (a), 5.3.1, 5.3.2

[4] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,

et al. Learning dexterous in-hand manipulation. The International Journal of Robotics

Research, 39(1):3–20, 2020. 4.3, 1

[5] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Ko-

ray Kavukcuoglu. Interaction networks for learning about objects, relations and physics.

CoRR, abs/1612.00222, 2016. URL http://arxiv.org/abs/1612.00222. 4.1,

4.2.1, 4.3, 4.1, 4.2, 4.3

[6] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv

preprint arXiv:1806.01261, 2018. 4.2.1

[7] Anna M. Borghi and Felice Cimatti. Embodied cognition and beyond: Acting and sensing

the body. Neuropsychologia, 48(3):763–773, 2010. ISSN 0028-3932. doi: https://doi.org/

10.1016/j.neuropsychologia.2009.10.029. URL https://www.sciencedirect.

com/science/article/pii/S0028393209004369. The Sense of Body. 1

[8] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point

trajectories. In ECCV. 2010. 3.3

[9] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Re-

port arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota

Technological Institute at Chicago, 2015. 2.2.1, 4.3, 4.3.1, 5.3.1

[10] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A new meta-

107

http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1612.00222
https://www.sciencedirect.com/science/article/pii/S0028393209004369
https://www.sciencedirect.com/science/article/pii/S0028393209004369

baseline for few-shot learning, 2020. 7.3.1

[11] Ricson Cheng, Ziyan Wang, and Katerina Fragkiadaki. Geometry-aware recurrent neural

networks for active visual recognition. In NIPS, 2018. (document), 2.2.1, 2.4, 2.2.2, 2.2

[12] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. CoRR, abs/1406.1078, 2014. URL http:

//arxiv.org/abs/1406.1078. 2.2

[13] Volkan Cirik, Taylor Berg-Kirkpatrick, and Louis-Philippe Morency. Using syntax to

ground referring expressions in natural images. In AAAI, 2018. 8.2.2

[14] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl

Schmeckpeper, Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale

multi-robot learning, 2019. 5.1

[15] Jean Decety and D. H. Ingvar. Brain structures participating in mental simulation of motor

behavior: a neuropsychological interpretation. Acta psychologica, 73 1:13–34, 1990. 4.1

[16] Zhiwei Deng, Jiacheng Chen, YIFANG FU, and Greg Mori. Probabilistic neu-

ral programmed networks for scene generation. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 31, pages 4028–4038. Cur-

ran Associates, Inc., 2018. URL http://papers.nips.cc/paper/

7658-probabilistic-neural-programmed-networks-for-scene-generation.

pdf. (document), 8.1, 8.4, 8.3.1, 8.3.2, 8.3.4

[17] Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and Ruslan Salakhutdinov. Gated-

attention readers for text comprehension. CoRR, abs/1606.01549, 2016. URL http:

//arxiv.org/abs/1606.01549. 8.1

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.

CARLA: An open urban driving simulator. In CORL, pages 1–16, 2017. 3.2, 6.3

[19] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey Levine. Self-supervised visual

planning with temporal skip connections. CoRR, abs/1710.05268, 2017. URL http:

//arxiv.org/abs/1710.05268. 4.1

[20] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine.

Visual foresight: Model-based deep reinforcement learning for vision-based robotic con-

trol. arXiv preprint arXiv:1812.00568, 2018. 4.3, 3, 4.3.2, 4.3

[21] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction

from a single image using a multi-scale deep network. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Ad-

vances in Neural Information Processing Systems 27, pages 2366–2374. Cur-

ran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5539-depth-map-prediction-from-a-single-image-using-a-multi-scale-deep-

pdf. 2.2.2

[22] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu,

108

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://papers.nips.cc/paper/7658-probabilistic-neural-programmed-networks-for-scene-generation.pdf
http://papers.nips.cc/paper/7658-probabilistic-neural-programmed-networks-for-scene-generation.pdf
http://papers.nips.cc/paper/7658-probabilistic-neural-programmed-networks-for-scene-generation.pdf
http://arxiv.org/abs/1606.01549
http://arxiv.org/abs/1606.01549
http://arxiv.org/abs/1710.05268
http://arxiv.org/abs/1710.05268
http://papers.nips.cc/paper/5539-depth-map-prediction-from-a-single-image-using-a-multi-scale-deep-network.pdf
http://papers.nips.cc/paper/5539-depth-map-prediction-from-a-single-image-using-a-multi-scale-deep-network.pdf
http://papers.nips.cc/paper/5539-depth-map-prediction-from-a-single-image-using-a-multi-scale-deep-network.pdf

and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene understanding with genera-

tive models. CoRR, abs/1603.08575, 2016. URL http://arxiv.org/abs/1603.

08575. 7.3.1

[23] S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Mor-

cos, Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gre-

gor, David P. Reichert, Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosen-

baum, Neil Rabinowitz, Helen King, Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray

Kavukcuoglu, and Demis Hassabis. Neural scene representation and rendering. Sci-

ence, 360(6394):1204–1210, 2018. ISSN 0036-8075. doi: 10.1126/science.aar6170.

URL http://science.sciencemag.org/content/360/6394/1204. (doc-

ument), 2.2, 2.2.1, 2.2.1, 2.4, 2.5, 3.1, 7.1

[24] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Dynamics learning

with cascaded variational inference for multi-step manipulation, 2019. 4.2.2

[25] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim. Optimization based controller design and

implementation for the atlas robot in the darpa robotics challenge finals. In 2015 IEEE-

RAS 15th International Conference on Humanoid Robots (Humanoids), pages 1028–1035,

2015. 5.1

[26] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. CoRR,

abs/1610.00696, 2016. URL http://arxiv.org/abs/1610.00696. 4.3.2

[27] Carl Gabbard. The role of mental simulation in embodied cognition. Early Child Devel-

opment and Care, 183(5):643–650, 2013. 4.1

[28] Dashan Gao, Vijay Mahadevan, and Nuno Vasconcelos. On the plausibility of the dis-

criminant center-surround hypothesis for visual saliency. Journal of vision, 8, 2008. 3.3

[29] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013.

3.2.2

[30] James J. Gibson. The Ecological Approach to Visual Perception. Houghton Mifflin, 1979.

5.2.1

[31] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep reinforcement

learning for robotic manipulation. CoRR, abs/1610.00633, 2016. URL http://arxiv.

org/abs/1610.00633. 5.1

[32] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,

and James Davidson. Learning latent dynamics for planning from pixels. In International

Conference on Machine Learning, pages 2555–2565, 2019. 4.1, 4.3, 4, 4.3

[33] Adam W Harley, Fangyu Li, Shrinidhi K Lakshmikanth, Xian Zhou, Hsiao-Yu Fish Tung,

and Katerina Fragkiadaki. Embodied view-contrastive 3d feature learning. arXiv, 2019.

4.1, 6.3.3

[34] Adam W. Harley, Fangyu Li, Shrinidhi K. Lakshmikanth, Xian Zhou, Hsiao-Yu Fish

Tung, and Katerina Fragkiadaki. Embodied view-contrastive 3d feature learning. CoRR,

abs/1906.03764, 2019. URL http://arxiv.org/abs/1906.03764. 5.3.3

109

http://arxiv.org/abs/1603.08575
http://arxiv.org/abs/1603.08575
http://science.sciencemag.org/content/360/6394/1204
http://arxiv.org/abs/1610.00696
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1906.03764

[35] Adam W. Harley, Fangyu Li, Shrinidhi K. Lakshmikanth, Xian Zhou, Hsiao-Yu Fish Tung,

and Katerina Fragkiadaki. Visual representation learning with 3d view-constrastive in-

verse graphics networks. In International Conference on Learning Representations, 2020.

URL https://openreview.net/forum?id=BJxt60VtPr. 1.1, 1.5, 0

[36] Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Multiple paired forward-

inverse models for human motor learning and control. In M. J. Kearns, S. A.

Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Sys-

tems 11, pages 31–37. MIT Press, 1999. URL http://papers.nips.cc/paper/

1585-multiple-paired-forward-inverse-models-for-human-motor-learning-and-

pdf. 4.1

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/

1512.03385. 3.2.1

[38] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,

abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870. 2.1, 2.2.2,

4.2

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,

abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870. 6.1

[40] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast

for unsupervised visual representation learning, 2019. 6.2.2, 6.3.3

[41] R. Held and A. Hein. Movement-produced stimulation in the development of visually

guided behavior. Journal of comparative and physiological psychology, 56:872–6, 1963.

1

[42] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will

Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-

prehend. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 28, pages 1693–

1701. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/

5945-teaching-machines-to-read-and-comprehend.pdf. 8.1

[43] Michael Hornacek, Andrew Fitzgibbon, and Carsten Rother. SphereFlow: 6 DoF scene

flow from RGB-D pairs. In CVPR, 2014. 3.3

[44] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. Learn-

ing to decompose and disentangle representations for video prediction. In NIPS, pages

517–526, 2018. 3.3.1

[45] Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. Mod-

eling relationships in referential expressions with compositional modular networks. CoRR,

abs/1611.09978, 2016. URL http://arxiv.org/abs/1611.09978. 7.1

[46] Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. Mod-

eling relationships in referential expressions with compositional modular networks. 11

2016. 8.1, 8.2.2, 8.3.3, 8.3.3

110

https://openreview.net/forum?id=BJxt60VtPr
http://papers.nips.cc/paper/1585-multiple-paired-forward-inverse-models-for-human-motor-learning-and-control.pdf
http://papers.nips.cc/paper/1585-multiple-paired-forward-inverse-models-for-human-motor-learning-and-control.pdf
http://papers.nips.cc/paper/1585-multiple-paired-forward-inverse-models-for-human-motor-learning-and-control.pdf
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://arxiv.org/abs/1611.09978

[47] Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with adaptive

instance normalization. CoRR, abs/1703.06868, 2017. URL http://arxiv.org/

abs/1703.06868. 7.1, 7.2.1

[48] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised

image-to-image translation. In ECCV, 2018. 7.2.1, 7.3.1

[49] Hamid Izadinia, Qi Shan, and Steven M. Seitz. IM2CAD. CoRR, abs/1608.05137, 2016.

4.1

[50] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan,

Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via

sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation net-

works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 12627–12637, 2019. 5.1

[51] Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn,

and Jiajun Wu. Reasoning about physical interactions with object-oriented prediction and

planning. CoRR, abs/1812.10972, 2018. URL http://arxiv.org/abs/1812.

10972. 4.1, 4.2.1, 4.3, 4.3.1

[52] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence

Zitnick, and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language

and elementary visual reasoning. CoRR, abs/1612.06890, 2016. URL http://arxiv.

org/abs/1612.06890. 8.2, 8.3

[53] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zit-

nick, and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and

elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2901–2910, 2017. (document), 6.3, 7.3.1, 7.1, 7.2

[54] Ran Ju, Yang Liu, Tongwei Ren, Ling Ge, and Gangshan Wu. Depth-aware salient object

detection using anisotropic center-surround difference. Signal Processing: Image Com-

munication, 38:115–126, 2015. 6.2.3

[55] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understanding

with the attention sum reader network. CoRR, abs/1603.01547, 2016. URL http://

arxiv.org/abs/1603.01547. 8.1

[56] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo machine.

CoRR, abs/1708.05375, 2017. URL http://arxiv.org/abs/1708.05375. 2.2.2,

3.1

[57] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-

erative adversarial networks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4401–4410, 2019. 7.2.1

[58] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural

relational inference for interacting systems, 2018. 4.1, 4.2.1

[59] Dominik A Klein and Simone Frintrop. Center-surround divergence of feature statistics

for salient object detection. In 2011 International Conference on Computer Vision, pages

111

http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1703.06868
http://arxiv.org/abs/1812.10972
http://arxiv.org/abs/1812.10972
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1603.01547
http://arxiv.org/abs/1603.01547
http://arxiv.org/abs/1708.05375

2214–2219. IEEE, 2011. 6.2.3

[60] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for

one-shot image recognition. 2015. 6.1

[61] Adam R. Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential attend,

infer, repeat: Generative modelling of moving objects. In NIPS, 2018. 3.3.1

[62] Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for

manipulation: Challenges, representations, and algorithms, 2019. 5.1

[63] Harold W Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97, 1955. 6.3.2

[64] Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. Deep

convolutional inverse graphics network. CoRR, abs/1503.03167, 2015. URL http:

//arxiv.org/abs/1503.03167. 8.1

[65] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convo-

lutional inverse graphics network. In Advances in neural information processing systems,

pages 2539–2547, 2015. 4.1

[66] Vikash Kumar, Abhishek Gupta, Emanuel Todorov, and Sergey Levine. Learning dexter-

ous manipulation policies from experience and imitation. CoRR, abs/1611.05095, 2016.

URL http://arxiv.org/abs/1611.05095. 8.3.4

[67] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of

deep visuomotor policies. CoRR, abs/1504.00702, 2015. URL http://arxiv.org/

abs/1504.00702. 1.2, 5.1, 5.1, 5.3.1

[68] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training

of deep visuomotor policies. J. Mach. Learn. Res., 17(1):1334–1373, January 2016.

ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=2946645.

2946684. 8.3.4

[69] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learn-

ing particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In

ICLR, 2019. 4.1

[70] Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel L.K. Yamins, Jiajun Wu, Joshua B.

Tenenbaum, and Antonio Torralba. Visual grounding of learned physical models. In

International Conference on Machine Learning, 2020. 4.1

[71] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess,

Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep

reinforcement learning. CoRR, abs/1509.02971, 2016. 5.1, 5.3.1

[72] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of

machine learning research, 9(Nov):2579–2605, 2008. 7.3.1

[73] Vijay Mahadevan and Nuno Vasconcelos. Spatiotemporal saliency in dynamic scenes.

TPAMI, 32, 2010. 3.3

[74] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu,

112

http://arxiv.org/abs/1503.03167
http://arxiv.org/abs/1503.03167
http://arxiv.org/abs/1611.05095
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://dl.acm.org/citation.cfm?id=2946645.2946684

Juan Aparicio, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps with

synthetic point clouds and analytic grasp metrics. 07 2017. doi: 10.15607/RSS.2017.XIII.

058. 5.1, 5.3.4

[75] Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico Tombari. Deep model-based

6d pose refinement in rgb. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 800–815, 2018. 6.1

[76] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans,

Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and

Dhruv Batra. Habitat: A Platform for Embodied AI Research. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2019. 7.3.1

[77] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The

Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Nat-

ural Supervision. In International Conference on Learning Representations, 2019. URL

https://openreview.net/forum?id=rJgMlhRctm. 7.1, 7.3.2, 8.3

[78] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Srid-

har, Gerard Pons-Moll, and Christian Theobalt. Single-shot multi-person 3d pose estima-

tion from monocular rgb. In 2018 International Conference on 3D Vision (3DV), pages

120–130. IEEE, 2018. 6.1

[79] L. Meteyard, Sara Rodrı́guez Cuadrado, B. Bahrami, and G. Vigliocco. Coming of age: A

review of embodiment and the neuroscience of semantics. Cortex, 48:788–804, 2012. 1

[80] R. C. Miall and D. M. Wolpert. Forward models for physiological motor control. Neural

Netw., 9(8):1265–1279, November 1996. ISSN 0893-6080. doi: 10.1016/S0893-6080(96)

00035-4. URL http://dx.doi.org/10.1016/S0893-6080(96)00035-4.

4.1

[81] Niloy J Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registration of

point cloud data from a geometric optimization perspective. In Proceedings of the 2004

Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 22–31, 2004.

6.3.2

[82] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational

grasp generation for object manipulation. CoRR, abs/1905.10520, 2019. URL http:

//arxiv.org/abs/1905.10520. 5.1, 5.3.4

[83] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenen-

baum, and Daniel LK Yamins. Flexible neural representation for physics prediction. In

NIPS, 2018. 4.1

[84] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a versatile and

accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,

2015. doi: 10.1109/TRO.2015.2463671. 1.1

[85] Venkatraman Narayanan and Maxim Likhachev. Deliberative object pose estimation in

clutter. In 2017 IEEE International Conference on Robotics and Automation (ICRA),

pages 3125–3130. IEEE, 2017. 6.1

113

https://openreview.net/forum?id=rJgMlhRctm
http://dx.doi.org/10.1016/S0893-6080(96)00035-4
http://arxiv.org/abs/1905.10520
http://arxiv.org/abs/1905.10520

[86] P. Ochs and T. Brox. Object segmentation in video: a hierarchical variational approach

for turning point trajectories into dense regions. In ICCV, 2011. 3.3

[87] Bruno A. Olshausen. Perception as an inference problem. 2013. 8.1

[88] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-

trastive predictive coding. arXiv:1807.03748, 2018. 3.2

[89] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob

McGrew, Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn

Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lil-

ian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation. CoRR,

abs/1808.00177, 2018. URL http://arxiv.org/abs/1808.00177. 5.1, 5.1

[90] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide

Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot

visual imitation. In ICLR, 2018. 4.3.2

[91] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from

50k tries and 700 robot hours. CoRR, abs/1509.06825, 2015. URL http://arxiv.

org/abs/1509.06825. 5.1

[92] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from

50k tries and 700 robot hours. In 2016 IEEE international conference on robotics and

automation (ICRA), pages 3406–3413. IEEE, 2016. 6.1

[93] Mihir Prabhudesai, Shamit Lal, Hsiao-Yu Fish Tung, Adam W Harley, Shubhankar Potdar,

and Katerina Fragkiadaki. 3d object recognition by corresponding and quantizing neural

3d scene representations. CVPR Minds vs. Machine (MVM) workshop, 2020. 1.3, 1.5, 0

[94] Mihir Prabhudesai, Hsiao-Yu Fish Tung, Syed Ashar Javed, Maximilian Sieb, Adam W.

Harley, and Katerina Fragkiadaki. Embodied language grounding with implicit 3d visual

feature representations, 2020. 1.4, 1.5, 7.3.3, 0

[95] Mihir Prabhudesai, Shamit Lal, Darshan Patil, Hsiao-Yu Tung, Adam W Harley, and Ka-

terina Fragkiadaki. Disentangling 3d prototypical networks for few-shot concept learning.

ICLR, 2021. 1.3, 1.5

[96] Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu, and Hao Su. S4g: Amodal single-

view single-shot se(3) grasp detection in cluttered scenes, 2019. 5.1

[97] Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Keto: Learning

keypoint representations for tool manipulation. arXiv preprint arXiv:1910.11977, 2019.

5.2

[98] Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Feature mapping for learning fast

and accurate 3d pose inference from synthetic images. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 4663–4672, 2018. 6.1

[99] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov,

and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement

learning and demonstrations. CoRR, abs/1709.10087, 2017. URL http://arxiv.

org/abs/1709.10087. 5.2.2, (a), 5.3.2

114

http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1509.06825
http://arxiv.org/abs/1509.06825
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087

[100] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 28, pages 91–99. Cur-

ran Associates, Inc., 2015. URL http://papers.nips.cc/paper/

5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-

pdf. (document), 8.3.3, 8.1, 8.3.3

[101] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-

time object detection with region proposal networks. CoRR, abs/1506.01497, 2015. URL

http://arxiv.org/abs/1506.01497. 2.2.2

[102] Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus,

Véronique Izard, and Emmanuel Dupoux. Intphys: A benchmark for visual intuitive

physics reasoning. 2019. 8.3.2

[103] Lukasz Romaszko, Christopher K. I. Williams, Pol Moreno, and Pushmeet Kohli. Vision-

as-inverse-graphics: Obtaining a rich 3d explanation of a scene from a single image. In

ICCV Workshops, Oct 2017. 4.1, 8.1

[104] Lukasz Romaszko, Christopher KI Williams, Pol Moreno, and Pushmeet Kohli. Vision-

as-inverse-graphics: Obtaining a rich 3d explanation of a scene from a single image. In

Proceedings of the IEEE International Conference on Computer Vision, pages 851–859,

2017. 4.1

[105] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for

biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.

org/abs/1505.04597. 2.2

[106] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret reductions for

imitation learning and structured prediction. CoRR, abs/1011.0686, 2010. URL http:

//arxiv.org/abs/1011.0686. 5.3.1

[107] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa,

and Hao Li. PIFu: Pixel-aligned implicit function for high-resolution clothed human

digitization. arXiv:1905.05172, 2019. 3.1

[108] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Mar-

tin Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics

engines for inference and control. arXiv:1806.01242, 2018. 4.1

[109] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and

Peter Battaglia. Learning to simulate complex physics with graph networks, 02 2020. 4.1

[110] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bha-

vana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A platform for embodied AI research. CoRR, abs/1904.01201, 2019. URL

http://arxiv.org/abs/1904.01201. 6.3

[111] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding

for face recognition and clustering. In CVPR, 2015. 3.2.1

115

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1904.01201

[112] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey

Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-

of-experts layer. 2017. URL https://openreview.net/pdf?id=B1ckMDqlg.

8.2.1

[113] Xi Shen, Alexei A. Efros, and Mathieu Aubry. Discovering visual patterns in art collec-

tions with spatially-consistent feature learning. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 6.2.2, 6.2.2

[114] Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, and Pieter Abbeel. Bigbird:

A large-scale 3d database of object instances. 2014 IEEE International Conference on

Robotics and Automation (ICRA), pages 509–516, 2014. 6.3

[115] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and

Michael Zollhöfer. DeepVoxels: Learning persistent 3D feature embeddings. In CVPR,

2019. 3.1

[116] Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons

from babies. NIPS, 2017. 1

[117] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learn-

ing. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 4077–

4087. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

6996-prototypical-networks-for-few-shot-learning.pdf. 7.2.2,

7.3.1

[118] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot

learning. CoRR, abs/1703.05175, 2017. URL http://arxiv.org/abs/1703.

05175. 6.1

[119] Kihyuk Sohn. Improved deep metric learning with multi-class N-pair loss objective. In

NIPS, pages 1857–1865, 2016. 3.2.1

[120] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning

via lifted structured feature embedding. In CVPR, 2016. 3.2.1

[121] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green,

Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,

Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel

Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,

Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele, Steven Lovegrove,

and Richard Newcombe. The Replica dataset: A digital replica of indoor spaces. arXiv

preprint arXiv:1906.05797, 2019. 6.3, 7.3.1

[122] Edgar Sucar, Kentaro Wada, and Andrew Davison. Neural object descriptors for multi-

view shape reconstruction. arXiv preprint arXiv:2004.04485, 2020. 6.1

[123] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles.

In CVPR, 2010. 3.3

[124] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical

116

https://openreview.net/pdf?id=B1ckMDqlg
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
http://arxiv.org/abs/1703.05175
http://arxiv.org/abs/1703.05175

flow using pyramid, warping, and cost volume. In CVPR, 2018. 3.3, 3.3.1

[125] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and

Rudolph Triebel. Implicit 3d orientation learning for 6d object detection from rgb images.

In Proceedings of the European Conference on Computer Vision (ECCV), pages 699–715,

2018. 6.1

[126] Yuval Tassa, Tom Erez, and William D Smart. Receding horizon differential dynamic

programming. In Advances in neural information processing systems, pages 1465–1472,

2008. 4.2.2

[127] Yuval Tassa, Nicolas Mansard, and Emanuel Todorov. Control-limited differential dy-

namic programming. 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 1168–1175, 2014. 8.2.3

[128] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Single-view to multi-view:

Reconstructing unseen views with a convolutional network. CoRR, abs/1511.06702, 2015.

URL http://arxiv.org/abs/1511.06702. 3.1

[129] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3d point clouds.

In Robotics Research, pages 307–324. Springer, 2018. 6.1

[130] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. Domain randomization for transferring deep neural networks from simulation

to the real world. CoRR, abs/1703.06907, 2017. URL http://arxiv.org/abs/

1703.06907. 4.3.1

[131] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-

based control. In IROS, pages 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-

5. URL http://dblp.uni-trier.de/db/conf/iros/iros2012.html#

TodorovET12. 5.3

[132] Shubham Tulsiani, Saurabh Gupta, David F. Fouhey, Alexei A. Efros, and Jitendra Malik.

Factoring shape, pose, and layout from the 2d image of a 3d scene. CoRR, abs/1712.01812,

2017. URL http://arxiv.org/abs/1712.01812. 6.1

[133] Fish Tung and Katerina Fragkiadaki. Reward learning using natural language. CVPR,

2018. 8.2.3

[134] Hsiao-Yu Fish Tung, Adam Harley, William Seto, and Katerina Fragkiadaki. Adversarial

inverse graphics networks: Learning 2d-to-3d lifting and image-to-image translation with

unpaired supervision. ICCV, 2017. 8.1

[135] Hsiao-Yu Fish Tung, Ricson Cheng, and Katerina Fragkiadaki. Learning spatial common

sense with geometry-aware recurrent networks. In CVPR, 2019. 4.1, 5.2.1, (c), 5.3.3,

6.3.3, 7.3.1, 8.1

[136] Hsiao-Yu Fish Tung, Ricson Cheng, and Katerina Fragkiadaki. Learning spatial common

sense with geometry-aware recurrent networks. CVPR, 2019. URL http://arxiv.

org/abs/1901.00003. 1.1, 1.5, 0

[137] Hsiao-Yu Fish Tung, Zhou Xian, Mihir Prabhudesai, Shamit Lal, and Katerina Fragki-

adaki. 3d-oes: Viewpoint-invariant object-factorized environment simulators. 2021. 1.2,

117

http://arxiv.org/abs/1511.06702
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
http://dblp.uni-trier.de/db/conf/iros/iros2012.html##TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html##TodorovET12
http://arxiv.org/abs/1712.01812
http://arxiv.org/abs/1901.00003
http://arxiv.org/abs/1901.00003

1.5, 0

[138] Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan

Wierstra. Matching networks for one shot learning. CoRR, abs/1606.04080, 2016. URL

http://arxiv.org/abs/1606.04080. 6.1

[139] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. CoRR,

abs/1410.3916, 2014. URL http://arxiv.org/abs/1410.3916. 8.1

[140] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling

matters in deep embedding learning. In ICCV, pages 2840–2848, 2017. 3.2.1

[141] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see

physics via visual de-animation. In Advances in Neural Information Processing Systems,

pages 153–164, 2017. 4.3, 1

[142] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-

tron2. https://github.com/facebookresearch/detectron2, 2019. 6.2

[143] Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric forward

modeling for model predictive control, 2019. 4.3.2

[144] Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric forward

modeling for model predictive control. the Conference on Robot Learning (CoRL), 2019.

4.1, 4.2.1, 4.3, 4.1, 4.2, 4.3

[145] Jason J. Yu, Adam W. Harley, and Konstantinos G. Derpanis. Back to basics: Unsuper-

vised learning of optical flow via brightness constancy and motion smoothness. In ECCV,

2016. 3.3

[146] Kuan-Ting Yu, Maria Bauzá, Nima Fazeli, and Alberto Rodriguez. More than a mil-

lion ways to be pushed: A high-fidelity experimental data set of planar pushing. CoRR,

abs/1604.04038, 2016. 4.3, 4.3.1

[147] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and

Pieter Abbeel. Deep imitation learning for complex manipulation tasks from virtual re-

ality teleoperation. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 1–8. IEEE, 2018. (b), 5.3.1

[148] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object

detection. IEEE Conference on Computer Vision and PatternRecognition (CVPR), 2018.

2.2.2

118

http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1410.3916
https://github.com/facebookresearch/detectron2

	1 Introduction
	1.1 Perception: Learning to see a stable world with objects
	1.2 Action + Physics: Learning to imagine how objects can move and how to interact with them
	1.3 Concept learning: Learning to construct memory and associate current observations with past memory
	1.4 Language understanding: Learning to interpret language through visual simulation
	1.5 Dissertation structure

	I Perception: Learning to see a stable world with objects
	2 Building Embodied Perception with Geometry-Aware Recurrent Networks
	2.1 Introduction
	2.2 Geometry-aware recurrent networks
	2.2.1 View prediction
	2.2.2 3D object detection and segmentation

	3 Learning to See Moving Objects without 3D Labels
	3.1 Introduction
	3.2 Semi-supervised learning of 3D object detection
	3.2.1 View-contrastive rendering
	3.2.2 Experiments

	3.3 Unsupervised 3D moving object detection
	3.3.1 Experiments

	II Action + Physics: Learning to imagine how objects can move and how to interact with them
	4 Learning View-invariant Intuitive Physics Models for Manipulation
	4.1 Introduction
	4.2 Object-Factorized Environment Simulators (3D-OES)
	4.2.1 3D Object Graph Neural Networks for Motion Forecasting
	4.2.2 Model Predictive Control with 3D-OES

	4.3 Experiments
	4.3.1 Data collection details
	4.3.2 Action-Conditioned 3D Object Motion Forecasting
	4.3.3 Visualization of the 3D motion predictions
	4.3.4 Neural rendering and counterfactual simulations
	4.3.5 Pushing with Model Predictive Control (MPC)
	4.3.6 Sim-to-Real Transfer

	5 Visually-Grounded Library of Behaviors for Generalizing Manipulation Across Objects, Configurations and Views
	5.1 Introduction
	5.2 Method
	5.2.1 Visually-Grounded Behavior Selector
	5.2.2 Building a Library of Behaviors

	5.3 Experiments
	5.3.1 Simulation Experiment Setups
	5.3.2 Single Behavior versus a Library of Behaviors
	5.3.3 The necessity of building the selector with the proposed view-invariant and affordance-aware 3D Representations
	5.3.4 Comparison with other grasping baselines
	5.3.5 Real robot results

	III Concept learning: Learning to construct memory and associate current observations with past memory
	6 Unsupervised learning of 3D visual Concepts by Corresponding and Quantizing Detected Objects
	6.1 Introduction
	6.2 3D Quantized-Networks (3DQ-Nets)
	6.2.1 Quantizing objects into prototypes
	6.2.2 Cross-scene 3D correspondence mining
	6.2.3 Iterative learning of object detection, visual features, and clustering

	6.3 Experiments
	6.3.1 Few-shot object category labelling
	6.3.2 Clustering with 3D pose-aware quantization
	6.3.3 3D feature learning with 3D correspondence mining
	6.3.4 Joint training of 3D object detection, feature learning and clustering
	6.3.5 Scene parsing using prototypes

	7 Few-shot Concept learning and VQA with Disentangled 3D concepts
	7.1 Introduction
	7.2 Disentangling 3D Prototypical Networks (D3DP-Nets)
	7.2.1 Object shape/style disentanglement
	7.2.2 3D disentangled prototype learning

	7.3 Experiments
	7.3.1 Few-shot object shape and style category learning
	7.3.2 Few-shot visual question answering
	7.3.3 3D scene generation from language utterances

	IV Language understanding: Learning to interpret language through visual simulation
	8 Grounding Language in the Learned Visual simulator
	8.1 Introduction
	8.2 Language grounding on 3D visual feature representations
	8.2.1 Language-conditioned 3D visual imagination
	8.2.2 Detecting referential expressions in 3D
	8.2.3 Instruction following

	8.3 Experiments
	8.3.1 Language conditioned scene generation
	8.3.2 Affordability inference of natural language utterances
	8.3.3 Detecting spatial referential expressions
	8.3.4 Manipulation instruction following

	9 Conclusion and Future Directions
	Bibliography

