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Abstract

Machine learning research often follows two seemingly distinct approaches: the empirical approach,
which excels at developing practical algorithms, and the theoretical approach, which offers formal
guarantees and resource-efficient solutions. While the empirical approach often relies on heuristics
and demands costly large-scale experiments, the theoretical approach often hinges on unrealistic as-
sumptions, limiting its applicability to real-world scenarios.

This thesis aims to bridge these approaches by studying “sandbox” setups, which are conceptual
abstractions of complex systems. A well-designed sandbox is both minimal, enabling clean theoreti-
cal analyses and rapid, accessible empirical investigations, and representative, ensuring that findings
within the sandbox are generalizable to broader contexts.

This thesis details the use of the sandbox approach to understand the task design, the model class, and
the learning process. Chapter 2 examines design choices in machine learning tasks, focusing on how
self-supervised methods—namely, contrastive learning and masked prediction—extract information
from sequential data. Chapter 3 analyzes the capabilities and limitations of a specific model class,
with an emphasis on Transformers for sequential reasoning. This chapter characterizes the feasible
solutions, discusses generalization challenges, and proposes improvements with implications on in-
terpretability. Finally, Chapter 4 examines factors that impact the learning process. It identifies and
addresses an algorithmic challenge in contrastive learning, and explores how knowledge distillation
can improve sample complexity.
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Chapter 1

Introduction

There are two primary methodologies for advancing machine learning: the empirical approach which
derives insights largely through trial and error, and the theoretical approach which builds on formal
guarantees. Each approach comes with its strengths and limitations. The empirical approach ex-
cels at developing practical algorithms and real-world applications, with performance that often im-
proves with scale and complexity [Sutton, 2019]. However, this reliance on large-scale experiments
also makes advancing state-of-the-art methods increasingly resource-intensive, limiting accessibility
to research and making it prohibitively expensive to gain a scientific understanding of the mecha-
nisms driving these methods. In contrast, the theoretical approach requires minimal computational
resources and provides provable guarantees. Yet, these guarantees are often derived under strict as-
sumptions that may not hold in practical settings, limiting their applicability to real-world problems.

Fortunately, these two approaches are not mutually exclusive but complementary. Empirical find-
ings frequently uncover phenomena that challenge existing theories. For example, the generalization
of overparameterized neural networks has exposed the limitations of uniform convergence [Nagara-
jan, 2021], while the edge-of-stability phenomenon [Cohen et al., 2021] has inspired a reevaluation
of optimization principles. Conversely, theoretical insights deepen our understanding of empirical
methods and offer guidance that reduces the cost of trial-and-error experiments and informs the de-
sign of new algorithms. Classic examples include VC-theory-based SVM Cortes and Vapnik [1995],
boosting Schapire [1990], and optimizers like Adam [Kingma and Ba, 2014], which have been widely
adopted in the field. More recently, techniques like the tensor program [Yang and Hu, 2020, Yang
et al., 2022] and dynamical mean field theory [Bordelon and Pehlevan, 2022, 2024] have helped elim-
inate the need for expensive hyperparameter searches, further bridging the gap between theory and
practice.

This thesis aims to take the advantages of both the theoretical and the empirical approaches by study-
ing simple sandboxes, 1 which serve as conceptual abstractions of complex systems. A useful sandbox
should be minimal, meaning it is the simplest setting that allows for the study of the question of inter-
est. This simplicity facilitates theoretical analyses and provides a lightweight experimental setup that
supports rapid iterations and broad accessibility. At the same time, a sandbox should be sufficiently
representative to ensure that its findings generalize beyond the sandbox itself and can offer insight to

1If you like this approach, please also read Edelman [2024].
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more complex systems. The sandbox should ideally also be controllable so that it can be extended to
incorporate varying levels of complexity as needed.

Sandboxes offer many benefits to building the theory and science of machine learning. From a practi-
cal point of view, sandboxes help with algorithm designs, as they allow for isolating the main bottleneck
of a problem for both theoretical analyses and empirical verification; Section 4.1 will provide an ex-
ample where the simple Gaussian mean estimation is used as a sandbox to highlight an algorithmic
challenge in noise contrastive estimation [Gutmann and Hyvärinen, 2010a]. Sandboxes are also well-
suited for diagnostics and stress testing such as in addressing the long tails of real-world distributions
(see Section 3.5 for an example), especially with fully synthetic sandboxes where there is an added
benefit of access to a practically infinite amount of data. Besides these practical advantages, the most
significant value of sandboxes is that they provide conceptual abstractions that promote clarity. A
classic example is the abstraction of railway traffic flow in Harris and Ross [1955], whose simplified
formulation was instrumental in establishing the connection between max flow and min cut [Ford
and Fulkerson, 1956].

As noted in Harris and Ross [1955] and more broadly, identifying suitable sandboxes is as much
an art as a science, and the appropriate level of abstraction provided by a sandbox is often highly
context-dependent. Encouragingly though, sandboxes have proven effective in many areas of ma-
chine learning. For instance, studies of representability often draw on sandboxes inspired by formal
languages [Bhattamishra et al., 2020b, Hahn, 2020, Yao et al., 2021a, Liu et al., 2022a] and communi-
cation complexity [Sanford et al., 2024]. Similarly, optimization analyses frequently adopt simplified
models trained on Gaussian or structured data [Abbe et al., 2022, 2023b, Li et al., 2023, Nichani et al.,
2024]. Moreover, sandboxes are highly versatile. Boolean data, for instance, can be used to study a
range of topics, including representation capacity [Hahn, 2020, Chiang and Cholak, 2022], optimiza-
tion [Abbe et al., 2023b, Glasgow, 2023], inductive biases Bhattamishra et al. [2022], Morwani et al.
[2024], (length) generalization behaviors [Liu et al., 2023a, Anil et al., 2022b], and key design choices
of the modern machine learning pipeline, such as the impact of data curriculum [Abbe et al., 2023a,
2024].

This thesis applies the sandbox methodology to study the following aspects of machine learning,
with the goal of principled and efficient progress: 1) design choices of the task, which determines
the ideal scenario without practical constraints; 2) characteristics and limitations associated with the
model class; and 3) the learning process governed by various factors.

Task design in self-supervised learning. Predominantly, a machine learning task aims to achieve a
goal by minimizing an objective function. The task and the objective are designed to reflect our belief
or prior knowledge, but they are only surrogates of the ultimate goal and can be misleading. A classic
example is reward hacking in reinforcement learning: the goal is to encourage certain desired behav-
iors, the learning task is to maximize a reward function, but an inappropriately designed reward can
lead to unwanted behaviors and surprising failures. Therefore, when designing a machine learning
task, it is important to understand what the task entails.

Such consideration is especially relevant in the context of self-supervised learning, where the model
is trained to leverage inherent structures in the data rather than manually collected labels. Since there
are no labels, it is clear that the self-supervised task is intended as a surrogate of the final goal that we
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care about. Nevertheless, it is widely believed that learning from properly identified structures can
be useful. For example, if our goal is to classify between images of dogs and cars, one self-supervised
task we can use is to provide models with images at different rotation angles and train the model to
identify the angle of each image [Gidaris et al., 2018]. Intuitively, a model that can correctly identify
the rotation angle should have learned some features that are useful to distinguish between dogs and
cars. The question though is how to quantify the precise effect of the design parameters.

Our contribution. In Chapter 2, we will study the effect of design parameters in a discriminative and a
generative self-supervised learning task.

The discriminative task considered in Section 2.1 is contrastive learning of strong-mixing continuous-
time stochastic processes. Contrastive learning is one of the leading learning paradigms of self-
supervised learning, where a model is trained to solve a classification task constructed from unla-
beled data. Despite its empirical popularity in mutliple domains, theoretical understanding of many
aspects of the task, both statistical and algrithmic, remained fairly elusive. Our results study time-
series data, a natural structure for natural languages [Devlin et al., 2018b], finance data [Ait-Sahalia
et al., 2008a], and brain imaging data [Hyvarinen and Morioka, 2016]. The sandbox we choose is for
the data to come from a strong-mixing continuous-time stochastic process, where the mixing speed
relates to the strength of the sequential dependency in data. We show that a properly constructed con-
trastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals
in the diffusion case. Our results provide sample complexity bounds for solving this task and quan-
titatively characterize what the value of the contrastive loss implies for distributional closeness of
the learned kernel. Moreover, we illuminate the appropriate settings for the contrastive distribution,
such as the intervals at which training samples are drawn.

In Section 2.2, we turn to the masked prediction task and study how the choice of the masking ratio
affects the identifiability of the data generative model. A masked prediction task trains the model
by predicting missing tokens in the input sequence. It is a popular method for both natural lan-
guages [Devlin et al., 2018b] and visual data He et al. [2021]. The sandbox for data is a family of
parametric probabilistic models. Given an optimal predictor with a suitably chosen parametric form,
we ask whether we can read off the ground truth parameters of the probabilistic model from the op-
timal predictor. While incarnations of this approach have already been successfully used for simpler
probabilistic models (e.g. learning fully-observed undirected graphical models [Ravikumar et al.,
2010]), we focus instead on latent-variable models capturing sequential structures—namely Hidden
Markov Models with both discrete and conditionally Gaussian observations. Our results show that
there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while
others do not. As for proof techniques, we uncover close connections with uniqueness of tensor
rank decomposition, a widely used tool in studying identifiability through the lens of the method of
moments.

Model class: capabilities and limitations of Transformers Given a learning task, another impor-
tant choice is the model class adopted to learn the task, which crucially affects the solution found
in practice. One consideration is the representational capacity, namely, whether the model class is
sufficiently rich to represent an optimal solution to the learning task. A classic example often seen
in an introductory machine learning class is that the XOR function can be solved by a linear classi-
fier but can be solved by a 2-layer neural network with nonlinear activation. Often times, we also
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care about representational efficiency. For instance, the focus of Chapter 3, Transformers, is more
parameter efficient than other architectures such as graph neural networks or recurrent models in
solving some tasks [Sanford et al., 2024] but not some others [Bhattamishra et al., 2024]. The separa-
tion in representability also extends to learnability [Wang et al., 2024] and affects the generalization
behaviors [Anil et al., 2022a, Liu et al., 2023b].

The particular architecture we are interested in is the Transformer [Vaswani et al., 2017], which has
been the dominant sequence model in the recent years. We will center the discussion around (de-
ductive) reasoning modeled as synthetic combinatorial tasks. Specifically, the sandbox we focus on
is finite-state automata, where a state transition represents one reasoning step. Despite being at the
simplest level of the automata hierarchy, finite-state automata can capture various practical applica-
tions and are important building blocks of more complex tasks. In this thesis, we consider both the
representational capacity and the generalization behaviors.

Our contribution. We start in Section 3.4 with positive representability result showing that Transform-
ers, while lacking recurrence, are able to perform long chains of sequential reasoning using far fewer
layers than the number of reasoning steps. We show that a low-depth Transformer can represent
the computations of any finite-state automaton (thus, any bounded-memory algorithm), by hierarchi-
cally reparameterizing its recurrent dynamics. Our theoretical results characterize shortcut solutions,
whereby a Transformer with o(T) layers can exactly replicate the computation of an automaton on
an input sequence of length T. We find that polynomial-sized O(log T)-depth solutions always ex-
ist; furthermore, O(1)-depth simulators are surprisingly common, and can be understood using tools
from Krohn-Rhodes theory [Krohn and Rhodes, 1965] and circuit complexity.

However, solutions found in practice may not recover these computational shortcuts. Empirically,
while Transformers are able to reach perfect accuracy on in-distribution validation samples across a
wide variety of automata, they suffer a significant performance drop when tested out-of-distribution
(OOD). This is in stark contrast to recurrent neural networks (RNNs), which are able to general-
ize perfectly (on the finite test samples covered in the experiments) with far less data and compute.
Towards making sense of this fundamentally unsolved generalization problem in Transformer, our
work in Section 3.5 identifies and analyzes the phenomenon of attention glitches, in which the Trans-
former architecture’s inductive biases intermittently fail to capture robust reasoning. We hypothesize
that attention glitches account for (some of) the closed-domain hallucinations [Ji et al., 2023] in nat-
ural LLMs. To isolate the issue, we introduce flip-flop language modeling (FFLM), a parametric family
of synthetic benchmarks designed to probe the extrapolative behavior of neural language models.
FFLM is a variant of the flip-flop automaton, a primitive identified by Krohn-Rhodes decomposition
explained in the previous section. As a sandbox for the copy or recall abilities in general reasoning
tasks, FFLM requires a model to copy binary symbols over long-range dependencies while ignoring
the tokens in between. We find that Transformer FFLMs suffer from a long tail of sporadic reasoning
errors, some of which we can eliminate using various regularization techniques. Our preliminary
mechanistic analyses show why the remaining errors may be very difficult to diagnose and resolve.

In addition to diagnosing failure modes of Transformers, we also study how theoretical insights can
be used to reflect on current practices and improve OOD performance. In Section 3.6, we use Dyck
languages as a sandbox to illustrate the limitations of certain interpretability methods. Interpretabil-
ity methods aim to understand the algorithm implemented by a trained model (e.g., a Transofmer) by
examining various aspects of the model, such as the weight matrices or the attention patterns. Our
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work takes a critical view of methods that exclusively focus on individual parts of the model, rather
than consider the network as a whole. The sandbox we consider is the (bounded) Dyck language.
Theoretically, we show that the set of models that (exactly or approximately) solve this task satisfy a
structural characterization derived from ideas in formal languages, specifically the pumping lemma.
We use this characterization to show that the set of optima is qualitatively rich; in particular, the at-
tention pattern of a single layer can be “nearly randomized”, while preserving the functionality of the
network. We also show via extensive experiments that these constructions are not merely a theoretical
artifact: even after severely constraining the architecture of the model, vastly different solutions can
be reached via standard training. Thus, interpretability claims based on inspecting individual heads
or weight matrices in the Transformer can be misleading. Moreover, adding a regularization term
akin to a Transformer’s implementation of the pumping lemma improves the OOD performance of
the model.

Learning process. The aforementioned gap between the theoretical constructions and the practical
solutions results from the fact that most learning problems in modern machine learning are non-
convex, which means that the optimization process and hence the final solutions are sensitive to
various factors in the learning process. This prompts the need to study the learning process itself,
which is the focus of Chapter 4. We will see two examples where we accelerate training by modifying
the objective function, the update rule, or the source of the supervision signal.

Our first example is to improve the loss landscape of noise-contrastive estimation (NCE), a statis-
tically consistent method for learning unnormalized probabilistic models. NCE is computationally
cheaper than maximum likelihood estimation (MLE) and is well known to be consistent. However,
it has been empirically observed that the choice of the noise distribution is crucial for NCE’s perfor-
mance, although such observations have never been made formal or quantitative. In fact, it is not
even clear whether the difficulties arising from a poorly chosen noise distribution are statistical or al-
gorithmic in nature. In Section 4.1, we formally pinpoint reasons for NCE’s poor performance when
an inappropriate noise distribution is used, with a focus on the algorithmic aspect of these challenges.
Using a simple sandbox of 1-dimensional Gaussian mean estimation, we prove that they are due to
an ill-behaved loss landscape that is extremely flat near the optimum. We then introduce a 2-part
mitigation for the landscape issues: a variant of NCE called eNCE (exponential NCE) which changes
NCE’s log loss to an exponential loss, and a modified gradient update step with a simple change from
gradient descent to normalized gradient descent. These changes lead to an exponential improvement
in the convergence speed when the target and noise distributions are in a given exponential family,
and also work well empirically for more complex distributions.

In our second example, we consider alternative supervision signals for accelerating the training of
small models. Our focus is knowledge distillation [Hinton et al., 2015], where a student model learns
from a teacher model. Knowledge distillation has seen successful adoption in various scenarios [Jia
et al., 2021, Touvron et al., 2021, Sanh et al., 2019, Gunasekar et al., 2023]. Perhaps counterintiutively,
it has been repeated confirmed that a better-performing teacher does not always lead to a better-
performing student. Prior work attributes this to a large teacher-student performance gap and aim to
mitigate by providing intermediate supervision [Mirzadeh et al., 2019, Jin et al., 2019]. In Section 4.2,
we analyze an empirically successful approach called progressive distillation, where several intermedi-
ate checkpoints of the teacher are used successively to supervise the student as it learns [Anil et al.,
2018, Harutyunyan et al., 2023]. We will consider two sandboxes. The first is sparse parity, a sim-
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ple combinatorial task whose difficulty of learning is well understood. The second is probabilistic
context-free grammar (PCFG), which is a natural extension of the Dyck languages and captures the
hierarchical structure in natural languages. We show that progressive distillation accelerates the train-
ing of the students via an implicit curriculum that is present only in the intermediate checkpoints (but
not the final checkpoint after convergence). The improvement in training efficiency is demonstrated
both theoretically by a reduced sample complexity, and empirically on both the two sandboxes and
real-world natural language datasets.
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Chapter 2

Illuminating task designs of
self-supervised learning

In this chapter, we study the design choices involved in learning tasks, with a particular emphasis
on self-supervised methods and the recovery of the underlying data distribution. Self-supervised
learning presents an alternative to supervised learning by reducing the reliance on costly human-
annotated data. One of the major advantages of self-supervised methods is their ability to leverage
large volumes of “in the wild” data, such as images and text from the internet, making them more
scalable than supervised approaches. A problem though is that the effectiveness of self-supervised
methods can vary widely depending on specific design choices of the task, whose search space is often
too costly to be explored thoroughly through empirical investigations alone. In contrast, sandboxes
can help illuminate the search space by leveraging insights from theoretical analyses.

This chapter includes two examples on learning sequential data. In Section 2.1 (based on Liu et al.
[2021]), we show how the noise distribution in contrastive methods [Chen et al., 2020, Tian et al.,
2020c, Gutmann and Hyvärinen, 2010a, Rhodes et al., 2020] influences the sample complexity of learn-
ing the underlying distribution, using continuous-time stochastic processes as the sandbox. We study
the choice of the observation interval and derive the first finite-sample bound for contrastive learning
on such processes. In Section 2.2 (based on [Liu et al., 2022b]), we analyze masked prediction meth-
ods, for which the masking ratio is a key design parameter. We study the parameter identifiability of
a generative model for sequential data, using the hidden Markov model and its continuous variant as
the sandboxes. Our findings indicate that this ratio controls the task complexity and plays a crucial
role in determining parameter identifiability.

2.1 Contrastive learning of strong-mixing continuous-time stochas-
tic processes

One of the paradigms of learning from unlabeled data that has seen a lot of recent work in various
application domains is “self-supervised learning”. These methods supervise the training process with
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information inherent to the data without requiring human annotations, and have been applied across
computer vision, natural language processing, reinforcement learning and scientific domains.

Despite the popularity, they are still not very well understood—both on the theoretical and empirical
front—often requiring extensive trial and error to find the right pairing of architecture and learning
method. In particular, it is often hard to pin down what exactly these methods are trying to learn,
and it is even harder to determine what is their statistical and algorithmic complexity.

The specific family of self-supervised approaches we focus on in this work is contrastive learning,
which constructs different types of tuples by utilizing certain structures in the data and trains the
model to identify the types. For an example in vision, Chen et al. [2020] apply two random augmen-
tations (e.g. crops and discolorations) on each training image, and form pairs that are labeled as either
positive or negative depending on whether two augmentations are from the same image or not. In
NLP, one of the tasks in Devlin et al. [2018a], Tosh et al. [2020b] trains the model to predict whether
two half-sentences are from the same original sentence.

In this paper, we focus on understanding a natural type of contrastive learning tasks for time series
data—a natural structure in NLP [Devlin et al., 2018a, Tosh et al., 2020b], finance [Ait-Sahalia et al.,
2008b], and brain imagining research [Hyvarinen and Morioka, 2016] More precisely, we focus on
data coming from a discretization of a diffusion process—a common modeling assumption in many of
these domains—and show that a natural distinguishing task we set up on pairs of samples from the
time series approximately learns the transition kernel of the stochastic process.

Note, a diffusion process is a continuous-time stochastic process and we are interested in learning
transition kernels for “mid-range” time intervals, that is, intervals that are potentially too large for
the Euler scheme to be accurate. These transition kernels are not easy to learn in general through
standard maximum likelihood methods, as closed-form solutions are complicated [Ait-Sahalia et al.,
2008b] and often do not exist, and empirical estimations can also be challenging [Milstein et al., 2004].
To our knowledge, our work is the first one to use contrastive learning to learn such transition kernels.
Moreover, we provide a statistical complexity analysis—that is, analyzing the number of samples
required to learn a good approximation of the transition kernel. This helps quantify certain aspects of
contrastive learning —how should we choose the contrast distribution, and how a small loss on the
contrastive task transfers to closeness of the transition kernel estimate.

Related Work There is a large body of recent empirical work on self-supervised learning in general,
which we won’t make an effort to survey in full, as it does not directly relate to our results.

There have been some recent works on trying to understand theoretically why and when self-supervised
learning works. The closest ones in spirit to our work are Tosh et al. [2020d] and Hyvarinen and
Morioka [2016], but there are significant differences with both. Tosh et al. [2020d] focus on a data
distribution coming from LDA (topic modeling), and characterize the kinds of downstream classifi-
cation tasks the learned predictor is useful for. Hyvarinen and Morioka [2016] focus on a time series
setting as well but with several differences as highlighted below.

First, they work with a latent-variable model, and show that their method recovers some function of
the latent. One example parametrization is an exponential family, and the function of the recovered
latent variable depends on the choice of the exponential family.
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Second, they assume the data in the time series can be subdivided into “blocks”, such that the distri-
bution remains the same in each block and is sufficiently different from the others. In practice, it is
not clear how to choose these “blocks” or how to even verify the assumptions needed on them. We do
not need this “blocking”, but our data needs to come from the stationary distribution of the process.

Third, they do not provide an analysis on statistical complexity. In particular, important aspects of
how various hyperparameters are chosen and affect the quality of the learned predictor—the size of
the blocks, the amount of “difference” between the blocks—are not clear.

For temporally dependent and stationary data, another related work is by Hyvarinen and Morioka
[2017b]. The setup is however different: Hyvarinen and Morioka [2017b] focus on discrete-time data
with autocorrelations, whereas we analyze a continuous-time diffusion, leading to different setups
and goals for the contrastive task. Moreover, in contrast to our finite sample analysis, their results
describe only the asymptotic behaviors, which can hide certain statistical aspects of the algorithm as
discussed earlier.

In the simpler iid setting, a classical precursor paper to this is by Gutmann and Hyvärinen [2010b],
who apply the contrastive learning approach to learning a distribution from iid samples—by setting
up a classification task to distinguish between samples from the target distribution and a simple
“contrast” distribution. Their analysis is again asymptotic and only provide sample efficiency bounds
in the asymptotic limit (i.e. as the number of samples goes to infinity). More recently, such classical
approaches have been combined with more modern generative models based approaches to generate
better contrast distributions [Gao et al., 2020], and augmented with intermediate tasks to better handle
dissimilar target and contrast distributions [Rhodes et al., 2020].

Finally, other papers on empirical and theoretical properties of contrastive learning that are worth
mentioning include Purushwalkam and Gupta [2020], Tian et al. [2020b] and Saunshi et al. [2019],
Wang and Isola [2020b]—these are not directly comparable to what we are doing here, as the data
models are quite different, as is the flavor of guarantees they show. In particular, these papers work
with iid data and focus on learning good representations that can perform well on certain super-
vised tasks, whereas we use contrastive learning to perform distribution learning, that is, learning
the transition kernels.

2.1.1 Results overview

We now formally state our results. We will start with specifying the distributional model for the data
and the contrastive learning task, and build intuitions on what the task aims to achieve before stating
the formal guarantees.

10



2.1.1.1 Setup

We will assume our data comes from continuous time series: namely {xt}t≥0 ⊂ Rd, drawn according
to a stochastic process called the Langevin diffusion1, defined by the stochastic differential equation

dxt = −∇ f (xt)dt +
√

2dWt, ∀t ≥ 0, (2.1)

for f : Rd → R a convex function, and {Wt}t≥0 ⊂ Rd a Wiener process, i.e. Ws −Wt ∼ N (0, (s−
t)Id), ∀s ≥ t ≥ 0. For the reader unfamiliar with diffusions, we can think of a diffusion process as
the limit of a discrete sequence of noisy gradient updates with a fresh Gaussian noise: as η → 0,
the discrete sequence defined by xt+1 = xt − η∇ f (xt) +

√
2ηξt where ξt ∼ N (0, I) converges to

the continuous time diffusion [Bhattacharya et al., 1978]. The simplest instantiation of this, when
f is quadratic (i.e. ∇ f is linear), gives rise to the Ornstein–Uhlenbeck process, which has broad
applications in science and finance modeling.

It is well-known [Bhattacharya et al., 1978] that the stationary distribution of the above process is the
distribution π(x) ∝ e− f (x), under relatively mild regularity conditions on f . We will assume that x0

(and hence all subsequent xt) marginally follow π—i.e. the process is stationary.

We will also need several common assumptions on the f in the generative process.

Assumption 1 (Strong convexity). f is ρ-strongly convex.

Assumption 2 (Smoothness of f ). f is infinitely differentiable, L0-smooth, and ∇ f is L1-smooth.2

Assumption 3 (Linear growth). There exists a positive constant K < ∞, such that ∀z ∈ Z , ∥∇ f (z)∥ ≤
K(1 + ∥z∥).

Assumption 1 ensures the least singular value of the Hessian is lower bounded by ρ—which ensures
that

∫
x e− f (x) is finite. Assumption 3 ensures the existence of a solution to equation 2.1, and Assump-

tion 2 ensures the solution of equation 2.1 is unique.3 We refer the readers to Ait-Sahalia et al. [2008b]
for formal justifications of these assumptions. We denote with z∗ the minimizer of f , and assume
z∗ = vec0 for convenience.

Finally, denote B := Eπ∥x∥. Note that our assumptions on f guarantee a bounded B: let Zπ :=∫
z exp (− f (z)) dz denote the partition function of the stationary distribution π, and with x∗ = vec0,

we have

B =
1

Zπ

∫
z
∥z∥ exp(− f (z))dz ≤ 1

Zπ

∫
z
∥z∥ exp

(
− f (z∗)−

∥z∥2

2(1/ρ)

)
dz

= π(z∗)EN (0, 1
ρId)
∥z∥ ≤ π(z∗)

√
EN (0, 1

ρId)
∥x∥2 = π(z∗)

√
d
ρ

.

(2.2)

1The results we state can more generally be stated about an Íto diffusion, namely a stochastic differential equation of the
type dxt = −g(xt)dt + σ(xt)dWt, ∀t ≥ 0 satisfying similar regularity conditions to ours. We chose the simplest setting for
clarity of exposition.

2Recall a function f is L smooth if for any x,y in the support, f (x) ≤ f (y) + ⟨∇ f (y),x− y⟩+ L
2 ∥x− y∥2

2.
3Milder conditions on f ensure uniqueness/existence of solutions and not essential for our proofs—we assume this for

simplicity of exposition.
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2.1.1.2 Contrastive learning task

We choose the contrastive task to be binary classification on observations from the diffusion defined
in equation 2.1. For η = OL1,L2,ρ(1)—i.e. any η sufficiently small as a function of the regularity
parameters of f —we will consider the observations at integer multiples of η, namely LX̃ := {x̃iη} ⊂
Rn, and let T > 0 be length of the (continuous-time) sequence covered by these observations. Suppose
the number of observations in LX̃ is 2m where 2m = ⌊T/η⌋.

The binary classification task is defined on a sequence of pairs of points denoted as SX := {(x2iη ,x′2iη)}
m−1
i=0 ,

where x2iη = x̃2iη , and x′2iη is chosen in one of the two ways:

• With probability 1/2, we let x′2iη = x̃(2i+1)η and output (x2iη ,x′2iη) with label 1. We call these
positive pairs.

• With probability 1/2, we sample x′2iη ∼ q for some contrast proposal distribution q and output
(x2iη ,x′2iη) with label 0. (We will specify the restrictions on q momentarily.) We call these negative
pairs.

Intuitively, the task asks the model to distinguish the noise distribution q from the η-time transition
kernel of the process pη

∗ : Rd ×Rd → R≥0, which is defined as

pη
∗(z, z′) := Pr(z(t+1)η = z′|ztη = z). (2.3)

What we need to assume on the contrast distribution q is that it is sufficiently close to pη
∗ (algorith-

mically, it also needs to have a pdf that is efficient to evaluate). Specifically, define a constant cq ≥ 1,
such that the ratio between pη

∗ and the proposal distribution q is bounded as

1
cq
≤ pη

∗(z, z′)
q(z′)

≤ cq, ∀z, z′. (2.4)

We will show later that a smaller cq is more preferable, which amounts to choosing a proposal dis-
tribution q that closely tracks the data distribution. This is consistent with observations in previous
works on noise contrastive learning (NCE) that a closer q makes the contrastive task harder and hence
tends to work better in practice [Gutmann and Hyvärinen, 2010b, Gao et al., 2020]. Formally, a larger
cq will give a looser bound on the KL divergence between pη and pη

∗ , as we will see in Theorem 2 and
its proof.

The model we use for the supervised task is denoted as h : R2n → R, which takes in a (x,x′) pair
and predicts the probability of the pair being positive. We assume the output of h to be bounded in
[0, 1].4 We denote the function class h belongs to asH, and train h with the ℓ2 loss:

ℓ
(
h, {(x,x′), y}

)
=
(
h(x,x′)− y

)2 (2.5)

Let the empirical risk R̂ of a model h and loss ℓ associated with a training set SX be defined as usual,
and taking the expectation over SX gives the population risk R:

R̂SX (ℓ ◦ h) :=
1
|SX |

|SX |

∑
i=1

ℓ(h, {(x2iη ,x′2iη), y}),

R(ℓ ◦ h) := ESX R̂SX (ℓ ◦ h).

(2.6)

4This can easily be enforced, for example, by having a sigmoid layer at the end of a neural network.
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The generalization gap is defined as the maximum difference between the above two in the class of
classifiers that we consider:

Φ(SX) := sup
h∈H

[∣∣R̂SX (ℓ ◦ h)− R(ℓ ◦ h)
∣∣] (2.7)

By way of remarks: the l2 loss is chosen since it is bounded, Lipschitz and strongly-convex, which
makes the generalization bound calculations more manageable. It would be interesting to also pro-
vide bounds for cross-entropy or other losses.

We also need concepts capturing the complexity of the function class: the empirical Rademacher com-
plexity R̂ of a function classH is defined with a given dataset S of size m as

R̂S(H) :=
1
m

Eε

sup
h∈H

∣∣∣ ∑
i∈[m]

εih(xi)
∣∣∣|S = (x1, ..., xm)

 . (2.8)

The Rademacher complexity is defined by taking the expectation over the dataset S as

Rm(H) := ES:|S|=mR̂S(H). (2.9)

Assumption 4 (Rademacher Complexity). We will assume the Rademacher complexity ofH satisfies Rm(H) =

O(Kη(H)
√

log m/m), where Kη(H) depends on bothH and the task setup η.

The expression for Rm(H) is common in standard generalization bounds. For instance, such depen-
dency is achieved when the square root of the VC dimension ofH is bounded by Kη(H) [Mohri et al.,
2012].

2.1.1.3 Warmup: characterizing the optimum given infinite data

To gain intuition on what the contrastive task does, we first characterize the optimum of the con-
trastive learning objective in the limit of infinite data. We note that similar analyses have appeared
in other works on variants of contrastive learning, e.g. Hyvarinen and Morioka [2016], Tosh et al.
[2020b,d]. We show:

Lemma 1 (Population optimum). The optimum of the contrastive learning objective

arg min
h

E((x,x′),y)ℓ
(
h, {(x,x′), y}

)
satisfies

h∗(x,x′) =
pη
∗(z, z′)

q(z′) + pη
∗(z, z′)

.

Proof. The proof proceeds by expanding the expectation in question, and a variance-bias like calcula-
tion. Namely, for a fixed (x, x′), taking the expectation over y gives:

Eyℓ
(
h, {(x,x′), y}

)
=
(
h(x,x′)− Pr(y = 1|x,x′)

)2
+ Pr(y = 1|x,x′)

(
1− Pr(y = 1|x,x′)

)
. (2.10)
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The last term of equation 2.10 does not depend on h, so the minimum is achieved when h∗(x,x′) =
Pr(y = 1|x,x′). Expanding Pr(y = 1|x,x′) by the Bayes rule, we get

h∗(x,x′) = Pr(y = 1|x,x′)

=
Pr(x,x′|y = 1)Pr(y = 1)

Pr(x,x′|y = 0)Pr(y = 0) + Pr(x,x′|y = 1)Pr(y = 1)

=
Pr(x,x′|y = 1)

Pr(x,x′|y = 0) + Pr(x,x′|y = 1)

=
π(z)pη

∗(z, z′)
π(z)q(z′) + π(z)pη

∗(z, z′)
=

pη
∗(z, z′)

q(z′) + pη
∗(z, z′)

.

(2.11)

Note that the above proof uses essentially nothing about q other than that it is known: this is why
population level analyses of contrastive objectives (e.g. like Hyvarinen and Morioka [2016]) may fail
to capture many non-asymptotic aspects of the contrastive task.

2.1.1.4 Statement of main results

We are now ready to state the main results of this section. We claim that a low loss on the contrastive
task implies closeness in a learned η-time transition kernel and the ground truth one. We will state
the main results here and defer the proofs to Section 2.1.3.

2.1.1.4.1 Sample complexity bounds

We first present the sample complexity for controlling the generalization gap defined in equation 2.7:

Theorem 1. If T = Ω
(

B2Kη(H)3

δ2∆3
gen

(
log 1

δ

) 3
2
)

, then with probability 1− δ, the generalization gap is bounded

by ∆gen.

Note that the dependency of T on η comes only through the complexity measure Kη(H). The reason
there isn’t additional dependence on η (e.g. the reader might imagine the number of “samples”
effectively depends on T/η) is that though decreasing η gives more samples, the samples will be
more dependent and hence less useful for generalization. The proof in Section 2.1.3.1 will formally
justify this intuition.

2.1.1.4.2 Distribution estimator from classifier for contrastive task

Second, we show how to prove guarantees on an estimator for the transition kernel, given a classifier
with a small contrastive task loss.

In light of Lemma 1, given a classifier h, define the transition kernel implied by h as

pη(z, z′) :=
h(z, z′)q(z′)
1− h(z, z′)

. (2.12)
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We wish to show that if h achieves a small loss, the pη defined above is in fact close to p∗ in some
distributional sense.

We will show two types of guarantees, one under the assumption that pη is somewhat close to p∗, and
one for arbitrary pη . In the first case, we will in fact show that a small loss implies that the learned pη

is close to p∗ in a KL divergence sense (more precisely, ExKL(pη
∗(·|x)∥pη(·|x)) is small); in the second

case, we will show that Ex,x′ |p
η
∗(x, x′)− pη(x, x′)| is small.

The reason we can extract a stronger result in the first case is that we can leverage the strong convexity
of the contrastive loss near the global optimum in an appropriate sense. Intuitively, in a strongly
convex loss, a small loss implies closeness of the parameter to the global optimum. Such a property
will not hold globally, as the loss may be arbitrarily non-convex as a function of pη . Still, we will be
able to extract a weaker guarantee (and with a less standard notion of distance).

Case 1: local guarantees for pη close to pη
∗ . Let constants ∆min, ∆max be defined such that

pη(z, z′)
pη
∗(z, z′)

∈ [∆min, ∆max], ∀z, z′. (2.13)

and note that 0 < ∆min ≤ 1 ≤ ∆max.

∆min, ∆max can be considered as a notion of closeness between pη
∗ and pη . When ∆min, ∆max are close

to 1, that is, when pη lies in a small neighborhood of pη
∗ , we can show the contrastive loss is locally

strongly convex with respect to the KL divergence. This allows us to relate the loss to the KL diver-
gence between pη

∗ and pη . Formally, we state the following result:

Theorem 2. Suppose assumption 1-3 are satisfied and that ∆max ≤ 7
6 . Suppose the training error of h is ϵtr +

ϵ⋆, where ϵ⋆ := E{(x,x′),y}

(
pη
∗(x,x′)

pη
∗(x,x′)+q(x′)

− y
)2

is the optimal error achieved by pη
∗ . If the generalization

gap is bounded by ϵtr, then the average KL divergence between the ground truth and learned transition kernel
is bounded by the contrastive loss as

Ez∼πKL
(

pη
∗(·|z)∥pη(·|z)

)
≤

2(1 + cq)5ϵtr

∆2
min

. (2.14)

Recall that cq (defined in Equation (2.4)) represents how close the contrast distribution q is to pη
∗ .

Theorem 2 hence explains why a closer q is more preferable, as has been suggested by empirical
evidence [Gao et al., 2020]. In addition, as mentioned earlier, the bound ∆max ≤ 7

6 is required to
reason about the convexity of the contrastive loss in the neighborhood of pη

∗ . Globally, the loss need
not be convex, so it is entirely possible for a pη faraway from pη

∗ in the KL sense to have a small
contrastive loss. Nevertheless, we can prove something weaker in this case.

Case 2: Global guarantees for arbitrary pη . In the case of an arbitrary pη , we prove the following bound
on the closeness to pη

∗ :

Theorem 3. Under assumptions 1-3, and let ϵ∗, T, pη be the same as in Theorem 2. Let η = Oρ,L0,L1(1), then
pη satisfies

E
z∼π,z′∼pη

∗(·|z)

∣∣pη(z, z′)− pη
∗(z, z′)

∣∣ ≤ √2ϵtrO

(√
π(z∗)

(
1

ρη2

)d/4
)

. (2.15)
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We make two remarks about the Theorem 3. First, the value of η cannot be too large for the RHS
of Equation (2.15) to obtain (i.e. η = Oρ,L0,L1(1)). Analyzing merely the optimum of the contrastive
objective would not reveal this.

Moreover, though the exponential dependency in η may appear pessimistic, it is in fact the right one.
A closer inspection of the left hand side of Equation (2.15) shows that its scaling in η is also (1/η)d/2

(by Lemma 6)—so the only “extra” exponential factors are the η-independent exponential terms. It
is not clear if this can be removed or is essential—or if possibly other losses can remove this kind of
dependence.

2.1.2 Generalization Machinery for Non-iid Data

At the core of our analysis is a set of tools for non-iid data, which we first build up before discussing
the proof. We will use generalization results for data coming from strong mixing stochastic processes:
namely, the samples are not independent; but, intuitively, after a short amount of time, the samples
are “almost independent”. Precisely, we use the notion of β-mixing:

Definition 1 (β-mixing). For a stationary Markov process, the β-mixing coefficient is defined as the average
TV distance between the distribution after running the process for t time with a given starting point, and the
stationary distribution π:

β(t) = Ex TV
(

Pt(·|x0 = x), π
)

. (2.16)

A process is said to be β-mixing if limt→∞ β(t) = 0.

The β-mixing coefficient of a discrete-time sequence is defined similarly, with the conditional distribution de-
fined between points in the sequence.

We note that β-mixing can be defined more generally on processes that may are not necessarily sta-
tionary or Markov. The above definition is the cleanest version that suffices for our setting.

The reason this will be useful for us is that when our data is β-mixing, we will be able to use gener-
alization bounds similar to those we have for iid data. More precisely, we will leverage the following
result by Mohri and Rostamizadeh [2009], which when applied to our setting becomes:

Lemma 2 (Rademacher complexity bound, Mohri and Rostamizadeh [2009], Theorem 1). Let SX form
a β-mixing sequence with stationary distribution π. Then, for some δ ∈ (0, 1), for every µ such that δ >

2(µ− 1)β(T/2µ), with probability at least 1− δ, the generalization gap Φ(SX) is bounded by

Φ(SX) := sup
h∈H

[
R(ℓ ◦ h)− R̂SX (ℓ ◦ h)

]
≤

Rµ(H) +

√√√√ log
(

2/
(

δ− ∆µ
appr

))
2µ

 , (2.17)

where ∆µ
appr := 2(µ− 1)βSX (T/2µ), and Rµ(H) is the Rademacher complexity of H over samples of size µ

drawn iid from π.

The result is proved using a technique called blocking from Yu [1994]. The idea is to divide a depen-
dent sequence of samples into 2µ blocks of consecutive points, such that when the block size T

2µ is
sufficiently large, every other block would be approximately independent because of the fast mixing.
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The generalization analysis can hence be divided into two steps, one for applying standard general-
ization bound on i.i.d. data (i.e. the blocks), and the other for bounding the approximation error of
treating dependent blocks as independent ones. The term ∆µ

appr is a consequence of the derivation in
Yu [1994] and accounts for errors of approximating non-iid data with iid ones.

We will proceed by first showing fast mixing, then applying the generalization bounds above.

2.1.2.1 Proving β-mixing

We will first show β-mixing of the sequence SX of pairs (x,x′) as constructed in Section 2.1.1.1; that
is, by choosing x from the diffusion process, and then choosing x′ to be η-time after in the process
or from a proposal distribution with equal probability. Intuitively, this would suggest that once two
points are sufficiently apart, they will be approximately independent, on which standard generaliza-
tion bounds apply. Formally, we have the following result:

Lemma 3. The β-mixing coefficients for the sequence SX defined in Section 2.1.1.1 is βSX (t) = O
(

B√
t

)
.

Proof. We will prove this by showing the sequence of pairs SX shares the same β coefficients as the
sequence of points LX̃ (Lemma 4). Then, since LX̃ is itself β-mixing (Lemma 5), the claim follows.

Having the same β coefficients between SX an LX̃ makes intuitive sense, since the sequence of pairs
can be considered as a mixture of a dependent sequence and an independent sequence, and adding
the independent one should not worsen the mixing coefficient.

Lemma 4. βSX (t) = βLX̃
(t).

Proof. First note that SX is Markov and stationary, since the temporal dependency only comes from
the first elements in the pairs, which are points in LX̃ that is itself Markov and stationary:

Pr
(
(x2(i+1)η ,x′2(i+1)η)|(x0,x′0), ..., (x2iη ,x′2iη)

)
= Pr

(
x′2(i+1)η |x2(i+1)η

)
Pr
(
x2(i+1)η |x0, ...,x2iη

)
= Pr(x′2(i+1)η |x2(i+1)η)Pr

(
x̃2(i+1)η |x̃2iη

)
= Pr(x′2(i+1)η |x2(i+1)η)Pr

(
x2(i+1)η |x2iη

)
.

(2.18)

17



The mixing coefficient of SX can then be calculated explicitly, leading to βSX (2iη) = βLX̃
(2iη):

βSX (2iη) =
1
2

∫ ∣∣∣π(z0, z′0)π(z2iη , z′2iη)

− π(z0, z′0)p(z2iη , z′2iη |z0, z′0)
∣∣∣

=
1
2

∫
π(z0, z′0) ·

∣∣∣π(z2iη , z′2iη)− p(z2iη , z′2iη |z0, z′0)
∣∣∣

=
1
2

∫ (1
2

π(z0)
(

p(z′0|z0) + π(z′0)
))

·
(

1
2

∣∣π(z2iη)− p(z2iη |z0)
∣∣(p(z′2iη |z2iη) + π(z′2iη))

)
=

1
8

∫
z0,z2iη

π(z0)
∣∣π(z2iη)− p(z2iη |z0)

∣∣
·
∫
z′0

(
p(z′0|z0) + π(z′0)

)
·
∫
z′2iη

(
p(z′2iη |z2iη) + π(z′2iη)

)
=

1
2

∫
z0,z2iη

π(z0)
∣∣π(z2iη)− p(z2iη |z0)

∣∣
=

1
2

∫
z̃0,z̃2iη

π(z̃0)
∣∣π(z̃2iη)− p(z̃2iη |z0)

∣∣ = βLX̃
(2iη).

(2.19)

Next, we bound the TV distance, as a function of t, between the stationary distribution π and the
distribution after running the diffusion for time t given any starting point:

Lemma 5 (Bubeck et al. [2018], Proposition 4). Let B := Eπ∥x∥. For any t > 0, ∀z ∈ X ,

TV(P(zt|z0 = z), π) ≤ B√
2πt

,

where P(zt|z0 = z) denotes the distribution after running the diffusion for time t conditioned on being at z
at time 0.

With the definition of β-mixing, Lemma 5 shows that LX̃ itself is β-mixing, as long as B < ∞,
βLX̃

(tη) = TV(P(ztη |z0 = z), π) = O( 1√
tη )→ 0 as t→ ∞.

2.1.3 Proofs

We are now ready to prove the main results in Section 2.1.1.4. We will start with the finite sample
generalization bound, and map the loss on the contrastive task to the KL divergence between the
learned and true transition kernels, assuming the former lies in a neighborhood of the latter. We will
finish with the proof for Theorem 3 where the closeness assumption is lifted.

2.1.3.1 Proof of the generalization bound

Let’s first prove the sample complexity bound for generalization, where we use results in Mohri and
Rostamizadeh [2009] to choose the optimal µ to bound the generalization gap.
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Proof of Theorem 1. Following notations in Lemma 2, let µ denote the number of “effective” training

samples. Substituting in the choice of T = Ω
(

B2Kη(H)3

δ2∆3
gen

(
log 1

δ

) 3
2
)

, we have ∆µ
appr = O

(
B√
T

µ
3
2

)
≤ δ.

By Lemma 2, and recall the empirical Rademacher complexity is Rµ = O
(
Kη(H)

√
log µ/µ

)
, we need

to choose T, µ such that

C

√
1
µ

(
Kη(H)

√
log µ +

√
− log

(
δ− ∆appr

))
≤ ∆gen, (2.20)

where ∆µ
appr := O

(
B√
T

µ
3
2

)
by Lemma 3.

We would like to control ∆µ
appr = O(δ). Substituting in the choice of T = Ω

(
B2Kη(H)3

δ2∆3
gen

(
log 1

δ

) 3
2
)

, we

have

∆µ
appr = O

(
Bδ∆3/2

gen

BKη(H)3/2

(
log

1
δ

)−3/2
· µ3/2

)
= O(δ), (2.21)

which is satisfied by setting µ = Θ
(

Kη(H)
√

log(1/(δ−∆appr))
∆gen

)
.

2.1.3.2 Proof of Theorem 2: local guarantees

Theorem 2 states that when pη is close to pη
∗ and the population contrastive loss is not much worse

than the optimal value, the KL divergence between pη
∗ and pη is also small. At a high level, with pη

close to pη
∗ , we can do a “multiplicative” Taylor expansion of pη around pη

∗ . Then, it can be shown
that the second derivative is strictly positive with a proper choice of ∆max. This is similar in spirit to
the notion of strong convexity with respect to KL, from the difference in losses.

Proof of Theorem 2. Recall that in Section 2.1.1.4 we defined constants ∆min, ∆max such that ∀x,x′,
pη(z,z′)
pη
∗(z,z′)

∈ [∆min, ∆max]. We can equivalently write this relation as pη = pη
∗(1 + δ) with δ ∈ [∆min −

1, ∆max − 1]. By the mean value theorem, ∃ ξ ∈ [∆min − 1, ∆max − 1], such that

Ez∼π,z′∼pη
∗
KL(pη

∗∥pη) = Eπ

∫
pη
∗ log

pη
∗

pη
∗(1 + δ)

=−Eπ

∫
pη
∗ log(1 + δ) = −Eπ

∫
pη
∗

(
δ−

∫ δ

s=0

1
2(1 + s)2 s ds

)
(i)
= −Eπ

∫
pη
∗(δ−

1
2

1
(1 + ξ)2 δ2)

(ii)
≤ 1

2∆2
min

Ez∼π,z′∼pη
∗
δ2.

(2.22)

where (i) applies the mean value theorem to the second order Taylor expansion around 0, and (ii)
uses

∫
x pη
∗δ = 0 since pη , pη

∗ both integrates to 1.

Rewriting the gap between the population loss between pη(z, z′) and pη
∗(z, z′) as a function of
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δ(z, z′), we get:

r(δ) :=

(
pη
∗qδ

(pη
∗(1 + δ) + q)(pη

∗ + q)

)2

, (2.23)

where the dependence on z, z′ is omitted for clarity.

We would like to lower bound r′′(δ). By the mean value theorem, for any z, z′, ∃ ξ ′ ∈ [∆min −
1, ∆max − 1],

r′′(δ) = r′′(0) + r′′′(0)δ +
1
2

r′′′′(ξ ′)δ2

≥ 2(pη
∗)

2q2

(pη
∗ + q)5

(
(7− 6∆max)pη

∗ + q
)
+

12(pη
∗)

5q2

pη
∗ + q

· 5pη
∗ + 3q− 2pη

∗∆max

(∆max pη
∗ + q)6

.
(2.24)

The Taylor series converges when |δ| ≤ pη
∗+q
pη
∗

= 1 + q
pη
∗

, which always holds under our assumption

on δ. Moreover, we require ∆max ≤ 7
6 to ensure (7− 6∆max)pη

∗ + q > 0. Then,

5pη
∗ + 3q− 2pη

∗∆max

(∆max pη
∗ + q)6

≥ 1
3

8pη
∗ + 9q

( 1
6 )

6(7p + 6q)6
≥ 66

3
8pη
∗ + 8q

(7pη
∗ + 7q)6

=
8 · 66

3 · 76
1

(pη
∗ + q)5

≥ 1
(pη
∗ + q)5

. (2.25)

Substituting this back to Equation (2.24) gives

r′′(δ) ≥ 2(pη
∗)

2q3

(pη
∗ + q)5

+
24(pη

∗)
5q2

(pη
∗ + q)6

≥ 2 · 1
(1 + q

pη
∗
)2
· 1

(1 + pη
∗

q )3
≥ 2

(1 + cq)5 . (2.26)

We can then derive an upper bound on Eδ2. Recall that in Theorem 2 the gap between the population
loss of the learned h and that of h∗ is set to be 2ϵtr:

2ϵtr = E
z∼π,z′∼ pη

∗+q
2

[
r(δ(z, z′))− r(0)

]
= E

z∼π,z′∼ pη
∗+q
2

∫ δ

0
(δ− t)r′′(t)dt ≥ rmin

2
E
z∼π,z′∼ pη

∗+q
2

δ2 ≥ rmin

4
Ez∼π,z′∼pη

∗
δ2,

(2.27)

where we denote rmin := 2
(1+cq)5 .

This means Ez∼π,z′∼pη
∗
δ2 ≤ 8ϵtr

rmin
. Together with Equation (2.22), we can bound the average KL as

Ez∼πKL
(

pη
∗(·|z)∥pη(·|z)

)
≤ 1

2∆2
min

Eπ,pη
∗
δ2 ≤ 4ϵtr

rmin∆2
min

=
2(1 + cq)5ϵtr

∆2
min

. (2.28)

2.1.3.3 Proof of Theorem 3: global guarantees

Up to this point, we have reasoned about the generalization gap and the relation between the loss
and distributional closeness when pη is in the proximity of pη

∗ . There is one last piece missing: we
need to characterize what the value of the loss implies for pη when its relation to pη

∗ is unknown.

This is not an obvious task because the loss guarantees that the squared difference in Equation (2.10)
is small on average over x,x′ according to our data distribution. This does not necessarily imply
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the squared difference in its numerator, 5 i.e.
(

pη(z, z′)− pη
∗(z, z′)

)2
, is small. For example, if

q(x′) ≪ min{pη(z, z′), pη
∗(z, z′)}, then the above difference would be small regardless of the val-

ues of pη(z, z′), pη
∗(z, z′).

We will leverage the following estimates on the transition kernel of the Langevin diffusion:

Lemma 6 (Gobet [2002], Proposition 1.2). Under Assumptions 1-3, ∃ c, C > 1, such that

pη
∗(z, z′) ≥ 1

c
1

ηd/2 e−C ∥z−z
′∥2

η e−Cη∥z∥2
,

pη
∗(z, z′) ≤ c

1
ηd/2 e−

1
C
∥z−z′∥2

η eCη∥z∥2
.

(2.29)

The theorem in Gobet [2002] holds actually in a substantially more general setting than ours: it only
requires that the drift (in our setting ∇ f ) and diffusion coefficient are in C1+γ, γ > 0.

With this result in mind, as well as the previous lemmas, we are ready to prove Theorem 3:

Proof of Theorem 3. Recall that the optimal solution of the contrastive task satisfies h∗ = pη
∗(z,z′)

q(z′)+pη
∗(z,z′)

by Lemma 1, and that the population contrastive loss is no more than 2ϵtr over the optimal ϵ∗ achieved
by h∗. This gives:

2ϵtr ≥Ez∼πEz′∼ 1
2 (pη
∗(x,·)+q)ℓ(h) ≥

1
2

Ez∼πEz′∼pη
∗(x,·)ℓ(ĥ)

=
1
2

Ez∼πEz′∼pη
∗(x,·)

(
q(pη − pη

∗)

(q + pη)(q + pη
∗)

)2

.
(2.30)

We now use the above loss bound to upper bound Ez∼π,z′∼pη
∗(x,·)|p

η(x,x′) − pη
∗(x,x′)|. For nota-

tional convenience, we will drop x,x′ when it is clear from the context.

Define a function rq with rq(p) = p
p+q . The population risk can now be written as Ez,z′

(
rq(pη)− rq(pη

∗)
)2

.

Note that r′q(p) = q
(p+q)2 and rq is concave in p, hence

r′q
(

max{pη , pη
∗}
)
·
(

pη − pη
∗
)
≤ rq(pη)− rq(pη

∗). (2.31)

Using Equation (2.31) and Cauchy-Schwarz, we have

Ez∼π,z′∼pη
∗(x,·)|p

η − pη
∗ | = Ez∼π,z′∼pη

∗(x,·)

 |pη − pη
∗ |r′q

(
max{pη , pη

∗}
)

r′q
(

max{pη , pη
∗}
)


≤ Ez∼π,z′∼pη

∗(x,·)

(rq(pη)− rq(pη
∗)
)
· 1

r′q
(

max{pη , pη
∗}
)


≤
√

Ez∼π,z′∼pη
∗(x,·)

(
rq(pη)− rq(pη

∗)
)2
·
√

Ez∼π,z′∼pη
∗(x,·)

(
max{pη , pη

∗}+ q
)4

/q2,

(2.32)

where the first term is the population risk on the contrastive task, which is bounded by 2ϵtr.

5Recall that the squared term in Equation (2.10) can be expanded as (h(x,x′)− Pr(y = 1|x,x′))2 =
(

p
p+q −

p∗
p∗+q

)2
=

(p−p∗)2q2

(p+q)2(p∗+q)2 .

21



We will proceed to bound the second term. Since pη , pη
∗ are both assumed to satisfy Assumption 1-

3, Lemma 6 allows us to bound the quantity of interest in Equation (2.32): let c∗, C∗ and ĉ, Ĉ be the
constants in Lemma 6 for pη

∗ and pη respectively. Denote Cu = max{C∗, Ĉ}, Cl = min{C∗, Ĉ}. Recall
that ρ is the strong convexity constant of f . It can be shown that if η is sufficiently small as a function
of these constants (e.g. η = ρ

10Cu
), let σ2 = Cl η

2 , then

Ex,x′

(
max{pη , pη

∗}+ q
)4

q2 ≤ O

(
π(z∗)

(
1

ρη2

)d/2
)

. (2.33)

The proof applies Lemma 6 and the strong convexity of f to simplify the expression with a Gaussian-
integral like calculation. Specifically:

Ex,x′

(
max{pη , pη

∗}+ q
)4

q2

≤Ex,x′Z
2
σ exp

(
1
σ2 ∥x− x′∥2

)
·
(

c
ηd/2 exp(Cuη∥x∥2) +

1
Zσ

)4
exp

(
− 4

Clη
∥z − x′∥2

)
≤ExZ2

σ

(
c

ηd/2 exp(Cuη∥x∥2) +
1

Zσ

)4
Ex′ exp

(
− 2

Clη
∥x− x′∥2

)
≤Ex

cZ2
σ

ηd/2

(
c

ηd/2 exp(C1η∥x∥2) + (πClη)
− d

2

)4
exp

(
Cuη∥x∥2

) ∫
x′

exp
(
− 3

Clη
∥x− x′∥2

)

≤ cZ2
σ

η5d/2

(
2πClη

3

) d
2

Ex

(
c exp(Cuη∥x∥2) + (πCl)

− d
2

)4
exp

(
Cuη∥z∥2

)
≤c

(
2π3C3

2
η2

)d/2

exp(− f (x∗))
∫
x

(
c exp(Cuη∥x∥2) + (πCl)

− d
2

)4
exp

(
−
(ρ

2
− Cuη

)
∥x∥2

)

≤16cπ(z∗)

(
2π3C3

l
η2

)d/2 [
c4
(ρ

2
− 5C1η

)− d
2
+ (πCl)

−2d
(ρ

2
− Cuη

)− d
2

]

≤O

(
π(z∗)

(
1

ρη2

)d/2
)

.

(2.34)

where C1, C2 are constants introduced to simplify the notations.

Plugging this inequality back in equation 2.32 gives the statement of the theorem.

Remark 1. The proof of theorem Theorem 3 can be adapted straightforwardly to accommodate the bounded-

ness assumptions in theorem Theorem 2, namely, when pη

pη
∗

and pη
∗

q are bounded by (∆min, ∆max) and [ 1
cq

, cq]

respectively. In this case, the right hand side of Equation (2.33) will be updated to (2cq + 1)4Ex,x′(pη
∗)

2. The
exponential dependency in η is however still present, a consequence of Lemma 6.

2.2 A parameter identifiability view for masked prediction

Self-supervised learning (SSL) is a relatively new approach to unsupervised learning, where the learn-
ing algorithm learns to predict auxiliary labels generated automatically from the data without human
annotators. The hope is that with a properly designed prediction task, a successfully learned predic-
tor would capture some knowledge about the underlying data. While SSL has been enjoying a rapid
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growth on the empirical front, theoretical understanding of why and when SSL works is still nascent.
In no small part, this is because formalizing the desired guarantees seems challenging. For instance,
the focus of SSL has largely been on learning good features, which in practice has been quantified
by downstream performance on various benchmark datasets [Wang et al., 2018, 2019, Deng et al.,
2009, Zhai et al., 2019, Tamkin et al., 2021]. To provide theoretical underpinning to this, one needs
to make extra assumptions on the relationship between the self-supervised prediction task and the
downstream tasks [Arora et al., 2019, Saunshi et al., 2020, HaoChen et al., 2021, Lee et al., 2021, Wang
et al., 2021, Wei et al., 2021, Wen and Li, 2021].

While associating SSL with downstream supervised tasks is a useful perspective and has led to several
very interesting theoretical results, we take a step back and revisit a more general goal of SSL, which
is to learn some informative functionals of the data distribution. Naturally, the key question here is
what functionals should be considered informative. While downstream performance is a notable valid
choice, in this work, we choose an alternative criterion that is meaningful even without referencing
any downstream tasks.

The alternative lens we are interested in is whether the functionals of the data distribution extracted
by the SSL predictors can be simply stitched together to obtain the data distribution itself, given addi-
tional side-information about the family from which the data distribution is drawn. While this might
seem like a tall order, masked prediction based SSL algorithms (which is essentially what pseudo-
likelihood corresponds to) have classically been used for learning parametric graphical models such
as Ising models [Ravikumar et al., 2010, Bresler, 2015, Vuffray et al., 2016]. But can this be done for
broader classes of parametric models?

In this section, we take a preliminary step towards this and ask the question of parameter identifi-
ability: assuming the data comes from a ground truth parametric probabilistic model, can common
self-supervised tasks uniquely identify the parameters of the ground truth model? More precisely, are
the parameters of the model uniquely determined by the optimal predictor for the SSL task (Defini-
tion 2)? An appeal of this identifiability perspective is that when a SSL task is sufficient for parameter
identifiability, the model parameters can then be recovered straightforwardly from the parameters
from the optimal SSL predictor. Parameter identification also has the desirable property of being
independent of any downstream task.

A priori, it is unclear whether we can achieve such model parameter identifiability via self-supervised
tasks, since it requires recovering the full (parametric) generative model which is arguably more
difficult than learning generic latent representations. This work provides a positive answer for broad
classes of HMMs: we show that the commonly-used masked prediction task [Pathak et al., 2016, Devlin
et al., 2018a, He et al., 2021, Lee et al., 2021], wherein a model is trained to predict a masked-out part of
a sample given the rest of the sample, can identify the parameters of a HMM. As noted earlier, while
such masked prediction for parameter learning has been applied in classical settings such as Ising
models [Ravikumar et al., 2010, Bresler, 2015, Vuffray et al., 2016], the HMM setup in this work is
more challenging due to the presence of latent variables. HMMs are also more suitable for modeling
practical sequential data, and have been commonly adopted in theoretical analyses as a clean proxy
for languages [Wei et al., 2021, Xie et al., 2021].

Concretely, the two HMM models we consider in this work are 1) the classic HMM with discrete latent
and discrete observables, and 2) a HMM variant with discrete latents and continuous observables that
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are conditionally Gaussian given the latent, which we abbreviate as G-HMMs. We show that:

• Parameter identifiability is governed by the difficulty of the masked prediction task. The task
difficulty is related to the amount of information provided by the combination of the model and
the prediction task—where the difficulty can be increased by using a more complicated model,
or by predicting more tokens. For instance, predicting the conditional mean of one token given
another does not yield identifiability for a discrete HMM (Theorem 4), but does so when data
comes from a G-HMM (Theorem 5). Moreover, the identifiability in the latter case quite strongly
leverages structural properties of the posterior of the latent variables (Section 2.2.2.1).

• Tools for characterizing the uniqueness of tensor decompositions (e.g., Kruskal’s Theorem [Kruskal,
1977, Allman et al., 2009]) can be leveraged to prove identifiability: For both HMM (Theorem 7) and
G-HMM (Theorem 8), if we have predictors of the tensor product of tokens (e.g., E[x2 ⊗ x3|x1]),
we can use the predictor output to construct a 3-tensor whose rank-1 components are uniquely
determined and reveal the parameters of the model.

The rest of this subsection is structured as follows. Section 2.2.1 provides relevant definitions, pre-
liminaries and assumptions. Section 2.2.2 states the main results of this work. Proofs for results on
HMMs, including the identifiability proof via tensor decomposition, are provided in Section 2.2.3.
Proofs for G-HMM are provided Section 2.2.4.

Related works There have been theoretical analyses on both masked predictions [Lee et al., 2021,
Zhang and Hashimoto, 2021] and contrastive methods [Arora et al., 2019, Tosh et al., 2020a,c, Wang
and Isola, 2020a, HaoChen et al., 2021, Wen and Li, 2021], with a focus on characterizing the quality
of the learned features for downstream tasks [Saunshi et al., 2020, Wei et al., 2021]. These approaches
usually rely on quite strong assumptions to tie the self-supervised learning objective to the down-
stream tasks of interest. In contrast, our work takes the view of parameter identifiability, for which
there is no need for downstream assumptions but instead the specific parametric form is key. Note
also that while the parameter recovery lens is a new contribution of our work, Wen and Li [2021]
argue (as a side-product of their analysis) that some aspects of a generative model are recovered in
their setup. Their data model, however, is substantially different from ours and has very different
identifiability properties (owing to its basis in sparse coding).

The data generative models that will be described in Section 2.2.1 are special cases of latent variable
models, which have been widely studied in the literature. One important area of research is indepen-
dent component analysis (ICA), where the data is assumed to be given as a transformation (mixing)
of unknown independent sources which ICA aims to identify. In nonlinear ICA data models, both the
sources and the mixing function are generally not identifiable. However, identifiability of the sources
can be shown under some additional assumptions (e.g. on the dependency structure of different time
steps) [Hyvarinen and Morioka, 2016, 2017a, Hälvä and Hyvarinen, 2020]. Similar ideas have also
been applied in the self-supervised setting, where the latent variables can be identified under suit-
able assumptions on the conditional distribution of the latent [Zimmermann et al., 2021] or on data
augmentations [Von Kügelgen et al., 2021]. Unlike our setup though, the mixing function in these
models is deterministic and not the object of recovery.

More related to this work is the line of work on learning latent variable models with tensor methods.
Specific to learning HMMs, Mossel and Roch [2005] and Anandkumar et al. [2012, 2014] provide
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algorithms based on third-order moments. A major difference between these prior works on tensor
methods and ours is that previous results operate on joint moments, while the results in this work are
based on conditional moments given by the optimal predictors for the masked tokens.

2.2.1 Setup: HMM, G-HMM, and the masked prediction task

This work focuses on two classes of latent-variable sequence models. The first are fully discrete
hidden Markov models (HMMs), and the second are HMMs whose observables marginally follow
a mixtures of Gaussians with identity covariance. We denote the observations and hidden states
respectively by {xt}t≥1 and {ht}t≥1 for both classes. The hidden states h1 → h2 → · · · form a Markov
chain, and conditional on ht, the observable xt is independent of all other variables. Throughout, we
refer to {xt}t≥1 as tokens, following the nomenclature from language models.

2.2.1.1 Data generative models

Discrete Hidden Markov Model We first describe the parameterization of the standard HMMs
with discrete latents and observations. Let X := {1, . . . , d} = [d] denote the observation space, and
let H := [k] be the state space.6 The parameters of interest are the transition matrix T ∈ Rk×k and the
emission matrix O ∈ Rd×k, defined in the standard way as

P(ht+1 = i | ht = j) = Tij, P(xt = i | ht = j) = Oij.

Conditionally-Gaussian HMM (G-HMM) We next describe the parameterization of conditionally-
Gaussian HMMs (G-HMMs). The state space H := [k] is the same as in the previous case, while the
observation space is now continuous with X := Rd. The parameters of interest are T ∈ Rk×k, the
transition matrix, and {µi}i∈[k] ⊂ Rd, the means of the k identity-covariance Gaussians. Precisely,

P(ht+1 = i | ht = j) = Tij, P(xt = x | ht = i) = (2π)−
d
2 exp

(
− ∥x− µi∥2/2

)
.

We use M := [µ1, . . . , µk] ∈ Rd×k to denote the matrix whose columns are the Gaussian means.

2.2.1.2 Masked prediction tasks

We are interested in the (regression) task of predicting one or more “masked out” tokens as a function
of another observed token, with the goal of minimizing expected squared loss under a distribution
given by an HMM or G-HMM (equation 2.35). In the case of the discrete HMMs, we will specifically
be predicting the one-hot encoding vectors of the observations. Thus, both for HMM and G-HMM,
predicting a single token will correspond to predicting a vector. For notational convenience, we
will simply associate the discrete states or observations via their one-hot vectors {e1, e2, . . . } in the
appropriate space and interchangeably write h = i or h = ei, and similarly for x. For the task of
predicting the tensor product of (one-hot encoding vectors of) tokens ⊗τ∈T xτ from another token
xt (where T is some index set and t /∈ T ), the optimal predictor with respect to the squared loss

6Our results will assume d ≥ k; see Section 2.2.1.3.
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calculates the conditional expectation:

f (xt) = arg min
f̃

E{xτ}τ∈T ∥vec(⊗τ∈T xτ)− vec( f̃ (xt))∥2
2 = E[⊗τ∈T xτ | xt] ∈ (Rd)⊗|T |, (2.35)

where “vec” returns the vectorized form of a tensor.

We use the shorthand “⊗τ∈T xτ |xt” to refer to this prediction task. For instance, consider the case of
predicting x2 given x1 under the HMM with parameters (O,T ). The optimal predictor, denoted by
f 2|1, can be written in terms of (O,T ) as 7

f 2|1(x) = E[x2 | x1 = x] = ∑
i∈[k]

E[x2 | h2 = i]P(h2 = i | x1 = x)

= ∑
i∈[k]

∑
j∈[k]

E[x2 | h2 = i]P(h2 = i | h1 = j) P(h1 = j | x)︸ ︷︷ ︸
:=[ϕ(x)]j

= ∑
i∈[k]

∑
j∈[k]

OiTij
Ox,j

∑l∈[k] Ox,l︸ ︷︷ ︸
:=[ϕ(x)]j

.

Here ϕ : Rd → Rk denotes the posterior distribution of a hidden state ht given the corresponding
observation xt, i.e., ϕ(xt) = E[ht | xt]. 8

Our goal is to study the parameter identifiability from the prediction tasks, when the predictors have
the correct parametric form. Formally, we define identifiability from a prediction task as follows:

Definition 2 (Identifiability from a prediction task, HMM). A prediction task suffices for identifiability
if, for any two HMMs with parameters (O,T ) and (Õ, T̃ ), equality of their optimal predictors for this task
implies that there is a permutation matrix Π such that O = ÕΠ and T = Π⊤T̃Π.

In other words, the mapping from (the natural equivalence classes of) HMM distributions to optimal
predictors for a task is injective, up to a permutation of the hidden state labels. By identifiability
from a collection of prediction tasks, we refer to the injectiveness of the mapping from HMM distri-
butions to the collections of optimal predictors for the tasks. Identifiability for G-HMMs is defined
analogously with O, Õ changed to M ,M̃ .

2.2.1.3 Assumptions

We now state the assumptions used in our results. The first assumption is that the transition matrices
of the HMMs are doubly stochastic.

Assumption 5 (Doubly stochastic transitions). The transition matrix T is doubly stochastic, and the
marginal distribution of the initial hidden state h1 is stationary with respect to T .

This assumption guarantees that the stationary distribution of the latent distribution is uniform for
any t, and the transition matrix for the reversed chain is simply T⊤. Moreover, this assumption
reduces the parameter space and hence will make the non-identifiability results stronger.

We require the following conditions on the parameters for the discrete HMM:

7The computation here relies on Assumption 5, given in Section 2.2.1.3.

8For discrete HMMs, ϕ(xt) = O⊤xt
∥O⊤xt∥1

. For GHMMs, [ϕ(xt)]i =
exp
(
−
∥xt−µi∥

2
2

2

)
∑j∈[k] exp

(
−
∥xt−µj∥

2
2

2

) , ∀i ∈ [k]. ϕ does not need to be

indexed by t due to the stationarity assumption in Section 2.2.1.3.
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Assumption 6 (Non-redundancy, discrete HMM). Every row of O is non-zero.

Assumption 6 can be interpreted as requiring each token to have a non-zero probability of being
observed, which is a mild assumption. We also require the following non-degeneracy condition:

Assumption 7 (Non-degeneracy, discrete HMM). rank(T ) = rank(O) = k ≤ d.

Note that Assumption 7 only requires the parameters to be non-degenerate, rather than have singular
values bounded away from 0. The reason is that this work will focus on population level quantities
and make no claims on finite sample behaviors or robustness.

For G-HMM, we similarly require the parameters to be non-degenerate:

Assumption 8 (Non-degeneracy, G-HMM). rank(T ) = rank(M ) = k ≤ d.

Moreover, we assume that the norms of the means are known and equal:

Assumption 9 (Equal norms of the means). For each i ∈ [k], µi is a unit vector.9

Assumptions 5-8 are fairly standard [see, e.g., Anandkumar et al., 2012]; in particular, Assumption
7, 8 are required to enable efficient learning, since learning degenerate HMMs can be computation-
ally hard [Mossel and Roch, 2005]. Assumption 9 may be an artifact of our proofs, and it would be
interesting to relax in future work.

Our notion of identifiability from a prediction task (or a collection of prediction tasks) will restrict
attention to HMMs satisfying Assumptions 5, 6, 7 and G-HMMs satisfying Assumptions 5, 8, 9.

2.2.1.4 Preliminary on the uniqueness of tensor rank decompositions

Some of our identifiability results rely on the uniqueness of tensor rank-1 decompositions [Hitchcock,
1927]. An order-t tensor (or t-tensor) is an t-way multidimensional array; a matrix is a 2-tensor. The
tensor rank of a tensor W is the minimum number R such that W can be written as a sum of R rank-1
tensors. That is, if a t-tensor W has rank-R, it means that W = ∑i∈[R]⊗j∈[t]U

(j)
i for some matrices

U (j) ∈ Rnj×R, where U(j)
i denotes the ith column of matrix U (j).

In this work, we only need to work with 3-tensors of the form W = ∑i∈[R] Ai ⊗ Bi ⊗ Ci for some
matrices A ∈ Rn1×R, B ∈ Rn2×R, C ∈ Rn3×R, as 3-tensors will suffice for identifiability in all of
our settings of interest.10 A classic work by Kruskal [1977] gives a sufficient condition under which
A,B,C can be recovered up to column-wise permutation and scaling. The condition is stated in
terms of the Kruskal rank, which is the maximum number r such that every r columns of the matrix
are linearly independent. Let kA denote the Kruskal rank of matrix A, then:

Proposition 1 (Kruskal’s theorem, Kruskal [1977]). The components A,B,C of a 3-tensor W := ∑i∈[R] Ai⊗
Bi ⊗Ci are identifiable up to a shared column-wise permutation and column-wise scaling if kA + kB + kC ≥
2R + 2.

We note that this work focuses on identifiability results rather than providing an algorithm or sample
complexity bounds, though the proofs can be adapted into algorithms [see, e.g., Harshman, 1970]
under slightly more restrictive conditions (which will be satisfied by all of our identifiability results).

9Assumption 9 can be changed to ∥µi∥2 = c for all i ∈ [k], for any other fixed number c > 0.
10To apply our results on higher order tensors, one can consider an order-3 slice of the higher order tensor.

27



2.2.2 Main results on parameter identifiability

We now present the main (non-)identifiability results, and show that the combination of the data
generative models and the prediction task directly impacts the sufficiency of identifiability.

2.2.2.1 Pairwise prediction

We begin with the simplest prediction task: namely predicting one token from another, which we
refer to as pairwise prediction tasks. For HMMs, this task fails to provide parameter identifiability:

Theorem 4 (Nonidentifiability of HMM from predicting xt|x1). For any t ∈ Z, t ≥ 2, there exists a
pair of HMM distributions with parameters (O,T ) and (Õ, T̃ ), each satisfying Assumptions 5, 6 and 7, such
that the optimal predictors for the task xt|x1 are the same under each distribution, but there is no permutation
matrix Π ∈ Rk×k such that Õ = OΠ and T̃ = Π⊤TΠ are both satisfied.

Theorem 4 follows from the fact that the optimal predictor has the form of a product of (stochastic)
matrices, and generally, one cannot uniquely recover matrices from their product sans additional con-
ditions [Donoho and Elad, 2003, Candes et al., 2006, Spielman et al., 2012, Arora et al., 2014, Georgiev
et al., 2005, Aharon et al., 2006, Cohen and Gillis, 2019]. Specifically, by equation 2.35, the optimal
predictor is f (x1) = E[xt|x1] = OT t−1ϕ(x1) (where ϕ(x1) := E[h1|xt] is the posterior). When t = 2,
we can find a non-permutation matrix R such that Õ = OR, T̃ = R⊤TR give the same predictor as
O,T . For t > 2, even if Õ = O, we show that the matrix power T t−1 is not identifiable:

Claim 1 (Nonidentifiability of matrix powers). For any t ∈ Z, t ≥ 2, there exist stochastic matrices T , T̃
satisfying Assumption 5, 7, such that T ̸= T̃ and T t = T̃ t.

On the other hand, pairwise prediction actually does suffice for identifiability for G-HMM:

Theorem 5 (Identifiability of G-HMM from predicting x2|x1). Under Assumption 5, 8, and 9, if the
optimal predictors for the task x2|x1 under the G-HMM distributions with parameters (M ,T ) and (M̃ , T̃ )

are the same, then (M ,T ) = (M̃ , T̃ ) up to a permutation of the hidden state labels.

Comparing Theorem 4 and 5 shows that the specific parametric form of the generative model matters.
Note that HMM and G-HMM have a similar form when conditioning on the latent variable; that is,
with t = 2, the predictor conditioned on the hidden variable h2 is P(x2|h2 = i) = OTi for HMM,
and P(x2|h2 = i) = MTi for G-HMM. The salient difference between these two setups lies in the
posterior function: while the posterior function for HMM is linear in the observable, the posterior
function for G-HMM is more complicated and “reveals” more information about the parameter.

To formalize the above intuition, first recall that the GHMM posterior has entries [ϕ(xt)]i =
exp
(
− ∥xt−µi∥

2
2

2

)
∑j∈[k] exp

(
−
∥xt−µj∥

2
2

2

) ,

∀i ∈ [k]. We will show that for G-HMM, even matching the posterior function nearly suffices to iden-
tify M : if M ,M̃ parameterize two posterior functions ϕ, ϕ̃ where ϕ = ϕ̃, then up to a permutation,
M̃ must be equal to either M or a unique (and somewhat special) transformation of M . The next
step is to further exclude the (special) transformation, which is achieved using the constraint that T, T̃
are stochastic matrices. The first step of the proof sketch is captured by following lemma:
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Lemma 7. For d ≥ k ≥ 2, under Assumption 8, 9, ϕ = ϕ̃ implies M̃ = M or M̃ = HM , where H is a

Householder transformation of the form H := Id − 2v̂v̂⊤ ∈ Rd×d, with v̂ := (M †)⊤1√
1⊤M †(M †)⊤1

.

To provide some geometric intuition about how H acts on M , note that v̂ is a unit vector in the
column space of M and perpendicular to the affine hull of A := {µi : i ∈ [k]}, which means v̂⊤µi is
the same for all i ∈ [k]. As a result, M̃ = [µ̃1, ..., µ̃k] = [Hµ1, ...,Hµk] = M − 2(v̂⊤µ1)[v̂, ..., v̂] is a
translation of M along the direction of v̂, such that the translated points {µ̃i}i∈[k] lie on the opposite
side of the origin. We can show that HM is the only solution (other than M itself) that preserves ϕ,
which we defer to Lemma 8 in Section 2.2.4. It is, however, easy to see that HM indeed results in a
matching posterior, whose sufficient conditions are 1) M̃ is a translation of M , and 2) ∥µ̃i∥2 − ∥µi∥2

is the same for all i ∈ [k]. M̃ := HM indeed satisfies both conditions.

Remark 2. Another way to think of the difference between the two setups is that for HMM, P(x2|x1) is a
mixture of categorical distributions, which itself is also a categorical distribution. This also implies that the
nonidentifiability from pairwise prediction in the HMM case cannot be resolved by changing the squared loss
to another proper loss function. On the other hand, for G-HMM, the conditional distribution P(x2|x1) is a
mixture of Gaussians, which is well known to be identifiable. In fact, if we were given access to the entire
conditional distribution P(x2|x1) (instead of just the conditional mean), it is even easier to prove identifiability
for G-HMM. Though this is already implied from identifiability from the conditional means, we provided a
(much simpler) proof in Section 2.2.4.2 assuming access to the full conditional distribution.

2.2.2.2 Beyond pairwise prediction

The conclusion from Theorem 4 is that a single pairwise prediction task does not suffice for identifia-
bility on HMMs. The next question is then: can we modify the task to obtain identifiability? A natural
idea is to force the model to “predict more”, and one straightforward way to do so is to combine mul-
tiple pairwise prediction tasks. It turns out that this does not resolve the nonidentifiability issue, as
we can show that the parameters are not identifiable even when considering all possible pairwise
tasks involved 3 (adjacent) tokens:

Theorem 6 (Nonidentifiability of HMM from all pairwise predictions on 3 tokens). There exists a pair
of HMM distributions with parameters (O,T ) and (Õ, T̃ ), each satisfying Assumptions 5, 6 and 7, and also
Õ ̸= O, such that, for each of the tasks x2|x1, x1|x2, x3|x1, and x1|x3, the optimal predictors are the same
under each distribution.11

We briefly remark that the reason for only considering adjacent time steps is that when the tokens
are at least two time steps apart, matching predictors only matches powers of the transition matrices,
which in general does not ensure the transition matrices themselves are matched as shown in Claim
1.

For the intuition of the nonidentifiability result in Theorem 6, recall that the limitation of pairwise
predictions on HMMs comes from non-uniqueness of matrix factorization. While adding additional
pairwise prediction tasks introduces more equations on the product of matrices, these equations are
highly dependent, and the proof works by providing counterexamples that can simultaneously sat-
isfy all these equations.

11These 4 pairwise tasks cover all possible pairwise tasks on 3 adjacent tokens. In particular, there is no need to consider
x2|x3 or x3|x2, since they are the same as x1|x2 and x2|x1.
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The above intuition leads to another way of forcing the model to “predict more”, that is, to increase
the number of predicted tokens. The hope is that doing so results in equations on tensors—as opposed
to matrices— for which there is a lot of classical machinery delineating tensors for which the rank-1
decomposition is unique, as discussed in Section 2.2.1.4. This intuition proves to be true and we show
that increasing the number from 1 to 2 already suffices for identifiability:

Theorem 7 (Identifiability from masked prediction on three tokens, HMM). Let (t1, t2, t3) be any
permutation of (1, 2, 3), and consider the prediction task xt2 ⊗ xt3 |xt1 . Under Assumption 5, 6, 7, if the
optimal predictors under the HMM distributions with parameters (O,T ) and (Õ, T̃ ) are the same, then
(O,T ) = (Õ, T̃ ) up to a permutation of the hidden state labels.

Compared to prior results on identifiability from third order moments [Allman et al., 2009, Anand-
kumar et al., 2012, 2014], the difficulty in our setup is that we only have access to the conditional
2-tensors (i.e. matrices) given by the predictors. The proof idea is to construct a third-order tensor by
linearly combining the conditional 2-tensors for each possible value of the token being conditioned
on, such that Kruskal’s theorem applies and gives identifiability. Note, importantly, that the weights
for the linear combination cannot depend on the marginal probabilities of the token being conditioned
on, since we do not have access to these marginals, and it is unclear whether we could extract unique
marginals given the conditional probabilities we are predicting. Thus, the above theorem cannot be
simply derived from results showing parameter identifiability from the 3rd order moments.

Note that this tensor decomposition argument can also be applied to G-HMM, with the help of
Lemma 7. We leave the details to Theorem 8 in Section 2.2.4.1.

2.2.3 Proofs for HMMs: connection to tensor decomposition

We now discuss proofs for some of the main results. Section 2.2.3.1 proves the identifiability of HMM
parameters from the task of predicting two tokens (Theorem 7) using ideas from tensor decomposi-
tion, and Section 2.2.4 shows the identifiability proof of pairwise prediction on G-HMM. The rest of
the proofs are deferred to the appendix.

2.2.3.1 Proof of Theorem 7: identifiability of predicting two tokens for HMM

There are three cases for the two-token prediction task, i.e. 1) x2 ⊗ x3|x1, 2) x1 ⊗ x3|x2, and 3) x1 ⊗
x2|x3. We will prove for the first two cases, as the third case is proved the same way as the first case
by symmetry. In all cases, the idea is to use the predictor to construct a 3-tensor whose components
are each of rank-k, so that applying Kruskal’s theorem gives identifiability.

Case 1, x2⊗ x3|x1: O,T and Õ, T̃ producing the same predictor means f 2⊗3|1(x1) := E[x2⊗ x3|x1] =

Ẽ[x2 ⊗ x3|x1] := f̃ 2⊗3|1(x1), where E, Ẽ are parameterized by the corresponding parameters. Let
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X := {ei : i ∈ [d]}, and consider the following 3-tensor:

W := ∑
x1∈X

x1 ⊗E[x2 ⊗ x3|x1] = ∑
x1∈X

x1 ⊗Eh2|x1
[E[x2 ⊗ x3|x1]|h2]

= ∑
i∈[k]

∑
x1∈X

P(h2 = i|x1)x1 ⊗E[x2|h2 = i]⊗E[x3|h2 = i]

= ∑
i∈[k]

(
∑

x1∈X
(Tϕ(x1))

⊤e(k)i x1︸ ︷︷ ︸
:=ai

)
⊗Oi ⊗ (OT )i,

(2.36)

where Oi denotes the ith column of O, and similarly for (OT )i. Note that W can also be written as

W = ∑
x1∈X

x1 ⊗ Ẽ[x2 ⊗ x3|x1] = ∑
i∈[k]

(
∑

x1∈X
(T̃ ϕ̃(x1))

⊤e(k)i x1

)
⊗ Õi ⊗ (ÕT̃ )i. (2.37)

We want to apply Kruskal’s theorem for identifiability. In particular, we will show that each com-
ponent in equation 2.36 forms a matrix of Kruskal rank k. The second and third components clearly
satisfy this condition by Assumption 7. For the first component, recall that ϕ(x) = O⊤x

∥O⊤x∥1
and write

ai as

ai = ∑
j∈[d]

(
Tϕ(e(d)j )

)⊤e(k)i · e
(d)
j = diag

[
1

∥(e(d)j )⊤O∥1

]j∈[d]

OT⊤e(k)i . (2.38)

Putting ai into a matrix form, we get A := [a1, ..., ak] = diag
(
[1/∥(e(d)j )⊤O∥1]j∈[d]

)
OT⊤, 12 which is

of rank k by Assumption 7. Hence components W are all of Kruskal rank k, and columns of OT ,O
are identified up to column-wise permutation and scaling by Kruskal’s theorem. The indeterminacy
in scaling is further removed noting that columns of O,T need to sum up to 1. Lastly, T is recovered
as T = O†OT .

Case 2, x1 ⊗ x3|x2: The optimal predictor for the task of predicting x1, x3 given x2 takes the form

E[x1 ⊗ x3|x2] = (OT⊤)diag(ϕ(x2))(OT )⊤. (2.39)

Similarly as the previous case, we would like to construct a 3-tensor whose components can be
uniquely determined by Kruskal’s theorem. Let X be the same as before, and consider the 3-tensor

W := ∑
x2∈X

x2 ⊗E[x1 ⊗ x3|x2] = ∑
x2∈X

x2 ⊗Eh2|x2
(E[x1|h2]⊗E[x3|h2])

= ∑
i∈[k]

∑
x2∈X

(ϕ(x2))
⊤e(k)i x2︸ ︷︷ ︸

:=ai

⊗E[x1|h2]⊗E[x3|h2] = ∑
i∈[k]

ai ⊗ (OT⊤)i ⊗ (OT )i, (2.40)

where the first component can be simplified to

ai = ∑
j∈[d]

(e(d)j )⊤O

∥(e(d)j )⊤O∥1

e(k)i · e
(d)
j =

(
diag

(
[∥O⊤j ∥1]j∈[d]

))−1
Oe(k)i := D−1Oe(k)i . (2.41)

The matrix A := [a1, ..., ak] = D−1O is of rank k, hence we can identify (up to permutation) columns
of each component of W by Kruskal’s theorem. This means if O,T and Õ, T̃ produce the same

12We use [αi ]i∈[d] to denote a d-dimensional vector whose ith entry is αi .
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predictor, then we have OT = ÕT̃ , OT⊤ = ÕT̃⊤, and that O, Õ are matched up to a scaling of rows
(i.e. D−1). Next, to determine D, note that T , T̃ are doubly stochastic by Assumption 5, which means
the all-one vector 1 ∈ Rk satisfies T1 = T̃1 = 1. Hence ÕT̃1 = OT1 = O1 = [∥O⊤j ∥1]j∈[d]. We can
then compute D as D = diag(OT1), and recover O as O = DA. Finally, T is also recovered since
ÕT̃ = OT̃ = OT ⇒ T̃ T−1 = Ik ⇒ T̃ = T .

2.2.3.2 Proof of Theorem 6: non-identifiability of HMM from multiple pairwise predictions

Theorem (Theorem 6 restated). There exists a pair of HMM distributions with parameters (O,T ) and
(Õ, T̃ ), each satisfying Assumptions 5, 6 and 7, and also Õ ̸= O, such that, for each of the tasks x2|x1, x1|x2,
x3|x1, and x1|x3, the optimal predictors are the same under each distribution.

Proof. We provide an example to show the nonidentifiability result in Theorem 6. The goal is to find
Õ ̸= O, T̃ ̸= T that produce the same predictors for predicting both x2|x1 and x3|x1. We will choose
T , T̃ to be symmetric, so that O,T and Õ, T̃ also form the same predictors for the reversed direction,
i.e., for predicting x1 given x2 and x1 given x3, since the reverse chain has transition matrix T⊤ = T .

Let’s consider the case where the all row sums of O and Õ are k/d. Consequently, the posterior
function is simply ϕ(x) = O⊤x

∥O⊤x∥1
= d

kO
⊤x, and similarly we have ϕ̃(x) = d

k Õ
⊤x. The predictors are

of the form:

f 2|1(x) = OTϕ(x) =
d
k
OTO⊤x, f 3|1(x) = OT 2ϕ(x) =

d
k
OT 2O⊤x. (2.42)

Matching f 2|1(x) = f̃ 2|1(x) on all x ∈ X := {ei}i∈[d] means

OTO⊤Id = OTO⊤ = ÕT̃ Õ⊤ ⇒ T̃ = Õ†O · T · (Õ†O)⊤. (2.43)

Similarly, matching f 3|1 = f̃ 3|1 gives OT 2O⊤ = ÕT̃ 2Õ⊤, hence

ÕT̃ 2Õ⊤ = ÕÕ†OT (Õ†O)⊤ · Õ†OT (Õ†O)⊤Õ⊤

(i)
= OT · (Õ†O)⊤Õ†O · TO⊤ = OT · TO ⇒ (Õ†O)⊤ · Õ†O = Ik,

(2.44)

where step (i) uses ÕÕ†O = O, since Õ,O share the same column space.

Denote R := Õ†O; R is orthogonal by the last equality in equation 2.44. To construct the desired
example, consider k = 3, and let R represent a rotation with axis of rotation 1

3 (e1 + e2 + e3). This axis
is the direction pointing from the origin to the projection of the origin on the hyperplane Pc := {v ∈
Rd : ∑i∈[d] vi = c} for any positive constant c (i.e. Pc is parallel to the hyperplane in which probability
vectors lie). This means such rotation guarantees Rv ∈ Pc, ∀v ∈ Pc, and has the following property:

Claim 2. Each row and each column of R sums up to 1.

Proof. We would like to show that each row and each column of R sums up to 1. Denote the d-
dimensional simplex by ∆d, i.e. ∆d := {x ∈ Rd : ∑i∈[d] xi = 1}, and let Pc := {v ∈ Rd : ∑i∈[d] vi = c}
for some positive constant c denote a hyperplane parallel to the hyperplane in which probability
vectors lie.
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Let’s first check that the columns of R sum up to 1. Any v ∈ Pc can be written as v = c · [α1, α2, ..., αd−1, 1−
∑i∈[d−1] αi] for some [α1, ..., αd−1] ∈ ∆d−1. Let ri denote the ith row of R, then Rv ∈ Pc means
∑i∈[d]⟨ri, v⟩ = ⟨∑i∈[d] ri, v⟩ = c. Let β j denote the jth coordinate of ∑i∈[d] ri, then

∑
i∈[d−1]

βiαi + βd
(
1− ∑

i∈[d−1]
αi
)
= 1, ∀[α1, ..., αd−1] ∈ ∆d−1

⇒ ∑
i∈[d−1]

(βi − βd)αi + βd = 1, ∀[α1, ..., αd−1] ∈ ∆d−1

⇒ βi = 1, ∀i ∈ [d].

(2.45)

It then follows that R−1 = R⊤ also has columns summing up to 1, since

∑
i∈[d]

(RR−1)ij = ⟨∑
i∈[d]

ri, (R−1)j⟩ = ⟨1, (R−1)j⟩ = 1, ∀j ∈ [d]. (2.46)

Define Õ := OR, T̃ := R⊤TR, Claim 2 ensures that row sum and column sum of Õ, T̃ remain the
same as those of O,T . When the rotation angle represented by R is sufficiently small, entries Õ, T̃
remain in [0, 1], hence such Õ, T̃ form a valid example. We will provide a concrete example in the
subsequent subsection.

An example of nonindentifiability The intuition of the nonidentifiability result in Theorem 6 is
related to the non-uniqueness of matrix factorization: while adding additional pairwise prediction
tasks introduces more equations on the product of matrices, these equations can be highly dependent,
and there are cases where different set of matrices can simultaneously satisfy all the equations.

We now provide a concrete example for the non-identifiability of predicting x2|x1, x1|x2, x3|x1, and
x1|x3, by finding 2 set of O,T such that the corresponding predictors (of the form specified in equation
2.42) match. Let d = 4, k = 3,

O =


0.23016003 0.3549092 0.16493077
0.30716059 0.06962305 0.37321636
0.2580854 0.26965425 0.22226035
0.20459398 0.3058135 0.23959252

 , Õ =


0.24120928 0.35062535 0.15816537
0.28937626 0.07433156 0.38629218
0.26077674 0.26749114 0.22173212
0.20863772 0.30755194 0.23381033

 ,

T =

0.56893146 0.35811118 0.07295736
0.35811118 0.10805638 0.53383243
0.07295736 0.53383243 0.39321021

 , T̃ =

0.59740926 0.30452087 0.09806987
0.30452087 0.1331689 0.56231024
0.09806987 0.56231024 0.33961989

 ,

det(O) = det(Õ) = 0.0110, det(T ) = det(T̃ ) = −0.1611.

(2.47)

Note that T , T̃ are both symmetric as desired by the proof of Theorem 6, which means this is also a
valid counter example for learning to predict x1|x2 and x1|x3, and hence for all of x2|x1, x1|x2, x3|x1,
and x1|x3.
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2.2.3.3 Nonidentifiability from large time gaps

As noted earlier, there is an inherent obstacle when using prediction tasks on tokens that are more
than 1 time gaps apart. For instance, if we are predicting xt+1 given x1 for some t > 1 with G-HMM,
then we are still able to identify M from the posterior function, however it remains to to recover T

from T t. For general matrices, it is clear that matching a power of a matrix does not imply the matrix
itself is matched. For our case, even though requiring T to be stochastic adds additional constraints,
matching the matrix power still does not suffice to identify the underlying matrix, as formalized in
the following claim.

Claim 3 (Nonidentifiability of matrix powers (Claim 1 restated)). For any positive integer t, there exist
stochastic matrices T , T̃ satisfying Assumption 5, 7, such that T ̸= T̃ and T t = T̃ t.

Proof. As in Theorem 6, the nonidentifiability comes from the non-uniqueness of matrix factorization.
Specifically for this case, we will set T̃ to be equal to T up to a special rotation that gets composed
when taking the matrix power. That is, we want T̃ = RT = TR for some matrix R that implicitly
performs a rotation, so that T̃ t = T tRt. Since R corresonds to a rotation, we can choose the rotation
angle properly so that Rt = I , and hence T̃ t = T t but T̃ ̸= T .

Precisely, using notations for the G-HMM setup, set a ∈ [0, 1], and let the parameters (T ,M ) be given
by

T =

 a 0 1− a
1− a a 0

0 1− a a

 , M =

 1 −1/2 −1/2
0 −

√
3/2

√
3/2

1/
√

2 1/
√

2 1/
√

2

 .

Let θ be some rotation angle, and denote by R(θ) :=

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 a rotation that acts on

the first two dimensions. We will show that for any θ ∈ R, we have

T̃ :=
(
M−1(R(θ)

)−1
M
)
· T = T ·

(
M−1(R(θ)

)−1
M
)
. (2.48)

Assuming equation 2.48, since R(θ) represents a rotation of angle θ,
(
R(θ)

)τ corresponds to a rotation
of angle τθ for any integer τ (τ could be negative). Setting θ := 2π

t , we then have

T̃ t =
(
M−1(R(θ)

)−1
M · T

)t
= T t(M−1(R(θ)

)−1
M )

)t
= T tM−1(R(θ)

)−t
M

=T tM−1 ·R(2π) ·M = T t.
(2.49)

For T̃ to serve as a valid example for our theorem, it remains to check that for every t, there exists a
choice of a such that T̃ := RT , where R := M−1(R( 2π

t )
)−1

M , is a valid stochastic matrix. That is,
T̃ has 1) columns and rows each summing up to 1, and 2) entries bounded in [0, 1]. Let’s first show

that the columns and rows each sum up to 1. Noting that M−1 = 1
3

 2 0
√

2
−1 −

√
3
√

2
−1

√
3
√

2

, the column

sums are

1⊤T̃ = 1⊤M−1R(θ)−1MT
(i)
= 1⊤TM−1R(θ)−1M =

√
2e⊤3 R(θ)M =

√
2e⊤3 M =

√
2

1√
2
1 = 1,

(2.50)
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where step (i) uses equation 2.48. Similarly, the row sums are

T̃1 = M−1R(θ)−1M1 = M−1R(θ)−1 · 3√
2
e3 = M−1 · 3√

2
e3 = 1. (2.51)

To show that there exists a choice of T such that entries of T̃ are non-negative, we provide a concrete
example where T is defined with a = 1

2 . It can be checked that T̃ := M−1(R( 2π
t ))−1M has non-

negative entries for t ∈ {2, 3, 4, ..., 10}. For larger t, let θ = 2π
t , then we have by the Taylor expansion

of R( 2π
t ):

R(θ) :=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

1− θ2/2 + c1θ4 −θ + c2θ2 0
θ + c2θ2 1− θ2/2 + c1θ4 0

0 0 1


=I + θ

0 −1 0
1 0 0
0 0 0

+ θ2

−1/2 + c1θ2 c2 0
c2 −1/2 + c1θ2 0
0 0 0


(2.52)

for some constants c1 ∈ [− 1
4! ,

1
4! ], c2 ∈ [− 1

2 , 1
2 ]. Substituting this into T̃ := M−1R(θ)−1M gives

T̃ =


a− θ√

3
(1− a) θ√

3
(1− 2a) 1− a + θ√

3
a

1− a + θ√
3

a a− θ√
3
(1− a) θ√

3
(1− 2a)

θ√
3
(1− 2a) 1− a + θ√

3
a a− θ√

3
(1− a)



+
1
3

 −1 + 2c1θ2 1
2 − c1θ2 −

√
3c2

1
2 − c1θ2 +

√
3c2

1
2 − c1θ2 −

√
3c2 −1 + 2c1θ2 +

√
3c2

1
2 − c1θ2

1
2 − c1θ2 +

√
3c2

1
2 − c1θ2 −1 + 2c1θ2 −

√
3c2

 ·
 a 0 1− a

1− a a 0
0 1− a a



=
1
2


1− θ√

3
0 1 + θ√

3
1 + θ√

3
1− θ√

3
0

0 1 + θ√
3

1− θ√
3

+
θ2

6

−
1
2 + c1θ2 −

√
3c2 1− 2c1θ2 − 1

2 + c1θ2 +
√

3c2

− 1
2 + c1θ2 − 1

2 + c1θ2 +
√

3c2 1− 2c1θ2 −
√

3c2

1− 2c1θ2 +
√

3c2 − 1
2 + c1θ2 −

√
3c2 − 1

2 + c1θ2


(i)
≥ 1

2


1− θ√

3
0 1 + θ√

3
1 + θ√

3
1− θ√

3
0

0 1 + θ√
3

1− θ√
3

+ θ2

−0.25 −0.16 −0.25
−0.09 −0.25 0.01
0.01 −0.25 −0.09


(2.53)

where the inequality (i) is taken entry-wise. It can be checked that all entries are non-negative for
θ ≤ 2π

10 .

Proof of equation 2.48 Let’s conclude the proof by proving the commutativity in equation 2.48.

Denote R2(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, i.e. R(θ) =

[
R2(θ) 0

0 1

]
. Denote U :=

[
1 −1/2 −1/2
0 −

√
3/2

√
3/2

]
,

i.e. M =

[
U

1⊤/
√

2

]
. We can write

M⊤R(θ)⊤M =
[
U⊤ 1/

√
2
] [R2(θ)

⊤ 0
0 1

] [
U

1⊤/
√

2

]
= U⊤R2(θ)

⊤U +
11⊤

2
. (2.54)

Let R2(θ) denote a clockwise rotation of angle θ, then

U = [v1,R2
(2π

3
)
v1,R2

(4π

3
)
v1] = [R2

(4π

3
)
v2, v2,R2

(2π

3
)
v2] = [R2

(2π

3
)
v3,R2

(4π

3
)
v3, v3], (2.55)
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where v1 =

[
1
0

]
, v2 =

[
−1/2
−
√

3/2

]
, v3 =

[
−1/2√

3/2

]
. Denote αij := v⊤i R⊤2 vj for i, j ∈ [3]. Noting

T = aI + (1− a)

0 0 1
1 0 0
0 1 0

 := aI + (1− a)P , we have

M⊤R(θ)⊤MT = TM⊤R(θ)⊤M

⇔ U⊤R2(θ)
⊤U (aI + (1− a)P ) +

11⊤

2
T = (aI + (1− a)P )U⊤R2(θ)

⊤U + T
11⊤

2
(i)⇔ U⊤R2(θ)

⊤UP = PU⊤R2(θ)
⊤U

⇔

α31 α32 α33

α11 α12 α13

α21 α22 α23

 (∗)
=

α12 α13 α11

α22 α23 α21

α32 α33 α31

 .

(2.56)

where step (i) uses 11⊤T = T11⊤ = 11⊤. The equality (∗) is true due to equation 2.55.

2.2.4 Proofs for G-HMM: a geometric argument

Proof of Theorem 5: identifiability of predicting x2 given x1 for G-HMM We first prove Theo-
rem 5, and then the helper lemmas.

Proof of Theorem 5. For G-HMM, the predictor for x2 given x1 is parameterized as f 2|1(x1) = E[x2|x1] =

MTϕ(x1). If M ,T and M̃ , T̃ produce the same predictor, then

f 2|1(x) = MTϕ(x) = M̃T̃ ϕ̃(x) = f̃ 2|1(x), ∀x ∈ Rd. (2.57)

Let R := (M̃T̃ )†(MT ) ∈ Rk×k, then ϕ̃(x) = Rϕ(x). The following lemma (proved at the end of this
section) says that ϕ, ϕ̃ must then be equal up to a permutation of coordinates:

Lemma 8. If there exists a non-singular matrix R ∈ Rk×k such that ϕ(x) = Rϕ̃(x), ∀x ∈ Rd, then R must
be a permutation matrix.

Combined with Lemma 7, we have M̃ is equal to (up to a permutation) either M or HM , where H

is the Householder reflection given in Lemma 7.

The remaining step is to show that HM can be ruled out by requiring T̃ to be a stochastic matrix.
Note that matching both the predictor and the posterior function means we also have M̃T̃ = MT , or

T̃ = (M̃ †M )T . Recall that H := Id − 2v̂v̂⊤ for v̂ = (M †)⊤1√
1⊤M †(M †)⊤1

. When M̃ = HM̃ , the column

sum of M̃ †M is

1⊤M̃ †M = 1⊤M †H−1M = 1⊤M †(I − 2v̂v̂⊤)M = 1⊤(I − 2M †v̂v̂⊤M )

=1⊤ − 2 · 1⊤M
†(M †)⊤11⊤M †M

1⊤M †(M †)⊤1
= 1⊤ − 2 · 1

⊤M †(M †)⊤1

1⊤M †(M †)⊤1
1⊤ = 1⊤ − 2 · 1⊤ = −1⊤.

(2.58)

This means the column sum of T̃ is 1⊤T̃ = 1⊤(M̃ †M )T = −1⊤T = −1⊤, which violates the
constraint that T̃ should be a stochastic matrix with positive entries and column sum 1. Hence it
must be that M = M̃ and hence also T = T̃ (up to permutation), proving the theorem statement.
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We now prove the two helper lemmas.

Proof of Lemma 7. Lemma 7 states that if M ,M̃ parameterize ϕ, ϕ̃ respectively and that ϕ = ϕ̃, then
M̃ must equal to either M or a unique (and as we will see, somewhat special) transformation of M .

To prove this, let’s start with the case where d = k. First, let’s check the conditions for ϕ = ϕ̃. For any
x ∈ Rd, we have

[ϕ(x)]i =
exp

(
− ∥x−µi∥2

2
)

∑j∈[k] exp
(
− ∥x−µj∥2

2
) =

exp
(
− ∥x−µ̃i∥2

2
)

∑j∈[k] exp
(
− ∥x−µ̃j∥2

2
) = [ϕ̃(x)]i, ∀i ∈ [k]

⇒
exp

(
− ∥x−µi∥2

2
)

exp
(
− ∥x−µ̃i∥2

2
) =

exp
(
− ∥x−µj∥2

2
)

exp
(
− ∥x−µ̃j∥2

2
) , ∀i, j ∈ [k]

⇒ ∥x− µi∥2 − ∥x− µ̃i∥2 = ∥x− µj∥2 − ∥x− µ̃j∥2, ∀i, j ∈ [k]

⇒ 2
(
(µ̃i − µi)− (µ̃j − µj)

)⊤x =
(
∥µj∥2 − ∥µ̃j∥2)− (∥µi∥2 − ∥µ̃i∥2), ∀i, j ∈ [k].

(2.59)

Since the left hand side is linear in x ∈ Rd and the right hand side is a constant, it must be that both
sides are 0. That is, the necessary conditions for ϕ = ϕ̃ are that for any i, j ∈ [k], 1) µ̃i − µi = µ̃j − µj,
and 2) ∥µi∥2 − ∥µ̃i∥2 = ∥µj∥2 − ∥µ̃j∥2. It can be checked that these two conditions are also sufficient
for ϕ = ϕ̃.

Denote v := µi − µ̃i. The norms of the means are known and equal by Assumption 9, which gives

∥µi∥2 − ∥µ̃i∥2 = ∥µi∥2 − ∥µi − v∥2 = (2µi − v)⊤v = 0, ∀i ∈ [k]. (2.60)

The last equality in equation 2.60 holds for a non-zero v when the span of {2µi − v : i ∈ [k]} is
(d− 1)-dimensional subspace. On the other hand, the span of {2µi − v : i ∈ [k]} is at least (k − 1)
by Assumption 8. When d = k, it must be that the dimension is exactly (d− 1), which means v is an
affine combination of {2µi : i ∈ [k]} by Claim 5.

Moreover, v has to be orthogonal to {2µi− v : i ∈ [k]}, which leads to the unique choice of v that is the
projection of the origin onto the (d− 1)-dimensional subspace specified by the affine combinations of
{2µi : i ∈ [k]}.

Claim 4. v is the projection of the origin to the hyperplane defined by {2µi : i ∈ [k]}, and is the only solution
to equation 2.60.

Proof. It is clear that this choice of v satisfies (2µi − v)⊤v = 0, ∀i ∈ [k]. To see that this is the unique
choice, suppose there exists some v′ lying in the hyperplane of {2µi}, and denote δ := v′ − v.

Note that δ⊤v = 0: let the hyperplane specified by {2µi}i∈[k] be specified as {x : ⟨u, x⟩ = c} for some
u ∈ Rd and c ∈ R. Then v, the projection of the origin, can be written as v = c

∥u∥ ·
u
∥u∥ , i.e. v is

proportional to the normal vector u. For any v′ in the hyperplane, it satisfy ⟨u, v′⟩ = c, and

δ⊤v =(v′ − v)⊤v = ⟨ c
∥u∥

u

∥u∥ , v′⟩ −
∥∥∥∥ c
∥u∥

u

∥u∥

∥∥∥∥2

=
c
∥u∥2 · ⟨u, v′⟩ − c2

∥u∥2
∥u∥2

∥u∥2 =
c2

∥u∥2 −
c2

∥u∥2 = 0.

(2.61)
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Then for any v′ satisfying equation 2.60,

(2µi − v′)⊤v′ = (2µi − v− δ)⊤(v + δ)

= (2µi − v)⊤v︸ ︷︷ ︸
0

+2µ⊤i δ− v⊤δ︸︷︷︸
0

− δ⊤v︸︷︷︸
0

−δ⊤δ = (2µi − δ)⊤δ = 0, ∀i ∈ [k]. (2.62)

Since {2µi − δ}i∈[k] spans the (k − 1)-dimensional hyperplane and that δ lies in the hyperplane, it
must be that δ = 0, i.e. v′ = v.

Note that this choice of v also satisfies ∥µi − v∥ = ∥µi∥, since v and the origin are reflections w.r.t. the
hyperplane that is the affine hull of {µi : i ∈ [k]}. In other words, {µi − v}i∈[k] is related to {µi}i∈[k]

via the Householder transformation of the form H := Id− 2 vv⊤
∥v∥2 , i.e. µi− v = Hµi. Denote v̂ := v

∥v∥2
.

An explicit formula for v̂ is v̂ := M−⊤1√
1⊤M−1M−⊤1

. This finishes the proof for d = k.

For d > k, the above argument still applies and H remains the only indeterminacy (up to permuta-

tion), where H := Id − 2v̂v̂⊤ for v̂ := (M †)⊤1√
1⊤M †(M †)⊤1

. The reason is that even though the ambient

dimension d is larger, {µi − v : i ∈ [k]} has to have the same span as {µi : i ∈ [k]}, since having the
same predictor requires the column space of M ,M̃ to match. Hence we only need to consider v in
the k-dimensional column space of M , which reduces to the case of d = k.

Proof for Lemma 8. Given the form of the predictor, matching two predictors f , f̃ means that the corre-
sponding posteriors ϕ, ϕ̃ are matched up to a linear transformation. Lemma 8 states that such linear
transformation must be a permutation.

Let’s start by matching the Jacobian w.r.t. x on both sides. Recall the Jacobian of the posterior vector

ϕ(x) ∈ Rk, where [ϕ(x)]i =
exp(− ∥x−µi∥

2

2 )

∑j∈[k] exp(−
∥x−µj∥2

2 )

. Denote o(x) :=
[
− ∥x−µ1∥2

2 , ...,− ∥x−µk∥2

2
]
∈ Rk, then

∇xϕ(x) = ∇o(x)softmax(o(x)) · ∇xo(x), where

∇o[softmax(o)]i = [softmax(o)]i · (ei − softmax(o)) = [ϕ(x)]i · (ei − ϕ(x)),

∇osoftmax(o) = diag(ϕ(x))− ϕ(x)ϕ(x)⊤,

∇xo(x) =− [x− µ1, ..., x− µk]
⊤.

(2.63)

Hence the Jacobian is

∇xϕ(x) =
(
diag(ϕ(x))− ϕ(x)ϕ(x)⊤

)
· (M − [x, x, ..., x])⊤. (2.64)

Denote ∆ := M − [x, x, ..., x] ∈ Rd×k, and similarly ∆̃ = M̃ − [x, x, ..., x]. Matching ∇xϕ̃(x) =

∇xRϕ(x) gives

diag(Rϕ(x))∆̃⊤ −Rϕ(x)(∆̃Rϕ(x))⊤ = Rdiag(ϕ(x))∆⊤ −Rϕ(x)(∆ϕ(x))⊤. (2.65)

Let’s take x = x(i)c := cµi for c > 1. We claim that this x(i)c satisfies limc→∞ ϕ(x(i)c ) → ei. This is
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because ∀j ̸= i,

lim
c→∞

[ϕ(x(i)c )]j

[ϕ(x(i)c )]i
= lim

c→∞
exp

(∥cµi − µi∥2

2
−
∥cµi − µj∥2

2

)

= lim
c→∞

exp
(
−
(
(2c− 1)µi − µj

)⊤
(µi − µj)

2

)
= lim

c→∞
exp

(
−

2cµ⊤i (µi − µj)

2

)
= 0

(2.66)

where the last equality is because µ⊤i (µi − µj) > 0 for any µi, µj lying on the same hypersphere.

With such choices of x, the two sides of equation 2.65 are now:

LHS = diag(Ri)∆̃⊤ −RiR
⊤
i ∆̃⊤ = (diag(Ri)−RiR

⊤
i )∆̃

⊤

= RHS = ∑
j∈[k]

[ei]jRj(∆j)
⊤ −Rei(∆ei)

⊤ = Ri(∆i)
⊤ −Ri(∆i)

⊤ = 0. (2.67)

Since x := cµi for c → ∞ lies outside the affine hull of {µ̃i}i∈[k], ∆̃ is of full rank due to the following
claim:

Claim 5. Given a linearly independent set {ui}i∈[k], if {ui − v}i∈[k] is not linearly independent, then v =

∑i∈[k] βi · ui where ∑i∈[k] βi = 1.

Proof. Since {ui − v}i∈[k] is linearly dependent, we can write some uj − v as the linear combination of
other {ui − v}i∈[k],i ̸=j. Let’s take j = k wlog, and denote the coefficients of the linear combination as
{αi}i∈[k−1]. Then

uk − v = ∑
i∈[k−1]

αi(ui − v)⇒
(
1− ∑

i∈[k−1]
αi
)
v = − ∑

i∈[k−1]
αi · ui + uk (2.68)

The right hand side is non-zero since {ui}i∈[k] are linearly independent by assumption, hence 1 −
∑i∈[k−1] αi ̸= 0, and we get

v = ∑
i∈[k−1]

−αi
1−∑i∈[k−1] αi︸ ︷︷ ︸

:=βi

·ui +
1

1−∑i∈[k−1] αi︸ ︷︷ ︸
:=βk

uk.
(2.69)

Note that ∑i∈[k] βi = 1, hence v is an affine combination of {ui : i ∈ [k]}.

Since ∆̃ is full rank, it must be diag(Ri)−RiR
⊤
i = 0, which implies R is a permutation matrix. This

is because for any non-zero v s.t. diag(v)− vv⊤ = 0, the entries of v satisfy v2
i = 1, vivj = 0 for i ̸= j.

Hence v has exactly one non-zero entry which is ±1. Since Rϕ(x) = ϕ̃(x) where ϕ(x), ϕ̃(x) are both
probability vectors with non-negative entries, this non-zero entry has to be 1 (and not -1). Since R is
of rank-k by Assumption 8, this non-zero entry is at different positions for different Ri, hence R is a
permutation matrix.
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2.2.4.1 Identifiability of predicting xt2 ⊗ xt3 |xt1 , G-HMM

Theorem 7 shows that triplet prediction tasks (i.e. predict 2 tokens given 1) suffices for the identifi-
ability of HMM, using tools from the uniqueness of tensor decomposition. The next theorem shows
that the same conclusion also applies for G-HMM:

Theorem 8 (Identifiability from masked prediction on three tokens, G-HMM). Let (t1, t2, t3) be any
permutation of (1, 2, 3), and consider the prediction task xt2 ⊗ xt3 |xt1 . Under Assumption 5, 8, 9, if the
optimal predictors under the G-HMM distributions with parameters (M ,T ) and (M̃ , T̃ ) are the same, then
(M ,T ) = (M̃ , T̃ ) up to a permutation of the hidden state labels.

Proof. Similar to the discrete case, we will prove x2 ⊗ x3|x1 and x1 ⊗ x3|x2 separately; the proof for
x1⊗ x2|x3 is analogous to x2⊗ x3|x1 by symmetry and hence omitted. The proofs also follow a similar
strategy as in the proof for Theorem 7, that is, to construct a 3-tensor using the predictor, on which
applying Kruskal’s theorem provides identifiability.

Case 1, x2 ⊗ x3|x1: Let X := {x(i) ∈ Rd : i ∈ [k]} be a linearly independent set, and consider the
following 3-tensor:

W := ∑
xi∈X

x1 ⊗E[x2 ⊗ x3|x1] = ∑
x1∈X

x1 ⊗Eh2|x1

[
E[x2 ⊗ x3|x1]|h2

]
= ∑

x1∈X
x1 ⊗∑

h2

P(h2|x1)E[x2|h2]⊗E[x3|h2]

= ∑
i∈[k]

∑
x1∈X

P(h2 = i|x1)x1 ⊗E[x2|h2 = i]⊗E[x3|h2 = i]

= ∑
i∈[k]

(
∑
x1

(Tϕ(x1))
⊤e(k)i x1︸ ︷︷ ︸

:=ai

)
⊗Mi ⊗ (MT )i.

(2.70)

The matrices formed by second and third components are both of rank-k by Assumption 8. Hence in
order to apply Kruskal’s theorem on W , it suffices to show that there exists a choice of X such that
the matrix A := [a1, ..., ak] is of rank k. One such choice is to let x(i) = µi, which gives

ai := ∑
j∈[k]

ϕ(x1 = µj)
⊤T⊤e(k)i µj = M [ϕ(µ1), ..., ϕ(µk)]

⊤T⊤e(k)i ,

A := [a1, ..., ak] = M [ϕ(µ1), ..., ϕ(µk)]
⊤T⊤.

(2.71)

Since M , T are both of rank k by Assumption 8, we only need to argue that the matrix Φ :=
[ϕ(µ1), ..., ϕ(µk)] ∈ Rk×k is of full rank. Recall that for a mixture of k Gaussians with identify co-
variance and mean {µi ∈ Rd : i ∈ [k]}, the posterior function ϕ is defined entrywise as

[ϕ(x)]i =
exp

(
− ∥x−µi∥2

2
2

)
∑j∈[k] exp

(
− ∥x−µj∥2

2
2

) , ∀i ∈ [k]. (2.72)

To show Φ is of full rank, we can equivalently show that a columnwise scaled version of Φ is full rank.

In particular, let’s look at the matrix Φ̂ ∈ Rk×k, where Φ̂ij = exp(− ∥µi−µj∥2

2 ); that is, each column of
Φ̂ can be considered as a scaled version of the column in Φ without the normalization for a unit ℓ1

norm. It can be seen that Φ̂ is a Gaussian kernel matrix which is known to be full rank.
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Therefore we have shown that each component of the tensor W := ∑i∈[k] ai ⊗Mi ⊗ (MT )i has
Kruskal rank k, which allows to recover columns of M ,MT up to permutation and scaling by
Kruskal’s theorem. The indeterminacy in scaling is further removed since the norms of {Mi}i∈[d]
are known by Assumption 9.

On the other hand, for any M̃ , T̃ that form the same predictor as M ,T , W can also be written as

W = ∑
x1∈X

x1 ⊗E[x2 ⊗ x3|x1] = ∑
x1∈X

x1 ⊗ Ẽ[x2 ⊗ x3|x1]

= ∑
i∈[k]

(
∑
x1

(T̃ ϕ̃(x1))
⊤e(k)i x1

)
⊗ M̃i ⊗ (M̃T̃ )i.

(2.73)

Hence columns of M ,M̃ and MT ,M̃T̃ are both matched up to a shared permutation, which proves
identifiability.

Case 2, E[x1 ⊗ x3|x2]: For the task of predicting x1, x3 given x2, the predictor takes the form

E[x1 ⊗ x3|x2] = (OT⊤)diag(ϕ(x2))(OT )⊤. (2.74)

Let X := {µi : i ∈ [k]} as in the previous case, and consider the 3-tensor

W := ∑
x2∈X

x2 ⊗E[x1 ⊗ x3|x2] = ∑
x2∈X

x2 ⊗Eh2|x2
(E[x1|h2]⊗E[x3|h2])

=∑
h2

∑
x2∈X

p(h2|x2)x2 ⊗E[x1|h2]⊗E[x3|h2]

= ∑
i∈[k]

(
∑

x2∈X
(ϕ(x2))

⊤e(k)i x2︸ ︷︷ ︸
:=ai

)
⊗ (MT⊤)i ⊗ (MT )i,

(2.75)

The first component is of rank-k as shown in the proof for x2 ⊗ x3|x1, and the other two components
are of rank-k by Assumption 8. Thus Kruskal’s theorem applies and the columns of MT ,MT⊤ are
recovered up to a shared permutation.

The first component {ai}i∈[k] are also recovered, which means that if M̃ , T̃ form the same predictor
as M ,T , then for any linearly independent set X with k elements (not necessarily the previous choice
of {µi}i∈[k]) such that X leads to a full rank A, we have A = Ã where Ã is parameterized by M̃ , T̃ .
For any such X = {x(i) : i ∈ [k]}, denote X := [x(1), ..., x(k)], then

A = X [ϕ(x(1)), ..., ϕ(x(k))]⊤T⊤ = X [ϕ̃(x(1)), ..., ϕ̃(x(k))]⊤T̃⊤ = Ã. (2.76)

Since X is of rank-k by the choice of X , this means

[ϕ̃(x(1)), ..., ϕ̃(x(k))] = T̃−1T︸ ︷︷ ︸
:=R

[ϕ(x(1)), ..., ϕ(x(k))]⇒ ϕ̃(x(i)) = Rϕ(x(i)), ∀i ∈ [k]. (2.77)

Moreover, for any valid choice of X , matrices defined with points in sufficiently small neighborhoods
of x(i) are still of full rank by the upper continuity of matrix rank. Hence the equality in equation 2.77
holds for points in these neighborhoods, and thus the Jacobian on both sides should be equal. Then,
the exact same proof of Lemma 8 applies, and we get ϕ̃, ϕ are equal up to a permutation of coordinates.
Thus M̃ must be equal to (up to permutation) either M or HM for a Householder reflection H by
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Lemma 7. Finally, the solution of HM is eliminated since it would lead to a T̃ that is not a valid
stochastic matrix, as shown in the proof of Theorem 5.

2.2.4.2 Identifiability from pairwise conditional distribution

We show that matching the entire conditional distribution for G-HMM provides identifiability. Though
this is implied by Theorem 5, which states that matching the conditional expectation already suffices,
having access to the full conditional distribution allows an even simpler proof.

Theorem 9 (Identifiability of conditional distribution). Let M ,T and M̃ , T̃ be two set of parameters
satisfying Assumption 5 and 8. If p(x2|x1;M ,T ) = p(x2|x1;M̃ , T̃ ), ∀x1, x2 ∈ Rd, then M = M̃ , T = T̃

up to a permutation of labeling.

Proof. First note that the conditional distribution of x2 given x1 is a mixture of Gaussian, with means
{µi}i∈[k] and mixture weights given by P(h2|x1) = T P(h1|x1), hence we can directly apply the iden-
tifiability of Gaussian mixtures to recover the means {µi}i∈[k]:

Lemma 9 (Proposition 4.3 in Lindsay and Basak [1993]). Let Qk denote a Gaussian mixture with means
{ξ j}j∈[k] ∈ Rd. Suppose ∃l ∈ [d] such that the set {[ξ j]l} has distinct values, then one can recover {ξ j}j∈[k]
from moments of Qk.

We note that the assumption on the existence of a coordinate l ∈ [k] is with out loss of generality,
since we can first rotate the means to a different coordinate system in which this condition holds,
then rotation back the means. Such rotation is guaranteed to exist since finding such rotation is
equivalent to finding a vector v s.t. v⊤(µi − µj) ̸= 0 for every i, j ∈ [k], for which the solution set is
Rd \ ∪i,j∈[k]{u : u⊤(µi − µj) = 0} ̸= ∅.

Recovering {µi}i∈[k] means the scaled likelihood and the posterior both match, i.e. ψ = ψ̃, and

ϕ(x) = P(h|x) = ψ
∥ψ∥1

. The conditional distribution is

p(x2|x1) = ∑
i,j∈[k]

p(x2|h2)p(h2|h1)p(h1|x1) =
1

(2π)d/2 ψ(x2)
⊤Tϕ(x1). (2.78)

Choose a set X := {x(i)}i∈[k] such that ΨX := [ψ(x(1)), ..., ψ(x(k))] ∈ Rk×k is full rank. ΦX :=
[ϕ(x(1)), ..., ϕ(x(k))] ∈ Rk×k is also full rank since its columns are nonzero scalings of columns of ΨX .
Then we have

Ψ⊤XTΦX = Ψ̃⊤X T̃ Φ̃X = Ψ⊤X T̃ΦX ⇒ T = T̃ . (2.79)

2.2.5 Discussion

In this section, we took a model parameter identifiability view of self-supervised learning, which
offers a complementary perspective to the current focus of feature learning for downstream perfor-
mance. We focused on the masked prediction task on data generated by HMM and its conditionally-
Gaussian variant G-HMM. We showed that parameter recovery is determined by the task difficulty,
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which can be tuned by both changing the parametric form of the data generative model, and by
changing the masked prediction task.

We emphasize that this is a first-cut effort in the research program of analyzing SSL through the lens of
model identifiability; we aim to build on this foundation to extend our analyses from HMMs to more
complicated latent sequence and latent variable models. We also note that we have focused here on
population analyses, and model identifiability. It would be of interest to build off this to develop and
analyze the corresponding finite-sample learning algorithms for parametric generative models given
SSL tasks, with sample complexity results, both in the realizable case, as well as in the agnostic case
where we have model mis-specification. Given the use of conditional MLEs and regressions in SSL,
and the natural robustness of these to model mis-specifications, we conjecture that these approaches
will be much more robust when compared to say spectral methods.
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Chapter 3

Understanding model classes: a case
study on Transformers for reasoning

The choice of the model class is a crucial decision in the machine learning pipeline, as it impacts
both the capacity and inductive biases of the model. The capacity determines the existence of a solu-
tion, and the inductive biases affect the properties of the solutions produced. In practice, the model
class is determined by architectural choices. In this chapter, we focus on the Transformer architec-
ture [Vaswani et al., 2017]. Transformer-based language models have undergone rapid evolution
over the past few years, transitioning from generating broken English within the research commu-
nity to being deployed across several critical public-facing sectors. While these advancements are
remarkable, researchers and practitioners continue to uncover flaws and limitations in these mod-
els, some of which are surprisingly simple yet perplexing. This ongoing discovery process motivates
us to develop a deeper and more precise understanding of the capabilities and inner workings of
Transformers.

We focus our attention on algorithmic reasoning, a category of reasoning tasks typically solvable with
known algorithms. Reasoning is a fundamental ability underlying most use cases of language mod-
els, and the algorithmic aspect offers the additional benefit of facilitating easy error checks. Examples
of these tasks include solving arithmetic problem [Lee et al., 2023, Jelassi et al., 2023], determining par-
ity [Bhattamishra et al., 2020a, Chiang and Cholak, 2022], and parsing matches parentheses [Hahn,
2020, Yao et al., 2021a].

We will use finite-state automaton as a sandbox for studying algorithmic reasoning, where one reason-
ing step is mapped to one state transition in a finite-state automaton. We will then present a positive
representability result that Transformer can implement parallel reasoning solutions to the automaton
simulation task, which we refer to as “shortcuts”, as the number of sequential steps in these solutions
is much smaller than the number of sequential transitions [Liu et al., 2023a] (Section 3.4). This offers
a computational advantage over the classical recurrent neural networks (RNNs), whose sequential
reasoning steps is the same as the number of transitions.

However, having sufficient representation power does not guarantee good solutions in practice. Us-
ing a base factor identified in the shortcut constructions, we stress test the robustness of the learned
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Transformers [Liu et al., 2023b] and find that these practical solutions fail to robustly generalizing
out-of-distribution (OOD) (Section 3.5). Our results reveal undesirable inductive biases in the atten-
tion mechanism, making Transformers compare unfavorably to RNNs at solving sequential reasoning
tasks in practice.

Nevertheless, understanding the feasible solutions can provide practical insights. In Section 3.6
(based on Wen et al. [2023]), we show that characterizing the set of optimal solutions in a 2-layer
Transformer leads to practical implications on interpretability and improvements on OOD general-
ization. Our sandbox is a formal languages named Dyck, which consists of balanced parentheses and
is used to model the hierarchical structure in natural languages. We show that 2-layer Transformer
contains an infinite number of optimal solutions even for a task as simple as modeling Dyck. Conse-
quently, this implies that “myopic” interpretability methods which examine only a single component
of a network are provably unrealiable. Our theoretical results also identify a necessary condition for
a 2-layer Transformer to solve Dyck, which can be leveraged as a regularization term to improve the
OOD performance of the trained model.

In the following, we will start with the necessary background of Transformer (Section 3.1) and au-
tomata (Section 3.3.1), and present the shortcut solutions in Section 3.4, challenges of OOD general-
ization in Section 3.5, and the implication to interpretability in Section 3.6.

3.1 The Transformer architecture

An L-layer Transformer is a sequence-to-sequence network ftf : RT×d × Θtf → RT×d, consisting of
alternating self-attention blocks and feedforward blocks

ftf := f (L)
mlp ◦ f (L)

attn ◦ f (L−1)
mlp ◦ ... ◦ f (1)attn.

The parameter space Θtf is the Cartesian product of those of the individual blocks (without recurrent
weight sharing across layers, by default). We define these two types of blocks below.

Attention. A self-attention block is a sequence-to-sequence function, which consists of one or multiple
attention heads. 1 An attention head updates each position of the sequence using a weighted sum of
all positions, which can be abstractly thought of as [ fattn(x1, · · · , xT)]t = ∑t′∈[T] αt,t′ϕ(xt′) for some
weights {αt,t′} and some function ϕ : Rd → Rd.

Concretely, a single-headed (H = 1) 2 self-attention function fattn : RT×d × Θattn → RT×d is pa-
rameterized by θattn = (WQ, WK, WV , WC) with WQ, WK, WV , W⊤C ∈ Rd×k for an inner embedding
dimension k. The pairwise attention weights {αt,t′} are computed using the query and key matrices as
αt,t′ ∝ ⟨W⊤Q xt, W⊤K xt′⟩ for each position t′ ∈ [T], interpreted as cosine similarity in a (asymmetrically)
projected k-dimensional space. A variant that is commonly used in practice and will be considered in
this chapter is to additionally apply a causal masking on α, which sets αt,t′ = 0, ∀t′ > t. 3 The attention

1The name “head” likely borrows the terminology of (neural) Turing machines [Graves et al., 2014], where a head is used
to access memory locations. For Transformers, a length-T sequence can be considered as having T memory locations.

2In general, for any positive integer H, a multi-headed self-attention block consists of a sum of H copies of the above construc-
tion, each with its own parameters.

3This is called “causal” in the sense that an earlier time step t is not affected by a later time step t′.
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weights are then normalized such that ∑t′ αt,t′ = 1, ∀t. The function ϕ computes ϕ(x) = W⊤C W⊤V x. In
a single equation:

fattn(X; WQ, WK, WV , WC) := CausalAttn(XWQW⊤K X⊤)XWVWC,

where CausalAttn : RT×T → RT×T applies a row-wise causally-masked T-dimensional softmax func-
tion. The standard softmax function softmax(z) : RT → RT is used for normalization and defined
by

[softmax(z)]t :=
ezt

∑t′∈[T] ezt′
;

the causally-masked softmax at row t is defined to be softmax(z1:t) on the first t coordinates, and 0
on the rest. To implement the causal masking operation, it is customary to set the entries above the
diagonal of the attention score matrix XWQW⊤K X⊤ to −∞, then obtaining CausalAttn(XWQW⊤K X⊤)
via a row-wise softmax (letting e−∞ evaluate to 0).

The above version with the softmax is often called soft attention: the softmax performs continuous
selection, taking a convex combination of its inputs. In contrast, hard attention refers to attention heads
which perform truly sparse selection (putting weight 1 on the position with the highest score, and 0 on
all others), which has been shown to lead to weaker representational power than soft attention [Hahn,
2020, Hao et al., 2022, Merrill et al., 2022].

Feedforward MLP. An L′-layer position-wise feedforward MLP block is a sequence-to-sequence net-
work fmlp : RT×d × Θmlp → RT×d, parameterized by θmlp = (W1, b1, . . . , WL′ , bL′). For a choice of
activation function σ : R→ R (which is always ReLU in our theoretical constructions, for simplicity),
fmlp applies the same nonlinear map (x 7→WL′x + bL′) ◦ σ ◦ . . . ◦ σ ◦ (x 7→W1x + b1) to each row t of
the input matrix X ∈ RT×d (with the same parameters per position t); here, σ is applied pointwise.

Finally, an extra term P ∈ RT×d is added to the first layer’s input, the matrix of position encodings.

Residual connections. It is typical to add residual connections which bypass each block. That is,
letting id denote the identity function in RT×d, the network (with position encodings) becomes

ftf := (id + f (L)
mlp) ◦ (id + f (L)

attn) ◦ (id + f (L−1)
mlp ) ◦ ... ◦ (id + f (1)attn) + (id + P).

At the level of granularity of the results in this paper (up to negligible changes in the width and
weight norms), this changes very little from the viewpoint of representation. A residual connection
can be implemented (or negated) by appending two ReLU activations to a non-residual network:

x = (x)+ − (−x)+.

Similarly, a residual connection can be implemented with one attention head (with internal embed-
ding dimension k = d), as long as it is able to select its own position (which will be true in all of our
constructions).

In some of our constructions, we choose to use residual connections (sometimes restricted to certain
dimensions); it will be very natural to view the embedding space Rd as a “workspace”, where residual
connections ensure that downstream layers can access the input (and position) embeddings, as well as

46



outputs of all earlier layers. We will specify whether to use residual connections in each construction,
to make the proofs as clear as possible. When we do so, we do not add the extra weights explicitly to
fattn and fmlp.

Layer normalization. There are two types of layer normalization (abbreviated as “layernorm” or
“LN”): the Post-LN which applies layernorm after adding the residual connection and is the original
design in Vaswani et al. [2017], and the Pre-LN which applies layernorm before adding the residual
connection. It is known that the use and placement of layernorm affect the training stability [Xiong
et al., 2020]. For simplicity of presentation of our results though, we will omit the normalization
layers. It would be straightforward (but an unnecessary complication) to modify the function ap-
proximation gadgets in our constructions to operate with unit-norm embeddings.

Padding tokens. Finally, for results in Section 3.4, it will greatly simplify the constructions to add
padding tokens: to simulate a semiautomaton at length T, we will choose to prepend τ tokens, with
explicitly chosen embeddings, which do not depend on the input σ1:T . Theorem 1 uses τ = Θ(T)
padding, and Theorem 2 uses τ = 1. In both cases, padding is not strictly necessary (the same
functionality could be implemented by the MLPs without substantially changing our results), but we
find that it leads to the most intuitive and concise constructions.

Complexity measures. We define the following quantities associated with a Transformer network,
and briefly outline their connection to familiar concepts in circuit complexity:

• The dimensions according to the definition of a sequence-to-sequence network: sequence length
T and embedding dimension d. Up to a factor of bit precision, this corresponds to the number of
inputs in a classical Boolean circuit. We will exclusively define architectures where d is inde-
pendent of T.

• Its depth L, the number of repeated fmlp ◦ fattn blocks. When each of these modules contains
a constant number of sequential computations, this coincides with the usual notion of circuit
depth, up to a constant factor. This is true in practice and our theoretical treatment (the attention
and MLP have a constant number of layers).

• The other shape parameters from the definition of the architecture: number of heads (per layer
and position) H4, and internal embedding dimension k. When fmlp is an L′-layer MLP, it has MLP
intermediate widths d1, . . . , dL′−1. We will exclusively think of L′ as a small constant, so that the
number of sequential matrix multiplications in the entire network is within a constant factor of
L.

• Its attention width wattn is defined to be the maximum of {d, Hk}, and its MLP width wmlp is de-
fined as the maximum of {d1, . . . , dL′−1}. Taking w = max(wattn, wmlp) as a coarse upper bound
we will use to summarize the number of per-position trainable embeddings in our construc-
tions. To map this to the usual notion of circuit size, note that the computations are repeated
position-wise. Thus, Transformers induce a computational graph with O(T · L · w) gates and

4There will be a notational collision between h, H denoting attention heads, and h ∈ H denoting an element in a group.
We keep the overloaded notation for clarity, and this will certainly be unambiguous.
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O(T · L · w2) wires. The position-wise parameter-sharing induces a special notion of circuit
uniformity.

• A bound on its ∞-weight norms: the largest absolute value of any trainable parameter. These
can be converted into norm-based generalization bounds via the results in Edelman et al. [2022].
Note that the results in this paper go beyond the sparse variable creation constructions of bounded-
norm attention heads; in general, the norms scale with T. The attention heads express mean-
ingful non-sparse functions. Aside from the positive experimental results, we do not directly
investigate generalization in this paper.

• The bit precision (length of finite-precision truncation of real numbers in a computational graph
implementing ftf), which lets us implement approximate real-valued computations as Boolean
(or discrete arithmetic) circuits. With infinite-precision real numbers, there are pathological
constructions for RNNs [Siegelmann and Sontag, 1992] and Transformers [Merrill et al., 2021]
which give single parameters of neural networks infinite representational power. Throughout
this work, our circuits will work with O(log T) bit precision, which can represent real num-
bers (as integers ⌊x · 2c⌋ in their binary representation, for some choice of c = Θ(log T)) with
magnitude up to O(poly(T)), with O(1/poly(T)) approximation error. Since this is far from
the focus of our results, we will elide details for the remainder of this paper, returning to these
considerations only to make Theorem 13 more concrete. All of our constructions are robust up
to this noise level: this is because the internal weight norms and activations are bounded by a
quantity at most polynomial in T, and the function approximation construction in Lemmas 10
and 11 can tolerate 1/poly(T) perturbations using poly(T) weight norms.

Why Transformers?

Transformer, with its numerous variants, is the most widely adopted architecture for language mod-
els as of 2024. The term “Transformer” was proposed in Vaswani et al. [2017], though many elements
essential to Transformers had been proposed in earlier works. It thus might be helpful to briefly
review the historical contexts. Transformer was originally an encoder-decoder structure5 designed
for translation, a type of sequence-to-sequence modeling task. Before Transformers, there had been
decades of research on sequence modeling using recurrent neural networks. The earliest versions,
Jordan and Elman RNNs [Jordan, 1997, Elman, 1990], were proposed in the 1980s and shown to be
Turing complete by [Siegelmann and Sontag, 1992] assuming infinite precision. For practical con-
siderations though, finite-precision, finite-state-size RNNs face several challenges, including training
instabilities, capacity constraints, and the failure to model long-range dependencies. As mitigations,
later work has introduced gating (such as LSTM [Hochreiter and Schmidhuber, 1997b]) and attention
(over bi-LSTM states [Bahdanau et al., 2014] or a memory bank implemented using a matrix [Graves
et al., 2014]).

Transformers are heavily influenced by these prior approaches but with key differences. Bahdanau
et al. [2014] allows for modeling arbitrarily long pairwise dependency between tokens similar to
Transformers, but it computes attention scores using a generic feedforward network, whereas Trans-
former uses a simpler form which computes the inner product in a lower-dimensional space and
removes the RNN component from the architecture. Neural Turing Machine [Graves et al., 2014]

5This chapter considers decoder-only Transformers.
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borrowed terminology in Turing machine to refer to the attention outputs as “heads,” which is also
adopted by Transformers. However, the memory bank in Neural Turing Machine is of fixed size,
whereas Transformer enjoys an unbounded memory whose size grows with the sequence length.
The later has provable advantages over a fixed-size memory [Wen et al., 2024].

It is worth noting that despite the ability to represent shallow solutions (as we will see in Section 3.4),
Transformers are not the most computationally efficient due to the quadratic time required for com-
puting pairwise attention scores. There has been in linear-time methods, including efficient Trans-
formers [Yi et al., 2021] and linear RNNs (such as state-space models) [Gu et al., 2021, Gu and Dao,
2023, Orvieto et al., 2023]. Understanding the implications of linear-time methods [Sarrof et al., 2024,
Yang et al., 2024] and hybrid architectures [Wen et al., 2024, Lieber et al., 2024, Ren et al., 2024] is a
promising future direction.

3.2 Overview of results: finite-state automata for modeling sequen-
tial algorithmic reasoning

Reasoning abilities represent a fundamental aspect of intelligence that is essential in almost all sce-
narios that involve decision making. In the following, we will consider a simple form of reasoning,
which can be considered as sequentially taking actions upon receiving new information.

Such actions can be modeled as state transitions in a semiautomaton, which computes state sequences
from inputs by application of a recurrent transition function. Semiautomata describe the underlying
dynamics of automata, which are simply semiautomata equipped with mappings from states to out-
puts. With unbounded state spaces, automata can represent all algorithms; however, even bounded
automata form a rich class of sequence processing algorithms, containing regular expression parsers
and finite-state transducers. In reinforcement learning and control, semiautomata are better known
as deterministic Markov models (where σt are actions); thus, in addition to algorithmic reasoning,
our results also have implications to Transformer dynamics models.

Formally, a semiautomaton A := (Q, Σ, δ) consists of a set of states Q, an input alphabet Σ, and a
transition function δ : Q× Σ → Q. We consider Q and Σ to be finite sets. For all positive integers T
and a starting state q0 ∈ Q,A defines a map from input sequences (σ1, . . . , σT) ∈ ΣT to state sequences
(q1, . . . , qT) ∈ QT : qt := δ(qt−1, σt) for t = 1, . . . , T. This is a deterministic Markov model, in the sense
that at time t, the future states qt+1, . . . , qT only depend on the current state qt and the future inputs
σt+1, . . . , σT . Every semiautomaton induces a transformation semigroup 6 T (A) of functions ρ : Q→ Q
under composition, generated by the per-input-symbol state mappings δ(·, σ) : Q→ Q. When T (A)
contains the identity function and that all of the functions are invertible, T (A) is a permutation group.
An elementary example is a parity counter, which the word occurrence example will be modeled by:
the state is a bit (i.e. 0 or 1), and the inputs are {“toggle the bit”, “do nothing”}; the transformation
semigroup is the cyclic group of order 2. We will also take a close look at the flip-flop automaton and
bounded-depth Dyck, which we will formally define in Section 3.5 and Section 3.6.

6A semigroup is a generalization of a group. Recall that a group consists of a set and an invertible associative binary
operation on the set, and the set needs to contain an identify element with respect to the binary operation. A semigroup
relaxes both the identity condition and the invertibility condition.
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Task: simulating semiautomata When using semiautomata as a model for reasoning, performing
reasoning corresponds to the task of simulation: given a semiautomatonA, starting state q0, and input
sequence (σ1, . . . , σT), output the state trajectory AT,q0(σ1, . . . , σT) := (q1, . . . , qT). Let f : ΣT → QT

be a function (which in general can depend onA, T, q0). We will say that f simulatesAT,q0 if f (σ1:T) =

AT,q0(σ1:T) for all input sequences σ1:T . Finally, for a positive integer T, we say that a function class
F of functions from ΣT → QT simulates A at length T if, for each q0 ∈ Q, there is a function in F
which simulates AT,q0

Model: neural sequence models Let’s discuss the neural sequence models used for modeling the
sequential task of automata simulation. A sequence-to-sequence neural network of length T and embed-
ding dimension d is a function fnn : RT×d × Θ → RT×d, with trainable parameters θ ∈ Θ. Equipped
with an encoding layer E : Σ → Rd and decoding layer W : Rd → Q (both applied position-wise),
and fixing some parameters θ, the function (W ◦ fnn ◦ E) : ΣT → QT has the same input and output
types as AT,q0 . We consider two main types of models with different modes of computation: recur-
rent neural networks, which computes sequentially on a length-T sequence, and Transformers, whose
computation is parallel across all sequence positions.

More specifically, a recurrent neural network (RNN) is defined by iterated composition of a recurrent unit
g : Rd ×Rd ×Θ→ Rd. For a given initial hidden state h0 ∈ Rd, and input sequence u1, . . . , uT ∈ Rd,
it produces an output hidden state sequence ht := g(ht−1; ut; θ), t = 1, . . . , T. Thus, fixing the
parameters θ, an RNN is an infinite semiautomaton, with Q = Σ = Rd. Thus, RNNs can trivially
simulate any semiautomaton by embedding the looped transition function δ, as long as g can repre-
sent δ.

An L-layer (or depth-L) Transformer consists of alternating self-attention blocks and feedforward MLP
blocks

ftf := (id + f (L)
mlp) ◦ (id + f (L)

attn) ◦ (id + f (L−1)
mlp ) ◦ ... ◦ (id + f (1)attn) ◦ (id + P),

where id denotes the identity function (residual connections), and P encodes the positions t.7 We use
fairly standard positional encodings in both theory and experiments. Briefly, an attention layer per-
forms ℓ1-normalized mixing operations across positions t, while a constant-layer MLP block performs
position-wise function approximation (with no mixing between positions). Importantly, the standard
Transformer is convolutional (in that the weights in fattn and fmlp are shared across positions t), but
not recurrent: parameters are shared across positions within a layer but are not shared across blocks
of different layers.

Typical Transformers are shallow, in the sense that L ≪ T. In practice, this makes their inference
and gradient computations highly parallelizable, with the number of sequential computation steps
scaling linearly in L, while RNNs require a scaling linear in T. While there is always a canonical way
for RNNs to simulate semiautomata, the answer to the analogous question for shallow Transform-
ers is far less obvious. We will see next that shallow Transformers are in fact sufficiently powerful
representationally, yet there are challenges in optimization and generalization.

7We omit layer normalization; this discrepancy can be shown to be superficial.
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3.2.1 Transformer can implement shortcut for simulating automata

Modern deep learning systems demonstrate increasing capabilities of algorithmic reasoning. Particu-
larly in modalities such as natural language, math, and code, neural networks can successfully parse
and synthesize sequences containing symbolic information and compositional structure. To exhibit
these functionalities, these networks are required to learn and execute the relevant discrete algorithms
within their internal representations. A core open question in this domain is that of mechanistic un-
derstanding: how do neural networks encode the primitives of algorithmic reasoning?

When considering this question, there is an apparent mismatch between classical sequential models
of computation (e.g. Turing machines) and the Transformer, the state-of-the-art architecture for neural
algorithmic reasoning. If we are to think of algorithms as sequentially-executed computational rules,
why should we use a shallow8 and non-recurrent architecture to represent them?

We study this question through the lens of semiautomata, which compute state sequences q1, . . . , qT

from inputs σ1, . . . , σT by application of a recurrent transition function δ (and initial state q0):

qt = δ(qt−1, σt).

Semiautomata describe the underlying dynamics of automata, which are simply semiautomata equipped
with mappings from states to outputs. With unbounded state spaces, automata can represent all al-
gorithms; however, even bounded automata form a rich class of sequence processing algorithms,
containing regular expression parsers and finite-state transducers. In reinforcement learning and
control, semiautomata are better known as deterministic Markov models (where σt are actions); thus,
in addition to algorithmic reasoning, this work also pertains to Transformer dynamics models.

We perform a theoretical and empirical investigation of whether (and how) non-recurrent Transform-
ers perform the computations of semiautomata. We find that Transformers learn shortcut solutions,
which correctly and efficiently simulate the sequential transitions of semiautomata using a shallow
parallel circuit, rather than naively iterating the single-step recurrence. Shortcuts arise from hierar-
chical reparameterizations of a semiautomaton’s global transition dynamics.

Our contributions. Our theoretical results provide structural guarantees for the representability of
semiautomata (thus, iterative algorithms) by one pass through a shallow, non-recurrent Transformer.
In particular, we show that:

• Shortcut solutions, with depth logarithmic in the sequence length, always exist (Theorem 10).

• Constant-depth shortcuts exist for solvable semiautomata (Theorem 11). There do not exist constant-
depth shortcuts for non-solvable semiautomata, unless TC0 = NC1 (Theorem 13). These are
understood via the Krohn-Rhodes theorem, a landmark result in semigroup theory.

• For a natural class of semiautomata corresponding to path integration in a “gridworld” with
boundaries, we show that there are even shorter shortcuts (Theorem 12), beyond those guaran-
teed by the general structure theorems above.

We accompany these with an extensive set of experimental findings:

8In practice, a Transformer’s context length is typically far greater than its depth.
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(a) (b) (c) (d) (e)Figure 3.1: Various examples of semiautomata. From left to right: a mod-2 counter, a 2-state memory
unit, Grid4, a 2-dimensional gridworld constructible via a direct product Grid3×Grid4, and a Rubik’s
Cube, whose transformation semigroup is a very large non-abelian group.

• Transformers learn shortcuts with standard training (Section 3.4.2). Across a wide variety of semiau-
tomaton simulation problems, we find that shallow non-autoregressive Transformers success-
fully learn shortcut solutions: despite the non-convex optimization problem, gradient-based
training works. This suggests that shortcuts are plausible mechanisms for algorithmic reason-
ing in non-synthetic sequence models, and lies beyond our current theoretical understanding.

• Shortcuts are statistically brittle (Section 3.4.3). We identify empirical weaknesses of the shortcuts
found by Transformers: poor out-of-distribution generalization (including to unseen sequence
lengths) and worse performance than RNNs under limited supervision. Toward mitigating
these drawbacks and obtaining the best of both worlds, we show that with recency-biased scratch-
pad training, autoregressive Transformers can easily be guided to learn the iterative RNN-like
solutions (chain-of-thought generation).

Related work

Emergent reasoning in neural sequence models. Neural sequence models, both recurrent [Wu et al.,
2016, Peters et al., 2018, Howard and Ruder, 2018] and non-recurrent [Vaswani et al., 2017, Devlin
et al., 2018b], have become an era-defining tool for parsing and transducing data with combinatorial
structure, such as natural language and code. A nascent frontier is to leverage neural dynamics mod-
els, again both recurrent [Hafner et al., 2019] and non-recurrent [Chen et al., 2021a, Janner et al., 2021],
for decision making. At the highest level, the present work seeks to understand the mechanisms by
which these models perform combinatorial and algorithmic reasoning.

Computational models within neural networks. Despite the preponderance of positive empirical re-
sults, many mysteries remain towards understanding the internal mechanisms of neural networks ca-
pable of algorithmic reasoning. It is known that self-attention realizes low-complexity circuits [Hahn,
2020, Elhage et al., 2021, Merrill et al., 2021, Edelman et al., 2022], declarative programs [Weiss et al.,
2021], and Turing machines [Dehghani et al., 2019, Pérez et al., 2021, Giannou et al., 2023]. Inter-
pretable symbolic computations have been extracted from trained models [Clark et al., 2019a, Vig,
2019, Tenney et al., 2019, Wang et al., 2022a]. Our conclusions are closest to the literature on the uni-
versal representation on Turing machines (which are automata with unbounded states); however, our
work is unique in characterizing the smaller (but still important) classes of machines whose execution
loops can be efficiently unrolled into a single pass of a shallow Transformer.

At a technical level, the most relevant theoretical work to ours is [Barrington and Thérien, 1988],
which acts as a “Rosetta Stone” between circuit complexity and semigroup theory. The core technical
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ideas for Theorems 10 (NC1 prefix sum), 11 (Krohn-Rhodes), and 13 (Barrington) are inspired by the
results and discussions therein. For readers familiar with circuit complexity: our theoretical results
establish that Transformers (a certain family of arithmetic circuits) efficiently embed the construc-
tions involved in the NC1 and ACC0 solutions to semigroup word problems. The notions of efficiency
(depth, parameter count, and weight norms) are standard in deep learning but not circuit complex-
ity; our embedding avoids suboptimal poly(T) factors in these complexity measures. Theorem 12
comes from an improved parallel algorithm for the special case of “gridworld” semigroups; to our
knowledge, this construction is novel, and may be of independent interest.

Learning elementary algorithms with Transformers. Our work provides a unifying lens on many
recent investigations on whether (and how) Transformers represent certain classes of fundamental al-
gorithmic computations. These include bounded-depth Dyck languages [Yao et al., 2021b], modular
prefix sums [Anil et al., 2022b], adders [Nogueira et al., 2021, Nanda and Lieberum, 2022], regu-
lar languages [Bhattamishra et al., 2020a], and sparse logical predicates [Edelman et al., 2022, Barak
et al., 2022a], which are all special cases of simulating finite-state automata. Thus, our work provides
guarantees of shallow Transformer solutions in all of these settings. Zhang et al. [2022] empirically
analyze the behavior and inner workings of Transformers on random-access group operations and
note “shortcuts” (which skip over explicit program execution) similar to those we study.

We provide an expanded discussion of related work in Appendix 3.7.

3.2.2 Exposing Transformer’s OOD failures using flip-flop

Recent advancements in scale have yielded large language models (LLMs) with extraordinary profi-
ciency in nuanced reasoning with factual knowledge. Despite these achievements, LLMs are known
to produce incorrect outputs, often referred to colloquially as “hallucinations” or “distractions” [Ji
et al., 2023]. Generally, hallucinations refer to the phenomenon that a model’s outputs are syntacti-
cally and grammatically accurate but factually incorrect. There are various types of hallucinations,
and the focus of this work is the “closed-domain” variety [Saparov and He, 2022, OpenAI, 2023],
where the model predictions contain factually incorrect or made-up information according to a given
context, regardless of their correctness in the real world.

Perhaps surprisingly, such hallucinations can be observed even on simple algorithmic reasoning
tasks. As a warmup, consider the queries shown in Figure 1 (and Appendix 3.5.6.1), where we prompt
LLMs to solve addition problems of various lengths. The responses simultaneously illustrate the fol-
lowing:

1. Nontrivial algorithmic generalization: In cases where the models succeed, it is unlikely that these
exact numerical sequences appeared in the training data. To correctly output the first digit of
the answer, the LLM must resolve a long dependency chain which generally depends on every
digit in the input. Somewhere within these networks’ internal representations, implementations
of addition algorithms have emerged.

2. Sporadic errors (“hallucinations”): These internal algorithms can be brittle and unreliable, especially
when processing long inferential chains. Their failures can be subtle and unpredictable.

In this work, we consider flip-flop language processing, a minimal unit of sequential computation
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User:  What is 8493 + 2357?
GPT-3.5: 10850

GPT-4: 10850
✓
✓

User:  What is 84935834 + 23572898?
GPT-3.5: 108008732

GPT-4: 108508732
×
✓

8 4 9 3 5 8 3 4 + 2 3 5 7 2 8 9 8 =

4 9 3 5 8 3 4 + 2 3 5 7 2 8 9 8 = 1

Inside the Transformer: a (glitchy) learned adder

User:  What is 9991999919909993 + 6109199190990097?
GPT-3.5: 16111199190810090

GPT-4: 16101199100890090 ×
×

Answer: 16101199110900090

Figure 3.2: Cherry-picked integer addition prompts, showing how state-of-the-art LLMs can general-
ize non-trivially on algorithmic sequences, but sporadic reasoning errors persist. The first digit of the
correct answer depends on every input; thus, an autoregressive model must propagate a “carry” bit
across these long-range dependencies in a single pass. This (and many other algorithmic reasoning
capabilities) can be implemented by a Transformer model using internal flip-flops.

which consists of memory operations on a single bit (see Example 2) and underlies virtually all9

syntactic parsing and algorithmic reasoning capabilities (including implementing adders, and far
more). A flip-flop language modeling (FFLM) task is defined on sequences of write, read, and ignore

instructions: write sets the memory state to a certain value which is later retrieved by read, while
ignoring any contents in between. We find that when trained to complete flip-flop sequences, the
Transformer architecture exhibits a long tail of reasoning errors, unlike previous-generation recurrent
models such as the LSTM [Hochreiter and Schmidhuber, 1997a]. We coin the term attention glitch for
this phenomenon, and hypothesize that this captures a systematic failure mode of Transformer-based
LLMs when internally representing long chains of algorithmic reasoning.

Our contributions are as follows:

• FFLM: a minimalistic long-range dependency benchmark. We propose flip-flop language model-
ing, a parametric family of synthetic benchmarks for autoregressive sequence modeling, designed
to isolate and probe reasoning errors like those demonstrated in Figure 3.2.

• An empirical failure of attention to attend. We find that while Transformer models can appear to
learn flip-flop languages perfectly on held-out samples from the training distribution, they make a
long tail of unpredictable reasoning errors (attention glitches), on both long-range and short-range
dependencies. We evaluate various direct and indirect mitigations, including commonly-used
regularization techniques and attention-sharpening regularizers — a plug-and-play way to sparsify
self-attention architectures. We find that attention-sharpening reduces reasoning errors by an or-
der of magnitude, but none of our attempts were successful in driving the number of errors to
exactly 0. Meanwhile, even tiny recurrent models work perfectly.

• Preliminary mechanistic analyses. We provide some theoretical and empirical explorations which
account for some of the internal mechanisms for attention glitches, and why they are so difficult
to eliminate completely.

9More precisely, whenever the desired algorithm needs to “store memory” (i.e. contains a non-invertible state transforma-
tion); see Section 3.5.1.2.1.
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Related work

The challenge of learning long-range dependencies is a long-standing one in the statistical model-
ing of sequences [Samorodnitsky et al., 2007]. The Transformer architecture [Vaswani et al., 2017], a
paradigm-shifting sequence model, enables the scalable learning of a feedforward hierarchy of mean-
ingful long-range dependencies. Yet, factual errors over long contexts persist in these models; this is
the subject of many careful probes in deep NLP [Khandelwal et al., 2018, Tay et al., 2020, Guo et al.,
2022, Ji et al., 2023].

The sporadically erroneous outputs of LLMs, which have otherwise demonstrated impressive human-
like linguistic reasoning, have been popularly called “hallucinations”. There has been a large amount
of research into mitigating this, where the main ideas include explicitly writing out the intermediate
reasoning steps [Nye et al., 2021b, Wei et al., 2022b], and self-consistency [Wang et al., 2022b]. Nev-
ertheless, there is no clear formal definition of hallucinations (other than “wrong answers”), and a
functional taxonomy of these errors is still under development [Saparov and He, 2022, Ji et al., 2023].
The present work considers a minimal setting, in which closed-domain hallucinations are completely
well-defined; we discuss connections to LLM hallucinations in Section 3.5.5.

Long-range dependency and reasoning benchmarks. Many datasets and tasks have been designed
to isolate considerations similar to ours [Tay et al., 2020, Wu et al., 2021, Zhang et al., 2021a, 2022,
Saparov and He, 2022, Shi et al., 2023, Eldan and Li, 2023]. Aside from being focused on the “smallest”
and “purest” sequential reasoning capability (see Section 3.5.1.2.1), FFLM is distinguished by a few
factors:

• “L∞” objective: Unlike usual benchmarks, we consider any model with less than 100% accuracy
as exhibiting a reasoning error. Aside from the motivation of completely eliminating hallucinations,
we argue that this stringent notion of correctness is needed to avoid error amplification when flip-
flops are embedded in more complex networks, based on the decomposition result discussed in
Section 3.4. We will discuss this more in Section 3.5.1 and Section 3.5.5.

• Parametric, procedurally generated, and generalizable: Our empirical study precisely quantifies
long-tail errors via a large number of replicates over the randomness of both model initialization
and data generation. Our methodology can be adapted and resized to probe language models of
any size.

Comparison with Transformers Learn Shortcuts to Automata. Liu et al. [2023a] study the paral-
lel circuits efficiently realizable by low-depth Transformers. The authors identify shortcut solutions,
which exactly replicate length-T recurrent computations (“chains of algorithmic reasoning”) in the
absence of recurrence, with very few (O(log T); sometimes O(1)) layers. Their results contain a gen-
eral structure theorem of representability, and preliminary positive empirics for generalization and opti-
mization, demonstrating that Transformers can learn these shallow solutions via gradient-based train-
ing on samples. In contrast, the present work is a fine-grained study of the issue of generalization.
Our main empirical contributions are a minimally sufficient setup (FFLM) and a set of large-scale10

10∼104 19M-parameter Transformers were trained in the making of this paper; see Appendix 3.5.6.6.
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controlled experiments, towards providing reasonable scientific foundations for addressing the un-
predictable reasoning errors of LLMs.

3.2.3 Infinite solutions to Dyck and implications to interpretability

With the growing deployment of Transformer in various applications, it is increasingly essential to
understand the inner working of these models. There have been great advancement in the field of
interpretability presenting various types of evidence [Clark et al., 2019b, Vig and Belinkov, 2019,
Wiegreffe and Pinter, 2019, Nanda et al., 2023, Wang et al., 2023], some of which, however, can be
misleading despite being highly intuitive [Jain and Wallace, 2019, Serrano and Smith, 2019, Rogers
et al., 2020, Grimsley et al., 2020, Brunner et al., 2020, Meister et al., 2021].

In this work, we aim to understand the theoretical limitation of a family of interpretability methods
by characterizing the set of viable solutions. We focus on “myopic” interpretability methods, i.e.
methods based on examining individual components only. We adopt a particular toy setup in which
Transformers are trained to generate Dyck grammars, a classic type of formal language grammar con-
sisting of balanced parentheses of multiple types. Dyck is a useful sandbox, as it captures properties
like long-range dependency and hierarchical tree-like structure that commonly appear in natural and
programming language syntax, and has been an object of interest in many theoretical studies of Tran-
sofmers [Hahn, 2020, Yao et al., 2021a, Liu et al., 2022c, 2023a]. Dyck is canonically parsed using a
stack-like data structure. Such stack-like patterns (Figure 3.3) have been observed in the attention
heads [Ebrahimi et al., 2020], which was later bolstered by mathematical analysis in Yao et al. [2021a].

From a representational perspective and via explicit constructions of Transformer weights, recent
work [Liu et al., 2023a, Li et al., 2023] show that Transformers are sufficiently expressive to admit
very different solutions that perform equally well on the training distribution. Thus, the following
questions naturally arise:

(Q1) Do Transformer solutions found empirically match the theoretical constructions given in these
representational results (Figure 3.3)? In particular, are interpretable stack-like pattern in Ebrahimi
et al. [2020] the norm or the exception in practice?

(Q2) More broadly, can we understand in a principled manner the fundamental obstructions to reli-
ably “reverse engineering” the algorithm implemented by a Transformer by looking at individual
attention patterns?

(Q3) Among models that perform (near-)optimally on the training distribution, even if we cannot fully
reverse engineer the algorithm implemented by the learned solutions, can we identify properties
that characterize performance beyond the training distribution?

Theoretical understanding of representability Methodologically, our work joins a long line of prior
works that characterize the solution of neural networks via the lens of simple synthetic data, from
class results on RNN representability [Siegelmann and Sontag, 1992, Gers and Schmidhuber, 2001,
Weiss et al., 2018, Suzgun et al., 2019, Merrill, 2019, Hewitt et al., 2020], to the more recent Transformer
results on parity [Hahn, 2020], Dyck [Yao et al., 2021a], topic model [Li et al., 2023], and formal gram-
mars in general [Bhattamishra et al., 2020b, Li and Risteski, 2021, Zhang et al., 2022, Liu et al., 2023a,
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(a) With Position
Embedding

(b) With Position
Embedding

(c) Without Position
Embedding

(d) Without Position
Embedding

Figure 3.3: Second-layer attention patterns of two-layer Transformers on Dyck: typical attention
patterns do not exactly match the intuitively interpretable stack-like pattern prescribed in Ebrahimi
et al. [2020], Yao et al. [2021a]. The blue boxes indicate the locations of the last unmatched open
brackets, as they would appear in a stack-like pattern. All models reach ≥ 97% accuracy (defined
in Section 3.6.3.1). In the heatmap, darker color indicates larger value.

Zhao et al., 2023]. Our work complements prior works by showing that although representational
results can be obtained via intuitive “constructive proofs” that assign values to the weight matrices,
the model does not typically converge to those intuitive solutions in practice. Similar messages are
conveyed in Liu et al. [2023a], which presents different types of constructions using different num-
bers of layers. In contrast, we show that there exist multiple different constructions even when the
number of layers is kept the same.

Our contributions. We first prove several theoretical results to provide evidence for why individ-
ual components (e.g. attention patterns or weights) of a Transformer should not be expected to be
interpretable. In particular, we prove:

• A perfect balance condition (Theorem 1) on the attention pattern that is sufficient and necessary
for 2-layer Transformers with a minimal first layer (Assumption 10) to predict optimally on Dyck
of any length. We then show that this condition permits abundant non-stack-like attention patterns
that do not necessarily reflect any structure of the task, including uniform attentions (Corollary 1).

• An approximate balance condition (Theorem 2), the near-optimal counterpart of the condition
above, for predicting on bounded-length Dyck. Likewise, non-stack-like attention patterns exist.

• Indistinguishability from a single component (Theorem 3), proved via a Lottery Ticket Hypothesis
style argument that any Transformer can be approximated by pruning a larger random Trans-
former, implying that interpretations based exclusively on local components may be unreliable.

We further accompany these theoretical findings with an extensive set of empirical investigations.

Is standard training biased towards interpretable solutions? While both stack-like and non-stack like pat-
terns can process Dyck theoretically, the inductive biases of the architecture or the optimization pro-
cess may prefer one solution over the other in practice. In Section 3.6.3.1, based on a wide range of
Dyck distributions and model architecture ablations, we find that Transformers that generalize near-
perfectly in-distribution (and reasonably well out-of-distribution) do not typically produce stack-like
attention patterns, showing that the results reported in prior work [Ebrahimi et al., 2020] should not
be expected from standard training.
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Do non-interpretable solutions perform well in practice? Our theory predicts that balanced (or even uni-
form) attentions suffice for good in- and out-of-distribution generalization. In Section 3.6.3.2, we em-
pirically verify that with standard training, the extent to which attentions are balanced is positively
correlated with generalization performance. Moreover, we can guide Transformers to learn more
balanced attention by regularizing for the balance condition, leading to better length generalization.

3.3 Preliminary

This section provides the necessary background for results in this chapter. Section 3.1 introduces
the Transformer architecture, with a discussion on various complexity measures. Section 3.3.1 then
provides a self-contained intro to automata and group theory, which are the algebraic structures that
underlie the constructions in this chapter. Section 3.3.2 describes some circuit complexity classes
relevant to results in this section.

We will use the following notational conventions for indices, vectors, matrices, and functions.

• For a natural number n, [n] denotes the index set {1, 2, . . . , n}.

• For a vector v ∈ Rn and i ∈ [n], vi denotes the i-th entry. When v is an expression, we use [v]i for
clarity. Vectors can be instantiated by square brackets (like [1 2 3] ∈ R3). They can be indexed
by slices: va:b denotes [va va+1 . . . vb]. We adhere to the convention that all vectors are column
vectors.

• For a matrix M ∈ Rm×n, i ∈ [m], j ∈ [n]: Mij (or [M]ij) denotes the (i, j)-th entry. Mi,: and M:,j

denote the i-th row and j-th column, respectively. Importantly, we note the convention that this
“slice” notation converts all vectors into column vectors.

• When the first dimension of a matrix M ∈ RT×d is to be interpreted as a sequence length, we
will implicitly convert a sequence of vectors v1, . . . , vT ∈ Rd into a matrix (v1, . . . , vT) ∈ RT×d

whose rows the vectors vt. This is an arbitrary choice (compared to concatenating columns
and obtaining a matrix in Rd×T), selected to adhere to previously standardized notation for the
Transformer.

• We will sometimes index vectors and matrices with named indices (such as ⊥ for padding
tokens) instead of integers, for clarity.

• ei denotes the i-th elementary (one-hot) unit vector. Likewise as above, we sometimes use non-
integer indices (e.g. e⊥).

• For vectors u, v ∈ Rd, ⟨u, v⟩ = u⊤v both denote the inner product.

• For a function f : X×Y → Z and all y ∈ Y, we will let f (·, y) : X → Z denote the restriction of f
to y (and similarly for other restrictions). This appears in the per-input state transition functions
δ(·, σ) : Q → Q, as well as the functions represented by neural networks for a particular choice
of weights.

• For functions f , g, f ◦ g denotes composition: ( f ◦ g)(x) := f (g(x)). When we compose neural
networks f : X × Θ f → Y, g : Y × Θg → Z with parameter spaces Θ f , Θg, we will use f ◦ g :
X× (Θ f ×Θg)→ Z to indicate the composition f (g(x; θg)θ f ).
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• (·)+ : R → R denotes the ReLU (a.k.a. positive part) function: (x)+ = max{x, 0}. In function
compositions, we use σ to denote the entry-wise ReLU (e.g. f ◦ σ ◦ g).

3.3.1 Automata, semigroups, and groups

A semiautomaton A = (Q, Σ, δ) has a state space Q, an input alphabet Σ, and a transition function
δ : Q× Σ→ Q. For any natural number T and a starting state q0 ∈ Q, by repeated composition of the
transition function δ, one can use A to define a map from a sequence of inputs (σ1, . . . , σT) ∈ ΣT to a
sequence of states (q1, . . . , qT) ∈ QT via:

qt := δ(qt−1, σt), ∀t ∈ [T].

Here and below, it is helpful to use a matrix-vector notation to express the computation of semi-
automata. For a given semiautomaton we can always identify the state space Q with index set
{1, . . . , |Q|} and use a one-hot encoding of states into {0, 1}|Q|. For each input symbol σ ∈ Σ, we
associate a transition matrix δ(·, σ) ∈ {0, 1}|Q|×|Q| with entries [δ(·, σ)]q′ ,q = 1{δ(q, σ) = q′}. This
implies that for all q, σ, we have eδ(q,σ) = δ(·, σ)eq, so that the computation of the semiautomaton
amounts to repeated matrix-vector multiplication.

While semiautomata are remarkably expressive, we discuss a few simple examples throughout this
background section to elucidate the key concepts.

Example 1 (Parity). Let Q = Σ = {0, 1} and let δ(q, 0) = q and δ(q, 1) = 1− q. Then, starting with
q0 = 0, the state at time t, qt, is 1 if the binary sequence (σ1, . . . , σt) has an odd number of 1s.

Example 2 (Flip-flop). Let Q = {1, 2}, Σ = {⊥, 1, 2} and let δ be given by

δ(·,⊥) = I2×2, δ(·, 1) =

(
1 1
0 0

)
, δ(·, 2) =

(
0 0
1 1

)
As the name suggests, this semiautomaton implements a simple memory operation where the state at time t is
the value of the most recent non-⊥ input symbol.

Example 3 (1D gridworld). Let S be a natural number, Q = {0, 1, . . . , S} and Σ = {L,⊥, R}. Then the
transition matrices are given by:

δ(·,⊥) = IS+1×S+1, δ(·, L) =


1

. . .
0 IS×S...

. . .
0 . . . . . . 0

 δ(·, R) =


0 . . . . . . 0
. . .

...
IS×S 0

. . . 1

 .

This semiautomaton describes the movement of an agent along a line segment where actions −1 and +1 corre-
spond to decrementing and incrementing the state respectively, except that the decrement input has no effect at
state 0 and the increment input has no effect at state S.

Note that we have chosen a convention which differs slightly from what will be used in the discussion
of main results (i.e. Figure 3.1): we enumerate the indices starting from 0 rather than 1. This is because
the proofs are stated more naturally when the boundaries of the gridworld are identified with the
indices 0 and S.
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For a semiautomaton A = (Q, Σ, δ) each input symbol σ ∈ Σ defines a function δ(·, σ) : Q →
Q. These functions can be composed in the standard way, and we use δ(·, σ1:t) to denote the t-fold
function composition. Note that δ(q0, σ1:t) is precisely the value of the state at time t on input σ1:t.
Thus, the set of all functions that can be obtained by composition of the transition operator, formally

T (A) := {δ(·, σ1:t) : t ∈N, σ1:t ∈ Σt},

plays a central role in describing the computation of the semiautomaton. This object is a transformation
semigroup. We now turn to describing the necessary algebraic background.

Recall that a group (G, ·) is a set G equipped with a binary operation · : G × G → G such that

• (identity) There exists an identity element e ∈ G such that e · g = g · e = g for all g ∈ G.

• (invertibility) Every element g ∈ G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e

• (associativity) The binary operation is associative: (g1 · g2) · g3 = g1 · (g2 · g3).

A monoid is less structured than a group; there must be an identity element and the binary opera-
tion must be associative, but invertibility is relaxed. A semigroup is even less structured: the only
requirement is that the binary operation is associative.

It is common to let G be a subset of functions from Q → Q where Q is some ground set and let the
binary operation be function composition. In this case, the structure is called a permutation group or
transformation monoid/semigroup depending on which subset of the above properties hold. For trans-
formation groups, since every element has an inverse under function composition, it is immediate
that every element is some permutation over the ground set.

In fact, taking G to be a subset of functions as above is without loss of generality: by Cayley’s theorem
every group is isomorphic (equivalent after renaming elements) to a transformation group on some
ground set, and we can take the ground set to have the same number of elements as the original group
(for finite groups). Analogously, all semigroups are isomorphic to a transformation semigroup, but
the ground set may need one additional element (for the identity); this is Cayley’s theorem for semi-
groups. It is also clear that every transformation semigroup can be realized by some semiautomaton
by trivially having the input symbols correspond to the functions in G.11 Therefore we have lost no
structure when passing from finite semiautomata to finite semigroups.

Before discussing the compositional structure of semigroups, we give one more canonical example.

Example 4 (Cyclic group). Let S be a natural number let Q = {0, 1, . . . , S− 1} and let Σ = {1} have only
one element. The dynamics are given by δ(q, 1) = (q + 1) mod S. Clearly this semiautomaton implements
counting modulo S. The underlying group is the cyclic group, denoted CS, which is isomorphic to the integers
mod S with addition as the binary operation. Note that in this case, the operation is commutative, which makes
the group abelian.

Let us now turn to the compositional structure of groups and semigroups. Since it is without loss
of generality to consider transformation (semi)groups, we always take the binary operation to be
function composition. A subgroup H of a group G is a subset of the elements of G that is also a group,

11More succinctly, inputs can correspond to a generating set of the group, but this is not relevant for our results.
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denoted as H ≤ G. In particular it must be closed under the binary operation. N is a normal subgroup,
denoted N ◁ G, if in addition to being a subgroup, it satisfies that {gn : n ∈ N} = {ng : n ∈ N}.
(These sets are known as the left and right cosets of N in G and denoted gN and Ng respectively.)
12 Normal subgroups can also arise as the kernel of a mapping from G to a subgroup H of G. Let
ϕ : G → H be a mapping that preserves the group operation (i.e., a group homomorphism) and let
ker(ϕ) := {g : ϕ(g) = id}. Then ker(ϕ) is a normal subgroup of G. We will see below that normal
subgroups provide a weak form of commutativity, that allows us to construct more complex groups
out of simpler ones.

Direct products. The most natural way to compose larger groups from smaller ones is via the direct
product. Given two groups G and H, we can form a new group with elements {(g, h) : g ∈ G, h ∈ H}
with a binary operation that is applied component-wise (g, h) · (g′, h′) = (g · g′, h · h′) (here, · is
overloaded to be the group operation for all three groups). This direct product group is denoted
G × H. In the context of permutation groups, say G is a permutation group over ground set QG

and H is over ground set QH . Then G × H has ground set QG × QH and every function in G × H
factorizes component-wise, i.e., every element in G× H is identified with a permutation (qG, qH) 7→
(g(qG), h(qH)) where g ∈ G, h ∈ H.

Observe that G× H contains normal subgroups which are isomorphic to both G and H. To see this,
take N = {(eG, h) : h ∈ H} where eG is the identity element in G. Then since geG = eGg and since H
is closed under its group operation, we have (g, h)N = N(g, h) for all (g, h) ∈ G× H. A symmetric
argument shows that G is also a normal subgroup of the direct product.

Note that we can analogously define direct products in the absence of the group axioms, and thus
for monoids and semigroups. This gives a natural construction of the semigroup corresponding to
moving around both axes of a 2-dimensional rectangular gridworld, as a concatenation of two non-
interacting 1-dimensional gridworlds:

Example 5 (2D gridworld). If GS is the transformation semigroup of the 1-d grid world with S + 1 states,
then GS × GS corresponds to a 2-dimensional gridworld. A semiautomaton that yields this transformation
semigroup has state space Q = {(i, j) : i, j ∈ {0, . . . , S}} and 5 actions: increment or decrement i or j, subject
to boundary effects, or do nothing.

The definition of direct product extends straightforwardly to more than two terms G1×G2× . . .×Gn;
we identify the items with tuples (g1, g2, . . . , gn).

Semidirect products. However, it is possible to compose larger groups so that one of the subgroups
is not a normal subgroup. This operation is called a semidirect product, with the group law (g, h) ·
(g′, h′) = (g · ϕh(g′), h · h′) for some ϕh to be defined later. Observe that in the direct product G ×
H, we have constructed the elements from ordered pairs (g ∈ G, h ∈ H), lifting G and H into a
shared product space (i.e., the Cartesian product of the underlying sets of G and H), defining the group
operation as simply applying those of G and H separately.

In fact, there are other ways, to define the group operation in the product space, but a difficulty
arises: we need to find other nontrivial multiplication rules on pairs (g, h), and we cannot take for

12An equivalent definition of a normal group is a subgroup N such that g−1ng ∈ N, ∀g ∈ G, n ∈ N.
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granted that an arbitrary binary operation satisfies the group axioms. We would like to define other
operations (g, h) · (g′, h′) which output an element of g and an element of h. An attempt would be to
pick two arbitrary injective homomorphisms ϕG, ϕH which embed G and H into a “shared space,” so
that elements of G and H can be multiplied together:

(g, h) · (g′, h′) := ϕG(g) · ϕH(h) · ϕG(g′) · ϕH(h′).

However, we need to ensure that this group operation is closed. Since all elements of the group are
of the form (g, h) where g ∈ G and h ∈ H, we must find a pair (g̃, h̃) that yields the right hand side of
the above display when embedded into the shared space via ϕG, ϕH . For this, the most natural choice
is g̃ = g · g′ and h̃ = h · h′, and thus we must check that:

ϕG(g · g′) · ϕH(h · h′) = ϕG(g) · ϕG(g′) · ϕH(h) · ϕH(h′)

= ϕG(g) · ϕH(h) · ϕG(g′) · ϕH(h′) = (g, h) · (g′, h′)

However, the middle equality may not hold, because ϕG(g′) and ϕH(h) are not guaranteed to com-
mute. (Observe that for the special case of g 7→ (g, eH), h 7→ (eG, h), these two elements always
commute, giving rise to the direct product.)

Eliding ϕG, ϕH and simply using g, h as elements of the shared space, a sufficient condition for this to
hold is that hg′h−1 ∈ G, since then, for some g̃ ∈ G,

(g, h) · (g, h′) = ghg′(h−1h)h′ = g(hg′h−1)hh′ = gg̃hh′,

which is of the form ϕG(·) ·ϕH(·) since both G and H are themselves closed. This condition is precisely
that G is a normal subgroup.

There is a degree of freedom here: for each pair h and g′, we can choose which element of G is
given by hg′h−1. When we make this choice we must ensure all of the group axioms are preserved,
e.g., when h = eH we should always have eH g′eH = g′. Suppose we make this choice and define
ϕh : g 7→ hgh−1 ∈ G (this ϕ is a homomorphism from H → Aut(G), where Aut(·) denotes the
automorphism group, the group of bijections on G that preserve the group axioms, under composition).
Then, these ordered pairs do indeed form a group, but the group operation is

(g, h) · (g′, h′) = gϕh(g′)hh′

This object is the semidirect product, and it is denoted G ⋊ H. Note that the choice of mapping ϕ is
unspecified in the notation, and, in general, different choices of ϕ will yield different structures for
the semidirect product.

Finally, when G = N ⋊ H, both N and H are subgroups of G, but N is also a normal subgroup. To
see this, we need to check that hN = Nh for any h ∈ H. This is equivalent to hnh−1 ∈ N for each
h, n, but we defined the group operation to be hnh−1 = ϕh(n) ∈ N, specifically so this would hold.
On the other hand, H may not be a normal subgroup, and in this sense the semidirect product is
a generalization of the direct product (for which both subgroups are normal). However, when the
mapping ϕ is trivial, that is ϕh(n) = n then both N and H are normal subgroups, and one can verify
that in this case the semidirect product and direct product coincide.

Example 6 (Dihedral group). Consider a semiautomaton with Q = {0, . . . , S− 1} × {−1,+1} and input
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alphabet Σ = {advance, reverse}. The transitions are given by:

δ((s, b), advance) = (s + b mod S, b)

δ((s, b), reverse) = (s,−b)

The transformation semigroup for this semiautomaton is CS ⋊ C2 where CS is the cyclic group on S elements
(cf. Example 4). C2 has two elements, the identity e and one element h such that hh = e. CS has S elements
where each element g is a function that adds some number k ∈ {0, . . . , S − 1} to the input modulo S. The
inverse g−1 is naturally to subtract k to the input, modulo S. The homomorphism ϕ in the semidirect product
is such that ϕe(g) = g and ϕh(g) = g−1.

Wreath products. We define one more type of product between groups N and H: the wreath product
N ≀H := (N× . . .×N)⋊ H. This is a group containing |N||H| · |H| elements (rather than |N| · |H|, like
the direct and semidirect products). Intuitively, it is defined by creating one copy of N per element in
H via the direct product, then letting H specify a way to exchange these copies. Formally, N ≀ H is the
unique group generated by

(g1, . . . , g|H|, h) ∀gi ∈ N, h ∈ H,

where
(g1, . . . , g|H|, eH) · (g′1, . . . , g′|H|, eH) := (g1 · g′1, . . . , g|H| · g′|H|, eH) ∀gi, g′i ∈ N,

and
(g1, . . . , g|H|, eH) · (eN , . . . , eN , h) := (gπh(1), . . . , gπh(|H|), eH) ∀gi ∈ N, h ∈ H, (3.1)

where we have enumerated the elements of H in arbitrary order, such that each πh : [H]→ [H] is the
permutation defined by right multiplication h′ 7→ h′h (by convention).

To write this explicitly as a semidirect product N ≀ H := (N × . . .× N)⋊ H, the homomorphism into
the direct product’s automorphism group ϕ : H → Aut(N × . . .× N) is given by 3.1: for each h ∈ H,
ϕ is the automorphism defined by permuting the indices between the terms in the direct product,
according to the permutation induced by right multiplication by h.

Example 7 (Rubik’s Cube). A naive way to construct the Rubik’s Cube is to assign labels {1, . . . , 54} to the
stickers on the cube, and define the Rubik’s Cube group G via the sticker configurations reachable by the 6 face
turns (which each specify a permutation δL, δR, δU , δD, δB, δF : [54]→ [54] of the stickers). This establishes G
as a subgroup of S54. First, notice that the 6 central stickers never move (so this is really improvable to S48).
Next, notice that the 24 = 8× 3 vertex stickers never switch places with the 24 = 12× 2 edge stickers. The
vertex stickers form a subset of the wreath product C3 ≀ S8, while the edge stickers form a subset of the wreath
product C2 ≀ S12. In all, this realizes G as a subgroup of a direct product of wreath products:

G ≤ (C3 ≀ S8)× (C2 ≀ S12).

Among other consequences towards solving the Rubik’s Cube, this gives an improved upper bound on the size
of G (which turns out to still be off by a factor of 12, because of nontrivial invariants preserved by the face
rotations, a.k.a. unreachable configurations).

Quotients, simple groups, and maximal subgroups. When N is a normal subgroup of G, the quo-
tient group G/N is defined as {gN : g ∈ G}with binary operation (gN)(g′N) = (gg′)N. The fact that
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N is a normal subgroup implies that this is a well defined group. We can also check that if G = N ⋊ H
then the quotient group G/N is isomorphic to H, which matches the intuition for multiplication and
division.

A G group is simple if it has no non-trivial normal subgroups. Intuitively, a simple group cannot
be factorized into components; this generalizes the fact that a prime number admits no non-trivial
factorization. When G is not simple then it has a non-trivial normal subgroup, say N. We call N
proper if N ̸= G. We call a proper subgroup N maximal if there is no other proper normal subgroup
N′ ◁ G such that N ◁ N′. Equivalently, N is a maximal proper normal subgroup if and only if G/N is
simple. This is akin to extracting a prime factor from a number, since the quotient group G/N cannot
be further factorized. We will revisit this idea of factorization when defining composition series and
solvable groups in Section 3.4.4.3.2.

Group extensions. Finally, we provide some additional terminology related to these different no-
tions of products, which provide a cleaner unifying language in which to state our constructions. Let
N, H be arbitrary groups. Which groups G contain a normal subgroup isomorphic N, such that the
quotient G/N is isomorphic to H? Such a group G is said to be an extension of N over H. The
direct product G = N × H is known as the trivial extension. A semidirect product G = N ⋊ H
is known as a split extension. However, not all extensions are split extensions; the smallest exam-
ple is the quaternion group Q8, the group of unit quaternions {±1,±i,±j,±k} under multiplication
(i2 = j2 = k2 = ijk = −1), which cannot be realized as a semidirect product of smaller groups. In
general, it is very hard to derive interesting properties of a group extension based on the properties
of N and H. Fortunately, there is a characterization of general extensions. The Krasner-Kaloujnine
universal embedding theorem [Krasner and Kaloujnine, 1951] states that all extensions G can be found as
subgroups of the wreath product N ≀ H. The proof of Theorem 11 essentially shows how to implement
the different kinds of group extensions, given constructions which implement the substructures N, H.
In the worst case, we will have to implement a wreath product.

3.3.2 Shallow circuit complexity classes

We provide an extremely abridged selection of relevant concepts in circuit complexity. For a system-
atic introduction, refer to [Arora and Barak, 2009]. In particular, we discuss each circuit complexity
class and inclusion below:

NC0 ⊂ AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1.

• NC0 is the class of constant-depth, constant-fan-in, polynomial-sized AND/OR/NOT circuits. If
a constant-depth Transformer only uses the constant-degree sparse selection constructions in
[Edelman et al., 2022], it can be viewed as representing functions in this class. However, the
representational power of these circuits is extremely limited: they cannot express any function
which depend on a number of inputs growing with T.

• AC0 is the class of constant-depth, unbounded-fan-in, polynomial-sized AND/OR circuits, al-
lowing NOT gates only at the inputs. A classic result is that the parity of T bits is not in
AC0 [Furst et al., 1984]; Hahn [2020] concludes the same for bounded-norm (and thus bounded-
Lipschitz-constant) constant-depth Transformers.
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• ACC0 extends AC0 with an additional type of unbounded-fan-in gate known as MODm for arbi-
trary number m, which checks if the sum of the input bits is a multiple of m. Theorem 2 comes
from the fact that the semigroup word problem (which is essentially identical to semiautomaton
simulation) is in this class; see [Barrington and Thérien, 1988].

• TC0 extends AC0 with an additional type of unbounded-fan-in gate called MAJ, which computes
the majority of an odd number of input bits (a threshold gate). It is straightforward to simulate
modular counters using a polynomial number of parallel thresholds (i.e. ACC0 ⊆ TC0). Whether
this inclusion is strict (can you simulate a threshold in constant depth with modular counters?) is a
salient open problem in circuit complexity. Threshold circuits are a very natural model for
objects of interest in machine learning like decision trees and neural networks [Merrill et al.,
2021].

• NC1 is the class of O(log T)-depth, constant-fan-in, polynomial-sized AND/OR/NOT circuits.
It is an extremely popular and natural complexity class capturing efficiently parallelizable algo-
rithms. It is unknown whether any of the inclusions in the “larger” classes TC0 ⊆ NC1 ⊆ L ⊆ P

are strict.

3.4 Transformer’s shortcut solutions to automata

In this section, we demonstrate that Transformer is uniquely suitable for implementing shortcut,
which are o(T)-step solutions for T-step sequential reasoning problems. We describe two types of
shortcuts. The first one takes log(T) steps, an exponential improvement over the T-step iterative
solutions by RNN; The second one removes the dependency on T altogether, although it is only ap-
plicable to a (broad) subset of automata. We empirically show that approximate shortcuts can be
found through finite-sample training in practice.

3.4.1 Theory: shortcuts abound

To simulate a semiautomaton at length T, a T-layer Transformer can implement the same sequential
solution as an RNN: let the t-th layer embed the state transition qt−1 7→ qt. We define shortcuts as
solutions which implement the same functionality with a significantly smaller depth.

Definition 3 (Shortcut solution). Let A be a semiautomaton. For every T ≥ 1, let fT be a sequence-to-
sequence neural network which simulatesA at length T. Then, we call this sequence { fT}T≥1 a shortcut toA
if the sequence of network depths D := {D( fT)}T≥1 satisfies D ≤ o(T).

By this definition, shortcuts are quite general, and some are less interesting than others. For example,
it is always possible to construct a constant-depth neural network which memorizes all |Σ|T values
of AT,q0 , but these networks must be exceptionally wide. There are also solutions which emulate
transitions in “chunks”, letting each of (say)

√
T layers perform

√
T consecutive state transitions;

however, without exploiting the structure of the semiautomaton, this would require width Ω(|Σ|
√

T).
To rule out these cases and focus on interesting shortcuts for Transformers, we want the other size
parameters (attention and MLP width) to be small: say, scaling at most polynomially in T, |Q|, and
|Σ|. To construct such shortcuts, we need ideas beyond explicit iteration of state transitions.
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Figure 3.4: Intuitions for the theoretical constructions. (a) Divide-and-conquer function composition
yields logarithmic-depth shortcuts (Theorem 10). (b) The two “atoms” of the constant-depth Krohn-
Rhodes decomposition (Theorem 11) of a solvable semiautomaton: modular addition and sequentially
resettable memory. (c) Information flow of the cascade product, which is used to glue these atoms
together, and easily implemented with residual connections. (d) An even shorter shortcut solution
for gridworld simulation (Theorem 12; see Appendix 3.4.4.4).

3.4.1.1 Upper bounds: O(log T)-layer and Õ(|Q|2)-layer constructions

We begin by noting that polynomial-width shortcuts always exist. This may seem counterintuitive if
we restrict ourselves to viewing a Transformer’s intermediate activations as representations of states
qt, like the RNN solution. Instead, a Transformer can encode and hierarchically compose transforma-
tions δ(·, σ) : Q→ Q (see Figure 3.4a), leading to far shallower solutions:

Theorem 10 (Simulation is generically parallelizable; informal). Transformers can simulate all semi-
automata A = (Q, Σ, δ) at length T, with depth O(log T), embedding dimension O(|Q|), attention width
O(|Q|), and MLP width O(|Q|2).

This is proven in Section 3.4.4.2, and leverages the ability of a self-attention head to approximate hard
attention (i.e. concentrate its mixing weights on a single position). However, self-attention heads
can also perform soft attention (i.e. depend on a large number of previous positions), enabling even
shallower implementations of certain sequential computations. For example, the parity automaton
can be simulated by a single Transformer layer (see Lemma 15): soft attention computes prefix sums
in parallel, then the MLP computes “mod 2”. This leads to a significantly more nuanced question:
when are there even shallower shortcuts? At first glance, such solutions may seem rare, and specialized
to simple cases such as parity.

Our resolution to this question comes from the Krohn-Rhodes decomposition theorem [Krohn and
Rhodes, 1965], a landmark result which vastly generalizes the uniqueness of prime integer factor-
izations, and created the mathematical field of algebraic automata theory [Rhodes et al., 2010]. The
conclusion is quite unintuitive: allowing for both hard and soft modes of attention, constant-depth
shortcuts are surprisingly common!

Theorem 11 (Transformer Krohn-Rhodes; informal). Transformers can simulate all solvable13 semiau-
tomata A = (Q, Σ, δ), with depth O(|Q|2 log |Q|), embedding dimension 2O(|Q| log |Q|), attention width
2O(|Q| log |Q|), and MLP width |Q|O(2|Q|) + 2O(|Q| log |Q|) · T.

13See Definition 8. Intuitively, the only obstructions are when the semiautomata contain non-solvable groups such as S5,
the group of all permutations of 5 elements.
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The proof is provided in Section 3.4.4.3, with a user-friendly exposition of the relevant algebraic con-
cepts in Section 3.3.1. A few high-level notes:

• Intuitively (illustrated in Figures 3.4b and 3.4c), the Krohn-Rhodes decomposition “factorizes”
every solvable semiautomaton into modular counters and memory units, glued together via a
feedforward cascade product (Definition 6) whose depth only depends on |Q|, not T. These two
types of “prime” semiautomata can be efficiently simulated by depth-1 Transformers.

• The decomposition depends on the transformation semigroup T (A). It is non-constructive (much
like how the existence of prime factorizations doesn’t entail a procedure to find them). Compu-
tationally, these solutions still have to be found by a search procedure. Remarkably, we find that
gradient-based training succeeds empirically, despite the worst-case computational hardness of
related problems.

What makes Transformers special (vs. other universal function approximators)? The same underly-
ing semiautomaton-to-circuit constructions could be applied to any universal function approximator
(like a vanilla MLP with the same depth). Transformers embed all of the constructions in Theo-
rems 10 and 11 with exceptional efficiency, in terms of the network complexity measures discussed
in Section 3.3. Most importantly, the constructions leverage Transformers’ positional weight shar-
ing, which removes all14 suboptimal T factors from the parameter count. We discuss this further in
Appendix 3.7.

Even shallower shortcuts, beyond Krohn-Rhodes. Finally, we show that on a natural class of prob-
lems, the computational model of self-attention leads to further fine-grained improvements over the
guarantees of Krohn-Rhodes theory. Motivated by the application of Transformers in modeling envi-
ronment dynamics, we consider the semiautomaton Gridn corresponding to a “gridworld”: n states
on a line, with inputs “move left if possible” and “move right if possible” (see Figure 3.1, middle).
We show that self-attention enables an extremely concise solution, with depth independent of both T
and |Q| = n:

Theorem 12 (Depth-2 shortcut for gridworld; informal). For all positive integers n, T, Transformers can
simulate Gridn at length T, with depth 2,15 embedding dimension O(1), attention width O(n), and MLP
width O(T).16

The proof builds a parallel nearest boundary detector for the two boundary (i.e. leftmost and rightmost)
states, and can be found in Section 3.4.4.4. We note that gridworlds are known to be extremal cases
for the holonomy decomposition in Krohn-Rhodes theory (Maler [2010] discusses this, calling it the
elevator automaton). It would be interesting to generalize our improvement and characterize the class
of problems for which self-attention affords O(1) instead of poly(|Q|)-depth solutions.

14The only part of Theorem 11 requiring T non-tied neurons is the implementation of mod-p gates. It disappears entirely if
we can add auxiliary MLP neurons with periodic activation functions such as x 7→ sin(x).

15This requires max-pooling. If we do not use max-pooling, we can instead use an MLP with width 2O(n) and depth O(1),
or width O(n) and depth O(log n).

16As with Theorem 11, the width can be reduced to O(n) if we employ periodic activation functions.
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3.4.1.2 Lower bounds: Ω(log T) layers required, assuming TC0 ̸= NC1

Can Theorem 11 be improved to handle non-solvable semiautomata? (Equivalently: can Theorem 10
be improved to constant depth?) It turns out that as a consequence of a classic result in circuit com-

plexity [Barrington, 1986], this question is equivalent to the major open question of TC0 ?
= NC1 (thus:

conjecturally, no). Unless these complexity classes collapse, Theorems 10 and 11 are optimal. In
summary, simulating non-solvable semiautomata 17 with constant depth is provably hard:

Theorem 13 (Transformer Barrington). LetA be a non-solvable semiautomaton. Then, for sufficiently large
T, no O(log T)-precision Transformer with depth independent of T and width polynomial in T can continu-
ously simulate A at length T, unless TC0 = NC1.

Proof. This follows straightforwardly from the fact that simulatingA at length T is NC1-complete un-
der NC0 reductions: given any O(log T)-depth bounded-fan-in AND/OR/NOT circuit C, and a depth-
D circuit C ′ which simulates a semiautomaton whose transformation monoid contains a non-solvable
subgroup, there is a procedure which generates a depth-O(D) circuit to simulate C; see [Barrington
and Thérien, 1988]. This in turn comes from the construction used in Barrington’s theorem [Bar-
rington, 1986], which characterizes NC1 as exactly the set of languages recognizable by bounded-width
branching programs. For a closely related reference which follows almost exactly the same argument,
see [Mereghetti and Palano, 2000].

Thus, it suffices to show that a constant-depth Transformer is in TC0. The details of manipulating
floating-point numbers with discrete circuits are peripheral to the main results in this paper, so we
provide a brief proof sketch. A similar argument is used by Merrill et al. [2021] to establish that
“saturated” Transformers (a multi-index analogue of hard-attention Transformers), with O(log T) bit
precision, can be represented with a TC0 circuit. We outline a proof (which applies to the formal
setting considered by Merrill et al. [2021]) for the notion of Transformers defined in this paper.

With O(log T) bits of precision, all n-way (including unary) arithmetic operations mapping Rn → R

can be represented with a constant-depth, poly(T)-width AC0 circuit, as long as n does not depend
on T. Although improvements are certainly possible, it suffices to consider the circuit which mem-
orizes the i-th bit of the output, which has width 2n log T ≤ O(poly(T)). Thus, the position-wise
non-interacting matrix operations (multiplication by X 7→ WQX, etc., the feedforward MLP layers,
and the encoding and decoding layers) can be simulated with poly(T) width.

The only subtlety arises when there is a T-way summation over O(log T)-bit numbers, which occur in
the softmax and attention mixture layers. For this operation, we can use the construction from [Reif
and Tate, 1992], which can even add T poly(T)-bit numbers in TC0.

Finally, we note that although our width bounds might be improvable, an exponential-in-|Q| number
of hypotheses (and hence a network with poly(|Q|) parameters) is unavoidable if one wishes to learn
an arbitrary |Q|-state semiautomaton from data: there are |Q||Q|·|Σ| of them, which generate |Q|Ω(|Q|2)

distinct semigroups [Kleitman et al., 1976]. If we wish to study how machine learning models can
efficiently identify large algebraic structures, we will need finer-grained inductive biases to specify
which semiautomata to prefer, a direction for future work.

17The smallest example of a non-solvable semiautomaton has |Q| = 60 states, whose transitions generate A5 (all of the even
permutations).
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(a) Accuracy across tasks (rows) and network depths
(columns); details in Appendix 3.4.5.1.1.

(b) Training curves for C2 (i.e. parity; 10 repli-
cates).

(c) Training curves for S5 (10 replicates).

Figure 3.5: Overview of the empirical results in Section 3.4.2, on in-distribution learnability of short-
cuts by standard Transformer training. (a) Truncated table of results (in-distribution accuracy); rows
specify semiautomaton simulation problems, and columns specify network depth. (b),(c) Training is
highly unstable.

3.4.2 Empirical shortcuts found by SGD

The results in Section 3.4.1.1 only provide a precise understanding of representability: they show that
shortcut solutions exist within the parameter space of a shallow Transformer. To understand whether
Transformers can actually learn these shortcuts from data, we must introduce the additional con-
siderations of generalization and optimization. It is notoriously difficult to derive meaningful analyses
which account for all of these factors in deep learning; thus, we do not attempt to do so in this work.18

Instead, we approach the end-to-end question with an empirical lens: trained on sequences arising
from a variety of automata, does a shallow (depth-L≪ T) Transformer converge to correct simulators
of these automata?

For a selection of 19 semiautomata corresponding to various groups and semigroups (detailed de-
scriptions in Section 3.4.5.1.1), we train shallow Transformer (GPT-2-like [Radford et al., 2019a])
models to map randomly sampled sequences (σ1, . . . , σT) to their corresponding state sequences
(q1, . . . , qT), and evaluate their accuracy on held-out sequences. We vary the depth L from 1 to 16, and
use freshly-sampled sequences of length T = 100. In this setup, the number of sequences encoun-
tered during training (≤ 106) is far smaller than the number of distinct input sequences (|Σ|100). Thus,
brute-force memorization cannot solve this task, and generalization is necessary to achieve nontrivial
performance.

18Our bounds on the parameter count and weight norms do imply classical generalization bounds for appropriately norm-
constrained Transformers [Edelman et al., 2022], but these are too coarse-grained to provide non-vacuous predictions of gen-
eralization behavior.
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(a) 1st layer, uniform attention (b) 4th layer, left boundary detector (c) 4th layer, right boundary detec-
tor

Figure 3.6: Attention heads implement a nearest boundary detector for the 1-dimensional gridworld
task (see Figure 3.1 and Theorem 12): the lower triangle shows the causal attention patterns (the
upper triangle is masked out, hence all 0), where a brighter color corresponds to a higher attention
score. Positions for the actual boundaries are marked by white (for the left boundary i.e. state 1)
or gray (for the right boundary, i.e. state n) dots. This shows that our theoretical construction in
Theorem 12 agrees with the solutions found in practice.

Strikingly, we obtain positive results (> 99% in-distribution accuracy19) for every finite-state semiau-
tomaton we considered, including ones which generate the non-solvable groups A5 and S5. Figure 3.5
gives a selection of our full results (in Section 3.4.5.1). We find that more complex semiautomata (cor-
responding to non-abelian groups) require deeper networks to learn, in agreement with our theoreti-
cal constructions.

What about the small fraction of mistakes? Our theoretical results show that there are logarithmic-
depth (S5, A5) and constant-depth (all the others) solutions which simulate these semiautomata with
exactly 100% accuracy. Of course, with such long sequences, black-box evaluation of whether this ac-
curacy is reached in the population distribution is computationally infeasible. However, we note that
without periodic activations (or some other mechanism for extrapolating to unseen count values), our
theoretical constructions require MLPs to memorize the mod-n function. This will be revisited in the
out-of-distribution evaluation experiments in Section 3.4.3.2, but there is even a corresponding impli-
cation for in-distribution mistakes: if a model never sees certain “outlier” counts during training, it
is expected to make mistakes on those outliers when they appear in evaluation.

Which shallow solutions are learned? Our theoretical results identify shortcut solutions which fol-
low multiple, mutually incompatible paradigms. In general, we do not attempt a full investigation
of mechanistic interpretability of the trained models. In particular, we do not claim that the networks
discover implementations are isomorphic to those described in the proofs of Theorem 10, 11, and
12. However, as a preliminary exploration, we visualize some of the attention patterns in Figure 3.6
within successfully-trained models, finding attention heads which perform flat summations (with uni-

19Our primary goal is to understand if gradient-based training can find shortcut solutions at all, rather than whether such
training is stable. Accordingly, unless otherwise noted, we report the performance of the best model among 20 replicates. See
Section 3.4.2 for details and sensitivity analyses.
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Task Dyck4,8 Grid9 S5 C4 D8

Observation stack top 1boundary π1:t(1) 10 mod 4 location

Accuracy 100.0 100.0 99.6 99.9 100.0

(a) Accuracies with indirect supervision (details in Ap-
pendix 3.4.5.2.1). LSTM gets 100% on all tasks. (b) Varying preveal (log spacing).

Figure 3.7: Overview of the empirical results in Section 3.4.3.1. (a) Learning in the latent-state setting,
with various observation maps φ(qt). (b) Learning from incomplete state sequences: final accuracy vs.
position-wise probability of a hidden token, for GPT and LSTM; the mean and standard deviations
are taken over 25 runs.

Figure 3.8: OOD generalization on C2 (parity): Transformers fail to generalize to different distri-
butions (left) because shortcuts fail to generalize to unseen counts (right; the 1s are uniformly dis-
tributed in the sequence). In contrast, recurrent solutions (LSTM, and Transformer with recency-
biased scratchpad training) maintain perfect accuracy.

form attention) and conditional resets, agreeing with the construction in Theorem 12.

Optimization instability. Although sufficiently deep networks find the solutions with non-negligible
probability, the training dynamics are unstable; Figure 3.5b,c show example training curves, which
exhibit high variance, negative progress, or accuracy that decays with continued training. In the
same vein as the “synthetic reasoning tasks” introduced by Zhang et al. [2022], we hope that semi-
automaton simulation will be useful as a clean, nontrivial testbed (with multiple difficulty knobs)
for debugging and improving training algorithms, and perhaps the neural architectures themselves.
More details are deferred to Appendix 3.4.5.1.1.

3.4.3 Experiments under more challenging settings

The results from Section 3.4.1 and Section 3.4.2 show that Transformers can learn shortcuts end-
to-end, unobstructed by depth, generalization, or optimization. However, the experiments in Sec-
tion 3.4.2 are idealized in several ways; a natural question is whether these findings are robust to
various challenges that arise in practice. In this section, we investigate the robustness of the shallow
Transformer solutions, compared to those found by RNNs (the “natural” architecture for simulat-
ing semiautomata). We consider harder forms of supervision (Section 3.4.3.1) and evaluation (Sec-
tion 3.4.3.2); details are deferred to Section 3.4.5.2.
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Figure 3.9: Length generalization on Dyck (left) and C2 (right): Transformers fail to generalize to
longer sequences, but can be improved by modifying positional encodings. In contrast, recurrent so-
lutions (LSTM, and Transformer with recency-biased scratchpad training) maintain perfect accuracy.

3.4.3.1 Incomplete and indirect supervision

Successful learning with partial observations.

Consider the case of partial observability. For any semiautomaton A = (Q, Σ, δ) and a (generally non-
invertible) observation function φ : Q → Q̃, we can define the problem of predicting q̃t := φ(qt). If
we can only obtain observations q̃t (i.e., the state is latent), this fully captures the problem of learn-
ing a finite-state automaton from data. The results in this paper have shown that this is equivalent
to the fully-observable case in terms of representation. However, the learning problem can be much
harder; indeed, this may account for Bhattamishra et al. [2020a]’s negative results on learning regular
languages with constant-depth Transformers. Note that this also captures autoregressive next-token
prediction tasks induced by distributions (e.g., generating Dyck languages [Yao et al., 2021b]) where
the sequence’s continuations depend on a latent semiautomaton’s state (e.g., the current stack for
Dyck). Despite these potential challenges, we find that Transformers are able to find solutions with
good in-distribution performance for all partially observable settings we consider; see Figure 3.7a.

Learning from incomplete state sequences: RNNs are better. Next, we consider the setting which
is identical to that described in Section 3.4.2, but each state qt is randomly revealed from the training
data with some probability 0 ≤ preveal ≤ 1. As with partial observability, this does not affect represen-
tation issues, but can make learning/optimization much harder. Figure 3.7b shows the accuracy of S5

for models trained on length 100 sequences for various preveal. It can be seen that Transformers may
be unable to find good solutions when the labels become sparser, whereas LSTM’s performance stays
robust across all choices of preveal, potentially due to a more favorable recurrent inductive bias [Abnar
et al., 2020].

3.4.3.2 Out-of-distribution shortcomings of shortcut solutions

Out-of-distribution generalization: RNNs are better. The theoretical construction of modular coun-
ters (Lemma 15) suggests a possible failure mode: if attention performs prefix addition and the MLP
computes the sum modulo n, the MLP could fail on sums unseen during training. This suggests that
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if the distribution over σ1:T shifts between training and testing (but the semiautomaton remains the
same), a non-recurrent shortcut solution might map inputs into an intermediate latent variable space
(like the sum) which fails to generalize.

Indeed, we observe that with the same models which obtain the positive in-distribution results in
Section 3.4.2, accuracy degrades as distribution shift increases; see Figure 3.8 (left), where the per-
formance drops as the probability of seeing input σ = 1 deviates from the training distribution
(Pr[σ = 1] = 0.5). From the viewpoint of mechanistic interpretation, one possible explanation is
that Transformers learn shortcuts that calculates parity by first counting the number of 1s in the in-
put sequence then computing modulo 2, and hence struggle to deal with sequences where the count
is less frequently seen during training. To verify this hypothesis, we further compare the accuracy
against number of 1s in the sequence (Figure 3.8 (right)); details are deferred to Section 3.4.5.2.3.

Length generalization: RNNs are better. More ambitiously, we could try to use these models to
extrapolate to longer sequence lengths T than those seen in the training data. Promoting this difficult
desideratum of length generalization is an intricate problem in its own right; see Yao et al. [2021b], Anil
et al. [2022b] for more experiments similar to ours. Figure 3.9 shows the performance on sequences of
various lengths. In contrast to LSTM’s perfect performance on all scenarios, Transformer’s accuracy
drops sharply as we move to lengths unseen during training. This is not purely due to unseen values
of the positional encoding: randomly shifting the positions during training can cover all the positions
seen during testing, which helps improve the length generalization performance but cannot make it
perfect; we see similar results for removing positional encodings altogether. Finally, we empirically
show that the above flaws are circumventable. Using a combination of scratchpad (a.k.a. “chain-of-
thought”) [Nye et al., 2021a, Wei et al., 2022c] and recency bias [Press et al., 2022], we demonstrate
that Transformers can be guided towards learning recurrent (depth-T) solutions, which generalize
out-of-distribution and to longer sequence lengths (Figure 3.9, yellow curves). Details are deferred to
Section 3.4.5.2.3.

Discussion: shortcuts as “unintended” solutions. Throughout the deep learning literature, the
term shortcut is often used to refer to undesired (i.e., misleading, spurious, or overfitting) statistical
properties of learned representations [Geirhos et al., 2020, Robinson et al., 2021]. Meanwhile, under
our computational (o(T) circuit depth) definition, shortcut solutions are perfectly valid ways to repre-
sent recurrent computations. The results in this section establish a connection between these notions:
partially-learned computational shortcuts can be statistical shortcuts. Specifically, a non-recurrent
architecture can “hallucinate” intermediate variables other than the state (e.g. the “count” variable
for the parity automaton), is thus sensitive to the coverage of these variables in the training data.
This leads to out-of-distribution generalization failures (e.g. on rare counts) which are not present in
recurrent models. We will provide a detailed study in this topic in Section 3.5.

Computational-statistical tradeoffs. The experiments in this section highlight a statistical penalty
for learning recurrent computations with a non-recurrent architecture. However, the computational
advantage of a shallow architecture is extremely appealing: maximally leveraging parallel computa-
tion, training and inference can be done much faster (O(log T) or O(1) time, compared to O(T)). This
highlights a delicate tradeoff between RNNs and Transformers, where neither architecture dominates
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the other, even when considering this elementary class of algorithmic problems. Attaining the best of
both worlds with a practical architecture is an interesting avenue for future work.

3.4.4 Proofs

3.4.4.1 Useful definitions and lemmas

Formal definitions of simulation. We first recall the notions of simulation introduced in Section 3.2:

• A function can simulate an automaton for particular choices of T, q0. For a semiautomaton A =

(Q, Σ, δ), a function f : ΣT → QT simulates AT,q0 if f (σ1:T) = AT,q0(σ1:T) for all input sequences
σ1:T . Here, the right-hand side denotes the sequence of states q1:T induced by the input sequence
σ1:T under the transitions δ starting from state q0.

• A function class can simulate multiple functions associated with a semiautomaton. For a semiau-
tomaton A = (Q, Σ, δ) and a positive integer T, a function class F (a set of functions f : ΣT →
QT) simulatesA at length T if, for every q0 ∈ Q, there is function fq0 ∈ F which simulatesAT,q0 .

Our proofs rely on composing “gadgets” which simulate various substructures of the transformation
semigroup T (A). Thus, it will be useful to establish a third notion of simulation, which works for
functions in the embedding space Rd rather than the symbol spaces Q, Σ. For clarity, we give this
notion a different name (continuous simulation):

• For a semiautomaton A = (Q, Σ, δ), a function f : Rd → Rd continuously simulates AT,q0 if there
exist functions E : Σ→ Rd, W : im f → Q such that W ◦ f ◦ E simulates AT,q0 .

When W is a linear threshold function z 7→ arg maxq[Wz]q, this corresponds to a standard classifica-
tion head. However, our constructions may leverage other encodings of discrete objects.

Function approximation. We provide some simple function approximation results below.

Lemma 10 (1D discrete function interpolation with an MLP). Let X be a finite subset of R, such that
|x| ≤ Bx for all x ∈ X , and |x− x′| ≥ ∆ for all x ̸= x′ ∈ X . Let f : X → Rd be such that ∥ f (x)∥∞ ≤ By

for all x ∈ X . Then, there is a 2-layer ReLU network for which

fmlp(x + ξ; θmlp) = f (x) ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 4|X |, and the weights satisfy

∥W1∥∞ ≤
4
∆

, ∥b1∥∞ ≤
4Bx

∆
+ 2, ∥W2∥∞ ≤ By, b2 = 0.

Proof. For each x0 ∈ X , we construct an indicator ψx0(x) for x0, out of 4 ReLU units. Letting ∆′ :=
∆/4, the construction is

ψx0(x) :=
(

x− (x0 − 2∆′)
∆′

)
+
−
(

x− (x0 − ∆′)
∆′

)
+

−
(

x− (x0 + ∆′)
∆′

)
+
+

(
x− (x0 + 2∆′)

∆′

)
+

.
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The second layer simply sums these indicators, weighted by each f (x0).

Lemma 11 (General discrete function interpolation with an MLP). Let X be a finite subset of Rdin , such
that ∥x∥∞ ≤ Bx for all x ∈ X , and ∥x− x′∥∞ ≥ ∆ for all x ̸= x′ ∈ X . Let f : X → Rdout be such that
∥ f (x)∥∞ ≤ By for all x ∈ X . Then, there is a 3-layer ReLU network for which

fmlp(x + ξ; θmlp) = f (x) ∀x ∈ X , |ξ| ≤ ∆/4.

Letting Xi denote the set of unique values in coordinate i, the inner MLP dimensions are as follows:

d1 = 4 ∑
i∈[din]

|Xi|, d2 = |X |.

The weights satisfy

∥W1∥∞ ≤
4
∆

, ∥b1∥∞ ≤
4Bx

∆
+ 2, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ By, b3 = 0.

Proof. The first layer uses the same construction as that in Lemma 10, creating indicators for each
x ∈ Xi for each i. For each x ∈ X, the second layer has an activation which sums the indicators from
each xi, with bias −din (thus creating indicators for each x). The third layer outputs f (x) for each
indicator.

When we apply Lemmas 10 and 11 in recursive constructions, and Bx/∆ ≥ 1, we will opt to use
the bound ∥b1∥∞ ≤ 6Bx/∆, to reduce the clutter of propagating the 2 term without resorting to
asymptotic notation.

We also introduce a simpler version of Lemma 10 for the special case of the threshold function f (x) :=
1[x > 0]:

Lemma 12 (Threshold with an MLP). Let X be a subset of R, and |x| ≥ ∆ for all x ∈ X . Then, there is a
2-layer ReLU network for which

fmlp(x + ξ; θmlp) = 1[x > 0] ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 2, and the weights satisfy

∥W1∥∞ ≤
1
∆

, ∥b1∥∞ ≤ 1/2, ∥W2∥∞ ≤ 1, b2 = 0.

Proof. We construct the threshold using 2 ReLU units. The construction is

ψ(x) :=
(

x + ∆
2∆

)
+
−
(

x− ∆
2∆

)
+

.

Selection via soft attention. We record some useful lemmas pertaining to approximating hard co-
ordinate selection with soft attention. The following is a simplified version of Lemma B.7 from [Edel-
man et al., 2022] (which generalizes this to multi-index selection):
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Lemma 13 (Softmax approximates hard max). Let z ∈ RT . Let softmax(z) : RT → RT denote the
T-dimensional softmax function:

[softmax(z)]t :=
ezt

∑t′∈[T] ezt′
.

Let t∗ := arg maxt zt. Suppose that for all t′ ̸= t∗, zt′ ≤ zt∗ − γ. Then,

∥softmax(z)− et∗∥1 ≤ 2T · e−γ.

Proof. Without loss of generality, max z = γ (since the softmax function is invariant under shifting
all inputs by the same value), so that all other coordinates are non-positive. Also, assume T ≥ 2 (the
T = 1 case is trivial). We have

[softmax(z)]t∗ =
eγ

eγ + ∑t ̸=t∗ et ≥
eγ

eγ + T − 1
= 1− T − 1

eγ + T − 1
≥ 1− T − 1

eγ
,

and for t′ ̸= t,

[softmax(z)]t′ =
et′

eγ + ∑t ̸=t∗ et ≤
1
eγ

.

Thus, the 1-norm of the difference is bounded by

T − 1
eγ

+ (T − 1) · 1
eγ

<
2T
eγ

,

as claimed.

Positional embeddings. We note the following elementary fact about 2-dimensional circular em-
beddings.

Proposition 2 (Circular embeddings). Consider p1, . . . , pT , the T equally-spaced points on the 2-dimensional
circle:

[pt]1 := cos
(

2πt
T

)
, [pt]2 := sin

(
2πt
T

)
.

Then, for any t ̸= t′,

|⟨pt, pt′⟩| ≤ 1− 2π2

T2 < 1− 19.7
T2 .

3.4.4.2 Proof of Theorem 10: Logarithmic-depth shortcuts via parallel prefix sum

In this section, we give the full statement and proof of the universal existence of logarithmic-depth
shortcuts.

Theorem 10 (Simulation is generically parallelizable). Let A = (Q, Σ, δ) be a semiautomaton, q0 ∈ Q,
and T ≥ 1. Then, there is a depth-⌈log2 T⌉ Transformer which continuously simulates AT,q0 , with embedding
dimension 2|Q|+ 2, MLP width |Q|2 + |Q|, and ∞-weight norms at most max{4|Q|+ 2, 10T

√
log |Q|+ log T}.

It has H = 2 heads with embedding dimension |Q| implying 2|Q|+ 2 attention width, and a 3-layer MLP.

Proof. The basic idea is that all prefix compositions δ(·, σt) ◦ . . . ◦ δ(·, σ1) can be evaluated in logarith-
mic depth using a binary tree whose leaves are the per-input transition functions δ(·, σ) : Q → Q.
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The attention heads select the pairs of functions that need to be composed, while the feedforward
networks implement function composition. The network will manipulate functions in terms of their
transition maps: for example, the encoding of f := (1 7→ 1, 2 7→ 1, 3 7→ 2) is

∑
q∈{1,2,3}

f (q) · eq = [1 1 2].

Small nuances. We will produce a construction for the case where T is a power of 2; general T
can be handled via padding. To simplify the construction, we also introduce T padding positions
−(T − 1), . . . , 0 at the beginning; while this greatly simplifies the positional selection construction,
this padding construction could be replaced with a slightly more complicated MLP. Also, in this
construction, we do not need to use residual connections; the parallel prefix sum algorithm we use
can be executed “in place”, saving a logarithmic factor in the width. We do assume access to the
2 positional embeddings at each layer; in the absence of residual connections, the identity function
restricted to these 2 dimensions can be implemented by the MLP and attention heads.

Let L = log2 T be the depth of the binary tree. We choose d := 2|Q| + 2. Instead of indexing the
dimensions by [d], we give them names:

• Left function encoding dimensions (q, L) for each q ∈ Q.

• Right function encoding dimensions (q,R) for each q ∈ Q.

• Positional encoding dimensions P1,P2.

Without loss of generality, let Q = [|Q|] = {1, . . . , Q} (selecting an arbitrary enumeration of the state
space). Also, assume |Q| ≥ 2 (if not, add a dummy state). We choose E(σt) := ∑q∈Q δ(q, σt) · e(q,R),
mapping each input symbol to the “transition map” of its transitions. At the padding positions−(T−
1), . . . , 0, we will encode the “go to q0” function: ∑q∈Q q0 · e(q,R).

Function composition gadget. We first introduce the construction for function composition with a
3-layer ReLU MLP, which will be used by all layers. It gives an exponential improvement over the
generic universal function approximation gadget from Lemma 11.

Lemma 14. There exists a 3-layer ReLU MLP ϕmlp : Rd → Rd, with fixed parameters W1, b1, W2, b2, W3

whose dimensions and weights only depend on Q, such that for all f , g : Q → Q, ϕmlp outputs the transition
map of f ◦ g given the concatenated transition maps of f and g. That is, for all |Q|2|Q| choices of f , g:

ϕ

(
∑

q∈Q
g(q) · e(q,L) + ∑

q∈Q
f (q) · e(q,R)

)
= ∑

q∈Q
( f ◦ g)(q) · e(q,R).

The intermediate dimensions are d1 = |Q|2 + |Q| and d2 = |Q|2, and weight norms are bounded by 4|Q|+ 2.

Proof. The first layer uses Lemma 10 to create |Q|2 indicators: one to recognize each value along the
e(q,L) direction. Let us index these by q, q′ ∈ Q. Then, this gives us W1 ∈ Rd×4|Q|2 , b1 ∈ R4|Q|2 , W ′2 ∈
R|Q|

2
such that

[((z→W ′2z) ◦ σ ◦ (z 7→W1z + b1))(z)]q,q′ = 1[e⊤(q,L)z = q′].
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We also add Q more weights which let the inputs pass through along the e(q,R) directions (add Q more
rows e⊤(q,R) to W1, W ′2, calling these indices •q for all q ∈ Q; set biases to 0), for a total of 4|Q|2 + |Q|
hidden units and |Q|2 + |Q| output dimensions of W ′2.

The second layer implements multiplication between the indicators and function values. The outputs
are again indexed by q, q′ ∈ Q. We define W ′′2 ∈ R|Q|

2×(|Q|2+|Q|) and b′′2 ∈ R|Q|
2

to be such that

[W ′′2 ](q,q′),(q̄,q̄′) := |Q| · 1[(q, q′) = (q̄, q̄′)], [W ′′2 ](q,q′),•q̄ := 1[q′ = q̄], [b′′2 ](q,q′) = −|Q|,

∀q, q′, q̄, q̄′ ∈ Q.

Overall, so far we have

[(σ ◦ (z 7→W ′′2 W ′2z + b′′2 ) ◦ σ ◦ (z 7→W1z + b1))(z)]q,q′ = g(q′) · 1[e⊤(q,L)z = q′].

The third layer W3 ∈ Rd×|Q|2 simply converts these activations back into an transition map:

W3 = ∑
q′∈Q

e(q,R)e
⊤
q,q′ .

Finally, we note the weight norms:

∥W1∥∞ ≤ 4|Q|, ∥b1∥∞ ≤ 4|Q|+ 2,
∥∥W ′′2 W ′2

∥∥
∞ ≤ 4|Q|,

∥∥b′′2
∥∥

∞ = |Q|, ∥W3∥∞ = 1.

Recursive parallel scan. The rest of the construction uses a standard parallel algorithm for comput-
ing all prefix function compositions: at layer l ∈ [L], compose the function at position t with the function
at position t − 2l−1. This is a standard algorithm for computing all prefix compositions of associa-
tive binary operations with a logarithmic-depth circuit [Hillis and Steele Jr., 1986]. We choose the
position embeddings to enable implementing these “look-backs” with rotation matrices. For each
t ∈ {−T + 1, . . . , 0, 1, . . . , T}, we use the circle embeddings

Pt,P1
:= cos

(
πt
T

)
, Pt,P2 := sin

(
πt
T

)
.

In detail, for each 1 ≤ l ≤ L:

• Let θ := −π2l−1

T , γ := 100T2(log |Q|+ log T).

• Let H := 2, k := |Q|. Recall that |Q| ≥ 2. We will index the heads by superscripts [L], [R].

• Select W [L]
Q = W [R]

Q = W [R]
K :=

√
γ · (eP1

e⊤1 + eP2 e⊤2 ).

• Select W [L]
K :=

√
γ · (eP1

e⊤1 + eP2 e⊤2 )ρθ , where ρθ is the rotation matrix[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

in the e1, e2 basis.

• Select W [L]
V = W [R]

V := ∑q∈Q e(q,L)e⊤q .
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• Select W [L]
C = ∑q∈Q eqe⊤(q,L), W [R]

C = ∑q∈Q eqe⊤(q,R).

At layer l, let α[L], α[R] ∈ R2T denote the attention mixture weights of the two heads. With this
choice of γ, Lemma 13 and Proposition 2, for each t ∈ [T], we are guaranteed that

∥∥∥α[R] − et

∥∥∥
1

and∥∥∥α[L] − et−2l−1

∥∥∥
1

are both at most 0.1
|Q|·T . Thus, by Hölder’s inequality (noting that this mixture is

over T vectors of ∞-norm at most |Q|), this attention layer’s output is 0.1-close in the ∞-norm to the
concatenated transition maps of the functions at positions t and t− 2l−1, allowing us to invoke the
perturbation-robust function approximation guarantee of Lemma 10 with ∆ = 1. For the MLP, we
use the function composition gadget.

Thus, at the final layer, the (q,R) dimensions at position t contains the transition map of the prefix
composition

δ(·, σt) ◦ . . . ◦ δ(·, σ1) ◦ (q 7→ q0).

It suffices to choose W to be z 7→ e⊤(q,R)z for an arbitrary q to read out the sequence of states as scalar
outputs in [|Q|]. To output a one-hot encoding, an additional MLP (appended to the end of the final
layer) would be required.

3.4.4.3 Proof of Theorem 11: Constant-depth shortcuts via Krohn-Rhodes decomposition

We begin with the full statement of the theorem:

Theorem 11 (Transformer Krohn-Rhodes). Let A = (Q, Σ, δ) be a solvable semiautomaton (see Defini-
tion 8), q0 ∈ Q, and T ≥ 1. Then, there is a depth-O(|Q|2 log |Q|) Transformer which continuously simulates
AT,q0 , with embedding dimension O(2|Q||T (A)|), MLP width |Q|O(2|Q|) + O(2|Q||Q| |T (A)| T), attention
width O(|Q|2|Q||T (A)|) heads, and weight norms are bounded by 6|Q| T log T + 6 max{|Q|, |Σ|}.

We will begin by presenting self-contained constructions for the two atoms in the Krohn-Rhodes de-
composition: a modular counter and a memory unit. In Appendix 3.4.4.3.2, we will introduce neces-
sary background from Krohn-Rhodes theory (including the definition of a solvable semiautomaton).
In Appendix 3.4.4.3.3 and 3.4.4.3.4, we will complete the proof of Theorem 11.

3.4.4.3.1 Base cases: modular counting and memory

Base case 1: modular addition. We will start with a construction of a tiny network which lets us
simulate any semiautomaton whose transformation semigroup is a cyclic group. Later on, we will
use copies of this unit to handle all solvable groups. The construction simply uses attention to perform
a flat prefix sum, and an MLP to compute the modular sum.

Definition 4 (Modular counter semiautomaton). For any positive integer n, define the mod-n modular
counter semiautomaton A = (Q, Σ, δ):

Q := {0, . . . , n− 1},

Σ := {0, . . . , n− 1},

δ(q, σ) := (q + σ) mod n, ∀q ∈ Q, σ ∈ Σ.
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Lemma 15 (Simulating a modular counter). Let A = (Q, Σ, δ) be the mod-n modular counter semiau-
tomaton. Let q0 ∈ Q, and T ≥ 1. Then, there is a depth-1 Transformer which continuously simulates AT,q0 ,
with embedding dimension 3, width 4nT, and ∞-weight norms at most 4nT + 2. It has H = 1 head with
embedding dimension k = 1, and a 2-layer ReLU MLP.

Proof. The intuition is simply that the lower triangular matrix causal mask can implement simulation
in this cyclic group by performing unweighted prefix sums. The only subtlety is that selecting WQ =

WK = 0 does not quite give us prefix sums: the attention mixture weights at position t are 1
t ∑t′∈[t] et′ ,

while we would like the normalizing factor to be uniform across positions (1/T rather than 1/t). It is
possible to undo this normalization using the MLP; however, a particulaly simple solution is to use
an additional padding input ⊥ and 1-dimensional position embeddings to “absorb” a fraction of the
attention proportional to 1− t/T.

We proceed to formalize this construction, beginning with the input embedding and attention block:

• Select d := 3, k := 1, H := 1. Intuitively, the 3 dimensions implement {input/output, padding,
position} “channels”.

• Select input symbol embeddings E(σ) := σ · e1 ∈ Rd for each σ ∈ Σ.

• Include an extra position⊥, with embedding E(⊥) := e2 and position encoding P⊥,: := 0. Think
of this as padding at position 0; it is not masked out by the causal attention mask at any position
t ≥ 1.

• For t ∈ [T], select Pt,: := γte3, where γt := log(2T − t) is such that 1
eγt+t =

1
2T .

• Select WQ := e3, WK := e2, WV := e1, W⊤C := e1.

• We do not need residual connections.

In the output of this attention module, for any input sequence σ1:T , the 1st channel of the output at
position t is then

s :=
1

2T ∑
t∈[T]

σt.

where zt ∈ {0, . . . , n− 1} is such that δ(·, σt) = gzt . The MLP simply needs to memorize the function

s · e1 7→ (Ts mod n) · e1.

We invoke Lemma 10, with ∆ = 1
2T , Bx = n−1

2 < n
2 , By = n. The number of possible values of S (the

cardinality of X in Lemma 10) is at most nT.

Base case 2: memory lookups. It turns out that to simulate semigroups instead of groups, the only
additional ingredient is a memory unit, a semiautomaton for which there are “read” and “write” op-
erations. The minimal example of this is a flip-flop (Example 2), a semiautomaton which can sequen-
tially remember and retrieve a single bit ∈ {0, 1}, and whose transformation semigroup is the flip-flop
monoid. It will be convenient to generalize this object to Q states:
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Definition 5 (Memory semiautomaton). For a given state set Q, define the memory semiautomaton A =

(Q, Σ, δ):
Σ = Q ∪ {⊥},

δ(q, σ) := σ ∀q ∈ Q, σ ∈ Σ, σ ̸= ⊥,

δ(q,⊥) := q ∀q ∈ Q.

Lemma 16 (Simulating a memory semiautomaton). Let A = (Q, Σ, δ) be the memory semiautomaton.
Let q0 ∈ Q, and T ≥ 1. Then, there is a depth-1 Transformer which continuously simulates AT,q0 , with
embedding dimension 4, width 4|Q|, and ∞-weight norms at most 2T log(|Q|T). It has H = 1 head with
embedding dimension k = 2, and a 2-layer ReLU MLP.

Proof. We start in state q0 ∈ Q. Our goal is to identify the closest non-⊥ token and output the corre-
sponding state. The attention construction is:

• Select d = 4, k = 2, H = 1.

• Select input symbol encodings

E(σ) := (1[σ = ⊥]q0 + 1[σ ̸= ⊥]σ)e1 + 1[σ = ⊥]e2 + e4 ∈ Rd,

where the first coordinate denotes the action that sets the state20, the second coordinate denotes
whether the input is the no-op action ⊥, and the fourth coordinate is padding.

• We use positional encoding Pt,: := (t/T) · e3.

• WQ :=
[
−2e4 e4

]
∈ R4×2, WK :=

[
ce2 ce3

]
∈ R4×2 for c = O(T log(|Q|T)) as explained

below, WV :=
[
e1 0

]
∈ R4×2, and W⊤C :=

[
e1 0

]
∈ R4×2.

The unnormalized attention score computed for position i attending to j is c(j/T − 1[σj = ⊥]). Note
that the max attention value is achieved at the closest reset action: the unnormalized scored is non-
negative if and only if σj ̸= ⊥, and j/T increases with j ensuring that the closest position is chosen.

Denote this max position as jmax. In the setting of hard attention, the output for the ith token after the
attention module is E(σjmax)

⊤e1. In particular, this value is q0 if and only if σj = ⊥, ∀j ≤ i, i.e. the
semiautomaton never leaves the starting state. Otherwise, the value is the value of the nearest non-⊥
state (including the current state).

By Lemma 13 (with γ = c/T), we can approximate hard-attention by soft-attention weights α ∈ RT ,
that is, ∥α− ejmax∥1 ≤ 2T · e−c/T . This implies, that the output of the attention layer,

∣∣∣∑j≤i αjE(σj)
⊤e1 − E(σjmax)

⊤e1

∣∣∣ ≤
2T|Q| · e−c/T . Then, the MLP can simply round the first coordinate, and we can invoke Lemma 10
with ∆ = 8T|Q| exp(−c/T) = 1/2 (for c = T log(16|Q|T)), Bx = |Q|, By = |Q| to get weight norm
bound (4 + log(|Q|T))T ≤ 2 log(|Q|T)T and width 4|Q|.

20Technically σ = ⊥ does not reset the state. We will see that when q0 is selected, it must be that the semiautomaton is
always in state q0.
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3.4.4.3.2 Prime decompositions of groups and semigroups

The key idea behind the proof of Theorem 2 is that all semigroups (and thus, all transformation semi-
groups of semiautomata) admit a “prime factorization” into elementary components, which turn out
to be simple groups and copies of the flip-flop monoid, which have both been discussed in Section 3.3.1.
This is somewhat counterintuitive: the only constraint on the algebraic structure of a semigroup is
associativity (and indeed, there are many more semigroups than groups), but all of these structures
can be built using these two types of “atoms”. These components, as well as the cascade product un-
der which this notion of “factorization” is defined, are naturally and efficiently implementable by
constant-depth self-attention networks.

The special case of groups. We begin by discussing the analogous decomposition for groups, which
generalizes the fact that integers have unique prime factorizations. Let G be a finite group, and let

G = Hn ▷ Hn−1 ▷ · · · ▷ H1 ▷ H0 = 1

be a composition series: each Hi is a maximal proper normal subgroup of Hi+1; 1 denotes the trivial
group with 1 element. Then the quotient group Hi+1/Hi is called a composition factor. The Jordan-
Hölder theorem tells us that one can think about the set of composition factors as an invariant of
G.

Theorem 14 (Jordan-Hölder). Any two composition series of G are equivalent: they have the same length n,
and the sequences of compositions factors Hi+1/Hi are equivalent under permutation and isomorphism.

When each Hi+1/Hi is abelian, G is called a solvable group. It turns out that each Hi+1/Hi is a simple
group, so the composition factors of solvable groups can only be cyclic groups of prime order (because
every finitely generated abelian group is a direct product of cyclic groups, and, of these, only those
of prime order are simple). The smallest non-solvable group is A5, realizable as the group of even
permutations of 5 elements. As a part of Theorem 11, we will use the composition series to iteratively
build neural networks which simulates solvable group operations, requiring intricate constructions
to do this with depth independent of the sequence length T.

Adding memory to handle semigroups. Now, we move on to semigroups. When not all of the
input symbols to a semiautomaton induce permutations, we no longer have the group axiom of in-
vertibility (also, if there is no explicit identity symbol, we are not guaranteed to have the monoid
axiom of an identity element either). Intuitively, this would seem to induce a much larger family of
algebraic structures; an analogy, which is formalizable by representation theory, is that we are now
considering a collection of general matrices under multiplication, instead of only invertible ones. The
non-invertible transitions collapse the rank of the transformations, reducing the set of reachable trans-
formations whenever they are included in an input sequence.

A landmark result of Krohn and Rhodes [1965] tames the seemingly vast and unorderly universe
of general finite semigroups. It extends the Jordan-Hölder theorem to the case of semigroups, for a
more sophisticated notion of decomposition. Since that work, many variations have arisen, in terms
of its precise statement, construction of the decomposition, and proof of correctness. Out of these, an
important development is the holonomy decomposition method [Zeiger, 1967, Eilenberg, 1974], which
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forms the basis of our results. We extract the definitions and theorems from Maler and Pnueli [1994],
whose exposition emphasizes explicitly tracking the construction of the semiautomaton. We also refer
to Maler [2010], Egri-Nagy and Nehaniv [2015], Zimmermann [2020] as recent expositions, containing
historical context.

Definition 6 (Cascade product; cf. [Maler, 2010], Definition 11). Let n be a positive integer. For each i ∈
[n], letA(i) = (Q(i), Σ(i), δ(i)) be a semiautomaton. For i ∈ {2, . . . , n}, let ϕ(i) : Q(1)× · · · ×Q(i−1)×Σ→
Σ(i) denote a dependency function. This object ({A(i)}; {ϕ(i)}) is called a transformation cascade, and
defines a cascade product semiautomaton A = (Q(1) × · · · × Q(n), Σ(1), δ) by “feedforward simulation”
under the dependency function. We define δ by the i-th component of its output (which we call δ(≤i) : Q(1) ×
· · · ×Q(n) × Σ(1) : Q(i)):

δ(≤i)((q(1), . . . , q(n)), σ) := δ(i)(q(i), σ(i)),

where

σ(i) :=

σ if i = 1

ϕ(i)(q(1), . . . , q(i−1), σ) otherwise
.

The corresponding transformation semigroup T (A) is known as a cascade product semigroup.

Intuitively, the cascade specifies a way to compose semiautomata hierarchically: the first layer i = 1
maps input sequences to its state sequence, and each internal layer receives an input which depends
on the states of all of the preceding layers. Algebraically, the cascade product semigroup is a subsemi-
group of the larger wreath product of semigroups (the straightforward analogue of the wreath product
of groups, discussed in Section 3.3.1). Although this is useful from an algebraic point of view, we will
not use this perspective; the cascade product is a smaller substructure of the wreath product which is
sufficient for semiautomaton simulation.

Finally, it will be convenient to define permutation-reset semiautomata, which are a useful intermediate
step in the Krohn-Rhodes decomposition. To obtain our final result, we will further break these
semiautomata down into flip-flops and simple groups.

Definition 7 (Permutation-reset semiautomaton; cf. [Maler and Pnueli, 1994], Definition 12). A semi-
automaton A = (Q, Σ, δ) is a permutation-reset semiautomaton if, for each σ ∈ Σ, the transition function
δ(·, σ) : Q → Q is either a bijection (i.e. a permutation over the states of Q) or constant (i.e. maps every state
to some q(σ)). Associated with each permutation-reset semiautomaton is its permutation group, generated
by only the bijections.

Now we can state the Krohn-Rhodes theorem, which decomposes every finite semiautomaton into a
transformation cascade.

Theorem 15 (Krohn-Rhodes). Let A = (Q, Σ, δ) be a semiautomaton. Then, there exists a transformation
cascade {A(1), . . . ,A(n); ϕ(2), . . . , ϕ(n)}, defining a cascade product semiautomaton A′, such that:

(i) The input symbol space of A(1) (and thus, that of A′) is Σ, the same as that of A.

(ii) Letting Q(i) denote the state space of A(i), there exists a function W : Q(1) × · · · × Q(n) → Q such
thatW ◦A′T,q0

simulates AT,q0 for all T ≥ 1, q0 ∈ Q. For each i ∈ [n], the transformation semigroup

T (A(i)) is a permutation-reset semiautomaton with at most |Q| states, whose permutation group is a
(possibly trivial) subgroup of T (A) (Maler and Pnueli [1994], Theorem 4).
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(iii) The number of semiautomata in the cascade is n ≤ 2|Q|. Furthermore, the cascade has at most |Q| levels:
the indices can be partitioned into at most L ≤ |Q| contiguous subsets N(1) = {1, . . . , n1}, N(2), {n1 +

1, . . . , n1 + n2}, . . . , N(L) = {n − nL + 1, . . . , n} such that ϕ(i) only depends on input indices from
previous partitions (Maler and Pnueli [1994], Claim 11 & Corollary 12).

With this decomposition, we are now able to define a solvable semiautomaton.

Definition 8 (Solvable semiautomaton). Let A = (Q, Σ, δ) be a semiautomaton. We call A solvable if
all the permutation groups associated with all of the permutation-reset automata from Theorem 15 are solvable
groups.

The remainder of this section will build our construction from the bottom up:

• Appendix 3.4.4.3.3 will build up from the base case of cyclic groups (Lemma 15), using increas-
ingly sophisticated notions of group products, culminating in a recursive construction which
simulates all stages of the Jordan-Hölder composition series. The crucial step is a construction
for simulating the semidirect product of groups, given networks which simulate the individual
components; this allows us to handle the solvable non-abelian groups.

• Appendix 3.4.4.3.4 will build networks which simulate permutation-reset semiautomata. A
new base case arises: the memory unit (Lemma 16), a semiautomaton whose transformation
semigroup is a generalization of the flip-flop monoid. Combining the constructions for solvable
groups and memory units, we obtain simulators for solvable permutation-reset semiautomata.
Finally, the cascade product guaranteed by Krohn-Rhodes (Theorem 15) glues all of these pieces
together, giving us the final result.

3.4.4.3.3 Simulating solvable groups

We begin by handling groups. Now, we are ready to specify the recursive constructions which “glue”
these components together to form solvable groups. We will proceed in a “bottom-up” order:

(i) Define a canonical semiautomaton AG corresponding to each group G (Definition 9), such that
if a network can simulate AG, it can simulate any other semiautomaton whose transformation
semigroup T (AG) is G. This lets us talk about simulating groups, rather than particular semiau-
tomata. We will show how to turn simulators for groups N and H into simulators for extensions
of N by H, for increasingly sophisticated extensions, until all cases have been captured.

(ii) Show how to build the trivial extension: given networks which simulate the groups N and H,
simulate the direct product G ∼= N × H, by simply running the individual simulators in par-
allel (Lemma 17). Combined with Lemma 15, this immediately allows us to simulate arbitrary
abelian groups with depth 1, since every abelian group is isomorphic to a direct product of
cyclic groups.

(iii) Show how to build a split extension: given networks which simulate a normal subgroup N
and quotient H, construct a network which simulates any semidirect product G ∼= N ⋊ H
(Lemma 18). This is the first place where we will require a sequential cascade of layers. It
will allow us to handle certain families of non-abelian groups (including S3, D2n, A4, S4)
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(iv) Show how to build arbitrary extensions (any G which contains N as a normal subgroup, and
for which the quotient group G/N is isomorphic to H), using the wreath product (Lemma 19),
which contains all of the group extensions. The wreath product is itself the semidirect product
between a |H|-way direct product and H, so this can be done in a constant number of layers, by
the above. This finally lets us implement any step of a composition series. In particular, using
cyclic groups as a simulable base case, this shows that we can simulate all solvable groups.

Step (i). It will be convenient to associate with each group G a canonical “complete” semiautomaton
for the class of all semiautomata A for which T (A) = G. It is simply the one whose input symbol
space Σ is every transformation reachable by some sequence of inputs (i.e. every element of T (A)).
(For a semigroup, we would also want to adjoin the identity element if it is missing, however, we will
only find it useful to define this for groups.)

Definition 9 (Canonical group semiautomaton; simulating a group). Let G be a finite group. Then, we
define the canonical group semiautomaton for G as the semiautomaton (Q, Σ, δ) defined by:

• Q := G, the set of elements of G. Note that if (for example) G = Sn, we are setting the state space to be
the set of n! permutations, not the ground set [n].

• Σ := G. That is, we include all functions in the input symbol space.

• δ(g, h) := h · g, for all ∀g ∈ Q, h ∈ Σ. (In algebraic terms, we are embedding the G into its left regular
representation, a.k.a. left multiplication action.) Thus, if we take q0 to be the identity element, the
sequence of states q1, q2, . . . , qT corresponds to qt = σtσt−1 . . . σ1.

• When we simulate the canonical group semiautomaton, we will always choose q0 to be the identity ele-
ment eG.

A sequence-to-sequence network is said to continuously simulate G at length T if it continuously simulates
the canonical group semiautomaton of G at length T.

Notation for composable implementations. Let us furthermore formalize an implementation of group
simulation. For any finite group G, T ≥ 1, q0 ∈ G, letAG = (Q, Σ, δ) be the canonical semiautomaton
for G. Then, we summarize a family of concrete implementations of networks which continuously
simulate ofAT,eG . We write sim : (G, T) 7→ (E : G → Rd, ftf : RT×d → RT×d, W : Rd → G), where the
shape parameters of the output can depend on G, T.

To reduce notational clutter, we will access the shape attributes of an implementation via “object-
oriented” notation, defining

sim(G, T).{depth, dim, heads, headDim,mlpWidth, normBound}

to respectively denote the complexity-parameterizing quantities

{L, d, H, k, max
j
{d′j}, B},

defined in Section 3.1. Also, we will let sim(G, T).{E, θ, W} respectively denote the encoding layer E,
network parameters θnn, and decoding layer W.
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Canonical encodings of group elements. We also enforce that throughout our constructions of net-
works which simulate groups, we will maintain that all networks and their submodules manipulate
encodings via integer vectors in a consecutive range {0, . . . , n − 1}. Furthermore, the identity ele-
ment will always map to the zero vector. We will keep track of the dimensionality of these vectors
sim(G, T).repDim ≤ d, and their maximum entries sim(G, T).repSize − 1. All encoders E and de-
coders W will map all group elements to and from this kind of representation, and we will choose
W = E−1. In all, the networks will keep a repDim-dimensional “workspace” of integer vectors, with
entries bounded by repSize− 1. When combining groups via the various products constructions, we
will combine the components’ individual workspaces to create a larger workspace for the product
group’s elements.

We make some additional remarks on implementations:

• Note that the canonical semiautomaton “forgets” about the semiautomaton abstraction, and
never assumes that G is a permutation group on the original state space Q of the semiautomaton
we would like to simulate. Indeed, when N ◁G are permutation groups on Q, there is no natural
permutation group on Q associated with the quotient H ∼= G/N; it turns out that will consider
simulators for N and H.21

• To return to solving the simulation problem for some semiautomaton A = (Q, Σ, δ) whose
transformation semigroup is isomorphic to G (at length T and initial state q0), let µ : G → SQ

denote this isomorphism. We use AG
T,eG

(σ1:T) as the network, with an encoding layer E ◦ µ−1,
and decoding layer (π 7→ π(q0)) ◦ µ ◦W, which can be memorized by an MLP of width O(|G|)
via Lemma 11.

• The modular counter semiautomaton, for which we constructed a simulator in Lemma 15, is the
canonical group semiautomaton for the corresponding cyclic group Cn. Calling this construc-
tion simCn , we can easily verify that it satisfies the canonical simulator’s conditions, and:

◦ simCn .depth = 1.

◦ simCn .dim = 3.

◦ simCn .heads = 1.

◦ simCn .headDim = 1.

◦ simCn .mlpWidth = 4|G| · T.

◦ simCn .normBound ≤ 4|G| · T + 2 ≤ 6|G| · T.

◦ simCn .repDim = 1.

◦ simCn .repSize = |G|.

Step (ii). As a precursor to the more sophisticated products, we formalize the obvious fact that
two non-interacting parallel semiautomata can be simulated without increasing the depth. First, we
define the direct product semiautomaton:

21There is nothing in general preventing quotient groups from being extremely large groups which are not realizable as
smaller permutation groups. For concrete examples, see [Kovács and Praeger, 1989]. When we ultimately specialize to sim-
ulating the composition series of solvable groups, the largest groups we will handle will be the cyclic groups of prime order,
so we will in the end be guaranteed that the groups we want to simulate are realizable with ≤ |Q| states, but not directly or
canonically.
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simulate all G(i)

Figure 3.10: Recursive construction for simulating a direct product of groups G(1) × · · · × G(n). Any
number of groups can be simulated in parallel without increasing the depth.

Definition 10 (Direct product of semiautomata). Let A = (Q, Σ, δ),A′ = (Q′, Σ′, δ′) be two semiau-
tomata. Then, A×A′ = (Q× Q′, Σ ∪ {e} × Σ′ ∪ {e}, δ× δ′) denotes the natural direct product semiau-
tomaton. Its states are ordered pairs (q ∈ Q, q′ ∈ Q′). Its input symbols are defined similarly, adjoining
identity inputs (so that δ(q, e) = q, δ′(q′, e) = q′). The transitions δ× δ′ are defined such that

(δ× δ′)((q, q′), (σ, σ′)) := (δ(q, σ), δ′(q′, σ′)).

Note that under this definition, we have T (A×A′) = T (A)× T (A′). In particular, for two groups
G, H, we have G× H = T (AG)× T (AH) = T (AG×H) = G× H.

Lemma 17 (Direct product via parallel simulation). Let G(1), . . . , G(n) be a collection of finite groups, and
let T ≥ 1. Suppose each group admits a simulation simi := sim(G(i), T). Then, there is a simulation of the
direct product group sim× := sim(G(1) × . . .× G(n), T), whose sizes satisfy:

◦ sim×.depth = maxi{simi.depth}.

◦ sim×.dim = ∑i{simi.dim}.

◦ sim×.heads = ∑i{simi.heads}.

◦ sim×.headDim = maxi{simi.headDim}.

◦ sim×.mlpWidth = ∑i{simi.mlpWidth}.

◦ sim×.normBound ≤ maxi{simi.normBound}.

◦ sim×.repDim = ∑i{simi.repDim}.

◦ sim×.repSize = maxi{simi.repSize}.

Proof. First, we pad all of the individual simi with layers implementing identity (add residual con-
nections, and set attention WV and all MLP weight matrices to 0), so that all of them have depth
maxi{simi.depth}.

Then, the intuition is to construct the direct product semiautomaton by concatenating the “workspaces”
of each G(i). In other words, we set the canonical encoding sim×.E of (g(1), . . . , g(n)) to be the concate-
nation of each simi’s encodings.

The direct product simply lets each simi take inputs and outputs in its individual workspace. To en-
able this, we need enough parallel dimensions. We set an embedding space of dimension ∑i{simi.dim}
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simulate H

simulate N

ϕ−1
h

mix

(gt, ht) (g≤t, h≤t)⋊

ϕh

unmix

Figure 3.11: Recursive construction for simulating the semidirect product N ⋊ H. The quotient group
H is simulated first; these outputs are used to “re-map” the inputs into the simulator for N.

(and similarly within the heads and MLPs), partitioning the coordinates such that in the product con-
struction, each simi.E and simi.θ only reads and writes to its own dimensions.

This clearly simulates the direct product group. Figure 3.10 provides a sketch of this construction.

Note that the direct product construction already allows us to simulate all finite abelian groups in
constant depth, since each such group is isomorphic to the direct product of a collection of abelian
groups of prime power order.

Step (iii). Now, as a harder (and conceptually crucial) case, we show how to simulate a group
which is a semidirect product of two groups we already know how to simulate. This encompasses
the direct product as a special case, but can now handle some non-abelian groups which admit such
decompositions (like the dihedral group D2n). The catch is that we will have to simulate these groups
using a sequential cascade of the individual simulators. This is the key lemma which lets us simulate
non-abelian groups:

Lemma 18 (Semidirect product via 4-stage cascade). Let G be a finite group which is isomorphic to a
semidirect product: G ∼= N ⋊ H, where N is a normal subgroup of G. Let T ≥ 1. Suppose N, H admit
simulations simN := sim(N, T), simH := sim(H, T). Then, there is a simulation of G, sim⋊ := sim(G, T),
whose sizes satisfy:

◦ sim⋊.depth = simN .depth+ simH .depth+ 2.

◦ sim⋊.dim = simN .dim+ simH .dim.

◦ sim⋊.heads = max{simN .heads, simH .heads}.

◦ sim⋊.headDim = max{simN .headDim, simH .headDim}.

◦ sim⋊.mlpWidth = max{sim{N,H}.mlpWidth, 4|G|}.

◦ sim⋊.normBound ≤ max{sim{N,H}.normBound, 6 sim{N,H}.repSize, simN .repDim+ simH .repDim}.

◦ sim⋊.repDim = simN .repDim+ simH .repDim.

◦ sim⋊.repSize = max{simN .repSize, simH .repSize}.

Proof. The intuition is as follows, using the dihedral group D2n ∼= Cn ⋊ C2 as an example:
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• For simplicity, let us think of the “reversible car on a circular world” semiautomaton, whose
transformation semigroup is D2n. Its state consists of a direction ∈ {+1,−1}, and a position
∈ {0, 1, . . . , n− 1}. It has two types of inputs: “advance by i” (increment the position by i in the
current direction, modulo n), and “reverse” (flip the sign of the direction). Our simulation task
is to track the car’s state sequence, given a sequence of inputs (in constant depth, of course).

• It is intuitively clear that we can (and should) compute the sequence corresponding to “direction
at time t”, which is equivalent to simulating the parity semiautomaton.

• We will convert the “advance” moves via a “basis transformation”: whenever the current direc-
tion is −1, an “advance by i” should be converted into −i. Then, we have reduced the problem
to the prefix sum.

Algorithm. This intuition essentially shows us how to implement arbitrary semidirect products; we
derive the basis change from ϕ. Before implementing it with Transformer operations, we formalize
this “basis transformation”. Recall that by the definition of a semidirect product, the elements of
N ⋊ H can be written as pairs (g ∈ N, h ∈ H), equipped with a homomorphism ϕ : h → Aut(N)

which specifies a multiplication rule:

(g, h) · (g′, h′) := (gϕh(g′), hh′).

Let us write down the properties of ϕ:

• ϕ is a homomorphism. That is, ϕh·h′ = ϕh(ϕh′(·)) = ϕh ◦ ϕh′ as permutations on N.

• The output of that homomorphism, ϕh, is also a homomorphism. That is, ϕh(gg′) = ϕh(g) ·
ϕh(g′).

Let us roll out the definition of the semidirect product, given a sequence of inputs (gt, ht):

(g2, h2) · (g1, h1) = (g2 · ϕh2(g1), h2h1),

(g3, h3) · (g2, h2) · (g1, h1) = (g3 · ϕh3(g2 · ϕh2(g1)), h3h2h1),

(g4, h4) · · · (g1, h1) = (g4 · ϕh4(g3 · ϕh3(g2 · ϕh2(g1))), h4h3h2h1).

In general, by induction, letting (g≤t, h≤t) denote (gt, ht) · · · (g1, h1), we have

g≤t = gt · ϕht(gt−1) · ϕhtht−1(gt−2) · · · ϕht ...h3(g2) · ϕht ...h2(g1).

Applying ϕ−1
h≤t

on both sides, we notice that

ϕ−1
h≤t

(g≤t) = ϕ−1
h≤t

(gt) · ϕ−1
h≤t−1

(gt−1) · · · ϕ−1
h≤2

(g2) · ϕ−1
h≤1

(g1).

Thus, it suffices to compute each h≤t = htht−1 . . . h1, map each gt 7→ ϕ−1
h≤t

(gt), compute the prefix
products in these “coordinates”, then invert the mapping to get back g≤t.
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Implementation. Like before, we partition the embedding dimension in our construction sim⋊ into
blocks, one for each component simulator. Let us index the dimensions by the dN := simN .dim indices
in the “N channel” and analogously for the dH-dimensional “H channel”. We choose the canonical
encoding E to map elements to their individual channels:

E(g, h) = simN .E(g) (in the N channel) + simH .E(h) (in the H channel).

We proceed to specify the construction layer-by-layer. Let L{N,H} denote sim{N,H}.depth.

Layers 1 through LH : quotient group simulation. As suggested by the intuitive sketch, we begin
with LH Transformer layers, which are just a copy of simH .θ, reading and writing in the H channel,
with a parallel residual layer in the N channel. So far, after these LH layers, the output at each position
t is an integer vector, whose H channel contains h≤t, and whose N channel contains simN .E(gt).

Layer LH + 1: basis change. Now, let us add one more “mixing” Transformer layer, whose attention
block is identity22; we only need a 3-layer MLP block, which represents the function

(g ∈ N, h ∈ H) 7→ ϕ−1
h (g).

To do this, we invoke Lemma 11 (choosing the output to be in the same representation as that used
by simN .E, in the N channel), with

∆ = 1, din = simN .repDim+ simH .repDim,

Bx = max{simN .repSize, simH .repSize}, By = simN .repSize,

giving us a construction with

d1 ≤ 4(|N|+ |H|), d2 ≤ |N| · |H|,

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6 max{simN .repSize, simH .repSize},

∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ simN .repDim+ simH .repDim, ∥W3∥∞ ≤ simN .repSize.

We also add residual connections in the H channel. In summary, after this layer, the output at each
position t is an integer vector, whose H channel contains h≤t, and whose N channel contains ϕ−1

h≤t(gt).

Layers LH + 1 through LH + LN + 1: normal group simulation. The next LN layers are a copy of
simH .θ, with residual connections in the H channel. After these layers, the output at each position t is
an integer vector, whose H channel contains h≤t, and whose N channel contains ϕ−1

h≤t(g≤t).

22Even when an attention block simply implements identity, we choose to include it, rather than combining the preceding
and subsequent MLPs into a single MLP. This is to ensure that if we compose a number of Transformer layers that depends on
|Q|, the depth of each MLP is bounded by an absolute constant.
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≤t , . . . , g(|H|)

≤t , h≤t)≀

Figure 3.12: Recursive construction for simulating the wreath product N ≀ H. One independent copy
of N is instantiated for each element of H, while the simulator for H permutes them.

Layer LH + LN + 2: undoing the basis change. Now, we add one more Transformer layer, whose
attention block is identity; we will again use a 3-layer MLP block to represent the inverse of our
mapping function

(g ∈ N, h ∈ H) 7→ ϕh(g).

This uses Lemma 11, with exactly the same bounds.

At the end of this final “unmixing” layer, the output at each position t is an integer vector, whose
H channel contains h≤t, and whose N channel contains g≤t; thus, this is a valid simulation of the
semidirect product.

This construction is sketched in Figure 3.11.

Step (iv). Note that H ∼= G/N does not imply that G is a semidirect product of N and H. Thus,
although simulating semidirect products allows us to handle some families of non-abelian groups,
this does not yet allow us to handle general solvable groups (i.e. general steps of a composition
series, even with a cyclic quotient group). The smallest example is the non-abelian quaternion group
Q8, the group of unit quaternions under multiplication, which cannot be realized as a semidirect
product of subgroups. Instead, we need to appeal to the Krasner–Kaloujnine universal embedding
theorem [Krasner and Kaloujnine, 1951]: a characterization of all of the groups G which are extensions
of N by H, as subgroups of the wreath product N ≀ H.

Lemma 19 (Wreath product via direct and semidirect products). Let G be a finite group which is isomor-
phic to a wreath product: G ∼= N ≀H. Let T ≥ 1. Suppose N, H admit simulations simN := sim(N, T), simH :=
sim(H, T). Then, there is a simulation of G, sim≀ := sim(G, T). In the case where sim≀.repDim = 1, the sizes
satisfy:

◦ sim≀.depth = simN .depth+ simH .depth+ 2.

◦ sim≀.dim = |H| · simN .dim+ simH .dim.
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◦ sim≀.heads = max{|H| · simN .heads, simH .heads}.

◦ sim≀.headDim = max{simN .headDim, simH .headDim}.

◦ sim≀.mlpWidth = max{|H| · simN .mlpWidth, simH .mlpWidth, 5|H|2|N|}.

◦ sim≀.normBound ≤ max{sim{N,H}.normBound, 6 |H|}.

◦ sim≀.repDim = |H| · simN .repDim+ 1.

◦ sim≀.repSize = max{simN .repSize, simH .repSize}.

Proof. Even though the wreath product’s algebraic structure can be very complex, the construction
just requires us to implement its relatively simple description. Applying Lemma 17, we have a net-
work sim× which simulates N × . . .× N. Then, we simply apply Lemma 18, using simH to “re-map”
inputs to sim× for the normal subgroup. This construction is sketched in Figure 3.12.

Concise implementation of reindexing. We can make one interesting improvement over a generic
application of Lemmas 17 and 18: the structure of the mixing function ϕ, which specifies the semidi-
rect product, is extremely regular. Very fortunately, the structure of ϕ allows us to avoid any depen-
dence on the size of the wreath product group (|N||H| · |H|) in the size measures of the implementa-
tion. A general automorphism on N× · · · × N is specified by its |N||H| values. However, in this case,
ϕ is just a permutation, specified by how each of the |H| channels should switch places. Thus, much
like the function composition gadget in Theorem 10, we can construct a simpler MLP than the generic
one from Lemma 11.

Specifically, we would like to approximate the function ϕ : H × (N × · · · × N) → (N × · · · × N),
which simply applies πh to the indices:

ϕh(g(1), . . . , g(|H|)) := (g(πh(1)), . . . , g(πh(|H|))).

In the component neural networks’ representation space, we need the MLP to implement(
simN .E(g(1)), . . . , simN .E(g(|H|)), simH .E(h)

)
7→
(
simN .E(g(πh(1))), . . . , simN .E(g(πh(|H|)))

)
,

recalling that the elements of g, h are represented by integer vectors with ∞-norm at most sim{N,H}.repBound.
Notice that when the representation of |H| is a single integer, restricting to any particular coordinate
in the representation of an element g, this is the same composition problem of function transition
maps solved by Lemma 14 in the proof of Theorem 10, which uses its left inputs to permute its right
inputs (modulo converting the representations from {0, . . . , |H| − 1} to {1, . . . , |H|}, which we can do
by shifting the indicators at the input and final-layer output weights). Thus, |N| · simN .dim parallel
copies of the 3-layer function composition MLP suffice, yielding

d1 = 4|H|2|N|+ |H| · |N| < 5|H|2|N|, d2 = |H|2|N|,

∥W1∥∞ ≤ 4|H|, ∥b1∥∞ ≤ 6|H|,
∥∥W ′′2 W ′2

∥∥
∞ ≤ 4|H|,

∥∥b′′2
∥∥

∞ = |H|, ∥W3∥∞ = 1.

When the information about group elements in H is encoded by multiple integers, it is straightfor-
ward to extend this construction, by replacing the one-dimensional indicator with the multidimen-
sional indicator from Lemma 11. We will skip the details of this case, since our final results are only
about solvable groups; when we want to simulate a general group extension, it will always come
from the composition series, so that H is always a cyclic group of prime order.
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Thus, for general group extensions G, we can construct sim≀, the wreath product simulator for N ≀ H,
and combine the individual simulators. Note that we can throw away the excess group elements from
the simulator: only include in sim≀.E, sim≀.W the group elements which correspond to the subgroup
isomorphic to G. Then, no part of this construction needs to maintain a width or matrix entry scaling
with |N ≀ H|.

Putting all of this together, we state an intermediate theorem, which is our most general result for
groups:

Theorem 16 (Simulation of solvable groups). Let G be a solvable group which is isomorphic to a permuta-
tion group on n elements. Let T ≥ 1. Then, there is a Transformer network sim := sim(G, T) which simulates
G at length T, for which we have the following size bounds:

◦ sim.depth ≤ 3 log2 |G|.

◦ sim.dim ≤ 2|G|.

◦ sim.heads ≤ 2|G|.

◦ sim.headDim = 1.

◦ sim.mlpWidth ≤ 20nT|G|.

◦ sim.normBound ≤ 6nT.

◦ sim.repDim ≤ 2|G|.

◦ sim.repSize ≤ n.

Proof. Let
G = Hℓ ▷ Hℓ−1 ▷ · · · ▷ H1 ▷ H0 = 1

denote the composition series. Then, because G is solvable, all of the quotient groups Ki := Hi+1/Hi

are abelian, thus cyclic groups of prime order. Since G is assumed to be a subgroup of Sn, none of
these primes can be greater than n. Thus, every quotient group Ki in the chain satisfies 2 ≤ |Ki| ≤ n.
Also, note that the length of the composition series ℓ is at most log2(|G|) (since each inclusion halves
the size of the group).

We start with a simulation of H1, which must be a cyclic group, and build the sequence of group
extensions recursively until we obtain G. In the worst case (in the sense that the implementation size
bounds from Lemma 19 are maximized), each step in the composition series must be manifested by a
wreath products with K := Cn. Recall that we have:

◦ simK.depth = 1.

◦ simK.dim = 3.

◦ simK.heads = 1.

◦ simK.headDim = 1.

◦ simK.mlpWidth = 4nT.

◦ simK.normBound ≤ 6nT.

◦ simK.repDim = 1.

◦ simK.repSize ≤ n.
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At each step i = 0, . . . , ℓ− 1, Lemma 19, with H := Ki, N := Hi, implies:

◦ simHi+1 .depth ≤ simKi .depth+ 3 (1 more layer to simulate the cyclic group Ki, and 2 from
the wreath product’s mixing operations).

◦ simHi+1 .dim ≤ |Ki| · simHi .dim+ 1 (noting that all of the components can reuse the same
⊥ and positional encoding dimensions).

◦ simHi+1 .heads ≤ |Ki| · simHi .heads+ 1.

◦ simHi+1 .headDim ≤ max{1, 1, . . . , 1} = 1.

◦ simHi+1 .mlpWidth ≤ max{|Ki| · simHi .mlpWidth, 4nT, 5|Ki|2 · |Hi|}.

◦ simHi+1 .normBound ≤ max{6nT, 6 |Ki|}.

◦ simHi+1 .repDim = |Ki| · simHi .repDim+ 1.

◦ simHi+1 .repSize ≤ n.

Iterating these recursive inequalities ℓ ≤ ⌊log2 T⌋ times gives us the desired bounds. Note that we are
using Lagrange’s theorem (∏i |Ki| = |G|), as well as the fact that for positive integers m1, . . . , mℓ ≥ 2,
we have a bound on the series of prefix products: ∑i ∏j≤i mi ≤ 2 ∏j≤ℓ mi.

3.4.4.3.4 Simulating semigroups

Now, using this construction and the results developed in the previous section for groups, we com-
plete the construction for semigroups:

• We combine the memory gate construction (Lemma 16) and any network simulating a group to
implement the corresponding permutation-reset semiautomaton (Definition 7), the elements of
the cascade in Theorem 15.

• To finish, we implement the cascade product (Definition 6) of these permutation-reset semiau-
tomata, guaranteed to exist by Theorem 15. This gives the full result.

First, we summarize the findings of Lemma 16, naming this neural network simM in our “object-
oriented” notation. Note that since we are no longer simulating canonical group semiautomata past
this point, repDim, repSize are no longer well-defined.

◦ simM.depth = 1.

◦ simM.dim = 4.

◦ simM.heads = 1.

◦ simM.headDim = 2.

◦ simM.mlpWidth = 4|Q|.

◦ simM.normBound ≤ 2T log(|Q| T).
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Lemma 20 (Simulating a permutation-reset semiautomaton). Let A = (Q, Σ, δ) be a permutation-reset
semiautomaton (see Definition 7), and let G denote its permutation group. Let T ≥ 1, q0 ∈ Q. Let simG :=
sim(G, T) be a Transformer network which continuously simulates G at length T. Then, there is a Transformer
network sim′G which continuously simulates AT,q0 , with size bounds:

◦ sim′G.depth = simG.depth+ simM.depth+ 1 ≤ 3 log2 |G|+ 2.

◦ sim′G.dim = simG.dim+ simG.repDim+ simM.dim ≤ |G|+ |Q|+ 4.

◦ sim′G.heads = simG.heads+ simM.heads ≤ 2|G|+ 1.

◦ sim′G.headDim = simG.headDim+ simM.headDim+ simG.repDim ≤ |Q|+ 3.

◦ sim′G.mlpWidth = simG.mlpWidth+ simM.mlpWidth+ |G|2|Q| ≤ 20nT|G|+ 4|Q|+ |G|2|Q|.

◦ sim′G.normBound ≤ max{simG.normBound, simM.normBound, 6|Q|} ≤ 6|Q| T log T.

Proof. Without loss of generality, we will let Q := [|Q|].

We split the embedding space in our construction into two channels: the simG.dim dimensions used
by G, and a channel consisting of 4 additional dimensions, to be used by a copy of the memory
semiautomaton, whose symbol set is Q. Let us call these the G and M channels. For the reset symbols,
let EM(σ) denote the 4-dimensional encoding of σ from the memory semiautomaton.

Since we defined G to be isomorphic to the permutation group associated with A, there is a bijection
Φ : G → SQ between group elements and permutations on Q. We choose the embedding E as follows:

E(σ) :=

sim.E(Φ−1(δ(·, σ)) (G channel) + EM(⊥) (M channel) , bijections δ(·, σ)

sim.E(eG) (G channel) + EM(qσ) (M channel) , resets δ(·, σ) = qσ

.

Let LG denote simG.depth.

Layers 1 through LG: group simulation. The first LG layers are chosen to be a copy of simG.θ in
the G channel, and only residual connections in the M channel. At the end of this, given any inputs
σ1:T which map via Φ−1 to gt (letting the group operation be identity when σt is a reset symbol),
the outputs in the G channel will be dG := simG.repDim-dimensional encodings of the prefix group
products g≤t = gtgt−1 · · · g1. Now, letting r(t) denote the most recent reset (τ ≤ t such that στ is a
reset token), we notice that the state we want can be derived from this sequence:

qt = Φ(gtgt−1 · · · gr(t))qσr(t) = Φ(g≤t · g−1
≤r(t))(qσr(t)). (3.2)

Here, if there have been no resets up to time t, we define r(t) to be 0. We treat q0 like a reset symbol at
the beginning of the sequence. Also, note that our canonical group semiautomaton simulator always
uses g0 = eG as its initial state.

Layer LG + 1: memory lookup and copy. To implement the above, at layer LG + 1, we put a copy of
the memory semiautomaton in channel M, setting its initial state to q0. We will modify this construc-
tion slightly, extending WV with the identity matrix on the dG group element encoding dimensions of
channel G. Intuitively, when the memory unit “fetches” the last non-⊥ token, we would like it to copy
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the corresponding g≤t. Note that simG.repSize, the ∞-norm bound on the group element encodings,
is at most |Q| by Theorem 16, so we do not need to modify the WQ, WK norms to increase the atten-
tion head’s precision. The final modification is that we append to WC an identity matrix copying the
dG embedding dimensions to a new dG dimensional channel, which we will call the I (for “invert”)
channel (set to 0 in the embedding all preceding layers). Then, by Lemma 16, at the end of this layer,
at each position t, the M channel will contain qσr(t) in dimension 1, and g≤r(t) in channel I. Finally, in
channel G, we use only residual connections, preserving g≤t in channel G.

Layer LG + 2: applying Φ(gh−1) pointwise. This finally allows us to execute Equation 3.2 at each
position t. We use one more Transformer layer, with attention block implementing identity. The MLP
memorizes the function (g, h, q) 7→ Φ(gh−1)(q) · e1 (the coordinate is selected arbitrarily), with the
concatenated (dinv := 2 · simG.repSize+ 1)-dimensional encodings on the (G, I, M) channels, whose
activations have ∞-norms bounded by |Q|. We invoke Lemma 11, with parameters

∆ = 1, din = dinv, Bx = |Q|, By = |Q|,

giving us a construction with

d1 ≤ 4dinv(|Q|+ 1), d2 ≤ |G|2|Q|,

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6|Q|, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ dinv, ∥W3∥∞ ≤ |Q|.

From this output, W simply decodes the correct qt from dimension 1.

Lemma 21 (Implementing the transformation cascade). Let A = (Q, Σ, δ) be a semiautomaton, and let
T ≥ 1. Let {A(1), . . . ,A(n); ϕ(2), . . . , ϕ(n)} be the transformation cascade (Definition 6) which simulates A,
as guaranteed by Theorem 15. For each i, let simi be a Transformer network which continuously simulates the
permutation-reset semiautomatonA(i) at length T. Then, there is a Transformer network simA which simulates
A at length T. Its size bounds are:

◦ simA.depth = |Q| · (maxi{simi.depth}+ 1)− 1 ≤ 3|Q|2 log |Q|+ 7|Q|.

◦ simA.dim = ∑n
i=1 simi.dim+ 1 ≤ 2|Q|(|T (A)|+ |Q|+ 4) + 1.

◦ simA.heads = ∑n
i=1 simi.heads ≤ 2|Q|+1(|T (A)|+ 1).

◦ simA.headDim = maxn
i=1{simi.headDim} ≤ |Q|+ 3.

◦ simA.mlpWidth = ∑n
i=1 simi.mlpWidth+ 2|Q| |Q|2|Q| |Σ| ≤ 2|Q|(20|Q| |T (A)| T+ 4|Q|+ |T (A)|2|Q|+

|Q|2|Q| |Σ|).

◦ simA.normBound ≤ maxn
i=1{simi.normBound} ∪ {2|Q|(|T (A)|+ 5|Q|)}+ 6 max{|Q|, |Σ|}

≤ max{6|Q| T log T, 2|Q|(|T (A)|+ 5|Q|)}+ 6 max{|Q|, |Σ|}.

Proof. At this point, most of the work has been done for us.

We create a separate channel i for each component permutation-reset semiautomaton A(i). This re-
quires a total of ∑n

i=1 simi.dim embedding dimensions. In addition to these channels, we keep one
dimension (with residual connections throughout the network) to represent the input σt. Let eΣ de-
notes the unit vector along this coordinate. Choosing an arbitrary enumeration to identify Σ with [Σ],
we select the embeddings to be E(σ) := σ · eΣ.
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The L layers of simA are divided into |Q| subnetworks (which are just Transformer networks), which
we will concatenate sequentially at the end. Let these subnetworks be indexed by ℓ̃ ∈ {1, . . . , L̃}.
Each subnetwork starts with a parallel simulation (as in the direct product construction of Lemma 17,
padding with layers implementing identity if their depths do not match), combining all of the simi.θ
in the ℓ-th level of the Krohn-Rhodes decomposition, as defined by Theorem 15. Each simi.θ is chosen
to operate in its own channel i. We add residual connections on all of the input/output dimensions
in each channel. Then, at the end of each subnetwork except the final one (1 ≤ ℓ̃ ≤ L̃− 1), we ap-
pend one more Transformer layer with identity attention block, whose MLP implements the “wiring”
specified by ϕ(i) from the next level of the decomposition.

Namely, we invoke Lemma 11 with ∆ = 1, Bx = max{|Q|, |Σ|}, By = |Σ|, giving us for each pre-final-
layer i an MLP which represents the function

(sim1.W−1(q(1)), . . . , simi−1.W−1(q(i−1)), E(σ)) 7→ simi.E(ϕ(q(1), . . . , q(i−1), σ)),

where the inputs are stored in the respective i′ < i and Σ channels, and the output is written to the i
channel. Here, the number of input dimensions is

din = ∑
i′<i

simi′ .dim+ 1 ≤ 2|Q|(|T (A)|+ |Q|+ 4) + 1 ≤ 2|Q|(|T (A)|+ 5|Q|).

Since the state encodings for each predecessor semiautomaton i′ < i are |Q|-bounded integer vectors
and Σ has been assumed to be a |Σ|-bounded positive integer, it suffices to use d1 = 4din max{|Q|, |Σ|}.
The second hidden layer’s width d2 is the number of possible inputs |X |, which is bounded by
|Q|2|Q| · |Σ| > d1. The weights satisfy

∥W1∥∞ ≤ 4, ∥b1∥∞ ≤ 6 max{|Q|, |Σ|},

∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ |Σ|, b3 = 0.

Between i in the same layer, these routing constructions need to be executed in parallel, so this incurs
another multiplicative factor in the width, bounded conservatively by 2|Q|.

The final construction concatenates these blocks, so that at the output of the last layer, every channel
i contains a representation of its corresponding component’s semiautomaton Qi. TheW guaranteed
by Theorem 15 suffices for the overall choice of W.

3.4.4.4 Proof of Theorem 12: Even shorter shortcuts for gridworld

Recall the gridworld semiautomaton in Example 3, where the state (Q = {0, 1, . . . , S}) either move to
the adjacent state based upon seeing input token L or R (modulo boundary effects), or stay unmoved
upon seeing ⊥. More formally, the transition function is defined as:

δ(q, L) = max(q− 1, 0)

δ(q, R) = min(q + 1, S)

δ(q,⊥) = q.

In this section, we will show how to implement gridworld simulation using only 2 Transformer layers.
Here we restate the theorem in full generality:
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Theorem 12 (Even shallower shortcuts for gridworld). For each positive integer T, Transformers can
simulate the (S + 1)-state gridworld semiautomaton with 2 attention layers, where the MLP has either (i)
depth O(log S), width O(T + S), or (ii) depth O(1), width O(T) + 2O(S). The weight norms are bounded by
poly(T).

The depth in (i) can be reduced to O(S) if we allow max pooling, and the dependence on T in the
width can be removed with sinusoidal activation. We discuss this in detail after the proof along with
generalization to the k-dimensional gridworld case.

Note that, in order to find the current state, we need to only know the most recent time at which
the semiautomata was at a boundary. It is not immediately obvious how to compute the most recent
boundary, if one is not allowed to use the trivial sequential simulation algorithm. Our key insight is
that this boundary detector can be computed without needing to parse the entire sequence, using the
most recent S + 1 distinct values of the prefix sums in the sequence.

This algorithm is especially well-suited to the Transformer architecture since: (i) the prefix sum can be
computed using one attention layer as in Lemma 15, and (ii) the identification of distinct values can
be implemented by a sparse value-dependent lookup similar to the memory lookup in Lemma 16 with
the help of the self -attention (context-dependent retrieval, as opposed to a static lookup), and (iii)
the positional weight sharing and causal masking enable all of these computations to be performed
in parallel. Overall, Theorem 12 consists of a concise implementation which executes all of these
most-recent-boundary detectors in parallel.

In what follows, we first describe the algorithm (Algorithm 1) for computing the state of the semiau-
tomata using the S + 1 distinct prefix sum values, and give a proof of its correctness. Subsequently,
we formalize the Transformer construction that implements the algorithm. A consolidated list of
notations used in the algorithm as well as the proofs is provided in Table 3.1 for the reader.

3.4.4.4.1 The algorithm solving 1D gridworld

To convey the essence of the full construction, we first provide pseudocode (rather than Transformer
weights) for computing the final state qT (rather than the entire state sequence).

We map actions σ ∈ {L, R,⊥} to σ̃ ∈ {−1, 1, 0}, i.e. L 7→ −1, R 7→ 1, and ⊥ 7→ 0. Let σ̃(:) denote the
sequence of mapped actions, and let 0 be the initial state. The algorithm (Algorithm 1) has two steps:
first, we identify the last time the agent is at a boundary (wall) and the type of the boundary (i.e. state
0 or state S). The final state is then simply the sum of all actions in the sub-sequence, shifted by the
last boundary, which is easily computable with 1 attention layer (Lemma 15). Our key insight is that
we can identify the boundary using O(S) attention heads in two attention layers, and therefore do
not require a recursive computation from the start state (with depth T).

To show the correctness of Algorithm 1, it suffices to show that the boundary state is detected cor-
rectly, since after that there is no more boundaries and the only step remaining is to calculate the sum
of the actions. Let tuniq, tmin, tmax be as defined in Algorithm 1. Then:

Lemma 22. If tmin > tmax, then state at tmin is 0, otherwise state at tmax is S.

Proof. The proof follows from two observations:
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Notation Definitions

σ An input token; σ ∈ {L, R,⊥}.

σ̃ A mapped input token; σ̃ = −1 if σ = L, σ̃ = 1 if σ = R, and σ̃ = 0 if σ =⊥.

Used in Algorithm 1:

qt The state at position t ∈ [T]; qt ∈ {0, 1, · · · , S}.

z ∈ ZT Prefix sums at all T positions.

tuniq The most recent position for which the prefix sums ztuniq :T contain S + 1 unique values.

tmax, tmin The positions corresponding to the max/min prefix sum among positions tuniq, . . . , T.

tfinal The position of the last boundary state, defined as tfinal := max{tmax, tmin}.

Used in the Transformer construction:

γt The positional encoding for position t ∈ [T], defined as γt := log(2T − t).

x(1)attn[t] The output of the first layer attention at position t ∈ [T], defined as x(1)attn[t] := 1
2T ∑i∈[t] si.

x(1)mlp[t] The output of the first layer MLP at position t ∈ [T], defined as x(1)mlp[t] := [x(1)attn[t], γt,

1, cos(x(1)attn[t]π), sin(x(1)attn[t]π)].

j(s)max The position which achieves the max attention score for the sth head at time t ∈ [T] (t is
omitted for notational convenience), for s ∈ [0, 1, · · · , 2S].

x(2)attn[t] The output of the second layer attention at position t ∈ [T], defined as x(2)attn :=
[γ

j(0)max
, γ

j(1)max
, · · · , γ

j(2S)
max

].

x(2)mlp[t] The output of the second layer MLP at position t ∈ [T], which gives the state at t.

Table 3.1: Notations for the proof of Theorem 12.

1. min{tmin, tmax} = tuniq,

2. Suppose tmin = tuniq (the argument is symmetric for tmax = tuniq). Then qtmax = S.

First note that σ̃ ∈ {±1} which implies that the prefix sums increment or decrement by 1 at each
index. Therefore, ztmax − ztmin = S + 1. This also applies that between (and including) tmax and tmin,
there must be indices such that they traverse the S + 1 distinct values. Since we take the shortest
suffix satisfying this, tuniq ≥ min{tmax, tmin}. This proves Observation 1.

Assume tmin = tuniq. We can break the analysis into the following 2 cases:

(a) The S+ 1 distinct values correspond to S+ 1 distinct states (covering both boundaries). This implies that
the minimum and maximum out of these distinct prefix sums must correspond to the boundaries,
that is, qtmax = S and qtmin = 0.
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Algorithm 1: 1D gridworld: computing the final state

Data: σ̃ ∈ {±1}T , S ∈ Z+

Result: Final state yT ∈ {0, 1, · · · , S}
// Pad tokens so there are at least S + 1 distinct values
σ̃← [−1,−1, · · · ,−1︸ ︷︷ ︸

S+1

, σ̃]

// Calculate the prefix sum for each index
z ← prefix sum(σ̃) (i.e. zt ← ∑t

τ=1 σ̃t)

// Find a substring containing S + 1 unique values
tuniq ← max{t : |set(zt:)| = S + 1}

// Find positions of the last max and min values
tmin ← max{t : zt = minτ≥tuniq zτ}

tmax ← max{t : zt = maxτ≥tuniq zτ}

// Identify the type of boundary
if tmin > tmax then

boundary← 0
else

boundary← S
end

// The final state is the sum of the substring after the last boundary
tfinal ← max{tmin, tmax}
yT = zT − ztfinal + boundary

(b) The S + 1 distinct values correspond to fewer than S + 1 distinct states. This implies that only one of
the two boundaries is visited in the sequence starting from tuniq. In order to get S + 1 distinct
values, it must be that this boundary wall is hit, i.e., the sequence tries to make a move that the
boundary blocks. If the sequence does not hit a boundary, then at every time the same state is
revisited, the prefix sum must be the same, and we will not be able to get S + 1 distinct values.
Since tmin = tuniq, we claim that the visited boundary must be S. Suppose this is not true, then
the boundary visited is 0. This implies that qtmin = 0. Since the sequence does not hit S, at any
position it is at state 0 before hitting the wall, the value will be ztmin . Thus, when the sequence
first hits the wall at 0 (say index τ), then zτ = ztmin − 1 which is not possible by definition of tmin.
Thus, the boundary must be S.

Given the above, our algorithm identifies the boundary correctly and then can just use the prefix sum
to evaluate the current state.

3.4.4.4.2 Transformer construction for Algorithm 1

In this section we will show how to simulate Algorithm 1 using a 2-layer Transformer with 2S atten-
tion heads.
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Case 1: traversal Case 2: hit one wall

Figure 3.13: Illustrated examples for 4-state gridworld (Q = {0, 1, 2, 3}). The algorithms compute the
prefix sums zt (as if there were no boundaries; shown as green dots); intuitively, it might seem like
they have no direct relationship with the state sequence qt (gray dots). However, defining tuniq as the
start of the shortest suffix containing S + 1 distinct prefix sums, and tfinal as the most recent minimum
or maximum point within this suffix, our case analysis shows that qtfinal is always a boundary, result-
ing in a parallel simulation algorithm.

Proof of Theorem 12. In our construction, the first attention layer will compute the prefix sums. This
can be mapped to a cyclic group from Lemma 15, however for completeness, we will restate the
main construction. The MLP in the first layer will map this prefix sum to a circular embedding
(see Proposition 2). The second layer attention will use the circular embedding structure to find
S + 1 closest distinct values to the current value zt (suppose we are considering position t ∈ [T]) by
identifying the positions for closest values in the set {zt− S, zt− S+ 1, . . . , zt− 1, zt + 1, zt + 2, . . . zt +

S}, i.e. S closest distinct values smaller than zt, and S values larger than zt. This closest distinct value
construction can be viewed as a position dependent flip-flop monoid construction, where we need to
identify the closest position with a particular action. Note that this set of values would contain the
distinct S + 1 values needed by the Algorithm 1, hence the second layer MLP can implement the state
computation using these values.

Input representation: We select input symbol embedding E(σ) = σ̃ · e1 ∈ Rd where σ̃ is the action

corresponding to σ, that is, s =


−1 if σ = L

1 if σ = R

0 otherwise

. We will use positional encoding Pt,: := γte3,

where γt := log(2T− t) is such that 1
eγt+t =

1
2T . We will include an extra position⊥, with embedding

E(⊥) := e2 and position encoding P⊥,: := 0. Think of this as padding at position 0; it is not masked
by the causal attention mask.

Prefix sum (Layer 1 attention): The attention construction for the first layer, in full detail:

• We select d := 4, k := 1, H := 1.

• Select WQ := e3, WK := e2, WV := e1, W⊤C := e4.

With this attention module, the 4th channel of the output at position t is x(1)attn[t] =
1

2T ∑i∈[t] si, which
is the prefix sum scaled down by 1/2T.
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Circular embedding (MLP 1): The first MLP maps x(1)attn[i] 7→ [cos(x(1)attn[i]π), sin(x(1)attn[i]π)], where
cos, sin are calculated up to O(log T) precision using the construction in Lemma 10 with width 4(2T +

1). 23 and weight norms at most 8T. Together with the input using the skip connection (for γi) we
get x(1)mlp[t] :=

[
x(1)attn[t], γt, 1, cos(x(1)attn[t]π), sin(x(1)attn[t]π)

]
as the embedding to be input to the second

attention layer.

Finding closest S + 1 values (Layer 2 attention): Our goal is to find the shortest subsequence (look-
ing back from the current position t) that contains S + 1 distinct values for x(1)attn; that is, we want to
find the max τ ≤ t− S such that

∣∣{x(1)attn[i]}t
i=τ

∣∣ = S + 1. We will do this by using 2S + 1 heads such
that ∀s ∈ {0, 1, · · · , 2S}, the attention score for the sth head on position i ∈ [T] satisfies

α̃
(s)
t,i :=

〈
(W(s)

Q )⊤x(1)mlp[t], (W
(s)
K )⊤x(1)mlp[i]

〉
= 1− c log(2T − i), if x(1)attn[i] = x(1)attn[t] +

s−S
2T ,

≤ 1− c log(2T − i)− π2

8T2 , otherwise,

where c = π2

(16 log 2)T2 . That is, for any i, j s.t. x(1)attn[i] = x(1)attn[t] +
s−S
2T (matched) and x(1)attn[j] ̸= x(1)attn[t] +

s−S
2T (unmatched), the difference in the unnormalized attention weights is lower bounded by α̃

(s)
t,i −

α̃
(s)
t,j ≥

π2

16T2 . This can be achieved by letting W(s)
Q :=


0 0 0

0 0 −c
0 0 0

 0

0 ρθ(s)

 ∈ R5×5 where ρθ(s) the ro-

tation matrix of angle θ(s) := (s−S)π
2T , such that (W(s)

Q )⊤x(1)mlp[t] =
[
0,−c, 0, cos

((
x(1)attn[t] +

s−S
2T

)
π
)

, sin
((

x(1)attn[t] +
s−S
2T

)
π
)]

.

W(s)
K , W(s)

C are simply the 5× 5 identity matrix, and W(s)
V = e1e⊤1 + e2e⊤2 .

Let j(s)max denote the position that achieves the max attention score for the sth head, then the output
of the sth head 24 is [x(1)attn[j

(s)
max], γ

j(s)max
, 0, 0, 0]. We can ignore the last three coordinates (which are

0) as well as x(1)attn[j
(s)
max], since we will only need the difference x(1)attn[t] − x(1)attn[j

(s)
max] which is s−S

2T by
definition. We then concatenate the outputs from all (2S + 1) heads in a (2S + 1)-dimensional vector
x(2)attn = [γ

j(0)max
, γ

j(1)max
, · · · , γ

j(2S)
max

] as the input to the second layer MLP.

Intuitively, each head in the second attention layer is trying to identify the set of positions for which
the prefix sums match a particular value specified by the head. Each head selects the last matching
position if such positions exist, and selects t if not. The following observation will be helpful for
our subsequent MLP construction: the values of coordinates of x(2)attn increase on both sides of the Sth

heads; that is, x(2)attn satisfies the following:

Lemma 23. There exist a < b ∈ {0, 1, . . . , 2S} such that

x(2)attn[a] > x(2)attn[a + 1] > . . . > x(2)attn[S] < x(2)attn[S + 1] < . . . < x(2)attn[b]

and all s ∈ {0, 1, . . . , 2S} \ {a, a + 1, . . . , b} we have x(2)attn[s] = log(2T − t).

23The width is 1 if we allow sinusoidal activation instead of relu; see the discussion after the proof.
24We assume hard attention here for ease of exposition of the proof; soft attention can be handled with Lemma 13 and

Lemma 10 as in our previous constructions. This requires norm poly(T) at max.
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Proof. Note that x(2)attn[s] := log(2T− γ
j(s)max

) which makes the ordering inverse of the position. Observe

that the unmatched indices correspond to values that have not been reached. This can only happen
for values on either the leftmost or the rightmost coordinates, since the prefix sums are continuous
on integers. Now let’s prove that the value will be decreasing moving away from index S in both
directions. Suppose this was not true, there indeed was s ≤ S such that x(2)attn[s] ≥ x(2)attn[s− 1] (s ≥ S
case is identical), then it implies that the closest index that achieved relative value S − s is further
away from t than S− s + 1. However, since the moves can update the prefix sum by magnitude at
most 1, then to get to relative value 0 from relative value S− s + 1, we would need to have crossed
relative value S− s. This implies that there is another position closer to t with this value, contradicting
our assumption. This proves the result.

Computing state (MLP 2): To compute state from the positional information given by x(2)attn, we need
to do the following computations:

• Step 1: consider S + 1 windows of size-(S + 1), each containing the sth to (s + S)th heads for
s ∈ {0, 1, . . . , S}, and identify the window that contains positions closest to the end (this would
correspond to the closest S + 1 distinct values to x(1)att [t]);

• Step 2: identify the boundary state in the selected window by comparing the indices of the
endpoints of the window;

• Step 3: output the final state based on the position of the boundary states and its value relative
to the current position t.

We will show two constructions for implementing this, one of which will use O(1) depth and 2O(S)

width, and the other will use O(log S) depth and O(S) width. The trade-off essentially lies in how
a min function is implemented and can be resolved if we allow a min-pooling layer, which we will
discuss after the proof.

1. O(1)-depth construction: The idea is that we can first use O(1) layers to construct “features” that
contain all the information needed to determine the state, then a 3-layer MLP with 2O(S) width
can compute the state as a function of these features by Lemma 11. The features we need are the
following (the labels underneath are to be consistent with Figure 3.14, left):

{1[x(2)attn[s] > x(2)attn[s + S]]}S
s=0︸ ︷︷ ︸

>

, (3.3)

{1[x(2)attn[s− 1] > x(2)attn[s + S]]}S
s=0︸ ︷︷ ︸

>L

, {1[x(2)attn[s] > x(2)attn[s + S + 1]]}S
s=0︸ ︷︷ ︸

>R

, (3.4)

{1[x(2)attn[s] = log(2T − t)]}2S
s=0︸ ︷︷ ︸

=

}. (3.5)

Here the feature in 3.3 compares the end points of the S + 1 windows, the two features in 3.4 com-
pare the window with its adjacent windows on each side, and the last feature in 3.5 will be used to
eliminate the irrelevant window. Features in 3.3 and 3.4 can each be computed as a threshold func-
tion (at 0) on the difference between the two elements to be compared, which can be implemented
using 2 layers by Lemma 12.
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(a) First, we show that to compute Step 1 we only need to compare between adjacent windows
whose S + 1 heads are all matched, which can be computed using the features above. Con-
sider any window starting at s ∈ [0, 1, · · · , S]. On either side, if this window is closer to t
than its adjacent window on this side, then it is closer to the end of the boundary than all the
windows on this same side, which would imply that we can ignore these non-adjacent win-
dows. To prove this, let’s consider the left side (the right side is analogous) and we want to
show: For any s ∈ [S], if max{x(2)attn[s], x(2)attn[s + S]} < max{x(2)attn[s− 1], x(2)attn[s + S− 1]}, then
max{x(2)attn[s], x(2)attn[s + S]} < max{x(2)attn[s− i], x(2)attn[s + S− i]} for i > 1: the if condition gives
us x(2)attn[s− 1] > x(2)attn[s + S], and we know from Lemma 23 that

x(2)attn[s− i] > x(2)attn[s− 1] > x(2)attn[s],

x(2)attn[s + S] > x(2)attn[s + S− 1] > x(2)attn[s + S− i].

Combining these inequalities together concludes the proof.

(b) Given the optimal window, we can use feature 3.3 for the relevant window to identify the
boundary, since the closer-to-t index gives us the last boundary state (see Algorithm 1 for
why this suffices).

(c) Now that we have identified the boundary state (suppose it is at position i), the final state
can be computed as the last boundary state (0 or S) plus the difference x(1)attn[t]− x(1)attn[i]. The
difference is built in to the ordering of the heads, hence we have all the information to compute
the final state and we are done.

Therefore, we can compute this function using 4S + 3 features each taking value in {0, 1} and the
output having S + 1 values. These features themselves can be constructed using Lemma 12 with
∆ = 1/4T since the indices are separated by at least this gap. For the indicator index, we can
compose two such constructions similar to Lemma 10. This gives us the first layer of MLP with
width O(S) and norms O(T). After this, the rest of the function can be constructed using a 3-layer
ReLU network with width 2O(S) and norms bounded by O(S) using Lemma 11.

2. O(log S)-depth construction: An alternative solution to the above is to pay O(log(S)) depth, but
reduce the width to be O(S). We will borrow features in equation 3.3-3.5, but construct the MLP
explicitly rather than calling Lemma 11 as a black box: the width and depth trade-off essentially
correspond to two ways of implementing the min of S numbers. We describe the corresponding
MLP by components (Fig 3.14, right):

(a) Ignore the unmatched heads: as a preprocessing step for the cleanness of the proof, we use a
1-layer MLP to map x(2)attn[s] for heads where x(2)attn[s] = log(2T − t) (i.e. jmax = t) to log(2T)
such that these unmatched heads can be ignored in the following steps. This can be done
by multiplying log(2T) to the threshold function given by Lemma 12 (with ∆ = 1

4T ), where
the network has 1 hidden layer with width 2S + 1 and ∞-norm 4T. Note that this map also
changes x(2)attn[S] (i.e. the center head that corresponds to position t) but this will not affect the
correctness of the proof.

(b) Compute the function f1 in Figure 3.14 (right), which computes f1(a, b) := (max{a, b},1[a >

b]) for a = x(2)attn[s], b = x(2)attn[s + S]}, ∀s ∈ {0, 1, · · · , S}. The first coordinate max{a, b} can be
implemented using 1 hidden layer with width 1, and 1[a > b] is the same as feature 3.3 and
can be implemented with 1 hidden layer by Lemma 12. There are S + 1 choices of s, hence the
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Figure 3.14: Illustration of the two constructions for second-layer MLP in Theorem , with S = 3.
For ease of readability, we replace x(2)attn with x. Left: O(1)-depth solution where the first block
compares the comparison and equality features (see equation 3.3–3.5), and the second block com-
putes the state from these features. Right: O(log S)-depth solution where first block implements
f1(a, b) = (max{a, b},1[a > b]), second block does a min-pooling operation, the third block imple-
ments f2 which takes f1 via a residual connection and output of min-pool to compute the final state.

overall width is O(S). For notational convenience, let’s denote f1(s) := f1(x(2)attn[s], x(2)attn[s+ S])
(with a slight abuse of notation).

(c) Find the min value of f1(s)[1], denoted as f1,min := mins f1(s)[1]: This can be achieved using
1 min-pooling layer. If we allow ReLU only, then this can be implemented with pairwise
comparison using a network with ⌈log S + 1⌉ depth, 3S width and and constant weight norm.
25

(d) Compute the function f (s)2 in Figure 3.14 (right): f (s)2 takes two inputs: 1) the second output
of f1, which we denote as Bs := f1(s)[2], and 2) Ms := 1[ f1,min ≤ f1(s)[1]], which indi-
cates whether the sth window is the closest-to-t window or not and can be computed us-
ing a 1-hidden-layer network with width 2. As in the previous construction, the difference
f1,min − f1(s)[1] is built-in in the ordering of the head and hence does not need to be passed
in explicitly. Then by Lemma 11, a 2-hidden-layer network of width O(1) can take Bs, Ms as
input and compute Ms ·

[
B(S− s) + (1− B)(2S + 1− s)

]
. The overall width is O(S) for S + 1

choices of such f (s)2 .

(e) Finally, the state is computed as ∑s f (s)2 (Bs, Ms), which can be implemented with 1 layer of
width 1.

Improving the construction to remove T width and log(S) depth. Using standard architectural
tools, such as max-pooling, we can improve our construction to get O(1)-depth and O(S)-width for
the MLP.

25The log depth is conjectured to be unimprovable; see discussion after the proof.
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• Avoiding width T in the MLP 1 using periodic activations. As in the modular addition (Lemma 15)
construction, we can use sin activations in the MLP to directly compute the circular embeddings
that are used as input to the second attention layer. This would require only two hidden nodes
in the MLP. Note that we do not need precision greater than O(log T) for these activations since
we are embedding values only as close as 1/poly(T).

• Avoiding log(S) depth in the MLP 2 using max-pooling. The O(log S)-depth in MLP 2 is incurred by
calculating the min of S numbers and is conjectured to be necessary for ReLU networks [Goel
et al., 2017, Mukherjee and Basu, 2017, Hertrich et al., 2021]. However, the depth can be re-
duced to 1 if we allow max-pooling layers, which are commonly used in both theory and prac-
tice [Zhang et al., 2021b, He et al., 2016, Vaswani et al., 2021].

Remark: Yao et al. [2021b] use layer-norm to compute cos and sin embedding with non-uniform an-
gles. This could potentially alleviate the width T concern; we leave this exploration to future work.

Extending beyond 1 dimension. Since a 2-dimensional gridworld is just the direct product of 1-
dimensional gridworlds (by the construction in Lemma 17), we can implement both dimensions in
parallel by concatenating the network for each dimension. This can be done by doubling the dimen-
sions, parallel attention heads, and parallel hidden units in the MLP. The attention head parameters
for each dimension can be chosen to only focus on the relevant dimension and similarly the MLP
can zero out dependence on the other dimension. We can extend this to higher dimension with a
multiplicative increase in the size of the parameters.

3.4.5 Experimental details and additional results

3.4.5.1 Section 3.4.2: SGD finds the shortcuts, under ideal supervision

This section contains a full description and discussion of the in-distribution simulation experiments
from Section 3.4.2.

3.4.5.1.1 Shallow Transformers simulate small groups and semigroups

The main experiments in this paper investigate whether gradient-based training of Transformers
finds low-depth solutions to the problem of simulating semiautomata. In these experiments, we
consider a wide variety of semiautomata A, corresponding to various groups and semigroups, and
construct a distribution DA over input sequences (σ1, . . . σT) and their corresponding state sequences
(q1, . . . , qT) = AT,q0(σ1:T). In each setting, the σt are chosen uniformly at random from the set of valid
tokens in Σ. 26 Given this distribution DA, and a sequence-to-sequence neural network (with a token
embedding and a linear classification head) which maps ΣT to token predictions Y ∈ RT×|Q| (such
that Yt,q := P̂rθ(qt = q|σ1:t)), we establish the task of minimizing the cross-entropy loss

L(θ) :=
1
T

T

∑
t=1

log(1/Yt,qt).

26Take for instance the Dyck language, if the current stack is empty, then σt is chosen uniformly from the choices of open
parentheses but not the closing parentheses. This is in accordance with Yao et al. [2021b].
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This defines a supervised learning problem over sequences.

Note that without intermediate states in the input these problems exhibit long-range dependencies: for
example, in the parity semiautomaton (and for any semiautomaton whose transformation semigroup
is a group), every qt depends on every preceding input {σt′ : t′ < t}. Indeed, this is why previous
studies have used group operations as a benchmark for reasoning [Anil et al., 2022b, Zhang et al.,
2022].

Settings. We proceed to enumerate the semiautomata considered in these simulation experiments.

• Cyclic groups C2, C3, . . . , C8. For each cyclic group Cn (realized as Q := {0, 1, . . . , n− 1} under
mod-n addition), we choose the generator set Σ to be the full set of group elements {0, . . . , n−
1}. An alternative could be to let Σ be a minimal27 set {0, 1}, which we do not use in the
experiments.

• Direct products of cyclic groups C2 × C2, C2 × C2 × C2, realized as concatenated copies of the
component semiautomata. Note that C6 (which is isomorphic to C2×C3), included in the above
set, is another example.

• Dihedral groups D6, D8. Our realization of D2n chooses Q = {0, 1, . . . , n − 1} × {0, 1} and
Σ = {(1, 0), (0, 1)}. Since these groups are non-abelian, it is already not so straightforward
(compared to parity) to see why constant-depth shortcuts should exist.

• Permutation groups A4, S4, A5, S5. We choose Q to be the set of n! permutations for Sn (sym-
metric group), and Q to be the set of n!

2 even permutations for An (alternating group on n ele-
ments). The generator set for Sn consists of the minimal generators, a transposition and an
n-cycle, as well as 6 other permutations. 28 For An, we choose the 3-cycles of the form (12i)
for i ∈ {3, 4, · · · , n}. Note that A4, S4 are solvable (leading to constant-depth shortcuts), while
A5, S5 are not. Also, note that to learn a constant-depth shortcut for A4, a model needs to
discover the wondrous fact that A4 has a nontrivial normal subgroup, that of its double trans-
positions.

• The quaternion group Q8. This is the smallest example of a non-abelian solvable group which is
not realizable as a semidirect product of smaller groups, thus requiring the full wreath product
construction (Lemma 19) in our theory.

• The Dyck language Dyckn,k (correctly nested brackets of k types, with depth at most n). We take
n = 4, k = 2 in the experiments. To realize Dyckn,k as a semiautomaton simulation problem,
the state Q is the state of the stack which implements Dyck language recognition (there are thus
∑n

i=0 ki distinct states); 29 Σ is the set of 2k opening and closing brackets. The distribution in
inputs is slightly different, since there is a notion of “illegal” inputs: if the stack is empty, then
the set of feasible inputs contain all the opening brackets; if the stack is full (i.e. reaching depth

27In the sense that it induces a non-trivial learning problem on this group.If we only pick the generator {1}, the output
sequence is deterministic, and there is no learning problem.

28These other permutations are chosen following the ordering given by the sympy.combinatorics package. They are not
necessary for covering the state space (since the minimal set of 2 permutations already suffice to cover Q), but can help speed
up the mixing of the states.

29In the experiments we use (k + 1)n classes (i.e. each of the n positions can take (k + 1) possible values), ∑n
i=0 ki of which

are reachable.

107

https://docs.sympy.org/latest/modules/combinatorics/perm_groups.html


n), then the only feasible input is the closing bracket for the opening bracket at the top of the
stack.

• Gridworld semiautomata Grid4, Grid9, where Q = {0, 1, · · · , n− 1} (for n = 4 or 9) and Σ =

{±1}.30 For this special case, we have a constant-depth solution as stated in Theorem 12.

Training. We focus on the online learning setting for all experiments in this paper: at training it-
eration i, draw a fresh minibatch of samples from DA, compute the network’s loss and gradients
on this minibatch, and update the model’s weights using a standard first-order optimizer (we use
AdamW [Loshchilov and Hutter, 2017a]). This is to mitigate the orthogonal challenge of overfitting;
note that the purpose of these experiments is to determine whether standard gradient-based training
finds shortcut solutions in these combinatorial settings (in a reasonable amount of time), not how effi-
ciently. We do not investigate how to improve sample efficiency in this paper. The results in the paper
are based on sinusoidal positional encodings [Vaswani et al., 2017] unless otherwise specified.

Sequence length. We report our main results with sequence length T = 100, which is large enough
to rule out memorization: for this choice of T, the inputs come from a uniform distribution over
|Σ|100 > 1030 sequences, rendering it overwhelmingly unlikely for a sample to appear twice between
training and evaluation. We observed positive results in most of the settings for larger T, but train-
ing became prohibitively unstable and computationally expensive; mitigating this is an interesting
direction for future empirically-focused studies.

Depth. We seek to investigate the sufficient depth for learning to simulate each semiautomaton.
Thus, for each problem setting, we vary the number of layers L in the Transformer between 1 and 16.
Note that we do not attempt in this work to distinguish between depths O(log T) and O(1), nor do we
attempt to tackle the problem of exhaustively enumerating and characterizing the shortcut solutions
for any particular semiautomaton.

Results. For each task and number of layers, we report the highest (Figure 3.15) and median (Figure
3.16) accuracies over 20 runs. The accuracy is calculated at token level (i.e. 1

T ∑t∈[T] 1[q̂t = qt]), as
opposed to the sequence-level accuracy (i.e. 1[q̂1:T = q1:T ]) as reported in Bhattamishra et al. [2020a].
We evaluate in-distribution accuracy on independent (unseen) samples of DA, which contain 2048
sequences of length T = 100. 31 As shown in Figure 3.15, Transformers, trained with standard
gradient-based methods, are able to find solutions which generalize well (in-distribution) on all of
the tasks. Performance tends to improve as the number of layers increases (there is a small amount
of non-monotonicity in some settings due to training instability); the sufficient depth to achieve high
accuracy varies depending on the problem setting, as discussed below.

Trends in sufficient depth. The minimum number of layers required to achieve 99%+ performance
reflects our beliefs on the difficulty of the task: a high-level trend is that the semigroups which don’t

30−1 for L, 1 for R. We omit the no-op ⊥ in the experiment which does not change the difficulty of the task.
31This size is sufficient for evaluating the model performance: for example, for C2 (i.e. parity), evaluating a model on 10

evaluation sets of this size gives a standard deviation of 0.031% in the accuracy.
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Dyck

Grid4

Grid9

C2

C3

C4

C5

C6

C7

C8

C2
2

C3
2

D6

D8

Q8

A4

A5

S4

S5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

99.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

92.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

77.6 99.8 99.9 100 100 99.5 100 99.7 100 100 100 100 100 100 100 100

54.6 94.6 96.7 99.4 100 100 99.8 100 99.9 100 100 100 100 100 99.8 100

95.1 92.3 84.2 99.9 99.7 99.9 100 100 100 100 100 100 100 100 100 100

89.0 99.1 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100

59.8 98.7 75.5 99.9 99.8 99.9 99.9 100 100 100 99.8 99.9 100 99.8 99.9 99.9

90.9 95.0 99.9 99.9 100 99.9 100 100 100 100 100 99.8 100 100 100 100

79.6 96.2 99.8 99.8 99.9 100 99.9 99.9 100 99.4 99.9 99.9 99.9 100 99.9 99.9

90.5 98.8 99.9 100 100 99.9 100 100 99.9 99.9 100 100 100 100 100 100

65.0 77.9 99.9 97.9 100 99.8 98.2 99.9 100 100 91.9 95.9 91.7 90.6 87.5 80.6

25.4 27.2 47.4 75.2 100 100 100 100 100 100 100 100 100 100 100 100

45.6 98.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100

31.6 49.2 59.6 60.4 73.5 99.3 100 100 100 100 100 100 100 100 100 100

25.0 35.4 49.1 59.3 62.6 82.3 90.9 98.0 98.0 99.1 99.8 100 99.7 100 100 100

12.5 23.1 32.5 46.7 71.2 98.8 100 100 100 100 100 100 100 100 100 100

11.3 17.6 22.0 27.1 37.7 44.8 50.8 72.5 91.3 97.1 97.9 98.7 99.9 100 99.8 99.9

7.9 11.8 14.6 19.7 26.0 28.4 32.8 51.8 86.3 94.8 90.2 97.2 99.3 99.1 99.9 99.9

Figure 3.15: A complete version of Figure 3.5, for various tasks (rows) and numbers of network layers
(columns). Reported performance is the maximum test accuracy over 20 runs.
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Dyck

Grid4

Grid9

C2

C3

C4

C5

C6

C7

C8

C2
2

C3
2

D6

D8

Q8

A4

A5

S4

S5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

98.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

99.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

91.4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

56.4 83.0 79.9 80.9 89.1 85.2 84.8 84.9 88.8 94.5 98.3 86.4 90.4 88.7 94.6 99.3

40.3 69.1 78.2 85.0 84.0 84.9 87.9 96.2 99.4 89.2 82.5 99.3 87.4 98.0 89.6 92.0

56.8 63.8 56.2 64.2 69.5 71.5 75.9 73.7 85.8 68.0 77.1 84.1 64.9 71.1 64.3 99.3

75.6 62.7 99.0 99.5 99.8 99.9 99.8 99.5 99.8 99.8 99.7 99.8 99.8 99.9 99.9 99.7

45.8 49.0 53.0 59.6 75.5 77.0 95.6 91.2 83.4 59.6 98.4 72.9 89.7 94.5 99.8 87.5

51.0 76.2 99.7 99.7 99.6 99.6 99.4 99.7 99.7 99.6 99.6 99.6 99.7 99.6 99.8 99.7

60.5 58.8 99.0 98.5 99.6 99.7 99.4 99.5 99.6 98.5 99.5 99.8 99.8 99.6 99.3 99.7

62.6 73.1 78.4 73.4 74.9 79.8 84.1 82.4 77.0 70.6 69.0 71.9 70.6 76.9 68.3 59.3

50.0 61.4 60.6 60.7 72.4 63.2 63.8 66.4 69.8 59.0 63.4 54.6 59.5 53.0 44.7 48.4

24.8 26.8 40.8 57.2 81.3 91.6 100 99.6 100 100 93.0 96.2 100 97.7 99.6 99.3

38.1 63.6 99.7 100 100 100 100 100 100 100 100 100 100 100 100 100

29.0 45.8 38.5 42.7 57.4 79.5 84.7 89.2 95.9 98.1 98.8 97.8 99.8 98.3 98.8 99.4

19.7 30.4 41.0 45.4 44.7 52.8 60.0 68.3 72.8 74.1 91.4 82.6 88.2 97.9 99.0 98.5

10.5 18.7 26.6 30.5 40.6 63.9 77.2 99.4 99.3 100 100 100 100 100 99.9 100

10.7 15.1 18.8 22.9 25.0 31.1 36.6 43.6 56.2 71.0 73.1 88.1 91.0 97.6 95.6 97.8

7.1 11.0 13.1 16.5 20.9 24.3 29.4 37.6 40.1 59.0 60.4 91.3 91.2 94.6 98.0 99.1

Figure 3.16: The median accuracy for various tasks (rows) and numbers of network layers (columns).
Reported performance is the median test accuracy over 20 runs.
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contain groups (which only require memory lookups) are the easiest to learn, and among the groups,
the larger non-abelian groups require more layers to learn, with the non-solvable group S5 requir-
ing the largest depth.32 Between the non-abelian groups, the difficulty of learning Q8 compared
to D8 (which has the same cardinality) agrees with our theoretical characterizations of the respec-
tive constant-depth shortcuts for these groups: D8 can be written as a semidirect product of smaller
groups, while Q8 cannot, so our theoretical construction of a constant-depth shortcut must embed Q8

in a larger structure (i.e. the wreath product).

Improving training stability. Throughout these experiments, we observe the following forms of
training instability: high variance in training curves (based on initialization and random seeds for
the gradient-based optimization algorithm), and negative progress (i.e. non-monotonic loss curves),
even for training runs which eventually converge successfully. This is evident in Figure 3.5(b),(c) and
in the significant difference between the maximum accuracies in Figure 3.15 and the median in Figure
3.16.

To stabilize training, we experiment with dropout and exponential moving average (EMA)33. The
effectiveness of dropout varies across datasets; for example, we find using a dropout of 0.1 (the best
among {0, 0.1, 0.2, 0.3}) to be helpful for Dihedral and Quaternion, while such dropout hurts the
training of Dyck and Gridworld. We find EMA to be generally useful, and fix the decay parameter
γ = 0.9 in the experiments since the performance of the EMA model does not seem to be sensitive to
the choice of γ ∈ {0.85, 0.9, 0.95}. Further, increasing the patience of the learning rate scheduler can
be helpful.

3.4.5.1.2 Visualizing and interpreting attention heads

Although we defer a fine-grained mechanistic interpretability study (“which group/semigroup factoriza-
tions did these shallow Transformers discover, if any?”) to future work, we provide some preliminary visu-
alizations of attention heatmaps which strongly corroborate their theoretical counterparts. In partic-
ular, consider the gridworld setup in Theorem 12. The theoretical construction consists of two steps:
the first attention layer calculates the prefix sum of the actions (i.e. the sum of {σ̃i}i∈[T] ∈ {0,±1}T),
and the second attention layer identifies the last time the process is at a boundary state (i.e. 0 or S)
where the process can be “reset” (i.e. the model can ignore the history before the boundary state and
only needs to calculate the sum of subsequent actions).

We have seen in Figure 3.6 that the network indeed learns to 1) compute the prefix sum, as evidenced
by the uniform attention in the first layer, and 2) detect boundary states, as highlighted by large
attention scores in the last layer. Figure 3.17 provides more examples of attention patterns, which
are taken from the last layer of a 4-layer GPT-2 model on two randomly selected Grid9 sequences.
We highlight the locations where the process is at a boundary state (white strips for state 0 or gray
strips for state S = 8), which align well with the highly activated positions of the attention heads,
showing that the model learns to locate the closest boundary states. Moreover, when processing

32However, we stress that these experiments do not control for the fact that larger groups have richer supervision (for
example, A5 has more informative labels than A4), possibly accounting for the counterintuitive result that the latter requires
more layers, despite being a subgroup of the former.

33We use the EMA implementation from https://github.com/fadel/pytorch ema.
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(a)

(b)

Figure 3.17: Visualization of the entire set of 8 attention heads on two randomly selected length-128
sequences for models trained on Grid9. The lower triangles visualize the attention patterns, while
the upper triangles are ignored by the attention head because of the causal mask. We use the upper
triangles to visualize the positions of state 0 and state S = 8 in the output: white strips mark the
position of state 0 and gray strips mark state S = 8. Example heads that clearly detect state 0 and S are
highlighted with blue and red frames, respectively. Note that in many cases, the white/gray strips
align with the locations of high attention scores (the bright yellow patterns). This suggests that the
model indeed learns to identify the boundary states and that the construction in Theorem 12 agrees
with solutions found in practice.
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tokens appearing later in the sequence than these highly activated positions, no attention weight is
put on tokens before these positions. This suggests that these highly activated locations reset the state
so that the model does not need to look further back past them.

3.4.5.2 Section 3.4.3: Failures of shortcuts in more challenging settings

Our theoretical and main empirical findings have shown that not only do shallow non-recurrent
networks subsume deeper finite-state recurrent models in theory, these shallow solutions can also be
found empirically via standard gradient-based training. However, experiments in Section 3.4.2 and
Section 3.4.5 are in an idealized setting, with full state supervision during training and in-distribution
evaluation at test time. This section studies more challenging settings where these assumptions are
relaxed. We consider training under indirect (Section 3.4.5.2.1) or incomplete (Section 3.4.5.2.2) state
supervision, and evaluation on sequences that is out-of-distribution (Section 3.4.5.2.3) or of longer
lengths (Section 3.4.5.2.4)

3.4.5.2.1 Challenges from indirect supervision

One type of limited supervision is that the observations may not provide full information of the
underlying state. To model this, we consider the case where instead of observing the state q directly,
we get a function of the state, denoted φ(q), where φ : Q → Q̃ is non-injective (i.e. |Q̃| < |Q|).
In each of the experiments involving partially-observable semiautomata, we specify the underlying
semiautomaton, as well as the observation function φ.

• Dyck language with stack top observations: For Dyckn,k, the state Q is the state of the stack which
takes ∑n

i=0 ki values. We take φ to be the function that takes in a stack and returns the element
at the top of the stack, which is either one of the k open brackets if the stack if non-empty, or
a special token ⊥ indicating an empty stack, i.e. Q̃ := {1, 2, · · · , k,⊥}. We consider k = 8 (as
opposed to k = 2 in Section 3.4.2) to make the prediction task more challenging.

• Gridworld with boundary observations: We consider the case where the underlying semiautomaton
is Grid9 with Q = {0, 1, · · · , 8}. The observation function φ : Q → {0, 1} outputs whether the
current state is of two boundary states, i.e. at state 0 or state S = 8.

• Permutations with single-element observations: We take the permutation group S5 with Q is the set
of 5! operations. The observation function φ : Q → {1, 2, 3, 4, 5} returns the first value of the
permutation. For example, φ((2, 1, 4, 3, 5) = 2. We use a set of 5 generators for the experiments.

• Cyclic group with “0 mod 4” observations: We take C4 as the underlying group with Q = {0, 1, 2, 3}.
The observation function computes whether the current state is state 0, i.e. φ(q) = 1[q = 0].

• Dihedral group with rotation component only: Recall that D2n = Cn ⋊ C2. We take n = 4 with
Q = {0, 1, 2, 3} × {0, 1}, and let the observation function ψ output only the the first component
(i.e. Q̃ = {0, 1, 2, 3}).

• (abab)∗: We consider one semiautomaton which is not featured in Section 3.4.2: the one which
recognizes the regular expression (abab)∗, which is also studied in Bhattamishra et al. [2020a].
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Task Dyck4,8 Grid9 S5 C4 D8 (abab)⋆, (1) (abab)⋆, (2)

Observation stack top 1boundary π1:t(1) 10 mod 4 location accept accept

Accuracy 100.0 100.0 99.6 99.9 100.0 100.0 100.0

Figure 3.18: Accuracies with indirect supervision, extending results in Figure 3.7(a). The numbers are
the maximum over 25 runs. As a reference, LSTM gets 100% on all tasks.

The underlying semiautomaton has 5 states: 4 states are in a cyclic fashion when seeing repeated
patterns of abab, and a fifth absorbing “failure” state is entered if any other pattern is seen. For
example, the input sequence abababaaabab corresponds to states 012301244444, where the 5th

“a” leads to the absorbing state. The observation function φ computes whether the current state
is the “accepting” state (i.e. state 3), with Q̃ = {0, 1}. For example, the output of φ for the input
sequence ababababa is 000100010, and the output for the input sequence ababbabab is 000111111,
i.e. the sequence enters the absorbing state at position 5 and never recovers.

We consider two distributions on the input sequences: (1) the input is always a sequence of
the form abababa · · · (i.e. the process is never in the absorbing state), which is the setup in
Bhattamishra et al. [2020a]; and (2) the input is of the form abababa · · · with probability 0.5,
and is some randomly drawn string of a, b otherwise. Note that case (1) can be solved purely
based on the positional encoding, since the label is 1 when the position is a multiple of 4 and 0
otherwise, while case (2) is more difficult since the model needs to take into account the input
tokens.

Results. We train GPT-2-like models on sequences of length 40. We use 16 layers for S5 and 8
layers for other tasks, with embedding dimension d = 512 and H = 8 attention heads. As shown
in Figure 3.18, the model is able to achieve near-perfect in-distribution accuracies for all tasks. An
interesting side finding is that the choice of positional encoding turns out to be important for both
cases of (abab)∗: learning is challenging for linear encoding (i.e. pi ∝ i) but is easy when using
sinusoidal positional encoding, which is likely because the sinusoidal encoding naturally matches
the periodicity in (abab)∗. In all other experiments, we use sinusoidal positional encodings unless
otherwise noted.

3.4.5.2.2 Challenges from incomplete supervision

Another challenge of limited supervision is that the observation sequence may be incomplete, that
is, we may not be able to get supervision on the states at every time step. We consider the task of
learning length 100 sequences, where the state at each position is revealed with some probability
preveal ∈ (0, 1].

Results. Figure 3.19 shows the accuracy against preveal, for S5 and C2 (i.e. parity). Transformer
training pipeline is worse than LSTM at tolerating incomplete supervision: while Transformer is able
to maintain the performance across preveal for C2, the performance degrades significantly at lower
preveal for S5. We leave improving the robustness to sparse supervision to future work.
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Figure 3.19: Learning from incomplete state sequences, extending results from Figure 3.7(b): accuracy
vs. position-wise probability of a hidden token (i.e. preveal), for GPT and LSTM. While LSTM is able
to maintain a perfect accuracy across different values of preveal, GPT’s performance may degrade as
labels get sparser. The mean and standard deviation are taken over 25 runs.

Figure 3.20: OOD generalization performance on C2: (Left) Accuracy on sequences of the same length
as training, with varying Pr[σ = 1] = 0.5. GPT fails at OOD generalization, whereas recurrent
solutions implemented by LSTM and Scratchpad with recency bias is robust to different distributions.
(Right) Accuracy on sequences of the same length as training, with a varying number of 1s in each
sequence. GPT has worse performance on counts less frequently seen during training. The lines show
the mean accuracy (with shadows showing standard error) over 25 replicates.

3.4.5.2.3 Out-of-distribution generalization

The previous subsections show positive results on learning shallow non-recurrent shortcuts with
limited supervision during training, either in the form of indirect observations or incomplete obser-
vation sequences. In this section, we study challenges at test time, and evaluate Transformers on
their out-of-distribution generalization performance. For this and the next subsection, the models are
trained in the standard way with full state supervision. The training sequences are of length 40,
where each position has an equal probability of being 0 or 1, i.e. Pr[σ = 1] = 0.5. At test time, the
sequences of the same length as training, but the Bernoulli parameter Pr[σ = 1] varies in the range
{0.05, 0.1, 0.15, . . . , 0.9, 0.95}.

Negative results for vanilla Transformers. Figure 3.20 (left) shows the accuracy as Pr[σ = 1] varies.
The performance of the Transformer degrades sharply as the test distribution changes away from
training, failing at out-of-distribution generalization. Given the theoretical construction of modular
counters (Lemma 15), our hypothesis is that Transformer may be learning a shortcut solution that
computes the parity by counting the number of 1s, and that counts less frequently seen during train-

115



ing will cause the model to fail. The experimental results agree with the hypothesis: as Pr[σ = 1]
deviates from 0.5, it is less likely for the value of the count (which concentrates around T× Pr[σ = 1])
to be seen during training, hence the performance degrades. In contrast, an LSTM recurrent network
maintains perfect accuracy when evaluated on all values of Pr[σ = 1].

We further test this hypothesis by checking how the accuracy changes as we vary the count (i.e. the
number of 1s) in the input sequence. As shown in Figure 3.20 (right), Transformer’s performance
degrades as the count moves away from the expected number during training, agreeing with the hy-
pothesis. It might appear strange that GPT fails at a lower count more than a higher count. However,
this may be because the shortcut learns a correlation between the count and the position: during
training, a lower count is more likely to appear early in an input sequence, as opposed to the testing
scenario where a lower count is equally likely to appear at a later part of an sequence. This is further
supported by the observation that training the model with randomly shifted positions significantly
improves the performance at lower counts.

Guiding the Transformer to learn the recurrent solution. We investigate one established mitigation
for the out-of-distribution brittleness of non-recurrent Transformers: scratchpad training and infer-
ence. Given a sequence of inputs (σ1, . . . , σT) and states (q1, . . . , qT), in the standard (non-recurrent)
sequence-to-sequence learning pipeline, the network receives σ1:T as input, and outputs the sequence
of predictions for qt. In scratchpad training [Nye et al., 2021a, Wei et al., 2022c], we instead feed the
network an interleaved sequence of inputs and states (σ1, q1, σ2, q2, σ3, q3, . . . , qT−1, σT) (with an ap-
propriately expanded token vocabulary), and define the network’s state predictions to be those at the
appropriately aligned positions: (q̂1,⊥, q̂2,⊥, . . . ,⊥, q̂T) (where ⊥ denotes a position where the pre-
diction is ignored by the loss function). During inference, we iteratively fill in the state predictions.
This removes the need for the network to learn long-range dependencies in a single non-recurrent
pass, by splitting it into T sequential state prediction problems which can depend on previous pre-
dicted state q̂t−1; one can think of this as a way to guide a shallow Transformer to learn the recurrent
solution (i.e. explicit depth-Θ(T) iteration of the state transition function), rather than a shortcut.

We note that introducing the scratchpad itself is not sufficient to remove the parallel solution, since the
model can simply ignore the scratchpad positions and find the same parallel shortcut as before. The
good news is that we can couple scratchpad with an explicit recency bias in the attention mechanism
[Press et al., 2022] which biases the model towards putting more attention weights on closer input.
Intuitively, if the model is only allowed to put attention on the current input token and the current
scratchpad (which is simply the current state), then the model is forced to be recurrent; recency bias
can be considered as a soft relaxation of the same idea. Combining scratchpad and recency bias, we
are able to train a Transformer to learn the recurrent solution, which is resilient to distribution shift;
see Figure 3.20 (left). Notice that this mitigation completely foregoes the computational advantage of
a shallow shortcut; we leave it to future work to obtain shortcuts which are resilient to distribution
shift. Towards this, the constructions used in the proof of Theorem 10 may be helpful. Finally as a
side note, even though the state transitions are Markov, the dependency in the input sequence can
still be long range, so we do not expect recency bias to help without scratchpad, since in this case the
output can depend uniformly on each input positions (e.g. consider parity).
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Figure 3.21: Length generalization on Dyck and C2 (Figure 3.8(b), reproduced here for convenience):
Transformer fails at length generalization, but adding Scratchpad [Nye et al., 2021a] and recency
bias [Press et al., 2022] serves as a remedy. The lines show the mean accuracy (with shadows showing
standard error) over 25 (±1) replicates.

3.4.5.2.4 Length generalization

Settings for length generalization. Our final setup is length generalization, where the model is
evaluated on sequences of lengths unseen during training. Promoting this difficult desideratum
of length generalization is an intricate problem in its own right; see Yao et al. [2021b], Anil et al.
[2022b] for more experiments similar to ours and more discussions on length generalization in 3.7.
In the following, we check the length generalization performance on Dyck4,2 and C2 (with Pr[σ =

1] = 0.5), where the model is trained on sequences of length 40 and tested on sequences of length
{8, 16, 24, · · · , 120, 128}.

Results. Figure 3.21 shows the performance on sequences of various lengths. In contrast to LSTM’s
perfect performance on all scenarios, Transformer’s accuracy drops sharply as we move to lengths
unseen during training. This is not purely due to unseen values of the positional encoding: randomly
shifting the positions during training can cover all the positions seen during testing, which helps
improve the length generalization performance but cannot make it perfect; we see similar results
for removing positional encodings altogether. However, similar to the OOD setup in the previous
subsection, we empirically show that the above flaws are circumventable. Using a combination of
scratchpad (a.k.a. “chain-of-thought”) [Nye et al., 2021a, Wei et al., 2022c] and recency bias [Press
et al., 2022], we demonstrate that Transformers can be guided towards learning recurrent (depth-T)
solutions, which generalize out-of-distribution and to longer sequence lengths (Figure 3.21, yellow
curves). The results also confirm that the inclusion of recency bias is necessary: without it, scratchpad
training shows no improvement on length generalization.

Impact of positional encoding. Figure 3.21 also shows some interesting findings related to posi-
tional encoding, which is believed to be a key component for Transformers and a topic with active
research [Ke et al., 2020, Chu et al., 2021]. While this work does not aim to improve positional encod-
ing, some of our results may be of interest for future research.
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Figure 3.22: Choice of the positional encoding: while having similar or even superior in-distribution
performance (on sequences of length T = 40), sinusoidal positional encoding may suffer a larger
generalization gap than linear positional encoding when testing on length 2T. The lines show the
mean accuracy over 25 replicates.

Sinusoidal vs linear encoding: We find that the conventional sinusoidal encoding (which is the default
for results in this paper) seems to generalize worse to unseen length than linear encoding (where
pi ∝ i), despite having comparable or better in-distribution performance. Figure 3.22 shows examples
on Grid9 and partially observed (abab)∗, where we compare the accuracy on freshly drawn samples
of the same length as the training sequences (i.e. in-distribution), or of twice the training length.
For Grid9, both positional encodings achieve comparable accuracy, however the sinusoidal encoding
performs significantly worse when tested on sequences of doubled length. For partially observed
(abab)∗ where the label is whether the current string is a multiple of abab, the sinusoidal encoding has
a clear advantage over the linear encoding on in-distribution performance. However, when tested on
sequences of lengths twice as those during training, the performance gap between the two positional
encodings shrinks significantly.

Training with shifted positions: In general, unseen positions appear to be a major contributor to Trans-
former’s failure of length generalization. This is evidenced by the comparison between Transformer
trained with absolute positional encoding, and Transformers trained with random shifts added to the
positional encoding: for each batch, we sample a random positive integer in [0,400] and add it to the
position indices before calculating the positional encoding; this random integer is the same for each
batch and varies across batches. Figure 3.21 shows that adding such random shifts gives a significant
boost to Transformer’s length generalization performance, for both Dyck and C2. This suggests that
a main challenge to length generalization is the distribution shifts due to positions unseen during
training, and finding better positional encoding could be a potential remedy for poor length general-
ization.

As a side note, we also find that removing positional encoding altogether helps improve generalization
for both parity and Dyck. For the former, removing positional encodings makes sense since parity is a
symmetric function where the ordering of the arguments does not matter, 34 though the positive result
for Dyck is less clearly understood. Note that removing positional encoding does not mean having

34Empirically, we are able to achieve non-trivial accuracy (even when evaluated at the sequence level) without positional
encoding, whereas Bhattamishra et al. [2020a] reports 0 accuracy. The discrepancy may be due to different model size: Bhat-
tamishra et al. considers Transformers with up to 4 layers, 4 heads and dimension up to 32, whereas for the parity experiments
we consider Transformers with 8 layers, 8 heads, and dimension 512.
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no position information, since the use of the causal mask implicitly encodes the position, which is
also noted in Bhattamishra et al. [2020a] and concurrent work by Haviv et al. [2022]. Understanding
this phenomenon is tangential to the current work and is left to future work.

3.4.5.3 Additional details

Hyperparameters. For GPT-2 models, we fix the embedding dimension and MLP width to 512 and
the number of heads to 8 in all experiments in Section 3.4.2, and vary the number of layers from 1 to
16. For LSTM, we fix the embedding dimension to 64, the hidden dimension to 128, and the number
of layers to 1. We use the AdamW optimizer [Loshchilov and Hutter, 2017a], with learning rate in
{3e-5, 1e-4, 3e-4} for GPT-2 or {1e-3, 3e-3} for LSTM, weight decay 1e-4 for GPT-2 or 1e-9 for LSTM,
and batch size 16 for GPT-2 or 64 for LSTM. As detailed in Section 3.4.5.1.1, the models are trained in
an online fashion with freshly drawn samples in each batch. The number of freshly drawn samples
ranges from 600k to 5000k for different datasets, which is much fewer than the number of possible
strings of length 100.

Implementation details. Our experiments are implemented with PyTorch [Paszke et al., 2019]. The
Transformers architectures are taken from the HuggingFace Transformers library [Wolf et al., 2019],
using the GPT-2 configuration as a base. The LSTM architecture is the default one provided by the
PyTorch library.

Computational resources. The experiments were performed on an internal cluster with NVIDIA
Tesla P40, P100, V100, and A100 GPUs. For the experiments in Section 3.4.2, each training run took
up to 10 hours on a single GPU, for a total of ≈ 104 GPU hours. The remaining experiments in
Section 3.4.3 amount to less than 1% of this expenditure.

3.5 Application: exposing attention glitches with flipflops

In the previous section, we have shown that while Transformers are representationally capable of
implementing shortcuts to simulating automata, these shortcuts are not guaranteed to be found in
practice. A natural question is then: what can these theoretical constructions tell us about the practical
behavior of Transformers? In this section, we will show that these theoretical understanding provides
primitives for probing the fine-grained extrapolative behavior of Transformers. Our investigation is
centered at flip-flop (aka. one-bit memory unit; recall Example 2), which forms a fundamental building
block of algorithmic reasoning according to the celebrated Krohn-Rhodes theorem Krohn and Rhodes
[1965]. We will show how a simple task based on flip-flop, which we call Flip-Flop Language Modeling
(FFLM), can help reveal intrinsic limitations of the attention mechanism.
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3.5.1 Setup: Flip-flops and FFLM

3.5.1.1 A reminder on flip-flop

Recall from Example 2 that the flip-flop automaton is a two-state machine which remembers a single
bit of memory and enables retrieval of this bit, as illustrated in Figure 3.23(a). Here we redefine it for
easy reference:

Definition 11 (Flip-flop automaton). A flip-flop automaton A = {Q, Σ, δ} is defined with state space
Q = {0, 1}, input alphabet Σ = {σ0, σ1,⊥}, and transition function δ : Q× Σ→ Q where

δ(q, σ0) = 0,

δ(q, σ1) = 1,

δ(q,⊥) = q;

∀q ∈ {0, 1}.

The semantics of the input symbols can be intuitively be identified with “write 0”, “write 1”, and
“do nothing”. This mathematical object is named after a type of electronic circuit which can store
a single bit of state information [Eccles and Jordan, 1918, 1919]; such physical constructions appear
ubiquitously in electrical engineering as the building blocks of memory.

Naturally associated with the flip-flop automaton is its transformation monoid, the closure35 of its state
transformations δ( · , σ) : Q → Q under function composition. Identifying each symbol with its state
transformation map, we can compute the multiplication table of this monoid ( f ◦ g for every pair of
transformations f , g):

g = σ0 g = σ1 g = ⊥
f = σ0 σ0 σ0 σ0

f = σ1 σ1 σ1 σ1

f = ⊥ σ0 σ1 ⊥

This algebraic object is called the flip-flop monoid F . Its binary operation ◦ is clearly non-invertible
(intuitively: the history of the bit cannot be recovered after a “memory write”) and non-commutative
(the order of “write” operations matters); it also has an identity element ⊥ (which does nothing to
the memory bit). By enumeration of smaller objects, it can be seen that F is the smallest monoid (in
terms of order |F |, or fewest number of automaton states |Q|) which has these properties.

3.5.1.2 Flip-Flop Language Modeling (FFLM)

For any even number T ≥ 4, we define a flip-flop string as a sequence of symbols {w, r, i, 0, 1}T ,
which have the semantics of instructions (write, read, ignore) and data (one bit). A valid flip-flop
string consists of alternating pairs of instructions and data (e.g. “w 0 i 1 i 0 r 0”), for which every
symbol following a r instruction must be equal to the symbol following the most recent w; thus, “w
0 i 1 w 1 r 0” is not a legal flip-flop string. These sequences can be viewed as correct execution

35In this case, the closure is the same as the generator set: no functions distinct from σ0, σ1,⊥ can be obtained by composing
these three functions. This is not true for a general automaton.
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  <div></div> 
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Transcript of events: 
  Alice turns the light off. 
  Then, Bob eats an apple. 
  Then, Bob eats a banana. 
  Then, Alice turns the light on. 
  Then, Bob eats a banana. 
  Then, Bob eats an apple. 
  Now, the light is

def f(): 
  x = 0 
  ignore = 1 
  ignore = 0 
  x = 1 
  ignore = 0 
  ignore = 1 
  assert x ==

(a) (b) (c)

Figure 3.23: Elementary objects and examples associated with flip-flop languages. (a) the 2-state
flip-flop machine (elided transitions are self-loops). (2) A 4-state automaton which processes flip-flop
languages (implying the existence of a small RNN). (c) Simple examples of sequential prediction tasks
which require processing a flip-flop language.

transcripts of a program which can (perhaps occasionally) write to a single bit of memory, and always
correctly reads its contents. We also require that all sequences begin with w.

There are many possible choices of (probabilistic) flip-flop languages, which are distributions over valid
flip-flop strings. We define a canonical family of them: let FFL(T, p) be the distribution over length-T
flip-flop strings, parameterized by p = (pw, pr, pi) ∈ ∆({w, r, i}), such that:

(i) The first instruction x1 is always w, and the last instruction xT−1 is always r.

(ii) The other instructions are drawn i.i.d. according to (pw, pr, pi) with pi = 1− pw − pr.

(iii) The nondeterministic data symbols (paired with w or i) are drawn i.i.d. and uniformly.

We are interested in whether language models can learn a flip-flop language from samples, which
we define as processing the read operations perfectly. Two variants of the autoregressive language
modeling task can be defined on this distribution:

• Generative (“noisy”) mode: Estimate the conditional next-token distribution Pr[xt+1|x1:t], for
each t = 1, . . . , T − 1. In this mode, the sequences can be treated as drop-in replacements for nat-
ural text in GPT-style training. Generative FFLMs can be evaluated by checking their completions
on prefix “prompts” (e.g. “... w 0 i 1 i 1 r [?]”).

• Deterministic (“clean”) mode: Predict only the continuations which are deterministic: correctly
output xt+1 only for the prefixes x1:t such that xt = r. At the cost of a slight departure from vanilla
language modeling, this setting isolates the long-range memory task. It is similar to the non-
autoregressive flip-flop monoid simulation problem discussed in Section 3.5 (Liu et al. [2023a])
with limited supervision. 36

36We observe similar behaviors across these two settings (see Appendix 3.5.6.2), but we report results on the “clean” setting
in this paper. Predicting the non-deterministic tokens is irrelevant to the memory task at hand.
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These tasks naturally embed the capability of simulating the flip-flop, a machine which memorizes a
single bit (see Figure 3.23a,b for closely related variants).37 It is easy to see that recurrent networks and
2-layer Transformers (see Proposition 3) can both represent FFLM parsers. The question of whether
they do, especially from less-than-ideal data, turns out to be extremely subtle, and is the subject of the
remainder of this paper.

3.5.1.2.1 Why focus on the flip-flop?

The most immediate rationale for this synthetic benchmark is that flip-flop simulation (maintaining
memory in a sequence) is a direct necessity in many reasoning settings (see Figure 3.23c). It is a
special (depth-1) case of Dyck language processing [Chomsky and Schützenberger, 1959, Yao et al.,
2021a, Zhao et al., 2023], which is necessary for parsing recursive grammars. It also captures certain
structures in code or language tasks, such as ignoring irrelevant contexts [Shi et al., 2023] or track-
ing semantics changes [Zhang et al., 2023]. Thus, more than a toy model, flip-flop languages are
embedded verbatim within many sequence processing tasks. We offer some additional perspectives
below.

Algebraic properties and expressive power. Flip-flops are the computational building blocks of memory.
The flip-flop monoid F (Example 2), an algebraic encoding of a flip-flop’s dynamics, is the smallest
monoid whose operation is both non-commutative and non-invertible. F plays an essential role in the
Krohn-Rhodes theory of automata and semigroups [Rhodes et al., 2010], whose central structure the-
orem [Krohn and Rhodes, 1965, Zeiger, 1967, Eilenberg, 1974] implies that a constant-depth cascade
of parallel flip-flops simulates all group-free finite-state automata. Thus, in a rigorous sense, the ro-
bust learning of flip-flops is not only a necessary condition for reasoning, but a sufficient condition for
a wide class of algorithmic capabilities.

Intended functionality of attention. One can also appeal to the origin of attention mechanisms [Bah-
danau et al., 2014, Luong et al., 2015, Vaswani et al., 2017]: attention was specifically designed to
attend to38 (i.e. selectively retrieve and copy) data over long-range dependencies. Indeed, it is easy
to verify that a single attention head can perform the required lookup (see Proposition 3). It is thus
logical to ask how well a purely attention-based architecture performs this elementary operation.

3.5.2 Attention glitches: a long tail of errors for Transformer FFLMs

In our main battery of synthetic experiments, we train neural language models to generate strings
from the flip-flop language FFL(T = 512, p = (0.1, 0.1, 0.8)) (for short, FFL(pi = 0.8)), and probe
whether the networks robustly learn the language. Although every valid flip-flop string is supported
in this distribution, some sequences are far rarer than others; we measure tail behavior via probes
of extrapolation, defined here as out-of-distribution evaluations which amplify the probabilities of
the rare sequences. To create these “challenging” sequences, we sample > 3× 105 sequences from
FFL(0.98) (containing unusually many “sparse” sequences with mostly ignore instructions), as well

37A further discussion of the rationale for this specific manifestation of flip-flop sequence processing is deferred to Ap-
pendix 3.5.5.1.

38What this formally entails for representation and generalization is a topic of recent theoretical inquiry [Edelman et al.,
2022, Wei et al., 2022a].
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Figure 3.24: Top: Training curves of recurrent (left) vs. Transformer (center) architectures on FFLM,
with best-so-far evaluation errors highlighted for clarity. Transformers fail to extrapolate robustly
to the long tail of long-range dependencies, even on this extremely simple task of remembering one
bit. The bolded box contains our chosen 6-layer 19M-parameter canonical baseline model. We find
that the ability to complete flip-flop language prompts emerges in natural language models, but is
not robust (right). Bottom: examples from the sparser FFL(0.98) and denser FFL(0.1) distributions,
causing distinct (long-range and short-range) failure modes for the baseline Transformer model.

as FFL(0.1) (many “dense” sequences). Training and evaluating the read accuracies of Transformer
models of various sizes, as well as a recurrent LSTM model, we find the following (see Figure 3.24):

(R1) Transformers exhibit a long, irregular tail of errors. Such errors occur on both sparse and
dense sequences. Further, a model’s out-of-distribution test error varies significantly between
random seeds, and even between iterates within the same training run.

(R2) 1-layer LSTM extrapolates perfectly. In stark contrast, with 20 times fewer training samples
and iterations, a small recurrent model achieves 100% accuracy, on 100 out of 100 runs.

As a counterpart to these findings, we observe similar anomalies in real LLMs, when prompted to
complete natural textual embeddings (Figure 3.23, top right) of flip-flop tasks:

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly. Beyond a
certain scale, natural language models can learn to process (natural embeddings of) flip-flop
languages from in-context demonstrations. However, this emergent capability is not robust:
there exist rare read errors, whose probabilities amplify as the sequence length T grows. We
provide details for the few-shot evaluation protocol in Section 3.5.6.2.1.

3.5.3 Multiplicity of mechanisms for attention glitches

What failure mechanisms account for these reasoning errors, which occur for both short- and long-
range dependencies? In this section, we discuss how Transformer self-attention modules, when
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tasked with representing flip-flops, can exhibit multiple (perhaps mutually entangled) failure mech-
anisms. The accompanying propositions are proven in Section 3.5.7.2 and Section 3.5.7.3.

An insufficient explanation: n-gram models. As a warmup, consider a language model P̂r[xt+1|x≤t]

which only depends on the n most recent tokens in the context. Then, if n ≪ 1
1−p , the bulk of P̂r’s

predictions on FFL(pi = p) can be no more accurate than random guessing. This recovers one qual-
itative trend (degradation of accuracy with dependency length) observed in the experiments. How-
ever, this cannot fully explain our findings: it fails to account for the incorrect predictions on dense
sequences. Furthermore, the Transformers’ outputs on FFL(0.98) are mostly correct; their accuracies
on very long-range dependencies are nontrivial, despite not being perfect. There must therefore be
subtler explanations for these errors.

Lipschitz limitations of soft attention. Moving to finer-grained failure mechanisms, a known [Hahn,
2020, Chiang and Cholak, 2022] drawback of soft attention is that its softmax operation is “too soft”–
for any weight matrices with fixed norms, the attention gets “diluted” across positions as the se-
quence length T increases, and can fail to perform an intended “selection” operation. We provide a
formal statement and proof (Proposition 4) in Section 3.5.7.2.

Difficulty of non-commutative tiebreaking. Can we simply robustify soft attention by replacing it
with hard attention? We present a brief analysis which suggests that even hard attention can be brittle.
In a stylized setting (one-layer models with linear position encodings), we show that self-attention
can confidently attend to the wrong index, unless the weight matrices precisely satisfy an orthogonality
condition (Proposition 5). This suggests the existence of spurious local optima, which we do not at-
tempt to prove end-to-end; however, we provide supporting empirical evidence in the experiments
in Section 3.5.7.3.

3.5.4 (Imperfect) mitigations for attention glitches

In this section, we investigate various approaches towards eliminating the long tail of reasoning errors
exhibited by Transformer FFLMs. We select the 19M-parameter model (which has L = 6 layers,
d = 512 embedding dimensions, and H = 8 heads) from Section 3.5.2 as a canonical baseline, and
conduct precise evaluations of various direct and indirect interventions.

3.5.4.1 Direct solutions

Ideal solution: improving data coverage. Prior work has made clear that data significantly impacts
the performance [Schuhmann et al., 2022, Eldan and Li, 2023]. Hence, we begin by examining what
is perhaps the most obvious solution: removing the need for out-of-distribution extrapolation, by
training directly on more diverse examples. Indeed, we verify that this works near-perfectly:

(R4) Training on rare sequences works best, by a wide margin. By training on a uniform mixture of
FFL distributions with pi = {0.9, 0.98, 0.1}, the baseline architecture reliably converges to solu-
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tions with significantly fewer errors on each of these 3 distributions (teal violins in Figure 3.25).
In 6 out of 25 runs, we did not detect a single error.

This should not be surprising, in light of the realizability of flip-flops by self-attention (and, more
generally, the existence of shortcuts functionally identical to RNNs [Liu et al., 2023a]), and corrobo-
rates similar conclusions from [Zhang et al., 2021a]. We also find that weaker improvements emerge
by straightforwardly increasing scale parameters in the model and training pipelines:

(R5) Resource scaling (in-distribution data, training steps, network size) helps. However, the im-
provements are orders of magnitude smaller than those in (R4), and we observe tradeoffs be-
tween sparse- and dense-sequence extrapolation; see the blue violins in Figure 3.25.

Another class of direct solutions is to externalize the chain of thought (CoT): train (or finetune, or
prompt) the model to explicitly output the intermediate reasoning steps [Nye et al., 2021b, Wei et al.,
2022b]. We do not investigate this strategy in this paper, and note that prior work has provided suf-
ficient evidence to affirm its success in inducing the robust learning of recurrences on long synthetic
sequences [Anil et al., 2022b, Zhou et al., 2022, Liu et al., 2023a]. Moreover, it cannot be guaranteed
that a single indivisible reasoning step in a CoT is free of attention glitches; the focus of this work is
to isolate and mitigate this intrinsic architectural issue.

3.5.4.2 Indirect algorithmic controls: a bag of regularization tricks

The interventions listed in Section 3.5.4.1 are all potentially practical, and may shed light on how
closed-domain LLM hallucinations will diminish with data quality, scale, and improved inference
strategies. However, it is not always feasible to implement these fixes under resource constraints
(especially data). We next investigate an orthogonal design space, of how to robustify the internal
memory mechanisms of neural sequence models. Note that the exceptionally strong extrapolative
performance of the LSTM provides a “skyline”, showing the possibility of far more robust architec-
tures than the Transformer (in the flip-flop setting, with this restricted set of considerations).

Standard regularization heuristics. There is a large array of not-fully-understood algorithmic tricks
for “smoothing” the behavior of LLMs. We test the extrapolative behavior of models trained with
weight decay and dropout (at the attention, feedforward, and embedding layers), as well as a host of
algorithmic choices known to modulate generalization (batch sizes, learning rates, optimizer hyper-
parameters, position embeddings, activation functions). Due to the extreme variability noted in (R1),
we quantify effects on extrapolation by training and evaluating at least 25 replicates for each choice
under consideration.

Attention sharpening: a non-standard regularization technique. Inspired by the “diluted hard
attention” calculation in Section 3.5.3, and the fact that the attention heads of trained models do not
attend sharply (see Figure 3.26), we train Transformer models with attention-sharpening regularizers:39

39While less popular, such losses have been used to sparsify dependencies in similar contexts [Zhang et al., 2018, Sukhbaatar
et al., 2021].
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Figure 3.25: A long tail of flip-flop errors for 10,625 Transformer models. Left: Out-of-distribution
evaluations for all models; some algorithmic choices help substantially (note the logarithmic axes),
but nothing we tried, aside from training on o.o.d. data, could fully eliminate attention glitches.
Right: Effects of individual architectural and algorithmic choices on both types of extrapolation
(sparse and dense sequences). Some configurations reduce attention glitch rates by orders of magni-
tude. Horizontal marks denote {min, 25%, median, 75%, max} test errors on > 3× 105 predictions,
over 25 replicates (500 for the baseline model). Dots at the bottom indicate runs with 0 error.

during training, for attention weights α ∈ ∆([T]), adding differentiable loss terms which encourage
sparsity (e.g. the mixture’s entropy H(α), or negative p-norms −∥α∥2, −∥α∥∞).

(R6) Many algorithmic choices influence extrapolative behaviors. We find that some architectural
variants and regularization tricks have orders-of-magnitude effects on the out-of-distribution
performance of Transformers; see the purple, brown, red, and gold violins in Figure 3.25 (right).
Our strongest improvements on sparse sequences are obtained by large (0.5) embedding dropout
and attention-sharpening losses; on dense sequences, non-trainable position embeddings are
the most helpful.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely. The scatter
plot in Figure 3.25 (left) gives an overview of our entire search over architectures and hyper-
parameters, showing (dense-sequence error, sparse-sequence error) pairs for every model we
trained. We found it extremely difficult to find a setting that reliably produces Transformer
models with simultaneous improvements over the baseline on sparse and dense sequences. Re-
call that it is trivial to do so with an LSTM model.

3.5.4.3 Preliminary mechanistic study

In this section, we move to a simpler setting to gain finer-grained understanding of how sparsity
regularization affects the learned solutions. Specifically, we look at the task of simulating the flip-flip
automaton (Example 2), whose inputs consist of {σ0, σ1,⊥} as two types of write and 1 no-op. This
task can be solved by a 1-layer Transformer with a single attention head which attends sparsely on
the most recent write position. It also serves as a building block for more complex tasks [Liu et al.,
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(a) (b)

(c)

(d)

Figure 3.26: Causal attention patterns for flip-flop simulation (Definition 11); orange dots / blue
diamonds mark the positions of write tokens σ0 / σ1. (a),(b) are subselected respectively from a
regular (non-sparse) and a sparse multi-layer model (details in Appendix 3.5.6.5). (c), (d) are from
two 1-layer 1-head models. The attention pattern highlighted by the purple box in (b) coincides with
the “ideal” attention pattern in (c). However, sparse models can be wrong, as shown in (d) (error
marked in red).

2023a], hence observations from this simple setup can potentially be useful in broader contexts.

Figure 3.26 shows examples of attention patterns on the flip-flop simulation task, subselected from 6-
layer 8-head models trained with and without attention-sharpening regularization. It is evident that
the attention patterns of the sparse model are less complex and easier to interpret compared to those
of the un-regularized model. For example, we can identify one head in the sparse model that exactly
coincide with the attention pattern 40 that an “ideal” 1-layer 1-head model implements (Figure 3.26c).

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist.
As mentioned in (R7), attention-sharpening regularization cannot fully eliminate the sporadic
errors, which are partially induced by the complexity and redundancy of attention patterns.
Moreover, sharpened attention can induce additional failure modes, such as confidently at-
tending to incorrect write positions. An example is demonstrated in Figure 3.26d, where the
attention focuses on an initial write, likely caused by the fact that earlier positions are overem-
phasized due to the use of causal attention masks. Another example occurs in length generaliza-
tion, where the attention is correct at positions earlier in the sequence, but starts to confidently
focus on wrong positions as it moves towards later positions (Proposition 5). Details and more
discussions are provided in Section 3.5.6.5.

3.5.5 Discussion

We have introduced flip-flop language modeling (FFLM), a synthetic benchmark for probing the fine-
grained extrapolative behavior of neural sequence models, based on a one-bit memory operation

40While it is well-known that attention patterns can be misleading [Jain and Wallace, 2019, Bolukbasi et al., 2021, Meister
et al., 2021] at times, they do provide upper bounds on the magnitude of the dependency among tokens. These upper bounds
are particularly useful in the case of (1-)sparse attentions: a (near) zero attention weight signifies the absence of dependency,
which greatly reduces the set of possible solutions implemented.
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which forms a fundamental building block of algorithmic reasoning. Transformer models, trained
on insufficiently diverse flip-flop sequences, make a long tail of sporadic reasoning errors, which we
call attention glitches. Through extensive controlled experiments, we find that many algorithmic mit-
igations can reduce the frequency of attention glitches, but none can eliminate them entirely. FFLM
provides a minimalistic setting in which Transformers are far inferior to recurrent sequence models,
with respect to multiple criteria (efficiency, stability, and extrapolation).

Below, we discuss the broader implications of our findings.

3.5.5.1 Why this flip-flop language?

While FFLM is intended to be simple and synthetic, there are alternative forms that can be even sim-
pler and argubly more natural for certain purposes. For instance, a purer instantiation of flip-flop
sequence processing is used in both Section 3.4 and the mechanistic interpretability experiments (Sec-
tion 3.5.4.3), where the sequence-to-sequence network is tasked with non-autoregressive transduction:
given the sequence of input symbols σ1, . . . , σT , output the sequence of states q1, . . . , qT . This is most
natural when studying the Transformer architecture’s algebraic representations in their most isolated
form.

Our autoregressive sequence modeling setting is a slight departure from this setting; we discuss its
properties and rationale below.

• The autoregressive setting “type-checks” exactly with standard state-of-the-art autoregressive
(a.k.a. causal, forward, or next-token-prediction) language modeling. This makes it more con-
venient and intuitive as a plug-and-play benchmark.

• The cost is a layer of indirection: the model needs to associate “instruction” tokens with their
adjacent “data” tokens. This is a natural challenge for representation learning, and is certainly
a necessary cursor for robust extrapolation on natural sequences that embed similar tasks (like
those considered in Figure 3.23c). It is straightforward to remove this challenge: simply tokenize
at a coarser granularity (i.e. treat (instruction, data) pair as a distinct vocabulary item).

• The multi-symbol (and variable-length-symbol, etc.) generalizations of the binary flip-flop lan-
guage are more parsimonious. If there are n instead of 2 tokens, this language can be encoded
with = n + 3 commands. Without the decoupling of “instruction” tokens from “data”, the vocab-
ulary size would scale suboptimally with n.

• The conclusions do not change: in smaller-scale experiments, we observe the same extrapolation
failures between the autoregressive and non-autoregressive task formulations.

3.5.5.2 What does this entail about hallucinations in natural LLMs?

The motivating issue for this work is the phenomenon of “closed-domain hallucinations” in non-
synthetic LLMs (e.g. the errors demonstrated in Figure 3.2). We hypothesize that attention glitches
occur in the internal algorithmic representations of Transformer models of natural language, and that
they account for (a non-negligible portion of) the reasoning errors encountered in practice. To our
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knowledge, this is the first attempt to attribute model hallucinations to a systematic architectural flaw
in the Transformer. However, confirming or refuting this hypothesis is far outside the scope of this
paper; the opaque indirections and lack of adequate controls on the training data present significant
methodological challenges.

Even precisely articulating this hypothesis leaves degrees of freedom which are difficult to resolve.
At a high level, we hypothesize that attention glitches cause (some) closed-domain hallucinations in Trans-
former models of more complex languages. However, due to the fact that neural networks’ internal rep-
resentations evade simplistic mechanistic characterization, it is a significant challenge to formulate a
rigorous, testable version of this hypothesis. We discuss the subtleties below.

First, we discuss a more general notion of attention glitches, of which the flip-flop errors considered in
this papers are a special case. We define attention glitches as failures of trained attention-based networks
to implement a hard retrieval functionality perfectly. To formalize this notion, there are several inherent
ambiguities– namely, the notions of “hard retrieval” and “perfectly”, as well as the granularity of
“subnetwork” at which an attention glitch can be defined non-vacuously. The FFLM reasoning errors
considered in this work provide a minimal and concrete resolution of these ambiguities. We discuss
each of these points below:

• Hard retrieval: To succeed at FFLM, a network’s internal representations must correctly imple-
ment the functionality of retrieving a single bit (from a sequence of bits, encoded unambiguously
by the network), selected via the criterion of “most recent write position”. This can be expanded
into a richer functional formulation of hard attention, by generalizing the set of possible retrieved
contents (a discrete set of larger cardinality, or, even more generally, a continuous set), as well as
more complex selection criteria (e.g. “least recent position”).

• Ground truth: Of course, to define “errors” or “hallucinations” in reasoning, there must be a well-
defined ideal functionality. For FFLM, the notion of “closed-domain” reasoning and hallucinations
is evident: the ideal behavior is for a model’s outputs to coincide with that of the flip-flop machine
on all input sequences. This straightforwardly generalizes to all formal languages, where the
model is expected to correctly produce the deterministic outputs of automata which parse these
languages. By considering expanded notions of “ground truth”, it is possible to capture other
notions of model hallucinations (such as incorrectly memorized facts). Our work does not address
open-domain hallucinations, which may be unrelated to attention glitches.

• Submodules: Towards attributing implementations and errors to localized components of a net-
work, it is impossible to provide a single all-encompassing notion of “localized component”. This
is a perennial challenge faced in the mechanistic interpretability literature. Our work considers
two extremes: the entire network (in the main experiments, where we probe end-to-end behavior),
and a single self-attention head (in Sections 3.5.3, 3.5.4.3 and Section 3.5.6.5, in which we probe
whether a single attention head can learn multiplication in the flip-flop monoid). Even when
considering the same functionality, attention glitches can be considered for different choices of
“submodule”.41 Our results reveal a key subtlety: in the presence of overparameterization (more
layers and parallel heads than necessary according to the theoretical constructions), Transformers
learn to process flip-flop languages via soft attention.

41Beyond the two extremes considered in this work, some examples include “a subset of attention heads”, “a subset of
layers”, and “a subspace of the entire network’s embedding space”.
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We expect that to effectively debug the full scope of LLM hallucinations, all of the above choices will
need to be revisited, perhaps in tandem.

We hypothesize that the algorithmic reasoning capabilities of real LLMs (i.e. their ability to recognize,
parse, and transduce formal symbolic languages) are implemented by internal subnetworks whose
functionalities can be identified with generalizations of the flip-flop machine. To the extent that such
modules exist, attention glitches (the failure of these modules to represent the flip-flop operations per-
fectly, due to insufficient training data coverage) cause sporadic end-to-end errors (“closed-domain
hallucinations”). In this work, we have treated the external case (where the task is to learn the flip-flop
directly).

3.5.5.3 Paths to hallucination-free Transformers?

Our findings suggest that in the near term, there are many mutually-compatible approaches for re-
ducing the frequency of attention glitches: data (particularly with high diversity), scale, and various
forms of regularization. Yet, the strikingly outsized benefit of replacing the Transformer with an
LSTM network suggests that architectural innovations towards the same ends are well worth examin-
ing. Obtaining a practical best-of-both-worlds architecture is a grand open challenge, for which new
recurrent designs [Katharopoulos et al., 2020, Peng et al., 2023, Dao et al., 2022] show great promise.
Note that we do not make the claim that recurrent architectures are the only ones which can extrapo-
late robustly.42

3.5.6 Experimental details

3.5.6.1 Details for LLM addition prompts (Figure 3.2)

These addition problem queries serve as a quick demonstration of (1) non-trivial algorithmic gener-
alization capabilities of Transformer-based LLMs; (2) the brittleness of such capabilities: we directly
address this type of reasoning error in this work. Table 3.2,3.3 show these queries and results in detail.

We emphasize that these examples were selected in an adversarial, ad-hoc manner; we do not attempt
to formalize or investigate any claim that the errors made by larger models are at longer sequence
lengths. We also cannot rule out the possibility that some choice of prompt elicits robust algorithmic
reasoning (e.g. the prompting strategies explored in [Zhou et al., 2022]). The only rigorous conclusion
to draw from Figure 3.2 is that of non-robustness: even LLMs exhibiting state-of-the-art reasoning
continue to make these elementary errors for some unambiguous queries with deterministic answers.
It was last verified on May 8, 2023 that GPT-4 (in its ChatGPT Plus manifestation) demonstrates the
claimed failure mode.

3.5.6.2 Extrapolation failures of standard Transformers (Section 3.5.2)

This section provides full details for our empirical findings (R1) through (R3).
42In particular, for algorithmic reasoning capabilities corresponding to the recurrent execution of deterministic finite-state

machines, the results of [Liu et al., 2023a] imply that the Transformer has a “reparameterized” recurrent inductive bias, which
parallelizes and hierarchizes any looped recurrence.

130



Input GPT-3.5 GPT-4 Answer

8493
+ 2357

10850 ✓ 10850 ✓ 10850

84935834
+ 23572898

108008732 ✗ 108508732 ✓ 108508732

9991999919909993
+ 6109199190990097

16111199100810090 ✗ 16101199100890090 ✗ 16101199110900090

Table 3.2: Examples (in Figure 3.2) of GPT variants on addition: While models tend to succeed at
additions with a small number of digits, they (nondeterministically) fail at longer additions.

Input GPT-3.5 GPT-4 Answer

4491
+ 8759

13250 ✓ 13250 ✓ 13250

80087394
+ 63457948

143045342 ✗ 143545342 ✓ 143545342

5101611078665398
+ 8969499832688802

1.4071110911354202e+16 ✗ 14071110911354196 ✗ 14071110911354200

Table 3.3: More examples of GPT variants on addition: While models tend to succeed at additions
with a small number of digits, they (nondeterministically) fail at longer additions.

Architecture size sweep. We consider a sweep over Transformer architecture dimensionalities, vary-
ing the three main size parameters. We emphasize that these are somewhat larger than “toy” models:
the parameters go up to ranges encountered in natural sequence modeling (though, of course, far
short of state-of-the-art LLMs).

• The number of layers (depth) L ∈ {2, 4, 6, 8}.

• The embedding dimension d ∈ {128, 256, 512, 1024}.

• The number of parallel attention heads per layer H ∈ {2, 4, 8, 16}. In accordance with standard
scaling rules-of-thumb, each head’s dimension is selected to be d/H.

Other hyperparameter choices. We use a sequence length of T = 512, again to reflect a typical
length of dependencies considered by nontrivial Transformer models. We use a canonical set of
training hyperparameters for this sweep: the AdamW [Loshchilov and Hutter, 2017b] optimizer,
with (β1, β2) = (0.9, 0.999), learning rate 3× 10−4, weight decay 0.1, 50 steps of linear learning rate
warmup, and linear learning rate decay (setting the would-be 10001th step to 0). We train for 10000
steps on freshly sampled data, and choose a minibatch size of 16; consequently, the models in this
setup train on 81,920,000 tokens.

Training and evaluation data. We probe the extrapolative behavior of Transformers on the flip-
flop language, training on online samples containing mostly moderate-length dependencies (pi =

0.8, pw = pr = 0.1), and evaluating on a distribution containing longer-range dependencies (pi =
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0.98, pw = pr = 0.01). Every 100 training steps, we evaluate out-of-distribution test errors achieved
by these models, on an online evaluation set of 103 sequences (which is identical between and within
runs; training curves show these errors), containing 3567 occurrences of the r instruction. For offline
evaluation, we expand this test set to 105 sequences, containing 353875 r commands, to obtain more
precise measurements of o.o.d. error. Training curves are shown with the smaller test set; all other
results are reported using the larger one.

(R1) Transformers exhibit a long, irregular tail of errors. Figure 3.27 shows training curves for
3 replicates (random seeds) in each setting, while the scatter plot in the main paper shows
variability of out-of-distribution accuracy across random seeds for the baseline setup. We find
that Transformers sometimes succeed at extrapolation, but erratically.

(R2) 1-layer LSTM extrapolates perfectly. We train a 1-layer LSTM [Hochreiter and Schmidhuber,
1997a] network, with hidden state dimension 128 (for a total of 133K parameters), for 500 steps
with the same optimizer hyperparameters as above. The LSTM model achieves exactly 0 final-
iterate o.o.d. error, over 100 out of 100 replicates.

Canonical baseline. We select the 6-layer, 512-dimensional, 8-head architecture (with 19M train-
able parameters) as our canonical baseline model: it is large in relevant dimensions43 to real Trans-
formers, while being small enough to allow for thousands of training runs at a reasonable cost. To
fully understand the variability of this single architectural and algorithmic setup, we train and eval-
uate 500 replicates in this setting.

Random data vs. random initialization. Recent synthetic probes on the surprising behavior of deep
neural nets on hard synthetic tasks [Barak et al., 2022a, Garg et al., 2022] obtain additional insights
by disentangling the effects of data randomness (i.e. the precise sequence of minibatches) vs. model
randomness (e.g. random initialization and dropout). We provide a quick demonstration in Figure 3.28
(left) that both sources of stochasticity matter. We do not perform a more detailed investigation of their
precise influence and roles.

Fully generative setting: similar negative results. As mentioned in Section 3.5.1.2, to capture a
setting closer to standard autoregressive (sometimes called GPT-style) language modeling, we find a
similar failure to extrapolate when models are trained to predict all tokens, rather than only the deter-
ministic ones (xt+1 such that xt = r). Figure 3.28 (right) exhibits some training curves for this setting,
showing non-extrapolation, variability, and instability. We observe that training (to in-distribution
convergence) takes slightly longer in this setting, and usually succeeds with the baseline architecture.
We do not perform further controlled experiments in this setting.

43Except the vocabulary size. In preliminary experiments, we obtained similar findings in the case of token spaces larger
than {0, 1}.
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3.5.6.2.1 Evaluating real LLMs on flip-flops

We provide a quick corroboration that while LLMs in practice can perform in-context reasoning when
the sequences are unambiguously isomorphic to a flip-flop language. We use the natural language
example from Figure 3.23 (top right), and evaluate the capability of popular pretrained LLMs to
correctly remember the state of a light switch. Specifically, write instructions in the FFLM task are
either “Alice turns the light off” or “Alice turns the light on”. The ignore instructions are either “Bob
eats a banana” or “Bob eats an apple”. All models are prompted with a translated, length-16 FFLM
task that’s been translated to English in this way before evaluation.

We measure this accuracy as a function of the sequence length for several well-known LLMs, includ-
ing GPT-2, GPT-2-large, GPT-2-xl, Pythia-12C, and GPT-NeoX-20B. Figure 3.24 shows how well these
models perform on this task (i.e. the correctness of the model when prompted with “The light is
turned ”) as the sequence length is varied. Consistent with the findings of this paper, larger models
tend to perform best at this task, and the quality of all models deteriorates with increased sequence
length. Each point on the plot considers 500 sequences of the indicated length. All models were
prompted with a randomly generated, length 16 flip flop sequence to allow the model to learn the
task in context. Accuracy is measured according to the frequency with which the model correctly
predicts the current state of the light switch, as described in Section 3.5.6.2.1.

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly.

Note that it is impossible to quantify the degree to which these sequences are “in-distribution” (it is
unlikely that any sequences of this form occur in the training distributions for these LLMs). Much
like linguistic reasoning evaluations in the style of BIG-bench [Srivastava et al., 2022], we rely on the
emergent capability of in-context inference [Brown et al., 2020] of the task’s syntax and semantics. As
discussed in Appendix 3.5.5.2, this layer of indirection, which is impossible to avoid in the finetuning-
free regime, can cause additional (and unrelated) failure modes to those studied in our synthetic
experiments. Fully reconciling our findings between the synthetic and non-synthetic settings (e.g. by
training or finetuning on sequences of this form, or via mechanistic interpretation of non-synthetic
language models) is outside the scope of this paper, and yields an interesting direction for future
work.

Interacting directly using FFLM sequences? Given the conversational abilities of LLMs, another way to
interact with an existing pretrained model is to explain the definition of FFLM in natural language,
and ask the model to output the correct state for r. We test this using ChatGPT (with GPT-4), as
demonstrated in Figure 3.29. ChatGPT seems to understand the rules and can get short sequences
correct (up to sequence length 400), but makes errors with unexpected connections on longer se-
quences.

3.5.6.3 Benefits of scale (Section 3.5.4.1)

In Section 3.5.4.1, we discussed mitigations that directly modify the training distributions and re-
sources:

(R4) Training on rare sequences works best, by a wide margin. See the teal violins in Figure 3.30.
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(R5) Resource scaling (in-distribution data, training steps, network size) helps. Training on more
data from the same distribution, as well as for more steps on the same examples, both improve
sparse-sequence performance, at the expense of dense-sequence performance (blue violins in
Figure 3.30). There is no discernible monotonic relationship between any of the Transformer’s
standard architecture size parameters (i.e. number of layers, embedding dimension, and num-
ber of parallel self-attention heads per layer) and extrapolative performance (navy violins).

We provide more results specifically related to scaling along various axes. As shown in Figure 3.30,
scaling helps improve the OOD performance, especially when more OOD data are introduced. How-
ever, the benefit is not clear, especially on dense sequences.

3.5.6.4 Indirect algorithmic controls for extrapolation (Section 3.5.4.2)

As shown in Figure 3.25, various architectural, algorithmic and regularization choices can help im-
prove over the baseline Transformer. We recall the main findings:

(R6) Many algorithmic choices influence extrapolative behavior. We sweep over various forms of
implicit and explicit regularizers; see Figures 3.31 and 3.32. Details are provided below.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely. Refer to the
scatter plot in Figure 3.25 (left) for a visualization of every training run.

Details for architecture variants. There is no clear consensus on the advantages and drawbacks of
various positional encodings, but it has been known Dai et al. [2019] that the choice of positional
symmetry-breaking scheme modulates long-sequence performance on natural tasks. We evaluate
various choices which appear in high-profile LLMs: sinusoidal, learned, ALiBi [Press et al., 2021],
and RoPE [Su et al., 2021]. We also try the zero positional encoding (which breaks symmetry via the
causal attention mask; see Haviv et al. [2022]. We find that non-trainable position encodings help on
dense sequences (FFL(0.1)), but have no clear benefit on sparse ones (FFL(0.98)) which require more
handling of long-term dependency. We also try the gated activation units considered by [Shazeer,
2020].

Details for attention sharpening. There are many possible choices of continuous regularization
terms which can promote sparsity in an attention head’s weights– we consider entropy, negative L2

loss, and negative L∞ loss. These terms are averaged across every attention head in the Transformer,
and added as a surrogate objective during training. We perform a large grid sweep over coefficients
{0.01, 0.03, ..., 0.1, 0.3, 1, 10, 30}, annealing schedules (linear and oscillating, starting from 0, 2000, and
5000 steps), and display in Figure 3.32 the 3 choices which appear on the Pareto front.

Optimizer. We also varied the optimizer parameters for AdamW (β1 ∈ {0.85, 0.9, 0.95}, β2 ∈ {0.95, 0.99, 0.999},
learning rate η ∈ {0.0001, 0.0003, 0.001, 0.003}) and found no significant improvements to extrapola-
tion performance.

134



3.5.6.5 Preliminary mechanistic study and challenges (Section 3.5.4.3)

We continue the discussions in Section 3.5.4.3 and provide preliminary mechanistic interpretability
results on simulating the flip-flop automaton (Definition 11). Recall the main takeaway:

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist.

Sparsity regularization helps sharpen the attention. Figure 3.34a,3.34b compare the attention pat-
terns of 1-layer 1-head models with or without attention-sharpening regularization. While both types
of models give correct results, the attention-sharpened model puts all attention weights to the most
recently write position, which is the solution given according to the definition of the task, whereas
the attention patterns of the non-regularized model (Figure 3.34a) are much less clean.

Are there solutions other than the “ideal” solution? There is a solution naturally associated with the
definition of the flip-flop automaton (i.e. the sparse pattern shown in Figure 3.34b), but it is not
necessarily the only solution. For example, an equally valid (dense) solution is for the model to attend
to every write token of the correct type. This is what the non-regularized (dense) models seems to be
implementing, as seen in Figure 3.34a, except for the final row where the model puts non-negligible
amount of weight on a write of a different type.

Are attention patterns reliable for interpretability? Prior work has pointed out the limitations of interpre-
tations based solely on attention patterns [Jain and Wallace, 2019, Bolukbasi et al., 2021]. The intuition
is that attention patterns can interact with other components of the network in various ways; for ex-
ample, WV can project out certain dimensions even though they may have contributed to a large
attention score. Hence, for multi-layer multi-head non-sparse models, the magnitude of attention
weights may not have an intuitive interpretation of “importance” [Meister et al., 2021]. For example,
Figure 3.35 shows examples where the attention on an incorrect token may be higher than that of the
correct token. 44 However, in a 1-layer 1-head model, 1-sparse attention as shown in Figure 3.34b
indeed offers interpretability, since if zero attention weight 45 necessarily means the absence of de-
pendency, which greatly reduces the set of possible solutions implemented. As shown in Figure 3.34c,
a write may not attend to itself due to the presence of residual link, but the attentions for read always
focus on the closest write as intended.

Sporadic errors persist. Section Section 3.5.4.1 (R5) showed that none of the mitigations was suc-
cessful at making Transformers reach 100% accuracy. One common failure mode is long-range depen-
dency, where the input sequences contain very few writes. The failure could be attributed to multiple
factors; we will explore one aspect related to attention patterns, demonstrated with a 1-layer 1-head
Transformers with linear position encoding, on a length-834 sequence with 2 writes. As shown in
Figure 3.33, the attentions for positions early in the sequence correctly attend to the most recent write.
However, attention starts to “drift” as we move to later positions, and the positions at the end of the
sequence attend entirely 46 to the recent read tokens, which contains no information for solving the

44However, if we consider the “importance / influence” as measured by the norms of the attetnion-weighted value vectors,
then the max norm still corresponds to the correct token, which helps explain why the final output is correct.

45By “zero” we mean an attention score on the magnitude of 1e-8 in the experiments.
46The attention weights that are not on the most recent write sum up to around 1e-7.
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task. This may be because the attention weights are affected too much by the position encodings, as
discussed in Proposition 5.

Optimization hurdles. While sparse solutions may preferred for various reasons, sparsity itself is
not sufficient to guarantee good performance: As shown in Figure 3.34d, sparsity regularization can
lead to bad local minima, where the model tends to (incorrectly) rely on earlier positions. This is
observed across different types of sparsity regularization. While we do not yet have a full explanation
of the phenomenon, a possible explanation for this bias is that earlier positions show up more often
during training, due to the use of the causal attention: a valid flip-flop solution is for the model
to attend to every write token of the correct type; positions earlier in the sequence get included in
more subsequences because of the causal mask, and are hence more likely to be attended to. We also
observe that the phenomenon seems to be closely related to the training distribution. For example,
the model is much more likely to get stuck at a bad local minima when p(⊥) = 0.5 (denser sequences)
compared to p(⊥) = 0.9 (sparse sequences).

Effect of sparsity regularization on training dynamics An interesting future direction is to under-
stand the learning dynamics of flip-flop tasks with attention-sharpening regularization, as suggested
by the (quantitively and qualitatively) different results and optimization challenges. As some initial
empirical evidence that the regularization indeed have a large impact on the dynamics, we found that
sharpened attention seems to have a regularization effect on the weight norms and lead to different
behaviors of the attention heads (Figure 3.36).

More examples of attention patterns Figure 3.37 shows the full set of attention patterns of two 6-
layer 8-head models trained with and without attention-sharpening regularization, corresponding to
Figure 3.26 (a,b). Attention-sharpening regularization can be applied in different ways; for exam-
ple, Figure 3.38 shows results of a model for which only the first layer is regularized. The attention
patterns of subsequent layers remain sharpen, even though there is no explicit regularization.

3.5.6.6 Software, compute infrastructure, and resource costs

GPU-accelerated training and evaluation pipelines were implemented in PyTorch Paszke et al. [2017].
For the FFLM experiments, we used the x-transformers47 implementations of the Transformer ar-
chitecture and variants. For the fine-grained mechanistic interpretability experiments on the pure
flip-flops, we used the “vanilla, GPT-2”-like Transformer implementation published by HuggingFace
[Wolf et al., 2019]. We plan to make our benchmarks and training code publicly available.

Each training run was performed on one GPU in an internal cluster, with NVIDIA P40, P100, V100,
and RTX A6000 GPUs, with at least 16GB of VRAM. Each (6-layer, 512-dimensional, 8-head) baseline
model took ∼10 minutes to train (and evaluate online) for 104 steps. A nontrivial fraction of the
compute time (∼ 20%) was spent on fine-grained evaluation through the coarse of training. The vast
majority of training runs are close to these specifications; consequently, one set of replicates under

47https://github.com/lucidrains/x-transformers
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identical conditions (i.e. each violin plot in each figure) is the product of ∼4 GPU-hours of training
time.

We hope that this computational investment will aid in understanding how to build robust Trans-
former models and training pipelines at much larger scales.

3.5.7 Formal understanding on mechanisms behind attention glitches (Section 3.5.3)

This section formally states and proves the propositions in Section 3.5.3.

As a quick recap, a Transformer [Vaswani et al., 2017] consists of multiple self-attention layers. Given
d-dimensional embeddings of a length-T sequence, denoted as X ∈ RT×d, a self-attention layer f
computes

f (X) = ϕ(WVsoftmax(XWQW
⊤
K X⊤)XWVWC). (3.6)

where WQ,WK ∈ Rd×k for k ≤ d are the query and key matrix; WV ,W⊤
C ∈ Rd×k project the rep-

resentations from and back to Rd. softmax calculates row-wise softmax. ϕ : Rd → Rd is a 2-layer
fully-connected network. Residual links and layer norm can be optionally included at different places
of a self-attention layer.

3.5.7.1 Realizability of FFL by small Transformers

Proposition 3. A 2-layer 1-head Transformer with residual connections can represent ”deterministic” FFL.

Proof. Let us consider predicting in the deterministic mode (Section 3.5.1.2). Then we need to predict
xt+1 given x1:t with xt = r. In order to do this, we need to find the largest τ < t such that xτ = w

and output xτ+1. There are multiple ways to implement this, we will consider the following: (1)
layer 1 converts FFL to the flip-flop automaton (Definition 11), (2) layer 2 implements the flip-flop
construction. For layer 2, we can use the construction described in Liu et al. [2023a]. Here we present
the full construction for completeness.

We will consider a two-layer Transformer with one head in each layer followed by a 2-layer MLP and
a residual connection. In particular, for x ∈ {w, r, i, 0, 1}T :

f (x) = ϕ2(W
(2)
V softmax( f1(x)W (2)

Q W
(2)
K

⊤
f1(x)⊤) f1(x)W (2)

V W
(2)
C )

where f1(x) = E(x) + ϕ1(W
(1)
V softmax(E(x)W (1)

Q W
(1)
K

⊤
E(x)⊤)E(x)W (1)

V W
(1)
C )

where E(x) ∈ RT×d is the encoding for the input sequence x given some encoding function E.

Our construction is as follows:

• Select d = 7, k = 2, H = 1 (recall from Equation 3.6that d, k are the dimensions of WQ,WK).
Among the d = 7 embedding dimension, two dimensions are for the operations (w versus r,i),
two for the two write values, one for the positional embedding, one for padding, and the final
dimension is for storing whether the previous position is the most recent write, as calculated by
the first layer.
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• Select input symbol encodings such that for the token at position t, denoted as xt,

E(xt) := 1[xt = w]e1 + 1[xt = r∨ xt = i]e2 + 1[xt = 0]e3 + 1[xt = 1]e4 + e5 + Pt ∈ R7,

where Pt is the positional encoding. We use the linear positional encoding Pt := (t/C) · e6, for
some (large) constant C. For a fixed sequence length T, we can set C = T.

• W
(1)
Q :=

[
e5 e5

]
∈ R7×2, W

(1)
K :=

[
3c e1

2T ce6

]
∈ R7×2 for c = O(T log(T)), W

(1)
V :=[

e1 0

]
∈ R7×2, and W

(1)
C

⊤
:=

[
e7 0

]
∈ R7×2.

• W
(2)
Q :=

[
e5 e5

]
∈ R7×2, W (2)

K :=

[
ce7 ce6

]
∈ R7×2 for c = O(T log(T)), W (2)

V :=

[
e4 0

]
∈

R7×2, and W
(2
C

⊤
:=

[
e1 0

]
∈ R7×2.

In layer 1, the unnormalized attention score for query position i to key position j is〈
W

(1)
Q

⊤
xi,W

(1)
K

⊤
xj

〉
=

〈
c
T
·
[

3
2
· 1[xj = w], j

]
, [1, 1]

〉
=

c
T
·
(

3
2
1[xj = w] + j

)
.

Note that the max attention value for position i is achieved at i if xi−1 ̸= w, else the max is achieved
at position i− 1.

In the setting of hard attention, the output for the ith token after the attention module is 1[xi−1 =

w ∨ xi = w]e7. Now similar to the constructions in Liu et al. [2023a] (Lemma 6), with a appropriate
choice of c = O(T log T), we can approximate hard attention by soft attention, and subsequently
use the MLP to round the coordinate corresponding to e7. The MLP otherwise serves as the identity
function. Together with the residual link, the first layer output (i.e. the second layer input) at position
i takes the form

f1(xi) = E(xi) + 1[xi−1 = w∨ xi = w]e7.

In layer 2, the unnormalized attention score computed for position i attending to j is〈
W

(2)
Q

⊤
f1(xi),W

(2)
K

⊤
f1(xj)

〉
=

c
T

〈
[1, 1],

[
1[xj−1 = w∨ xj = w],

j
T

]〉
=c ·

(
1[xj−1 = w∨ xj = w] +

j
T

)
.

Note that the max attention value is achieved at the position right after the closest w to xi. Let us
denote this position by τ ≤ i, then with hard attention, the output at the ith position is xτe1, as
desired. Now similar to before, we can approximate this with soft attention and use the MLP to do
the appropriate rounding to get our final construction.

Remark: The construction in Proposition 3 is a construction, but it is not the only construction. For
example, for the second layer implementation for the flip-flop automaton, there could be an equally
valid dense solution, where the model uniformly attends to all write tokens of the correct type.
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3.5.7.2 Failure of soft attention: attention dilution with bounded Lipschitzness

Consider any attention layer with weight matrices WQ,WK ∈ Rk×d. If ∥W⊤
K WQ∥2 is bounded, then

the attention cannot be sparse as the sequence length increases:

Proposition 4 (Leaky soft attention). Assume the latent variables have bounded norm, i.e. ∥v∥2 ≤ 1 for any
latent vector v ∈ Rd, and let σmax denote the max singular value of W⊤

K WQ. Then for T = Ω(exp(2σmax)),
any sequences of latent vectors {vτ}τ∈[T], ∥softmax({vτ}τ∈[T])∥∞ = 1−Ω(1).

Proof. The proof follows directly from a simple rewriting.

For any u,v with ∥u∥2, ∥v∥2 ≤ 1, the pre-softmax attention score is bounded by u⊤W⊤
K WQv ∈

[−σmax, σmax].

exp(v⊤t W⊤
K WQvT)

∑τ∈[T] exp(v⊤τ W⊤
K WQvT)

≤ exp(σmax)

exp(σmax) + (T − 1) exp(−σmax)
= 1− T − 1

T − 1 + exp(2σmax)
,

where the last term is Ω(1) when T = Ω(exp(2σ)).

Attention dilution and failure on dense sequences Strictly speaking, attention dilution caused by
an increased sequence length does not necessarily affect the output of the layer. For example, if
ignore gets mapped to a subspace orthogonal to that of write, then WV can project out the ignore

subspace, making the weighted averaged depending only on the number of writes. Hence with the
presence of layer norm, attention dilution won’t be a problem for the final prediction if the number
of write is upper bounded regardless of the sequence length.

Moreover, for the experiments in Section 3.5.4.1, denser sequences (i.e. larger p(write)) does increase
the number of write compared to the training distribution, hence attention dilution can be a potential
cause for the decrease in performance.

3.5.7.3 Failure of hard attention: bad margin for positional embeddings

In this section, we look at a failure mode that a 1-layer 1-head Transformer has on the flip-flop au-
tomaton simulation task. Why do we care about this setup? Simulating the automaton is in fact a
sub-task of FFLM. For example, the second layer of the construction in Proposition 3 reduces to the
simulation task.

Consider a 1-layer 1-head Transformer with parameters WQ,WK ∈ Rk×d. Write the attention query
matrix WQ as WQ = [WQe,WQp], where WQe ∈ Rk×(d−1) corresponds to the embedding dimen-
sions, and WQpRk corresponds to the dimension for the linear positional encoding. Write WK =

[WKe,WKp] similarly.

Then, we claim that the following must be true, regardless of the choice of the token embedding:

Proposition 5. Consider linear positional encoding, i.e. pi = i/C for some (large) constant C. Then, perfect
length generalization to arbitrary length requires W⊤

QpWKp = 0.
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Proof. Let e(i) ∈ Rd−1 denote the embedding vector (without the position encoding) for token i ∈
{0, 1, 2}. Let vt = [et, pt]⊤ ∈ Rd denote the embedding for the tth token, where et ∈ {e(0), e(1), e(2)}Rd

is the embedding of the token itself, and pt := i/C is the linear positional encoding.

Let si→j denote the pre-softmax attention score that the ith token puts on the jth token, which is given
by

si→j =
〈
WQvi,WKvj

〉
(3.7)

=e⊤i WQeWKeej + e⊤i W⊤
QeWKp · pj + (ej)

⊤WKeWQp · pi +W⊤
QpWKp · pi pj (3.8)

=e⊤i WQeWKeej +
e⊤i W⊤

QeWKp

C
· j +

(ej)
⊤WKeWQp

C
· i +

W⊤
QpWKp

C2 · ij. (3.9)

We will prove the proposition in two cases, which respectively require W⊤
QpWKp ≤ 0 and W⊤

QpWKp ≥
0.

Case 1: W⊤
QpWKp ≤ 0 required Consider the case of long-term dependency, where the input se-

quence consists of an initial write and a series of reads, i.e. σ1 = 1 and σt = 0 for t > 1. Then for the
Tth position, the score for the first write token is

sT→1 =
〈
WQvT ,WKv1

〉
(3.10)

=e(0)
⊤
WQeWKee

(1) +
e(0)

⊤
W⊤

QeWKp

C
+

(e(1))⊤WKeWQp

C
· T +

W⊤
QpWKp

C2 · T (3.11)

=

(
(e(1))⊤WKeWQp

C
+

W⊤
QpWKp

C2

)
· T + O(1) = O(T), (3.12)

and the score for the last write token is

sT→T =
〈
WQvT ,WKvT

〉
(3.13)

=e(0)
⊤
WQeWKee

(0) +
e(0)

⊤
W⊤

QeWKp

C
T +

e(0)
⊤
WKeWQp

C
· T +

W⊤
QpWKp

C2 · T2 (3.14)

=
W⊤

QpWKp

C2 · T2 + O(T). (3.15)

Think of C as going to infinity. If W⊤
QpWKp > 0, then there exists a sufficiently large T such that

sT→T > sT→1. Hence we need W⊤
QpWKp ≤ 0.

Case 2: W⊤
QpWKp ≥ 0 required Consider the input sequence where σ1 = 1, σT−1 = 2, and σt = 0

for t ∈ [T] \ {1, T − 1}. Similar to the above, calculate the pre-softmax attention scores for σ1, σT−1 as

sT→1 = O(T) (3.16)

sT→T−1 =
W⊤

QpWKp

C2 · T2 + O(T). (3.17)

Since we need sT→T−1 > sT→1, it must be that W⊤
QpWKp ≥ 0.
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3.6 Application: implication on OOD performance and myopic in-
terpretability methods

3.6.1 Setup and notation

Dyck languages A Dyck language [Schützenberger, 1963] is generated by a context-free grammar,
where the valid strings consist of balanced brackets of different types (for example, “[()]” is valid
but “([)]” is not). Dyckk denote the Dyck language defined on k types of brackets. The alphabet
of Dyckk is denoted as [2k] ≡ {1, 2, · · · , 2k}, where for each type t ∈ [k], tokens 2t − 1 and 2t are
a pair of corresponding open and closed brackets. Dyck languages can be recognized by a push-
down automaton — by pushing open brackets onto a stack and and popping open brackets when
it encounters matching closed brackets. For a string w and i ≤ j ∈ Z+, we use wi:j to denote the
substring of w between position i and position j (both ends included). For a valid prefix w1:i, the
grammar depth of w1:i is defined as the depth of the stack after processing w1:i:

D(w1:i) = #Open Brackets in w1:i − #Closed Brackets in w1:i.

We overload D(w1:i) to also denote the grammar depth of the bracket at position i. For example, in
each pair of matching brackets, the closing bracket is one depth smaller than the open bracket. We
will use τi,d to denote a token of type i ∈ [2k] placed at grammar depth d ∈N.

We consider bounded-depth Dyck languages following Yao et al. [2021a]. Specifically, Dyckk,D is a
subset of Dyckk such that the depth of any prefix of a word is bounded by D,

Dyckk,D := {w1:n ∈ Dyckk | max
i∈[n]

D(w1:i) ≤ D}. (3.18)

While a bounded grammar depth might seem restrictive, it suffices to capture many practical settings.
For example, the level of recursion occurring in natural languages is typically bounded by a small
constant [Karlsson, 2007, Jin et al., 2018]. We further define the length-N prefix set of Dyckk,D as

Dyckk,D,N = {w1:N | ∃n ≥ N, wN+1:n ∈ [2k]n−N , s.t. w1:n ∈ Dyckk,D}. (3.19)

Our theoretical setup uses the following data distribution Dq,k,D,N :

Definition 12 (Dyck distribution). The distribution Dq,k,D,N , specified by q ∈ (0, 1), is defined over
Dyckk,D,N such that ∀w1:N ∈ Dyckk,D,N ,

p(w1:N) ∝(1/k)#{i|wi is open, D(w1:i)=1} · (q/k)#{i|wi is open, D(w1:i)>1} (3.20)

· (1− q)#{i|wi is closed, D(w1:i)<D−1}.

That is, q ∈ (0, 1) denote the probability of seeing an open bracket at the next position, except for two
corner cases: 1) the next bracket has to be open if the current grammar depth is 0 (1 after seeing the
open bracket); 2) the next bracket has to be closed if the current grammar depth is D. Note that at any
position, there is at most one valid closing bracket.
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Training Objectives. Given a model fθ parameterized by θ, we train with a next-token prediction
language modeling objective on a given Dq,k,D,N . Precisely, given a loss function l(·, ·) → R, fθ is
trained to minimize the loss function minθ L(θ;Dq,k,D,N) with

L(θ;Dq,k,D,N) = Ew1:N∼Dq,k,D,N

[
1
N

N

∑
i=1

l( fθ(w1:i−1), z(wi))

]
, (3.21)

in which z(wi) ∈ {0, 1}2k denotes the one-hot embedding of token wi. We will omit the distribution
Dq,k,D,N when it is clear from the context. We will also consider a ℓ2-regularized version Lreg(θ) =

L(θ) + λ
∥θ∥2

2
2 with parameter λ > 0.

For our theory, we will consider the mean squared error as the loss function: 48

l := lsq(x, zi) = ∥x− zi∥2
2. (3.22)

In our experiments, we apply the cross entropy loss following common practice.

Transformer Architecture. We consider a general formulation of Transformer in this work: the l-
th layer is parameterized by θ(l) := {W(l)

Q , W(l)
K , W(l)

V , τ(g(l))} ∈ Θ, where W(l)
K , W(l)

Q ∈ Rma×m, and

W(l)
V ∈ Rm×m are the key, query, and value matrices of the attention module; τ(g(l)) are parameters

of a feed-forward network g(l), consisting of fully connected layers, (optionally) LayerNorms and
residual links. Given X ∈ Rm×N , the matrix of m-dimensional features on a length-N sequence, the
l-th layer of a Transformer computes the function 49

fl(X; θ(l)) =g(l)
(

LN
(

W(l)
V X σ

(
C + (W(l)

K X)⊤(W(l)
Q X)

)
︸ ︷︷ ︸

attention pattern

)
+ X

)
, (3.23)

where σ is the column-wise softmax operation defined as σ(A)i,j =
exp(Ai,j)

∑N
k=1 exp(Ak,j)

, C is the causal mask

matrix defined as Ci,j = − inf ·1[i > j] where inf denotes infinity. We call σ
(
C + (W(l)

K X)⊤(W(l)
Q X)

)
the Attention Pattern of the Transformer layer l. LN represents column-wise LayerNorm operation,
whose jth output column is defined as:

LNCLN (A):,j =
P⊥A:,j

max{∥P⊥A:,j∥2, CLN}
,P⊥ = Im −

1
m

11⊤. (3.24)

Here P⊥ denotes the projection orthogonal to the 11⊤ subspace 50 and CLN is called the normalizing
constant for LayerNorm.

48The challenge of applying our theory to cross-entropy loss is that for some prefixes, their grammatical immediate contin-
uations strictly exclude certain tokens in the vocabulary (e.g. “]” cannot immediately follow “{”), so the optimal cross-entropy
loss can only be attained if some parameters are set to infinity. However, when label smoothing is added, the optima is finite
again, and analysis similar to ours could plausibly apply.

49Equation (3.23) is slightly different from the standard GPT architecture which places X within the layernorm. The two
definitions perform similarly empirically, but Equation (3.23) is mathematically cleaner, mainly for the sufficiency part of The-

orem 1: when the balance condition holds, the last column of the term W(2)
V Xσ

(
C + (W(2)

K X)⊤(W(2)
Q X)

)
will converge to

zero when input length converges to infinity. Hence, if not all e(τt,d) where τt,d is a closed bracket aligns with 1m, then it is
impossible for the model to perfectly generate Dyck for arbitrary length.

50this is just a compact way to write the standard mean subtraction operation
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We will further define the attention output at the l-th layer as

al(X; θ(l)) =W(l)
V Xσ

(
C + (W(l)

K X)⊤(W(l)
Q X)

)
. (3.25)

When CLN = 0, we will also consider the unnormalized attention output as

ãl(X; θ(l)) =W(l)
V Xσ̃

(
C + (W(l)

K X)⊤(W(l)
Q X)

)
. (3.26)

where σ̃(A)i,j = exp(Ai,j) and it holds by definition that LN0(ãl(X; θ(l))) = LN0(al(X; θ(l))).

An L-layer Transformer TL consists of a composition of L of the above layers, along with a word
embedding matrix WE ∈ Rm×2k and a linear decoding head with weight WHead ∈ R2k×w. When
inputting a sequence of tokens into Transformer, we will append a starting token tS that is distinct
from any token in the language at the beginning of the sequence. Let Z ∈ R2k×(N+1) denote the
one-hot embedding of a length-N sequence, then TL computes for Z as

T (Z) = WHead

[
fL(· · · ( f1 (WEZ)))

]
1:2k,(N+1)

. (3.27)

3.6.2 Theoretical Analyses

Many prior works have looked for intuitive interpretations of Transformer solutions by studying the
attention patterns of particular heads or some individual components of a Transformer [Clark et al.,
2019b, Vig and Belinkov, 2019, Dar et al., 2022]. However, we show in this section why this methodol-
ogy can be insufficient even for the simple setting of Dyck. Namely, for Transformers that generalize
well on Dyck (both in-distribution and out-of-distribution), neither attention patterns nor individual
local components are guaranteed to encode structures specific for parsing Dyck. We further argue that
the converse is also insufficient: when a Transformer does produce interpretable attention patterns
(suitably formalized), there could be limitations of such interpretation as well, as discussed in Sec-
tion 3.6.5. Together, our results provide theoretical evidence that careful analyses (beyond heuristics)
are required when interpreting the components of a learned Transformer.

3.6.2.1 Interpretability Requires Inspecting More Than Attention Patterns

This section focuses on Transformers with 2 layers, which are representationally sufficient for process-
ing Dyck [Yao et al., 2021a]. We will show that even under this simplified setting, attention patterns
alone are not sufficient for interpretation. In fact, we will further restrict the set of 2-layer Transform-
ers by requiring the first-layer outputs to only depend on information necessary for processing Dyck:

Assumption 10 (Minimal First Layer). We consider 2-layer Transformers with a minimal first layer f1.
That is, if Z ∈ R2k×(N+1) denotes the one-hot embeddings of an input sequence tS , t1, . . . , tN ∈ [2k], then we
assume the (j + 1)th column of the output f1(WEZ) only depends on the type and depth of tj, ∀j ∈ [N].

Assumption 10 requires the first layer output to depend only on the bracket type and depth, disre-
garding any other information such as positions; an example of such a layer is given by Yao et al.
[2021a]. The construction of a minimal first layer can vary, hence we directly parameterize its output
instead:
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Definition 13 (Minimal first layer embeddings). Given a minimal first layer, e(τt,d) ∈ Rm denotes its
output embedding of τt,d for t ∈ [2k], d ∈ [D]. e(tS ) ∈ Rm is the embedding of the starting token.

Remark 3 (Simplicity as a feature (not a bug)). It is important to note that while the minimal first layer is
a strong condition, it does not weaken our results: We will show that the function class of 2-layer Transformers
already contains a rich set of solutions, none of which are necessarily interpretable. Note that the simplicity
of this architecture choice is intentional, since our theory on 2-layer Transformers directly implies similar con-
clusions for larger models, Intuitively, when moving to more complex architectures, the set of solutions can
only grow and complicate interpretability further, hence our main conclusion still stands. For example, even
though Theorem 1 and Theorem 2 are stated for 2-layer Transformers only, the constructed solutions can be
trivially extended to multiple layers by e.g. letting the higher layers perform the identity function, or removing
Assumption 10 and allowing the model to flexibly use or ignore positional information. More precisely:

• For Transformers with greater width, our Theorem 1 applies directly, since the construction does not depend
on the width.

• For Transformers with greater depth, it suffices to show that additional layers can perform the identity func-
tion. To this end, one can utilize the residue link in the Transformer layer and choose the value matrix to be
zero and the FFN (with or without residue connection) to be identity. This construction is implicitly assum-
ing LayerNorm will map zero vector to zero vector, which is true for the common PyTorch implementation
and for our paper. Also, it is worth noting that this holds for both the architecture we considered in the paper
and the standard GPT-2 architecture.

3.6.2.1.1 Perfect Balance Condition: Ideal Generalization of Unbounded Length

Some prior works have tried to understand the model by inspecting the attention patterns [Ebrahimi
et al., 2020, Clark et al., 2019b, Vig and Belinkov, 2019]. However, we will show that the attention
patterns alone are too flexible to be helpful, even for the restricted class of a 2-layer Transformer with
a minimal first layer (Assumption 10) and even on a language as simple as Dyck. In particular, the
Transformer only needs to satisfy what we call the balanced condition:

Definition 14 (Balance condition). A 2-layer Transformer (Equation (3.27)) with a minimal first layer
(Assumption 10 and Definition 13) is said to satisfy the balance condition, if for any i, j1, j2 ∈ [k] and
d′, d1, d2 ∈ [D], (

e(τ2i−1,d′)− e(τ2i,d′−1)
)⊤

(W(2)
K )⊤W(2)

Q

(
e(τ2j1,d1)− e(τ2j2,d2)

)
= 0. (3.28)

The following result shows that under minor conditions the balance condition is both necessary and
sufficient:

Theorem 1 (Perfect Balance). Consider a two-layer Transformer T (Equation (3.27)) with a minimal first
layer (Assumption 10) and CLN = 0 (Equation (3.24)). LetO denote the optimal prediction scenario, that is,
when the first layer embeddings {e(τi,d)}d∈[D],i∈[2k] (Definition 13) and second layer parameters θ(2) satisfy

θ := {e(τi,d)}d∈[D],i∈[2k], θ(2)} = arg min
θ̃
L(θ̃;Dq,k,D,N), ∀N,

where the objective L is defined in Equation (3.21). Then,
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• Equation (3.28) is a necessary condition of O, if W(2)
V satisfies P⊥W(2)

V e(τt,d) ̸= 0, ∀t ∈ [k], d ∈ [D].

• Equation (3.28) is a sufficient condition of O, for a construction in which the set of 2k + 1 encodings
{e(τ2i−1,d), e(τ2i,d)}i∈[k] ∪ {e(tS )} are linearly independent for any d ∈ [D] and the projection function
g(2) is a 6-layer MLP 51 with O(k2D2) width.

Remark: Recall from Equation (3.24) that P⊥ projects to the subspace orthogonal to 11⊤. The assump-
tion in the “necessary condition” part of the theorem can be intuitively understood as requiring all
tokens to have nonzero contributions to the prediction after the LayerNorm.

Recall that e(τ2i−1,d′), e(τ2i,d′−1) denote the first-layer outputs for a matching pair of brackets. Intu-
itively, Equation (3.28) says that since matching brackets should not affect future predictions, their
embeddings should balance out each other. The balance condition Equation (3.28) is “perfect” in the
sense that for the theorem, the model is required to minimize the loss for any length N; we will see
an approximate version which relaxes this in Theorem 2.

Proof of the necessity of the balance condition. The key idea is reminiscent of the pumping lemma for reg-
ular languages. For any prefix p ending with a closed bracket τ2j,d for d ≥ 1 and containing brackets
of all depths in [D], let pβ be the prefix obtained by inserting β pairs of {τ2i−1,d′ , τ2i,d′−1} for arbitrary
i ∈ [k] and d′ ∈ [D]. Denote the projection of the unnormalized attention output by

u(τt1,d1 , τt2,d2) := P⊥ exp
(
e
(
τt1,d1

)⊤
(W(2)

K )⊤W(2)
Q e

(
τt2,d2

))
W(2)

V e
(
τt1,d1

)
. (3.29)

We ignored the normalization in softmax above, since the attention output will be normalized directly
by LayerNorm according to Equation (3.23).

By Equation (3.23), for any X ∈ Rm×(N+1) we have that

ã2(X; θ(2)) =
N+1

∑
i=1
P⊥ exp

(
X⊤1:m,i(W

(2)
K )⊤W(2)

Q X1:m,(N+1)

)
W(2)

V X1:m,(N+1).

Choosing X as the output of the first layer when the input is pβ, it holds that there exists a vector
v ∈ Rm such that for any β ∈N, the next-token logits given by Transformer T are

T (pβ) = WHeadg(2)

 v + β
(

u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′)
)

∥∥∥v + β
(

u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′)
)∥∥∥

2

+ e(τ2j,d)

 . (3.30)

The proof proceeds by showing a contradiction. Suppose u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′) ̸= 0.
Based on the continuity of the projection function and the LayerNorm Layer, we can show that
limβ→∞ T (pβ) depend only on the depths d, d′ and types 2j, 2i − 1, 2i. However, these are not suf-
ficient to determine the next-token probability from pβ, since the latter depends on the type of the last
unmatched open bracket in p. This contradicts the assumption that the model can minimize the loss
for any length N. Hence we must have

u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′) = 0. (3.31)

51In the construction, we first use 4 layers to convert the input of the projection function to a triplet indicating the type and
depth of the last token and the type of the last unmatched bracket when the last token is a closed bracket. We then use another
2 layers to predict the next token probability based on the triplet. This construction is likely improvable.
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Finally, as we assumed that P⊥W(2)
V e (τt,d) ̸= 0, we conclude that

(
e
(
τ2i−1,d′

)
− e

(
τ2i,d′−1

))⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j+1,d

)
= ln

(
∥P⊥WVe

(
τ2i,d′−1

)
∥2

∥P⊥WVe
(
τ2i−1,d′

)
∥2

)
,

where the right hand side is independent of j, d, concluding the proof for necessity. The proof of
sufficiency are given in Appendix 3.6.4.1.

Note that the perfect balance condition is an orthogonal consideration to interpretability. For example,
even the uniform attention satisfies the condition and can solve Dyck: 52

Corollary 1. There exists a 2-layer Transformer with uniform attention and no positional embedding (but with
causal mask and a starting token 53 ) that generates the Dyck language of arbitrary length.

Proof. We will first construct a uniform attention first layer that can generate the embedding in Equa-
tion (3.37). Suppose Z is the one-hot embeddings of a prefix p of length n, where each token of type t
for t ∈ [2k] is encoded as ot and the starting token is encoded as o2k+1. Then it holds that[

Zσ
(
C · (W(1)

K Z)⊤(W(1)
Q Z)

))]
:,n+1

=
2k

∑
i=1

#{token of type t in p}ot + o2k+1. (3.32)

Then we can choose W(1)
V such that for x ∈ R2k+1,

(W(1)
V x)1 =

k

∑
i=1

x2i−1 − x2i,

(W(1)
V x)2 =x2k+1,

(W(1)
V x)i =0, ∀i ≥ 3.

Hence it holds That[
W(1)

V Zσ
(
C · (W(1)

K Z)⊤(W(1)
Q Z)

))]
:,n+1

= #{depth of pn}o1 + o2.

It is then easy to check LN
([

W(1)
V Zσ

(
C · (W(1)

K Z)⊤(W(1)
Q Z)

))]
:,n+1

)
+ Z:,n+1 is uniquely deter-

mined by the type and depth of pn without repetition. Then by Lemma 38, there exists a 2-layer

ReLU MLP with width O(k2D2) that can map LN
([

W(1)
V Zσ

(
C · (W(1)

K Z)⊤(W(1)
Q Z)

))]
:,n+1

)
+Z:,n+1

to the embedding in Equation (3.37). It is then easy to see that the condition in Theorem 1 is satisfied
as W(2)

K = W(2)
Q = 0. Hence the second layer can be constructed to let the Transformer to output the

correct next token probability.

Since uniform attention patterns are hardly reflective of any structure of Dyck, Corollary 1 proves that
attention patterns can be oblivious about the underlying task, violating the “faithfulness” criteria
for an interpretation [Jain and Wallace, 2019]. We will further show in Section 3.6.5 that empirically,
seemingly structured attention patterns may not accurately represent the natural structure of the task.

52This is verified empirically: the uniform-attention models have attention weights fix to 0 and are to fit the distribution
almost perfectly (> 99% accuracy).

53Here the starting token is necessary because otherwise, the Transformer with uniform attention will have the same outputs
for prefix p and prefix p⊕ p, in which ⊕ denotes concatenation, i.e. p⊕ p means the same string p repeated twice.
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3.6.2.1.2 Approximate Balance Condition For Finite Length Training Data

Theorem 1 assumes the model reaches the optimal loss for Dyck prefixes of any length. However,
in practice, due to finite samples and various sources of randomness, training often does not end
exactly at a population optima. In this case, the condition in Theorem 1 is not precisely met. However,
even for models that approximately meet those conditions, we will prove that when the second-layer
projection function g(2) is Lipschitz, a similar condition as in Equation (3.31) is still necessary.

We will show this by bounding the amount of deviations from the perfect balance. The idea is that
for two long prefixes that differ in only the last open bracket, correct next token prediction requires
the Transformer outputs on these prefixes to be sufficiently different, hence the part irrelevant to the
prediction (i.e. matched brackets) should not have a large contribution.

To formalize this intuition, we define two quantities: 1) Sd,d′ ,i,j which measures the effect from one
matching pair, and 2) Pd,j which measures the effect on the last position from all tokens in a prefix.

Let u be defined as in Equation (3.29). Sd,d′ ,i,j is defined as

Sd,d′ ,i,j[θ
(2)] = u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′), (3.33)

which measures how much a matching pair of brackets (τ2i,d′−1, τ2i−1,d′) changes the input to the Lay-
erNorm upon seeing the last token τ2j,d. Note that under the perfect balance condition, Sd,d′ ,i,j[θ

(2)] =

0 by Equation (3.31).

The second quantity Pd,j[θ
(2)] is defined via an intermediate quantity Q(2j, d, t̃): for any i ∈ [k], d ∈

[D] and a length-(d− 1) prefix t̃ ∈ [2k]d−1, Q(i, d, t̃) is defined as

Q(i, d, t̃) := u(τ2i,d−1, tS ) + ∑
1≤d′<d

u(τ2i,d−1, τt̃d′ ,d
′) (3.34)

+ u(τ2i,d−1, τ2i−1,d) + u(τ2i,d−1, τ2i,d−1),

where t̃d′ denotes the d′th entry of t̃. Intuitively, Q(i, d, t̃) denotes the unnormalized second-layer
attention output at the last position, given the input sequence t̃⊕ τ2i−1,dτ2i,d−1, 54

For results in this subsection, it suffices to consider prefixes consisting only of open brackets. Let
t := arg min

t̃∈{2i−1}d−1
i∈[k]
∥Q(2j, d, t̃)∥2, and let t′ denote the prefix that minimizes ∥Q(2j, d, t̃)∥2 subject

to the constraint that t′ differs from t at the last (i.e. (d− 1)th) position, i.e.

t′ = arg min
t̃′∈{2i−1}d−1

i∈[k] ,t
′
d−1 ̸=td−1

Q(2j, d, t̃′).

Such choices of t, t′ guarantees that the two prefixes differ at the last open bracket and hence must
have different next-word distributions. Finally, define

Pd,j[θ̄
(2)] = ∥Q(2j, d, t′)∥2. (3.35)

In the following theorem, Pd,j will be used as a quantity that will denote an upper bound on Sd,d′ ,i,j[θ
(2)],

meaning that the model should not be sensitive to the insertion of a matching pair of brackets.

54We use s⊕ t to denote the concatenation of two strings s, t, same as in Equation (3.37)-(3.38), and use τiτj to denote the
concatenation of two tokens τi , τj.
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Theorem 2 (Approximate Balance). Consider a 2-layer Transformer T (Equation (3.27)) with a minimal
first layer (Assumption 10) and a γ-Lipschitz g(2) for γ > 0, trained on sequences of length N with the mean
squared loss (Equation (3.22)).

Suppose the loss is approximately optimal, precisely, the set of second-layer weights θ̄
(2)
N satisfiesL(T [θ̄(2)N ],Dq,k,D,N) ≤

( q(1−q)
k2 )Nϵ, for every positive integer N > 8D and sufficiently small ϵ > 0. Then, there exists a constant

Cγ,ϵ,D, such that ∀0 ≤ d′ ≤ D, 1 ≤ d ≤ D, i, j ∈ [k], it holds that

∥Sd,d′ ,i,j[θ̄
(2)
N ]∥ ≤

Cγ,ϵ,D

N
Pd,j[θ̄

(2)
N ]. (3.36)

Intuitively, Theorem 2 states that when the loss L(θ) is sufficiently small, Sd,d′ ,i,j[θ
(2)] must be small

relative to Pd,j[θ̄
(2)
N ]. Inequality 3.36 can be interpreted as a relaxation of Equation (3.31), which is

equivalent to Sd,d′ ,i,j[θ
(2)] = 0. The proof of Theorem 2 shares a similar intuition as Theorem 1 and is

given in Section 3.6.4.2.

A direct corollary of Theorem 2 additionally considers weight decay as well, in which case approxi-
mate balance condition still holds, as the regularization strength goes to 0:

Corollary 2. Consider the setting where a Transformer with a fixed minimal first layer is trained to minimize

Lreg
λ = Lθ(x) + λ

∥θ∥2
2

2 , which is the squared loss with λ weight decay. Suppose g(1) of the Transformer is a
2-layer fully connected network and g(2) of the Transformer is a 6-layer fully connected network. Then, there
exists constant C > 0, such that if a set of parameters θλ,N minimizes Lreg

λ , then it holds ∀0 ≤ d′ ≤ D, 1 ≤
d ≤ D, i, j ∈ [k] that,

∀N, ∃λN , such that ∀λ ∈ [0, λN ], Sd,d′ ,i,j[θ
(2)
λ,N ] ≤

C
N

Pd,i[θ
(2)
λ,N ].

Proof. This proof is in fact a direct combination of Theorems 1 and 2. By Theorem 1 we know there ex-
ists a weight θ(2)∗ that can reach zero loss for arbitrarily length N. Then it holds that ∥θλ,N∥2 ≤ ∥θ(2)∗∥
as θλ,N minimizes the regularized loss. Noticing that bounded weight implies bounded Lipschitzness
of g(2), the rest follows as Theorem 2.

Remark 4 (Extension to approximate balance condition). Theorem 1 assumes the model reaches the op-
timal loss for Dyck prefixes of any length. However, in practice, due to finite samples and various sources of
randomness, training often does not end exactly at a population optima. In this case, the condition in Theorem 1
is not precisely met. However, even for models that approximately meet those conditions, we will prove that
when the second-layer projection function g(2) is Lipschitz, a similar condition as in Equation (3.31) is still
necessary. Details are deferred to Section 3.6.2.1.2.

3.6.2.2 Interpretability Requires Inspecting More Than Any Single Weight Matrix

Another line of interpretability works involves inspecting the weight matrices of the model [Li et al.,
2016, Dar et al., 2022, Eldan and Li, 2023]. Some of the investigations are done locally, neglecting the
interplay between different parts of the model. Our result in this section shows that from a repre-
sentational perspective, isolating single weights can also be misleading for interpretability. For this
section only, we will assume the linear head WHead is identity for simplicity. To consider the effect of
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pruning, we will also extend the parameterization of LayerNorm module (Equation (3.24)) as

LNCLN [b](A):,j = b
P⊥A:,j

max{∥P⊥A:,j∥2, ϵ} + (1− b)A:,j,

which corresponds to a weighted residual branch; note that the original LayerNorm corresponds to
LNC[1]. 55 Let θ̂ denote the set of parameters of this extended parameterization.

We define the nonstructural pruning 56 as:

Definition 15 (Nonstructural pruning). Under the extended parameterization, a nonstructural pruning
of a Transformer with parameters θ̂ is a Transformer with the same architecture and parameters θ̂′, so that for
any weight matrix W in θ̂, the corresponding matrix W ′ in θ̂′ satisfies W ′i,j ∈ {Wi,j, 0}, ∀i, j.

To measure the quality of the pruning, define the ϵ-approximation:

Definition 16 (ϵ-approximation). Given two metric spaces A, B with the same metric ∥ · ∥, a function
f : A→ B is an ϵ-approximation of function g with respect to that metric, if and only if,

∀x ∈ A, ∥ f (x)− g(x)∥ ≤ ϵ∥x∥.

The metric, unless otherwise specified, will be the 2-norm for vectors and the 1, 2-norm for matrices:

Definition 17. The 1, 2-norm of a matrix A is the max row norm, i.e. ∥A∥1,2 = maxi∈[d′ ] ∥A:,i∥2.

With these definitions, we are ready to state the main result of this section:

Theorem 3 (Indistinguishability From a Single Component). Consider any L-layer Transformer T (Equa-
tion (3.27)) with embedding dimension m, attention dimension ma, and projection function g(l) as 2-layer
ReLU MLP with width w, for l ∈ [L]. 57 For any δ ∈ (0, 1) and N ∈ N+, consider a 4L-layer random
Transformer Tlarge with embedding dimension mlarge = O(m log(Lm/δ)), attention dimension mlarge,a =

O(maL log mamLN
ϵδ ), and projection function glarge as 4-layer ReLU MLP with width wlarge = O(max{m, w}L log wmLN

ϵδ ).

Assume that ∥W∥2 ≤ 1 for every weight matrix W in T , and suppose the weights are randomly sampled as
Wi,j ∼ U(−1, 1) for every W ∈ Tlarge. Then, with probability 1− δ over the randomness of Tlarge, there exists
a nonstructural pruning (Definition 15) of Tlarge, denoted as T̃large, which ϵ-approximates T with respect to
∥ · ∥1,2 for any input X ∈ Rm×N satisfying ∥X∥1,2 ≤ 1. 58

Proof sketch: connection to Lottery Tickets. Theorem 3 can be interpreted as a lottery ticket hy-
pothesis [Frankle and Carbin, 2018, Malach et al., 2020] for randomly initialized Transformers, which
can be of independent interest. The proof repeatedly uses an extension of Theorem 1 of Pensia et al.
[2020], where it 1) first prunes the (2l − 1)-th and 2l-th layers of Tlarge to approximate T (l) for each
l ∈ [L] (Lemma 29), and 2) then prunes the remaining 2L + 1 to 4L-th layers of Tlarge to approximate
the identity function. The full proof is deferred to Section 3.6.4.3.

55This residue link is added for the ease of proof because it is hard to “undo” a LayerNorm. We also note that in standard
architecture like GPT-2, there is typically a residual link after LayerNorm similar to here.

56This is as opposed to structural pruning, which prunes entire rows/columns of weight matrices.
57For notational convenience, we assume all layers share the same dimensions and projection functions. The proof can be

trivially extended to cases where the dimensions and projection functions are different.
58Here the input and output dimension of T̃large is actually mlarge which is larger than m; additional dimensions are padded

with zeroes. The norm constraint can be easily extended to an arbitrary constant.
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Noting that the layers used to approximate the identity can appear at arbitrary depth in Tlarge, a direct
corollary of Theorem 3 is that one cannot distinguish between two functionally different Transformers
by inspecting any single weight matrix only:

Corollary 3. Let T1, T2 and Tlarge follow the same definition and assumptions as T and Tlarge in Theorem 3.
Pick any weight matrix W in Tlarge, then with probability 1− δ over the randomness of Tlarge, there exist two
Transformers TLarge,1, TLarge,2 pruned from Tlarge, such that TLarge,i ϵ-approximate Ti, ∀i ∈ {1, 2}, and TLarge,1,
TLarge,2 coincide on the pruned versions of W.

Hence, one should be cautious when using methods based solely on individual components to inter-
pret the overall function of a Transformer.

3.6.3 Experiments

Our theory in Section 3.6.2 proves the existence of abundant non-stack-like attention patterns, all of
which suffice for (near-)optimal generalization on Dyck. However, could it be that stack-like solu-
tions are more frequently discovered empirically, due to potential implicit biases in the architecture
and the training procedure? In this section, we show there is no evidence for such implicit bias in
standard training (Section 3.6.3.1). Additionally, we propose a regularization term based on the bal-
ance condition (Theorem 1), which leads to better length generalization (Section 3.6.3.2).

Training Details For Figure 3.3, we train 2-layer standard GPT on Dyck2,4 with sequence length no
longer than 28. For (a), we train with hidden dimension and network width 200 and learning rate
3e-4. For (b), (c), (d), we train with hidden dimension and FFN width 50 and learning rate 3e-3.

For Figure 3.39, for (a), we train 1-layer transformer without residual link, FFN and the final Layer-
Norm before the linear head. The hidden dimensions and FFN widths are fixed as 500. For (a), we
train the network with learning rate 1e-2 and for (b), (c), (d) we train the network with learning rate
3e-3.

3.6.3.1 Different Attention Patterns Can Be Learned To Generate Dyck

We empirically verify our theoretical findings that Dyck solutions can give rise to a variety of attention
patterns, by evaluating the accuracy of predicting the last bracket of a prefix (Equation 3.19) given the
rest of the prefix. We only consider prefixes ending with a closing bracket, so that there exists a unique
correct closing bracket which a correct parser should be able to determine. The experiments in this
section are based on Transformers with 2 layers and 1 head, hidden dimension 50 and embedding
dimension 50, trained using Adam. The training data consists of valid Dyck2,4 sequences of length
less than 28 generated with q = 0.5. When tested in-distribution, all models are able to achieve≥ 97%
accuracy.

Variation in attention patterns First, as a response to (Q1), we observe that attention patterns of
Transformers trained on Dyck are not always stack-like (Figure 3.3). In fact, the attention patterns
differ even across different random initialization. Moreover, while Theorem 1 implies that position
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encoding is not necessary for a Transformer to generate Dyck, 59 adding the position encoding 60 does
affect the attention patterns (Figures 3.3c and 3.3d).

Specifically, for 2-layer Transformers with a minimal first layer, we experiment with three different
types of embeddings e: let ot denote the one-hot embedding where ot[t] = 1,

e
(
τt,d
)
= o(t−1)D+d ∈ R2kD, (3.37)

e
(
τt,d
)
= ot ⊕ od ∈ R2k+D, (3.38)

e
(
τt,d
)
= ot ⊕ [cos (θd) , sin (θd)] ∈ R2k+2, θd = arctan (d/(D + 2− d)) , (3.39)

where ⊕ denotes vector concatenation. Equation (3.37) is the standard one-hot embedding for
τt,d; Equation (3.38) is the concatenation of one-hot embedding of types and depths. Finally, Equa-
tion (3.39) is the embedding constructed in Yao et al. [2021a]. As shown in Figure 3.39, the attention
patterns learned by Transformers exhibit large variance between different choices of architectures and
learning rates, and most learned attention patterns are not stack-like.

Quantifying the variation We now quantify the variation in attention by comparing across multiple
random initializations. We define the attention variation between two attention patterns A1, A2 as
Variation(A1, A2) = ∥A1 − A2∥2

F, for A1, A2 ∈ RN×N over an length-N input sequence. We report
the average attention variation of each architecture based on 40 random initializations.

Let’s consider a special prefix of [[[[]]]](((()))), which contains brackets of all types and depths. We
observe that for standard two layer training, the average attention variation is 2.20 with linear po-
sition embedding, and is 2.27 without position embedding. Both numbers are close to the random
baseline value of 2.85 61, showing that the attention head learned by different initializations indeed
tend to be very different. We also experiment with Transformer with a minimal first layer and the em-
bedding in Equation (3.37), where the average variation is reduced to 0.24. We hypothesize that the
structural constraints in this setting provide sufficiently strong inductive bias that limit the variation.

3.6.3.2 Guiding The Transformer To Learn Balanced Attention

In our experiments, we observe that although models learned via standard training that can gener-
alize well in distribution, the length generalization performance is far from optimal. This implies that
the models do not correctly identify the parsing algorithm for Dyck when learning from finite sam-
ples. A natural question is: can we guide Transformers towards correct algorithms, as evidenced by
improved generalization performance on longer Dyck sequences?

In the following, we measure length generalization performance by the model accuracy on valid Dyck

prefixes with length randomly sampled from 400 to 500, which corresponds to around 16 times the
length of the training sequences. Inspired by results in Section 3.6.2, we propose a regularization term
to encourage more balanced attentions, which leads to better length generalization.

59This is verified empirically, as Transformers with no positional encoding achieve ≥ 97% accuracy.
60We use the linear positional encoding following Yao et al. [2021a]: for the ith position, the encoding is defined to be

ep(i) := i/Tmax for some Tmax.
61The random baseline is calculated by generating purely random attention patterns (from the simplex, i.e. random square

matrices s.t. each row sums up to 1) and calculate the average attention variation between them.
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Regularizing for balance violation improves length generalization accuracy We denote the balance
violation of a Transformer as β := Ed,d′ ,i,j

[
Sd,d′ ,i,j/Pd,j

]
for S, P defined in Equations (3.33) and (3.35).

Theorem 1 predicts that for models with a minimal first layer, perfect length generalization requires
β to be zero. Inspired by this observation, we design a contrastive training objective to reduce the
balance violation, which ideally would lead to improved length generalization. Specifically, let pr

denote a prefix of r nested pairs of brackets of for r ∼ U([D]), and let T (s | pr ⊕ s) denote the logits
for s when T takes as input the concatenation of pr and s. We define the contrastive regularization
term Rcontrastive(s) as the mean squared error between the logits of T (s) and T (s | pr ⊕ s), taking
expectation over r and pr:

Er∼U([D]),pr

[
∥T (s | pr ⊕ s)− T (s)∥2

F

]
. (3.40)

Following the same intuition as in the proof of Theorem 1, if the model can perfectly length-generalize,
then the contrastive loss will be zero. Models trained with contrastive loss show reduced balance vi-
olation as well as improved length generalization performance, as shown in Figure 3.40.

3.6.4 Proofs

3.6.4.1 Proof of Theorem 1: perfect balance

The key step was outlined in Section 3.6.2. We will restate the proof rigorously here.

Theorem 1 (Perfect Balance). Consider a two-layer Transformer T (Equation (3.27)) with a minimal first
layer (Assumption 10) and CLN = 0 (Equation (3.24)). LetO denote the optimal prediction scenario, that is,
when the first layer embeddings {e(τi,d)}d∈[D],i∈[2k] (Definition 13) and second layer parameters θ(2) satisfy

θ := {e(τi,d)}d∈[D],i∈[2k], θ(2)} = arg min
θ̃
L(θ̃;Dq,k,D,N), ∀N,

where the objective L is defined in Equation (3.21). Then,

• Equation (3.28) is a necessary condition of O, if W(2)
V satisfies P⊥W(2)

V e(τt,d) ̸= 0, ∀t ∈ [k], d ∈ [D].

• Equation (3.28) is a sufficient condition of O, for a construction in which the set of 2k + 1 encodings
{e(τ2i−1,d), e(τ2i,d)}i∈[k] ∪ {e(tS )} are linearly independent for any d ∈ [D] and the projection function
g(2) is a 6-layer MLP 62 with O(k2D2) width.

Proof. We prove the sufficiency of the balanced condition below; the proof for the necessity has been
given in Section 3.6.2.1.

We will denote the dimension of e(τt,d) as m.

For any i ∈ [k], d′ ∈ [D], by Equation (3.28), we can assume that there exists ai,d′ ∈ R such that for all
j ∈ [k], d ∈ [D], it holds that,

ai,d′ ≜
(
e
(
τ2i−1,d′

)
− e

(
τ2i,d′−1

))⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

)
. (3.41)

62In the construction, we first use 4 layers to convert the input of the projection function to a triplet indicating the type and
depth of the last token and the type of the last unmatched bracket when the last token is a closed bracket. We then use another
2 layers to predict the next token probability based on the triplet. This construction is likely improvable.
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We will first define the possible index sets of τt,d as I = {(2t, d) | t ∈ [k], 0 ≤ d ≤ D − 1} ∪ {(2t−
1, d) | t ∈ [k], 1 ≤ d ≤ D}, and we will define the rank of (t, d) as

r(t, d) ≜ #{(t1, d1) | t1 < t or t1 = t, d1 ≤ d, (t1, d1) ∈ I} (3.42)

Then it is clear that r(t, d) is a one-to-one mapping from I to [2kD]. We will then define the collection
of all e(τt,d) as E, satisfying that E:,r(t,d) = e(τt,d),E:,2kD+1 = e(tS ).

Because e(τt,d) are linearly independent, for any (i, d) ̸= (j, d′) ∈ I , it holds that e(τi,d)− e(τj,d′) ̸= 0.
Then based on Lemma 39, there exists a set of orthonormal vectors {bi}i∈[m−2], such that for any
(i, d), (j, d′) ∈ I , it holds that

m−2

∑
i=1

bib⊤i
(
e(τi,d)− e(τj,d′)

)
̸= (e(τi,d)− e(τj,d′) (3.43)

b⊤i 1m = 0 (3.44)

We will further construct the matrix O as 63

O:,r(2t,d−1) = − exp(at,d)btD+d,

O:,r(2t−1,d) = btD+d. (3.45)

O:,2kD+1 = 0.

for t ∈ [k], d ∈ [D].

We can then choose W(2)
V ∈ Rm×m such that

W(2)
V E = O (3.46)

Such W(2)
V is guaranteed to exist, because E is of full column rank by the linear independence as-

sumption.

Now based on this construction, we will show that the last column of unnormalized attention output
(Equation (3.26)) depends only on the sequence of unmatched brackets when the last token is a closed
bracket with depth d greater than or equal to 1. 64

For any valid Dyck prefix p of length n ending with a closed bracket τ2j,d satisfying d ≥ 1, suppose
the list of unmatched open brackets in p is [τ2j1−1,1, τ2j2−1,2, . . . , τ2jd−1,d]. Then, the remaining tokens
in p are pairs of matching brackets. Denote them by τ2tk−1,dk

, τ2tk ,dk−1 for k ∈ [K]. Then the input of
the second layer of Transformer X, up to a permutation is

XP = [e(τ2t1−1,d1), e(τ2t1,d1−1), . . . , e(τ2tK−1,dK ), e(τ2tK ,dK−1), e(τ2j1−1,1), . . . e(τ2jd−1,d), e(tS )].

63Recall the definition of r in Equation (3.42). Comparing O:,r(2t,d−1) and O:,r(2t−1,d): the idea is that a pair of matched
brackets are represented by the same direction (i.e. the direction along btD+d), just with different norms.

64When depth d = 0, all brackets are matched, the groundtruth next-token distribution is the prior distribution over the
open brackets. Because in Equation (3.28) d1, d2 ≥ 1, we handle the depth d = 0 case separately in Case 2 “t is even, d = 0”
towards the end of this proof. In the following, we focus on cases with depth d ≥ 1.
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We will focus on the last column of the unnormalized attention output

ã2(X; θ(2)):,n+1 = P⊥
[
W(2)

V X · σ̃
(
C · (W(2)

K X)⊤(W(2)
Q X)

)]
:,n+1

=
n+1

∑
s=1
P⊥(W

(2)
V X):,s

[
σ̃
(
C · (W(2)

K X)⊤(W(2)
Q X)

)]
s,n+1

=
n+1

∑
s=1
P⊥(W

(2)
V X):,s exp

((
(W(2)

K X)⊤(W(2)
Q X)

)
s,n+1

)

=
n+1

∑
s=1
P⊥(W

(2)
V X):,s exp

(
(W(2)

K X)⊤:,s(W
(2)
Q X):,n+1

)
=

K

∑
k=1

(
u(τ2tk ,dk−1, τ2j,d) + u(τ2tk−1,dk

, τ2j,d)
)
+

d

∑
s=1

u(τ2js−1,s, τ2j,d) (3.47)

in which the last line is by definition of u(·, ·) in Equation (3.29).

For any indices s, js, j, d, we can simplify the expression for u(τ2js−1,s, τ2j,d) by observing that

u(τ2js−1,s, τ2j,d) = P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
W(2)

V e
(
τ2js−1,s

)
by Eq 3.29

= P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
O:,r(2js−1,s) by Eq 3.46

= P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
bjsD+s by Equation (3.45)

= exp
(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
bjsD+s by Equation (3.44). (3.48)

Likewise by Equation (3.29), Equation (3.46), Equation (3.45), Equation (3.44)

u(τ2js ,s−1, τ2j,d) = − exp
(
e
(
τ2js ,s−1

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
exp(ajs ,s)bjsD+s (3.49)

By Equation (3.48) and Equation (3.49),

u(τ2tk ,dk−1, τ2j,d) + u(τ2tk−1,dk
, τ2j,d)

= exp
(
e
(
τ2tk−1,dk

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
btk D+dk

− exp
(
e
(
τ2tk ,dk−1

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
exp(atk ,dk

)btk D+dk

=
[

exp
(
e
(
τ2tk−1,dk

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
− exp

(
e
(
τ2tk ,dk−1

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

)
+ atk ,dk

) ]
btk D+dk

= 0 (3.50)

in which the last line is because the terms inside
[
· · ·
]

cancel each other, because by Equation (3.41)

e
(
τ2tk−1,dk

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

)
= e

(
τ2tk ,dk−1

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

)
+ atk ,dk

Plugging Equation (3.50) and Equation (3.48) into Equation (3.47),

ã2(X; θ(2)):,n+1 =
d

∑
s=1

u(τ2js−1,s, τ2j,d)

=
d

∑
s=1

exp
(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))
bjsD+s (3.51)
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Therefore, ã2(X; θ(2)):,n+1 lies in the span of {bjsD+s}s∈[d]. We will from now on assume ⟨LN(ã2(X; θ(2)):,n), bjsD+s⟩ >
M for all possible choices of p ending with a closed bracket with grammar depth at least 1 for some
constant M ∈ (0, 1). Here M exists because

⟨LN(ã2(X; θ(2)):,n), bjsD+s⟩ =
exp

(
e
(
τ2js−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

))√
∑d

s′=1 exp
(

2e
(
τ2j′s−1,s

)⊤
(W(2)

K )⊤W(2)
Q e

(
τ2j,d

)) > 0,

for all possible combination of jk, k ∈ [d] and s, and there are only finite number of such combinations.

Constructing the projection function g(2) We will finally show there exists a 6-layer MLP g(2) with
width O(D2k2), such that for any dyck prefix q with n being the length of q, X being the input of the
second layer given q and p(p) being the groundtruth next-token probability vector given q 65, it holds
that,

g(2)
(

LN(ã2(X; θ(2)):,n+1) + X:,n+1

)
= p(q).

We will assume the last token of q is τt,d. Suppose that bm−1, bm is an orthonormal basis of the normal
space of span{b1, .., bm−2}, then we can first observe that for U = bmb⊤m + bm−1b⊤m−1, it holds that

U(LN(ã2(X; θ(2)):,n+1) + X:,n+1) = Ue(τt,d).

is unique for every t, d. Then based on Lemma 38, there exists a 2-layer MLP with width 4kD that
maps U(LN(ã2(X; θ(2)):,n+1) + X:,n+1) to (t, d). This implies that there exists a 2-layer MLP with
width 4kD that maps LN((ã2(X; θ(2)):,n) + X:,n to (t, d).

Further, let matrix U′ = ∑Dk
j=1 ojb⊤j where oj is the Dk dimension one-hot vector with the j−th entries

being 1. Then when t is an even number and d ≥ 1, based on Equation (3.51) and the definition of M,

U′(LN(ã2(X; θ(2)):,n+1) + X:,n+1)t′D+d′

= 0, τ2t′−1,d′ is not an unmatched open brackets in p.

> M, τ2t′−1,d′ is an unmatched open brackets in p.

Then based on Lemma 41, there exists 2-layer MLP with width kD that operates on(
U′(LN(ã2(X; θ(2)):,n+1) + X:,n+1)t′D+d′

)
t′∈[k]

for a fixed d′ and outputs the nonzero index in it, if such index exists. Hence, we can choose the
weight of the first and second layer of g(2), such that the output of the second layer is (t, d) ⊕ x,
where 2xd′ − 1 is the type of the unmatched open brackets with grammar depth d′ if t is an even
number, d ≥ d′ ≥ 1.

Now based on Lemma 40, we can choose the third and fourth layer of g(2) to perform indexing and
let the output of the fourth layer be (t, d, y), where y = xd when d ≥ 1. 66 Notice that this triplet
contains all the necessary information to infer p(q) because it uniquely determines the type of last
unmatched open bracket,

65That is p(q)t = p(The next token of q has type t)
66When d = 0, y does not matter since there is no unmatched open brackets.
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1. If t is odd (i.e. the last bracket is open), and then the type of last unmatched open bracket is t.

2. If t is even and d = 0, then all the brackets is matched.

3. If t is even and d ≥ 1, then the type of last unmatched bracket is y.

One may finally construct a 2-layer MLP f that maps (t, d, y) to the corresponding probability vector.
As the input of g has bounded norm,

∥LN(ã2(X; θ(2)):,n+1) + X:,n+1∥2 ≤ 1 + max
t,d
∥e(τt,d)∥,

the output of the constructed 4 layers also has a bounded norm. Hence, we can assume there exists
constant M′ > 1, such that y ≤ M′. Now we will discuss by the value of t,

1. t is odd, then one can neglect the third dimension and the correct probability is determined by d
and can be represented by a width-2D network based on Lemma 38.

2. t is even. When d = 0, one can construct a width-1 network mapping any y to the correct prob-
ability distribution as it is unique. When d ≥ 1, one can construct a width-2K network mapping
xd ∈ [K] to the correct probability distribution based on Lemma 38. Then by Lemma 42, one can
construct a width-4KD network that maps (d, y) to the corresponding probability distribution.

Putting together and using Lemma 42 again, one can construct a width-8K2D network that maps
(t, d, y) to the correct next token probability prediction. The proof is then completed.

3.6.4.2 Proof of Theorem 2: approximate balance

Theorem 2 (Approximate Balance). Consider a 2-layer Transformer T (Equation (3.27)) with a minimal
first layer (Assumption 10) and a γ-Lipschitz g(2) for γ > 0, trained on sequences of length N with the mean
squared loss (Equation (3.22)).

Suppose the loss is approximately optimal, precisely, the set of second-layer weights θ̄
(2)
N satisfiesL(T [θ̄(2)N ],Dq,k,D,N) ≤

( q(1−q)
k2 )Nϵ, for every positive integer N > 8D and sufficiently small ϵ > 0. Then, there exists a constant

Cγ,ϵ,D, such that ∀0 ≤ d′ ≤ D, 1 ≤ d ≤ D, i, j ∈ [k], it holds that

∥Sd,d′ ,i,j[θ̄
(2)
N ]∥ ≤

Cγ,ϵ,D

N
Pd,j[θ̄

(2)
N ]. (3.36)

Proof. The key idea is similar to the proof of necessity in Theorem 1. That is, we will construct two
input sequences with different next-word distributions, and show that the approximate balance con-
dition must hold so that inserting (a bounded number of) pairs of matching brackets does not collapse
the two predicted distributions given by the Transformer.

Constructing the input sequences. Let t := arg mint̃∈[k]d−1 ∥Q(2j, d, t̃)∥2, and let t′ denote the pre-
fix that minimizes ∥Q(2j, d, t̃)∥2 subject to the constraint that t′ must differ from t in the last (i.e.
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(d− 1)th) position, i.e.

t′ = arg min
t̃′∈[k]d−1,t′d−1 ̸=td−1

Q(2j, d, t̃′).

The motivation for such choices of t, t′ is that since they differ at least by the last position which
is an open bracket, they must lead to different next-word distributions. Note also that Pd,j[θ̄

(2)] =

∥Q(2j, d, t′)∥.

With the above definition of t, t′, consider two valid Dyck prefixes p1 and p2 with length no longer
than N, defined as follows: for any d, d′ ∈ [D], i, j ∈ [k], consider a common prefix

p = τ2i−1 . . . τ2i−1︸ ︷︷ ︸
d′ open brackets

τ2i−1τ2i . . . τ2i−1τ2i︸ ︷︷ ︸
(⌊ N

2 ⌋−d′−d−1) pairs

τ2i . . . τ2i︸ ︷︷ ︸
d′ closed brackets

,

where τi denotes a token with type i whose depth is implicit from the context. Set p1, p2 as

p1 = p⊕ t⊕ τ2j−1τ2j,

p2 = p⊕ t′ ⊕ τ2j−1τ2j.

That is, p1, p2 differ in the last unmatched open bracket. In the following, we will show that the
approximate balance condition must hold for the predictions on p1, p2 to be sufficiently different.

Bounding the difference in Transformer outputs. For a Transformer T with second layer parameters
θ̄
(2)
N , with Pnext(p) indicating the next token probability given a prefix p, by triangle inequality, its

outputs on p1, p2 satisfy

∥T [θ̄(2)N ](p1)− T [θ̄
(2)
N ](p2)∥2

≥ ∥Pnext(p1)−Pnext(p2)∥2 −
(
∥T [θ̄(2)N ](p1)−Pnext(p1)∥2 + ∥T [θ̄

(2)
N ](p2)−Pnext(p2)∥2

)
. (3.52)

Bounding each term separately:

∥Pnext(p1)−Pnext(p2)∥2 ≥
1√
2k
∥Pnext(p1)−Pnext(p2)∥1 =

1√
2k

TV(p1, p2),

where TV(p1, p2) denotes the TV distance in the next-word distributions from p1 and p2, and

∥T [θ̄(2)N ](p1)−Pnext(p1)∥2 ≤
√

ϵ,

because L(T [θ̄(2)N ],Dq,k,D,N) ≤
q(1−q)

k2 )Nϵ and the probability of sampling any prefix p is greater than

( q(1−q)
k2 )N , implying that the per sample next-token squared loss on prefix p is no greater than ϵ.

Likewise
∥T [θ̄(2)N ](p2)−Pnext(p2)∥2 ≤

√
ϵ.

Plugging into Equation (3.52),

∥T [θ̄(2)N ](p1)− T [θ̄
(2)
N ](p2)∥2 ≥

1√
2k

TV(p1, p2)− 2
√

ϵ. (3.53)
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Define by Ap the contribution of p to the attention output (before LayerNorm) of the last position of
p1, p2:

Ap = ∑
1≤d′′<d′

(
u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′)

)
+ ⌊N − 2d′ − 2d

2
⌋
(

u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)
)

. (3.54)

The attention outputs (before LayerNorm) of p1, p2, denoted by A(p1) and A(p2), satisfy that

P⊥A(p1) = P⊥(Ap + Q(2j, d, t)),

P⊥A(p2) = P⊥(Ap + Q(2j, d, t′)). (3.55)

Note that for any prefix p′,

T [θ̄(2)N ](p′) = g(2)(LNCLN (P⊥A(p′))
)
+ e(τ2i,d′) (3.56)

=g(2)
( P⊥A(p′)
∥P⊥A(p′)∥

)
+ e(τ2i,d′), (3.57)

where g(2) is γ-Lipschitz. Hence by Equation (3.57) and Equation (3.53), we have∥∥∥ P⊥A(p1)

∥P⊥A(p1)∥2
− P⊥A(p2)

∥P⊥A(p2)∥2

∥∥∥
2
≥ TV(p1, p2)√

2kγ
− 2
√

ϵ

γ
= Ω 1

γ ,
√

ϵ(1). (3.58)

Here the TV distance is lower bounded by a constant due to the construction of p1, p2, where t, t′

differ at the last open bracket.

We will then show that Ap should not be too much larger in norm than Q(2j, d, t) or Q(2j, d, t′). First,
let’s state a helper lemma about the contrapositive:

Lemma 24. For any ϵ > 0, there exists a constant Rϵ, such that for any a, b ∈ Rd and any r ∈ Rd such that
∥r∥2 ≥ Rϵ ·max{∥a∥2, ∥b∥2}, it holds that∥∥∥ a + r

∥a + r∥2
− b + r
∥b + r∥2

∥∥∥
2
≤ ϵ.

Proof. Denote r0 := max{∥a∥2, ∥b∥2}. Then Rϵ := 4r0
ϵ + 1 suffices:∥∥∥ r + a

∥r + a∥2
− r + b
∥r + b∥2

∥∥∥ ≤ ∥r∥ · ∣∣∣ 1
∥r + a∥ −

1
∥r + b∥

∣∣∣+ ∥a∥
∥r + a∥ +

∥b∥
∥r + b∥

≤∥r∥ ·
( 1
∥r∥ − r0

− 1
∥r∥+ r0

)
+

2r0

∥r∥ − r0

=
2r0

∥r∥ − r0
·
( ∥r∥
∥r∥+ r0

+ 1
)
≤ 4r0

∥r∥ − r0
≤ 4r0

Rϵ − r0
≤ ϵ.

Consider Equation (3.58), Equation (3.55), and Lemma 24 in which

a = P⊥Q(2j, d, t),

b = P⊥Q(2j, d, t′),

r = P⊥Ap.
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By Lemma 24, in order for Equation (3.58) to hold, there exists Rϵ ∈ R such that

∥P⊥Ap∥2 ≤ Rϵ ·max{∥P⊥Q(2j, d, t)∥2, ∥P⊥Q(2j, d, t′)∥2}.

Note that by definition in Equation (3.35), ∥Q(2j, d, t)∥2 ≤ ∥Q(2j, d, t′)∥2 = Pd,j[θ̄
(2)
N ]. Hence

∥P⊥Ap∥2 ≤ Rϵ · ∥P⊥Q(2j, d, t′)∥2 ≤ Rϵ · ∥P⊥∥2 · ∥Q(2j, d, t′)∥2 = Rϵ · Pd,j[θ̄
(2)
N ]. (3.59)

As Equation (3.59) holds for p with any d, d′, if one choose d′ = 1, this shows

∥u(τ2j,d−1, τ2i,1) + u(τ2j,d−1, τ2i−1,2)∥2 ≤
4RϵPd,j[θ̄

(2)
N ]

N
. (3.60)

Further, it holds that for any 1 < d′ ≤ d− 1,

∥ ∑
1≤d′′<d′

(
u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′)

)
+ ⌊N − 2d′ − 2d

2
⌋
(

u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)
)
∥2

≤ RϵPd,j[θ̄
(2)
N ] , and

∥ ∑
1≤d′′<d′+1

(
u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′)

)
+ ⌊N − 2d′ − 2d− 2

2
⌋
(

u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2)
)
∥2

≤ RϵPd,j[θ̄
(2)
N ].

Then by triangle inequality,

⌊N − 2d′ − 2d− 2
2

⌋∥
(

u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2)
)

−
(

u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)
)
∥2 ≤ 2RϵPd,j[θ̄

(2)
N ].

Because N ≥ 8D, we have that ⌊N−2d′−2d−2
2 ⌋ ≥ N

8 , hence it holds that

∥
(

u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2)
)

−
(

u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)
)
∥2 ≤

16RϵPd,j[θ̄
(2)
N ]

N
.

Combined with Equation (3.60), one can conclude that,

Sd,d′ ,i,j = ∥u(τ2j,d−1, τ2i,d′−1) + u(τ2j,d−1, τ2i−1,d′−1)∥ ≤
16DRϵ

N
Pd,j[θ̄

(2)
N ]. (3.61)

This completes the proof.
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3.6.4.3 Proof of Theorem 3: indistinguishability from a single component

We now show the limitation of interpretability from a single component, using a Lottery-Ticket-style
argument by pruning from large random Transformers.

Theorem 3 (Indistinguishability From a Single Component). Consider any L-layer Transformer T (Equa-
tion (3.27)) with embedding dimension m, attention dimension ma, and projection function g(l) as 2-layer
ReLU MLP with width w, for l ∈ [L]. 67 For any δ ∈ (0, 1) and N ∈ N+, consider a 4L-layer random
Transformer Tlarge with embedding dimension mlarge = O(m log(Lm/δ)), attention dimension mlarge,a =

O(maL log mamLN
ϵδ ), and projection function glarge as 4-layer ReLU MLP with width wlarge = O(max{m, w}L log wmLN

ϵδ ).

Assume that ∥W∥2 ≤ 1 for every weight matrix W in T , and suppose the weights are randomly sampled as
Wi,j ∼ U(−1, 1) for every W ∈ Tlarge. Then, with probability 1− δ over the randomness of Tlarge, there exists
a nonstructural pruning (Definition 15) of Tlarge, denoted as T̃large, which ϵ-approximates T with respect to
∥ · ∥1,2 for any input X ∈ Rm×N satisfying ∥X∥1,2 ≤ 1. 68

Proof. We will first introduce some notation. For vector x ∈ Ra and y ∈ Rb, we will use x ⊕ y to
denote their concatenation. We will use 0a to denote the all-zero vector with dimension a. We will
also assume without loss of generality that w ≥ 2m. 69

We will use X̄ to denote


X

0(mlarge−m′)×N

 for X ∈ Rm′×N with m′ ≤ mlarge.

In the following, a random network refers to a network whose weights have entries sampled from a
uniform distribution, i.e. Wi,j ∼ U(−1, 1) for every weight W in the random network.

We will first recall Lemma 25 from Pensia et al. [2020] which shows that a pruned 2-layer random
network can approximate a linear function.

Lemma 25 (Approximating a linear function; Theorem 1 of Pensia et al. [2020] restated). Let W ∈
Rm′×m, ∥W∥2 = O(1), then for σ ∈ {ReLU, I}, where I represents the identity operator, for a random
network g(x) = W2σ(W1x) with W2 ∈ Rm′×h, W1 ∈ Rh×m for hidden dimension h = O(m log( mm′

min{ϵ,δ} )),
with probability 1− δ, there exists boolean masking matrices M1, M2, such that for any x ∈ Rw,

∥(M2 ⊙W2)σ
(
(M1 ⊙W1)x

)
−Wx∥ ≤ ϵ∥x∥2,

where ⊙ denotes the Hadamard product.

We then derive two approximation results Lemmas 26 and 27 based on Lemma 25.

Lemma 26. Under the setting of Theorem 3, with probability 1− 2δ/3, for any l ∈ [L], l′ ∈ [4L − 1], let
T (l) be the l-th layer of T , there exists a pruning of the (l′ − 1)-th and the (l′)-th layer T (l′−1)

large , T l′
large, named

T̃ (l′−1)
large , T̃ l′

large such that when defined on domain ∥X∥1,2 ≤ 2L,X ∈ Rm×N ,

67For notational convenience, we assume all layers share the same dimensions and projection functions. The proof can be
trivially extended to cases where the dimensions and projection functions are different.

68Here the input and output dimension of T̃large is actually mlarge which is larger than m; additional dimensions are padded
with zeroes. The norm constraint can be easily extended to an arbitrary constant.

69We can always pad dimensions if w is too small.
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1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.

2. T̃ l′
large ◦ T̃

(l′−1)
large (X̄) is an

(
C

1000L2

)4L−3
ϵ-approximation of T (l)(X) with respect to 1, 2-norm.

Lemma 27. Under the setting of Theorem 3, for any matrix W ∈ R4m×4m, ∥W∥2 ≤ 1, with probability
1− δ/4, for any l′ ∈ [4L], there exists a pruning of the l-th layer T (l′)

large, named T̃ (l′)
large, such that when defined

on domain X ∈ Rm×N ,

1. T̃ (l′)
large is independent of the last mlarge − 4m rows of the input.

2. a(x) = T̃ (l′)
large (X̄) is an

(
C

1000L2

)4L
ϵ-approximation of ĝ(X) = WX with respect to 1, 2-norm.

The proof of Lemmas 26 and 27 is deferred to Section 3.6.4.3.1 We can now prove the theorem.

We will first show with induction that if we 1) prune the (2l − 1)-th and 2l-th layers of Tlarge to
approximate T (l) for each l ∈ [L], and 2) prune the 2L + 1 to 4L-th layers of Tlarge to approximate
identity, then the pruned large transformer will be an ϵ-approximation of T for any input ∥X∥1,2 ≤ 1.

We will perform induction on l: Let T (1:l) define the composition of layer 1 to l, i.e. T (1:l)(X) := T (l) ◦

T (l−1) ◦ · · · ◦ T (1)(X), and define ϵl :=
(

C
1000L2

)4L−3−l
ϵ. Suppose that T (1:2l)

large is an ϵl-approximation

of T (1:l). Note that ∥T (1:l)(X)∥1,2 ≤ (l + 1), since each attention output has a bounded norm of 1 and
every weight matrix in projection function g has spectral norm smaller than 1, hence the norm will at
most increment 1 (due to residual connection) after each layer. We have that∥∥∥T̃ (1:2l)

large

(
X̄
)∥∥∥

1,2
≤ 4l ≤ 4L.

Then according to Lemma 36, T (l+1) is (1+ 200L2/C)-Lipschitz with respect to the set of intermediate

outputs {
(
T̃ (1:2l)

large (X̄)
)

1:m
| ∥X∥1,2 ≤ 1}. We also have that T (1:l)(X) is (1 + 200L2/C)l-Lipschitz.

Now we can apply Lemma 28 to show that T (1:2l+2)
large can ϵ′-approximate T (1:l+1) with

ϵ′ = ϵl(1 + 200L2/C) + ϵ

(
C

1000L2

)4L−3
(1 + 200L2/C)l + ϵl

(
C

1000L2

)4L−3
ϵ

≤
(

C
1000L2

)4L−4−l
ϵ = ϵl+1.

The induction is then completed and we have the composition of T̃ i
large for i ∈ [2L] ϵL-approximates

the composition of T with ϵL =
(

C
1000L2

)3L−3
ϵ. We will then perform another induction showing that

the composition of T̃ i
large for i ∈ [2L + l] ϵl+L-approximates T with ϵl+L =

(
C

1000L2

)3L−3−l
ϵ. Suppose

the statement holds for L− 1 ≥ l ≥ 0.

The induction step is similar, because we have T is (1 + 200L2/C)L Lipschitz, by Lemma 28, it holds
that the composition of T i

large for i ∈ [2L + l + 1] ϵ′-approximates T with,

ϵ′ = ϵl+L + ϵ

(
C

1000L2

)4L
(1 + 200L2/C)L + ϵl+Lϵ

(
C

1000L2

)4L

≤ ϵ

(
C

1000L2

)3L−4−l
ϵ = ϵL+l+1.
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This concludes the induction and prove the first claim of the theorem. For the second claim, notice
that through similar induction steps, we can prune arbitrary layer of Tlarge to approximate identity
function and obtain the same approximation rate, this concludes the proof for the second claim.

3.6.4.3.1 Helper lemmas for Theorem 3

Error Analysis Our first lemma shows that the composition of ϵ-approximation can approximate
the composition of the original function.

Lemma 27. Under the setting of Theorem 3, for any matrix W ∈ R4m×4m, ∥W∥2 ≤ 1, with probability
1− δ/4, for any l′ ∈ [4L], there exists a pruning of the l-th layer T (l′)

large, named T̃ (l′)
large, such that when defined

on domain X ∈ Rm×N ,

1. T̃ (l′)
large is independent of the last mlarge − 4m rows of the input.

2. a(x) = T̃ (l′)
large (X̄) is an

(
C

1000L2

)4L
ϵ-approximation of ĝ(X) = WX with respect to 1, 2-norm.

Proof. One can prune the value matrix on layer l′ to zero and the rest is a direct consequence of Lem-
mas 25 and 43.

Lemma 28. Given three metric spaces A, B, C equipped with same metric ∥ · ∥. Suppose f1 : A → B, f2 :
B→ C are ϵ1, ϵ2-approximations of g1, g2 with respect to ∥ · ∥, where g1 is a Lipschitz function with constant
λ1 with respect to ∥ · ∥ and ∥g2(x)∥ ≤ λ2x, then it holds that, f1 ◦ f2 is an ϵ′-approximation of g1 ◦ g2, with
ϵ′ = (λ2 + ϵ1)(λ1 + ϵ2)− λ1λ2

Proof. For any x ∈ Rd1 , it holds that,

∥ f1(x)− g1(x)∥ ≤ ϵ1∥x∥.

This then suggests that,

∥ f2( f1(x))− g2(g1(x))∥
≤∥ f2( f1(x))− g2( f1(x))∥+ ∥g2( f1(x))− g2(g1(x))∥
≤ϵ2∥ f1(x)∥+ λ2∥ f1(x)− g1(x)∥
≤ϵ2∥g1(x)∥+ (λ2 + ϵ2)∥ f1(x)− g1(x)∥
≤ (ϵ2λ1 + ϵ1λ2 + ϵ1ϵ2) ∥x∥.

Approximating ReLU MLP We will first show an extension of Lemma 25, illustrating that a pruned
wide 4-layer ReLU MLP can approximate any 2-layer ReLU MLP.

Lemma 29. Consider any 2-layer ReLU MLP g : R4m → R4m parameterized by W1 ∈ R4m×w, W2 ∈
Rw×4m, ∥W1∥2, ∥W2∥2 ≤ 2

√
2, for any δ, ϵ ∈ (0, 1), consider a random 4-layer ReLU MLP f with input

and output dimension 4m and width w′ = O(w log( wm
min{ϵ,δ} )) parameterized by Wlarge,i, with probability

1− δ over the randomness of weight of f , there exists a nonstructural pruning of f named f̃ , such that f̃ is an
ϵ−approximation of f with respect to 2−norm.
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Proof. Choose ϵ0 = ϵ/8. We only need to show there exists boolean matrices M1, M2, M3, M4, such
that, ∥∥∥(M4 ⊙Wlarge,4ReLU

(
(M3 ⊙Wlarge,3)ReLU

(
(M2 ⊙Wlarge,2)ReLU

(
(M1 ⊙Wlarge,1)x

))))
−W2ReLU (W1X)

∥∥∥
2
≤ ϵ.

By Lemma 25, there exists boolean matrices M1 ∈ Rw′×4m and M′2 ∈ Rw×w′ , such that for any x ∈
R4m,

∥




M′2

0(w
′−w)×w′

⊙Wlarge,2

ReLU
(
(M1 ⊙Wlarge,1)x

)
−


W1x

0w′−w

 ∥2 ≤ ϵ0∥x∥2.

Hence we can choose M2 =


M′2

0(w
′−w)×w′

 and have f1(x) = ReLU
(
(M2 ⊙Wlarge,2)ReLU

(
(M1 ⊙

Wlarge,1)x
))

is ϵ0-approximation of g1(x) =


ReLU(W1x)

0w′−w

.

Again by Lemma 25, there exists boolean matrices M′3 ∈ Rw′×w and M4 ∈ R4m×w′ , such that for any
y ∈ Rw,

∥
(

M4 ⊙Wlarge,4

)
ReLU


[

M′3, 0w′×(w′−w)

] 
y

0w′−w


 ≤ ϵ0∥y∥2

Hence we can choose M3 =

[
M′3, 0w′×(w′−w)

]
, and have f2(x) = ReLU

(
(M4 ⊙Wlarge,4)ReLU

(
(M3 ⊙

Wlarge,3)x
))

is ϵ0-approximation of g2(x) = W2x.

It is also easy to check g1 and g2 are both 2
√

2-lipschitz and g1(0) = 0. By Lemma 28, we conclude
that f̃ = f1 ⊙ f2 is ϵ′-approximation of g = g1 ⊙ g2, with ϵ′ = 4

√
2ϵ0 + ϵ2

0 ≤ ϵ.

This lemma then yields the following corollaries.

Corollary 1. Under the setting of Theorem 3, with probability 1− δ/4, for any l ∈ [L], l′ ∈ [4L], there exists

a pruning of the projection function g(l′)
large, named

˜
g(l′)

large, such that

1.
˜

g(l′)
large is independent of the last mlarge −m dimension of the input.
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2. a(x) =
˜

g(l′)
large




x

0mlarge−m


 is an

(
C

1000L2

)4L
ϵ-approximation of ĝ(x) =


g(l)(x)

0mlarge−m

 with respect

to 2−norm.

Proof. One can construct such pruning by pruning the last mlarge − m rows of the weight of the last

layer and the last mlarge − m columns of the weight of the first layer of g(l′)
large to zero and then ap-

ply Lemma 29.

Approximating Attention Patterns We will now show that the attention pattern can be approxi-
mated by pruning random Transformer layers.

Lemma 30. For any δ, ϵ ∈ (0, 1), for any W ∈ Rm, ∥W∥2 ≤ 1, for two random matrix W1, W2 ∈ Rm′×m

where m′ = O(m log( m
min{ϵ,δ} )), suppose X ∈ Rm×N , then there exists nonstructural pruning of W1, W2,

named W̃1, W̃2, such that

∥X⊤W̃1
⊤W̃2X −X⊤WX∥∞ ≤ ϵ∥X∥2

1,2

Here we adopt ∥∥∞ in vector sense, meaning the entry with largest absolute value.

Proof. Suppose without loss of generality, ∥X∥:,i ≤ 1. According to Lemma 25, there exists nonstruc-
tural pruning of W1, W2, named W̃1, W̃2, such that for any x ∈ Rm, ∥x∥2 ≤ 1,

∥W̃1
⊤W̃2x−Wx∥2 ≤ ϵ.

This then suggests that,

∥y⊤(W̃1
⊤W̃2x−Wx)∥2 ≤ ϵ∥y∥2 ≤ ϵ.

This concludes the proof.

The next lemma shows how error propogates through the softmax operators.

Lemma 31. For any dimension d, suppose x, y ∈ Rd satisfies ∥x− y∥∞ ≤ ϵ, then it holds that,

d

∑
i=1

∣∣ exp(xi)

∑n
i=1 exp(xi)

− exp(yi)

∑n
i=1 exp(yi)

∣∣ ≤ exp(2ϵ)− 1.

Proof. One can observe that,

exp(−ϵ) exp(xi) ≤ exp(yi) ≤ exp(ϵ) exp(xi)

This then suggests,

exp(xi)

∑n
i=1 exp(xi)

exp(−2ϵ) ≤ exp(yi)

∑n
i=1 exp(yi)

≤ exp(2ϵ)
exp(xi)

∑n
i=1 exp(xi)

.

Hence,

d

∑
i=1

∣∣ exp(xi)

∑n
i=1 exp(xi)

− exp(yi)

∑n
i=1 exp(yi)

∣∣ ≤ max{exp(2ϵ)− 1, 1− exp(−2ϵ)} = exp(2ϵ)− 1.

This concludes the proof.
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Approximating Attention Module We will need the following lemma showing there exists a prun-
ing of the value matrix in Tlarge such that it has eigenvalues with magnitude Θ(1).

Lemma 32. For a matrix W ∈ R
mlarge×mlarge , with probability at least 1− δ

10L , there exists a pruning of W,
named W ′, such that all the nonzero entries is contained in a d× d submatrix of W ′ that satisfies that (1) all its
eigenvalues are within ( 1

2 , 1), (2) the index of row specifying the submatrix and the index of column specifying
the submatrix are disjoint.

Proof. As wlarge = Ω(m log( dL
δ )), hence we can split W1:⌈mlarge/2⌉,⌈mlarge/2⌉+1:mlarge

into (m× (m blocks,

each with width at least O(log( (mδ )) 70. Within each block, with probability 1− δ
10Lmlarge

, there exists at

least one entry that has value at least 1
2 . We can then choose d disjoint entries in W that are all at least

1
2 , indexed with {(ai, bi)}i∈[d] where ai < aj and bi < bj for i < j. We can then prune all other entries
to zero. Consider the submatrix defined by entries (a, b) for a ∈ {ai}i∈m and b ∈ {bi}i∈m. Then, this
submatrix will be diagonal and contains eigenvalues within ( 1

2 , 1). Further {ai}i∈m and {bi}i∈m must
be disjoint because ai ≤ ⌈mlarge/2⌉ < bi. The proof is then completed.

We will also prove that LayerNorm with nonzero normalization constant is Lipschitz.

Lemma 33. For LayerNorm function defined as LN(x) = P⊥x
max{∥P⊥x∥2,C} , x ∈ Rm, for any x, y ∈ Rm, it

holds that, ∥∥∥LN(x)− LN(y)
∥∥∥

2
≤ 2∥x− y∥2/C.

Proof. We will proceed by a case analysis:

1. If ∥P⊥x∥2, ∥P⊥y∥2 ≤ C, then
∥∥∥LN(x)− LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

C ≤ 1
C∥x− y∥2.

2. If ∥P⊥x∥2, ∥P⊥y∥2 > C, then
∥∥∥LN(x)− LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

∥P⊥y∥2
+
∣∣1− ∥P⊥x∥2

∥P⊥y∥2

∣∣ ≤ 2
C∥x− y∥2.

3. If ∥P⊥x∥2 < C and ∥P⊥y∥2 > C, then
∥∥∥LN(x)− LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

∥P⊥y∥2
+
∣∣ ∥P⊥x∥2

C − ∥P⊥x∥2
∥P⊥y∥2

∣∣ ≤
2
C∥x− y∥2.

The cases exhaust all possibilities, thus the proof is completed.

Finally, we will need a lemma showing how error accumulates when we consider both attention
patterns and the value matrices.

Lemma 34. For any dimension d and positive number N, for P, Q ∈ Rd×d satisfying that ∥P∥2, ∥Q∥2 ≤ 1,
for any x ∈ Rd×N , if matrix A ∈ RN×N , B ∈ Rd×N satisfy that,

∥A− σ(x⊤Qx)∥1,1 ≤ ϵ1.

∥B− Px∥1,2 ≤ ϵ2.

∀i, k ∈ [N] ∑
j∈[N]

Aj,i = 1, Ak,i ≥ 0.

70O(·) hides absolute constants arising from the change of basis in the logarithm.
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Then it holds that,

∥BA− Pxσ(x⊤Qx)∥1,2 ≤ (ϵ1∥PX∥1,2 + ϵ2).

∥LNC(BA)− LNC(Pxσ(x⊤Qx))∥1,2 ≤ 2(ϵ1∥PX∥1,2 + ϵ2)/C.

Proof. For any i ∈ N, we will have∥∥∥(BA):,i −
(

Pxσ(x⊤Qx)
)

:,i

∥∥∥
2

=
∥∥∥ ∑

j∈[N]

Aj,iB:,j −
(

σ(x⊤Qx)
)

j,i
(PX):,j

∥∥∥
2

≤∥ ∑
j∈[N]

Aj,i(PX):,j −
(

σ(x⊤Qx)
)

j,i
(PX):,j

∥∥∥
2
+ ∥ ∑

j∈[N]

Aj,i (PX− B):,j ∥2

≤∥PX∥1,2 ∑
j∈[N]

|Aj,i −
(

σ(x⊤Qx)
)

j,i
+ ∥PX− B∥1,2

≤∥PX∥1,2∥A− σ(x⊤Qx)∥1,1 + ∥PX− B∥1,2 ≤ ϵ1∥PX∥1,2 + ϵ2.

The rest follows from Lemma 33

A LayerNorm of larger dimension can be made to be functionally equivalent to a LayerNorm of a
smaller dimension. Precisely:

Lemma 35. Given any dimension d < d′, it holds that for any x ∈ Rd,

LNC(


P⊥x

0d′−d

) =


LNC(x)

0

 .

Proof. The proof follows directly from definition.

We will now formally define attention module.

Definition 18 (Attention Module). We will define attention module a(X |WV , WK, WQ) as

a(X) = LNC

(
WVXσ(X⊤W⊤K WQX)

)
.

Lemma 36. Attention module is lipschitz with respect to 1, 2-norm for bounded input. Precisely, consider
attention module (Definition 18)parameterized by ∥WV∥2, ∥WK∥2, ∥WQ∥2 ≤ 1 with input domain ∥X∥1,2 ≤
4L, a(X) is 200L2/C-lipschitz with respect to 1, 2−norm.

Proof. We have that

a(X) = LNC

(
WVXσ(X⊤W⊤K WQX)

)
.
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Choose ϵ to be a sufficiently small constant, such that, exp(32Lϵ) − 1 ≤ 64Lϵ. Consider X and X̃

satisfying that ∥X − X̃∥1,2 ≤ ϵ and ∥X∥1,2 ≤ 4L, ∥X̃∥1,2 ≤ 4L, we will have∣∣∣ (X⊤W⊤K WQX − (X̃)⊤W⊤K WQ(X̃)
)

i,j

∣∣∣
=
∣∣∣(X:.i − X̃:,i)

⊤W⊤K WQX:,j + (X̃:,i)
⊤W⊤K WQ(X:,j − X̃:,j) + (X:.i − X̃:,i)

⊤W⊤K WQ(X:,j − X̃:,j)
∣∣∣

≤8Lϵ + ϵ2 ≤ 16Lϵ.

By Lemma 31, this implies,

∥σ(X⊤W⊤K WQX)− σ((X̃)⊤W⊤K WQ(X̃))∥1,1 ≤ exp(32Lϵ)− 1 ≤ 64Lϵ.

We also have

∥WV
(
X − X̃

)
∥1,2 ≤ ϵ.

∥WVX∥1,2 ≤ 4L

Lemma 34 then implies that

∥a(X)− a(X̃)∥1,2 ≤ 200L2ϵ/C.

This then concludes the proof.

We can now prove that a large Transformer Layer and an attention module of the larger Transformer
can be pruned to approximate the attention module of a smaller Transformer Layer module.

Lemma 37. Under the setting of Theorem 3, with probability 1− δ/2, for any l ∈ [L], l′ ∈ [4L − 1], let
a(l) be the attention module on the l-th layer of T , there exists a pruning of the (l′ − 1)-th layer T (l′−1)

large ,

named T̃ (l′−1)
large and the attention module on l′-th layer al′

large named ˜al′
large, such that when defined on domain

∥X∥1,2 ≤ 2L,

1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.

2.

 ˜al′
large ◦ T̃

(l′−1)
large




x

0(mlarge−m)×N





1:m

is an
(

C
1000L2

)4L−1
ϵ-approximation of a(l)(x) with re-

spect to 1, 2-norm.

3.

T̃ (l′−1)
large




x

0(mlarge−m)×N





1:m

is an
(

C
1000L2

)4L
ϵ-approximation of X with respect to 1, 2-norm.

Proof. We will use the shorthand ϵ0 =
(

C
1000L2

)4L
ϵ and prune in the following order. It holds that for

ϵ ≤ 1, exp(8L2ϵ0)− 1 ≤ 16L2ϵ0.
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1. We will prune Wlarge,(l′)
V according to Lemma 32 and name the pruned matrix

˜
Wlarge,(l′)

V . By Lemma 32,
all the nonzero entries is contained in a d× d submatrix of W ′ that satisfies that all its eigenvalues
are within ( 1

2 , 1). We will assume WLOG the submatrix is the one specified by row 1 . . . d and
column d + 1 . . . 2d and name the submatrix as W.

2. We will then prune T (l′−1)
large according to Lemma 27 to output ϵ0-approximation of X ∈ Rm×N →

X

W−1P⊥W(l)
V X

0(mlarge−2m)×N


. As W is defined as the submatrix pruned by W(t+1)

V , it holds that
˜

Wlarge,(l′)
V



X

W−1P⊥W(l)
V X

0(mlarge−m)×N


=


P⊥W(l)

V X

0(mlarge−m)×N

.

3. Finally we will prune Wlarge,(l′)
K , Wlarge,(l′)

Q according to Lemma 30 to approximate (W(l)
K )⊤W(l)

Q up
to ϵ0 error.

we can now calculate the approximation error. For any X ∈ Rm×N , ∥X∥1,2 ≤ 2L, suppose

˜T (l′−1)(X) =



X + δ1

W−1P⊥W(l)
V X + δ2

0(mlarge−2m)×N


Then by our constrution, it holds that ∀i ∈ {1, 2}, ∥δi∥1,2 ≤ ϵ0∥X∥1,2.

We would then have

˜
Wlarge,(l′)

V
˜T (l′−1)(X) =


P⊥W(l)

V X +
˜

Wlarge,(l′)
V δ2

0(mlarge−m)×N

 (3.62)

By our construction, it holds that ∥ ˜
Wlarge,(l′)

V δ2∥1,2 ≤ 2∥δ2∥1,2 ≤ 2ϵ0∥X∥1,2.

Further, by the construction of
˜

Wlarge,(l′)
K ,

˜
Wlarge,(l′)

Q , it holds that,

∥∥∥( ˜
Wlarge,(l′)

K
˜T (l′−1)(X)

)⊤ ( ˜
Wlarge,(l′)

Q
˜T (l′−1)(X)

)
− (W(l)

K X + W(l)
K δ1)

⊤(W(l)
Q X + W(l)

Q δ1)
∥∥∥

∞
≤ ϵ0 (3.63)
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As for any i, j ∈ [N]∣∣∣∣((W(l)
K X + W(l)

K δ1)
⊤(W(l)

Q X + W(l)
Q δ1)− (W(l)

K X)⊤W(l)
Q X

)
i,j

∣∣∣∣
≤
∣∣∣(W(l)

K X:,i)
⊤(W(l)

Q δ1):,j

∣∣∣+ ∣∣∣(W(l)
K δ1)

⊤
:,i(W

(l)
Q X):,j

∣∣∣+ ∣∣∣(W(l)
K δ1)

⊤
:,i(W

(l)
Q δ1):,j

∣∣∣
≤∥X∥2

1,2(2ϵ0 + ϵ2) ≤ 4∥X∥2
1,2ϵ0.

combined with Equation (3.63),

∥∥∥( ˜
Wlarge,(l′)

K
˜T (l′−1)(X)

)⊤ ( ˜
Wlarge,(l′)

Q
˜T (l′−1)(X)

)
− (W(l)

K X)⊤W(l)
Q X

∥∥∥
∞
≤ ϵ0(1 + 4∥X∥2

1,2).

(3.64)

By Lemma 31, this implies

∥∥∥σ

((
˜

Wlarge,(l′)
K

˜T (l′−1)(X)

)⊤ ( ˜
Wlarge,(l′)

Q
˜T (l′−1)(X)

))
− σ

(
(W(l)

K X)⊤W(l)
Q X

) ∥∥∥
1,1
≤ 4ϵ0(1 + 4∥X∥2

1,2). (3.65)

By Lemma 34, Equations (3.62) and (3.65) imply,

∥∥∥ ˜
Wlarge,(l′)

V
˜T (l′−1)(X)σ

((
˜

Wlarge,(l′)
K

˜T (l′−1)(X)

)⊤ ( ˜
Wlarge,(l′)

Q
˜T (l′−1)(X)

))

−


P⊥W(l)

V Xσ
(
(W(l)

K X)⊤W(l)
Q X

)
0(mlarge−m)×N


∥∥∥

1,2
≤ 8ϵ0(1 + 4∥X∥2

1,2)∥X∥1,2 ≤ 80L2ϵ0.

Now according to Lemmas 33 and 35, it holds that

∥ ˜al′
large ◦ T̃

(l′−1)
large




x

0(mlarge−m)×N




1:m

− a(l)(x)∥1,2 ≤ 160L2ϵ0/C.

This concludes the proof.

Approximating Transformer Layers We will finally show that two random Transformer layers can
be pruned to approximate a given Transformer layer.

Lemma 26. Under the setting of Theorem 3, with probability 1− 2δ/3, for any l ∈ [L], l′ ∈ [4L − 1], let
T (l) be the l-th layer of T , there exists a pruning of the (l′ − 1)-th and the (l′)-th layer T (l′−1)

large , T l′
large, named

T̃ (l′−1)
large , T̃ l′

large such that when defined on domain ∥X∥1,2 ≤ 2L,X ∈ Rm×N ,

1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.
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2. T̃ l′
large ◦ T̃

(l′−1)
large (X̄) is an

(
C

1000L2

)4L−3
ϵ-approximation of T (l)(X) with respect to 1, 2-norm.

Proof. We will prune the (l′− 1)-th layer and the attention module of the l′-th layer according to Lemma 37
to approximate a(l) and the projection function of the l′-th layer according to Corollary 1. Notice that∥∥∥a(l)(X) +X

∥∥∥
1,2
≤ ( 2

C + 1)∥X∥1,2 and g(l) is 1-Lipschitz. Then, according to Lemma 28,

T̃ l′
large ⊙ T̃

(l′−1)
large




x

0(mlarge−m)×N





1:m

is an ϵ′-approximation of T (l)(x), with

ϵ′ ≤ (
2
C
+ 1)

(
C

1000L2

)4L
ϵ +

(
C

1000L2

)4L−2
ϵ +

(
C

1000L2

)8L−2
ϵ2 ≤

(
C

1000L2

)4L−3
ϵ.

This concludes the proof.

3.6.4.4 Technical Lemmas

Lemma 38. Given any dimension d and number of samples n, for any size-n dataset {(xi, yi)}i∈[n] with
xi ∈ Rd and yi ∈ R, there exists a width-2n two-layer MLP f : Rd → R with ReLU activation such that,
f (xi) = yi for any i ∈ [n].

Proof. We will first choose direction w ∈ Rd, ∥w∥2 = 1 and margin γ > 0 such that for any i ̸= j in
[n], it holds that, ∣∣∣⟨w,xi − xj⟩

∣∣∣ ≥ 2γ.

We will assume WLOG w⊤xi is increasing in i.

Then we will construct an auxilliary series zi for i ∈ [n] such that,

z1 = y1/γ

zi = yi/γ− 2
i−1

∑
j=1

zj, i ∈ {2, . . . n}.

Finally consider the following two-layer MLP with ReLU activation,

f (x) =
n

∑
i=1

zirelu (⟨w,x− xi⟩+ γ)− zirelu (⟨w,x− xi⟩ − γ) ,

we will show that f (xi) = yi for any i ∈ [n]. Notice that

zjrelu
(
⟨w,xi − xj⟩+ γ

)
− zjrelu

(
⟨w,xi − xj⟩ − γ

)
=


0, j > i,

γzi, j = i,

2γzj, j < i.
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Thus it holds,

f (xi) =
n

∑
j=1

zjrelu
(
⟨w,xi − xj⟩+ γ

)
− zjrelu

(
⟨w,xi − xj⟩ − γ

)
=

i−1

∑
j=1

2γzj + γzi = yi.

Lemma 39. Given any sets {xi}i∈m satisfying that xi ∈ Rn and xi ̸= 0, there exists a set of orthonormal
vectors {uj}j∈[n−2] of Rn such that (1) u⊤j 1n = 0 for any j ∈ [n− 2] and (2) ∑j∈[n−2] u⊤j xiuj ̸= xi for any
i ∈ [m].

Proof. There exists a vector v ∈ Rn such that v⊤xi ̸= 0 for any i ∈ [m]. We can then construct an
orthonormal basis {uj}j∈[n−2] of Rn as the basis of the normal space of span(v, 1n). Then the lemma
holds.

Lemma 40. Given any dimension n and constant M, there exists a 2-layer width-2n ReLU network f :
Rn+1 → R such that for any x ∈ [0, M]n, y ∈ [n], f (x⊕ y) = xy.

Proof. The construction is as followed, we will choose f as

f (x⊕ y) =
n

∑
i=1

ReLU(xi + M(y− i))−
n

∑
i=1

ReLU(xi + M(y− i− 1))−M(y− 1).

Then as we have

ReLU(xi + M(y− i))−
n

∑
i=1

ReLU(xi + M(y− i− 1)) =


M, i ≤ y− 1;

xi, i = y;

0, i ≥ y + 1.

The proof is completed.

Lemma 41. Given any dimension n and constant M > 0, there exists a 2-layer width-2n ReLU network
f : Rn → R such that for any x ∈ Rn satisfying there exists i ∈ [n], xi > M and ∀j ̸= i, xj = 0, it holds that
f (x) = i.

Proof. The construction is as followed, we will choose f as

f (x) =
m

∑
i=1

i (ReLU(xi)− ReLU(xi −M) + M) /M.

The proof is completed.

Lemma 42. Given any dimension n and natural numbers K, m, M, if there exists K different 2-layer width-m
ReLU networks fk : Rn → R, then there exists a 2-layer width-2Km ReLU network f : Rn+1 → R, such that

f (


k

x

) = fk(x) when x ∈ [0, M]n.
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Proof. Suppose that

fk(x) =
m

∑
i=1

ak,iReLU(w⊤k,ix + bk,i) + bk.

Then we can construct

f (


y

x

) =
K

∑
k=1

m

∑
i=1

ak,iReLU(w⊤k,ix + bk,i + M(y− k))− ak,iReLU(w⊤k,ix + bk,i + M(y− k− 1))

+ bk − ck,iReLU(y + 1− k),

where ck,i satisfies

∀i, k′,
k′

∑
k=1

ck,i(k′ + 1− k) = M
k′−1

∑
k=1

ak,i.

The proof is then completed.

Lemma 43. Given any dimension n and W ∈ Rn×n, ∥W∥2 ≤ 2, there exists a 2-layer width-2n ReLU net-
work f : Rn → R such that for any x ∈ Rn, it holds that f (x) = Wx and both weight matrices parameterizing
f has spectral norm less than 2

√
2.

Proof. The construction is straightforward, one can choose

f (x) = [In,−In]
⊤ReLU




Wx

−Wx


 .

3.6.5 Discussions: Are interpretable attention patterns useful?

Our results demonstrate that Transformers are sufficiently expressive that a (near-)optimal loss on
Dyck languages can be achieved by a variety of attention patterns, many of which may not be inter-
pretable.

However, multiple prior works have shown that for multi-layer multi-head Transformers trained on
natural language datasets, it is often possible to locate attention heads that produce interpretable
attention patterns [Vig and Belinkov, 2019, Htut et al., 2019, Sun and Marasović, 2021]. Hence, it is
also illustrative to consider the “converse question” of (Q1): when some attention heads do learn to
produce attention patterns that suggest intuitive interpretations, what benefits can they bring?

We discuss this through two perspectives:

• Reliability of interpretation (Section 3.6.5.1): Is the Transformer necessarily implementing a solu-
tion consistent with such interpretation based on the attention patterns?
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• Usefulness for task performance (Section 3.6.5.2): Are those interpretable attention heads more
important for the task than other uninterpretable attention heads?

We present preliminary analysis on these questions, and motivate future works on the interpretability
of attention patterns using rigorous theoretical analysis and carefully designed experiments.

3.6.5.1 Can interpretable attention patterns be misleading?

We show through a simple argument that interpretations based on attention patterns can sometimes
be misleading, as we formalize in the following proposition:

Proposition 6. Consider an L-layer Transformer T (Equation equation 3.27). For any W(l)
K , W(l)

Q ∈ Rma×m (l ∈
[L]), there exist WHead ∈ R2k×w and bHead ∈ R2k such that T (Z) = 0, ∀Z .

While its proof is trivial (simply setting WHead = 0 and bHead = 0 suffices), Proposition 6 implies that
the solution represented by the Transformer could possibly be independent of the attention patterns
in all the layers (1 through l). Hence, it could be misleading to interpret Transformer solutions solely
based on these attention patterns.

Empirically, Transformers trained on Dyck indeed sometimes produce misleading attention patterns.

We present one representative example in Figure 3.41, and Figure 3.42, in which all interpretable atten-
tion patterns are misleading. We also present additional results in Figure 3.43, in which some interpretable
attention patterns are misleading, and some are not.

Similar message has been conveyed in prior works Bolukbasi et al. [2021], and future works may aim
to achieve the faithfulness, completeness, and minimality conditions in Wang et al. [2023].

3.6.5.2 Are attention heads with interpretable patterns more important?

Kovaleva et al. [2019] observes that, when the “importance” of an attention head is defined as the
performance drop the model suffers when the head is disabled, then for most tasks they test, the
most important attention head in each layer does not tend to be interpretable.

However, experiments by Voita et al. [2019] led to a seemingly contradictory observation: when atten-
tion heads are systematically pruned by finetuning the Transformer with a relaxation of L0-penalty
(i.e. encouraging the number of remaining attention heads to be small), most remaining attention
heads that survive the pruning can be associated with certain functionalities such as positional, syn-
tactic, or attending to rare tokens.

These works seem to bring mixed conclusions to our question: are interpretable attention heads more
important for a task than uninterpretable ones? We interpret these results by conjecturing that the
definition of “importance” (reflected in their experimental design) plays a crucial role:

• When the importance of an attention head is defined treating all other attention heads as fixed, motivat-
ing experiments that prune/disable certain heads while keeping other heads unchanged [Michel
et al., 2019, Kovaleva et al., 2019], the conclusion may be mostly pessimistic: mostly no strong
connection between interpretability and importance.
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• On the other hand, when the importance of an attention head is defined allowing all other attention
heads to adapt to its change, motivating experiments that jointly optimize all attention heads while
penalizing the number of heads [Voita et al., 2019], the conclusion may be more optimistic: the
heads obtained as a result of this optimization tend to be interpretable.

We think the following trade-offs apply:

• On one hand, the latter setting is more practical, since Transformers are typically not trained to ex-
plicitly ensure that the model performs well when a single attention head is individually disabled;
rather, it would be more intuitive to think of a group of attention heads as jointly representing
some transformation, so when one head is disabled, other heads should be fine-tuned to adapt to
the change.

• On the other hand, when all other heads change too much during such fine-tuning, the resulting
set of attention heads no longer admit an unambiguous one-to-one map with the original set of
(unpruned) attention heads. As a result, the interpretability and importance obtained from the set
of pruned heads do not necessarily imply those properties of the original heads.

A comprehensive study of this question involves multi-head extensions of our theoretical results (Sec-
tion 3.6.2), and carefully-designed experiments that take the above-mentioned trade-offs into consid-
eration, which are interesting directions for future work.

3.7 Additional discussion of related work

Relevant applications. We first provide references for the “reasoning-like” applications of neural
networks mentioned in this chapter.

• Program synthesis: [Chen et al., 2021b, Schuster et al., 2021, Li et al., 2022b].

• Mathematical reasoning: [Lample and Charton, 2019, Polu and Sutskever, 2020, Drori et al.,
2022].

• Neural dynamics models for decision-making: recurrent [Hafner et al., 2019, Ye et al., 2021,
Micheli et al., 2022] and non-recurrent [Chen et al., 2021a, Janner et al., 2021].

3.7.1 Formal languages and neural networks.

Dyck languages are particularly interesting for their completeness property: the Chomsky-Schützenberger
representation theorem [Chomsky and Schützenberger, 1959] states that all context-free languages
can be (homomorphically) represented by the intersection of a Dyck language and a regular language.
For more on this topic, see the discussion in Yao et al. [2021b]. In the context of regular languages
(which in general induce finite-state automata), our findings imply that O(log T)-depth networks can
simulate all context-free languages (Theorem 10), and O(1)-depth networks can represent some of
them. The obstructing regular languages are the ones whose associated syntactic monoids are non-
solvable. We further note that the gridworld semigroups are aperiodic and thus simulable by star-free
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regular expressions [Schützenberger, 1965] and AC0 circuits [Chandra et al., 1983, Barrington and
Thérien, 1988]. We did not see a way for this to generically entail O(1)-depth shortcuts with self-
attention. For the relation between the Chomsky hierarchy and various neural networks in practice,
Delétang et al. [2022] provide an extensive empirical study for memory-augmented RNNs and Trans-
formers on tasks spanning all 4 levels of the hierarchy, and conclude the Transformers lack the ability
to even recognize regular languages. Their results do not contradict with ours, since they measure
performance on “inductive inference”, which is similar to our length generalization setup where we
also see the failure of Transformer.

3.7.2 Algebraic structures in deep learning.

Another area where tools from abstract algebra are used to reason about neural networks is geometric
deep learning, a research program which seeks to understand how to specify inductive biases stem-
ming from algebraic invariances. For a recent survey, see Bronstein et al. [2021]. In contrast, this work
studies the ability of a fixed architecture to learn a wide variety of algebraic operations, in the absence
of special priors (but a large amount of data). There are certainly possible connections (e.g. “how do
you bias an architecture to perform operations in a known group, when there is limited data?”) to explore in
future work.

3.7.3 Different axes of generalization: length, size, and algorithmic.

There has been much recent interest in quantifying out of distribution generalization of trained mod-
els under distribution shifts that maintain some notion of “logical” invariance. Wei et al. [2022c], Anil
et al. [2022b] empirically investigate the ability of pre-trained Transformers to generalize to longer
sequence length for parity-like problems modelled as language tasks. Xu et al. [2020] study size gen-
eralization in graph neural networks where they train on small graphs and evaluate on larger sized
graphs with similar structural properties. Schwarzschild et al. [2021], Bansal et al. [2022] focus on
length and algorithmic generalization for recurrent models where they train on simple/easy instances
of the underlying problem and evaluate on harder/complex instances using the power of recurrence
to simulate extra computational steps, inspired by the ideas of Neural Turing Machines [Graves et al.,
2014] and Adaptive Computation Time [Graves, 2016]. We view our results as complementing those
of Yao et al. [2021b], Anil et al. [2022b] for a richer class of problems. Our use of scratchpad is inspired
by Nye et al. [2021a], Wei et al. [2022c], Anil et al. [2022b].

3.7.4 Transformers and variants

Recurrent Transformers. Our work is not the first to notice that Transformer architectures make
brittle predictions out-of-distribution. Indeed, even the seminal paper introducing the architecture
[Vaswani et al., 2017] notes that length generalization is promoted by a subtle hyperparameter choice
(namely, the positional encoding scheme). Furthermore, there have been several attempts to reconcile
this gap by modifying Transformers to behave more like RNNs; [Dehghani et al., 2019, Nye et al.,
2021a, Wei et al., 2022c, Anil et al., 2022b, Hutchins et al., 2022]. Kasai et al. [2021] consider training
a non-recurrent Transformer, and finetuning it into an RNN. All of these works have some element

175



of natural language experiments: either the task is end-to-end language modeling, or the synthetic
reasoning task is framed as a natural language problem, for a pretrain-finetune pipeline. We view our
work as strengthening the foundations of these lines of inquiry. Theoretically, we provide structural
guarantees for how shallow non-recurrent models can (perhaps deceptively) fit recurrent dynamics
over long sequences. Empirically, we perform a pure (no confounds arising from the influence of a
natural langauge corpus) analogue of the experiments seeking to help neural networks follow long
chains of reasoning.

Recurrent vs. non-recurrent sequence transduction. As mentioned briefly towards the end of Sec-
tion 3.4.3, the setting of indirectly-supervised semiautomata matches that of autoregressive gener-
ative modeling (a.k.a. next-token prediction), if the continuations of the sequence depend on the
state of a latent semiautomaton. This is the case in (for example) generating Dyck languages [Yao
et al., 2021b], where the possible continuations are {all possible open brackets, if the stack qt is not
full} ∪ {close bracket which pairs with the top of the stack qt}. We note that when an autoregressive
model is used for sequence generation via a token-by-token inference procedure, this amounts to a
special case of scratchpad inference (with a naive 1-step training procedure): the constant-depth net-
work is used as a single iteration of a recurrent network, whose state is the completed prefix of the
current generated sequence. Non-autoregressive natural language generation and transduction are
an exciting area of research [Gu et al., 2017]; for a recent survey, see Xiao et al. [2022]. Our results are
relevant to this line of work, suggesting that there may not be an expressivity barrier to expressing
deep recurrent linguistic primitives, but there may be issues with out-of-distribution robustness.

Transformers as universal computation machines. Pérez et al. [2021] show that an infinite-precision
Transformer achieves Turing completeness, as a single forward pass through a 3-layer decoder can
simulate one transition step of a Turing machine. Giannou et al. [2023] exhibit a 13-layer Trans-
former whose weights are hard-coded to a universal Turing machine, and can be looped to perform
any computation. These works show that one pass through a Transformer can implement a single
computational step of a Turing machine. In contrast, our results show how a shallow Transformer
can sometimes execute a computational loop over the entire context in a single non-recurrent pass.
This requires a significantly more refined analysis, which depends on the global algebraic structure
induced by the automata in question.

Theoretical role of depth. Our theoretical results can be interpreted as a depth separation result: con-
tingent on TC0 ̸= NC1, it takes strictly more layers to simulate non-solvable semiautomata, compared
to their solvable counterparts. In a similar spirit, there have been several works establishing depth
separation for feed-forward neural networks (mostly using ReLU activations) [Telgarsky, 2016, Eldan
and Shamir, 2016, Daniely, 2017, Lee et al., 2017, Safran et al., 2019]. These results are usually con-
structive in nature, that is, they show the existence of functions that can be represented by depth L
but would require exponential width for depth L− 1 (or

√
L, depending on the result).

Universal function approximation with other networks. More elementary neural architectures,
such as MLPs, have the ability to represent arbitrary functions, given sufficiently many neurons
[Hornik et al., 1989, Cybenko, 1989]. The ACC0 circuit construction described in [Barrington and
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Thérien, 1988] can be implemented by any such architecture, not just the Transformer– there is a
naive black-box way to “compile” each gate in the circuit into a network with the same depth as the
ACC0 circuit. A natural question is: why, then, should we prefer Transformers? The primary advantage
of Transformers comes from the position-wise weight sharing of the attention layers and the casual
structure from causal attention maps. Unlike MLPs, the shared parameters in Transformers allow
for significant reduction in the total parameter count for representing the two main operations across
positions: modular counters, and resets. In particular, these functions can be represented with O(1)
trainable parameters in the attention and MLP weight matrices (i.e. independent of T), as opposed to
the Θ(T) parameters in a vanilla MLP, where position-wise parameter sharing is not available. In a
sense, the Transformer architecture is naturally suited for implementing this construction.

3.7.5 Transformer optimization

Given multiple global optima, understanding Transformer solutions requires analyzing the training
dynamics. Recent works theoretically analyze the learning process of Transformers on simple data
distributions, e.g. when the attention weights only depend on the position information [Jelassi et al.,
2022], or only depend on the content [Li et al., 2023]. Our work studies a syntax-motivated setting
in which both content and position are critical. We also highlight that Transformer solutions are
very sensitive to detailed changes, such as positional encoding, layer norm, sharpness regularization
[Foret et al., 2020], or pre-training task [Liu et al., 2022b]. On a related topic but towards different
goals, a series of prior works aim to improve the training process of Transformers with algorithmic
insights [Nguyen and Salazar, 2019, Xiong et al., 2020, Liu et al., 2020, Zhang et al., 2021c, Li and
Gong, 2021, inter alia]. An end-to-end theoretical characterization of the training dynamics remains
an open problem; recent works that propose useful techniques towards this goal include Gao et al.,
2023, Deng et al., 2023.

3.7.6 Generalization challenges

Hallucinations and long-range dependencies in NLP. The empirical literature is rife with corrobo-
rations that neural language models have trouble with robustly fitting long-range memory and multi-
step reasoning [Khandelwal et al., 2018, Sun et al., 2021, Sukhbaatar et al., 2021, Malkin et al., 2022,
Saparov and He, 2022, Orvieto et al., 2023, Creswell et al., 2023]. Such failures can result in “hallu-
cinations”: incorrect outputs which either directly contradict factual input in the context, or contain
information absent in the context [Ji et al., 2023].

Hallucination can be attributed to various factors, such as the noisiness in data sources [Dhingra
et al., 2019, Dziri et al., 2022], imperfect encoding/decoding [Parikh et al., 2020, Tian et al., 2019], or
the discrepancy in training and evaluation setups [He et al., 2019]. In particular, the most related
to our paper are the characteristics inherent to the model itself. For example, prior work has found
that Transformers tend to be biased towards information covered during training [Petroni et al., 2019,
Longpre et al., 2021], a potential cause to their poor out-of-distribution performance.

In terms of mitigation, various “external” methods (i.e. ones which do not modify the internal rep-
resentations of the neural network) have been proposed to address some of the above factors, or
post-processing model generations [Dziri et al., 2021, Chen et al., 2021c], possibly based on several
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forward passes [Wang et al., 2022b, Zheng et al., 2023a]. Another line of work that have gained much
popularity and success is to incorporate explicit memory mechanisms, which we discuss next.

Explicit memory mechanisms in Transformers. Prior work has shown that augmenting the neural
network with memory modules or knowledge base helps improve the performance on long-range
texts [Khandelwal et al., 2019, Wu et al., 2022, Bertsch et al., 2023]. An approach particularly effective
for large-scale Transformers is to ask the model to output immediate reasoning steps to a “scratchpad”
which the model subsequently processes [Nye et al., 2021b, Wei et al., 2022b, Zhou et al., 2022, Anil
et al., 2022b, Shao et al., 2023], similar to writing to and reading from a memory tape. A particular way
to interact with the scratchpad is to interlace every other token with an annotation of “as a reminder,
this is the state” [Liu et al., 2023a, Lanchantin et al., 2023], so that there are no more explicit long-range
dependencies. However, this strategy is the same as the recurrent solution implementable by RNNs,
and it does not always exist, especially when attention glitches occur in an internal component of the
model.

Transformers and algorithmic tasks. Compared to real-world language datasets, synthetic tasks
provide a cleaner and more controlled setup for probing the abilities and limitations of Transformers.
Specific to algorithmic reasoning, Liu et al. [2023a] puts a unifying perspective on the ability of small
Transformers to succeed at tasks corresponding to algorithmic primitives. Specific tasks of interest
include hierarchical languages [Yao et al., 2021a, Zhao et al., 2023], modular prefix sums [Anil et al.,
2022b], adders [Nogueira et al., 2021, Nanda and Lieberum, 2022], regular languages [Bhattamishra
et al., 2020a], and following a chain of entailment Zhang et al. [2022].

3.7.7 Interpretability

Interpreting Transformer solutions Prior empirical works show that Transformers trained on nat-
ural language data can produce representations that contain rich syntactic and semantic information,
by designing a wide range of “probing” tasks [Raganato and Tiedemann, 2018, Liu et al., 2019, Hewitt
and Manning, 2019b, Clark et al., 2019b, Tenney et al., 2019, Hewitt and Liang, 2019, Kovaleva et al.,
2019, Lin et al., 2019, Wu et al., 2020, Belinkov, 2022, Liu and Neubig, 2022] (or other approaches using
the attention weights or parameters in neurons directly Vig and Belinkov, 2019, Htut et al., 2019, Sun
and Marasović, 2021, Eldan and Li, 2023). However, there is no canonical way to probe the model,
partially due to the huge design space of probing tasks, and even a slight change in the setup may
lead to very different (sometimes even seemingly contradictory) interpretations of the result [Hewitt
and Liang, 2019]. In this work, we tackle such ambiguity through a different perspective—by de-
veloping formal (theoretical) understanding of solutions learned by Transformers. Our results imply
that it may be challenging to try to interpret Transformer solutions based on individual parameters
[Li et al., 2016, Dar et al., 2022], or based on constructive proofs (unless the Transformer is specially
trained to be aligned with a certain algorithm, as in Weiss et al., 2021).

Interpreting attention patterns Prior works [Jain and Wallace, 2019, Serrano and Smith, 2019, Rogers
et al., 2020, Grimsley et al., 2020, Brunner et al., 2020, Prasanna et al., 2020, Meister et al., 2021, Boluk-
basi et al., 2021, Haab et al., 2023, inter alia] present negative results on deriving explanations from
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attention weights using approaches by Vig and Belinkov [2019], Kobayashi et al. [2020, inter alia].
However, Wiegreffe and Pinter [2019] argues to the contrary by pointing out flaws in the experimen-
tal design and arguments of some of the prior works; they also call for theoretical analysis on the
issue. Hence, a takeaway from these prior works is that expositions on explainability based on atten-
tion requires clearly defining the notion of explainability adopted (often task-specific). In our work,
we restrict our main theoretical analysis to the fully defined data distribution of Dyck language (Def-
inition 12), and define “interpretable attention pattern” as the stack-like pattern proposed in prior
theoretical [Yao et al., 2021a] and empirical [Ebrahimi et al., 2020] works. These concrete settings and
definitions allow us to mathematically state our results and provide theoretical reasons.

3.7.7.0.1 Mechanistic interpretability

It is worth noting that the challenges highlighted in our work do not contradict the line of prior
works that aim to improve mechanistic interpretability into a trained model or the training process
[Cammarata et al., 2020, Elhage et al., 2021, Olsson et al., 2022, Nanda et al., 2023, Chughtai et al.,
2023, Li et al., 2023, Wang et al., 2023, Zhong et al., 2023]: although we prove that components (e.g.
attention scores) of trained Transformers do not generally admit intuitive interpretations based on the
data distribution, it is still possible to develop circuit-level understanding about a particular model,
or measures that closely track the training process, following these prior works.

3.7.7.0.2 Interpretable machine learning

In even broader contexts of Interpretable Machine Learning in general, Lipton [2017] outlined com-
mon pitfalls of interpretability claims, Chen et al. [2022] recommended reasonable paths forward,
and Bilodeau et al. [2022] proved impossibility results on applying some common classes of simple
feature attribution methods on rich model classes.
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Figure 3.27: Examples of training curves over various Transformer architectures, ranging from 46K
to 101M trainable parameters. We exhibit 3 (randomly selected) random seeds for each architecture.
Lighter curves show raw error percentages, while solid curves denote the lowest error so far in each
run. Notice the following: (1) non-convergence of shallow models (despite representability) (2) fail-
ure of most runs to extrapolate (i.e. reach 0% out-of-distribution error); (3) high variability between
runs; (4) erratic, non-monotonic progress on out-of-distribution data, even when the in-distribution
training curves appear flat; (5) a small LSTM outperforms all of these Transformers (see Figure 3.24).
The bolded box represents our 19M-parameter baseline model.
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Figure 3.28: Additional training curves. Left: Identical baseline architecture, varying the 5 data seeds
and 5 model seeds: models in the same row encounter the same sequence of data, while models
in the same column start from identical initializations. Both sources of randomness affect training
dynamics and extrapolation, and it is not clear which is more important. Right: Similar findings
for models trained in “fully generative” mode (scoring on all tokens); baseline architecture is in the
bolded box .

(a) Explaining FFLM to ChatGPT.

(b) Correct on short sequences.

(c) Wrong on long sequences (input length 1000).

Figure 3.29: Examples of interacting with ChatGPT-4 (as of 05/22/2023) by explaining FFLM to it.

181



10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
98

) e
rro

r

10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
1)

 e
rro

r

6L 
8H

 51
2d

 (b
ase

)

+oo
d d

ata

3x
 oo

d d
ata

3x
 oo

d s
tep

s

10
x o

od
 da

ta

10
x o

od
 st

ep
s

3x
 da

ta

3x
 st

ep
s

10
x d

ata

10
x s

tep
s

2L 
4H

 12
8d

2L 
8H

 51
2d

4L 
4H

 12
8d

4L 
8H

 51
2d

6L 
4H

 51
2d

6L 
16

H 51
2d

6L 
8H

 25
6d

6L 
8H

 10
24

d

8L 
8H

 51
2d

8L 
16

H 10
24

d

12
L 8

H 51
2d

12
L 8

H 10
24

d

16
L 8

H 51
2d

16
L 8

H 10
24

d

Scaling (data/compute/model) effects on o.o.d. performance

Figure 3.30: Full comparisons of various scaling axes. Increasing training data diversity is by far
the most effective way to mitigate attention glitches in FFLM. The other scaling axes (increasing the
amount of fresh data, increasing the number of optimization steps on the same dataset, and changing
the model size) have mixed effects on rare-sequence performance.
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Figure 3.31: Full comparisons of standard regularizers (weight decay, and 3 forms of dropout). While
some regularizer choices reduce rare-sequence error rates (in particular, large embedding dropout
reduces sparse-sequence errors by 2 orders of magnitude), nothing eliminates them entirely.
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Figure 3.32: Full comparisons of architectural changes, attention-sharpening losses, and combinations
of indirect algorithmic controls.

Figure 3.33: Attention drifts as the length increases. The model is trained on length-500 sequences
with p(σ ̸= ⊥) = 0.5. The testing sequences are (a) [2, 0 · · · , 0︸ ︷︷ ︸

800

], and (b) [1, 0 · · · , 0︸ ︷︷ ︸
32

, 2, 0 · · · , 0︸ ︷︷ ︸
800

]. We

sample every 32 positions for visualization.
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(a) (b) (c) (d)

Figure 3.34: Attention-sharpening regularization on 1-layer 1-head models. Compared to a non-
regularized model (3.34a), the sparsity-regularized model (3.34b) shows clear attention at the last
write position. However, sparse attention does not have to align with the “ideal” pattern (3.34c), and
can even be wrong (3.34d). Positions with yellow borders are where the max attention in each row
occur; errors are marked in red.

Figure 3.35: Non-sparse attention pat-
tern can be misleading: a non-sparse
model may put more attention on an in-
correct token (i.e. a token that is not the
write with the right type), while mak-
ing the correct predictions. Yellow boxes
mark the position of the max attention of
each row.
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(a) Model trained without sparsity regularization.

(b) Model trained with entropy sparsity regularization with λ = 0.01.

Figure 3.36: Examples of the ℓ2 difference in attention patterns from two 6-layer 8-head 512-dimension
models. Differences are calculated between all pairs of heads in the same layer.

(a) Without regularization. (b) With attention-sharpening regularization.

Figure 3.37: Attention patterns for 6-layer 8-head 512-dimension models on the input sequence
[σ1,⊥, σ0,⊥, ⊥, σ0, σ1,⊥]: attention-sharpening regularization lead to cleaner attention patterns. 1
attention head in the first layer of the regularized model (marked by the purple box) matches the
“ideal” attention pattern Figure 3.26c.
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(a) ℓ2 differences between pairs of attention heads in the
same layer, throughout training (x-axis).

(b) Attention patterns on the input sequence
[σ1,⊥, σ0,⊥,⊥, σ0, σ1,⊥].

Figure 3.38: Attention heads and attention patterns for a 6-layer 8-head 512-dimension model, trained
with attention-sharpening regularization (entropy regularization with strength 0.01) on the first layer
only. 1 attention head in the first layer (marked by the purple box) matches the “ideal” attention
pattern Figure 3.26c.

(a) Embedding 3.37, run 1 (b) Embedding 3.37, run 2 (c) Embedding 3.39 (d) Embedding 3.38

Figure 3.39: Second-layer attention patterns of two-layer Transformers with a minimal first layer:
(a), (b) are based on embedding 3.37 with different learning rates, where the attention patterns show
much variance as Theorem 1 predicts. (c), (d) are based on embedding 3.39 and 3.38. Different em-
bedding functions lead to diverse attention patterns, most of which are not stack-like.
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Figure 3.40: Relationship Between Balance
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duce the balance violation and improve the
length generalization performance.
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Figure 3.41: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should be
exactly the same as the input, the attention patterns in some layers seem interpretable: (layer 2)
attending to bracket type a) or (b; (layer 3) attending to closing bracketss; (layer 4) neve attending
to bracket type a); However, none of them are informative of the copying task. This is possible
because Transformers can use the residual connections (or weights MLPs or the value matrices) to
solve copying, bypassing the need of using attention.

Figure 3.42: Even interpretable attention patterns can be misleading: For a 1-layer Transformer
trained on Dyck with the copying task (with > 90% validation accuracy), i.e. the output should be
exactly the same as the input, the attention pattern seems to be attending to closing brackets only, but
that is not informative of the copying task.
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(a) layer 1 of 4 (b) layer 3 of 4

Figure 3.43: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should be
exactly the same as the input, both types of attention patterns are common: (a) attending to closing
bracketss, which is uninformative of the copying task; (b) attending to the current position, which
solves the copying task.
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Chapter 4

Understanding and improving the
learning process

Chapter 2 and Chapter 3 study properties of the optimal solution of a task. In practice though, the
solution is found through a gradient-based search using finite samples. Since the learning problem is
highly non-convex for most problems of interest, the solution that we end up with can differ drasti-
cally depending on various factors of the learning process. This chapter considers three such factors:
the loss function, the gradient update step, and the supervision signals used in training. We will show
how modifying these factors can accelerate training.

4.1 Improving the optimization landscape of noise-contrastive es-
timation

Noise contrastive estimation (NCE) is a method for learning parameterized statistical models [Gut-
mann and Hyvärinen, 2010a, 2012]. To estimate a distribution P∗, NCE trains a discriminant model to
distinguish between samples of P∗ and a known distribution Q of our choice, often referred to as the
“noise” distribution. If the function class for the discriminant model is representationally powerful
enough, the optimal model learns the density ratio p∗/q, from which we can extract the density p∗
since q is known [Menon and Ong, 2016, Sugiyama et al., 2012]. Compared to the well-studied max-
imum likelihood estimation (MLE), NCE avoids calculating the (often intractable) partition function,
while maintaining the asymptotic consistency of MLE [Gutmann and Hyvärinen, 2012].

It is empirically well-documented that the choice of the noise distribution Q is crucial to both the
statistical and algorithmic efficiency of NCE [Gutmann and Hyvärinen, 2010a, 2012, Rhodes et al.,
2020, Goodfellow et al., 2014, Gao et al., 2020]. However, it has been observed in practice that even
when following the standard guidelines for choosing Q, NCE can still yield parameter estimates far
from the ground truth [Rhodes et al., 2020, Goodfellow et al., 2014, Gao et al., 2020]. Most recently,
Rhodes et al. [2020] identified a phenomenon they call the “density chasm,” observing empirically
that NCE performs poorly when the KL divergence between P∗ and Q is large. One example is when

189



P∗, Q are both tightly concentrated unimodal distributions with faraway modes; the region between
the two modes will have a small density under both distributions, thus forming a “chasm”. While it
makes intuitive sense that NCE does not perform well under such settings—since disparate Q and P∗
are easy to distinguish and do not require the model to learn much about P∗ in order to do well on
the classification task—there has not been a theoretical analysis of this phenomenon. In fact, it is not
even clear whether the difficulty is statistical or algorithmic in nature.

In this work, we formally study the challenges for NCE with a fixed Q with a focus on distributions
in an exponential family. We show that when the noise distribution Q is poorly chosen, the loss land-
scape can become extremely flat: in particular, even when P∗ and Q are two univariate Gaussian
with unit variance, the loss gradient and curvature can become exponentially small in the differ-
ence in their means. We prove that this poses challenges for standard first order and even second-
order optimization methods, forcing them to take an exponential number of steps to converge to a
good parameter estimate. Thus, standard approaches to minimizing convex functions such as gradi-
ent descent—or even more advanced techniques such as momentum or Newton’s method—are not
suited to the NCE objective unless Q is close to P∗ in KL sense.

To remedy this issue, we study an alternative method for optimizing the NCE objective. We consider
instead Normalized Gradient Descent (NGD) whereby the gradient is normalized to have unit norm
at each time step. Perhaps surprisingly, we prove that this small modification can overcome the
problem of poor curvature in the Gaussian example. In general, we show the number of steps for
NGD to converge to a good solution for the NCE loss depends on the condition number κ of the Hessian
of the loss at the optimum—the growth of this condition number is unclear for P∗ and Q when they
belong to an exponential family.

To address this, we propose the eNCE loss, a variant to NCE that replaces the log loss in NCE with an
exponential loss, and we show that the resulting condition number is polynomial in the dimension
and the parameter distance between P∗ and Q when they belong to an exponential family. Our
proposed change of loss and optimization algorithm together form the first solution that provides a
provable polynomial rate for learning the parameters of the ground truth distribution. Theoretically,
both NCE and eNCE can potentially suffer from numerical issues during optimization when P∗ and
Q are far—this is an interesting direction for future work. Nonetheless, we find this to be a simple
and effective fix to the flatness of the loss landscape in many settings, as evidenced by experimental
results on synthetic and MNIST dataset.

Related Work NCE and its variants have inspired a large volume of research in NLP [Mnih and Teh,
2012, Mnih and Kavukcuoglu, 2013, Dyer, 2014, Kong et al., 2020] as well as computer vision [Oord
et al., 2018, Hjelm et al., 2018, Henaff, 2020, Tian et al., 2020a]. It has been observed empirically that
NCE with a fixed noise Q is often insufficient for learning good generative models. The predominant
class of approaches that have been proposed to overcome this issue aim to do so by not using a fixed
Q but by iteratively solving multiple NCE problems with an updated Q, or equivalently updated
discriminators. This includes the famous generative adversarial network (GAN) by Goodfellow et al.
[2014], which uses a separate discriminator network updated throughout training. In a similar vein,
Gao et al. [2020] also aimed to increase the discriminative power as the density estimator improves,
and parameterize Q explicitly with a flow model. More recently, Rhodes et al. [2020] proposed the
telescoping density ratio estimation, or TRE, which sidesteps the chasm by expanding p∗/q into a
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series of intermediate density ratios, each of which is easier to estimate, leading to strong empirical
performance—though their work carries no formal guarantees.

With respect to a fixed Q, it remains an open question about what formally are the nature of the chal-
lenges posed by a poorly chosen Q, which could be statistical and/or algorithmic. Various previous
works have analyzed the asymptotic behavior of NCE and its variants [Gutmann and Hyvärinen,
2012, Riou-Durand et al., 2018, Uehara et al., 2020], but these do not provide guidance on the finite
sample behavior of NCE or its common variants. The improvements to NCE in prior works are all
borne out by the empirical observations of NCE practitioners, rather than motivated by theory, which
is precisely the aim of this work.

4.1.1 Preliminaries

4.1.1.1 The NCE objective

Let P∗ denote an unknown distribution in a parametric family {Pθ}θ∈Θ, for some bounded convex
set Θ, with P∗ = Pθ∗ . Our goal is to estimate P∗ via Pθ for some θ ∈ Θ by solving a noise contrastive
estimation task. The noise distribution Q belongs to the same parametric family with parameters
θq ∈ Θ, so that Q = Pθq . We use pθ , p∗, q to denote the probability density functions (pdfs) of Pθ , P∗,
and Q; we may omit θ in Pθ , pθ when it is clear from the context and write P, p instead. Given P∗ and
Q, the NCE loss of P is defined as follows:

Definition 19 (NCE Loss). The NCE loss of Pθ w.r.t. data distribution P∗ and noise Q is:

L(Pθ) = −
1
2

EP∗ log
pθ

pθ + q
− 1

2
EQ log

q
pθ + q

(4.1)

Note that the NCE loss can be interpreted as the binary cross-entropy loss for the binary classification
task of distinguishing the data samples from the noise samples. Moreover, the NCE loss has a unique
minimizer:

Lemma 44 (Gutmann and Hyvärinen 2012). The NCE objective in Definition 19 is uniquely minimized at
P = P∗.

4.1.1.2 Exponential family.

We focus our attention on the exponential family, where the pdf for a distribution with parameter θ is
pθ(x) = exp

(
θ⊤T̃(x)− A(θ)

)
, with T̃(x) denoting the sufficient statistics and A(θ) the log partition

function. 1 The partition function is treated as a parameter in NCE, so we use τ to denote the extended
parameter, i.e. τ := [θ, α] where α is the estimate for the log partition function. We accordingly extend
the sufficient statistics as T(x) = [T̃(x),−1] to account for the log partition function. The pdf with
the extended representation is now simply pτ(x) = exp(τ⊤T(x)). We will use the notation Pθ and Pτ

interchangeably. We will also use τ(θ) to denote the log-partition extended parameterization when
the log partition function α properly normalizes the distribution specified by θ.

1Another common format of the exponential family PDF is pθ(x) = h(x) exp
(
θ⊤T(x)− A(θ)

)
where h(x) is a non-

negative function. Such h(x) could be absorbed into T̃(x) and θ with corresponding coordinates log(h(x)) and 1.
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A compelling reason for focusing on the exponential family is the observation that the NCE loss is
convex in the parameter τ:

Lemma 45 (NCE convexity). For exponential family pθ,α(x) = h(x) exp(θ⊤T̃(x) − α), the NCE loss is
convex in parameter τ := [θ, α].

Proof. We note that Lemma 45 has been stated under more general settings by Uehara et al. [2020].
The following is an alternative proof for completeness. The gradient and Hessian of the NCE loss are:

∇τ p(x) =p(x) · T(x),

∇L(τ) =
1
2
∇
[

E∗ log
p + q

p
+ EQ log

p + q
q

]
=

1
2

[
E∗

p
p + q

p− p− q
p2 ∇τ p + EQ

q
p + q

1
q
∇τ p

]
=

1
2

∫
x

q
p + q

(p− p∗)T(x)dx,

∇2L(τ) =
1
2

∫
x

(
− q(p− p∗)

(p + q)2 ∇τ p +
q

p + q
∇τ p

)
T(x)dx

=
1
2

∫
x

q
p + q

· p∗ + q
p + q

· p · T(x)T(x)⊤dx =
1
2

∫
x

(p∗ + q)pq
(p + q)2 T(x)T(x)⊤dx.

(4.2)

Hence the Hessian is PSD at any τ.

Recall that Θ denotes the set of parameters without the extended coordinate for the log partition
function. We assume the following on distributions supported on Θ:

Assumption 11 (Bounded parameter norm). ∥θ∥2 ≤ ω, ∀θ ∈ Θ.

Assumption 12 (Lipschitz log partition function). Assume the log partition function is βZ-Lipschitz, that
is, ∀θ1, θ2 ∈ Θ, | log Z(θ1)− log Z(θ2)| ≤ βZ∥θ1 − θ2∥.

Assumption 13 (Bounded singular values of the population Fisher matrix). There exist λmax, λmin > 0,
such that ∀θ ∈ Θ, we have σmax(Eθ [T(x)T(x)⊤]) ≤ λmax, and σmin(Eθ [T(x)T(x)⊤]) ≥ λmin.

Assumption 14 (Smooth change in the Fisher matrix). Assume the maximum and minimum singular
values of the Fisher matrix change smoothly. Namely, there exist constants γmax, γmin > 0 s.t.

∥∇θσmax(Eθ [T(x)T(x)⊤])∥ ≤ γmax, ∥∇θσmin(Eθ [T(x)T(x)⊤])∥ ≤ γmin

We note that Assumptions 12-14 can be viewed as smoothness assumptions on the first, second and
third order derivatives of the log partition function. In particular, Assumption 13 says the singular
values of the Fisher matrix Eθ [T(x)T(x)⊤] should be bounded from above and below. It can be shown
that the Fisher matrix is proportional to the Hessian of the NCE objective when using Q = P∗, which
means Assumption 13 can be interpreted as saying the NCE task can be solved efficiently under the
optimal choice of Q.

4.1.2 Overview of results

We first provide an informal overview of our results, focusing on learning of exponential families.
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Flatness of population landscape: Our first contribution is a negative result identifying a key source
of difficulty for NCE optimization to be an ill-behaved population landscape. We show that due to an
extremely flat landscape, gradient descent or Newton’s method with standard choices of step sizes will
need to take an exponential number of steps to find a reasonable parameter estimate.

We emphasize that though Gaussian mean estimation is a trivial task, its simplicity strengthens the
results above: we are proving a negative result so that failures with a simpler setup means a stronger re-
sult. Moreover, the results only apply to standard choices of step sizes, such as inversely proportional
to the smoothness for gradient descent, or to the ratio between the smoothness and strong convexity
for Newton’s method. This does not rule out the possibility that a cleverly designed learning rate
schedule or a different algorithm would work efficiently; the results are however still meaningful
since gradient descent with standard step sizes is the most common choice in practice.

Overcoming flatness using normalized gradient descent: Our second contribution is to show that
the flatness problem can be solved by a simple modification to gradient descent if the loss is well-
conditioned. Specifically, we show that the convergence rate for normalized gradient descent is poly-
nomial in the parameter distance and κ∗, the condition number of the Hessian at the optimum. One
immediate consequence is that for Gaussian mean estimation, NCE optimized with NGD achieves a
rate of O( 1

δ2 ), which is the same as the optimal rate achieved by MLE.

The remaining question is then whether κ∗ is polynomial in the parameters of interests. We show that
κ∗ can be related to the Bhattacharyya coefficient between P∗ and Q, which indeed grows polynomi-
ally in parameter distance under certain assumptions as detailed in Section 4.1.4.2.

Polynomial condition number for the eNCE loss: Our third and final contribution is that if we
modify the NCE objective slightly—namely, use the exponential loss in place of the log loss—then
the condition number at the optimum is guaranteed to be polynomial. We call this new objective
eNCE . Combined with the NGD result, we get that running NGD on the eNCE objective achieves a
polynomial convergence guarantee.

We then provide empirical evidence on synthetic and MNIST dataset that eNCE with NGD performs
comparatively with NGD on the original NCE loss, and both outperform gradient descent.

4.1.3 A challenge in NCE optimization: a flat loss landscape

In this section, we study the challenges posed to NCE when using a badly chosen fixed Q. The main
thrust of the results is to show that both algorithmic and statistical challenges can arise because the
NCE loss is poorly behaved, particularly for first- and second-order optimization algorithms: when
P∗, Q are far, the loss landscape is extremely flat near the optimum. In particular, the gradient has
exponentially small norm and the strong convexity constant decreases exponentially fast, limiting
the convergence rate of the excess risk. We further show that when moving from P = Q to P = P∗,
the loss drops from Θ(1) to a value that is exponentially small in terms of the distance between P∗ and
Q. Consequently, common gradient-based and second order methods will take exponential number
of steps to converge.
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An important note is that our analysis is at the population level, implying that the hardness comes
from the landscape itself regardless of the statistical estimators used.

Setup: Gaussian mean estimation For the negative results in this section, let’s consider an exceed-
ingly simple scenario of 1-dimensional, fixed-variance Gaussian mean estimation. We will demon-
strate the difficulty of achieving a good parameter estimate, even for such a simple problem—this
bodes ill for NCE objectives corresponding to more complex models in practice, which certainly
pose a much more difficult challenge. In particular, let P∗, Q, P be Gaussians with identity vari-
ance. Let θ∗, θq, θ denote the respective means, with θ∗ being the target mean that NCE aims to es-

timate. When the covariance is known to be 1, we can denote h(x) := exp
(
− x2

2

)
, and parametrize

the pdf of a 1d Gaussian with mean θ as p(x) = h(x) exp (⟨τ(θ), T(x)⟩) ,2 where the parameter is
τ(θ) := [θ, θ2

2 + log
√

2π] and the sufficient statistics are T(x) := [x,−1]. 3 We will shorthand τ(θ)

when it is clear from the context. In particular, τ∗ := τ(θ∗) = [R,− R2

2 − log
√

2π], and τq := τ(θq) =

[0, log
√

2π].

Without loss of generality, we will assume θq = 0, and θ∗ > 0. As a clarification, the results stated in this
section will be in terms of R := θ∗ − θq, hence the asymptotic notations Ω, O never hide dominating
dependency on R. 4

4.1.3.1 Properties of the NCE loss

We first describe several properties of the NCE loss that will be useful in the analysis of first- and
second-order algorithms.

To start, we show that the dynamic range of the loss is large: that is, the optimal NCE loss is exponen-
tially small as a function of R; on the other hand, if θ is initialized close to θq, the initial loss would be
on the order of a constant. Precisely:

Proposition 7 (Range of NCE loss). Consider the 1d Gaussian mean estimation task with mean θ∗, θq ∈ R,
and a known variance of 1. Denote R := |θq − θ∗| where R ≫ 1, Then, the loss at θ = θq is log 2, while the
minimal loss L∗ is L∗(R) = c exp(−R2/8) for some c ∈ [ 1

2 , 2].

The next shows we need to decrease the loss to be on an order comparable to the optimum value.
Namely, the loss is very flat close to θ∗, thus in order to recover a θ close to θ∗, we have to reach a very
small value for the loss. Precisely:

Proposition 8. Under the same setup as Proposition 7, for a given δ ∈ (0, 1), if the learned parameter τ

satisfies ∥τ − τ∗∥2 ≤ δ, then L(τ)− L(τ∗) = R exp(−R2/8) δ2.

The way we will leverage Propositions 7 and 8 to prove lower bounds is to say that if the updates of
an iterative algorithm are too small, the convergence will take an exponential number of steps.

Proposition 8 is proven via the Taylor expansion at θ∗: since the gradient is 0 at θ∗, we just need to
bound the Hessian at θ∗. We show:

2Thus, we are setting h to be the base measure for the exponential family we are considering.
3Recall that the last coordinate −1 acts as a sufficient statistic for the log partition function.
4For example, for R≫ 1, R exp(R2) = O(exp(R2)), but the constant in O(1) will not depend on R.

194



Lemma 46 (Smoothness at P = P∗). Under the same setup as Proposition 7, the smoothness at P = P∗ is
upper bounded as σmax(∇2L(τ∗)) ≤ R√

2π
exp(−R2/8).

We will also need a bound on the strong convexity constant (i.e. smallest singular value) at P = P∗:

Lemma 47 (Strong convexity at P = P∗). Under the same setup as Proposition 7, the minimum singular
value at P = P∗ is σ∗min(∇2L(τ∗)) = Θ

(
1
R exp

(
− R2

8

))
.

Finally, in order to estimate the choice of the step size for standard optimization methods, we will
also need a bound of the smoothness at P = Q:

Lemma 48 (Smoothness at P = Q). Under the same setup as Proposition 46, the smoothness at P = Q is
lower bounded as σmax(∇2L(τq)) ≥ R2

2 .

The proofs of Lemma 46, 47 are included in Appendix 4.1.8, and the proof of Lemma 48 is in Appendix
4.1.9.

4.1.3.2 Lower bounds on first- and second-order methods

With the landscape properties at hand, we are now ready to provide lower bounds for both first-order
and second-order methods. For first-order methods, we show that:

Theorem 17 (Lower bound for gradient-based methods). Let P∗, Q, P be 1d Gaussian with variance 1.
Assume θq = 0, θ∗ > 0 without loss of generality, and assume R := θ∗− θq ≫ 1. Then, gradient descent with
any step size η = o(1) from an initialization τ = τq will need an exponential number of steps to reach some τ′

that is O(1) close to τ∗.

Note, the maximum step size η = o(1) the theorem applies to is actually a loose bound: the standard
setting of step size for gradient descent is η ≤ 1/λM for λM := maxθ∈Θ σmax(∇2L(τ(θ))), which is
Ω(R2) by Lemma 48. Theorem 17 helps explain why NCE with a far-away Q fails in practice, if we
set the budget for the number of updates to be polynomial.

The idea behind the proof is to first show that there exists an annulus A around the target τ∗ such
that τq, τ∗ lie in the outer and inner side ofA (see Figure 4.1), and that gradient descent needs to cross
a distance of at least 0.05R inside A. Then, due to the choice of step size and the magnitude of the
gradients, the number of steps required to do so is exponentially large.

Proof of Theorem 17. The key lemma to prove Theorem 17 is as follows, which upper bounds the de-
crease in parameter distance from each gradient step:

Lemma 49. Consider the annulus A := {(b, c) : (c− R2

2 )2 + (b− R)2 ∈ [(0.1R)2, (0.2R)2]}. Then, for
any (b, c) ∈ A, it satisfies that∣∣∣∣⟨∇L(τ),

τ∗ − τ

∥τ∗ − τ∥ ⟩
∣∣∣∣ = O(1) · exp

(
−κ(b, c) · R2

8

)
(4.3)

where κ(b, c) ∈ [ 3
4 , 5

4 ] is a small constant.
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Figure 4.1: The gray-shaded area is the region where certain conditions (see equation 4.17) are satis-
fied. The orange dot marks τ∗, which is enclosed in the green-shaded area. Moreover, the red-shaded
area centered at τ∗ corresponds the width-0.1R annulusA, within which the gradient is exponentially
small.

Given Lemma 49, to prove Theorem 17, we will first show that the lemma gives an upper bound for
the decrease in parameter distance, that is, we show η

∣∣∣⟨∇L(τ), τ∗−τ
∥τ∗−τ∥ ⟩

∣∣∣ ≥ ∥τt − τ∗∥ − ∥τt+1 − τ∗∥.
Towards this claim, we write τt+1 as:

τt+1 = τt − η∇L(τt) = τt − η

〈
∇L(τt),

τ∗ − τt

∥τ∗ − τt∥

〉
· τ∗ − τt

∥τ∗ − τt∥
− ηv (4.4)

where v := ∇L(τt)− ⟨∇L(τt), τ∗−τt
∥τ∗−τt∥ ⟩ ·

τ∗−τt
∥τ∗−τt∥ is orthogonal to τ∗ − τt. Hence

∥τt+1 − τ∗∥ =
(

1− η

∥τ∗ − τt∥

〈
∇L(τt),

τ∗ − τt

∥τ∗ − τt∥

〉)
· ∥τt − τ∗∥+ η∥v∥, (4.5)

From this, we can conclude

∥τt − τ∗∥ − ∥τt+1 − τ∗∥ = η

〈
∇L(τt),

τ∗ − τt

∥τ∗ − τt∥

〉
− η∥v∥ ≤ η

∣∣∣∣〈∇L(τt),
τ∗ − τt

∥τ∗ − τt∥

〉∣∣∣∣ . (4.6)

The next step is to show that there is a path lying in A of length at least 0.01R that gradient descent
has to go through. We have the following lemma:

Lemma 50. Let η = o(1). For any τ s.t. ∥τ − τ∗∥ ≥ 0.2R, let τ′ denote the point after one step of gradient
descent from τ, then ∥τ′ − τ∗∥ > 0.15R.

From any such τ′, the shortest way to exit the annulus A is to project onto the inner circle defin-
ing A, i.e. the circle centered at τ∗ with radius 0.1R which is a convex set. Denote this inner cir-
cle as B(τ∗, 0.1R) whose projection is ΠB(τ∗ ,0.1R), then the shortest path is the line segment τ′ −
ΠB(τ∗ ,0.1R)(τ

′). Further, this line segment is of length 0.05R since ∥τ′ − τ∗∥ > 0.15R by Lemma
50, while the decrease of the parameter distance (i.e. ∥τ − τ∗∥) is exponentially small at any point
in A by Lemma 49 and equation 4.6. Hence the number of steps to exit A is lower bounded by

0.05R
η·O(1)·exp

(
− κR2

8

) = ω(R) exp
(

κR2

8

)
.
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Proofs for Lemma 49 and Lemma 50 are provided in Section 4.1.7.1.

Next, we proceed to second order methods, which are a natural guess for a remedy to the drastically
changing norms of the gradients, as they can precondition the gradient. Unfortunately, standard
second-order approaches are again of no help, and the number of steps required to converge remains
exponential. Consider Newton’s method with updates of the form η(∇2L)−1∇L. At first glance,
this looks like it may solve the issue of a flat gradient, since the Hessian ∇2L may also be exponen-
tially small hence canceling out with the exponentially small gradient. However, the flatness of the
landscape forces us to take an exponentially small step size η, resulting in the following claim:

Theorem 18 (Lower bound for Newton’s method). Let P∗, Q, P satisfy the same conditions as in Theorem
17. Let λρ := minθ∈Θ σmin(∇2L(τθ)), λM := maxθ∈Θ σmax(∇2L(τθ)). Then, running the Newton’s

method with step size η = O(
λρ

λM
) from an initialization τ = τq will need an exponential number of steps to

reach some τ′ that is O(1) close to τ∗.

Again, the condition η = O
(

λρ

λM

)
follows the typical step size choice for Newton’s method, i.e. the

step size should be upper bounded by the ratio between the global strong convexity constant and the
global smoothness of the function, which is exponentially small for this setup by Lemma 47, 48. The
proof of Theorem 18 is deferred to Appendix 4.1.9.1.

4.1.4 Normalized gradient descent for well-conditioned losses

We have seen that due to an ill-behaved landscape, NCE optimized with standard gradient descent
or Newton’s method will fail to reach a good parameter estimate efficiently, even on a problem as
simple as Gaussian mean estimation, and even with access to the population gradient.

In this section, we will show that a close relative of gradient descent, normalized gradient descent
(NGD), despite its simplicity, provides a fix to the flatness problem to exponential family distribu-
tions when the Hessian of the loss is well-conditioned close to the optimum.

Precisely, recall that the NGD updates for a loss function L is τt+1 = τt − η
∇L(τt)
∥∇L(τt)∥2

. We assume that

in a neighborhood around τ∗, the change in the shape of the Hessian H is moderate: 5

Assumption 15 (Hessian in a neighborhood of τ∗). Under Assumption 12 with constant βZ, assume that
for any τ such that ∥τ − τ∗∥2 ≤ 1

βZ
, it holds that σmax(H(τ)) ≤ βu · σmax(H(τ∗)), and σmin(H(τ)) ≥

βl · σmin(H(τ∗)), for some constant βu, βl > 0.

The main result of this section states that NGD can find a parameter estimate efficiently for expo-
nential families, where the number of steps required is polynomial in the distance between the initial
estimate and the optimum:

Theorem 19. Let L be any loss function that is convex in the exponential family parameter and satisfies
Assumptions 15 and 11 - 13. Furthermore, let P∗, Q be exponential family distributions with parameters τ∗, τq

and let κ∗ be the condition number of the Hessian at P = P∗. Then, for any 0 < δ ≤ 1
βZ

and parameter

initialization τ0, with step size η ≤
√

βl
βuκ∗

δ, performing NGD on the population objective L guarantees that

after T ≤ βuκ∗
βl
· ∥τ0−τ∗∥2

δ2 steps, there exists an iterate t ≤ T such that ∥τt − τ∗∥2 ≤ δ.

5As a concrete example, we will show in the next section that a variant of NCE satisfies both conditions.
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The main technical ingredient for proving Theorem 19 is the following Lemma:

Lemma 51. Suppose Assumptions 12 and 15 hold with constants βZ, βu and βl . Let L be a convex function

with minimizer τ∗, and let g := ∇L(τ). For any δ ≤ 1
βZ

, let γ =
√

βl
βuκ∗

δ. Then for all τ s.t. ∥τ− τ∗∥2 ≥ δ,

we have L(τ∗ + γ
g
∥g∥ ) ≤ L(τ).

We will first prove Theorem 19 then return to the proof of this lemma.

Proof of Theorem 19. Denote gt := ∇L(τt) and R := ∥τ∗ − τq∥2 for notation convenience. Recall that
the NGD update with step size η is τt+1 = τt − η · gt

∥gt∥2
. Then, ∥τt − τ∗∥2 can be rewritten as:

∥τt+1 − τ∗∥2 =∥τt − τ∗∥2 − 2γη + η2 + 2η
g⊤t
∥gt∥

(
τ∗ + γ

gt

∥gt∥
− τt

)
(4.7)

If we set γ s.t. the last term is smaller than 0 for all τ that are not within distance δ to τ∗, setting η = γ

gives:

∥τt+1 − τ∗∥2 ≤ ∥τt − τ∗∥2 − 2γη + η2 = ∥τt − τ∗∥2 − γ2 (4.8)

Hence the number of steps required to find a τ s.t. ∥τ − τ∗∥2 ≤ δ is at most T ≤ ∥τ0−τ∗∥2

γ2 .

By Lemma 51, setting γ =
√

βl
βuκ∗

δ ensures L
(
τ∗ + γ

gt
∥gt∥

)
≤ L(τt) for any τt that is at least δ away

from τ∗. It then follows from the convexity of L that

g⊤t

(
τ∗ + γ

gt

∥gt∥
− τt

)
≤ L

(
τ∗ + γ

gt

∥gt∥

)
− L(τt) ≤ 0. (4.9)

Substituting this choice of γ back to the bound for T gives T ≤ βuκ∗
βl
· ∥τ0−τ∗∥2

δ2

Finally, we return to proving Lemma 51:

Proof of Lemma 51. The proof follows from the Taylor expansion around τ∗: for any unit vector v and
any constant c ≤ γ, the Taylor remainder theorem states that there exists some constant c′ < c and
unit vector v′ such that L(τ∗ + cv)− L(τ∗) = c2

2 v
⊤H(τ∗ + c′v′)v.

For any unit vector v1,v2 and constants c1, c2 ≤ δ such that L(τ∗ + c1v1) = L(τ∗ + c2v2), we have

L(τ∗ + c1v1)− L(τ∗) =
c2

1
2
v⊤1 H(τ∗ + c′1v

′
1)v1 =

c2
2
2
v⊤2 H(τ∗ + c′2v

′
2)v2 = L(τ∗ + c2v2)− L(τ∗)

⇒ c1
c2
≤

√
σmax(H(τ∗ + c′1v

′
1))

σmin(H(τ∗ + c′2v
′
2))
≤
√

βu

βl
κ∗

(4.10)

This means for any two points with the same loss, the ratio between their distances to τ∗ will be at

most
√

βu
βl

κ∗. Therefore setting γ =
√

βl
βuκ∗

δ guarantees that for any τ that is at least δ away from τ∗,
τ will have a larger loss than any point that is γ away from τ∗. In other words, L(τ1) ≤ L(τ2) holds
for any τ1 ∈ B(τ∗, γ), τ2 ̸∈ B(τ∗, δ).
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4.1.4.1 Example: 1d Gaussian mean estimation

It is relatively straightforward to check that NGD addresses the flatness problem faced by Gaussian
mean estimation we considered in Section 4.1.3:

Corollary 2. Let P∗, Q be 1d Gaussian with covariance 1 and mean θ∗ = R where R ≪ 1, and θq = 0. For
any given δ ≤ 1

R and initial estimate τ0 = τq, NGD can find an estimate τ such that ∥τ − τ∗∥2 ≤ δ, with at
most O( R6

δ2 ) steps.

Intuitively, the effectiveness of NGD comes from the crucial observation that though the magnitude
for the loss and derivatives can be exponentially small, they share the same exponential factor, making
normalization effective. Formally, it can be shown that βu

βl
= O(1) (Appendix 4.1.9.1). Corollary 2

then follows from Theorem 19 and the curvature and strong convexity from Lemma 46, 47.

4.1.4.2 Bounds on the condition number of NCE

The convergence rate in Theorem 19 depends on κ∗, the condition number of the NCE Hessian at the
optimum, and Hessian-related constants βu, βl in Assumption 15. We now show that under the setup
of Theorem 19, κ∗ and βu, βl can be related to the Bhattacharyya coefficient between P∗ and Q, which
is a similarity measure defined as BC(P∗, Q) :=

∫
x

√
p∗(x)q(x)dx. As a result, we get the following

convergence guarantee:

Theorem 20. Suppose Assumptions 11- 14 hold with constants ω, βZ, λmax and λmin, γmax and γmin.
Consider a NCE task with data distribution P1 and noise distribution P2, parameterized by θ1, θ2 ∈ Θ respec-

tively. Define constant C := 18 exp
( 2

βZ

)
·
( λmax

λmin

)3 ·min
{

2λ2
max

λ2
min

, 2λmin+γmax∥δ̄∥
λmin−γmin∥δ̄∥

}
. Then, for any 0 < δ ≤ 1

βZ

and parameter initialization τ0, with step size η ≤
√

βl
βuκ∗

δ, performing NGD on the population objective L

guarantees that after T ≤ C · 1
BC(P∗ ,Q)3

∥τ0−τ∗∥2

δ2 steps, there exists an iterate t ≤ T such that ∥τt − τ∗∥2 ≤ δ.

In particular, when P∗, Q are not too far, we can further show a lower bound on BC(P∗, Q):

Lemma 52. For P1, P2 parameterized by θ1, θ2 ∈ Θ, if ∥θ1 − θ2∥2
2 ≤

4
λmax

, then BC(P1, P2) ≥ 1
2 .

The proofs of Theorem 20 and Lemma 52 rely on analyzing the geodesic on the manifold of square
root densities

√
p equipped with the Hellinger distance as a metric; the details are deferred to Sec-

tion 4.1.10. It is also worth noting that Theorem 20 only requires ∥θ1 − θ2∥ to be smaller than a
constant, rather than tending to zero as usually required for analyses using Taylor expansions.

Finally, we would like to note that although our analysis can be tightened, it is unlikely to remove
such dependency since NGD only uses first-order information. 6 Moreover, the condition number κ∗
also affects the practical use of Newton-like methods, since matrix inversion is widely known to be
sensitive to numerical issues when the matrix is extremely ill-conditioned. It is an interesting open
question whether a non-standard preconditioning approach might be amenable to this setting.

6In the next section, we will that the condition number is provably polynomial in ∥θ∗ − θq∥ for a variant of the NCE loss.
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4.1.5 Analyzing eNCE : NCE with an exponential loss

The previous section proved that NGD can serve as a simple fix to overcome the flatness problem of
NCE for well-conditioned losses. However, though we showed κ∗ has a polynomial growth when
the distributions P, Q∗ are sufficiently close —it is unclear how κ∗ behaves beyond this threshold.

In this section, we introduce a slight modification to the NCE objective, which we call the eNCE
objective, for which κ∗ depends polynomially on all the exponential family-related constants. This
means though eNCE may still suffer from the flatness problem, eNCE and NGD together provide a
solution that guarantees a polynomial convergence rate.

Towards formalizing this, the eNCE loss is defined as:

Definition 20 (eNCE Loss). Let φ(x) := log
√

p(x)
q(x) , and l(x, y) := exp(−yφ(x)) for y ∈ {±1}. The

eNCE loss of Pθ w.r.t. data distribution P∗ and noise Q is:

Lexp(Pθ) =
1
2

Ex∼P∗ [l (x, 1)] +
1
2

Ex∼Q[l (x,−1)] =
1
2

∫
x

p∗

√
q(x)
p(x)

+
1
2

∫
x

q

√
p(x)
q(x)

(4.11)

It can be checked easily that the minimizing φ is φ(x) = 1
2 log p∗

q . Moreover, each φ is associated with
an induced distribution p, defined by p(x) = exp(2φ(x))q(x).

Relation to NCE: Same as the original NCE loss (referred to as “NCE” below), eNCE learns to solve a
distinguishing task between samples from P∗ or Q. The difference lies only in the losses, which have
analogous forms: the NCE loss described in Definition 19 can be rewritten in the same form with
l(x, y) := log 1

1+exp(−yψ(x)) and ψ(x) := log p(x)
q(x) .

The main advantage of the exponential loss is that the Hessian at the optimum is now guaranteed to
be well-conditioned. Namely, the crucial technical lemma is the following result:

Lemma 53 (Polynomial condition number for eNCE loss). Under Assumption 13 with constants λmax, λmin,
the condition number of the eNCE Hessian at the optimum is bounded by κ∗ ≤ λmax

λmin
.

We can also show that eNCE satisfies part (ii) of Assumption 15, whose proof is deferred to Ap-
pendix 4.1.11.

Lemma 54. Under Assumption 12, 13 with constant βZ, λmax and λmin, for any unit vector u and constant
c ∈ [0, 1

βZ
], the maximum and minimum singular values of H(τ∗+ cu) satisfy Assumption 15 with constants

βu = 2e · λmax
λmin

, βl =
1
2e ·

λmin
λmax

.

Lemma 53 and Lemma 54 together imply the Hessian is well-conditioned around the optimum. Com-
bined with Theorem 19, we have the main result of this section:

Theorem 21. Let P∗, Q be exponential family distributions with parameters τ∗, τq under Assumption 11-13.
Let βZ be the constant for Assumption 12, and let λmax, λmin be constants for Assumption 13. For any given
δ ≤ 1

βZ
and parameter initialization τ0, performing NGD on the eNCE objective guarantees that when taking

T ≤ 4e2 · λ3
max

λ3
min
· ∥τ0−τ∗∥2

δ2 steps, there exists an iterate t ≤ T such that ∥τt − τ∗∥2 ≤ δ.
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Proof. Theorem 21 follows directly from Theorem 19, using the condition number bound from Lemma
53 and constants from 54.

We now return to proving Lemma 53:

Proof of Lemma 53. Let’s first write out the Hessian for the eNCE objective:

Lexp(P) =
1
2

∫
x

p∗
√

q
p
+

1
2

∫
x

q
√

p
q

∇Lexp(P) =
1
4

∫
x

√
q
(
√

p− p∗√
p

)
∇ log p

∇2Lexp(P) =
1
4

∫
x

√
q
(
√

p− p∗√
p

)
· ∇2 log p +

1
8

∫
x

√
q
(
√

p +
p∗√

p

)
∇ log p(∇ log p)⊤

=
1
8

∫
x

√
q
(
√

p +
p∗√

p

)
∇ log p(∇ log p)⊤

=
1
8

∫
x

p∗
√

q
p

T(x)T(x)⊤ +
1
8

∫
x

q
√

p
q

T(x)T(x)⊤

(4.12)

Note that this Hessian is always PSD, which means Lexp is convex in the parameters of exponential
families.

Recall that θ∗, θq, T̃ denote the parameters and sufficient statistics without the partition function coor-
dinate, and τ∗, τq, T denote the extended version with the partition function, e.g. τ∗ = [θ∗, log Z(θ∗)],
T(x) = [T̃(x),−1]. Then, we can rewrite H∗ as:

H∗ =
1
4

∫
x

√
p∗qT(x)T(x)⊤ =

1
4

∫
x

exp

(
(τ∗ + τq)⊤

2
T(x)

)
T(x)T(x)⊤

=
1
4

∫
x

exp

(
(θ∗ + θq)⊤

2
T̃(x)− 1

2
log Z(θ∗)−

1
2

log Z(θq)

)
T(x)T(x)⊤

=
1
4

Z
(

θ∗+θq
2

)
√

Z(θ∗)Z(θq)︸ ︷︷ ︸
B(P∗ ,Q)

∫
x

exp
(( θ∗+θq

2
)⊤T̃(x)

)
Z
(

θ∗+θq
2

) T(x)T(x)⊤dx =
B(P∗, Q)

4
E θ∗+θq

2
[TT⊤]

(4.13)

Since θ∗+θq
2 ∈ Θ, we have λminI ⪯ E θ∗+θq

2
[TT⊤] ⪯ λmaxI by Assumption 13. The Lemma hence

follows.

4.1.6 Empirical verification

To corroborate our theory, we verify the effectiveness of NGD and eNCE on Gaussian mean estima-
tion and the MNIST dataset. For MNIST, we use a ResNet-18 to model the log density ratio log(p/q),
following the setup in TRE [Rhodes et al., 2020].

Results: For Gaussian data, we run gradient descent (GD) and normalized gradient descent (NGD)
on the NCE loss and eNCE loss. Figure 4.2 compares the best runs under each setup given a fixed
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Figure 4.2: Results for estimating 1d (left) and 16d (right) Gaussians, plotting the best parameter dis-
tance ∥τ∗ − τ∥2 (y-axis) against the number of updates (x-axis). In both cases, when using NCE, nor-
malized gradient descent (“NCE, NGD”, yellow curve) largely outperforms gradient descent (“NCE,
GD”, red curve). When using NGD, the proposed eNCE (“eNCE, NGD”, blue curve) decays faster
than the original NCE loss. The results are averaged over 5 runs, with shaded areas showing the
standard deviation.

Figure 4.3: Results on MNIST, plotting loss value (y-axis, log scale) against update steps (x-axis).
The left plot shows NCE optimized by GD (black) and NGD (yellow), and the right shows eNCE
optimized by GD (black) and NGD (blue). It can be seen that NGD outperforms GD in both cases.

computation budget (100 update steps), where “best” is defined to be the run with the lowest loss on
fresh samples. The plots show the minimum parameter distance ∥τ∗ − τ∥2 up to each step. We find
that NGD indeed outperforms GD, and that the proposed eNCE sees a further improvement over
NCE while additionally enjoying provable polynomial convergence guarantees.

For MNIST, we can no longer compare parameter distances since τ∗ is unknown. Instead, we compare
the result of optimization directly in terms of loss achieved, again under a fixed computation budget
(2K steps). The results are shown in Figure 4.3, with NGD converging significantly faster for both
NCE and eNCE.

Implementation details We note that eNCE can be numerically unstable, especially when P∗, Q are
well separated. Below we introduce implementation details for preventing numerical issues.

Parameterization: For the 1-dimensional Gaussian, we take P∗, Q to have mean µ∗ = 16, µq = 0, and
unit variance σ2

∗ = σ2
q = 1. We use h(x) := exp(− x2

2 ), T(x) := [x,−1] to be consistent with the
notation in Section 4.1.3. For the 16-dimensional Gaussian, P∗, Q share the same mean µ∗ = µq = 0
but have different covariance with Covq = Id and Covp = diag([s1, ..., sd]), where si = Uniform[8×
0.75, 8× 1.5]. 7

7Generally, for d-dimensional Gaussian with mean µ and a diagonal covariance matrix Σ := diag([σ2
1 , ..., σ2

d ]), the expo-

nential parametrization is τ = [ 1
σ2

1
, ..., 1

σ2
d

, µ1
σ2

1
, ... µd

σ2
d

, µ⊤Σ−1µ
2 + 1

2 log((2π)ddet(Σ)].
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For MNIST, we adapt the TRE implementation by Rhodes et al. [2020]. We model the log density ratio
log(p/q) by a quadratic of the form g(x) := − f (x)⊤W f (x)− b⊤ f (x)− c, where f is ResNet-18, and
W , b, c are trainable parameters with W constrained to be positive definite.

In addition, we find the following tricks helpful in improving numerical stability:

• Calculation in log space: instead of dividing two pdfs, we found it more numerically stable to use
subtraction between the log pdfs and then exponentiate.

• Removing common additive factors: the empirical loss is the average loss over a batch of samples
where overflow can happen. 8 We found it more stable to calculate the mean by first subtract
the largest value of the batch, calculate the mean of the remaining values, then add back the large
value—akin to the usual log-sum-exp trick. For example, mean([a, b]) = max(a, b) + mean([a −
max(a, b), b−max(a, b)]).

• Per-sample gradient clipping: it is sometimes helpful to limit the amount of gradient contributed by
any data point in a batch. We ensure this by limiting the norm of the gradient, that is, the gradient
from a sample x is now min{1, K

∥∇ℓ(x)∥}∇ℓ(x) for some prespecified constant K [Tsai et al., 2021].

• Per-sample log ratio clipping: an alternative to per-sample gradient clipping is to upper threshold
the absolute value of the log density ratio on each sample, before passing it to the loss function.
Setting a proper threshold prevents the loss from growing too large, and consequently prevents a
large gradient update.

4.1.7 Proofs: Flatness of NCE (Section 4.1.3)

This section provides proofs for the negative results in Section 4.1.3, that is, the NCE landscape is
ill-behaved with exponentially flat loss, gradient, and curvature. We start with proving the helper
lemmas (Lemma 49, 50, used for the proof of Theorem 17) in Section 4.1.7.1. Results related to second-
order quantities are proved in Section 4.1.8 (Lemma 46, Lemma 47), Section 4.1.9 (Lemma 48), and
Section 4.1.9.1 (Theorem 18).

As a note on the notation, in the following, we will use a ≲ b to denote a = O(b) with O hiding a
constant less than 2. Similarly, a ≳ b denotes a = Ω(b) where Ω hides a constant greater than 1

2 .

4.1.7.1 Proof of Lemma 49, 50: bounding progress from 1 gradient descent step

4.1.7.1.1 Proof of Lemma 49

Lemma (Lemma 49, restated). Consider the annulusA := {(b, c) : (c− R2

2 )2 +(b−R)2 ∈ [(0.1R)2, (0.2R)2]}.
Then, for any (b, c) ∈ A, it satisfies that∣∣∣∣⟨∇L(τ),

τ∗ − τ

∥τ∗ − τ∥ ⟩
∣∣∣∣ = O(1) · exp

(
−κ(b, c) · R2

8

)
, (4.14)

where κ(b, c) ∈ [ 3
4 , 5

4 ] is a small constant.
8This is because the mean function is internally implemented as the sum of all entries divided by the batch size, and the

sum of a large batch size where each value is also large can lead to overflow.
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Proof. Recall that for 1d Gaussian with a known unit covariance, we can use parameter τ := [b, c] and
sufficient statistics T(x) := [x,−1], with pdf p(x) = exp

(
− x2

2

)
· exp (⟨τ, T(x)⟩).

For any τ such that ∥τ∗ − τ∥ ≥ 1,
∣∣∣⟨∇L(τ), τ∗−τ

∥τ∗−τ∥ ⟩
∣∣∣ can be upper bounded as:

2
∣∣∣∣⟨∇L(τ),

τ∗ − τ

∥τ∗ − τ∥ ⟩
∣∣∣∣ ≤ 2 |⟨∇L(τ), τ∗ − τ⟩| =

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

⟨T(x), τ∗ − τ⟩
∣∣∣∣∣

=

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

[
(R− b)x− R2

2
− log

√
2π + c

]∣∣∣∣∣
≤(R− b)

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣R2

2
+ log

√
2π − c

∣∣∣∣ ·
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣ .

(4.15)

Let a ≃ b denote a = kb for a constant k = Θ(1). We first show the calculations with b > 0 for cleaner
presentation; the b < 0 case is analogous and deferred to the end of Section 4.1.7.1.2.

Bounding
∣∣∣∣∫x

p−p∗
p
q +1

∣∣∣∣:
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣ =
∣∣∣∣∣∣
∫

x

exp
(
− x2

2 + bx− c
)
− exp

(
− (x−R)2

2 − log
√

2π
)

exp
(

bx− c + log
√

2π
)
+ 1

∣∣∣∣∣∣
≤
∫

x< c−log
√

2π
b

exp
(
− x2

2
+ bx− c

)
︸ ︷︷ ︸

T(0)
1

+
∫

x≥ c−log
√

2π
b

exp
(
− x2

2
− log

√
2π

)
︸ ︷︷ ︸

T(0)
2

+
∫

x< c−log
√

2π
b

exp
(
− (x− R)2

2
− log

√
2π

)
︸ ︷︷ ︸

T(0)
3

+
∫

x≥ c−log
√

2π
b

exp
(
− x2

2
+ (R− b)x + c− R2

2
− 2 log

√
2π

)
︸ ︷︷ ︸

T(0)
4

(i)
≃ 1√

2π

1

b− c−log
√

2π
b

· exp

(
− (c− log

√
2π)2

2b2

)
+

1√
2π

1
c−log

√
2π

b

exp

(
− (c− log

√
2π)2

2b2

)

+
1√
2π

1

R− c−log
√

2π
b

exp

− (
c−log

√
2π

b − R)2

2

+
1√
2π

1
c−log

√
2π

b − (R− b)
exp

−
(

c−log
√

2π
b − R

)2

2


≃ b

b2 − c
· exp

(
− c2

2b2

)
+

b
c

exp
(
− c2

2b2

)
+

b
bR− c

exp
(
− (c− bR)2

2b2

)
+

b
c− b(R− b)

exp

(
− (c− bR)2

2b2

)
(ii)
=O(R−1) · exp

(
− κ(b, c) · R2

8

)
,

(4.16)

where κ(b, c) ∈ [ 3
4 , 5

4 ]. Step (i) uses calculations in equation 4.27-4.30 (deferred to subsection 4.1.7.1.2
for cleaner presentation), and assumes (b, c) belongs to the set V := {(b, c) : c ∈ [b(R − b), b ·
min{b, R}]}. In particular, the annulus A := {(b, c) : (c − R2

2 )2 + (b − R)2 ∈ [(0.1R)2, (0.2R)2]} is
a subset of V when R≫ 1. Step (ii) considers (b, c) ∈ A.

We can choose b, c s.t. b ≥ R
2 , c ∈ [b(R− b), b ·min{b, R}], so that we pick up the tails in T(0)

1 to T(0)
4 .
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This means: c ∈
[
b(R− b), b2] , b ∈ [ R

2 , R]

c ∈ [−b(b− R), bR] , b ∈ [R, ∞]
(4.17)

Bounding
∣∣∣∣∫x

p−p∗
p
q +1

x
∣∣∣∣: Using similar calculations as before, we have that when c− log

√
2π > 0 (which

is the case for τ = [b, c] ∈ A),∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

x

p
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣∣
∫

x

p∗
p
q + 1

x

∣∣∣∣∣
≤max

{∫
x>0

p
p
q + 1

x, −
∫

x<0

p
p
q + 1

x

}
+ max

{∫
x>0

p∗
p
q + 1

x, −
∫

x<0

p∗
p
q + 1

x

} (4.18)

Below we bound the case where x > 0; the other case (i.e. x < 0) has an upper bound of the same
order following similar calculations and is hence omitted.∫

x>0

p
p
q + 1

x +
∫

x>0

p∗
p
q + 1

x

≤
∫

x∈[0, c−log
√

2π
b ]

exp
(
− x2

2
+ bx− c

)
x︸ ︷︷ ︸

T(1)
1

+
∫

x≥ c−log
√

2π
b

exp
(
− x2

2
− log

√
2π

)
x︸ ︷︷ ︸

T(1)
2

+
∫

x∈[0, c−log
√

2π
b ]

exp
(
− (x− R)2

2
− log

√
2π

)
x︸ ︷︷ ︸

T(1)
3

+
∫

x≥ c−log
√

2π
b

exp
(
− x2

2
+ (R− b)x + c− R2

2
− 2 log

√
2π

)
x︸ ︷︷ ︸

T(1)
4

(i)
≃ exp(−c)− 1√

2π
exp

(
− (c− log

√
2π)2

2b2

)
+ bT(0)

1 +
1√
2π

1
c−log

√
2π

b

exp

(
− (c− log

√
2π)2

2b2

)

+
1√
2π

exp
(
−R2

2

)
− 1√

2π
exp

(
− (c− log

√
2π − bR)2

2b2

)
+ RT(0)

3

+
1√
2π

exp

(
− (c− log

√
2π − bR)2

2b2

)
+ (R− b)T(0)

4 ,

(4.19)

where step (i) uses calculations in equation 4.31-4.34. Ignoring small constants log
√

2π in c −
log
√

2π, and denoting E1 := exp
(
− c2

2b2

)
, E2 := exp

(
− (c−bR)2

2b2

)
for notation convenience, we can
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substitute equation 4.16 and 4.18 into equation 4.15 as:

(R− b)

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣R2

2
+ log

√
2− c

∣∣∣∣ ·
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣
≤(R− b) · (T(1)

1 + T(1)
2 + T(1)

3 + T(1)
4 ) +

∣∣∣∣R2

2
+ log

√
2− c

∣∣∣∣ · (T(0)
1 + T()

2 + T(0)
3 + T(0)

4 )

=O(R)
[

exp(−c)− E1 + bT(0)
1 + E1 + exp

(
−R2

2

)
− E2 + RT(0)

3 + E2 + (R− b)T(0)
4

]
+ Θ(R2) · (T(0)

1 + T(0)
2 + T(0)

3 + T(0)
4 )

=O(R)
[

exp(−c) + exp
(
−R2

2

)]
+ Θ(R2) ·O(R−1) exp

(
−κ(b, c)R2

8

)
=O(R) exp

(
−κ(b, c) · R2

8

)
,

(4.20)

where κ(b, c) ∈ [ 3
4 , 5

4 ] is the constant defined in equation 4.16.

Since τ ∈ R, ∥τ∗ − τ∥ = Θ(R), and the proof is completed by:

∣∣∣∣⟨∇L(τ),
τ∗ − τ

∥τ∗ − τ∥ ⟩
∣∣∣∣ = O(R) exp

(
− κ(b,c)·R2

8

)
Θ(R)

= O(1) exp
(
−κ(b, c) · R2

8

)
. (4.21)

4.1.7.1.2 Proof of Lemma 50

We first show the following claim before proving Lemma 50:

Claim 6. For any τ = [b, c] ∈ R2, the gradient norm at τ is ∥∇L(τ)∥2 ≤ 32 max{R, |b|}.

Proof. For parameter τ = [b, c] where b > 0, c− log
√

2π > 0,

∥∇L(τ)∥2 ≤ ∥∇L(τ)∥1 =

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣
(i)
≤ exp(−c)− exp

(
− c2

2b2

)
+ bT(0)

1 + exp
(
− c2

2b2

)
+ exp

(
−R2

2

)
− exp

(
− (c− bR)2

2b2

)
+ RT(0)

3 + exp
(
− (c− bR)2

2b2

)
+ (R− b)T(0)

4 + T(0)
1 + T(0)

2 + T(0)
3 + T(0)

4

(ii)
≃ (b + 1)T(0)

1 + T(0)
2 + (R + 1)T(0)

3 + (R− b + 1)T(0)
4

≤4 + b + R + max{R− b, 0} ≲ 2 max{R, b},

(4.22)

where step (i) and (ii) use equation 4.31-4.34 and equation 4.27-4.30. Moreover, step (ii) increases
the value by at most 16. Hence overall we have ∥∇τ L∥2 ≤ 32 max{R, b}.

When b > 0, c− log
√

2π < 0:∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

x

p
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣∣
∫

x

p∗
p
q + 1

x

∣∣∣∣∣ ≤ max

{∫
x>0

p
p
q + 1

x +
∫

x>0

p∗
p
q + 1

x, −
∫

x<0

p
p
q + 1

x−
∫

x<0

p∗
p
q + 1

x

}
.

(4.23)
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Let’s bound the first term (i.e. x > 0); the bound for the second term (i.e. x < 0) follows from similar
calculations and is on the same order.∫

x>0

p
p
q + 1

x +
∫

x>0

p∗
p
q + 1

x ≤
∫

x>0
qx +

∫
x>0

p∗q
p

x

=
1√
2π

∫
x>0

exp
(
− x2

2

)
x +

1√
2π

∫
x>0

exp
(
− x2

2
+ (R− b)x + c− R2

2
− log

√
2π

)
x

(i)
=

1 + (R− b) exp
(

b2

2 − Rb + c− log
√

2π
)
+ 1

(b−R)2+1 exp
(
− R2

2 + c− log
√

2π
)

, R− b > 0

1 + 1
(b−R)2+1 exp

(
− R2

2 + c− log
√

2π
)

, R− b < 0

= O(1).

(4.24)

Step (i) omits a factor of 1√
2π

and uses:

∫
x>0

exp
(
− x2

2
+ (R− b)x + c− R2

2
− 2 log

√
2π

)
x

= exp
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(R− b)2

2
− R2

2
+ c− log
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2π

) ∫
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exp
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− (x− (R− b))2

2

)
x

= exp
(
(R− b)2

2
− R2

2
+ c− log

√
2π

) [∫
x>−(R−b)

exp
(
− x2

2

)
x + (R− b)

∫
x>−(R−b)

exp
(
− x2

2

)]

≃

(R− b) exp
(

b2

2 − Rb + c− log
√

2π
)
+ 1

(b−R)2+1 exp
(
− R2

2 + c− log
√

2π
)

R− b > 0
1

(b−R)2+1 exp
(
− R2

2 + c− log
√

2π
)

, R− b < 0

(4.25)

For b < 0, we similarly have ∥∇L(τ)∥2 = O(max{R,−b}). The calculations are similar to the b > 0
case and hence omitted.

We are now ready to prove Lemma 50, which we restate below.

Lemma 55 (Lemma 50, restated). Let η = o(1). For any τ s.t. ∥τ − τ∗∥ ≥ 0.2R, let τ′ denote the point
after one step of gradient descent from τ, then ∥τ′ − τ∗∥ > 0.15R.

Proof of Lemma 55. We will prove by contradiction. First assume that we can go from τ where ∥τ −
τ∗∥2 ≥ 0.2R to some τ′ where ∥τ′ − τ∗∥2 ≤ 0.15R. Then ∥τ′ − τ∗∥ is lower bounded as:

∥τ′ − τ∗∥ ≥ ∥τ − τ∗∥ − η∥∇L(τ)∥
(i)
≥ |b− R| − η∥∇L(τ)∥

(ii)
≥ |b− R| − 32ηb =

(∣∣∣∣1− R
b

∣∣∣∣− 32η

)
b,

(4.26)

where step (i) uses ∥τ − τ∗∥ ≥ |τ[1]− τ∗[1]| ≥
∣∣|τ1| − |τ∗1 |

∣∣ = |b− R|, and step (ii) is by Claim 6.

On the other hand, we have ∥τ′ − τ∗∥ ≤ 0.15R by assumption, which when combined with equa-
tion 4.26 gives b ≤ 0.15R

|1− R
b |−32η

, or b = O(R). This means ∥τ − τ∗∥ − ∥τ′ − τ∗∥ ≤ η∥∇L(τ)∥ =

o(1) ·O(max{R, |b|}) = o(R). However, we also have ∥τ − τ∗∥ − ∥τ′ − τ∗∥ ≥ 0.05R = Θ(R) by
assumption. This is a contradiction, which means the assumption must be false, i.e. τ′ cannot satisfy
∥τ′ − τ∗∥2 ≤ 0.15R.
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Let’s now finish the calculations in the proof of Lemma 49.

Calculation details for Equation 4.16 and 4.18 We now calculate term T(0
i and T(1)

i used in equation
4.16 and 4.18.

T(0)
1 =

∫
x< c−log

√
2π

b

exp
(
− x2

2
+ bx− c

)
= exp

(
b2

2
− c
) ∫

x< c−log
√

2π
b

exp
(
− (x− b)2

2

)
= exp

(
b2

2
− c
) ∫

x< c−log
√

2π
b −b

exp
(
− x2

2

)

≃


exp

(
b2

2 − c
)
· 1

b− c−log
√

2π
b

· exp
(
− 1

2

(
c−log

√
2π

b − b
)2)

, c− log
√

2π < b2

exp
(

b2

2 − c
)
·
[

1− 1
c−log

√
2π

b −b
· exp

(
− 1

2

(
c−log

√
2π

b − b
)2)]

, c− log
√

2π ≥ b2

=


1√
2π

1

b− c−log
√

2π
b

· exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π < b2,

exp
(

b2

2 − c
)
− 1√

2π
1

c−log
√

2π
b −b

· exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π ≥ b2.

(4.27)

T(0)
2 =

∫
x≥ c−log

√
2π

b

1√
2π

exp
(
− x2

2

)

≃


1√
2π

1
c−log

√
2π

b

exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π > 0,

1− 1√
2π

1
|c−log

√
2π|

b

exp
(
− (c−log

√
2π)2

2b2

)
, c− log

√
2π < 0.

(4.28)

T(0)
3 =

∫
x< c−log

√
2π

b

1√
2π

exp
(
− (x− R)2

2

)
=
∫

x< c−log
√

2π
b −R

1√
2π

exp
(
− x2

2

)

=


1√
2π

1

R− c−log
√

2π
b

exp
(
− (

c−log
√

2π
b −R)2

2

)
, c− log

√
2π < bR,

1− 1√
2π

1
c−log

√
2π

b −R
exp

(
− (

c−log
√

2π
b −R)2

2

)
, c− log

√
2π ≥ bR.

(4.29)

T(0)
4 = exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x≥ c−log

√
2π

b

exp
(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x≥ c−log

√
2π

b −(R−b)
exp

(
− x2

2

)

=


exp

(
(R−b)2

2 + c− R2

2 − 2 log
√

2π
) [

1− 1

R−b− c−log
√

2π
b

exp
(
− (R−b− c−log

√
2π

b )2

2

)]
, c− log

√
2π < b(R− b)

exp
(
(R−b)2

2 + c− R2

2 − 2 log
√

2π
)

1
c−log

√
2π

b −(R−b)
exp

(
− (R−b− c−log

√
2π

b )2

2

)
, c− log

√
2π ≥ b(R− b)

=



1
2π exp

(
(R−b)2

2 + c− R2

2

)
− 1√

2π
1

R−b− c−log
√

2π
b

exp

−
(

c−log
√

2π
b −R

)2

2

 c− log
√

2π < b(R− b),

1√
2π

1
c−log

√
2π

b −(R−b)
exp

−
(

c−log
√

2π
b −R

)2

2

 , c− log
√

2π ≥ b(R− b).

(4.30)
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T(1)
1 =

∫
x∈[0, c−log

√
2π

b ]
exp

(
− x2

2
+ bx− c

)
x

= exp
(

b2

2
− c
) ∫

x∈[0, c−log
√

2π
b ]

exp
(
− (x− b)2

2

)
(x− b) + b ·

∫
x∈[0, c−log

√
2π

b ]
exp

(
− (x− b)2

2

)
≤ exp

(
b2

2
− c
) ∫

x∈[−b, c−log
√

2π
b −b]

exp
(
− x2

2

)
x + bT(0)

1

= exp
(

b2

2
− c
) [
− exp

(
− x2

2

)] c−log
√

2π
b −b

−b
+ bT(0)

1

= exp
(

b2

2
− c
)(

exp
(
− b2

2

)
− exp

(
− (c− log

√
2π − b2)2

2b2

))
+ bT(0)

1

= exp(−c)− 1√
2π

exp

(
− (c− log

√
2π)2

2b2

)
+ bT(0)

1 .

(4.31)

T(1)
2 =

∫
x≥ c−log

√
2π

b

1√
2π

exp
(
− x2

2

)
x =

1√
2π

[
− exp

(
− x2

2

)]∞

c−log
√

2π
b

=
1√
2π

exp

(
− (c− log

√
2π)2

2b2

)
.

(4.32)

T(1)
3 =

∫
x∈[0, c−log

√
2π

b ]

1√
2π

exp
(
− (x− R)2

2

)
x

≤
∫

x∈[0, c−log
√

2π
b ]

1√
2π

exp
(
− (x− R)2

2

)
(x− R) + RT(0)

3

=
∫

x∈[−R, c−log
√

2π
b −R]

1√
2π

exp
(
− x2

2

)
x + RT(0)

3 =
1√
2π

[
− exp

(
− x2

2

)] c−log
√

2π
b −R

−R
+ RT(0)

3

=
1√
2π

exp
(
−R2

2

)
− 1√

2π
exp

(
− (c− log

√
2π − bR)2

2b2

)
+ RT(0)

3 .

(4.33)

T(1)
4 = exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x≥ c−log

√
2π

b

exp
(
− (x− (R− b))2

2

)
(x− (R− b)) + (R− b)T(0)

4

= exp
(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x≥ c−log

√
2π

b −(R−b)
exp

(
− x2

2

)
x + (R− b)T(0)

4

= exp
(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) [
− exp

(
− x2

2

)]∞

c−log
√

2π
b −(R−b)

+ (R− b)T(0)
4

=
1√
2π

exp

(
− (c− log

√
2π − bR)2

2b2

)
+ (R− b)T(0)

4 .

(4.34)
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Calculations for b < 0 We now calculate the gradient norm bound for the case where b < 0. Recall
that:

∥∇L(τ)∥2 ≤ ∥∇L(τ)∥1 =

∣∣∣∣∣
∫

x

p− p∗
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣ . (4.35)

Let’s bound each term individually.

Bounding
∣∣∣∣∫x

p−p∗
p
q +1

∣∣∣∣:
∣∣∣∣∣
∫

x

p− p∗
p
q + 1

∣∣∣∣∣ =
∣∣∣∣∣∣
∫

x

exp
(
− x2

2 + bx− c
)
− exp

(
− (x−R)2

2 − log
√

2π
)

exp
(

bx− c + log
√

2π
)
+ 1

∣∣∣∣∣∣
≤
∫

x< c−log
√

2π
b

exp
(
− x2

2
− log

√
2π

)
︸ ︷︷ ︸

T(0)
1,−

+
∫

x≥ c−log
√

2π
b

exp
(
− x2

2
+ bx− c

)
︸ ︷︷ ︸

T(0)
2,−

+
∫

x< c−log
√

2π
b

exp
(
− x2

2
+ (R− b)x + c− R2

2
− 2 log

√
2π

)
︸ ︷︷ ︸

T(0)
3,−

+
∫

x≥ c−log
√

2π
b

exp
(
− (x− R)2

2
− log

√
2π

)
︸ ︷︷ ︸

T(0)
4,−

= O(1),

(4.36)

where T(0)
i,− terms are calculated as:

T(0)
1,− =

∫
x< c−log

√
2π

b

exp
(
− x2

2
− log

√
2π

)

≃


1√
2π
· 1

− c−log
√

2π
b

exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b < 0,

1− 1√
2π
· 1

c−log
√

2π
b

exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b > 0,

(4.37)

T(0)
2,− =

∫
x≥ c−log

√
2π

b

exp
(
− x2

2
+ bx− c

)
= exp

(
b2

2
− c
) ∫

x≥ c−log
√

2π
b

exp
(
− (x− b)2

2

)
= exp

(
b2

2
− c
) ∫

x≥ c−log
√

2π
b −b

exp
(
− x2

2

)

≃


exp

(
b2

2 − c
)
·
[

1− 1

b− c−log
√

2π
b

· exp
(
− 1

2

(
c−log

√
2π

b − b
)2)]

, c−log
√

2π
b − b < 0

exp
(

b2

2 − c
)
· 1

c−log
√

2π
b −b

· exp
(
− 1

2

(
c−log

√
2π

b − b
)2)

, c−log
√

2π
b − b > 0

=


exp

(
b2

2 − c
)
− 1√

2π
1

b− c−log
√

2π
b

· exp
(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b − b < 0,

1√
2π

1
c−log

√
2π

b −b
· exp

(
− (c−log

√
2π)2

2b2

)
, c−log

√
2π

b − b > 0,

(4.38)
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T(0)
3,− = exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x< c−log

√
2π

b

exp
(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
+ c− R2

2
− 2 log

√
2π

) ∫
x< c−log

√
2π

b −(R−b)
exp

(
− x2

2

)

=


exp

(
(R−b)2

2 + c− R2

2 − 2 log
√

2π
)

1
R−b− c−log

√
2π

b

exp
(
− (R−b− c−log

√
2π

b )2

2

)
, c−log

√
2π

b − (R− b) < 0

exp
(
(R−b)2

2 + c− R2

2 − 2 log
√

2π
) [

1− 1
c−log

√
2π

b −(R−b)
exp

(
− (R−b− c−log

√
2π

b )2

2

)]
, c−log

√
2π

b − (R− b) > 0

=


1

2π exp
(
(R−b)2

2 + c− R2

2

)
− 1√

2π
1

c−log
√

2π
b −(R−b)

exp

(
−
(

c−log
√

2π
b −R

)2

2

)
c−log

√
2π

b − (R− b) > 0,

1√
2π

1
R−b− c−log

√
2π

b

exp

(
−
(

c−log
√

2π
b −R

)2

2

)
, c−log

√
2π

b − (R− b) < 0,

(4.39)

T(0)
4,− =

∫
x≥ c−log

√
2π

b

1√
2π

exp
(
− (x− R)2

2

)
=
∫

x≥ c−log
√

2π
b −R

1√
2π

exp
(
− x2

2

)

=


1√
2π

1
c−log

√
2π

b −R
exp

(
− (

c−log
√

2π
b −R)2

2

)
, c−log

√
2π

b − R > 0,

1− 1√
2π

1

R− c−log
√

2π
b

exp
(
− (

c−log
√

2π
b −R)2

2

)
, c−log

√
2π

b − R < 0.

(4.40)

Bounding
∣∣∣∣∫x

p−p∗
p
q +1

x
∣∣∣∣:∣∣∣∣∣

∫
x

p− p∗
p
q + 1

x

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

x

p
p
q + 1

x

∣∣∣∣∣+
∣∣∣∣∣
∫

x

p∗
p
q + 1

x

∣∣∣∣∣
≤max

{∫
x>0

p
p
q + 1

x, −
∫

x<0

p
p
q + 1

x

}
+ max

{∫
x>0

p∗
p
q + 1

x, −
∫

x<0

p∗
p
q + 1

x

}
.

(4.41)

As before, we will show the bound for the case where x > 0; the other case (i.e. x < 0) follows a
similar calculation and has an upper bound on the same order.

First consider b < 0, c− log
√

2π > 0:

∫
x>0

p
p
q + 1

x +
∫

x>0

p∗
p
q + 1

x ≤
∫

x>0
px +

∫
x>0

p∗x
(i)
≃ 1

b2 + 1
exp(−c) + 1 +

1
1 + R2 exp

(
−R2

2

)
,= O(1)

(4.42)

where step (i) uses the following:

∫
x>0

exp
(
− x2

2
+ bx− c

)
x = exp

(
b2

2
− c
) ∫

x>0
exp

(
− (x− b)2

2

)
(x− b + b)

= exp
(

b2

2
− c
) [∫

x>−b
exp

(
− x2

2

)
x + b

∫
x>−b

exp
(
− x2

2

)]
= exp

(
b2

2
− c
) [

exp
(
− b2

2

)
− b2

b2 + 1
exp

(
− b2

2

)]
=

1
b2 + 1

exp(−c)∫
x>0

exp
(
− (x− R)2

2

)
x ≤ exp

(
−R2

2

)
+ 1− R2

1 + R2 exp
(
−R2

2

)
= 1 +

1
1 + R2 exp

(
−R2

2

)
.

(4.43)
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When b < 0, c− log
√

2π < 0,∫
x>0

p
p
q + 1

x +
∫

x>0

p∗
p
q + 1

x =
∫

x∈[0, c−log
√

2π
b ]

qx︸ ︷︷ ︸
T(1)

1,−

+
∫

x≥ c−log
√

2π
b

px︸ ︷︷ ︸
T(1)

2,−

+
∫

x∈[0, c−log
√

2π
b ]

p∗q
p︸ ︷︷ ︸

T(1)
3,−

+
∫

x≥ c−log
√

2π
b

p∗︸ ︷︷ ︸
T(1)

4,−

≤16 max{R, |b|},
(4.44)

where T(1)
i, terms are calculated as:

T(1)
1,− =

∫
x∈[0, c−log

√
2π

b ]
qx =

[
− exp

(
− x2

2

)] c−log
√

2π
b

0
= 1− exp

(
− (c− log

√
2π)2

2b2

)
. (4.45)

T(1)
2,− =

∫
x≥ c−log

√
2π

b

px = exp
(

b2

2
− c
) ∫

x≥ c−log
√

2π
b

exp
(
− (x− b)2

2

)
x

= exp
(

b2

2
− c
)[∫

x≥ c−log
√

2π
b −b

exp
(
− x2

2

)
x + b

∫
x≥ c−log

√
2π

b −b
exp

(
− x2

2

)]

≃

1− 1

1− c−log
√

2π

b2

 · exp

(
− (c− log

√
2π)2

2b2

)
.

(4.46)

T(1)
3,− =

∫
x∈[0, c−log

√
2π

b ]

p∗q
p
≃
∫

x∈[0, c−log
√

2π
b ]

exp
(
− (x− R)2

2
− bx + c− log

√
2π

)
= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

) ∫
x∈[0, c−log

√
2π

b ]
exp

(
− (x− (R− b))2

2

)
= exp

(
(R− b)2

2
− R2

2
+ c− log

√
2π

) ∫
x∈[−(R−b), c−log

√
2π

b −(R−b)]
exp

(
− x2

2

)
(x + R− b)

= exp
(
−R2

2
+ c− log

√
2π

)
− exp

− (
c−log

√
2π

b − R)2

2

+ (R− b) · β(1)
3,−,

(4.47)

where β
(1)
3,− = O(1) is:

β
(1)
3,− =


2− 1

R−b exp
(
− R2

2 + c− log
√

2π
)
− 1

c−log
√

2π
b −(R−b)

exp
(
− (

c−log
√

2π
b −R)2

2

)
, c−log

√
2π

b ≥ R− b,

1
c−log

√
2π

b −(R−b)
exp

(
− (

c−log
√

2π
b −R)2

2

)
− 1

R−b exp
(
− R2

2 + c− log
√

2π
)

, c−log
√

2π
b < R− b.

(4.48)

T(1)
4,− =

∫
x≥ c−log

√
2π

b

p∗ =
∫

x≥ c−log
√

2π
b

exp
(
− (x− R)2

2

)
(x− R + R)

=
∫

x≥ c−log
√

2π
b −R

exp
(
− x2

2

)
x + R

∫
x≥ c−log

√
2π

b −R
exp

(
− x2

2

)

= exp

− (
c−log

√
2π

b − R)2

2

+ R · β(1)
4,−,

(4.49)
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where β
(1)
4,− = O(1) is:

β
(1)
4,− =


1− 1

R− c−log
√

2π
b

exp
(
− (

c−log
√

2π
b −R)2

2

)
, c−log

√
2π

b < R,

1
c−log

√
2π

b −R
exp

(
− (

c−log
√

2π
b −R)2

2

)
, c−log

√
2π

b > R.
(4.50)

Combining equation 4.36, 4.42, and 4.41 we have that ∥∇L([b, c])∥2 ≤ 32 max{R, |b|} for b < 0.

4.1.8 Proof of Lemma 46, 47: smoothness and strong convexity at the optimum

We prove Lemmas 46 and 47 in this section. First recall the lemma statements:

Lemma 56 (Smoothness at P = P∗, Lemma 46 restated). Consider the 1d Gaussian mean estimation task
with R := |θ∗ − θq| ≫ 1. Then the smoothness at P = P∗ is upper bounded as:

σ∗max :=σmax(∇2L(τ∗)) ≤
R√
2π

exp(−R2/8). (4.51)

We will also need a bound on the strong convexity constant (i.e. smallest singular value) at P = P∗:

Lemma 57 (Strong convexity at P = P∗, Lemma 47 restated). Under the same setup as lemma 46, the
minimum singular value at P = P∗ is σ∗min(∇2L(τ∗)) = Θ

(
1
R exp

(
− R2

8

))
.

Proof of Lemma 46 (smoothness at P = P∗) We will show the smoothness constant (i.e. σmax(∇2L))
is exponentially small at the optimum, i.e. when P = P∗. The Hessian at the optimum is:

∇2L(τ) =
1
2

∫
x

p∗q
p∗ + q

T(x)T(x)⊤dx =
1
2

∫
x

p∗q
p∗ + q

[x,−1]⊤ [x,−1] dx. (4.52)

Recall that θq = 0 w.l.o.g, and assume θ∗ = R≫ 1. Then

∇2L(τ) =
1
2

∫
x≤R/2

p∗q
p∗ + q

T(x)T(x)⊤dx +
1
2

∫
x>R/2

p∗q
p∗ + q

T(x)T(x)⊤dx

≲
1
2

∫
x≤R/2

p∗T(x)T(x)⊤dx +
1
2

∫
x>R/2

qT(x)T(x)⊤dx.
(4.53)

Let S1 ⊂ R2 denote the circle centered as the origin with radius 1. The maximum singular value is
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upper bounded by

σ∗max := max
[a1,a2]∈S1

1
2

∫
x

p∗q
p∗ + q

(a1x− a2)
2 dx

≤1
2

max
[a1,a2]∈S1

[∫
x≤R/2

p∗ (a1x− a2)
2 dx +

∫
x>R/2

q (a1x− a2)
2 dx

]
=

1
2

max
[a1,a2]∈S1

[ ∫
x≤R/2

p∗
(

a2
1x2 − 2a1a2x + a2

2

)
dx +

∫
x>R/2

q
(

a2
1x2 − 2a1a2x + a2

2

)
dx
]

=
1
2

max
[a1,a2]∈S1

[(∫
x≤ R

2

p∗x2 +
∫

x> R
2

qx2
)

︸ ︷︷ ︸
T2

·a2
1 −

(∫
x≤ R

2

p∗x +
∫

x> R
2

qx
)

︸ ︷︷ ︸
T1

2a1a2 +

(∫
x≤ R

2

p∗ +
∫

x> R
2

q
)

︸ ︷︷ ︸
T0

a2
3

]

(i)
≤ 1

2
T2 + T1 +

T0

2

(ii)
≤
(

R
2
+

1
R
+ 2 +

2
R

)
· 1√

2π
exp

(
−R2

8

)
=

(
R
2
+ 2 +

3
R

)
· 1√

2π
exp

(
−R2

8

)
≤ R√

2π
exp

(
−R2

8

)
,

(4.54)

where (i) substitutes in 1 or −1 for a1, a2 and uses the fact that the upper bounds for T0, T1, T2 are
positive. (ii) uses the calculations on T0 to T2 shown below. We note that these calculations rely on
properties of Gaussian and do not extend to general exponential families.

T0 =2
∫

x>R/2
q ≤ 4

R
· 1√

2π
exp

(
−R2

8

)
,

T1 =
∫

x≤R/2

1√
2π

exp
(
− (x− θ)2

2

)
xdx +

∫
x>R/2

1√
2π

exp
(
− x2

2

)
xdx

=
∫

x′≥R/2

1√
2π

exp
(
− (x′)2

2

)
(R− x′)dx +

∫
x>R/2

1√
2π

exp
(
− x2

2

)
xdx

=R
∫

x≥R/2
qdx ≤ 2√

2π
exp

(
−R2

8

)
.

(4.55)

For T2, denote PR/2 := P∗
({

x : x ≤ R
2

})
= PQ

({
x : x ≥ R

2

})
; Gaussian tail bound gives PR/2 ≤
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2√
2π

1
R exp

(
− R2

8

)
. Then we can calculate each term in T2 as:

∫
x≤ R

2

p∗(x)x2dx =
∫

x≤ R
2

1√
2π

exp
(
− (x− R)2

2

)
x2dx

=
∫

x≤ R
2

1√
2π

exp
(
− (x− R)2

2

)
(x− R) · xdx + R

∫
x≤ R

2

1√
2π

exp
(
− (x− R)2

2

)
xdx

=

−exp
(
− (x−R)2

2

)
x

√
2π


R
2

−∞

+
∫

x≤ R
2

exp
(
− (x−R)2

2

)
√

2π
(x− R)dx + R

(
R · PR/2 −

1√
2π

exp
(
−R2

8

))

=−
(R

2
+ 1
)
· 1√

2π
exp

(
−R2

8

)
+ R

(
R · PR/2 −

1√
2π

exp
(
−R2

8

))
=−

(3R
2

+ 1
)
· 1√

2π
exp

(
−R2

8

)
+ R2 · PR/2

≤− 3R
2
· 1√

2π
exp

(
−R2

8

)
+ R2 · PR/2,

∫
x≥ R

2

q(x)x2dx =
∫

x≥ R
2

1√
2π

exp
(
− x2

2

)
x2dx =

[
−

exp(− x2

2 )x√
2π

]∞

R
2

+ PR/2 =
1√
2π

R
2

exp
(
−R2

8

)
+ PR/2.

(4.56)

Combining both terms gives T2 ≤ −R · 1√
2π

exp
(
− R2

8

)
+ (R2 + 1)PR/2 ≤

(
R + 2

R
) 1√

2π
exp

(
− R2

8

)
.

Proof of Lemma 47 (strong convexity at P = P∗) Lower bounding σ∗min follows a similar calculation
as for upper bounding σ∗max:

σ∗min := min
[a1,a2]∈S1

1
2

∫
x

p∗q
p∗ + q

(a1x− a2)
2 dx ≳ min

[a1,a2]∈S1

1
4

∫
x

p∗q
max{p∗, q} (a1x− a2)

2 dx

=
1
4

min
[a1,a2]∈S1

[∫
x≤R/2

p∗ (a1x− a2)
2 dx +

∫
x>R/2

q (a1x− a2)
2 dx

]
=

1
4

min
[a1,a2]∈S1

[ ∫
x≤R/2

p∗
(

a1x2 − 2a1a2x + a2
2

)
dx +

∫
x>R/2

q
(

a1x2 − 2a1a2x + a2
2

)
dx
]

=
1
4

min
[a1,a2]∈S1

[(∫
x≤ R

2

p∗x2 +
∫

x> R
2

qx2
)

︸ ︷︷ ︸
T2

·a2
1 −

(∫
x≤ R

2

p∗x +
∫

x> R
2

qx
)

︸ ︷︷ ︸
T1

2a1a2 +

(∫
x≤ R

2

p∗ +
∫

x> R
2

q
)

︸ ︷︷ ︸
T0

a2
2

]

(i)
≥ 1

4
1√
2π

exp
(
−R2

8

)
min

[a1,a2]∈S1

[(
R
2
+

1
R

)
a2

1 − 4a1a2 +
1
R

a2
2

]

=
1
4

1√
2π

exp
(
−R2

8

)
min

a∈[0,1]

[(
R
2
+

1
R

)
a2 − 4a

√
1− a2 +

1
R
(1− a2)

]

=
1
4

1√
2π

exp
(
−R2

8

)
min

a∈[0,1]

[
R
2

a2 − 4a
√

1− a2 +
1
R

]
=

1
4

1√
2π

exp
(
−R2

8

)
min

a∈[0,1]

[
a
(

R
2

a− 4
√

1− a2
)
+

1
R

]
(ii)
≥ 1

4R
1√
2π

exp
(
−R2

8

)
,

(4.57)

where (i) uses the calculations on T0 to T2 stated in equation 4.55 and 4.56. Step (ii) replaces a = 0 to
remove the O(R) term.
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4.1.9 Proof of Lemma 48: curvature at P = Q

Lemma 58 (Smoothness at P = Q, Lemma 48 restated). Under the same setup as Lemma 46, the smooth-
ness at P = Q is lower bounded as σmax(∇2L(τq)) ≥ R2

2 .

Proof. The result follows from direct calculation of the Hessian at P = Q:

∇2L(τ) =
1
2

∫
x

p∗ + q
4

T(x)T(x)⊤dx =
1
8

(
E∗(T(x)T(x)⊤) + EQ(T(x)T(x)⊤)

)

=
1
8

E∗




x

−1

 [x,−1]

+ EQ




x

−1

 [x,−1]


 =

1
8


E∗x2 + EQx2 0

0 2



=
1
8


R2 + 2 0

0 2

 .

(4.58)

Hence σmax(∇2
τ L) ≥ e⊤1 ∇2L(τ)e1 ≥ R2

2 .

4.1.9.1 Proof of Theorem 18: lower bound for second-order methods

The proof of Theorem 18 is similar to that of Theorem 17, where we show that there is a ring of width
Θ(R) in which the amount of progress at each step is exponentially small, hence the number of steps
required to cross this ring is exponential.

We show that starting from τ0 = τq, the optimization path will necessarily steps into A:

Lemma 59. Let η := O(
λρ

λM
), where λρ := minθ∈Θ σmin(∇2L(τθ)), λM := maxθ∈Θ σmax(∇2L(τθ)) as

defined in Section 4.1.3. For any τ s.t. ∥τ − τ∗∥ ≥ 0.2R, let τ′ denote the point after one step of gradient
descent from τ, then ∥τ′ − τ∗∥2 > 0.15R.

Proof. First note that ∀τ, the next point after one step of Newton update is:

τt′ = τ − η(∇2L(τ))−1∇L(τ) = τ − η
[〈

(∇2L(τ))−1∇L(τ),
τ − τ∗
∥τ − τ∗∥2

〉
· τ − τ∗
∥τ − τ∗∥2

+ v
]
, (4.59)

where v := (∇2L(τ))−1∇L(τ)−
〈
(∇2L(τ))−1∇L(τ), τ−τ∗

∥τ−τ∗∥2

〉
· τ−τ∗
∥τ−τ∗∥2

is orthogonal to τ − τ∗. This
means

∥τ − τ∗∥ − ∥τ′ − τ∗∥ = η
〈
(∇2L(τ))−1∇L(τ),

τ − τ∗
∥τ − τ∗∥2

〉
− η∥v∥

≤ η

σmin(∇2L(τ))
·
∣∣∣∣〈∇L(τ),

τ − τ∗
∥τ − τ∗∥2

〉∣∣∣∣ ≤ η∥∇L(τ)∥2

σmin(∇2L(τ))

(i)
≤ 32η max{R, |b|}

σmin(∇2L(τ))
(ii)
≤ 32

λρ

σmin(∇2L(τ))
max{R, |b|}

λM
≤ 32 max{R, |b|}

λM
≤ 64 max{R, |b|}

R2 ,

(4.60)

where step (i) uses Claim 6, and step (ii) follows from the choice of η.
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Suppose ∥τ′ − τ∗∥2 < 0.15R, then

0.05R ≤ ∥τ − τ∗∥ − ∥τ′ − τ∗∥ ≤
64 max{R, |b|}

R2 ⇒ b = Ω(R3). (4.61)

However, ∥τ′ − τ∗∥2 entails b = Θ(R), which is a contradiction. Hence it must be that ∥τ′ − τ∗∥2 >

0.15R.

Proof of Theorem 18. By Lemma 59, the optimization path will go to a point τ′ ∈ A s.t. ∥τ′ − τ∗∥2 >

0.15R. From any such τ′, the shortest way to exit the annulus A is to project onto the inner circle
defining A, i.e. the circle centered at τ∗ with radius 0.1R which is a convex set. Denote this inner
circle as B(τ∗, 0.1R) whose projection is ΠB(τ∗ ,0.1R), then the shortest path is the line segment τ′ −
ΠB(τ∗ ,0.1R)(τ

′). Further, this line segment is of length 0.05R since ∥τ′ − τ∗∥ > 0.15R by Lemma 59.

However, the decrease of the parameter distance (i.e. ∥τ − τ∗∥) is exponentially small at any point in
A:

∥τt − τ∗∥ − ∥τt+1 − τ∗∥
(i)
≤ η

σmin(∇2L(τt))

∣∣∣∣〈∇L(τt),
τt − τ∗
∥τt − τ∗∥2

〉∣∣∣∣
(ii)
≤

∣∣∣〈∇L(τt), τt−τ∗
∥τt−τ∗∥2

〉∣∣∣
λM

(iii)
≤ O

(exp
(
− κ(b,c)R2

8
)

R3

)
,

(4.62)

where step (i) uses the calculations in equation 4.60; step (ii) use the choice of η; and step (iii) uses
Lemma 49.

Hence the number of steps to exit A is lower bounded by 0.05R
O( 2

R2 exp
(
− R2

8

)
)
= Ω

(
R3 exp

(
R2

8

))
.

4.1.10 Proofs: NGD convergence in terms of Bhattacharyya coefficient (Section 4.1.4.2)

This section provides proofs for results in Section 4.1.4.2 relating to the Bhattacharyya coefficient.
Recall that the Bhattacharyya coefficient of P∗, Q is defined as BC(P∗, Q) :=

∫
x

√
p∗(x)q(x)dx. We start

by proving the convergence rate stated in terms of the Bhattacharyya coefficient (Theorem 20), and
then prove the bound on Bhattacharyya coefficient (Lemma 52). The helper lemmas used in the proof
of Theorem 20 are provided in the end.

Theorem (Convergence rate in terms of Bhattacharyya coefficient (Theorem 20, restated)). Suppose
Assumptions 11- 14 hold with constants ω, βZ, λmax and λmin, γmax and γmin. Consider a NCE task with
data distribution P∗ and noise distribution Q, parameterized by θ∗, θq ∈ Θ respectively. Then for any given
δ ≤ 1

R and initial estimate τ0 = τq, NGD finds an estimate τ such that ∥τ − τ∗∥2 ≤ δ within T ≤ C ·
1

BC(P∗ ,Q)3
∥τ0−τ∗∥2

δ2 steps, where C := 18 exp
( 2

βZ

)
·
( λmax

λmin

)3 ·min
{

2λ2
max

λ2
min

, 2λmin+γmax∥δ̄∥
λmin−γmin∥δ̄∥

}
.

Proof. Proving Theorem 20 requires bounding the condition number κ∗ and the Hessian-related con-
stants βu, βl . The proof follows from the following two lemmas, which we prove in the end of this
section.

The first lemma shows that κ∗ is inversely related to BC(P∗, Q):
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Lemma 60. Let Θ be the set of parameters for an exponential family satisfying Assumption 11-12. Then, for
any pair of P∗, Q parameterized by θ∗, θq ∈ Θ, the NCE problem defined with P∗, Q has κ∗ ≤ λmax

2λmin
1

BC(P∗ ,Q)
.

The second lemma estimates the Hessian-related constants in Assumption 15:

Lemma 61. Let δ̄ := τ − τ∗. Let BC(P∗, Q) denote the Bhattacharyya coefficient between P∗ and Q, then for
any τ such that ∥δ̄∥ ≤ 1

βZ
, we have:

σmax(∇2L(τ))
σmax(∇2L(τ∗))

≤ 1
BC(P∗, Q)

· 8 exp
(3

2
+

1
βZ

)
· λmax

λmin
·min

{
2λmax

λmin
, 2 +

γmax∥δ̄∥
λmin

}
,

σmin(∇2L(τ))
σmin(∇2L(τ∗))

≥ BC(P∗, Q) · 16 exp
(
− 2− 1

βZ

)
· λmin

λmax
·max

{
λmin

λmax
, 1− γmin∥δ̄∥

λmin

}
.

Hence Assumption 15 is satisfied with constants βu, βl equal to the respective right hand sides.

The factor C in the theorem statement is then chosen such that C
BC(P∗ ,Q)3 ≥

βu
βl

, and the proof of
Theorem 20 follows by applying Theorem 19 and the above lemmas.

Next, we show that the Bhattacharyya coefficient BC(P∗, Q) can be lower bounded when the param-
eters θ∗, θq are close:

Lemma (Lemma 52 restated). For P1, P2 parameterized by θ1, θ2 ∈ Θ, if ∥θ1− θ2∥2
2 ≤

4
λmax

, then BC(P1, P2) ≥
1
2 .

Proof. The proof relies on analyzing the geodesic on the manifold of square root densities
√

p equipped
with the Hellinger distance as a metric. Given θ1, θ2 ∈ Θ, define a map ϕ from [0, 1] to a function

√
p,

where p is the PDF for a distribution parameterized by some θ ∈ Θ: let Z(θ) denote the partition
function for parameter θ ∈ Θ, and let δ := θ2 − θ1, then ϕ(t) is a function of x defined as:

ϕ(t)(x) =
√

h(x) exp
(
(θ1 + tδ)⊤x− log Z(θ1 + tδ)

)
. (4.63)

Denote ϕt(x) := ϕ(t)(x) and θt := θ1 + tδ for notation convenience. Then

∂ϕt(x)
∂t

=
∂

∂t

√h exp
(

1
2 θ⊤t x

)
√

Z(θt)

 =

√
h

2
exp

(
1
2

θ⊤t x
) δ⊤x ·

√
Z(θt)− 1√

Z(θt)

∂Z(θt)
∂t

Z(θt)

(∗)
=

√
h

2
exp

(
1
2

θ⊤t x
)

δ⊤x−Eθt [δ
⊤x]√

Z(θt)
=

1
2

√
pθt(x)(δ⊤x−Eθt [δ

⊤x]),

(4.64)

where step (∗) used

∂Z(θt)

∂t
=

∂

∂t

∫
x

h(x) exp
(

θ⊤t x
)
=
∫

x
h(x) exp

(
θ⊤t x

)
δ⊤x = Z(θt)Eθt [δ

⊤x]. (4.65)

Hence ∥∥∥∥∂ϕt

∂t

∥∥∥∥
L2

:=
∫

x

(
∂ϕt(x)

∂t

)2

=

∫
x pθt(x)

(
δ⊤x−Eθt [δ

⊤x]
)2

4

=
Varθt(δ

⊤x)
4

=
δ⊤Eθt [xx⊤]δ⊤

4
≤ λmax

4
∥δ∥2

2.

(4.66)
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Using the fundamental theorem of calculus, we get

∥√pθ1 −
√

pθ2∥L2 = ∥ϕ(1)− ϕ(0)∥L2 =
∫ 1

t=0

∂ϕt(x)
∂t

dt ≤
∫ 1

t=0

∥∥∥∥∂ϕt(x)
∂t

∥∥∥∥ dt ≤ λmax

4
∥δ∥2

2. (4.67)

It follows that
∫

x
√pθ1

√pθ2 ≥ 1− λmax
8 ∥δ∥2, or 1∫

x
√

pθ1
pθ2
≤ 1

1− λmax
8 ∥δ∥2 for ∥δ∥2 < 8

λmax
. In particular,

for any θ1, θ2 satisfying ∥δ∥2 := ∥θ1 − θ2∥2 ≤ 4
λmax

, 1∫
x
√

pθ1
pθ2

= 1
BC(P,Q)

≤ 2, i.e. BC(P, Q) ≥ 1
2 .

4.1.10.1 Proof of helper lemmas

We now return to proving the helper lemmas used in the proof of Theorem 20, i.e. Lemma 60 and
Lemma 61.

Proof of Lemma 60. For exponential family with pdf p(x) = h(x) exp
(
θ⊤x− log Z(θ)

)
, the Hessian at

the optimum is:

H∗ =
∫

x

p∗q
p∗ + q

T(x)T(x)⊤dx ⪯
∫

x
min{p∗, q}T(x)T(x)⊤dx := M . (4.68)

We also have H∗ ⪰ 1
2M by noting that p∗ + q ≤ 2 max{p∗, q}. Therefore in order to bound κ∗, it

suffices to analyze the condition number of M .

For any pair of distributions parameterized by θ, θq ∈ Θ with PDFs p, q, and for any unit vector v, we
have (∫

x

√
p
√

q(v⊤T(x))2
)2

=

(∫
x

min{√p,
√

q}max{√p,
√

q}(v⊤T(x))2
)2

(i)
≤
(∫

x
(min{√p,

√
q})2(v⊤T(x))2

)
·
(∫

x
(max{√p,

√
q})2(v⊤T(x))2

)
≤
(∫

x
min{p, q}(v⊤T(x))2

)
·
(∫

x
(p + q)(v⊤T(x))2

)
(ii
≤ 2λmax

∫
x

min{p, q}(v⊤T(x))2,

(4.69)

where (i) uses Cauchy-Schwarz, and (ii) uses assumption 13.

Denote B :=
√

Z(θ)Z(θq)

Z
(

θ+θq
2

) . We have:

(∫
x

√
p
√

q(v⊤T(x))2
)2

=
Z
(

θ+θq
2

)2

Z(θ)Z(θq)

(∫
x

p θ+θq
2

(x)(v⊤T(x))2
)2

=
1

B2

(
E θ+θq

2
(v⊤T(x))2

)2
.

(4.70)

Combining equation 4.69, 4.70 gives a lower bound of
∫

x min{p, q}(v⊤T(x))2:

∫
x

min{p, q}(v⊤T(x))2 ≥ 1
2λmax

1
B2

(
E θ+θq

2
(v⊤T(x))2

)2
. (4.71)

On the other hand,
∫

x min{p, q}(v⊤T(x))2 can also be upper bounded as:∫
x

min{p, q}(v⊤T(x))2 ≤
∫

x

√
p
√

q(v⊤T(x))2 ≤ 1
B

E θ+θq
2

[
(v⊤T(x))2

]
. (4.72)
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Hence the condition number of M is bounded as:

κ(M ) :=
maxv

∫
x min{p, q}(v⊤T(x))2

minv
∫

x min{p, q}(v⊤T(x))2 ≤
λmaxB

2 minv E θ+θq
2

[
(v⊤T(x))2

] ≤ λmax

2λmin
· B. (4.73)

It is left to determine the value of B. We claim that B = 1
BC(P,Q)

, where BC(P, Q) is the Bhattacharyya

coefficient of P and Q defined as BC(P, Q) :=
∫

x

√
p(x)q(x)dx. To see this, note that it holds for any

x that log Zθ = θ⊤x + log h(x)− log pθ(x). Hence for any x,

B−1 = exp
(

log Z θ+θq
2
− 1

2
log Zθ −

1
2

log Zθq

)
=

√
pθ(x)pθq(x)

p θ+θq
2

(x)
. (4.74)

Therefore B−1 =

(∫
x p θ+θq

2
(x)
)
· B−1 =

∫
x

√
pθ(x)pθq(x) = BC(P, Q).

Proof for Lemma 61. For notational convenience, write δ̄ = [θ̄, ᾱ], where ᾱ = log Z(θ∗) − log Z(θ) is
the difference in the coordinate for the log partition function.

Upper bounding σmax(∇2L(τ))
σmax(∇2L(τ∗))

: We proceed by splitting v⊤∇2L(τ)v into two terms:

v⊤∇2L(τ)v =
∫

δ̄⊤T(x)<0
(p∗ + q)

pq
(p + q)2 (v

⊤T(x))2dx +
∫

δ̄⊤T(x)>0
(p∗ + q)

pq
(p + q)2 (v

⊤T(x))2dx.

(4.75)
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The first term is bounded as:∫
δ̄⊤T(x)<0

(p∗ + q)
pq

(p + q)2 (v
⊤T(x))2dx =

∫
δ̄⊤T(x)<0

(p∗ + q)
1

p
q + q

p + 2
(v⊤T(x))2dx

≤
∫

δ̄⊤T(x)<0
(p∗ + q)

1
p
q + q

p
(v⊤T(x))2dx ≤

∫
δ̄⊤T(x)<0

(p∗ + q) ·min
{

q
p

,
p
q

}
(v⊤T(x))2dx

=
∫

δ̄⊤T(x)<0
(p∗ + q) ·min

{
q

p∗ exp
(
δ̄⊤T(x)

) ,
p∗ exp(δ̄⊤T(x))

q

}
(v⊤T(x))2dx

=
∫

δ̄⊤T(x)<0
exp

(
−δ̄⊤T(x)

)
(p∗ + q)min

{
q
p∗

,
p∗ exp(2δ̄⊤T(x))

q

}
(v⊤T(x))2dx

(i)
≤
∫

δ̄⊤T(x)<0
exp

(
−δ̄⊤T(x)

)
(p∗ + q)min

{
q
p∗

,
p∗
q

}
(v⊤T(x))2dx

≤ 2
∫

δ̄⊤T(x)<0
exp

(
−δ̄⊤T(x)

)
min{q, p∗}(v⊤T(x))2dx

(ii)
≤ 2

∫
x

exp
(
−δ̄⊤T(x)

)
min{q, p∗}(v⊤T(x))2dx ≤ 2

∫
x

exp
(
−δ̄⊤T(x)

)√
p∗q(v⊤T(x))2dx

=2
Z( θ∗+θq

2 − θ̄) exp(−ᾱ)√
Z(θ∗)Z(θq)

∫
x

p θ∗+θq
2 −θ̄

· (v⊤T(x))2dx ≤ 2
Z( θ∗+θq

2 − θ̄) exp(−ᾱ)√
Z(θ∗)Z(θq)

E θ∗+θq
2 −θ̄

(v⊤T(x))2

(iii)
≤ 2

Z( θ∗+θq
2 )√

Z(θ∗)Z(θq)︸ ︷︷ ︸
:=1/B

· exp
(

βZ θ̄ − ᾱ
)
·E θ∗+θq

2 −θ̄
(v⊤T(x))2

(iv)
≤ 2

B
· exp

(
1 +

1
βZ

)
·E θ∗+θq

2 −θ̄
(v⊤T(x))2,

(4.76)

where step (i) is because δ̄⊤T(x) < 0; step (ii) increases the value by integrating over all x; step
(iii) uses Assumption 12 on Lipschitz log partition function; and step (iv) follows from the choice of
δ̄ = [θ̄, ᾱ] that ∥δ̄∥ ≤ 1

βZ
.

The second term can be bounded as:∫
δ̄⊤T(x)>0

(p∗ + q)
pq

(p + q)2 (v
⊤T(x))2dx ≤

∫
δ̄⊤T(x)>0

p∗ + q
p + q

min{p, q}(v⊤T(x))2dx

≤
∫

δ̄⊤T(x)>0
min{p, q}(v⊤T(x))2dx ≤

∫
x

√
pq(v⊤T(x))2dx =

Z( θ∗+θ̄+θq
2 ) exp(−ᾱ)√

Z(θ∗ + θ̄)Z(θq)
E θ∗+θ̄+θq

2
(v⊤T(x))2

(i)
≤

Z( θ∗+θq
2 )√

Z(θ∗)Z(θq)
E θ∗+θ̄+θq

2
(v⊤T(x))2 · exp

(
3
2

βZ∥θ̄∥2 − ᾱ

)
≤ 1

B
exp

(
3
2
+

1
βZ

)
·E θ∗+θ̄+θq

2
(v⊤T(x))2.

(4.77)

where step (i) uses Assumption 12 about Lipschitzness of the log partition function, and step (ii) is
because we have chosen that ∥δ̄∥2 ≤ 1

βZ
.
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Substituting back to equation 4.75 gives:

v⊤∇2L(τ)v ≤ 1
B

[
2 exp

(
1 +

1
βZ

)
·E θ∗+θq

2 −θ̄
(v⊤T(x))2 + exp

(
3
2
+

1
βZ

)
·E θ∗+θq+θ̄

2
(v⊤T(x))2

]
≤

2 exp( 3
2 + 1

βZ
)

B
·min

{
λmax, σmax(E θ∗+θq

2
[T(x)T(x)⊤]) + γmax∥δ̄∥

}
,

(4.78)

where the second inequality uses Assumption 13 and Assumption 14 for the first and second term
respectively.

Recall that v⊤∇2L(τ∗)v ≥ 1
4B2

1
λmax

(
E θ∗+θq

2
(v⊤T(x))2

)2
. Hence:

σmax(∇2L(τ))
σmax(∇2L(τ∗))

=
maxv v⊤∇2L(τ)v

maxṽ′ ṽ⊤∇2L(τ∗)ṽ

≤ 8λmaxB exp
(

3
2
+

1
βZ

) E θ∗+θq
2 −θ̄

(v⊤T(x))2 + E θ∗+θq+θ̄
2

(v⊤T(x))2

maxṽ

(
E θ∗+θq

2
(ṽ⊤T(x))2

)2

≤ 8
λmax

λmin
B exp

(
3
2
+

1
βZ

)
·min

2λmax

λmin
, 2 +

γmax∥δ̄∥
σmax(E θ∗+θq

2
[T(x)T(x)⊤])


≤ 8

λmax

λmin
B exp

(
3
2
+

1
βZ

)
·min

{
2λmax

λmin
, 2 +

γmax∥δ̄∥
λmin

}
.

(4.79)

Lower bounding σmin(∇2L(τ))
σmin(∇2L(τ∗))

: Let us denote S1 := {x : δ̄⊤T(x) > 0} and S−1 := {x : δ̄⊤T(x) ≤ 0}.
The goal is to lower bound:

v⊤∇2L(τ)v =
∫

x∈S1

(p∗ + q)
pq

(p + q)2 (v
⊤T(x))2dx +

∫
x∈S−1

(p∗ + q)
pq

(p + q)2 (v
⊤T(x))2dx

:=T1 + T−1.
(4.80)

Let’s lower bound T1, T−1 in each of the following two cases.

The first case is when T−1 ≥ T1. Let S 1
2
(v) ⊂ S−1 denote a set s.t.∫

x∈S 1
2
(v)

min{p, q}(v⊤T(x))2 ≥ 1
2

∫
x

min{p, q}(v⊤T(x))2.

Write δ̄ = [θ̄, ᾱ] as before, then

T1 ≥0,

T−1 =
∫

δ̄⊤T(x)<0
(p∗ + q)

pq
(p + q)2 (v

⊤T(x))2dx
(i)
≥
∫

δ̄⊤T(x)<0

pq
p + q

(v⊤T(x))2dx

≥1
2

∫
δ̄⊤T(x)<0

min{p, q}(v⊤T(x))2dx
(ii)
≥ 1

2

∫
S 1

2
(v)

min{p, q}(v⊤T(x))2dx

(iii)
≥ 1

4

∫
min{p, q}(v⊤T(x))2dx

(iv)
≥ exp(−ᾱ)

8λmax
·

Z( θ+θq
2 )2

Z(θ)Z(θq)

(
E θ+θq

2
(v⊤T(x))2

)2

(v)
≥ exp(−ᾱ)

8λmax
· 1

B2 exp(−2βZ∥δ̄∥) ·
(

E θ∗+θq+θ̄
2

(v⊤T(x))2
)2

,

(4.81)
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where step (i) uses p∗+q
p+q < 1 since δ̄⊤T(x) < 0; step (ii), (iii) follows from the definition of S−1; step

(iv) uses equation 4.71; and step (v) uses Assumption 12 that the log partition function is Lipschitz.

The second case is when T1 ≥ T−1. Let S 1
2
(v) ⊂ S1 denote a set s.t.∫

x∈S 1
2
(v)

min{p, q}(v⊤T(x))2 ≥ 1
2

∫
x

min{p, q}(v⊤T(x))2.

Then T−1, T1 can be lower bounded as:

T−1 ≥0

T1 =
∫

x∈S1

(p∗ + q)
pq

(p + q)2 (v
⊤T(x))2dx

≥1
2

∫
x∈S1

p∗ + q
p + q

·min{p, q}(v⊤T(x))2dx ≥ 1
2

∫
x∈S1

p∗
p
·min{p, q}(v⊤T(x))2dx

=
exp(ᾱ)

2

∫
x∈S1

min{pθ∗ , pθq−θ̄}(v⊤T(x))2dx

≥exp(ᾱ)
2

∫
x∈S 1

2
(v)

min{pθ∗ , pθq−θ̄}(v⊤T(x))2dx ≥ exp(ᾱ)
4

∫
x

min{pθ∗ , pθq−θ̄}(v⊤T(x))2dx

≥exp(ᾱ)
8λmax

·
Z( θ∗+θq−θ̄

2 )2

Z(θ∗)Z(θq − θ̄)

(
E θ∗+θq−θ̄

2
(v⊤T(x))2

)2

≥exp(ᾱ)
8λmax

· 1
B2 exp(−2βZ∥δ̄∥) ·

(
E θ∗+θq−θ̄

2
(v⊤T(x))2

)2
.

(4.82)

Combining both cases and using ∥δ̄∥ ≤ 1
βZ

, we get:

v⊤∇2L(τ)v = T1 + T−1

≥
exp(−2− 1

βZ
)

8λmax
· 1

B2 ·min

{(
E θ∗+θq+θ̄

2
(v⊤T(x))2

)2
,
(

E θ∗+θq−θ̄
2

(v⊤T(x))2
)2
}

.
(4.83)

Recall that v⊤∇2L(τ∗)v ≤ 2
B E θ∗+θq

2
[(v⊤T(x))2]. Hence

σmin(∇2L(τ))
σmin(∇2L(τ∗))

=
minv v⊤∇2L(τ)v

minṽ′ ṽ
⊤∇2L(τ∗)ṽ

≥
16 exp(−2− 1

βZ
)

B
λmin

λmax
·max

{
λmin

λmax
, min

{σmin(E θ∗+θq+θ̄
2

TT⊤)

σmin(E θ∗+θq
2

[TT⊤])
,

σmin(E θ∗+θq−θ̄
2

TT⊤)

σmin(E θ∗+θq
2

[TT⊤])

}}

≥
16 exp(−2− 1

βZ
)

B
λmin

λmax
·max

{
λmin

λmax
, 1− γmin∥δ̄∥

λmin

}
.

(4.84)

4.1.11 Proofs: eNCE satisfies Assumption 15 (Lemma 54)

Lemma 62 (Lemma 54, restated). Under Assumption 12, 13 with constant βZ, λmax and λmin, for any
unit vector u and constant c ∈ [0, 1

βZ
], the maximum and minimum singular values of H(τ∗ + cu) satisfy

Assumption 15 with constants βu = 2e · λmax
λmin

, βl =
1
2e ·

λmin
λmax

.
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Proof. We directly calculate the Hessian at some τ̃ := τ∗ + cu for some c ≤ 1
βZ

and ∥u∥2 = 1, using
the expression in equation 4.12:

∇2Lexp(τ̃) =
∫

x

(
p∗
√

q
p̃
+ q

√
p̃
q

)
T(x)T(x)⊤

=
∫

x

[
exp

(
⟨τ∗ +

τq − τ̃

2
, T(x)⟩

)
+ exp

(
⟨

τq + τ̃

2
, T(x)⟩

)]
T(x)T(x)⊤

=
∫

x

[
exp

(
⟨

τq + τ∗
2

− c
2
u, T(x)⟩

)
+ exp

(
⟨

τq + τ∗
2

+
c
2
u, T(x)⟩

)]
T(x)T(x)⊤

=
∫

x

[
exp

(
⟨− c

2
u, T(x)⟩

)
+ exp

(
⟨ c

2
u, T(x)⟩

)]
exp

(
⟨

τq + τ∗
2

, T(x)⟩
)

T(x)T(x)⊤

=
Z( θ∗+θq

2 )√
Z(θq)Z(θ∗)︸ ︷︷ ︸

B(P∗ ,Q)

∫
x

[
exp

(
⟨− c

2
u, T(x)⟩

)
+ exp

(
⟨ c

2
u, T(x)⟩

)]
exp

(
⟨τ(

θq + θ∗
2

), T(x)⟩
)

T(x)T(x)⊤.

(4.85)

Note that without the term in the square brackets, the integration is exactly the same as the one for
H∗.

We would like to bound the ratio v⊤∇2Lexp(τ̃)v

v⊤H∗v
for any unit vector v. Denote δ̄ := cu

2 , τ̄ := τ
(

θq+θ∗
2

)
for notation convenience, and denote S1 := {x : δ̄⊤T(x) > 0}, S−1 := {x : δ̄⊤T(x) ≤ 0}. We have:

v⊤∇2Lexp(τ̃)v

v⊤H∗v
≃
∫

x∈S1
exp

(
δ̄⊤T(x)

)
exp

(
τ̄⊤T(x)

)
(v⊤T(x))2∫

x exp
(
τ̄⊤T(x)

)
(v⊤T(x))2

+

∫
x∈S−1

exp
(
δ̄⊤T(x)

)
exp

(
τ̄⊤T(x)

)
(v⊤T(x))2∫

x exp
(
τ̄⊤T(x)

)
(v⊤T(x))2 := T1 + T−1.

(4.86)

Recall that f ≃ g means functions f , g differ only by a constant factor. This equation will be used to
calculate both the upper and the lower bound.

For the upper bound, let χ ∈ {±1}, we have

Tχ =

∫
x:χδ̄⊤T(x)>0 exp

(
χδ̄⊤T(x)

)
exp

(
τ̄⊤T(x)

)
(v⊤T(x))2∫

x exp
(
τ̄⊤T(x)

)
(v⊤T(x))2

=
Z(χθ̄ +

θq+θ∗
2 )

Z( θq+θ∗
2 ) · exp(χᾱ)

·

∫
x:δ̄⊤T(x)>0 p

χθ̄+
θ∗+θq

2
(x)(v⊤T(x))2∫

x p θ∗+θq
2

(v⊤T(x))2

≤
Z(χθ̄ +

θq+θ∗
2 )

Z( θq+θ∗
2 ) · exp(χᾱ)

·
E

χθ̄+
θ∗+θq

2
[(v⊤T(x))2]

E θ∗+θq
2

[(v⊤T(x))2]

(i)
≤ exp

(
βZ∥θ̄∥ − χᾱ

) E
χθ̄+

θ∗+θq
2

[(v⊤T(x))2]

E θ∗+θq
2

[(v⊤T(x))2]
,

(4.87)

where step (i) uses the Lipschitz property of the log partition function in assumption 12.

For the lower bound, let χ∗ := arg maxχ∈{±1} Tχ. Write δ̄ = [θ̄, ᾱ] (i.e. separating out ᾱ which is the
normalizing constant), let S 1

2
(v) ⊂ Sχ∗ denote a set s.t.

∫
x∈S 1

2
(v)

p
χ∗ θ̄+

θ∗+θq
2

(x)(v⊤T(x))2 ≥ 1
2

∫
x

p
χ∗ θ̄+

θ∗+θq
2

(x)(v⊤T(x))2.
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Then Tχ for χ ∈ {±1} can be lower bounded as:

Tχ∗ ≥
Z(χθ̄ +

θq+θ∗
2 )

Z( θq+θ∗
2 ) · exp(ᾱ)

·

∫
x∈S 1

2
(v) p

χ∗ θ̄+
θ∗+θq

2
(x)(v⊤T(x))2∫

x p θ∗+θq
2

(v⊤T(x))2

≥1
2

Z(χ∗ θ̄ + θq+θ∗
2 )

Z( θq+θ∗
2 ) · exp(ᾱ)

·
E

χ∗ θ̄+
θ∗+θq

2
[(v⊤T(x))2]

E θ∗+θq
2

[(v⊤T(x))2]

(i)
≥ 1

2
exp

(
−βZ∥θ̄∥ − χ∗ᾱ

)
·

E
χ∗ θ̄+

θ∗+θq
2

[(v⊤T(x))2]

E θ∗+θq
2

[(v⊤T(x))2]
,

T−χ∗ ≥0,

(4.88)

where step (i) uses the Lipschitz property of the log partition function in assumption 12.

This means for any unit vector v, we have

v⊤∇2Lexp(τ̃)v

v⊤H∗v
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(4.89)

where step (i), (ii) follow from Assumption 13.

Hence the eNCE loss satisfies Assumption 15 with constants βu = 2e · λmax
λmin

, βl =
1
2e ·

λmin
λmax

.

4.1.12 Conclusion and Discussions

We provided a theoretical analysis of the algorithmic difficulties that arise when optimizing the NCE
objective with an uninformative noise distribution, stemming from an ill-behaved loss landscape.
Our theoretical results are inspired by empirical observations in prior works [Rhodes et al., 2020,
Gao et al., 2020, Goodfellow et al., 2014] and provide the first formal explanation on the nature of
the optimization problems of NCE. Our negative results showed that even on the simple task of
Gaussian mean estimation, and even assuming access to the population gradient, gradient descent
and Newton’s method with standard step size choice still require an exponential number of steps to
reach a good solution.

We then proposed modifications to the NCE loss and optimization algorithm, whose combination re-
sults in the first provably polynomial convergence rate for NCE. The loss we propose, eNCE, can be
efficiently optimized using normalized gradient descent and empirically outperforms existing meth-
ods. We hope these theoretical results will help identify promising new directions in the search for
simple, effective, and practical improvements to noise-contrastive estimation.
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4.2 Accelerating feature learning using progressive knowledge dis-
tillation

As the cost of training state-of-the-art models grows rapidly [Hoffmann et al., 2022], there is increased
interest in using knowledge distillation [Hinton et al., 2015] to leverage existing capable models to
train new models more efficiently and effectively. Knowledge distillation is an effective technique to
train smaller vision [Jia et al., 2021, Touvron et al., 2021, Yu et al., 2022, Lin et al., 2023] and language
models [Sanh et al., 2019, Gunasekar et al., 2023, Touvron et al., 2023, Reid et al., 2024] that permit
faster inference with comparable performance. However, one curiously persistent phenomenon is
that a better teacher does not always yield a stronger student. Prior works [Mirzadeh et al., 2019, Jin
et al., 2019, Jafari et al., 2021, Harutyunyan et al., 2022, Anil et al., 2018] hypothesized that this is due
to a capability gap between the teacher and the student. As such, they proposed progressive distillation,
where the student is incrementally supervised by increasingly capable teachers. This technique has
yielded strong empirical performance. One recent example is the training of Gemini-1.5 Flash from
Gemini-1.5 Pro [Reid et al., 2024, Team et al., 2024]: Gemini-1.5 Flash achieves 95% of Gemini-1.5 Pro’s
performance on average and outperforms Gemini-1.0 Pro on 41 out of 50 text-based long-context
benchmarks, while being substantially smaller. However, little is understood about progressive dis-
tillation in terms of the optimization or generalization benefits, compared to directly learning from
the data or the final teacher checkpoint (i.e., one-shot distillation).

Most prior work hypothesizes that progressive distillation enables better generalization [Mirzadeh
et al., 2019, Jafari et al., 2021, Harutyunyan et al., 2022]. In contrast, we identify a novel mechanism
by which progressive distillation helps a student by accelerating its optimization (Figure 4.4). We define
optimization acceleration as achieving improved performance with fewer training steps or samples.
In this paper, we use fresh training samples in each training step; hence we use training steps and
samples interchangeably to measure the optimization speed.

We study two tasks where learning the right features is believed to be important and show that the
intermediate checkpoints provide signal towards these features. The first is learning sparse parity
(Definition 23), which is a commonly studied setting to understand the feature learning dynamics of
neural networks. The second is learning probabilistic context-free grammars (PCFGs), which we use
as a sandbox for capturing certain aspects of language modeling. Theory and extensive experiments
in these settings support the following claims.

1. Progressive distillation accelerates student learning. Our experiments in multiple settings demon-
strate that progressive distillation accelerates training compared to standard one-shot distillation
and learning from the data directly (Figure 4.4). More specifically, for sparse parity, progressive
distillation can train a smaller MLP (or Transformer) at the same speed as a larger MLP (or Trans-
former). For PCFGs, progressive distillation improves the accuracy of a smaller BERT model [De-
vlin et al., 2018b] at masked prediction. Finally, we verify our findings on more realistic setups of
training BERT on Wikipedia and Books dataset.

2. An implicit curriculum drives faster learning. We demonstrate theoretically and empirically that
acceleration comes from an implicit curriculum of easy-to-learn subtasks provided by intermediate
teacher checkpoints, which is not available from the final teacher checkpoint. For sparse parity,
the easy-to-learn subtasks provide supervision for the coordinates which constitute the support
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Figure 4.4: Progressive distillation accelerates training. Left: MLP on (100, 6)-sparse parity (Defi-
nition 23), with width-50k teachers and width-100 students. Progressive distillation checkpoints are
at 100k-step intervals, and one-shot checkpoint uses the final (20M-step) checkpoint. Middle: Trans-
former on (100, 6)-sparse parity, with 32-head teachers and 4-head students. Progressive distillation
checkpoints are at 10k-step intervals, and the one-shot checkpoint is at 250k steps. Right: Transform-
ers on PCFG (Section 4.2.3), with 32-head teachers and 8-head students using BERT-style masked
prediction. Progressive distillation uses 8 intermediate checkpoints.

of the sparse parity (Section 4.2.2). As a consequence, we show progressive distillation provably
improves the sample complexity for sparse parity over one-shot distillation or learning directly
from data (Theorem 22). For PCFGs, the implicit curriculum is defined in terms of learning features
that increasingly capture larger n-gram contexts. Our results also provide guidance on how to
select the intermediate teachers used during progressive distillation.

Related works9.

One persistent surprise in knowledge distillation is that stronger teachers do not always lead to
stronger students. Prior works have speculated that an overly large “teacher-student gap” is the
cause, and accordingly proposed to bridge this gap by introducing supervision of intermediate dif-
ficulty [Mirzadeh et al., 2019, Cho and Hariharan, 2019, Harutyunyan et al., 2022, Jafari et al., 2021].
Mirzadeh et al. [2019] used multi-step distillation involving models of intermediate sizes, and Shi
et al. [2021] proposed to directly inject teacher supervision into the student’s trajectory using an ap-
proximation of mirror descent. Most related to our work, Harutyunyan et al. [2022] analyzed distil-
lation for extremely wide networks and found it helpful to learn from the intermediate checkpoints
of the teacher, a strategy also adopted by Jin et al. [2019]. They speculated that this is because neural
networks learn progressively complex functions during training [Kalimeris et al., 2019]. In contrast
to their focus on the generalization ability of the student, we study the optimization dynamics of
distillation.

It is worth noting that there is also a rich body of work on understanding standard (one-shot) distil-
lation, mostly regarding regularization effects. In particular, Menon et al. [2021] shows that learning
from the teacher leads to a tighter generalization bound when the teacher is closer to the Bayes distri-
bution over the class labels. However, such Bayes perspective cannot explain the training acceleration
in the feature learning tasks considered in this work, whose the Bayes distributions are delta masses
and hence are the same as the one-hot labels themselves. Our results fill this gap by providing an
orthogonal view of implicit curriculum.

9We defer a detailed discussion of related work to Section 4.2.5.1.
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The benefit of curriculum on sparse parity has also been explored in Abbe et al. [2024], where the
curriculum also helps identify the support. The difference though is that their curriculum is defined
by explicitly altering the distribution over the inputs, whereas our curriculum shows up implicitly
in the teacher supervision. Moreover, our implicit curriculum emphasizes that a properly chosen
intermediate checkpoint, while having a worse accuracy than the final checkpoint, can lead to a better-
performing student. This can be seen as a plausible mechanism for weak-to-strong generalization [Burns
et al., 2023].

Outline. Section 4.2.1 describes the distillation strategies. Section 4.2.2 introduces the implicit cur-
riculum with a case study on sparse parity, presenting both empirical evidence and a provable benefit
in sample complexity. Section 4.2.3 continues the empirical investigations on PCFG, and extends the
observations to BERT’s training on Wikipedia and Books dataset. Finally, Section 4.2.4 discusses open
directions.

4.2.1 Preliminaries

We now outline the distillation strategies considered in this paper and their empirical instantiation.
For ease of exposition, we discuss one-dimensional label classification tasks here and generalize to
sequence-to-sequence functions in Section 4.2.3. Denote the teacher and student models operating
on input domain X as fT : X → RC and fS : X → RC, respectively. The outputs of a model f are
logits that are transformed into a probability distribution over C classes using a softmax function with
temperature τ, denoted as p(x; τ) := softmax( f (x)/τ). We will use pT , pS to denote the probability
distributions of the teacher and the student, and will omit the subscript to denote a generic model.
When τ = 1, we omit τ from the notation for brevity. Following Zheng and Yang [2024], we set τ = 1
for the student and vary the temperature of the teacher.

We compare two loss functions: ℓ, where the student fS learns only from ground-truth labels , and
ℓD , where the student fS is supervised only with the logits of some teacher fT .10

ℓ(x, y; fS ) = KL(ey∥pS (x)), (4.90)

ℓD(x; fS , fT ) = KL(pT (x; τ)∥pS (x)), (4.91)

where ey is a one-hot vector whose yth entry is 1. We consider two strategies for choosing the teacher.
The first is one-shot distillation, where the student learns from a fixed fT throughout the training, and
the teacher is chosen as the final converged checkpoint. The second is progressive distillation, where
the student learns from multiple intermediate checkpoints of the teacher’s training run:

Definition 21 ((CT ,D)-progressive distillation). Given a set of teacher checkpoints CT = { fTi} and a set
of training durations D, the student is trained with the logits of teacher checkpoint fTi for training length Di

with i ∈ [|CT |] := {1, · · · , |CT |}.

To simplify the presentation, the main paper tests a specific type of progressive distillation schemes,
where CT contains N equally-spaced checkpoints and the student is trained on each one for T steps:

10We note that prior papers generally use a combination of these objectives, but we use supervision from one source in
order to isolate its effects on distillation.
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Definition 22 ((N, T)-progressive distillation). CT contains N − 1 equally-spaced intermediate teacher
checkpoints and the final teacher checkpoint. The student is trained with each checkpoint for T training steps.
After NT steps, the student is trained with the final teacher checkpoint.

To study the effect of each teacher checkpoint, we will also consider an extreme version of progressive
distillation with N = 2, where the student uses one intermediate teacher checkpoint.

Choice of temperature. We set τ = 10−4 for sparse parity and PCFG experiments (Section 4.2.3)
where the vocabulary size is smaller than 5, and τ = 10−20 for natural language experiments (Sec-
tion 4.2.3.2) whose vocabulary size is 30k.11 Using such a small temperature makes the teacher’s out-
puts close to one-hot labels. This removes potential regularization effects due to the softness of the
labels [Yuan et al., 2020] which would otherwise be a confounding factor. Moreover, the supervision
with nearly one-hot labels is more representative of the setting where the student learns directly from
the teacher’s generations instead of the logits. This method, often described as generating synthetic
data in the language modeling setting, has generally yielded small yet highly performant students
[Gunasekar et al., 2023, Liu et al., 2024]. For one-shot distillation, we report the best-performing
temperature among τ = 1, 10−4 in the main paper and defer other results to Section 4.2.8.7.

4.2.2 The implicit curriculum: a case study with sparse parity

To elucidate the mechanism by which distillation accelerates training, we first focus on the well-
studied task of learning sparse parity.12 Sparse parity is a commonly used sandbox for understanding
neural network optimization in the presence of feature learning [Barak et al., 2022b, Bhattamishra
et al., 2022, Morwani et al., 2024, Edelman et al., 2023, Abbe et al., 2024].

Definition 23 ((d, k)-sparse parity task). Let S ⊂ [d] denote a fixed set of coordinates, with |S| = k and
k < d. Then, the sparse parity task is defined for any input x ∈ {±1}d, whose label is computed as y = 1 if
∏i∈S xi > 0 and 2 otherwise.

We train the teacher and student models using 2-label classification, where fT and fS return logits
in R2. The teacher and the student have the same number of layers but different sizes. We vary the
model width for MLP, and vary the number of attention heads for Transformer, with a fixed per-head
dimension. These choices not only affect the parameter counts, but also govern the learning speed13.

Why can larger models learn faster? A natural way to learn sparse parity with gradient descent
involves first identifying the support S and subsequently computing the product of variables in the
support (i.e., ∏i∈S xi). Empirically, the two stages of learning manifest as a long plateau period in the
model’s accuracy, followed by a sharp phase transition (Figure 4.4, left and middle). The search for
the support is what makes learning problem difficult, as it depends on the input dimension d rather
than the support size [Abbe et al., 2023b, Barak et al., 2022b]. The benefit of increasing the width or
the number of heads comes from providing more “parallel search queries.” For MLP, prior work has

11Figure 4.17 provides a comparison in temperature choices for sparse parity learning.
12We also experiment with a hierarchical generalization of sparse parity, which is deferred to Section 4.2.7.3.
13In terms of the number of samples or the number of training steps, which coincide in our experiments as we use freshly

sampled batches.
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shown that increasing the width accelerates training [Edelman et al., 2023], which we also observe
in Figure 4.10 (left) in appendix. For Transformers though, we find that increasing the number of
attention heads is the most effective for improving the convergence speed, as opposed to increasing
the per-head dimension or the MLP width. A detailed comparison is provided in Section 4.2.7.2
(Figure 4.13). Given this finding, we will vary the number of attention heads between the teacher
and the student, while keeping the per-head dimension fixed. The number of heads hence directly
controls the parameter count. This choice also aligns with the practice in open-sourced models such
as the Llama series [Touvron et al., 2023].

In the following, we first empirically verify that carefully chosen intermediate teacher checkpoints
constitute an implicit curriculum for the student to learn from. Then, we show that this curriculum
provably improves the speed of learning in the student by improving its training sample efficiency.

4.2.2.1 Accelerating learning with the implicit degree curriculum

The difficulty of the search problem suggests that we can accelerate student learning by providing di-
rect supervision for what the support is [Abbe et al., 2023b]. We show that supplying the intermediate
signal from a bigger teacher model accelerates the search process for the smaller model, as described
by the following set of results.14

(R1) Intermediate teacher checkpoints constitute an implicit degree curriculum. We provide
empirical evidence that the supervision from intermediate teacher checkpoints serves as an implicit
curriculum supplying strong signals for certain degree-1 monomials, which require fewer samples
to learn. In Figure 4.5, we report the correlation between degree-1 monomials and the prediction of
the teacher logits at various checkpoints. The correlation for each monomial xj, j ∈ [d] is computed
as |Ex,y([pT (x)]1 · xj)| at each checkpoint fT . Here [pT (x)]1 refers to the first output dimension of
fT , which corresponds to p(y = 1) = p(∏i∈S xi > 0) = 1 − p(y = 2) (recall Definition 23). We
take the absolute value as we are only concerned with the magnitude of the correlation. Importantly,
these strong correlations emerge when the teacher learns the sparse parity task (i.e., during the phase
transition) but diminish with continued training.

Note that the monomials need not be strictly degree-1. While our theory (Section 4.2.2.2) will only
focus on degree-1 monomials for the sake of mathematical analysis, low-degree polynomials can still
provide acceleration, which we also observe in practice (see Figure 4.12 in the Appendix for such an
example). This transient low-degree supervision, available only through intermediate teacher check-
points, may explain the superior performance of progressive distillation over one-shot distillation
(Figure 4.4). We will confirm the provable sample complexity benefit of this implicit low degree cur-
riculum in Section 4.2.2.2. The importance of the implicit curriculum is further strengthened by the
superior performance of (2, T)-progressive distillation:

(R2) Progressive distillation with a single intermediate checkpoint can outperform one-shot dis-
tillation. We consider the extreme version of progressive distillation where only a single interme-
diate checkpoint is used (in addition to the final checkpoint). Figure 4.5 shows the result for (2, 1M)-
progressive distillation. We consider 3 candidates for the intermediate teacher checkpoint, occurring

14We will mark our results with (Ri) throughout the paper for easy reference.
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Figure 4.5: Implicit curriculum for (100, 6)-sparse parity. We compare 3 candidate intermediate
checkpoints, labeled as 1⃝, 2⃝, 3⃝, corresponding to 9.7M, 10.2M, and 10.8M steps, or the beginning,
middle, and end of the teacher’s phase transition. Left: Teacher’s accuracy throughout training.
Middle: During the phase transition, fT is much more strongly correlated with in-support variables
(x1, · · · , x6 in this case) than with off-support variables. Right: Only candidate 2⃝ (i.e., during
phase transition) enables (2, 1M)-progressive distillation to reach 100% accuracy. We use width-50k
teachers and width-100 students; Figure 4.11 shows similar results for width-1000 students.

respectively at the beginning, middle or the end of the teacher’s phase transition. Our result demon-
strates that the checkpoint selection is crucial, where only the checkpoint during the phase transition
is useful in accelerating training.15 This provides further evidence that the implicit degree curriculum
is the key to faster training via progressive distillation.

More complex tasks may require more intermediate checkpoints, which we discuss in more depth
in Section 4.2.7.3. Nevertheless, we find that progressive distillation can be run efficiently and effec-
tively across tasks, and a small number of intermediate teacher checkpoints often suffice to accelerate
training provided that the checkpoints are properly selected.

4.2.2.2 The low-degree curriculum reduces sample complexity

We now formalize the benefits of progressive distillation for (d, k)-sparse parity in terms of sample
complexity. For the sake of mathematical analysis, we take the student fS and the teacher fT models
to be 1-hidden-layer MLPs with ReLU activations and scalar outputs. Further, the labels y are given
as ±1, where 1 (or −1) corresponds to the class dimension 1 (or 2) in Definition 23.

Following previous works [Barak et al., 2022b, Abbe et al., 2023b, Edelman et al., 2023], we analyze a
simplified two-stage training procedure and train the model using the hinge loss: Lα(x, y; fS , fT ) =

α max(0, 1− fS (x)y) + (1− α)max(0, 1− fS (x) fT (x)).

Let’s first recall the hardness of learning sparse parity.16 For simplicity, we consider the case of
MLPs of width Õ(2k) trained using online SGD. When learning from data alone, statistical query
(SQ, Kearns [1998]) lower bound shows that learning the support for a (d, k)-sparse parity requires
Ω(dk−1) samples [Abbe et al., 2023b, Edelman et al., 2023]. We will show that although this lower
bound also applies to one-shot distillation from a strong teacher, it can be circumvented when learn-
ing from the implicit low-degree curriculum identified in the previous section.

15We show similar results for width-1000 students (Figure 4.11) and transformers (Figure 4.16).
16A more detailed discussion is provided in Section 4.2.5.1.
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Specifically, we compare the sample complexity of one-shot distillation and (2, T)-progressive distil-
lation (Section 4.2.1). Both strategies use a well-trained final checkpoint with an error of O(ϵ) error
for an arbitrarily small ϵ > 0.

Progressive distillation additionally uses the teacher’s intermediate checkpoint after its first phase
of training, where we can provably show its predictions to have correlations at least Ω(1/k) to the
monomials xi, ∀i ∈ S. That is, progressive distillation first learns from the intermediate checkpoint
and then switches to the final checkpoint, whereas one-shot distillation learns directly from the final
checkpoint.

(R3) Progressive distillation reduces sample complexity. We formally demonstrate the sample
complexity benefit of progressive distillation.

Theorem 22 (Informal version of Theorem 23). Consider learning (d, k)-sparse parity with a student model
of size m̃ = Θ̃(2k), where ·̃ hides polylog factors in d, k. Suppose the teacher has a loss O(ϵ) for some small
ϵ > 0. Then, the total sample complexity needed for the student to reach ϵ-loss using progressive distillation
with 2 checkpoints is Θ̃(2kd2ϵ−2 + k3). However, one-shot distillation requires at least Ω(dk−1, ϵ−2) samples.

Proof sketch. We track the training behavior of the teacher model during its two-phase training. We
show that at the end of the first phase, the teacher’s predictions will have Ω(1/k) correlations to
degree-1 monomials xi, ∀i ∈ S. In contrast, the correlations are smaller for degree-1 monomials
xi, ∀i /∈ S. Hence, the teacher’s predictions can be written as ∑i∈S cixi + ∑i/∈S cixi, plus additional
higher degree odd polynomials which can be controlled, with |ci| ≥ Ω(1/k) for i ∈ S, and |ci| =
o(1/kd), if i /∈ S.

When training on the predictions from this intermediate teacher checkpoints, the correlation gap
between in- and off-support degree-1 monomials will be reflected in the gradients of the student’s
weights. Namely, there is a Ω(1/k) gap between the support and non-support coordinates in the
weight gradients. This gap allows the coordinates i ∈ S in the student’s weights to grow quickly with
only O(k2 log(m̃)) samples.

On the other hand, for a teacher that has loss O(ϵ), a similar argument can show that the separa-
tion gap between the correlations of the teacher’s predictions to degree-1 monomials on support and
outside support can be at most O(ϵ). So, harnessing this gap will require a sample size of at least
Ω(ϵ−2) by concentration inequalities. Learning directly from the labels will require Ω(dk−1) samples
from the SQ lower bound as discussed above. This gives the sample complexity differences between
one-shot and progressive distillation. The full proof is provided in Section 4.2.6.

Remark. One gap between our theory and experiments is that our analysis applies to large-batch SGD
with small gradient noise, whereas the experiments use online SGD with batch size 1. Bridging this
gap, such as by adapting the analyses in Abbe et al. [2023b] on Gaussian data, is an interesting future
direction.
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Figure 4.6: An example of a
PCFG tree T(x) that generates
x =“The cat ran away”. “The
cat” is an example of level-2
span, and “cat” is as a bound-
ary token for the spans of both
the level-1 non-terminal Noun
and the level-2 non-terminal
Noun Phrase.

4.2.3 Implicit curriculum with PCFGs and Natural language

In this section, we empirically show that an implicit curriculum emerges generally, both when learn-
ing on probabilistic context-free grammars (PCFGs) and when performing natural language modeling
tasks on the Wikipedia and Books datasets. We focus on BERT models [Devlin et al., 2018b]17, and
discuss experiments on GPT-2 [Radford et al., 2019b] in Section 4.2.9.

The masked prediction task. Our experiments will be based on BERT models trained to perform
masked prediction, which requires filling in masked-out tokens in an input sequence and excels at
feature learning in natural languages [Hewitt and Manning, 2019a, Tenney et al., 2019, Li et al., 2022a].

Definition 24 (Masked prediction task with mask rate p). Let v denote the vocabulary that contains a
special token C, and let h denote an arbitrary sequence length. Given a sequence x ∈ vh, sample a set of masked
positions M ∈ [h] following P(i ∈ M) = p, ∀i ∈ [h]. Create a masked input x\M from x by replacing
tokens at positions inM with C, a random token from X , or kept unchanged with probabilities 80%, 10%, 10%
respectively. Then, the masked prediction objective is the cross-entropy of the model’s predictions at positions
i ∈ M on input x\M.

Since we are performing sequence-to-sequence modeling, we need to generalize the definition of the
teacher fT and student fS from Section 4.2.1 accordingly, denoted as fT : vh → Rh×C and fS : vh →
Rh×C. We will use p(i)T (x; τ) := softmax([ fT (x)]i/τ) to denote the teacher’s output distribution on

the ith position; similarly for p(i)S . As before, we omit τ when τ = 1. We use the following loss
functions for the masked prediction task (Definition 24):

ℓ(x; fS ) = EM
1
|M| ∑

i∈M
KL(exi∥p(i)S (x\M)), (4.92)

ℓD(x; fS , fT ) = EM
1
|M| ∑

i∈M
KL(p(i)T (x\M; τ)∥p(i)S (x\M)), (4.93)

where ey is a one-hot vector whose yth entry is 1.

We train BERT models with ℓ, ℓD and report the average top-1 accuracy on the masked tokens. As
discussed in Section 4.2.2.1, the teacher and student have the same depth (4 layers) but differ in the
number of attention heads, with 32 heads for the teacher and 8 heads for the student. Each attention

17See Section 4.2.8.4.1 for a primer on BERT.
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head has dimension 8, so the teacher has width 256 and the student has width 64. All hyperparameter
details are in Section 4.2.8.5.

4.2.3.1 n-gram curriculum in PCFGs

We first consider probabilistic context free grammars (PCFGs), which are commonly used to em-
ulate the structure of natural language and thus provide mechanistic insights into language mod-
els [Zhao et al., 2023, Allen-Zhu and Li, 2023a]. A PCFG generates sentences following a tree struc-
ture; Figure 4.6 shows an example for the sentence “The cat ran away.” More precisely, a PCFG
G = (N ,R,P , v) is defined by a set of non-terminalsN , rulesR over the non-terminals, a probability
distribution P over R, and a vocabulary (terminals) v. A sentence x is associated with a generation
tree T(x), whose intermediate nodes are non-terminals in N , leaf nodes are terminals in v, and edges
are defined by rules sampled from R according to P . A formal definition of PCFG is provided in
Section 4.2.8.1. Our choices of PCFGs are taken from Allen-Zhu and Li [2023a], where all leaves in the
same tree have the same distance to the root. Experiments in the main paper are based on the PCFG
cfg3b generated by depth-7 trees, and results on other PCFGs are deferred to Section 4.2.8.3.

4.2.3.1.1 Progress measures of implicit curriculum

Unlike our experiments on parity, what constitutes as feature is less straightforward for PCFG. We
will use three progress measures to quantify the implicit curriculum for masked language modeling
on PCFGs, based on n-gram statistics and non-terminal prediction.

Measures that use n-gram statistics will measure the dependence of the model’s predictions on tokens
in the neighboring contexts, defined as follows:

Definition 25 (n-gram neighboring context). For a h-length sentence x ∈ vh and for i ∈ [h], we define the
n-gram neighboring context around the ith token as the set of tokens at positions within (n − 1)/2 distance
from i, denote as n-gram(i) := {j : max(i− ⌈(n− 1)/2⌉, 0) ≤ j ≤ min(i + ⌊(n− 1)/2⌋, h)}.

In the example of Figure 4.6, for the word “cat”, its 3-gram neighboring context consists of words
“The” and “ran”, and its 5-gram neighboring context additionally includes the word “away.” The
choice of n-grams is inspired by results in Zhao et al. [2023], which show that a BERT model can solve
masked prediction by implementing a dynamic programming algorithm that builds hierarchically
on increasingly larger n-gram neighboring context spans (Definition 25). A model that primarily
uses short n-gram neighboring context will be largely affected if the tokens within the context are
perturbed during evaluation. This motivates us to consider two n-gram based measures.

Measure 1: Robustness to removing n-gram context. Our first progress measure of feature learning
checks how the model’s prediction changes when the n-gram context is present or absent. For each
masked position i, we measure the total variation (TV) distance between the probability distributions
when masking out only the current token, and when masking out all the tokens in n-gram(i), i.e.
the neighboring n-gram context centered at i. Recall that x\M denotes a masked version of x with
masked setM (Definition 24), and that p(i) denotes a model’s output probability distribution at the
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Figure 4.7: BERT on the PCFG cfg3b. Left: A 32-head teacher’s loss exhibits three distinct phases:
1⃝ an initial phase with little change, 2⃝ a middle phase with a rapid drop, and 3⃝ a final plateau-

ing phase until the end of training. The triangles mark the selected checkpoints for progressive
distillation, with the first teacher checkpoint (denoted by C1) located at the middle of phase 2⃝.
Middle: Lrobust across training, which peaks at C1. The model gets more robust to shorter n-gram
perturbation as training progresses. The median is taken over the input sequences. Right: A 8-head
student’s final accuracy with (2, T)-progressive distillation after 4000 total training steps. The x-axis
marks the choice of the first teacher checkpoint. T is grid-searched over {500, 1000, 2000}. The best
performance is obtained by choosing C1. Although results in the plots are for a single training run of
the teacher, similar behaviors occur robustly across random seeds.

ith position. Then, our first measure is defined as

Lrobust( f , x, i, n) = TV(p(i)(x\{i}), p(i)(x\n-gram(i))). (4.94)

We report median of Lrobust( f , x, i, n) over randomly sampled x and i 18. A larger Lrobust( f , x, i, n)
indicates that the model heavily depends on neighboring n-gram context tokens for the masked pre-
diction.

Measure 2: Closeness between full and n-gram predictions. Our second progress measure exam-
ines the change in predictions when the model is given the full sequence versus only a local n-gram
window:

Lclose( f , x, i, n) = TV(p(i)(x\{i}), p(i)(xn-gram(i)\{i})), (4.95)

where xn-gram(i)\{i} denotes the n-gram context centered at position i, minus the position i itself. We
report median of Lclose( f , x, i, n) over randomly sampled x and i. A large Lclose( f , x, i, n) indicates
that the model utilizes contexts outside a n-gram window in its predictions.

Measure 3: Non-terminal prediction. Finally, we also measure how well the model outputs encode
the features of the underlying PCFG by checking the accuracy at predicting non-terminals [Allen-Zhu
and Li, 2023b]. The predictions are given by a linear classifier on top of the output embeddings.

Definition 26 (PCFG non-terminal prediction task). Define the span of a non-terminal n as the set of
terminals within the subtree rooted at n, denoted by span(n). The (right) boundary of span(n) refers to the
rightmost position within span(n). We say a non-terminal is of level i if it is at distance i from the root. Then,
the level-i non-terminal prediction task aims to predict n(i) at the boundary of n(i).

As an example, in Figure 4.6, the level-2 non-terminal prediction task aims to predict the non-terminals

18Our observations stay the same for other percentiles.
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Noun Phrase and Verb Phrase at words “cat” and “away” respectively. More details are provided in
Section 4.2.8.2.

4.2.3.1.2 Empirical verification of the n-gram curriculum

Similar to Section 4.2.2.1, we will start with examining the training dynamics of the teacher model.
We observe a phase transition period akin to that of sparse parity, during which we identify an in-
flection point concerning Lrobust and Lclose. This inflection point proves to be a crucial intermediate
checkpoint. We then demonstrate that progressive distillation improves feature learning in the stu-
dent model, substantiated by the three measures defined in Section 4.2.3.1.1.

For training dynamics, we observe 3 distinct phases of training in the teacher’s loss (Figure 4.7 left):
1) an initial phase where the loss doesn’t change much for the first 5% of training; 2) a rapid loss
drop phase in the next ≈ 20% of training; and 3) a final phase of slow loss drop till end of training.
In particular, the rapid loss drop phase is reminiscent of the phase transition in sparse parity (Sec-
tion 4.2.2). Moreover, we identify an inflection point (marked by C1) during the second phase: before
the inflection point, the robust loss Lrobust increases (Figure 4.7 middle), and the loss Lclose stays high
(Figure 4.25 left); after the inflection point, both Lrobust and Lclose start to drop rapidly, suggesting that
the model learns to utilize longer contexts as opposed to short neighboring n-grams.

(R4) The inflection point is best for (2, T)-progressive distillation. We study the importance of
each teacher checkpoint by comparing the performance of (2, T)-progressive distillation, where the
student learns from a single intermediate checkpoint in addition to the final checkpoint. The value of
T is grid-searched (more details in Section 4.2.8.5). For the choice of the intermediate checkpoint, Fig-
ure 4.7 shows that the best intermediate checkpoint is the one at the inflection point (at 1000 training
steps), which we denote as C1. Note that at the inflection point, the teacher has the highest reliance on
shorter n-grams (e.g. for n = 3), which are analogous to the low-degree monomials in Section 4.2.2
and serves as intermediate tasks that are likely easier to learn. Hence, C1 being the optimal checkpoint
choice further strengthens our hypothesis that an implicit curriculum is the key to the acceleration
enabled by progressive distillation.

Following (R4), we will choose the checkpoints for progressive distillation at training steps that are
multiples of that of C1, i.e. at steps {i× 103}8

i=1. As shown in Figure 4.4 (right), progressive distillation
helps the student learn faster than both one-shot distillation and cross entropy training. Furthermore,
progressive distillation leads to improved feature learning.

(R5) Progressive distillation improves feature learning on PCFG. Progressive distillation improves
over one-shot or no distillation over all 3 measures mentioned in Section 4.2.3.1.1. As shown in
Figure 4.8, progressive distillation makes the student better utilize long contexts rather than local
n-gram windows, evidenced by a lower Lrobust and Lclose. The student can also better predict the
non-terminals, suggesting a better structural learning of the underlying PCFG.
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Figure 4.8: Comparisons on a 8-attention head BERT model. (Left) Lclose for different n-grams.
Progressive distillation has a lower Lclose with longer n-gram context. (Middle) Lrobust for different
n-grams. Progressive distillation has a lower Lrobust for all n-gram contexts. (Right) Probe perfor-
mance to predict the non-terminals (NTs) (Definition 26). Progressive distilled student performs
better when probed for higher level non-terminals in its contextual embeddings.

4.2.3.2 Beyond synthetic setups: implicit curriculum in natural languages

We conduct experiments on BERT training [Devlin et al., 2018b] on Wikipedia and Books (details in
Section 4.2.10). The teacher and student both have 12 layers, with 12 and 4 attention heads per-layer
respectively. Each attention head is of dimension 64, corresponding to a width-768 teacher and a
width-256 student. Similar to PCFG, the teacher’s loss exhibits 3 distinct phases (Figure 4.9 left), with
an inflection point marking the change in Lrobust (Figure 4.9 middle). The inflection point can hence
provide an implicit curriculum towards easier-to-learn local n-grams. Finally, progressive distillation
helps the student achieve better accuracy at masked language prediction (Figure 4.9 right).

Connections to related works. Our results align with those of Chen et al. [2023], who observed a phase
transition in loss when training BERT on real-world language data corresponding to the model learn-
ing syntax rules of language. Comparable findings were also reported in a concurrent work on ma-
trix completion [Gopalani et al., 2024]. For auto-regressive models, prior work has discussed the
emergence of n-gram induction heads which indicate phases in which the model learns to perform
in-context learning [Akyürek et al., 2024, Quirke et al., 2023, Olsson et al., 2022]. We observe simi-
lar behavior for PCFGs and Wikipedia datasets and quantify the phase change using n-gram context
dependence. We take a step further and leverage the phase transitions to accelerate the training of a
smaller student model.

4.2.4 Discussions

We have shown that progressive distillation can improve the student’s feature learning via an implicit
curriculum provided by the intermediate checkpoints. We discuss limitations and potential future di-
rections below, and provide preliminary results for some of them in the appendix (see Section 4.2.5).

Impact of temperature. The teacher temperature τ is an important hyperparameter in knowledge
distillation, where varying τ can sometimes lead to a greater performance gain than changing the
distillation method [Touvron et al., 2021, Harutyunyan et al., 2022]. Our results are consistent with
these prior findings. However, our experiments use limited temperature choices, i.e. the default
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Figure 4.9: BERT on Wikipedia and Books. Left to right: (a) Similar to our experiments on PCFG
(Figure 4.7), we observe three distinct phases in the loss behavior of 12-head teacher. The rapid loss
drop phase signifies a transition phase for the model. The triangles mark the selected checkpoints
for progressive distillation, with the first teacher checkpoint roughly picked in the middle of the
second phase (C1). (b) We observe Lrobust peaks at C1, and the model gets more robust to shorter
n-gram context masking, as training progresses. (c) A 4-head student achieves better top-1 accuracy
on masked prediction objective with progressive distillation.

(τ = 1.0) and low temperature (τ = 10−4 or 10−20). A more precise understanding of temperature,
especially its impact on optimization, is an interesting direction for future work.

Distillation via generations. Another related distillation setting is training smaller (language) mod-
els using the generations of larger models, which has been shown to greatly improve various abili-
ties [Liu et al., 2024, Yue et al., 2023, Yu et al., 2023, Luo et al., 2023, Chaudhary, 2023, Taori et al., 2023,
Zheng et al., 2023b, Liu and Yao, 2024, Agarwal et al., 2024, Mitra et al., 2024]. There are two differ-
ences between our experiments and these generation-based approaches. First, the supervision in our
experiments are distributions (over classes or the vocabulary), while generations are samples from
distributions. Our experiments with a low or zero temperature provide positive evidence towards
bridging this gap, but the precise effect remains to be explored. More importantly, given an input,
there is a unique supervision in our settings, whereas there could be multiple generations given by
multiple steps of unrolling of the teacher. Extending our framework to these generative setting will
be an important direction for future work.

4.2.5 Overview of the appendix

The appendix provides omitted proofs and additional empirical explorations, which we outline be-
low.

Omitted proofs We will start with the proof of Theorem 22 in Section 4.2.6. The main idea is to
show that the teacher can develop stronger correlation to in-support variables than to off-support
variables, which can then be utilized by the students to reduce sample complexity.

Additional empirical results on sparse parity We present more experiments with MLP (Section 4.2.7.1)
and Transformers (Section 4.2.7.2), as well as results on learning a hierarchical extension of sparse par-
ity (Section 4.2.7.3). For Transformer experiments, we study how scaling along different dimensions
of the architecture, such as MLP width and number of attention heads, affects the search of support
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for sparse parity. We discuss the effect of temperature in Figure 4.17. For the hierarchical extension
of sparse parity, we show that the implicit curriculum occurs in different phases, which suggests a
natural choice for number of intermediate checkpoints used in progressive distillation.

Masked prediction on PCFGs In Section 4.2.8.4, we provide a formal definition of probablistic
context-free grammar (PCFG) and introduce the PCFGs that we use from Allen-Zhu and Li [2023b].
We then provide details of our experimental setup and conduct extensive ablation studies on train-
ing a BERT model using the masked prediction task with PCFG data. We experiment with variants
of progressive distillation and confirm that they lead to improved performance on PCFGs, as mea-
sured by accuracy and the three progress measures introduced in Section 4.2.3.1.1. Furthermore, we
investigate the effect of temperature, masking rate, and PCFG variation in Section 4.2.8.7.

Next-token prediction on PCFGs In Section 4.2.9, we conduct next-token prediction experiments
using GPT-2 models on PCFG “cfg3f”, i.e. the most complex PCFG in Allen-Zhu and Li [2023a]. We
characterize conditions under which progressive distillation provides significant gains.

4.2.5.1 Additional related works

Understanding knowledge distillation There have been many works dedicated to understanding
the effectiveness of knowledge distillation [Hinton et al., 2015, Mobahi et al., 2020, Menon et al., 2021,
Dao et al., 2021, Nagarajan et al., 2024, Pareek et al., 2024]. For classification tasks, which are the focus
of most knowledge distillation works, one intuitive explanation is that the teacher output provides a
distribution over the class labels, which is more informative than the one-hot data labels. Menon et al.
[2021] formalizes this intuition and shows that a teacher that provides the Bayes class probabilities
leads to a tighter generalization gap. Motivated by their result and the observation that a high-
accuracy teacher can be poorly calibrated, Ren et al. [2022] proposes to supervise the student using a
moving average of the teacher across the training trajectory. While Ren et al. [2022] uses information
of trajectory, their student learns from a fixed target throughout training, which is a major difference
from progressive distillation. The teacher supervision also provides regularization benefits, such as
controlling the bias-variance tradeoff [Zhou et al., 2020], encouraging sparsity [Mobahi et al., 2020],
or as a form of label smoothing [Yuan et al., 2020]. Finally, prior work by Mobahi et al. [2020] and
concurrent work by Pareek et al. [2024] have studied multi-step distillation, which also uses multiple
teachers throughout training. However, unlike the progressive distillation setting considered in this
work, they study self-distillation where the student in the previous distillation round becomes the
teacher in the next round, and the results are for regression rather than classification.

Learning sparse parity There are well established hardness results for learning sparse parity. When
given access to labels only, learning (d, k)-sparse parity with gradients from finite samples is an ex-
ample of learning with statistical queries (SQ) [Kearns, 1998], for which a Ω(dk) SQ computational
lower bound applies [Edelman et al., 2023]. When learning with a fully-connected network (MLP),
these parallel queries correspond to a combination of model width (i.e. neurons) and training steps,
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19 and hence the SQ lower bound implies a fundamental trade-off between the width, the number
of training steps, and the number of samples [Edelman et al., 2023]. In particular, given the same
number of training steps, narrower models require more samples to learn parity.

Feature learning In this work, we use feature learning to refer to a learning process that recovers
a low-dimensional “feature” which helps reduce sample complexity. Sparse parity is a task that can
benefit from feature learning, where the feature is the support. For the special case of k = 2, Glasgow
[2024] shows that feature learning using a jointly-optimized 2-layer neural network can reduce the
sample complexity from Θ(d2) (corresponding to learning with NTK [Wei et al., 2019, Ghorbani et al.,
2019]) to O(dpoly log d). Sparse parity is an example of a single-/multi-index function, where the
label is determined by a 1-dimensional/low-dimensional projection of the data. These functions have
also been studied on Gaussian inputs [Nichani et al., 2022, Abbe et al., 2022, 2023b, Damian et al.,
2024a,b] and have known separation between neural networks [Abbe et al., 2022, 2023b] and non-
feature-learning kernel methods [Hsu, 2021].

Benefit of width in optimization Prior work has shown that width plays an important role in the
optimization difficulty, where wider networks are more optimized easily. Du and Hu [2019] shows
that sufficient width is necessary for the optimization on deep linear networks. Multiple works show
that overparameterization leads to favorable optimization landscape, such as fewer sub-optimal lo-
cal minima [Soudry and Hoffer, 2017, Soltanolkotabi et al., 2018] or guaranteed convergence at the
limit [Chizat and Bach, 2018, 2020]. Wider models also exhibit faster decaying loss empirically [Yang
et al., 2022, Bordelon et al., 2024a]. Most related to our focus on learning sparse parity, Edelman et al.
[2023] relates the width to the number of parallel statistical queries (SQs). Combined with sparse par-
ity’s SQ lower bound, their result implies a trade-off where a larger width requires fewer optimization
steps. Our work also acknowledges the benefit of width in optimization, but takes a different per-
spective by demonstrating that a smaller student can inherit the optimization benefit when learning
from a higher-width teacher. Moreover, we consider the number of attention heads as another scal-
ing dimension for Transformers, where the intuition is similar to having more “paths” [Dong et al.,
2021]. There have been results on studying the limiting output distribution as the number of attention
heads goes to infinity [Hron et al., 2020, Bordelon et al., 2024b], though to our knowledge, there are
no quantitative descriptions for finite number of heads.

4.2.6 Proofs of results in Section 4.2.2.2

We provide the formal version of Theorem 22 in this section.

Recall that the teacher model is defined as

fT (x) =
m

∑
i=1

aiσ (⟨wi, x⟩+ bi) .

19More precisely, it is a combination of width and steps, as well as the batch size which affects the precision of the stochastic
gradient. We omit the impact of batch size here since we keep the batch size unchanged in the experiments.
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Algorithm 2: 2-stage training
Require: Stage lengths: T1, T2, learning rates η1, η2, batch size B1, B2, weight decay λ1, λ2.

for t ∈ [0, T1] and all i ∈ [m] do
Sample B1-samples {(x(j), y(j))}B1

j=1.

Update the weights wi as w(t)
i ← w

(t−1)
i − η1E

(x,y)∈{(x(j),y(j))}B1
j=1
∇wi

(
Lθ(t)(x, y) + λ1 ∥wi∥2

)
.

end for
for t ∈ [0, T2] and all i ∈ [m] do

Sample B2-samples {(x(j), y(j))}B2
j=1.

Update the outer layer weights ai as
a(t+T1)

i ← a(t+T1−1)
i − η2E

(x,y)∈{(x(i),y(i))}B2
j=1
∇ai

(
L

θ(t+T1−1)(x, y) + λ2a2
i

)
.

end for

The student model is similarly defined as

fS (x) =
m̃

∑
i=1

ãiσ
(
⟨w̃i, x⟩+ b̃i

)
.

Setup We assume the data points are sampled at random from U ({±1}d). Without loss of general-
ity, let the target k-sparse parity function be y = x1x2 · · · xk. Symmetric initialization: Following [Barak
et al., 2022b], we use the following symmetric initialization: for each 1 ≤ i ≤ m/2,

wi ∼ U ({±1}d), bi ∼ U ({−1 + k−1, · · · , 1− k−1}), ai ∼ U ({±1/m}),
wi+m/2 = wi, bi+m/2 = bi, ai+m/2 = −ai.

Two-stage training: Following prior work [Barak et al., 2022b, Abbe et al., 2023b, 2024], we adopt a
two-stage batch gradient descent training, where we first train the first-layer weights {w1, · · · ,wm},
keeping the output weights {ai}m

i=1 fixed. In the second stage of training, we fit the output weights
{ai}m

i=1 while keeping others fixed. We keep the biases {bi}m
i=1 fixed throughout training. Similar

strategy for training the student model as well. The teacher is trained with hinge loss, given by
ℓ(x, y) = max(0, 1− fT (x)y). The student is trained with ℓD(x, y; fS , fT ) = max(0, 1− fS (x) fT (x)).

The training process is summarized in Algorithm 2.

Sample complexity benefits with progressive distillation for the student Our result is that pro-
gressive distillation provably reduces the sample complexity compared to (one-shot) distillation or
no distillation. The key is to establish a separation between the correlations with in-support and off-
support variables, which happens with high probability as formalized in Corollary 3. Under such
event, we show:

Theorem 23 (Sample complexity benefits with progressive distillation). Suppose the teacher model has
been trained with 2-stage training in Algorithm 2, which satisfies the conditions in Corollary 3 at the end of
first stage and achieves loss O(d−c) for some constant c ≥ 1 at the end of the second stage. Suppose we train a
student model fS of size m̃ = Θ̃(2kk) using the following two strategies:
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Corollary 3: conditions satisfied by the teacher after first phase

W.h.p. the output of the teacher after the first phase satisfies the following condition for all i.∣∣∣Ex,y f (1)T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,y f (1)T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k].

1. Progressive distillation: Train for the first T1 = 1 steps w.r.t. the teacher’s logits at T1 checkpoint.
Then, train with the final teacher checkpoint in the second stage.

2. Distillation: Train with the final teacher checkpoint throughout training.

Then,

1. Under progressive distillation, the total sample complexity to reach a loss of ϵ with probability 1− δ is

Θ(k2 log(dm̃/δ) + 2kd2k4ϵ−2 log(k/δ)).

2. The necessary sample complexity under distillation is at least Ω(dmin(2c,k−1)).

The proof consists of two parts: 1) showing that the teacher develops strong correlation with the
in-support variables after the first stage of training (Lemma 63, Corollary 3), and 2) showing that
given the support, the second phase of training converges quickly (Corollary 4). These two helper
lemmas are proven in Section 4.2.6.1.1 (first stage) and Section 4.2.6.1.2 (second stage). The proof of
Theorem 23 is given in Section 4.2.6.2.

Notations Before stating the proofs, we provide a list of necessary notations.

• At any training step t, f (t)T will refer to the teacher’s output at that step. Its parameters are referred

to as θ(t) = {a(t)i ,w(t)
i , b(t)i }

m
i=1. The loss for f (t)T is denoted by L( f (t)T ) or Lθ(t) . Notations for the

student fS are defined similarly.

• Given a set S̃, χS̃ denotes the Fourier function on S̃, where χS̃(x) = ∏i∈S̃ xi. We are particularly
interested in S̃ = S, i.e. the support of the sparse parity.

• Maj : {±1}d → ±1 represents the majority function. On any x, Maj returns the sign of ∑d
i=1 xi. ζi

for i ≥ 1 represents its ith fourier coefficient, i.e. ζi = Ex,yMaj(x)χS(x) for any S ∈ {0, 1}d with
|S| = i. ζi = 0 when i is even, and ζi = Θ(i−1/3/(d

i)) when i is odd [O’Donnell, 2014].

• τg denotes the error tolerance in the gradient estimate due to mini-batch gradient estimation: let g
be the population gradient and ĝ be the estimated gradient with a few examples, τg is defined such
that ∥ĝ− g∥∞ ≤ τg. A τg-error gradient estimate can be obtained using a batch size of Ω̃(1/τ2

g ).

4.2.6.1 Analysis for the teacher

4.2.6.1.1 First stage analysis for the teacher

First, we show that with an appropriate learning rate, the magnitude of the weights wij on coordinates

i ∈ S increases to 1
2k , while the coordinates i ̸∈ S stay O

(
1
kd

)
small.
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Lemma 63 (Single step gradient descent, adapted from Claims 1, 2 in Barak et al. [2022b]). Fix τg, δ >

0. Set T1 as 1. Suppose the batch size B1 ≥ Ω(τ−2
g log(md/δ)). For learning rate η1 = m

k|ζk−1|
and λ1 = 1,

the following conditions hold true for all neurons i ∈ [m] at the end of first stage of training w.p. at least 1− δ.

1.
∣∣∣∣w(1)

ij −
sign(a(0)i ζk−1) sign(χ[k]\{j}(w

(0)
i ))

2k

∣∣∣∣ ≤ τg
|ζk−1|

, for all j ∈ [k].

2.
∣∣∣∣w(1)

ij −
ζk+1
|ζk−1|

sign(a(0)i ) sign(χ[k]∪{j}(w
(0)
i ))

2k

∣∣∣∣ ≤ τg
|kζk−1|

, for all j > k.

Proof. The proof follows that of [Barak et al., 2022b], which we outline here for completeness. The
proof has two major components: First, the magnitude of the population gradient at initialization
reveals the support of the sparse parity. Second, the batch gradient and the population gradient can
be made sufficiently close given a sufficiently large batch size. We will explain each step below.

Claim 7. At initialization, the population gradient of the weight vector in neuron i is given by Ex,y∇wijℓ(x, y; f (0)T ) =

−Ex,y∇wij f (0)T (x)y, which can be split across the coordinates as

Ex,y∇wij f (0)T (x)y = −1
2

a(0)i ζk−1χ[k]\{j}(w
(0)), for all j ∈ S

Ex,y∇wij f (0)T (x)y = −1
2

a(0)i ζk+1χ[k]∪{j}(w
(0)), for all j ̸∈ S

Thus, the gradient of the weight coordinates wij for any neuron i and j ∈ S has magnitude |ζk−1|,
while the gradients of the weight coordinates wij for any neuron i and j /∈ S has magnitude |ζk+1|.
The gap between the gradient in support and out of support is given by |ζk−1| − |ζk+1| ≥ 0.03((d−
1)−(k−1)/2) (Lemma 2 in Barak et al. [2022b]).

The second component involves applying a hoeffding’s inequality to show the gap between sample
and population gradient.

Claim 8. Fix δ, τg > 0. For all i, j, for a randomly sampled batch of size B1, {(xk, yk)}
B1
k=1, with probability at

least 1− δ, ∣∣∣∣Ex,y∼U ({±}d)∇wij f (0)T (x)−E
{(xk ,yk)}

B1
k=1
∇wij f (0)T (x)

∣∣∣∣ ≤ τg,

provided B1 ≥ Ω(τ−2
g log(md/δ)).

Because we want the noise τg to be smaller than the magnitude of the true gradients for the coordi-
nates in the support S, we want τg to be smaller than |ζk−1|. We set this to get favorable condition for
second phase of training (see Lemma 65).

On the other hand, we show that after the first phase, the output of the network has positive correla-
tions to the individual variables in the support of the label function, and thus the checkpoint after the
first phase can be used to speed up training of future models.

Lemma 64 (Correlation with in-support variables). Under the event that the conditions in Lemma 63 are
satisfied by each neuron, which occurs with probability at least 1− δ w.r.t. the randomness of initialization and
sampling, the output of the model after the first phase satisfies the following conditions:
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1. Ex,y f (1)T (x)xi ≥ 1
8k +O(τgd |ζk−1|−1) +O(m−1/2) for all i ∈ S.

2. Ex,y f (1)T (x)xi ≤ O((kd)−1) for all i /∈ S.

3. Ex,y f (1)T (x)χS(x) ≤ O(τgd |ζk−1|−1) for all S with even |S|.

4.
∥∥∥ f (1)T

∥∥∥2

2
= Ex,y[ f (1)T (x)]2 ≤ O(d/k).

Proof. Consider a neuron i ∈ [m/2] and its symmetric counterpart i + m/2. W.L.O.G., we assume
sign(w(0)

ij ) = sign(a(0)i ζk−1) for all j ∈ [k], and sign(a(0)i ) = 1. Recall that k is assumed to be even,

hence sign(χ[k](w
(0)
i )) = 1. Then, the condition in Lemma 63 can be simplified as

w(1)
ij =

1
2k

+ vij, w(1)
i+m/2,j = −

1
2k
− vij, for all j ∈ [k],

w(1)
ij =

1
2k

ζk+1

|ζk−1|
sign(w(0)

ij ) + vij, w(1)
i+m/2,j = −

1
2k

ζk+1

|ζk−1|
sign(w(0)

ij ) + vij, for all j ≥ k,

where vij satisfies the following conditions.

∣∣vij
∣∣ ≤ τg

|ζk−1|
, for all j ∈ [k],∣∣vij

∣∣ ≤ τg

|kζk−1|
, for all j ≥ k.

Then, the sum of the output of the neurons i and i + m/2 on an input x (ignoring the magnitude of
ai) is given by

( f (1)T )i(x) = σ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)

− σ

(
− 1

2k

k

∑
j=1

xj −
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)
,

and

f (1)T (x) =
m/2

∑
i=1

ai( f (1)T )i(x) =
1
m

m/2

∑
i=1

( f (1)T )i(x).

1. In-support correlations: We are interested in the correlation of this function to a variable xu for
u ∈ S. We argue for u = 1, as the similar argument applies for others. Thus, we are interested in

Ex,y( f (1)T )i(x)x1 = Ex,yσ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)
x1

− σ

(
− 1

2k

k

∑
j=1

xj −
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)
x1. (4.96)

We focus on the first term; argument for the second term is similar. First of all, we can ignore ⟨vi, x⟩
incurring an error of O(τgd |ζk−1|−1).
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Ex,yσ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)
x1

= Ex,y:x1=+1σ

(
1
2k

+
1
2k

k

∑
j=2

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)

−Ex,y:x1=−1σ

(
− 1

2k
+

1
2k

k

∑
j=2

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)

≥ 1
2k

Ex,yI

(
1
2k

k

∑
j=2

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi ≥ 0

)
.

The final step follows from the observation that the argument of σ in the first term is 1
k higher than

the argument of σ in the second term. This implies that when the first term is non-zero, it’s at least
1
2k higher than the second term. Hence, we lower bound by considering one scenario where the first
term is non-zero.

Continuing, we can further split the indicator function into cases when each term in the argument of
the indicator function is positive.

Ex,yσ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)
x1

≥ 1
2k

Ex,yI

(
1
2k

k

∑
j=2

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi ≥ 0

)

≥ 1
2k

Ex,yI

(
k

∑
j=2

xj ≥ 0

)
I

(
d

∑
j=k+1

xj ≥ 0

)
I (bi ≥ 0)

≥ 1
8k

I (bi ≥ 0) .

From Equation (4.96), we then have

Ex,y( f (1)T )i(x)x1 ≥
1
4k

I (bi ≥ 0) +O(τgd |ζk−1|−1).

As bi has been kept at random initialization and thus is a random variable selected from the set
{−1 + 1

k , · · · , 1− 1
k}, with probability 1

2 , I (bi ≥ 0). This implies, w.p. atleast 1/2 w.r.t. a neuron’s

bias initialization, Ex,y( f (1)T )i(x)x1 ≥ 1
4k +O(τgd |ζk−1|−1). The final bound comes from the fact that

Ex,y fT (x)x1 = Ex,y
1
m ∑m

i=1( f (1)T )i(x)x1 ≥ 1
8k +O(τgd |ζk−1|−1) +O(m−1/2), where the error term is

bounded using Hoeffding’s inequality.

2. Out-of-support correlations: Similar to the Equation (4.96), we have for u /∈ S,

Ex,y( f (1)T )i(x)xu = Ex,yσ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)
xu

− σ

(
− 1

2k

k

∑
j=1

xj −
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)
xu. (4.97)
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However, we observe that the influence of xu in each of the terms is bounded by 1
k

ζk+1
|ζk−1|

. Consider the
first term; the argument for the second term is similar. We can again ignore ⟨vi, x⟩ incurring an error
of O(τgd |ζk−1|−1).

Ex,yσ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)
xu

= Ex,y:xu=+1σ

(
1
2k

ζk+1

|ζk−1|
sign(w(0)

iu ) +
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1| ∑
j=k+1→d;j ̸=u

sign(w(0)
ij )xj + bi

)

−Ex,y:xu=−1σ

(
− 1

2k
ζk+1

|ζk−1|
sign(w(0)

iu ) +
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1| ∑
j=k+1→d;j ̸=u

sign(w(0)
ij )xj + bi

)

= Ex,y
C(x)

k
ζk+1

|ζk−1|
sign(w(0)

iu )I

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1| ∑
j=k+1→d;j ̸=u

sign(w(0)
ij )xj + bi ≥ 0

)
,

where C(x) ∈ {1, 2} denotes a function that depends on x. The final step follows from a first or-
der taylor expansion of σ. The magnitude can hence be bounded by 1

k
|ζk+1|
|ζk−1|

. This can be bounded

by 1
kd (section 5.3, O’Donnell [2014]). The final bound comes from the fact that Ex,y fT (x)xu =

Ex,y
1
m ∑m

i=1( f (1)T )i(x)xu ≤ O((kd)−1).

3. Correlations to support of an even size: The function ( f (1)T )i is given by

( f (1)T )i(x) =σ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)

− σ

(
− 1

2k

k

∑
j=1

xj −
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + ⟨vi, x⟩+ bi

)

=σ

(
1
2k

k

∑
j=1

xj +
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)

− σ

(
− 1

2k

k

∑
j=1

xj −
1
2k

ζk+1

|ζk−1|

d

∑
j=k+1

sign(w(0)
ij )xj + bi

)
+O(τgd |ζk−1|−1)

:=g(x) +O(τgd |ζk−1|−1).

One can observe that g(x) is a symmetric function and so an odd function. Thus, Ex,yg(x)χS(x) = 0

(exercise 1.8, O’Donnell [2014]) and so, Ex,y( f (1)T )i(x)χS(x) = O(τgd |ζk−1|−1).

4. Output norm: Focusing on function ( f (1)fT
)i:∥∥∥( f (1)T )i

∥∥∥2

2
= Ex,y( f (1)T )i(x)2

= Ex,y

(
σ(⟨w(1)

ij , x⟩+ bi)− σ(⟨w(1)
i+m/2,j, x⟩+ bi)

)2

≤ Ex,y min
(∥∥∥w(1)

i

∥∥∥2

2
+ b2

i ,
∥∥∥w(1)

i+m/2

∥∥∥2

2
+ b2

i

)
∥x∥2

2 = O
(

1
k

)
· d.
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The intermediate step uses Cauchy-Schwartz inequality, and the final step uses the values of w(1)
ij , w(1)

i+m/2,j.

As f (1)T (x) = 1
m ∑m/2

i=1 ( f (1)T )i(x), we have
∥∥∥( f (1)T )

∥∥∥2

2
≤ 2

m ∑m/2
i=1

∥∥∥( f (1)T )i

∥∥∥2

2
= O

(
d
k

)
.

Corollary 3. Under the event that the conditions in Lemma 63 are satisfied by each neuron, which occurs with
probability at least 1− δ w.r.t. the randomness of initialization and sampling, the output of the model after the
first phase can be given as:

f (1)T (x) =
k

∑
j=1

cjxj +
d

∑
j=k+1

cjxj + ∑
S⊆[d]:|S|%2=1,|S|≥3

cSχS(x) + ∑
S⊆[d]:|S|%2=0

cSχS(x),

where

|cj| ≥ Ω(k−1), for all 1 ≤ j ≤ k,

|cj| ≤ O((kd)−1), for all j > k,

|cS| ≤ O(τgd |ζk−1|−1), for all S ⊆ [d] with |S|%2 = 0,

|cS| ≤ O(d/k), for all S ⊆ [d] with |S|%2 = 1.

As such, the following correlations hold true for all i.

Ex,y f (1)T (x) ·Maj(x)xi =
1
2

ci +O(τgd5/3 |ζk−1|−1).

If batch size B1 is set ≥ Ω(k2d10/3ζ−2
k−1), such that τg ≤ O(k−1d−5/3 |ζk−1|), then the following holds for all

i. ∣∣∣Ex,y f (1)T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,y f (1)T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k],

Proof. The form of f (1)T follows from the fourier coefficient analysis in Lemma 64.

Now, we can use the formulation to derive

Ex,y f (1)T (x) ·Maj(x)xi

=Ex,y

d

∑
j=1

cjxj ·Maj(x) · xi + Ex,y ∑
S⊆[d]:|S|%2=1,|S|≥3

cSMaj(x)χS(x) · xi

+ Ex,y ∑
S⊆[d]:|S|%2=0

cSχS(x) ·Maj(x)xi

=Ex,y

d

∑
j=1

cjxj ·Maj(x) · xi + Ex,y ∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xj

=ciEx,yMaj(x) + Ex,y ∑
j,j ̸=k

cjMaj(x)xjxi + Ex,y ∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

=
1
2

ci + Ex,y ∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi.

The second step removes Ex,y ∑S⊆[d]:|S|%2=0 cSχS(x) ·Maj(x)xi because Maj(x) is an odd function, and
so Ex,yMaj(x)χS(x)xi will be 0 for odd sized S. Similar argument holds for removing Ex,y ∑j,j ̸=i cjMaj(x)xjxi

in the final step. We finish the proof by bounding Ex,y ∑S⊆[d]:|S|%2=0 cSMaj(x)χS(x) · xi.
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As |cS| ≤ O(τgd |ζk−1|−1) for all S with |S|%2 = 0, we can bound it as∣∣∣∣∣∣Ex,y ∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

∣∣∣∣∣∣
≤O(τgd |ζk−1|−1) ·

 ∑
S⊆[d]:|S|%2=0

∣∣Ex,yMaj(x)χS(x)xi
∣∣

≤O(τgd |ζk−1|−1) ·

 ∑
S⊆[d]

∣∣Ex,yMaj(x)χS(x)
∣∣

≤O(τgd |ζk−1|−1) ·

 ∑
S⊆[d]

∣∣Ex,yMaj(x)χS(x)
∣∣

=O(τgd |ζk−1|−1) · ∑
S⊆[d]

Θ

 |S|−1/3

( d
|S|)


=O(τgd5/3 |ζk−1|−1).

Here the pre-final step follows from the bounds on the Fourier coefficients of Maj outlined in Sec-
tion 4.2.6. Finally, we set B1 ≥ Ω(τ−2

g ) is set such that τg ≤ O(k−1d−5/3ζk−1). This makesO(τgd5/3 |ζk−1|−1) =

o(1/k). Hence, with appropriate batch size B1,

Ex,y f (1)T (x) ·Maj(x)xi =
1
2

ci + o(1/k).

The proof follows from the magnitude of ci derived above.

4.2.6.1.2 Second stage analysis for the teacher

Lemma 65 (Second stage Training, cf. Theorem 4 in [Barak et al., 2022b]). Fix ϵ, δ > 0. Suppose
m ≥ Ω(2kk log(k/δ)), d ≥ Ω

(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥ Ω(|ζk−1|2 k2 log(kd/ϵ)) s.t.

the weights satisfy the conditions in Lemma 63 with τg = O(|ζk−1| k−1) after the first phase. Then after
T2 = Ω(md2k3/ϵ2) steps of training with batch size B2 = 1, learning rate η2 = 4k1.5/(d

√
m(T2 − 1))

and decay λ2 = 0, we have with expectation over the randomness of the initialization and the sampling of the
batches:

min
t∈[T2]

E
[
Lθ(t)(x, y)

]
≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by

T1 × B1 + T2 × B2 = Θ(|ζk−1|2 k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk−1k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

Corollary 4. Under the conditions outlined in Lemma 65, after T2 steps of training in the second phase, if t†

denote the time step at which the model achieves the minimum loss, i.e. t† := arg mint∈[T2]
E
[
Lθ(t)(x, y)

]
,

then

E
[

f (t
†)
T (x)xi

]
≤ ϵ, for all i ∈ [d].
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The proof follows from the fact that if the correlation along y = ∏i∈S xi is large (≥ 1− ϵ as hinge loss
is below ϵ), the correlations along other Fourier basis functions will be small. Hence, depending on
how saturated the model is, the signal along the support elements are small.

We will use a slightly modified version of Lemma 65 with higher sample complexity in the first
phase, to ensure the stronger conditions of Corollary 3 hold true as well. This will be necessary to get
improved signal to teach a smaller student.20

Corollary 5 (Modified Version of Lemma 65). Fix ϵ, δ > 0. Suppose m ≥ Ω(2kk log(k/δ)), d ≥
Ω
(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥ Ω(|ζk−1|2 k2d10/3 log(kd/ϵ)) s.t. the weights satisfy the

conditions in Corollary 3 with τg = O(|ζk−1| k−1d−5/3) after the first phase. Then after T2 = Ω(md2k3/ϵ2)

steps of training with batch size B2 = 1, learning rate η2 = 4k1.5/(d
√

m(T2 − 1)) and decay λ2 = 0, we
have with expectation over the randomness of the initialization and the sampling of the batches:

min
t∈[T2]

E
[
Lθ(t)(x, y)

]
≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by

T1 × B1 + T2 × B2 = Θ(|ζk−1|2 d10/3k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk+7/3k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

4.2.6.2 Analysis for the student

Proof of Theorem 23. We will first prove the sample complexity upper bound for progressive distilla-
tion, followed by a sample complexity lower bound for distillation.

Sample complexity for Progressive distillation: Under progressive distillation, the label is given by
f (T1)
T for the first T1 steps. We will follow similar steps as Lemma 63, where the label is replaced by

f (T1)
T . Claim 7 changes, while Claim 8 stays the same. We will showcase the change in Claim 7 here.

At initialization, the population gradient of the weight vector in neuron i at coordinate j is given by

Ex,y∇w̃(0)
ij
ℓD(x, y; f (0)S , fT )

= −Ex,y∇w̃(0)
ij

f (0)S (x) f (T1)
T (x)

= −aiEx,yI
[
⟨w̃(0)

i , x⟩+ b̃i ≥ 0
]

f (T1)
T (x)xj

= −aiEx,y

(
1
2
+

1
2

Maj(w̃(0)
i , x)

)
f (T1)
T (x)xj

= −ai
1
2

Ex,y f (T1)
T (x)xj − ai

1
2

Ex,yMaj(w̃(0)
i , x) f (T1)

T (x)xj,

where the relation between I
[
⟨w̃(0)

i , x⟩+ b̃i ≥ 0
]

and Maj(w̃(0)
i , x) follows because of

∣∣b̃i
∣∣ < 1 at

initialization. From Corollary 3,∣∣∣∣Ex,y∇w̃(0)
ij
ℓD(x, y; f (0)S , fT )

∣∣∣∣ ≥ Ω(k−1), if j ∈ [k],∣∣∣∣Ex,y∇w̃(0)
ij
ℓD(x, y; f (0)S , fT )

∣∣∣∣ ≤ o(k−1), if j /∈ [k].

20We haven’t optimized the error bounds in Corollary 3. Our sample complexity bounds are likely loose in Corollary 5

249



Figure 4.10: Larger models learn sparse parity faster. A larger model has more width (MLP, left) or
more attention heads (Transformers, right). The results are for (100, 6)-parity, aggregated over 5 runs
for each setup.

Thus, a fourier gap exists between the population gradients on in-support and out-of-support co-
ordinates in the gradients. We can then apply Claim 8 to show that a finite batch size of B1 ≥
Ω(k2 log(dm̃/δ)) is sufficient to maintain this gap between the coordinates in support and out of
support. Thus, the change in the necessary sample complexity comes from the reduced sample com-
plexity in the first phase. The proof for the second phase training is exactly equal to the proof for the
teacher in Theorem 23.

Sample complexity for Distillation: On the other hand, for the teacher checkpoint with loss O(d−c),
the correlation to the monomial terms in the support is bounded by O(d(−c)) (by Corollary 4). If
we want to learn from the correlations to the support, we need the number of samples to be at least
Ω(d2c) as the gradient noise needs to be lower than O(d−c) (by Claim 8). To learn the support from
the true label, we need the number of samples to be at least Ω(dk−1), by the following result:

Lemma 66 (Width-optimization trade-off, cf. Proposition 3 in [Edelman et al., 2023]). For δ > 0,

gradient noise τg > 0, and model width m > 0, if T ≤ 1
2 (

d
k)

δτ2
g

m , then there exists a (d, k)-sparse parity
such that w.p. at least 1− δ over the randomness of initialization and samples, the loss is lower bounded as
L( f (t)T ) ≥ 1− τg for all t ∈ {1 · · · T}.

This result implies that for a fixed batch size (and hence a fixed τg), we either require a bigger width,
or more number of gradient steps (which translates to sample complexity since we are using fresh
samples each batch). Hence, for the model to learn the support from a combination of the two com-
ponents, it needs a sample complexity at least Ω(dmin(2c,k−1)/m̃).

4.2.7 Results on sparse parity and its generalization

4.2.7.1 Additional results on sparse parity with MLP

We take both the teacher and student models to be 1-hidden-layer MLPs with ReLU activations. The
teacher has a hidden width of 5 × 104, and the students are of widths 102 or 103. All models are
trained using SGD with batch size 1 for 20M steps on sparse parity data with n = 100 and k = 6
(Definition 23). The support is set to be the first 6 coordinates of the input vector without loss of
generality. The learning rate is searched over {10−2, 5× 10−3, 10−3}. Evaluation is based on a held-
out set consisting of 4096 examples, and we report the average across 3 different training seeds. For
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one-shot distillation, we use the teacher checkpoint at the end of training (20M checkpoint), at which
point the teacher has fully saturated. For progressive distillation, we use N = 200 equally spaced
teacher checkpoints that are 0.1M steps apart.
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Figure 4.11: Repeated experiments from Figure 4.5 for a student of width 1000.

4.2.7.2 Learning with Transformers: parallel search with attention heads

The benefit of progressive distillation and the implicit curriculum is not specific to MLP. This section
presents similar results with Transformers [Vaswani et al., 2017]. The d-dimensional input vector is
now treated as a length-d sequence, and the label is predicted using the last token’s output. We fix the
support S to be the first 6 coordinates of the sequence. Note that unlike MLP, Transformer’s learning
is not permutation-invariant to the location of S due to the causal mask. Nevertheless, given the same
S, the comparison on learning speed is still meaningful.

For Transformers, the parallel queries come from both the MLP width and also the number of attention
heads. To illustrate this, consider the following two solutions (which we formalize in Section 4.2.7.2.1)
to sparse parity: The first solution uses attention to locate the support and then uses MLP to compute
the product of the in-support variables. The second solution copies over all variables to the final
position, whose MLP is then responsible for both identifying the support and computing the product.
The second solution is less interesting as it reduces to an MLP, so we focus on the first solution in the
following, which utilizes the attention mechanism unique to Transformers.

(R6) More attention heads helps with the search for support Our experiments are based on 2-layer
Transformers 21 with 8 dimensions per attention head. As shown in Figure 4.10 (right), increasing the
number of heads makes learning faster. There are clear phase transitions similar to the MLP case.

Ablation with other ways to vary the model size Most Transformer experiments in this work keep
the per-head dimension to be fixed and vary the number of attention heads between the teacher and
the student. The MLP input dimension is the sum of the attention head dimensions, so a student with
fewer heads will have a smaller MLP than the teacher, which is preferable in terms of efficiency. Fixing
the per-head dimension is a widely adopted setup in practice, such as in the Llama series [Touvron
et al., 2023]. We now additionally consider two other ways to vary the model size. In particular,
we vary the number of heads, while 1) fixing the hidden dimension (i.e. the total dimension of all

21We use 2 layers since 1-layer Transformers are hard to train empirically, despite being representationally sufficient to solve
sparse parity.
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Figure 4.12: Repeated experiments from Figure 4.5 but for a different teacher. For (2, 0.1M) progres-
sive distillation, the checkpoint that lies in the middle of the second phase accelerates training the
most. In Figure 4.5, we used a teacher that was trained with learning rate 5× 10−3. The correlation
plot for the teacher to degree-1 monomials had a clear gap for degree-1 monomials in-support and
out-of-support at the middle of the second phase (indicated by candidate 2). However, for a teacher
that is trained with a higher learning rate 10−2, we didn’t find such a clean gap in correlations for
degree-1 monomials. On the other hand, correlations to degree-2 and degree-3 monomials showed a
clean gap between in-support and off-support variables at the middle of the phase transition. Hence,
the student needn’t learn only from degree-1 monomials to get training acceleration, any low degree
monomials suffice to teach the student about the support. Rest for degree-2 monomials refers to all
monomials of the form xixj where atleast one of i, j /∈ S. Similar definition for degree-3 monomials.
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heads concatenated) to be 256, or 2) fixing the dimension of each head to be 256 and averaging the
output from each head, in which case the hidden dimension is also 256. These two setups are less
common in practice but nevertheless serves as complementary evidence: the performance difference
comes solely from the number of attention heads, as the MLP dimension is kept the same. As shown
in Figure 4.13 (b,c), increasing the number of attention also increases the training speed in these two
setups.

(a) Per-head dimension = 8 (b) Hidden dimension = 256 (c) Dimension 256, averaging heads

Figure 4.13: Increasing the number of attention heads speeds up training. Each plot compares the
accuracy throughout training for 2-layer models with various heads, while fixing: (a) the per-head
dimension to 8; (b) the MLP hidden dimension to 256; (c) both the per-head and MLP hidden dimen-
sion to 256, by averaging (rather than concatenating) the heads. We report runs with the learning
rate that has the highest mean accuracy and break tie with training speeds. The shadows show the
variances of the runs.

Figure 4.14: In-support attention growth co-occurs with accuracy increase Attention on individual
coordinates on or off the support of the sparse parity, taking the median of 1024 random binary input
sequences. The shade highlights the teacher’s phase transition period. The model accuracy is marked
by the gray dashed line, with scale adjusted for better display. The two subfigures show the same type
of results but with different randomness seeds.

Ablation with 2-shot distillation We repeat the 2-shot distillation ablation for MLP. We first confirm
that the low-degree curriculum described in Section 4.2.2.1 is also observed in Transformers. As
shown in Figure 4.15, the 2-layer 32-head teacher model exhibits significantly higher correlation with
the in-support monomials (i.e. {xi}i∈S than with off-support monomials during the phase transition.
22 Then, we show in Figure 4.16 that using as few as 1 intermediate checkpoint suffices to significantly

22Note that the upper right subplot in Figure 4.15 has a second correlation spike with the in-support variables. However,
supervising with this second checkpoint does not provide acceleration. This suggests that there might be mechanisms other
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Figure 4.15: Low-degree curriculum in Transformers on (100, 6)-sparse parity. The x-axis shows
the training steps, and y-axis shows the 2-layer 32-head teacher’s correlation with in-support (orange
lines) vs off-support (blue lines, aggregated into mean and standard deviation) degree-1 monomials.
The black dotted lines mark the accuracy, scaled for better display. The correlation values are calcu-
lated using 100k randomly drawn sequences. The 4 subplots correspond to models trained using 4
random seeds.

speeds up the training of the student.

Ablation with various temperatures As mentioned in Section 4.2.1, our progressive distillation re-
sults use a low temperature in order to remove potential favorable regularization effects from soft
labels. We chose a temperature of τ = 10−4 for sparse parity, where the output dimension is 2. In
Figure 4.17, we empirically confirm that setting the temperature to be below 0.01 is sufficient to get
results that are qualitatively similar to using τ = 0 (i.e. taking the argmax). Note that using a higher
temperature such as τ = 1 can make learning slower despite potentially having more regularization
effects from softer labels. We leave understanding the exact effect of temperature to future work.

4.2.7.2.1 Two Transformer solutions for sparse parity (Proposition 9 and Proposition 10)

We consider a simplified version of a Transformer block, without the residual connection or the lay-
ernorm:

fblock = f (L)
mlp ◦ fattn,

where
fattn(X; WQ, WK, WV) := CausalAttn(XWQW⊤K X⊤)XWV ,

with WQ, WK, WV being the query, key, value matrices, and f (L)
mlp(x; {Wl , bl}l∈[L]) is a L-layer MLP

that recursively apply f (l+1)
mlp (x) = σ(Wl+1 f (l)mlp(x) + bl+1) position-wise. σ is the relu function for

than the low-degree curriculum at play.
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Figure 4.16: 2-shot progressive distillation with Transformers: Compared to cross-entropy training
or one-shot distillation, transformers learn faster with progressive distillation, where the intermediate
checkpoints are taken either at regular 10k intervals (“progressive”), or during the phase transition
(“progressive (2-shot)”). The two vertical lines show the teacher training steps at which the two
checkpoints for 2-shot distillation are chosen. We set the teacher temperature to be τ = 10−4 for
progressive distillation, and τ = 1 for one-shot distillation.

Figure 4.17: The benefit of progressive distillation holds with hard labels, as shown by comparing
2-shot progressive distillation with different temperatures. The two gray vertical lines mark the train-
ing steps at which the teacher checkpoints are taken.
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l ∈ [L− 1], and is the identity function for l = L.

Proposition 9 (Attention support selection). (d, k)-sparse parity can be solved by a 1-layer Transformer
with a 2-layer MLP, whose attention weights satisfy αi,d ∝ exp(c1[i ∈ S]) for some large constant c > 0. The
MLP has hidden dimension 4(k + 1), L∞ norm bounded by 4k(k + 1).

Proof. The idea is that the attention selects the k in-support variables, and the MLP computes the
product of these variables.

To select the in-support variables, we want the attention weight αi,d ∝ exp(c1[i ∈ S]), for some large
constant c. This can be achieved by having the projection matrices WQ, WK focus only on the position
and ignore the tokens. In particular, let z denote the input sequence, and let the embedding of a token
be xi = vzi + pi, where {v0,v1} are embeddings for the binary token 0 or 1, and pi is the position
encoding for position i. Take {v0,v1}, {pi}i such that vzi⊥pi. Let c > 0 be a large enough constant.
Choose WQ, WK such that for any i ∈ [d], x⊤i W⊤Q WKxd = p⊤i W⊤Q WK pd = c · 1[i ∈ S]. This ensures
that αi,d ∝ exp(c1[i ∈ S]).

Then, the role of attention is to average over the in-support tokens. For simplicity of exposition, let’s
take c → ∞ for now (i.e. using saturated attention [Merrill et al., 2022]), so that αi,n → 1[i∈S]

k ; that
is, the attention weights at the last position average over the in-support variables. Take WV to be a
vector, such that WV ignores the positional information and the input token 0, and only preserves the
input token 1, i.e. WV pi = 0, ∀i ∈ [d], WVv0 = 0, and WVv1 = 1.

Next, the MLP needs to compute the parity function over the k in-support variables. The input to the
MLP is hence proportional to (∑i∈S I[zi = 1])v1, and the size of the set of inputs is k+ 1. To determine
the size of the MLP, we use Lemma 10 from Chapter 3 on 1D discrete function interpolation. Setting
Bx = 1, By = 1, and ∆ = 1

|S| , the parity function over these k + 1 input values can be approximated
by a 2-layer MLP with inner dimension 4(k + 1), with norm bounded by 4k(k + 1).

As a concrete example, one way to satisfy the requirements above is to set the attention weights to
v1 = WV = e1 := [1, 0, 0, 0], v0 = e2 := [0, 1, 0, 0]. Set pi = pn = e3 for i ∈ S, and pi = e4 for i ̸∈ S.

Set WQ = WK = c


0 0 1 0

0 0 0 0

 for some sufficiently large c > 0.

Proposition 10 (No attention selection). There exists a 1-layer Transformer with 3-layer MLP that computes
k-sparse parity, whose attention weights satisfy αi,d = 1

d . Consequently, the MLP computes the sparse parity
function given the full set of variables.

Proof. The idea is for the uniform attention to copy all tokens to the last position. However, unlike in
Proposition 9, the attention needs to copy the tokens into a length-d embedding vector, as we need
to preserve the position information in this embedding vector. We need to generalize Lemma 10
accordingly to handle multi-dimensional inputs, i.e. using Lemma 11. Then, the MLP at the last
position computes the sparse parity over the k coordinates while ignoring the others. Hence the
effective input set is |X | = 2k. Setting Bx = 1, By = 1, and ∆ = 1, there exists a 3-layer MLP with
width 2k and norm bound 2k+2 by Lemma 11.
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Preliminary interpretability analysis: Transformer does utilize attention in practice We observe
that the model focuses attention on relevant tokens and that the amount of attention weights put on
the support is tightly correlated with the accuracy, which suggests that the model indeed utilizes the
attention mechanism in learning sparse parity.

Specifically, Figure 4.14 shows the results on 2-layer 16-head GPT-2 models. The attention weights
are for the final position, whose logits are used for computing the binary parity label for the entire
sequence. We track the attention weights along length-2 paths from the first and the second layer.
For example, for a single-head model, let a(l)i ∈ ∆d−1 denote the lth-layer attention vector at the

ith position; then, the on-support attention for a given sample is computed as ⟨a(2)d ), v(1)
T ⟩, where

[v(1)
T ]i := ∑j∈T a(1)i [j] is the total amount of first-layer attention weights that the ith position puts on

the support T . For multi-head models, a(l)i ∈ ∆d−1 is defined as the sum of attention vectors from all
heads, and the rest is computed similarly.
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Figure 4.18: 8-way classification using a hierarchical decision tree of depth 3, with each node repre-
sented by 5-sparse parity. Progressive distillation helps student learn faster from a width-50k teacher,
compared to one-shot distillation from the final checkpoint.
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Level 1
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Level 3

Figure 4.19: An illustration of hierarchical data generation, for a 3-level tree with 3 variables per
feature. A feature corresponds to a tree node, each marked by a rectangle. The product of the binary
variables in a feature determines which child to take: the left child is chosen if the product evaluates
to −1, and the right child is chosen if the product is +1. The final label for an example is decided
based on the tree leaf reached.

4.2.7.3 A hierarchical generalization of sparse parity

This section considers an extension of sparse parity, where the labels are given by a decision tree.
Sparse parity can be considered as a special case with tree depth 1.

Definition: The input x is a boolean vector picked uniformly at random from the d-dimensional
hypercube {±1}d, and the label y ∈ [K] where K := 2D for some fixed D ∈ N. The underlying
labeling function for y follows a binary decision tree of depth D, whose leaves correspond to class
labels. The branching at a node depends on a sparse parity problem. An example visualization is
provided in Figure 4.19.

More formally, the nodes in the decision tree are represented by a set of sparse parity problems S =

{T1, T2, · · · , TK−1}, where Tj is determined by product of a subset of size k variables selected from
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the dimensions of the input x (e.g. x1x2 · · · x5 for k = 5). An input x belongs to the class i ∈ [K] iff

[
D

∏
j=1

I

[
c(i, j)T

v(i)j
(x) > 0

]
> 0, where

c(i, j) =

1, if i ≥ 2D−j

−1, otherwise

Here, v(i)1 , · · · v(i)D denote the features in S that lie on the path joining the root of the decision tree to
the leaf representing the label i. An example is given in Figure 4.19.
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Figure 4.20: Setting: 8-way classification using a hierarchical decision tree of depth 3, with each node
represented by 5-sparse parity. The relevant features for class y = 1 are x1 · · · x5, x6 · · · x10, x16 · · · x20

at tree levels 3, 2, and 1 respectively (Figure 4.19). The irrelevant features are x36, · · · , x100. Here we
plot the magnitude of correlation to degree-1 monomials Ex,y[pT (x)]1xi for each i in the relevant
feature groups for class 0. Because the degree-1 monomials show noisy correlations, we also report
the magnitude of correlation to degree-2 monomials Ex,y[pT (x)]1xixj for each i, j in the relevant
feature groups for class 1. For degree-2 monomials, rest refers to correlation to monomials of the
form xixj where atleast one variable is outside support variables (x36, · · · , x100). The correlations to
degree-1 (or 2) monomials on the relevant features spike at different training steps.

Experiment Setup: In this section, we focus on 8-way classification, where the data is generated by
a tree of depth 3. Each feature in S is given by a product of 5 variables. We keep the variables distinct
in each feature, i.e., T1 = x1x2 · · · x5, T2 = x6x7 · · · x10 and so on.

Experiments and Observations: We conduct similar experiments as our sparse parity experiments.
In Figure 4.18, we show that progressive distillation helps train a smaller student as fast as the teacher,
and even reach 100% accuracy.
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Figure 4.21: Setting: 8-way classification using a hierarchical decision tree of depth 3, with each node
represented by 5-sparse parity. (3, 2M)-progressive distillation from 3 checkpoints on a 1000 width
student; 2 intermediate teacher checkpoints are used each for 2M steps, and then the final checkpoint
is used till end of training. Observations: (a) Teacher shows a phase transition in accuracy during
training. 6 candidate checkpoints for (3, 2M)-progressive distillation have been marked, out of which
2 are selected in each setting. The checkpoint at 6M lies outside the phase transition of the teacher.
(b): We show the behavior of a few representative settings. Two main observations: (1) Selecting only
a single checkpoint during the phase transition of the teacher is sub-optimal, as shown by plots that
contain 6M checkpoint as an intermediate checkpoint, (2) 2 checkpoints during the stage transition
suffice to train the student to 100% accuracy, however the performance can heavily depend on their
selection. Figure 4.20 shows that the teacher learns the low-level features at 4.5M checkpoint, making
it crucial for distillation. (c): Even with extremely low temperature, the benefit of the phase transition
checkpoint persists, suggesting that the monomial curriculum, not regularization, is the key to the
success of progressive distillation.

Low-degree curriculum: We show the correlations of the teacher’s logits for a particular label and
its relevant features in Figure 4.20. We observe similar spikes in the degree-1 monomials involving
the support of the features. However, because there are multiple features defining a label class, with
features at level 1 being shared among multiple labels, we see a difference in the time-frames at which
the spikes appear in the degree-1 monomials of the features. As such, a single teacher checkpoint
won’t give information of entire support to a student to learn from.

Effectiveness of (3, T)-progressive distillation: We consider progressive distillation with 3 check-
points, where the student only uses 2 intermediate teacher checkpoint in addition to the final one. We
show in Figure 4.21 that there exists a (3, 2M)-progressive distillation that can help train a student
successfully. Furthermore, we demonstrate that these two intermediate checkpoints must be posi-
tioned within the phase transition to achieve 100% accuracy in training the student. This supports
the hypothesis that a low-degree curriculum is crucial for progressive distillation since the correla-
tions with degree-1 monomials are high only during the phase transition period. Additionally, we
find that a distillation strategy with only a single intermediate checkpoint and the final checkpoint is
insufficient for the student to achieve 100% accuracy, which aligns with our observation that degree-1
monomials for different features emerge at different steps. However, we also note that even within
the phase transition, the optimal selection of the two checkpoints can significantly impact the student
model’s performance.
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Figure 4.22: Same experiments as Figure 4.21 for a width-100 student.
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4.2.8 Extensive study on PCFGs

4.2.8.1 A formal description of PCFGs

We study progressive distillation using probabilistic context free grammar (PCFG). Compared to
sparse parity and hierarchical data, PCFG is a more realistic proxy for natural languages and has
been commonly used as a sandbox for mechanistically understanding the training of language mod-
els [Zhao et al., 2023, Allen-Zhu and Li, 2023b]. A PCFG consists of a set of non-terminals (NTs) and
grammar rules involving the non-terminals that specify the generation process of a sentence. For ex-
ample, for the sentence The cat ran away, the grammatical structure dictates words the, cat, ran, away
as determinant, noun, verb, and adverb. ran and away together represent a verb phrase, and the, cat
together represent a noun phrase (see Figure 4.6). For a language model to generate grammatically
correct sentences, it needs to learn the underlying grammatical rules.

A probabilistic context-free grammar (PCFG) is defined as a 4-tuple G = (N , v,R,P), where

• N is the set of non-terminals, which can be considered as internal nodes of a parse tree. There is a
special non-terminal S, known as the start symbol.

• [v] is the set of all possible words, corresponding to parse tree leaves.

• R denotes a set of rules. For all A, B, C ∈ N , there is a rule A → BC in R. Furthermore, there are
rules A→ w for all A ∈ N , w ∈ [v].

• P specifies the probability of each rule to be used in the generation process. For a rule r ∈ R,
if P [r] = 0, then the rule is an invalid rule under the generation process. Furthermore, for each
non-terminal A ∈ N , on all rules r ∈ R of the form A→ ·, ∑r∈R:r=A→· P(r) = 1. We denoteR(A)

as the set of all non-zero rules from A.

A concrete example of PCFGs is to model grammars of natural languages [Jurafsky, 2000]. In this
case, language tokens form the vocabulary of PCFG, while parts of speech such as nouns, verbs or
noun phrases, verb phrases form the non-terminals. Rules like noun phrases being composed of a
determinant and a noun form the core of such PCFG, while the probability of each rule is determined
by their occurrences across sentences in the language.

Data generation from PCFG Given a PCFG G = (N , v,R,P), a string is generated in a recursive
fashion as follows: we start with s1 = ROOT at step 1, and maintain a string st ∈ ([v] ∪N )∗ at step t.
At step t, if all characters in st belong to [v], the generation process terminates, and st is the resulting
string. Otherwise, for each character A ∈ st, if A ∈ N , we sample a rule r ∈ R of the form A → ·
with probability P(r) and replace A by characters given by r(A).

Tracking n-grams As outlined in Section 4.2.3, we track the behavior of trained models by mea-
suring the behavior of their output on the neighboring n-gram context. In the context of PCFGs
and masked language modeling for BERT, Zhao et al. [2023] theoretically demonstrate that one of
the optimal algorithms for predicting masked tokens is a dynamic programming algorithm based
on the inside-outside algorithm (textbook reference: Jurafsky [2000]). This algorithm computes “in-
side probabilities” for spans of tokens of various lengths, representing pairwise token dependencies
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within those spans. For example, in the setting of Figure 4.6, the inside probability for the span “The
cat” indicates the likelihood that these two tokens co-occur. The dynamic programming approach
calculates these inside probabilities hierarchically, with smaller spans forming the basis for larger
spans. The model’s performance ultimately depends on how accurately it represents span probabil-
ities across different lengths. For instance, if the token “cat” is masked in the sentence “The cat ran
away”, the success of the model depends on the representation of the likelihood of the spans “The
cat”, “cat ran”, “The cat ran”, and “The cat ran away”. We denote the neighboring tokens in the
n-gram window span of a token as its n-gram context.

4.2.8.1.1 Variants of progressive distillation

Comparisons at different lengths We follow common practices for training self-attention models
for both one-shot distillation and progressive distillation. We use Adam optimizer [Kingma and Ba,
2014], 512 batch size training (to imitate large batch training), and a cosine learning rate schedule
[Loshchilov and Hutter, 2016] which is generally used to train large language models. As cosine
learning rate depends on the total training horizon, in order to show that progressive distillation
converges faster than one-shot distillation, we compare the two algorithms by varying the number of
training samples for the student. That is, we train the teacher model with 4× 106 training samples
(equal to 8000 steps), and compare the two algorithms for a student model at {1, 2, 4, 8}× 106 training
samples (equal to {2000, 4000, 8000, 16000} steps).

Progressive Distillation choices Because we are considering comparisons at different training lengths
for the student, we have to consider a more general version of progressive distillation introduced in
Definition 22. In Definition 22, progressive distillation is defined by two parameters, (a) number of
teacher checkpoints (N) for supervision, and (b) training steps per checkpoint. We define our selec-
tion criteria for the N checkpoints later. However, after selecting the N checkpoints, we have the
following two variants of progressive distillation.

1. N-shot Equal-split distillation: Here, we simply split the entire student’s training length into N
equal intervals, where the student is supervised by the ith teacher checkpoint in interval i ∈ [N].

2. N-shot κT0-Equal-split distillation: Here κ ∈ (0, 1], and T0 refers to the total training length of
the teacher. The idea is to decide the allocation on the basis of the training length of the teacher,
instead of the training length for the student. We train the student under the supervision of
each checkpoint for κT0/N training steps. Teacher checkpoints that fail to fit into the student’s
supervision schedule are ignored (corresponding to a large κ), and the final checkpoint is kept
till the end of training if the student is trained for longer than κT0. We can view 1

κ as the amount
of “speed up”; for instance, we recover one-shot distillation with κ → 0. Our experiments
(Section 4.2.8.1.1) suggest that κ = 1/2 is a reasonable rule of thumb that can help the student
learn faster than the teacher at any given training length.

In the main paper, in Figures 4.4, 4.8 and 4.9, we have reported performance on PCFG and Wikipedia
for N-shot T0-Equal-split distillation as progressive distillation. We conduct more ablation studies
on κ in Section 4.2.8.1.1. We keep the exploration of optimal strategies of progressive distillation to
future work.
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Selection criteria for N teacher checkpoints: While there are multiple ways in which one can pick the ref-
erence checkpoints to train the student model, we use a simple strategy which is sufficient to demon-
strate the benefit of progressive distillation. Similar to our observation of transition phase for parity
in Section 4.2.2, we search for transition phases in the loss behavior of the teacher and select the first
teacher checkpoint roughly in the middle of the transition phase. The rest are picked at multiples of
this initial checkpoint.

4.2.8.2 Details on Non-terminal prediction with Multi-head linear probing

Following Allen-Zhu and Li [2023b], we train a position-based linear attention on the model’s em-
beddings to predict the non-terminals at each level of underlying PCFG. We consider a set of linear
functions fr : Rd → R|N |, where r ∈ [H] and H is the number of “heads” in the linear attention model.
If e1, · · · , eL denote the model’s output embeddings for a sequence x1, · · · ,xL, then the prediction of
the model at each index i ∈ [L] is given by

Gi(x) = ∑
r∈[H],k∈[L]

wr,i→k fr(ek),

wr,i→k =
exp(⟨Pi,r, Pk,r⟩)

∑k′∈[L] exp(⟨Pi,r, Pk′ ,r⟩)
,

for trainable parameters Pi,r ∈ Rd. We train the parameters with logistic regression on 51200 examples
and test on a validation set of 1024 examples.

4.2.8.3 Details on the synthetic PCFGs

We use 5 synthetic PCFGs considered by Allen-Zhu and Li [2023a] (please see Figure 4.23 for the rules
involved in the PCFGs). These 5 PCFGs differ in difficulty, based on the number of rules per non-
terminal and the ambiguities in the rules per non-terminal. Under a PCFG, each string is generated
by generation trees of depth 7. We give differences in the PCFGs, as outlined by Allen-Zhu and Li
[2023a] below.

• In cfg3b, the PCFG is constructed such that the degree |R(A)| = 2 for every non-terminal A.
In any generation rule, consecutive pairs of symbols on the generated symbols are distinct. The
25%, 50%, 75%, and 95% percentile string lengths generated by the PCFG are 251, 278, 308, 342
respectively.

• In cfg3i, |R(A)| = 2 for every non-terminal A. However, the consecutive pairs of symbols
needn’t be distinct in generation rules. he 25%, 50%, 75%, and 95% percentile string lengths
generated by the PCFG are 276, 307, 340, 386 respectively.

• In cfg3h, |R(A)| ∈ {2, 3} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile string
lengths generated by the PCFG are 202, 238, 270, 300 respectively.

• In cfg3g, |R(A)| = 3 for every non-terminal A. he 25%, 50%, 75%, and 95% percentile string
lengths generated by the PCFG are 212, 258, 294, 341 respectively.

• In cfg3f, |R(A)| ∈ {3, 4} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile string
lengths generated by the PCFG are 191, 247, 302, 364 respectively.
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a sample from cfg3f:

Figure 4.23: The synthetic PCFGs considered from Allen-Zhu and Li [2023b]. Vocabulary is {1, 2, 3}
in each setting. More details on the differences between the PCFGs are in Section 4.2.8.3.
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4.2.8.4 Extensive experiments on BERT

We first give some details on the architecture of BERT and its pre-training loss function.

4.2.8.4.1 A primer on BERT

BERT [Devlin et al., 2018b] is an encoder-only transformer that is trained with masked language
modeling (MLM) (Figure 4.24). In encoder-only architecture, the contextual information are shared
across the tokens using bidirectional self-attention layers. During pre-training, the model is trained
with MLM loss, that perturbs certain fraction of the tokens in the input at random and the model is
trained to predict the original tokens at positions of the perturbed tokens. The pre-training recipe
follows a 80-10-10 principle, where tokens at 80% of the perturbed positions are replaced by a special
⟨mask⟩ token, while tokens at 10% of the perturbed positions are replaced by random tokens from the
vocabulary, while remaining positions are filled with the original tokens themselves. We stick to this
principle, while creating data for training from different PCFGs.

Model architecture considered: We train depth-4 BERT models with {8, 16, 32} attention heads,
each of which operates on 8 dimensions, using a 30% masking rate. The head dimension is fixed to 8,
with the corresponding width of the 4 models being {64, 128, 256} respectively.

The cat <mask> away

ran 0.4
danced 0.1
cried 0.01

 

BERT

Bi-directional attention

Figure 4.24: An informal representation of BERT [Devlin et al., 2018b]. The model uses bidirectional
attention layers to share contextual information across the tokens. During pre-training, few of input
tokens are replaced by special < mask > tokens, and the model is trained to predict the masked
tokens.

4.2.8.4.2 Data Generations

Data for masked language modeling: We generate 8× 106 random sequences for each PCFG. We
follow Devlin et al. [2018b] to create masked input sequences and output labels, i.e. for each sampled
sequence we mask p% of tokens for input and the labels are given by the tokens in the masked
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positions of the original sequence. We also follow the 80-10-10 principle, where for input, the tokens
in 80% of the masked positions are represented by a special mask token C, while 10% of the masked
positions are represented by a randomly sampled token from the vocabulary and the remaining 10%
are represented by tokens from the original sequence.

4.2.8.5 Hyperparameter details

We use a batch size of 512 in each setting. We use Adam [Kingma and Ba, 2014] optimizer with
0 weight decay, β1, β2 = (0.9, 0.95). We use cosine decay learning rate. We extensively tune the
learning rate in the grid {10−2, 7.5× 10−3, 5× 10−3, 2.5× 10−3, 10−3} in each setting. We train the
teacher on 4× 106 training samples (equal to 8× 103 steps).

Distillation experiments at different training horizons: To thoroughly compare the sample com-
plexity requirements of one-shot and progressive distillation, we evaluate both algorithms using a
smaller student model across various training sample sizes. The smaller student is trained with
{1, 2, 4, 8} × 106 training samples (equal to {2 × 103, 4 × 103, 8 × 103, 16 × 103} training steps) and
the performance is compared in each horizon. For example, Figure 4.4 (right) plot contains 4 distinct
points for each method which represents the performance of the smaller model under the 4 different
training steps (sample sizes).

Training split for (2, T)-progressive distillation for PCFGs: We report the performance in Fig-
ure 4.7 for 4000 training steps. We find the best training time split T between the intermediate check-
point and the final checkpoint in the grid {500, 1000, 15000, 2000}, i.e. the student is trained with the
logits of the first intermediate teacher checkpoint till step T and then the teacher is switched to the
final teacher checkpoint.

Low-temperature distillation: We focus on distillation with a small temperature of τ = 10−4 (in Equa-
tion (4.90)), for the following reasons. First, as discussed in Section 4.2.2, it removes any potential
regularization effects induced by soft labels. Moreover, using such a small temperature corresponds
to training with the top-1 predictions of the teacher model, which is more memory-efficient compared
to training with the full teacher logits, especially when the vocabulary size is large.

4.2.8.6 Additional Curriculum probing on the teacher’s checkpoints

In this section, we study the performance of different progressive distillation variants and compare
them to one-shot distillation. As per our experiments in Figure 4.7, we use the 8 teacher checkpoints
selected for supervision. In Figure 4.27, we compare one-shot distillation to the two variants of pro-
gressive distillation, i.e. 8-shot Equal-split and 8-shot T0

2 -Equal-split distillation. We observe that both
variants of progressive distillation help the student learn faster than one-shot distillation, and the gap
diminishes as the students are trained for longer. The optimal strategy for progressive distillation de-
pends on the training budget for the student. For training steps lower than the teacher’s T0 budget,
T0
2 -Equal-split distillation slightly performs better than T0-Equal-split distillation, which changes as

we train longer. To keep things simple, we focus on T0
2 -Equal-split progressive distillation in all of

our subsequent experiments.
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Figure 4.25: We conduct additional probing experiments on the teacher’s (4 layer, 32 attention head
BERT) logits during training to indicate curriculum learning. (left) TV distance between model’s pre-
dictions with full context and context with only n-gram tokens (Lclose). We observe that the teacher’s
logits get closer to higher n-gram context predictions, and the inflection appears at the middle of the
second phase (our first selected checkpoint for progressive distillation) (right) Performance of linear
classifier probe on teacher’s intermediate checkpoints to predict the non-terminals at different levels
of the PCFG generation tree. We observe that the probe’s performance is > 95% of the final probe
performance by the middle of the second phase, indicating the model has almost learned the under-
lying PCFG features by this time.
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Figure 4.26: Comparison of BERT’s training behavior on cfg3b with varying numbers of attention
heads (where the embedding dimension scales linearly with the number of attention heads) over
8× 103 training steps. The x-axis represents the number of training steps and is in log scale. Larger
BERT models show an earlier and more pronounced drop in loss/increase in accuracy compared to
smaller models. For reference, each training curve is annotated at the point where the model reaches
80% of its performance at the final step.
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Figure 4.27: Experiments on BERT (Left to right/top to bottom): (a), (b) show the comparisons for an
8-attention head student, (c), (d) show the comparisons for a 16-attention head student. We observe
differences between the different variants of progressive distillation at different training steps. For
training steps lower than the teacher’s (marked by T0), T0/2-Equal-split progressive distillation is
better, implying that for shorter training, we shouldn’t try to fit all the teacher’s checkpoints. The
trend reverses as the training sample budget approaches T0 and beyond.
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4.2.8.7 Ablations with hyperparameters

Ablation with temperature Here, we compare progressive distillation and one-shot distillation at
temperature 1 and temperature 10−4 (representing hard label supervision) (Figure 4.28). We observe
that progressive distillation at temperature 10−4 performs better than one-shot distillation at both
temperatures. However, progressive distillation at temperature 1 can perform worse than one-shot
distillation for a stronger student. We keep explorations on the effect of temperature on the algorithms
as future work.
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Figure 4.28: The experiments above compare progressive distillation and one-shot distillation at
temperature 1 and 10−4 (representing hard label supervision) for PCFGs cfg3b at masking rate 30%
using a BERT model with 8 attention heads (left)/ 16 attention heads (right), per head dimension 8,
and 4 layers. We observe that progressive distillation with hard labels performs better than one-shot
distillation at temperatures 1 and 10−4. However, progressive distillation at temperature 1 can
perform worse than one-shot distillation for stronger student. We keep explorations on the effect of
temperature on the algorithms as future work. Here, we use T0

2 -Equal-split progressive distillation
as progressive distillation, where T0 = 8000 is the total number steps used for teacher training.

Ablation with mask rate In Figure 4.29, we compare progressive distillation with one-shot distilla-
tion at different masking rates. We observe that at all masking rates, progressive distillation performs
better than one-shot distillation.

Ablation with difficulty of PCFG In Figure 4.30, we compare progressive distillation with one-shot
distillation with increasing difficulty of the underlying PCFG. The benefit of progressive distillation
over one-shot distillation is influenced by the model’s capacity and the specific PCFG being trained.

4.2.9 Autoregressive training with GPT2

Setting: Similar to experiments on BERT, we train GPT2 models of depth 4 with {8, 16, 32} attention
heads, while keeping the dimension per attention head fixed at 8.

A brief introduction into GPT models: GPT models are trained with the auto-regressive loss. The
teacher and student models operate on sequences of input domain fT : X h → RC and fS : X h → RC,
where the input sequence length h can be arbitrary. Denote the length-h input sequence as x :=
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Figure 4.29: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b at different masking rates using a BERT model with 8 attention heads, per head
dimension 8, and 4 layers. The relative gap between the performance of progressive distillation and
one-shot distillation have been reported on the bar plots. We observe that progressive distillation
performs better than one-shot distillation at all masking rates, with the gap diminishing with
the number of training steps. Here, we use T0

2 -Equal-split progressive distillation as progressive
distillation, where T0 = 8000 is the total number steps used for teacher training.

[x1, · · · , xh], and denote xi:j as the subsequence [xi, · · · , xj] (i.e. the indexing is inclusive on both
ends). The cross entropy loss for next-token prediction training on x is given by

1
h

h

∑
i=1

KL(exi∥pS (x1:i−1))),

where exi denotes a one-hot vector with 1 in xith coordinate. We take a different approach, where we
compare the algorithms at different difficult levels, by training on a subset of tokens in each sequence.
The subsets that we consider are the boundary tokens at different levels of PCFG generation (recall
Figure 4.6).

Formally, if C(ℓ)(x) represents the set of level-ℓ boundary tokens, then we define the cross entropy
loss and the distillation loss corresponding to boundary tokens at any level ℓ of the PCFG as

ℓ(ℓ)(x; fS ) =
1∣∣C(ℓ)(x)∣∣ ∑

i:xi∈C(ℓ)(x)
KL(exi∥pS (x1:i−1)); (4.98)

ℓ
(ℓ)
D (x; fS , fT ) =

1∣∣C(ℓ)(x)∣∣ ∑
i:xi∈C(ℓ)(x)

KL(pT (x1:i−1; τ)∥pS (x1:i−1)). (4.99)

There are a few remarks that need to be made about the above loss function. First, note that the
subsets satisfy the condition C(ℓ1)(x) ⊆ C(ℓ2)(x) for all ℓ1 ≥ ℓ2. Hence, the loss L(ℓ2) includes loss
L(ℓ1) for all ℓ1 ≥ ℓ2 and losses L ∈ {ℓ, ℓD}. Second, L(1) will average the losses at all tokens, which is
the standard auto-regressive loss used in practice to train large language models.

We focus on cfg3f that has 6 levels in the generation process, and we report the behavior of the mod-
els when trained with losses L(2), L(3), L(4), with L ∈ {ℓ, ℓD}. We focus on T0

2 -Equal-split progressive
distillation.

Definitions for Lrobust and Lclose. Similar to our experiments on BERT, we track the change in
the model’s predictions with and without the n-gram context tokens. However, as the model is
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Figure 4.30: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b, cfg3h, and cfg3i at masking rate 30% using BERT models with 8/16 attention heads,
per head dimension 8, and 4 layers. The relative gap between the performance of progressive
distillation and one-shot distillation have been reported on the bar plots. The benefit of progressive
distillation over one-shot distillation is influenced by the model’s capacity and the specific PCFG
being trained. For instance, on cfg3i, the student model can only achieve a top-1 accuracy of 75%.
Progressive distillation reaches this within 2000 steps but fails to improve further, resulting in mini-
mal gains over one-shot distillation when compared with cfg3b. The comparisons are at temperature
τ = 10−4. Here, we use T0

2 -Equal-Split Progressive Distillation as Progressive Distillation, where
T0 = 8000 is the total number steps used for teacher training. Our teacher is a BERT model with 32
attention heads, per head dimension 8, and 4 layers, which doesn’t train on cfg3g and cfg3f, hence
we don’t report the performance of the student on these PCFGs.
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trained autoregressively, we need to change our definitions of Lrobust and Lclose from Equations (4.94)
and (4.95), as well as the definition of n-grams.

For a h length sentence x ∈ vh and for i ∈ [h], we define the n-gram neighboring context around the
ith token as the set of tokens at positions within n− 1 distance to the left from i, i.e. the set {xj} for
i− n < j < i.

For Lclose on a teacher fT and ngram length n, we measure the TV distance between the model’s
probability distributions of the model at any position i when all the tokens at positions 1, 2, · · · , i− 1
are available, and when only the tokens in the neighboring n-gram context window are available (i.e.
at positions i− n + 2, · · · , i− 1)23

Lclose( fT , x, i, n) = TV(pT (x1:i−1), pT (xi−n+1:i−1)). (4.100)

For Lrobust on a teacher fT and an n-gram length n, we measure the total variation (TV) distance
between the model’s probability distributions at any position i, considering two scenarios: one where
all tokens at positions 1, 2, . . . , i − 1 are available, and another where the tokens within the n-gram
context window are masked. However, since the attention mechanism in GPT requires a token at
position i− 1 before it can predict xi and we don’t have a special token to replace the masked tokens,
we cannot remove that specific token from the context. Therefore, we keep the token at position i− 1
intact while masking the other tokens within the n-gram context window. We refer to this modified
approach as “skip n-gram.”

Lrobust( fT , x, i, n) = TV(pT (x1:i)), pT (x{1,··· ,i−n+1,i}))). (4.101)

4.2.9.1 Observations

Teacher’s behavior during training Figure 4.32 shows the loss behavior of a teacher run. We observe
2 distinct phases of training: a rapid loss drop phase in the first 10% of training, and a final phase
of slow loss drop till end of training. In Figure 4.31, we compare the training accuracy behavior
across models of different sizes. At log scale, we observe a very small dormant phase in the training
behavior at the start of training. Larger models transition to the rapid loss drop phase faster than
smaller models and also show a more prominent change in this phase.

Teacher’s checkpoint selection for progressive distillation As outlined in the previous section, we
select the first supervision checkpoint at roughly the middle of the first phase (1/20th fraction of
training), and the other checkpoints are selected at {i/20}20

i=2 fractions of training.

Similar inflection points in loss as BERT and an implicit curriculum:

We observe inflection points in the model’s behaviors at the first selected checkpoint. Similar to our
observations on BERT, we observe a curriculum on the reliance of the model’s predictions on 3-gram
predictions (Figure 4.32). Hence, we check whether progressive distillation can help train a smaller
model faser.

(R7) Progressive distillation helps train smaller model faster In Figures 4.33 and 4.34, we compare
one-shot distillation to T0

2 -Equal-split progressive distillation. We observe that progressive distillation

23others are simply masked out during attention score computation to avoid shifts in position embeddings.
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Figure 4.31: (left to right) Models are trained with the cross entropy loss ℓ(4), ℓ(3), ℓ(2) respectively.
Here, we compare GPT’s training behavior with cross entropy loss on cfg3f with varying numbers
of attention heads (where the embedding dimension scales linearly with the number of attention
heads) over 8 × 103 training steps. Larger models show an earlier and more pronounced increase
in performance compared to smaller models. For reference, each training curve is annotated at the
point where the model reaches 80% of its performance at the final step.

help the student learn faster than one-shot distillation, and the gap diminishes as the students are
trained for longer. However, the gap between progressive distillation and distillation decreases as
more tokens are involved in the loss function i.e. the gap is smaller for loss L(2)

0 compared to loss L(4)
0 .

We conjecture that auto-regressive training with all tokens involved provides a strong curriculum for
the model to learn the structure of the language. We keep a thorough study of this analysis to future
work.

4.2.10 Details on Wikipedia + Books experiments

We use the same hyperparameters for Adam training as our experiments on BERT and PCFG in
Section 4.2.8.5. However, we fix the peak learning rate to 10−4 [Devlin et al., 2018b] in each case to
minimize computation costs.
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Figure 4.32: Experiments on GPT: Behavior of teacher model when trained on cfg3f with cross
entropy loss: ℓ(3). We observe two distinct phases; (2) a rapid drop in loss phase, and (3) slow drop
in loss till end of training. The rapid loss drop phase signifies a transition phase for the model,
similar to one we observed for hierarchical boolean data (Section 4.2.2). All selected checkpoints for
progressive distillation are marked by triangles. The first teacher checkpoint is roughly picked at the
center of the second phase. The rest of the checkpoints are picked at training steps that are multiples
of the first one. (b) and (c) show inflection points in the teacher’s predictions with full context and
with/without n-gram contexts at the selected checkpoint.
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Figure 4.33: Experiments on GPT (Left to right) for an 8- attention head model at different losses.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that
progressive distillation outperforms one-shot distillation at all training sample budgets, with the gap
diminishing with increasing training sample budget. The gap between progressive distillation and
distillation decreases as the number of tokens involved in the loss function increases i.e. the gap is
smaller for loss L(2)

0 compared to loss L(4)
0 .

275



2000 4000 6000 8000
Number of Training steps

80

85

90

95

To
p-

1 
Ac

cu
ra

cy

one-shot
progressive

(a) Loss: ℓ(4)D

2000 4000 6000 8000
Number of Training steps

86

88

90

92

To
p-

1 
Ac

cu
ra

cy

Name
one-shot
progressive

(b) Loss: ℓ(3)D

2000 4000 6000 8000
Number of Training steps

82

83

84

85

To
p-

1 
Ac

cu
ra

cy

one-shot
progressive

(c) Loss: ℓ(2)D

Figure 4.34: Experiments on GPT (Left to right) for a 16-attention head model at different losses.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that
progressive distillation outperforms one-shot distillation at all training sample budgets, with the gap
diminishing with increasing training sample budget. The gap between progressive distillation and
distillation decreases as the number of tokens involved in the loss function increases i.e. the gap is
smaller for loss L(2)

0 compared to loss L(4)
0 .
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Figure 4.35: The experiments above compare progressive distillation and one-shot distillation
for PCFGs cfg3h, cfg3g, and cfg3f on GPT models with 8 attention heads (each head having a
dimension of 8) and 4 layers. The models were trained using the distillation loss L(3)

0 . The relative
performance gap between progressive and one-shot distillation is presented in the bar plots. Notably,
the advantage of progressive distillation over one-shot distillation depends on the specific PCFG
being trained. For example, with cfg3f, the student model can achieve beyond 90% top-1 accuracy,
and progressive distillation allows it to reach this more quickly. In contrast, for cfg3g, the student
model’s top-1 accuracy plateaus at 84%, and after 500 steps, progressive distillation shows only
marginal gains over one-shot distillation. All comparisons were made at a temperature τ = 10−4.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation, where T0 = 8000
denotes the total number of steps for teacher training. The teacher model is a GPT with 32 attention
heads, each with a dimension of 8, and 4 layers.
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