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Abstract

Reinforcement learning (RL) focuses on an essential aspect of intelligent behavior — how
an agent can learn to make good decisions given experience and rewards in a stochastic
world. Yet popular RL algorithms that have enabled exciting successes in domains with
good simulators (Go, Atari, etc) still often fail to learn in other domains because they rely on
simple heuristics for exploration. This provides additional empirical justification for essential
questions around RL, specifically around algorithms that learn in a provably efficient manner
through strategic exploration in any considered domain. This thesis provides new algorithms
and theory that enable good performance with respect to existing theoretical frameworks for
evaluating RL algorithms (specifically, probably approximately correct) and introduces new
stronger evaluation criteria, that may be particularly of interest as RL is applied to more real
world problems.

For the first line of work on probably approximately correct (PAC) RL algorithms, we
introduce a series of algorithms for episodic tabular domains with substantially better PAC
sample complexity bounds that culminate in a new algorithm with close to minimax optimal
PAC and regret bounds. Look up tables are required by most sample efficient and computa-
tionally tractable algorithms, but cannot represent many practical domains. We therefore also
present a new RL algorithm that can learn a good policy in environments with high dimensional
observations and hidden deterministic states; unlike predecessors, this algorithm provably
explores not only in a statistically but also computationally efficient manner assuming access
to function classes with efficient optimization oracles.

To make progress it is critical to have the right measures of success. While empirical
demonstrations are quite clear, we find that for theoretical properties, two of the most commonly
used learning frameworks, PAC guarantees and regret guarantees, each allow undesirable
algorithm behavior (e.g. ignoring new observations that could improve the policy). We present
a new stronger learning framework called Uniform-PAC that unifies the existing frameworks
and prevents undesirable algorithm properties.

One caveat of all existing learning frameworks is that for any particular episode, we do not
know how well the algorithm will perform. To address this, we introduce the /POC framework
that requires algorithms to provide a certificate before each episode bounding how suboptimal
the current policy can be. Such certifications may be of substantial interest in high stakes
scenarios when an organization may wish to track or even pause an online RL system should
the potential expected performance bound drop below a required expected outcome.
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Chapter 1

Introduction

1.1 Motivation

Reinforcement learning (RL) is a branch of machine learning that studies sequential decision making under
uncertainty and provides a general framework for many practical problems in artificial intelligence. In the
basic RL setup, an agent interacts with an uncertain environment in order to perform a task by taking a
sequence of actions. Reinforcement learning provides algorithmic tools to optimize the agent’s strategy to
perform the given task. There have been impressive recent empirical successes propelled by deep learning
which demonstrate that reinforcement learning can solve challenging tasks. These include playing a range
of Atari video games (Mnih et al., 2015), achieving human-level performance in Go (Silver et al., 2017) or
beating professional players in Starcraft II (Vinyals et al., 2019). But the potential applications of RL go
beyond games. It is a natural framework for optimizing recommender systems, e.g., for news (Li, Chu, et al.,
2010) or videos (Chen et al., 2019), but also for optimizing adaptive treatments in health-care (Lei et al.,
2012), dialog systems (Singh et al., 2002) or instruction schedules in intelligent tutoring systems (Atkinson,
1972; Mandel et al., 2014).

When designing reinforcement learning algorithms, we typically face three main challenges: general-
ization, partial feedback, and long-term implications (see Figure 1.1):
Generalization: Generalization means that we want our agent to act well in situations it never encountered
before by generalizing from experience in similar situations. This is achieved by building on function
approximation techniques from supervised machine learning, where generalizing from samples in the
training data set to new samples in the text data set is a key challenge.
Partial feedback: Unlike in supervised learning where each training sample comes with the desired output,
the agent does not get to know which action it should have taken after each interaction. The only feedback
is a scalar reward which indicates how good the chosen action was, but no feedback on other actions. This
partial feedback necessitates to explore different actions in order to learn about them.
Long-term implications: The final challenge is that consequences of a single action are not entirely cap-
tured by the immediate reward feedback but there can be long-term implications. For examples, deciding to
undergo surgery causes risk and discomfort for the patient (low immediate reward) but will significantly
improve the long-term health (high reward at later times). For this reason, a good reinforcement learning
system must optimize for long-term total reward which is challenging as feedback can be severely delayed.
This is sometimes also referred to as credit assignment challenge in RL because the agent must figure out
which prior actions causes current feedback.

Many of the impressive empirical applications of reinforcement learning successfully address the
generalization and partial feedback challenges. This includes large-scale services such as the Decision
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Generalization

Supervised learning

Contextual
bandits

Large-scale
planning

RL with rich
observations

Multi-armed
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RL with
generative
model

Tabular RL

Partial feedback Long-term consequences

Figure 1.1: Main challenges in reinforcement learning define a landscape of different problems settings.

Service (Agarwal, Bird, et al., 2016) which explicitly ignores long-term consequences by modeling the
decision problem as a so-called contextual bandit. Other successful empirical RL works, especially those
leveraging deep learning techniques like Mnih et al. (2015), do consider delayed consequences but become
very data-inefficient as the delay becomes longer. This is because they rely on heuristics to explore the
effect of actions. For example, Mnih et al. (2015) uses e-greedy exploration where the agent flips a
biased coin before each action and with probability € picks an action uniformly at random. This strategy
works very well empirically (Bietti, Agarwal, and Langford, 2018) in bandit problems without long-term
consequences but is also known require exponentially many interactions to learn long-term effects of
actions (see for example Section 4 of Osband, Van Roy, Russo, et al. (2017) for an illustration). As a result,
these approaches fail to learn good policies even with excessive amounts of data when long-term effects of
actions are essential, e.g., in the Atari game Montezuma’s revenge. There are several empirical efforts to
more efficient exploration (e.g. through reward bonuses, see below) but problems with long-term effects
remain a challenge.

If we want to unleash the full potential of reinforcement learning, we need algorithms that can deal in a
principled efficient manner with long-term effects (as well as partial feedback and generalization). Many
important applications have long-term consequences, including the following examples:

¢ Architecture Search (Zoph and Le, 2016): Searching for a good architecture of a neural network
machine learning model can be formulated as a reinforcement learning task. Here, the agent incre-
mentally defines an architecture (each action decides on an additional component) and only receives
a non-zero reward (the performance of the architecture on a certain task) when the architecture is
fully defined.

¢ Optimize User Engagement in Recommender Systems (Chen et al., 2019): Deciding what prod-
ucts to recommend to a user on a shopping platform or what songs/videos on a streaming platform is
a reinforcement learning problem with long-term effects. While recommending music that is very
similar to what the user usually listens is most engaging n the short-run, helping the user to develop
a taste for an entirely different genre can be more beneficial on the long-run.

¢ Sustainable Yield Optimization in Agriculture (Binas, Luginbuehl, and Bengio, 2019): When
modeling the control of plants in agriculture to maximize the long-term yield, long-term effects can

2



be crucial. For example, deciding to plant seedlings very densely can seem very promising for an
extended amount of time until the plants eventually become too large and do not grow to their full
potential due to limited space and nutrients.

¢ Treatment Optimization in Personalized Health Care (Liu et al., 2018): When optimizing the

long-term well-being of individuals long-term effects are abundant. Take starting to exercise or

undergoing coronary bypass surgery as an example. Both lead to short-term risk and discomfort but

eventually improve long-term well-being.
These applications are also examples where sample-efficiency is key for successful reinforcement learning
methods. That means the algorithm should learn to perform the task with as few interactions as possible.
Compared to the cost of simulating a game of Go, chess or even Star Craft II, the costs for obtaining
samples in these applications is significantly higher, ranging from excessive computational costs for training
and evaluating a neural network architecture, over physical resources required for farming, to harming
patients in health care applications. Especially in high-stakes applications that involve humans, our goal
should be algorithms that are as sample-efficient as possible in a provable or at least reliable manner.

However, sample-efficiency alone is not sufficient for successful RL methods in high-stakes applications.

Unlike in supervised learning, the performance of an RL algorithm is typically not monotonically increasing
with more data due to the trial-and-error nature of RL that necessitates exploration. Even sharp drops in
performance during learning are common, e.g., when the agent starts to explore a new part of the state
space. We argue that RL methods should be accountable, which means that they can predict when such
performance drops can happen. This allows domain experts to intervene or fallback systems to be triggered
if necessary. For example, in the treatment optimization application listed above, a human doctor could be
consulted if the RL algorithm is cannot ensure the performance of its treatment strategy for a particular
patient.

1.2 Near-Optimal Sample-Efficiency and Accountability in Episodic RL

The goal of this dissertation is to make reinforcement learning more sample-efficient and accountable so
that it becomes more suitable for real-world high-stakes applications such as the ones listed above. We
focus on episodic reinforcement learning problems where the interaction between environment and agent
happens in episodes of fixed number of decisions. This is a natural fit for many applications involving
humans, e.g., one episode corresponds to treating one patient, to a web session of a customer or to teaching
a certain topic to a student in automated tutoring systems.

Sample-efficient learning in tasks with long-term consequences as those above requires algorithms to
explore the effects of actions is a strategic way that takes the long-term effects after multiple time steps
into account. We refer to such exploration as strategic exploration (Dann, Jiang, et al., 2018; Dann, Li,
etal., 2019; Du et al., 2019; Sun et al., 2018) but it can be found under many names in the literature: deep
exploration (Osband, Blundell, et al., 2016), systematic exploration (Jiang, Krishnamurthy, et al., 2017;
Houthooft et al., 2016), temporally-extended exploration (Osband, Blundell, et al., 2016) or sample-efficient
exploration (Dann and Brunskill, 2015). There are two main principles to reliable strategic exploration:
optimism in the face of uncertainty (OFU) principle (Auer, Cesa-Bianchi, and Fischer, 2002) and Thompson
(posterior) sampling (Russo, Van Roy, et al., 2018). While there are other principles such as information
directed sampling (Russo and Van Roy, 2014), optimism in the face of uncertainty and Thompson sampling
have gained the most trust and acceptance in RL research through two main pillars:

¢ Theoretical guarantees about their sample-efficiency, mostly in simplified settings like multi-armed

bandits and tabular reinforcement learning where no generalization is necessary.
For OFU algorithms this includes Strehl and Littman (2005), Auer and Ortner (2005), Auer, Jaksch,
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and Ortner (2009), Azar, Osband, and Munos (2017), and Jiang, Krishnamurthy, et al. (2017) and
for Thompson-sampling algorithms see Osband, Russo, and Van Roy (2013), Osband and Van Roy
(2017), and Russo (2019).

¢ Approximate implementations of these principles with empirical evaluations demonstrating that they
can learn good policies in more complicated problem settings where the agent has to learn from rich
observations such as images or text.
In the case of Thompson sampling this includes exploration via randomized value functions (Osband,
Blundell, et al., 2016; Osband, Van Roy, Russo, et al., 2017). The OFU principle is typically
implemented through reward bonuses (Tang et al., 2017; Bellemare et al., 2016; Ostrovski et al.,
2017; Burda et al., 2018)

The work in this dissertation provides a step towards more sample-efficient and accountable rein-
forcement learning by advancing the understanding of theoretical performance guarantees and strategic
exploration. We contribute to both pillars above, with a focus on the first. To gain insight, we first leave
generalization aside, and analyze in this dissertation tabular reinforcement learning in episodic Markov
decision processes (MDPs) where the agent does not need to generalize across observations and can simply
store all necessary information in look-up tables (hence the name tabular).

A key challenge in designing strategic exploration approaches is that the algorithm has to reason about
its uncertainty about the environment and how this translates into a policy (strategy for taking actions). This
policy should both achieve good performance (exploitation) and help to reduce the algorithm’s uncertainty
(exploration). While uncertainty in Thompson sampling algorithms is simply the Bayesian belief, it is
often non-trivial how to computationally represent and update this Bayesian belief. OFU algorithms have
the issue that one has to explicitly derive a representation of the uncertainty and the more accurate this
representation, the more sample-efficient the resulting algorithm is (Osband and Van Roy, 2017). The
first optimistic algorithms represented this uncertainty as a binary sets of known state-action pairs and
unknown state-action pairs (Brafman and Tennenholtz, 2002) while later approaches (Strehl and Littman,
2008; Auer and Ortner, 2005) used confidence sets around the environment parameters: the average
instantaneous reward as well as the transition probabilities to each successor state in all states and actions.
Such representations yield algorithms that do not scale well with the problem size, namely number of states
and horizon (number of decisions per episode). More precisely, for the episodic setting we consider, there
were only a few methods that achieve a sample-complexity (roughly speaking the number of episodes until
a good policy is found) that is polynomial in the problem size and their order are high.

This dissertation provides several insights on how to better represent uncertainty in OFU algorithms in
episodic tabular MDPs which yields more sample-efficient strategic exploration. First, we leverage empirical
Bernstein concentration bounds to more tightly quantify the uncertainty of the transition probabilities.
This yields a theoretical algorithm that scales optimally with horizon. Second, to improve scaling with
the number of states, we directly bound the uncertainty of average optimal next state value instead of the
transition probabilities. It turns out this is more accurate (tighter confidence set) and still sufficient for
determining the agent’s next policy. While Azar, Osband, and Munos (2017) developed an algorithm that
combines both of these insights, its sample-complexity does not quite scale optimally with the number of
states and horizon. We address this by incorporating a final insight: we not only quantify the uncertainty
over the optimal value function (expected rewards to go) but also the uncertainty of the algorithm’s currently
achieved value function. This results in an optimistic algorithm with sample-complexity that is minimax-
optimal (best achievable for the worst-case scenario) in the dominating terms. Interestingly, this final
insight was developed by aiming to improve accountability and not necessarily sample-efficiency.

While the benefit of empirical comparisons on benchmark problems are often clear, one should not
underestimate the importance of theoretical analyses that yield guarantees. There is growing awareness
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that evaluations on a restricted set of benchmarks can sometimes leads to irreproducible results (Henderson
et al., 2017) and unlike empirical evaluations which are by nature limited to a finite (small) set of tasks,
theoretical learning guarantees can inform us about the performance of an algorithm on any task in the
considered problem class. As such they can be a helpful tool for comparing algorithms and can provide
insights that help us design improved algorithms. However, for these guarantees to be meaningful, we
need to ensure that they measure all aspects of the algorithm’s behavior that we care about. As we will
highlight in this dissertation, both PAC and regret bounds (Kearns and Singh, 2002; Auer, Jaksch, and
Ortner, 2009), the two most common types of sample-efficiency guarantees have blind-spots. That means
there are algorithms that enjoy good guarantees in these frameworks but still exhibit undesirable behavior
such as not converging to the optimal policy. We address these issues by introducing new, stronger types of
guarantees and use them for our new algorithms. This includes a learning framework that not only ensures
that the algorithm deploys better and better policies but that it also can certify online how good the current
policy is. This is the first step towards such online certificates with guaranteed accuracy in reinforcement
learning.

These insights into quantifying uncertainty in optimistic algorithms and theoretical guarantees have
demonstrated how to do reinforcement learning with near-optimal sample-efficiency and accountability in
tabular episodic tasks. However, our understanding of how to do provably sample-efficient reinforcement
learning is much more limited in problems where a succinct state representation is not given and the
algorithm has to work with rich observation such as images or texts. We show in this thesis that there are
significant computational challenges with strategic exploration in rich observation settings. On the negative
side, we show that OLIVE (Jiang, Krishnamurthy, et al., 2017), the only known algorithm with provably
polynomial sample-efficiency in a large class of rich observation problems, is computationally intractable
and we provide a first step to alleviate this issue by proposing an new algorithm that is both statistically and
computationally efficient in a more restricted class of rich observation problems.

1.3 Thesis Statement

The central thesis of this dissertation is that simple reinforcement learning algorithms with strategic
exploration through carefully designed reward bonuses are provably near-optimally sample-efficient and
accountable in finite episodic Markov decision processes. We demonstrate how to design such reward
bonuses by leveraging the decision process structure and introduce new types of performance guarantees
for sample-efficiency and accountability. These guarantees not only subsume existing learning frameworks
like PAC and regret but also guarantee that algorithms are accountable by accurately certifying their current
performance online. For environments beyond those with finite state spaces, we provide new insights into
the computational difficulty of strategic exploration.

1.4 Organization

Chapter 2 covers some background on Markov decision processes and episodic reinforcement learning and
introduces the common types of sample-complexity guarantees.

Chapter 3 introduces our analysis of sample-complexity of episodic MDPs with finite state and action
spaces (Dann and Brunskill, 2015). We prove a lower bound on the (worst-case) sample-complexity
achievable by any algorithm and provide an algorithm with a sample-complexity bound that matches the
lower bound up to a factor in the size of the state space and log-factors.

In Chapter 4 we discuss the existing performance guarantees, regret and PAC (probably approximately
correct) bounds and show that they are inherently incomparable and each allow undesirable algorithm



behavior. We further propose a new type of learning guarantee, Uniform-PAC bounds, which are stronger
than both regret and PAC bounds (Dann, Lattimore, and Brunskill, 2017). In fact, a Uniform-PAC bound
implies both a strong PAC and regret bound and prohibits undesirable algorithm behavior allowed by
either existing guarantee. To demonstrate these benefits, we provide a simple algorithm with a strong
Uniform-PAC bound that empirically outperforms other algorithms with known sample-complexity bounds.

While Uniform-PAC bounds address many issues of previous guarantees, it also does not provide
a guarantee on the performance of a policy in a single episode. We aim to address this short-coming
by proposing stronger /POC (Individual policy certificates) guarantees in Chapter 5. In this learning
framework, the algorithm is required to output an upper bound on the suboptimality of the policy it is about
to execute before each episode. This not only allows the user to intervene in high-stakes applications but
also extract good policies at any time from the algorithm. We demonstrate this with an algorithm called
ORLC for episodic finite MDPs that leverages lower-confidence bounds to provide certificates in addition to
the upper confidence bounds that guide exploration. It turns out that this is a key insight that also improves
sample-efficiency and allows us to prove IPOC, regret and PAC bounds that are smaller that any prior work
and minimax-optimal up to lower-order terms.

In Chapter 6 we move from tabular problems to working on how to implement strategic exploration in
problems with rich observations. We present VALOR, an algorithm for reinforcement learning in episodic
reactive POMDPs with rich observations and deterministic hidden state dynamics (Dann, Jiang, et al.,
2018). Unlike predecessors this algorithm not only enjoys a polynomial sample-complexity bound but
is also provably computationally tractable in an oracle-model. Here, we assume that linear programs
for the chosen value function class and cost-sensitive classification problems for the policy class can be
solved efficiently. We hope that this work is a step toward provably sample- and computationally-efficient
reinforcement learning with function approximation and provides insights into extending this work to more
general problem settings.

1.5 Summary of Contributions

¢ Chapter 3: We quantify the difficulty of reinforcement learning in tabular episodic MDPs by proving
a lower bound for problem-independent PAC guarantees in this problem class. This bound is tight up
logarithmic terms.

¢ Chapter 3: We propose an optimism-based algorithm for tabular episodic MDPs and prove a PAC
bound with optimal dependency on the episode length (up to log-terms).

e Chapter 4: We quantify to what extend regret and PAC bounds can be converted to each other in
episodic problems.

¢ Chapter 4: As regret and PAC are not easily convertible and each allow undesirable algorithm
behavior, we introduce a new framework for learning guarantees called Uniform-PAC. We prove that
it is stronger than existing prevalent frameworks, including Mistake-PAC and regret.

¢ Chapter 4: We propose a simple optimism-based algorithm for tabular episodic MDPs and prove
that is has a Uniform-PAC bound.

e Chapter 5: We propose that algorithms output policy certificates during learning to make them
more accountable and introduce a new framework for providing learning guarantees that also ensure
accuracy of learning guarantees. This framework called IPOC is stronger than existing frameworks,
including Uniform-PAC and supervised-style PAC bounds.

¢ Chapter 5: We propose a simple optimistic algorithm that not only maintains upper confidence
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1.6

bounds but also lower confidence bounds. We then prove that this technique allows it to achieve
minimax-optimal IPOC, PAC and regret bounds up to lower-order terms.

Chapter 6: We prove that the only known statistically efficient algorithm for general problems with
rich observation spaces (problems with so-called low Bellman rank) is computationally intractable,
even when applied to tabular MDPs.

Chapter 6: We propose a new algorithm called Valor for reinforcement learning for sub-class of
problems with rich observations (whose underlying unobserved states transition deterministically).
We show that this algorithm is not only statistically efficient but can also be implemented efficiently
with standard optimization oracles.

Excluded Work

This dissertation contains my main line of work on provably sample-efficient and accountable reinforcement
learning. I have contributed to other works during my PhD studies which are to varying extent beyond this
scope. These works are:

Reinforcement learning with strategic exploration for risk-averse return objectives like conditional
value-at-risk. This work is the basis for future work on providing policy certificates for criteria
beyond expected return:

Ramtin Keramati, Alex Tamkin, Christoph Dann, and Emma Brunskill. “Being Optimistic to Be
Conservative: Quickly Learning a CVaR Policy”. In: in preparation (2019)

Provably sample-efficient reinforcement learning in stopping problems:

Karan Goel, Christoph Dann, and Emma Brunskill. “Sample efficient policy search for optimal stop-
ping domains”. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press. 2017, pp. 1711-1717

Analytical tool for determining how much history (information from observations before the current)
an observed behavior policy uses which can help to learn policies faster by restricting the policy
class to this amount of history:

Christoph Dann, Katja Hofmann, and Sebastian Nowozin. “Memory Lens: How Much Memory
Does an Agent Use?” In: arXiv preprint arXiv:1611.06928 (2016)

New class of natural gradient algorithms that leverage more information than classic natural gradient
techniques which rely on the Fisher information matrix:

Philip Thomas, Bruno Castro Silva, Christoph Dann, and Emma Brunskill. “Energetic natural
gradient descent”. In: International Conference on Machine Learning. 2016, pp. 2887-2895

Generalization of the natural gradient algorithm idea beyond algorithms that follow the gradient
direction, such as algorithm with momentum:

Philip Thomas, Christoph Dann, and Emma Brunskill. “Decoupling Gradient-Like Learning Rules
from Representations”. In: International Conference on Machine Learning. 2018, pp. 4924-4932

Improving gernalization performance of Gaussian process regression by learning a kernel from
human predictions:

Andrew G Wilson, Christoph Dann, Chris Lucas, and Eric P Xing. “The human kernel”. In: Advances
in neural information processing systems. 2015, pp. 2854-2862

Fast scalable inference and training for Guassian processes:
Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. “Thoughts on massively scalable
Gaussian processes”. In: arXiv preprint arXiv:1511.01870 (2015)
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¢ Algorithm for automated matching of detected defects in pipeline inspections (application work):
Markus R Dann and Christoph Dann. “Automated matching of pipeline corrosion features from
in-line inspection data”. In: Reliability Engineering & System Safety 162 (2017), pp. 40-50



Chapter 2

Background on Episodic Reinforcement
Learning and Notation

We first introduce the formal problem setting considered in Chapters 3 — 5 and then define additional
helpful notation. The setting in Chapter 6 is substantially more general asking for different notation, which
we introduce there when needed.

2.1 Episodic Finite-Horizon Markov Decision Processes

A Markov decision process or short MDP is a random process which formalizes sequential decision
making of an agent interacting with an environment (Puterman, 1994). This dissertation focuses on the
episodic finite horizon version of this process, called episodic fixed-horizon MDP defined by a tuple
M = (S,.A,R, P,po,H).
e The state space S is a set of states that the process can generate. We assume this set is finite of size
S and without loss of generality set S = {1,2,...,S}.

e The action space A is a set of actions the agent is allowed to take after observing the state. Similar
to the state space, we assume this is a finite set of size A, thatis, 4 = {1,2,..., A}.

® The reward distribution R : S x A — P|g 1) is a mapping from states and actions to distributions
with support [0, 1]. For their expected value, we use (s, a) = E, g (sq)[r]-

e The transition distribution or next state distribution P : & x A — Ps maps state and action pairs
to distributions over states. We use P(s'|s, a) to mean the probability that s is the successor state of
s when action a was taken.

o The initial state distribution py € Pgs is a distribution over states which the process is initialized to
at the beginning of each episode.

e The horizon H € N is the number of time steps in each episode ("length” of the episode).
The process specified by the MDP describes an episodic interaction of an agent with an environment. We
typically use k to index episodes and at the beginning of each episode £, the initial state s 1 ~ pg is drawn
from pg. For each time step within the episode (typically indexed by t or H), the agent observes state
skt € S and takes an action a; € A. It then receives a reward 74, ; ~ R(sk ¢, ax,) and observes the state
Skt+1 ~ P(sky, ag,e) of the next time step ¢ 4 1. This interaction loop continues for a total of H time steps
before the next episode k£ + 1 begins. For notational convenience, we assume that the agent still observes
the H + 1th state in the episode sj g1 but then there is no following interaction. Formally, each episode
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k is a sequence (Sk. 1, Qk,1, Tk 1, Sk,2> Qk,2, Tk,2s - - - Sk H s Ok, H> Tk, H» Sk,H+1)-

Expected total reward and return. The objective for the agent is to play actions that maximize the
total expected reward in the episode E [Zi L Thtlag e ~ 7I':| which depends on how actions are taken. The

policy of the algorithm formalizes the strategy with which the agent picks the actions given all observations
so far. It is well known that there is always a deterministic Markov policy that maximizes the total expected
reward (Puterman, 1994). These policies simply pick the action as a function of the current state and
time step Il : S x [H] — A where [H] = {1,2,... H}. Itis useful to interpret reinforcement learning
algorithms as learners of these deterministic policies. Formally, we can write the total expected reward as a
function of the algorithm’s (current) policy 7 € II

p(r) =E

H
Zrk,t’akyt = W(Skytvt)] )

t=1

where £k is arbitrary as the total expected reward is identical across episodes as long as the algorithm follows
the same policy. Below, we omit the episode index %k and only use the time step when the episode index is
arbitrary for readability. The quantity Zfi 1 Tkt 1s also known as return and p(7) as the expected return of
policy 7.

Value functions and optimal policies. The value function V;" and Q-function Q7 of a policy at time
step h € [H] are defined as

H
Vi(s)=E ZTt Sh =8, @h:H NW]
t=h
H
Q;{(S,a) =K Tt | Sh =8, ap = G, Ap4+1:H ~~ 77]
t=h

where we use the notation ap. ;7 ~ 7 to mean that all actions ap, ap+1, - - . ag to be taken according to T,
thatis a; = 7(s¢, t) fort € {h,h+1,... H}. These functions tell us how much total reward a policy is
expected to achieve until the end of the episode from a certain state or state-action pair. Value functions
satisfy the following relations

Vi (s) = Qp(s,m(s, h))
Qn(s,a) =E [rp + Vil (sn41) | s = s, an = d]
=7(5,0) + Eypsa) [Via(s)] = 7(s,a) + P(s,a) V1. (2.1)

It is understood here that V7 ;(s) = 0 for all s € S and we use a handy notation that interprets
P(s,a)f := 3 ycs P(s'|s,a)f(s") as a linear functional that maps state functions f : S — R to reals R.
To write Equation (2.1) even more concisely, we often even omit the state and action inputs and write it in
the functional form as

Qn =1+ PVii,.

The expected return p(7) of a policy is simply the value function of the initial states, that is p(7) =
Esnpo [VI"(5)]-
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We call a policy optimal if it achieves the maximum value for all time steps and states. That is 7* is
optimal if and only if

Vi™ (s) = max V;T(s) VhelH],seS.

There always exist an optimal policy that is deterministic and Markov (Puterman, 1994), but optimal
policies are not necessarily unique. Their values are unique, however, and we use the following short-hand
notations for these optimal value- and Q-functions

Vi = max Vi Q= max Q7.
The optimal value function also satisfy the following identity, known as Bellman equation,
Qh(s,a) =r(s,a) + P(s,a)Vi
Vi (s) = max Qi (s,0).

This relation allows us to see an alternative definition of optimal policies: The set of optimal policies is
exactly the set of greedy policies for Q*, i.e., those that pick an action from argmax,c 4 @} (s, a) in each
state s and time step h. The Bellman equation also gives us a means to compute the optimal Q and value
function for a given MDP by dynamic programming: Start by computing Q7;(s,a) forall s € S,a € A,
then V};(s) for all s € S and then move on to earlier time steps, Q3 _1, Vii_1, Qfr—o: Vii_o - - - until QF
and V7*. Computing the optimal values and policy for a given MDP where we have full access to the reward
distributions and transition probabilities is also known as planning which is in contrast to reinforcement
learning.

2.2 Problem Setting: Reinforcement learning in episodic fixed-horizon MDPs

The main problem setting in this dissertation is reinforcement learning in tabular episodic finite-horizon
MDPs. Here an agent interacts with an environment as prescribed by an episodic finite-horizon MDP (see
above). The agent is assumed to

¢ know the state space S, action space .4 and time horizon H

¢ does not know the transition distribution P, initial state distribution py and reward distribution R.
The agent can only learn about these distributions through interaction. The agent’s goal is to learn good
policies as quickly as possible through interaction. This informally stated objective is interpreted in
several ways in the existing literature. It is most natural to contrast these different view-points by comparing
the formal evaluation criteria or performance guarantees used for algorithms in those viewpoints, which we
will do in the next section.

2.3 Existing Theoretical Learning Guarantees

Before discussing the different formalizations and evaluations of reinforcement learning, it is useful to
introduce some helpful notation. The optimal (expected) return is the best achievable expected return
p* = max, ¢y p(7) and a reference point for any algorithm. We use 7, to denote the policy played by
algorithm in the k-th episode. The optimality gap is then defined as the difference between best and

achieved expected return
H

E Tkt

t=1

CLkﬂg = ﬂ*(Sk’t, t) —E

H
Ap = p* — p(my) =E [Z o
t=1

Akt = Wk(sk,tat)] .
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It is important to note that this assumes that the algorithm follows a fixed policy for the entire episode and
that the optimality gap measures the expected difference in the sum of rewards given the algorithm’s policy.

2.3.1 Probably-Approximately Correct (PAC) Learning

Probably-approximately correct (PAC) learning was introduced by Valiant (1984) in the context of super-
vised learning. It is primarily concerned with the sample-complexity of a machine learning algorithm. In
the context of supervised learning, the sample-complexity tells us the following: Given a fixed desired
accuracy € > 0 and a failure tolerance § > 0, the sample-complexity is the number of training samples
required by the algorithm to guarantee that its predictor has test error at most € with probability at least
1—4. An algorithm is said to PAC-learn a concept class (like bounded linear functions of certain dimension)
if it has polynomial sample-complexity in 1 /e and 1/6. Formally this also requires the algorithm to have
polynomial computational complexity but this condition is often ignored. There are two main adaptations
of sample-complexity and PAC learning to reinforcement learning:

Supervised-style PAC bounds The first is what we call supervised-style PAC bounds. Here, the learning
protocol is as follows: The learning algorithm gets as input a desired accuracy € and failure probability
0. It then interacts with the environment until it decides to stop and return a policy 7. With probability at
least 1 — ¢, this policy has to be e-optimal, i.e., p(7) > p* — € and the number of episodes (or total number
of time steps) the algorithm interacted with the environment is called sample-complexity. A PAC bound
is a polynomial upper-bound on the sample-complexity and in the case of episodic finite MDPs depends
on the number of states .S, the number of actions A, the episode length H, the inverse accuracy 1/e and
inverse failure probability 1/J. A slightly alternative version of this protocol is where the algorithm does
not explicitly stop but continues to a play policies indefinitely that are guaranteed to be at least e-optimal
with high probability. As long as the algorithm knows its sample-complexity, this is an equivalent notion.
We make this version for our problem setting concrete with the following definition:

Definition 1 (Supervised-style PAC bound). An algorithm satisfies a supervised-style PAC bound F'(1/¢,1/6, . ..)
if for a given input €, 0 > 0, it satisfies the following condition for any episodic fixed-horizon MDP. With
probability at least 1 — 6, the algorithm plays only policies that are at least e-optimal after at most I
episodes. That is, with probability at least 1 —

max{k € N : Ay > e} < F(1/e,1/4,...),

where F' is a polynomial that can depend on properties of the problem instance.
Supervised-style PAC bounds are for example used by Kearns and Singh (2002), Brafman and Tennen-
holtz (2002), and Jiang, Krishnamurthy, et al. (2017) and in Chapter 6 for the VALOR algorithm.

Mistake-style PAC bounds The second type of PAC bounds are slightly weaker and more popular than
supervised-style PAC bounds and have a flavor of mistake bounds. As before, the algorithm gets as input
a desired accuracy e and failure probability §. It then interacts with the environment forever. Here, the
sample-complexity is the number of episodes the algorithm may not follow a policy that is at least e-optimal
with probability at least 1 — §. As before, mistake-style PAC bounds are polynomial upper-bounds on this
notion of sample-complexity. This notion of PAC bound is weaker as it does not prescribe when “mistakes”
— an episode with optimality gap A > ¢ — happen while supervised-style PAC bounds prescribe that
mistakes need to happen in the beginning.

Definition 2 (Mistake-style PAC bound). An algorithm satisfies a mistake-style PAC bound F'(1/¢,1/4,...)
if for a given input €, > 0, it satisfies the following condition for any episodic fixed-horizon MDP. With
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probability at least 1 — 0, the algorithm plays policies that are not at least e-optimal in at most F' episodes.
That is, with probability at least 1 — §

o0

> 1{Ap > e} < F(1/e,1/5,...),

k=1

where F' is a polynomial that can depend on properties of the problem instance.

Examples of mistake-style PAC bounds in reinforcement learning include Strehl, Li, Wiewiora, et al.
(2006), Strehl, Li, and Littman (2009), Szita and Szepesvari (2010), and Lattimore and Hutter (2012) as
well as our first sample-complexity result for episodic fixed-horizon MDPs in Chapter 3.

2.3.2 No-Regret Learning

Using regret as an evaluation criterion for algorithms originates in online learning (Mohri, Rostamizadeh,
and Talwalkar, 2018). For episodic reinforcement learning, the most commonly used definition of regret is
the cumulative sum of optimality gaps. That is, the regret of an algorithm after T" episodes is

T T

R(T) =Y Ap=Tp" =) p(m).
=1

k=1 k

If R(T) is sub-linear in T, i.e., the average suboptimality goes to zero, R(T)/T — 0, one calls the
algorithm a no-regret learner. One can distinguish two learning protocols. In the first, the algorithm receives
the T as an input and interacts with the environment of exactly 1" episodes. In the second, 7" is not provided
and the algorithm continues to interact with the environment indefinitely. It is important to realize that the
regret R(7T') is a random quantity because, even though it considers expected sum of rewards per episode
given the policy, the sequence of policies 71, ..., 7w is random. This gives rise to different notions of
regret bounds:

Definition 3 (Expected regret bound). An algorithm satisfies an expected bound F (T, . ..) if it satisfies for
any episodic fixed-horizon MDP the following condition. The expected regret is bounded for all T' € N as

E[R(T)] < F(T,...) VTeN

where F' can depend on properties of the problem instance.

Definition 4 (High-probability regret bound). An algorithm satisfies a high-probability regret bound
F(T,1/6,...) if for a given input T € N it satisfies for any episodic fixed-horizon MDP the following
condition. With probability at least 1 — §, the regret after T episodes is bounded as

R(T) < F(T,1/5,...)

where F' can depend on properties of the problem instance.

Definition 5 (Uniform high-probability regret bound). An algorithm satisfies a uniform high-probability
regret bound F(T,1/6,...) if it satisfies for any episodic fixed-horizon MDP the following condition. With
probability at least 1 — 6, the regret after T episodes for all episodes T is bounded as

R(T) < F(T,1/4,...) VT eN
where F' can depend on properties of the problem instance.

13



It is obvious that a uniform-high probability regret bound is a stronger statement than a high-probability
regret bound. For an extended discussion of these different bounds, see Chapter 4. We can find each type of
regret bound used in he literature in a variety of settings: (uniform) high-probability regret: (Azar, Osband,
and Munos, 2017; Zanette and Brunskill, 2019; Jaksch, Ortner, and Auer, 2010; Agarwal, Hsu, et al., 2014;
Srinivas et al., 2010); expected regret: (Russo, 2019; Audibert, Munos, and Szepesvari, 2009; Auer, 2000;
Bubeck and Cesa-Bianchi, 2012; Auer and Ortner, 2005)).

2.3.3 Our Focus: Worst-Case Problem-Independent Bounds

Worst-case vs. Bayesian guarantees. All types of learning guarantees are formulated as worst-case bounds
which hold for any problem instance in the class (and finite episodic fixed-horizon MDP). Especially for
Bayesian algorithms like those using Thompson sampling it can be more natural to provide Bayesian
guarantees (Osband, Russo, and Van Roy, 2013; Osband and Van Roy, 2017). These typically come in
the form of expected regret bounds that hold only in expectation over the problem instance sampled from
the assumed prior belief. As Bayesian guarantees are weaker, we focus in this dissertation on the stronger
worst-case guarantees.

Problem-independent vs. problem-dependent bounds. One distinguishes between two types of
bounds. Those that depend only on properties of the considered problem class that are known to the agent
(like number of states .S and actions A and the horizon H) are called problem-independent bounds. Bounds
that also depend on properties of the specific problem instance (like variance of the optimal value function
Zanette and Brunskill (2019)) are called problem-dependent. The work in this dissertation is primarily
concerned with problem-independent guarantees.

2.4 Helpful Notation

The notation O is similar to the usual O-notation but ignores log-terms. More precisely f = O(g) if there
are constants ¢y, cg such that f < ¢1g(In g)°? and analogously for 2. The natural logarithm is In and
log = log, is the base-2 logarithm.
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Chapter 3

Horizon-Optimal PAC Bounds for Episodic
Reinforcement Learning

This chapter is based on the work published as:
Christoph Dann and Emma Brunskill. “Sample complexity of episodic fixed-horizon reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2015, pp. 2818-2826

3.1 Introduction and Motivation

Consider test preparation software that tutors students for a national advanced placement exam taken at the
end of a year, or maximizing business revenue by the end of each quarter. Each individual task instance
requires making a sequence of decisions for a fixed number of steps H (e.g., tutoring one student to take
an exam in spring 2015 or maximizing revenue for the end of the second quarter of 2014). Therefore,
they can be viewed as a finite-horizon sequential decision making under uncertainty problem, in contrast
to an infinite horizon setting in which the number of time steps is infinite. When the domain parameters
(e.g. Markov decision process parameters) are not known in advance, and there is the opportunity to
repeat the task many times (teaching a new student for each year’s exam, maximizing revenue for each
new quarter), this can be treated as episodic fixed-horizon reinforcement learning (RL). One important
question is to understand how much experience is required to act well in this setting. We formalize this as
the sample complexity of reinforcement learning (Strehl and Littman, 2005), which is the number of time
steps on which the algorithm may select an action whose value is not near-optimal. RL algorithms with
a sample complexity that is a polynomial function of the domain parameters are referred to as Probably
Approximately Correct (PAC) (see Section 2.3 and Kearns and Koller, 1999; Brafman and Tennenholtz,
2003; Kakade, 2003; Strehl and Littman, 2005). Though there has been significant work on PAC RL
algorithms for the infinite horizon setting, there has been relatively little work on the finite horizon scenario.

In this chapter we present the first lower bound, and a new upper bound on the sample complexity of
episodic finite horizon PAC reinforcement learning in discrete state-action spaces. Our bounds are tight up
to log-factors in the time horizon H, the accuracy e, the number of actions A and up to an additive constant
in the failure probability §. These bounds improve upon existing results by a factor of at least H. Our
results also apply when the reward model is a function of the within-episode time step in addition to the
state and action space. While we assume a stationary transition model, our results can be extended readily
to time-dependent state-transitions. Our proposed UCFH (Upper-confidence fixed-horizon RL) algorithm
that achieves our upper PAC guarantee can be applied directly to wide range of fixed-horizon episodic
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MDPs with known rewards.! It does not require additional structure such as assuming access to a generative
model (Azar, Munos, and Kappen, 2012) or that the state transitions are sparse or acyclic (Lattimore and
Hutter, 2012).

The limited prior research on upper bound PAC results for finite horizon MDPs has focused on different
settings, such as partitioning a longer trajectory into fixed length segments (Kakade, 2003; Strehl and
Littman, 2005), or considering a sliding time window (Kolter and Ng, 2009). The tightest dependence
on the horizon in terms of the number of episodes presented in these approaches is at least H> whereas
our dependence is only H?. More importantly, such alternative settings require the optimal policy to be
stationary, whereas in general in finite horizon settings the optimal policy is nonstationary (e.g. is a function
of both the state and the within episode time—step).2 Fiechter (Fiechter, 1994, Fiechter, 1997) and Reveliotis
and Bountourelis (2007) do tackle a closely related setting, but find a dependence that is at least H.

Our work builds on recent work (Lattimore and Hutter, 2012; Azar, Munos, and Kappen, 2012) on
PAC infinite horizon discounted RL that offers much tighter upper and lower sample complexity bounds
than was previously known. To use an infinite horizon algorithm in a finite horizon setting, a simple change
is to augment the state space by the time step (ranging over 1, ..., H), which enables the learned policy to
be non-stationary in the original state space (or equivalently, stationary in the newly augmented space).
Unfortunately, since these recent bounds are in general a quadratic function of the state space size, the
proposed state space expansion would introduce at least an additional H? factor in the sample complexity
term, yielding at least a H* dependence in the number of episodes for the sample complexity.

Somewhat surprisingly, we prove an upper bound on the sample complexity for the finite horizon case
that only scales quadratically with the horizon. A key part of our proof is that the variance of the value
function in the finite horizon setting satisfies a Bellman equation. We also leverage recent insights that
state—action pairs can be estimated to different precisions depending on the frequency to which they are
visited under a policy, extending these ideas to also handle when the policy followed is nonstationary. Our
lower bound analysis is quite different than some prior infinite-horizon results, and involves a construction
of parallel multi-armed bandits where it is required that the best arm in a certain portion of the bandits is
identified with high probability to achieve near-optimality.

3.2 Problem Setting and Notation

We consider episodic fixed-horizon MDPs as introduced in Chapter 2. As a brief reminder, these MDPs
can be formalized as a tuple M = (S, A, R, P, po, H). Both, the state space S and the action space A are
finite sets. The learning agent interacts with the MDP in episodes of H time steps. Attimet =1... H,
the agent observes a state s; and chooses an action a; based on a policy 7 that potentially depends on the
within-episode time step, i.e., a; = 7(s,t) fort = 1,..., H. The next state is sampled from the stationary
transition kernel s;y; ~ P(-|s¢, a;) and the initial state from s; ~ pg. In addition the agent receives a
reward drawn from a distribution R (s;) * with mean r(s;) determined by the reward function. The reward
function r is possibly time-dependent (i.e., we denote it by 7 in this case) and takes values in [0, 1]. The

quality of a policy 7 is evaluated by the total expected reward of an episode pys(7) = E [Zil rt(st)} .

! Previous works (Auer and Ortner, 2005) have shown that the complexity of learning state transitions usually dominates
learning reward functions. We therefore follow existing sample complexity analyses (Lattimore and Hutter, 2012; Szita and
Szepesviri, 2010) and assume known rewards for simplicity. The algorithm and PAC bound can be extended readily to the case of
unknown reward functions.

The best action will generally depend on the state and the number of remaining time steps. In the tutoring example, even if
the student has the same state of knowledge, the optimal tutor decision may be to space practice if there is many days till the test
and provide intensive short-term practice if the test is tomorrow.

31t is straightforward to have the reward depend on the state, or state/action or state/action/next state.
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When the MDP M is unambiguous, we omit the subscript. For simplicity,! we assume that the reward
function r is known to the agent but the transition kernel P is unknown. The question we study is how
many episodes does a learning agent follow a policy 7 that is not e-optimal, i.e., we look for a mistake-style
PAC bound (see Definition 2).

Notation. In the following sections, we reason about the true MDP M, an empirical MDP M and an
optimistic MDP M which are identical except for their transition probabilities P, P and P,. We will
provide more details about these MDPs later. We introduce the notation explicitly only for M but the
quantities carry over to M and M with additional tildes or hats by replacing P with P,or P. We add a
time index ¢ as a subscript to the optimistic transition probabilities as this MDP can have time-dependent
dynamics (see technical details below).

The (linear) operator P f(s) := E[f(si+1)[si = 5] = Y_yes P(s'|s,7(s,1)) f(s") takes any function
f : S = R and returns the expected value of f with respect to the next time step.* For convenience, we

define the multi-step version as P, f := PP, ... PT f. The value function from time / on is defined

as V(s) := E [Zf’: pre(slsi = s| = S, Pr,_yr = (PFVI,) (s) + r4(s) and V;* is the optimal
value-function. When the policy is clear, we omit the superscript

We denote by S(s,a) C S the set of possible successor states of state s and action a. The maximum
number of them is denoted by C' = max; 4esx.4 |S(s, a)|. In general, without making further assumptions,
we have C' = S, though in many practical domains (robotics, user modeling) each state can only transition
to a subset of the full set of states (e.g. a robot can’t teleport across the building, but can only take local
moves). The notation O is similar to the usual O-notation but ignores log-terms. More precisely f = O(g)
if there are constants cj, c2 such that f < ¢;¢(In g)° and analogously for Q). The natural logarithm is In
and log = log, is the base-2 logarithm.

3.3 Upper PAC-Bound

We now introduce a new model-based algorithm, UCFH, for RL in finite horizon episodic domains
(Algorithm 1). We will later prove UCFH is PAC with an upper bound on its sample complexity that is
smaller than prior approaches. Like many other PAC RL algorithms (Brafman and Tennenholtz, 2002;
Strehl, Li, Wiewiora, et al., 2006; Strehl, Li, and Littman, 2009; Auer, Jaksch, and Ortner, 2009), UCFH
uses an optimism under uncertainty approach to balance exploration and exploitation. The algorithm
generally works in phases comprised of optimistic planning, policy execution and model updating that
take several episodes each. Phases are indexed by k. As the agent acts in the environment and observes
(s,a,r,s’) tuples, UCFH maintains a confidence set over the possible transition parameters for each state-
action pair that are consistent with the observed transitions. Defining such a confidence set that holds with
high probability can be be achieved using concentration inequalities like the Hoeffding inequality. One
innovation in our work is to use a particular new set of conditions to define the confidence set that enables
us to obtain our tighter bounds. We will discuss the confidence sets further below. The collection of these
confidence sets together form a class of MDPs M, that are consistent with the observed data. We define
Mj, as the maximum likelihood estimate of the MDP given the previous observations.

Given M}, UCFH computes a policy 7 by performing optimistic planning. Specifically, we use a
finite horizon variant of extended value iteration (EVI) Auer and Ortner, 2005; Strehl and Littman, 2005.
EVI performs modified Bellman backups that are optimistic with respect to a given set of parameters. That
is, given a confidence set of possible transition model parameters, it selects in each time step the model

*The definition also works for time-dependent transition probabilities.
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within that set that maximizes the expected sum of future rewards. Section 3.7 provides more details about
fixed horizon EVI.

UCFH then executes 7y, until there is a state-action pair (s, a) that has been visited often enough since
its last update (defined precisely in the until-condition in UCFH). After updating the model statistics for
this (s, a)-pair, a new policy 71 is obtained by optimistic planning again. We refer to each such iteration
of planning-execution-update as a phase with index k. If there is no ambiguity, we omit the phase indices k
to avoid cluttered notation.

UCFH is inspired by the infinite-horizon UCRL-7y algorithm by Lattimore and Hutter (2012) but has
several important differences. First, the policy can only be updated at the end of an episode, so there is no
need for explicit delay phases as in UCRL-v. Second, the policies 7 in UCFH are time-dependent. Finally,
UCFH can directly deal with non-sparse transition probabilities, whereas UCRL-y only directly allows two
possible successor states for each (s, a)-pair (C' = 2).

Confidence sets. The class of MDPs M, consists of fixed-horizon MDPs M’ with the known true reward
function r and where the transition probability p}(s’|s, a) from any (s,a) € S x Ato s’ € S(s,a) at any
time ¢ is in the confidence set induced by p(s'|s, a) of the empirical MDP M. Solely for the purpose of
computationally more efficient optimistic planning, we allow time-dependent transitions (allows choosing
different transition models in different time steps to maximize reward), but this does not affect the theoretical
guarantees as the true stationary MDP is still in M, with high probability. Unlike the confidence intervals
used by Lattimore and Hutter (2012), we not only include conditions based on Hoeffding’s inequality® and
Bernstein’s inequality (Eq. 3.2), but also require that the standard deviation y/p(1 — p) of the Bernoulli
random variable associated with this transition is close to the empirical one (Eq. 3.1). This additional
condition (Eq. 3.1) is key for making the algorithm directly applicable to generic MDPs (in which states
can transition to any number of next states, e.g. C' > 2) while only having a linear dependency on C' in the
PAC bound.

3.3.1 PAC Analysis

For simplicity we assume that each episode starts in a fixed start state sg. This assumption is not crucial
and can easily be removed by additional notational effort.

Theorem 6. For any 0 < €, < 1, the following holds. With probability at least 1 — §, UCFH produces a
sequence of policies my, that yield at most

0] In =

- (SAH?*C . 1
€2 )

episodes with p* — p(mi,) = V*(s0) — V{™*(so) > €. The maximum number of possible successor states is

denoted by 1 < C' < S.

Similarities to other analyses. The proof of Theorem 6 is quite long and involved, but builds on similar
techniques for sample-complexity bounds in reinforcement learning (see e.g. Brafman and Tennenholtz
(2002) and Strehl and Littman (2008)). The general proof strategy is closest to the one of UCRL-y
(Lattimore and Hutter, 2012) and the obtained bounds are similar if we replace the time horizon H with the
equivalent in the discounted case 1/(1 — ). However, there are important differences that we highlight
now briefly.

3The first condition in the min in Equation (3.2) is actually not necessary for the theoretical results to hold. It can be removed
and all 6/91 can be replaced by 4/81.

18



Algorithm 1: UCFH: Upper-Confidence Fixed-Horizon episodic reinforcement learning algorithm

Input : desired accuracy € € (0, 1], failure tolerance § € (0, 1], fixed-horizon MDP M

Result: with probability at least 1 — §: e-optimal policy

- 0 - SH .
1 k= 1, Wmin = ﬁ, (51 = WO Umax = SA IOgQ Wonin?

2 m := 512(log, log, H)QCISI2 log? <8H252> In 65A010g5(5(452H2/6)-

€ € ?

3 n(s,a) =v(s,a) =n(s,a,8):=0 V,se€S,aec A, s €S5(s,a);
4 while do
/+ Optimistic planning %/
5 P(s'|s,a) := n(s,a, s') /n(s,a), for all (s, a) with n(s,a) > 0 and s’ € S(s,a);
6 My = {M € Muonst, : V(s,0) e Sx At=1...H,s € S(s,a)
7 Py(s'|s,a) € Confidenceset (P(s|s,a),n(s,a)) };
8 M, 71, := FixedHorizonEVI (My):;
/* Execute policy */
9 repeat
10 ‘ SampleEpisode (mg) ; // from M using g
1 until there is a (s,a) € S X Awith v(s,a) > max{mwmin, n(s,a)} and n(s,a) < SmH,
/* Update model statistics for one (s,a)-pair with condition above */
12 n(s,a) :=n(s,a)+v(s,a);

13 n(s,a,s’) :=n(s,a,s) +v(s,a,8) Vs € 8(s,a);
14 v(s,a) :=v(s,a,s'):=0 Vs €8(s,a);
15 k=k+1

16 Procedure SampleEpisode ()

17 50 ~ Pos

18 fort =0to H —1do

19 L ay := 7(sg,t) and s¢41 ~ p(+|se, ar);

20 v(sg, ar) = v(sy,ar) + 1and v(sy, ag, Sp41) = v(S¢, ap, Sg41) + 1;

21 Function ConfidenceSet (p, n)
22

P .= {p'G [0,1] :if n > 1:‘\/p/(1—p’)—\/p(1—1))‘ < 212(%51)’

Ip— /| < min <\/1n(6/51), \/2p(1 —P) 1(6/6) + ?)(n7_ In 2) } (3.2)

2n n 1)

3.1)

L return P
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¢ A central quantity in the analysis by Lattimore and Hutter (2012) is the local variance of the value
function. The exact definition for the fixed-horizon case will be given below. The key insight
for the almost tight bounds of Lattimore and Hutter (2012) and Azar, Munos, and Kappen (2012)
is to leverage the fact that these local variances satisfy a Bellman equation (Sobel, 1982) and so
the discounted sum of local variances can be bounded by O((1 — v)~2) instead of O((1 — ) ~3).
We prove in Lemma 10 that local value function variances a,% also satisfy a Bellman equation for
fixed-horizon MDPs even if transition probabilities and rewards are time-dependent. This allows us
to bound the total sum of local variances by O(H?) and obtain similarly strong results in this setting.

e Lattimore and Hutter (2012) assumed there are only two possible successor states (i.e., C' = 2) which
allows them to easily relate the local variancesy,% to the difference of the expected value of successor
states in the true and optimistic MDP (P — P;,)Vj,1. For C' > 2, the relation is less clear, but we
address this by proving a bound with tight dependencies on C' (Lemma 18).

¢ To avoid super-linear dependency on C' in the final PAC bound, we add the additional condition
in Equation (3.1) to the confidence set. We show that this allows us to upper-bound the optimality
p* — p(my) of policy 7, with terms that either depend on 0}% or decrease linearly in the number of
samples. This gives the desired linear dependency on C' in the final bound. We therefore avoid
assuming C' = 2 which makes UCFH directly applicable to generic MDPs with C' > 2 without the
impractical transformation argument used by Lattimore and Hutter (2012).
We will now introduce the notion of knownness and importance of state-action pairs that is essential for
the analysis of UCFH and subsequently present several lemmas necessary for the proof of Theorem 6. We
only sketch proofs here but detailed proofs for all results are available in Section 3.9.

Fine-grained categorization of (s, a)-pairs. Many PAC RL sample complexity proofs (Brafman and
Tennenholtz, 2002; Kakade, 2003; Strehl, Li, Wiewiora, et al., 2006; Strehl and Littman, 2008) only have a
binary notion of “knownness”, distinguishing between known (transition probability estimated sufficiently
accurately) and unknown (s, a)-pairs. However, as recently shown by Lattimore and Hutter (2012) for the
infinite horizon setting, it is possible to obtain much tighter sample complexity results by using a more fine
grained categorization. In particular, a key idea is that in order to obtain accurate estimates of the value
function of a policy from a starting state, it is sufficient to have only a loose estimate of the parameters of
(s, a)-pairs that are unlikely to be visited under this policy.
Let the weight of a (s, a)-pair given policy 7y, be its expected frequency in an episode

H

H
wi(s,a) = Z]P(st = s,k (st,t) = a) = ZPu,ﬂl{s =-,a=mk(s,t)}(s0).

t=1 t=1
The importance v, of (s, a) is its relative weight compared to Wiy := g77g on a log-scale

> wk(87 CL)

tk(s,a) ;== min {zl Do > } where z; = 0and z; = 2072 Vi = 2,3,....

Wmin

Note that ¢x(s,a) € {0,1,2,4,8,16... } is an integer indicating the influence of the state-action pair on
the value function of 7. Similarly, we define the knownness

nk(s,a)
mwg(s,a)

}6{0,1,2,4,...}

Ki(s,a) = max{zi Dz <

20



which indicates how often (s, a) has been observed relative to its importance. The constant m is defined in
Algorithm 1. We can now categorize (s, a)-pairs into subsets

Xiwo = {(s,a) € Xi ¢ ki(s,a) = k,u(s,a) =1} and X =8 x A\ Xy

where X;, = {(s,a) € S x A : 1(s,a) > 0} is the active set and X}, the set of state-action pairs that
are very unlikely under the current policy. Intuitively, the model of UCFH is accurate if only few (s, a)
are in categories with low knownness — that is, important under the current policy but have not been
observed often so far. Recall that over time observations are generated under many policies (as the policy is
recomputed), so this condition does not always hold. We will therefore distinguish between phases k& where
| X x| < r for all x and ¢ and phases where this condition is violated. The condition essentially allows
for only a few (s, a) in categories that are less known and more and more (s, a) in categories that are more
well known. In fact, we will show that the policy is e-optimal with high probability in phases that satisfy
this condition.
We first show the validity of the confidence sets M.
Lemma 7 (Capturing the true MDP whp.). M € My, for all k with probability at least 1 — § /2.

Proof Sketch. By combining Hoeffding’s inequality, Bernstein’s inequality and the concentration result on
empirical standard deviations by Maurer and Pontil (2009) with the union bound, we get that p(s'[s, a) € P
with probability at least 1 — 9, for a single phase k, fixed s,a € S x A and fixed s’ € S(s,a). We then
show that the number of model updates is bounded by U« and apply the union bound. O

The following lemma bounds the number of episodes in which V&, ¢ : | X} .| < & is violated with
high probability.
Lemma 8. Let E be the number of episodes k for which there are k and v with | Xy, ;.| > K, i.e. E =
Yoo {3k, ) ¢ | Xp,| > K} and assume that m > @ In QE%. Then P(E < 6NFEpax) > 1—6/2
where N = SAm and Epax = log, wi log, S.

Proof Sketch. We first bound the total number of times a fixed pair (s, a) can be observed while being
in a particular category Xy, ., in all phases & for 1 < x < S. We then show that for a particular (k, ¢),
the number of episodes where | X}, . ,| > & is bounded with high probability, as the value of ¢ implies a
minimum probability of observing each (s, a) pair in X}, , , in an episode. Since the observations are not
independent we use martingale concentration results to show the statement for a fixed (x, ¢). The desired
result follows with the union bound over all relevant « and ¢. O

The next lemma states that in episodes where the condition Vx, ¢ : | X}, . ,| < & is satisfied and the true
MDP is in the confidence set, the expected optimistic policy value is close to the true value. This lemma is
the technically most involved part of the proof.

Lemma 9 (Bound mismatch in total reward). Assume M € My. If | Xy ,.,| < & for all (k,.) and

0<e<1andm > 51222 (log, log, H)?log2 <8H252) In %. Then |V (s0) — Vi (s0)] < e.

€ €

Proof Sketch. Using basic algebraic transformations, we show that [p — p| < 1/p(1 — p)O (, / % In %) +
0] (% In %) for each p, p € P in the confidence set as defined in Eq. 3.2. Since we assume M € My,

we know that P(s'|s,a) and P(s'|s, a) satisfy this bound with n(s, a) for all s,a and s’. We use that to
bound the difference of the expected value function of the successor state in M and M, proving that |(P —
Py)Via(s)| <O (L) In %) +0 ( %h)) In %) a1 (s), where the local variance of the value

n(s,m(s,h) n(s,m(
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r(+)=1
p(+li,a) = 3 +€(a)

li,a) = 3 — €j(a)

r(=)=0

Figure 3.1: Class of a hard-to-learn finite horizon MDPs. The function € is defined as €'(a1) = €/2,
¢ (a}) = e and otherwise €'(a) = 0 where a is an unknown action per state ¢ and € is a parameter.

function is defined as o7 (s,a) := E[(V/" 1 (shs1) — PTV)T1(5))?[sh = s,ap = a] and o7 (s) =
o2 (s,m(s,h)). This bound then is applied to |V3(s9) — Vi (s0)| < Zil P1.¢|(P — P;)Vi11(s)|. The basic
idea is to split the bound into a sum of two parts by partitioning of the (s, a) space by knownness, e.g.
that is (s, a;) € Xy, for all x and ¢ and (s¢,a;) € X. Using the fact that w(s;, at) and n(s¢,a;) are
tightly coupled for each (k, ¢), we can bound the expression eventually by e. The final key ingredient in the
remainder of the proof is to bound Zfil Py.t—104(s)? by O(H?) instead of the trivial bound O(H?). To
this end, we show the lemma below. O

2
Lemma 10. The variance of the value function defined as V7, (s) := E [(Zih re(se) — V}Zr(sh)) |sp, = s]
satisfies a Bellman equation Vi, = PV} | + 0}21 which gives V] = {:h P,f:t_laf. Since 0 < VT <
H?r2 ., it follows that 0 < >°1_| Pypy_102(s) < H?r2, forall s € S.

Proof Sketch. The proof works by induction and uses fact that the value function satisfies the Bellman
equation and the tower-property of conditional expectations. O

Proof Sketch for Theorem 6. The proof of Theorem 6 consists of the following major parts:
1. The true MDP is in the set of MDPs M, for all phases k with probability at least 1 — g (Lemma 7).

2. The FixedHorizonEVI algorithm computes a value function whose optimistic value is higher
than the optimal reward in the true MDP with probability at least 1 — /2 (Lemma 12).

3. The number of episodes with | X}, . ,| > & for some « and ¢ are bounded with probability at least
1—5/2by O(S x Alm) if m = Q) (Hi In g) (Lemma 8).

4. If ’Xk:,m’ < k for all k, ¢, i.e., relevant state-action pairs are sufficiently known and m =

Q (Cg In %), then the optimistic value computed is e-close to the true MDP value. Together
with part 2, we get that with high probability, the policy 7y is e-optimal in this case.

5. From parts 3 and 4, with probability 1 — ¢, there are at most 0, (SAG# In %) episodes that are not
e-optimal.

3.4 Lower PAC Bound

Theorem 11. There exist positive constants c1, ca, 0g, €y such that for every § € (0,00) and € € (0, €p)
and for every algorithm A that satisfies a PAC guarantee for (€, 0) and outputs a deterministic policy, there
is a fixed-horizon episodic MDP My, ,-q with

ci(H —2)%(A—1)(S —3) e\ 4 [|SxAH? Ca
E[nal > 2 In <5+63) —Q< 2 In (5—|—63>) (3.3)
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where n 4 is the number of episodes until the algorithm’s policy is (€, §)-accurate. The constants can be set
1080 = % ~ s €0 = {2 ~ H /35000, cp = 4 and c3 = e~ /80.

The ranges of possible § and e are of similar order than in other state-of-the-art lower bounds for
multi-armed bandits (Mannor and Tsitsiklis, 2004) and discounted MDPs (Strehl and Littman, 2008;
Lattimore and Hutter, 2012). They are mostly determined by the bandit result by Mannor and Tsitsiklis
(2004) we build on. Increasing the parameter limits dy and €( for bandits would immediately result in larger

ranges in our lower bound, but this was not the focus of our analysis.

Proof Sketch. The basic idea is to show that the class of MDPs shown in Figure 3.1 require at least a
number of observed episodes of the order of Equation (3.3). From the start state 0, the agent ends up in
states 1 to n with equal probability, independent of the action. From each such state 4, the agent transitions
to either a good state 4+ with reward 1 or a bad state — with reward 0 and stays there for the rest of the
episode. Therefore, each state ¢ = 1,...,n is essentially a multi-armed bandit with binary rewards of
either 0 or H — 2. For each bandit, the probability of ending up in + or — is equal except for the first action
aj; with P(s¢11 = +|st =i,a¢t = a1) = 1/2 + €/2 and possibly an unknown optimal action a (different
for each state 1) with P(s;41 = +[s; = 4,0, = a]) = 1/2 + €.

In the episodic fixed-horizon setting we are considering, taking a suboptimal action in one of the bandits
does not necessarily yield a suboptimal episode. We have to consider the average over all bandits instead.
In an e-optimal episode, the agent therefore needs to follow a policy that would solve at least a certain
portion of all n multi-armed bandits with probability at least 1 — §. We show that the best strategy for the
agent to achieve this is to try to solve all bandits with equal probability. The number of samples required to
do so then results in the lower bound in Equation (3.3). ]

Similar MDPs that essentially solve multiple of such multi-armed bandits have been used to prove
lower sample-complexity bounds for discounted MDPs (Strehl and Littman, 2008; Lattimore and Hutter,
2012). However, the analysis in the infinite horizon case as well as for the sliding-window fixed-horizon
optimality criterion considered by Kakade (2003) is significantly simpler. For these criteria, every time
step the agent follows a policy that is not e-optimal counts as a “mistake”. Therefore, every time the agent
does not pick the optimal arm in any of the multi-armed bandits counts as a mistake. This contrasts with
our fixed-horizon setting where we must instead consider taking an average over all bandits.

3.5 Related Work on Fixed-Horizon Sample Complexity Bounds

We are not aware of any lower sample complexity bounds beyond multi-armed bandit results that directly
apply to our setting. Our upper bound in Theorem 6 improves upon existing results by at least a factor of
H. We briefly review those existing results in the following.

Timestep bounds. Kakade (2003, Chapter 8) proves upper and lower PAC bounds for a similar setting
where the agent interacts indefinitely with the environment but the interactions are divided in segments of
equal length and the agent is evaluated by the expected sum of rewards until the end of each segment. The

~ 2 6 . . . .
bound states that there are not more than O <S gH In %) ® time steps in which the agents acts e-suboptimal.

Strehl, Li, and Littman (2009) improves the state-dependency of these bounds for their delayed Q-learning

. ~ 5 . . . .. .
algorithm to O (S éf In %) However, in episodic MDP it is more natural to consider performance on the
entire episode since suboptimality near the end of the episode is no issue as long as the total reward on the

For comparison we adapt existing bounds to our setting. While the original bound stated by Kakade (2003) only has H?, an
additional H> comes in through e 2 due to different normalization of rewards.
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entire episode is sufficiently high. Kolter and Ng (2009) use an interesting sliding-window criterion, but
prove bounds for a Bayesian setting instead of PAC. Timestep-based bounds can be applied to the episodic
case by augmenting the original statespace with a time-index per episode to allow resets after H steps. This
adds H dependencies for each S in the original bound which results in a horizon-dependency of at least H©
of these existing bounds. Loosely translating the regret bounds of UCRL2 in Corollary 3 by Jaksch, Ortner,

and Auer (2010) yields a PAC-like bound on the number of episodes of at least O (S AR 1 %) even if

€2

one ignores the reset after H time steps. Timestep-based lower PAC-bounds cannot be applied directly to
the episodic reward criterion.

Episode bounds. Similar to us, Fiechter (1994) uses the value of initial states as optimality-criterion, but

. . . . . ~ 7 .
defines the value w.r.t. the y-discounted infinite horizon. His results of order O (S 2‘642H In %) episodes of

length O(1/(1 —v)) ~ O(H) are therefore not directly applicable to our setting. Auer and Ortner (2005)
investigate the same setting as we and propose a UCB-type algorithm that has no-regret, which translates

into a basic PAC-like bound of order O ( S IOSH "ln %) episodes. We improve on this bound substantially
in terms of its dependency on H, S and e. Reveliotis and Bountourelis (2007) also consider the episodic
undiscounted fixed-horizon setting and present an efficient algorithm in cases where the transition graph is
acyclic and the agent knows for each state a policy that visits this state with a known minimum probability

q. These assumptions are quite limiting and rarely hold in practice and their bound of order O (S ff; “In %)

explicitly depends on 1/q.

3.6 Summary

We have shown upper and lower bounds on the sample complexity of episodic fixed-horizon RL that are
tight up to log-factors in the time horizon H, the accuracy ¢, the number of actions A and up to an additive
constant in the failure probability §. These bounds improve upon existing results by a factor of at least
H. However, their dependency on the number of states S which we will address in the next chapters.
Our proposed UCFH algorithm that achieves our PAC bound can be applied to directly to a wide range of
fixed-horizon episodic MDPs with known rewards and does not require additional structure such as sparse
or acyclic state transitions assumed in previous work.

3.7 Fixed-Horizon Extended Value Iteration

We want to find a policy 7% and optimistic M}, € My, which have the highest total reward p e (m) =

maxy arre m, Py (). Note that 7% is an optimal policy for M;, but not necessarily for M. To facilitate
planning, we relax this problem and instead compute a policy and optimistic MDP with p e (m) =
maX, nrre ), PM (my with

M= {M € Myonst. = ¥(s,a) €S x At =1...H,s € S(s,a)
p(s']s,a) € conv(ConfidenceSet (p(s's,a),n(s,a)))}.

Our statistical analysis only requires the transition probabilities to be in the convex hull of the confidence
sets instead of the confidence sets. Since this is a relaxation, we have M, C M;C We can find such a
policy by dynamic programming similar to extended value iteration (Strehl and Littman, 2008; Auer and
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Ortner, 2005). The optimal Q-function can be computed as Q u(s,a) =rg(s)andfori=H —1,...,2,1
as

Qn(s,a) =rp(s) + max Z Pi(s,a) max Qni1(s',b)
Pr€Ps,a s'eS(s,a) bed

The feasible set is defined as

Poa = {p € (0,15 - |ply =1, Vs € S(s,a):
p(s') € conv(ConfidenceSet(P(s|s,a),n(s,a)))}.

The optimal policy 7 (s, t) at time ¢ is then simply the maximizer of the inner max operator and the
transition probability ]St(-ls, a) is the maximizer of the outer maximum. The inner max can be solved
efficiently by enumeration and the outer maximum similar to extended value iteration (Strehl and Littman,
2008). The basic idea is to put as much probability mass as possible to successor states with highest value.
See the following algorithm for the implementation details. Note that due to the nonlinear constraint in

Algorithm 2: FixedHorizonEVI(M) subroutine for UCFH

1 Qu(s,a) =ry(s) Vs,aeSxA; // O(SA)
2 fort=H —1to1do // O(HSlogS + HSAC))
3 m(s,t + 1) := argmax,c 4 Qi11(s,a) Vs €S // O(SA)
4 sort states (1) ... s(5) such that

5 Qi1 (5D, m(sD t 4+ 1)) > Quyr (s, w(sUH) £ + 1)) ; // O(SlogS)
6 for s,a € S x Ado // O(SAC)
7 P,(s'|s,a) :== min ConfidenceSet (P(s|s,a),n(s,a)) Vs € S(s,a); // O( )
8 A=1=30essa) Pi(s'|s,a) ; 0(0)
9 1:=1; / O(1)
10 while A > 0 do // 0(0)
1 s = s,

12 A’ := min{A, max ConfidenceSet (P(s|s,a),n(s,a)) — Pi(s'|s,a)};

13 Pi(s'|s,a) := Py(s'|s,a) + A/;

14 A=A-ANi:=i+1;

15 | Qul5,0) = Cges(sa Pi(5]5,a)Quia (s w(s' 8 +1)) 5 /1 0(C)
16 7(s,1) := argmax,c 4 Q1(s,a) Vs € S; // O(SA)

17 return MDP with transition probabilities p;, optimal policy

Equation (3.1), ConfidenceSet (P(s'|s,a), n(s,a)) may be the union of two disjoint intervals instead
of one interval. Still, min- and max-operations on the confidence sets can be computed readily in constant
time. Therefore, the transition probabilities ]575(- |s,a) for a single time step ¢ and state-action pair s, a
can be computed in O(SAC') given sorted states. Sorting the states takes O(.Slog.S) which results in
O(HSlog S + HSAC) runtime complexity of FixedHorizonEVI (see comments in Function 2). The
Algorithm requires O(H S AC') additional space besides the storage requirements of the input MDP M as
the transition probabilities P, are returned by the algorithm. If those are not required and only the optimal
policy is of interest, the additional space can be reduced to O(SA).
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Lemma 12 (Validity of optimistic planning). FixedHorizonEVI (My) returns

M, 1, = argmax oy ().
MeMi,m

Since My, C M), it also holds that P, () > maxpre My, x P ().

Proof Sketch. This result can be proved straight-forwardly by showing that 7y, is optimal in the last time
step H with highest possible reward and then subsequently for all previous time steps inductively. It follows
directly from the definition of the algorithm in Function 2 that the returned MDP is in M. O

3.8 Runtime- and Space-Complexity of UCFH

Sampling one episode and updating the respective v variables has O(H) runtime. Each update of the policy
involves updating the n variables and M, which takes runtime O(C') and a call of FixedHorizonEVI
with runtime cost O(HSAC + H S log S). From Lemma 13 below, we know that the policy can be updated
at most Upax times which a gives total runtime for policy updates of

2H2
O(Umax HS(AC +1og S)) =0 (HSQA(AC +log S) log S >

€

=0 (HSQAQClog 1) .
€

The space complexity of UCFH is dominated by the requirement to store statistics for each possible
transition which gives O(SAC') complexity.

3.9 Detailed Proofs for the Upper PAC Bound

3.9.1 Bound on the Number of Policy Changes of UCFH
|S|H

Wmin

Lemma 13. The total number of updates is bounded by Upyax = |S % Al logy

Proof. First note that n(s, a) is never never decreasing and no updates happen once n(s,a) > SmH for
all (s, a). In each update, the n(s, a) of exactly one (s, a) pair increases by max{muwxyin, n(s,a)}. For a
single (s, a) pair, such updates can happen only log,(SmH) — logy (mwmin) times. Hence, there are at
most |S x A|log, 2™ ypdates in total. O

WminM

3.9.2 Proof of Lemma 7 — Capturing the true MDP

Proof. For a single (s,a) pair, s’ € S(s,a) and k, we can treat the event that s’ is the successor state of
s when chosing action a as a Bernoulli random variable with probability p(s’|s,a). Using Hoeffding’s
inequality,” we then realize that

In(6/41)

P(/]s,a) — P(sl]s,a)] < y/ 20/
P(s]s,0) = P(s'ls, ) <3/ 2L

"While the considered random variables are strictly speaking not necessarily independent, they can be treated as such for the
concentration inequalities applied here. See Appendix A of Strehl and Littman (2008) for details. In the analyses in later Chapters
we directly use Martingale concentration results to avoid this additional argument.
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and by Bernstein’s inequality

2P(s'|s,a)(1 — P(s'|s,a))In(6/d1) + 3% In(6/61)

|P(s'|s,a) — P(s'|s,a)] < \/

with probability at least 1 — &1 /3 respectively. Using both inequalities of Theorem 10 by Maurer and Pontil
(2009)%, we have

n

21n(6/01)

— 3.4

[VP(s']s,a)(1 — P(s']s,a)) \/f’(S’IS’ a)(1 = P(s'|s, a))| <

for n > 1 with probability at least 1 — ¢1/3. All three inequalities hold with probability 1 — §; by the
union bound. Applying Inequality (3.4) to Bernstein’s inequality, we obtain

|P(s’|s,a) o p(sl‘s’a” <\/2P(S/|S7a)(1 — Pn(S/|S,CL))1n(6/51) + % 1n(6/51)
< <¢P<s'|s7 (1= P(ejn.0)) + 2000 1’) NELARRE NS
S\/2]3(3/|s7a)(1 — Pn(s’|s7a))ln(6/51) n 3(n7_ 1) 1n(6/51).

By Lemma 13, there are at most Uy« updates and so there are at most Uy« different k to consider. Since
in each update, only a single (s, a) pair with at most C' successor states is updated, for all £ and (s, a),
there are only Up,axC' different P (s'|s, a) to consider. Applying the union bound, we get that My, ¢ M
for any k with probability at most U, C'd1. By setting 61 = ﬁ we get the desired result. O

3.9.3 Bounding the number of episodes with x > | X} .. ,| for some «, ¢

Before presenting the proof of Lemma 8 which bounds the total number of episodes where there is a x and
¢ such that £ > | X}, ., |, we establish a bound for each individual « and ¢ in the following two additional
lemmas.

Lemma 14 (Bound on observations of X. ,; ,). The total number of observations of (s,a) € Xy, ., where
k € [1,8 — 1] and v > 0 over all phases k is at most 3|S x A|lmw,k. The variable w, is the smallest
possible weight of a (s, a)-pair that has importance .

Proof. We denote the smallest possible weight for any (s, a) pair such that «(s,a) = ¢ by w, :=
min{w(s,a) : tx(s,a) = ¢}. Note that w,1 1 = 2w, for ¢ > 0. Consider any phase k and fix (s, a) € Xj .,
with ¢ > 0. Since we assumed ¢4 (s,a) = ¢ > 0, we have w, < wi(s,a) < 2w,. From k(s,a) = k, it
follows that

) < o
which implies that
mw,k < mwg(s,a)k < nk(s,a) < 2mwi(s,a)k < dmw,k. (3.5)
Hence, each state can only be observed 3mw, times while being in {(s,a) € X} ., : k € N}. g

$The empirical variance denoted by V;,(X) by Maurer and Pontil (2009) is P(s'|s, a)(1 — P(s'|s, a)) in our case and EV, is
the true variance which amounts to P(s’|s,a)(1 — P(s’|s,a)) for us.
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Lemma 15. The number of episodes E, , in phases with | X}, .. ,| > k is bounded for every o > 3 with
high probability,

P(E,, > aN) < exp (_ W)

where N = |S x Alm and 8 = %

Proof. Let v; := 1L T{(s¢,at) € Xy} be the number of observations of (s,a) in X}, ., in the ith
epsiode with Xy, ., > ~. We have i € {1,... E,,}) and k is the phase that episode i belongs to.
Since X}, .., > £+ 1 and all states in partition (x, ¢) have wy(s,a) > w, , we get

Elvilvi, ... vic1] > (K + 1w, 3.6)

Also VaI‘[I/i|I/1 ce Vifl] < E[Vi|I/1, . I/ifl]H asy; € [0, H]
To reason about F ,, we define the continuation

. w ifi < B,
" |w,(k+1) otherwise

and the centered auxiliary sequence

viiw,(k+1)

Z .: .
E[uﬂyf,...uitl]

By construction

E[V*’Dl Di—l]
El|or, ... vi-1] = w,(k + 1 i =w,(k +1).
Pl = DRy T Y
By Lemma 14, we have that £, , > oV only if
alN
Zﬂi <3Nw,k <3Nw,(k+1).
i=1
Define now the martingale
alN
;= E ZI/]|V1,... ZI/] Z (V|01 ... ]
Jj=t+1

which gives By = aNw,(k + 1) and By = Zfﬂ v;. Further, since v;" € [0, H] and Equation (3.6), we
have

|Biv1 — Bi| = | — E[pg|vn, ..., i 1]| =

< ‘I/:r —E[V;r‘ﬂl,...ﬂifl]{ < H.
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Using

aN
0’2 = ZVar[Bl - Bi_1|Bl - Bo, e Bz‘—l — BZ'_Q]
i=1

aN
= Zval"[lji|171, ce 171‘,1] < aNHwL(/{ + 1) = HBy
i=1
we can apply Theorem 22 by Chung and Lu (2006) and obtain

aN
P(E, >aN) <P <Z v; <3Nw,(k + 1))
i=1
= P(Bay — By < 3Bo/a — By) = P(Bay — By < — (1 — 3/a) By)

(3/a —1)*B}
< exp <202 +H(1/3 - 1?a)Bo>

for @ > 3. We can further simplify the bound to

(3/04— 1)232
P(E,{’L > OéN) < exp <_2HBO + H(l/g — (1)/05)30)

(3/a—1)>  Bq
< exp (_2+(_1/a+1/3)H>
_ a(3/a—1)* Nw,(k + 1)
_exp< 7/3—1/a H )

O]

We are now ready to prove Lemma 8 by combining the bound in the previous lemma for all x and ¢.

Proof of Lemma 8. Since wy(s,a) < H, we have that % < & and so tx(s,a) < H/wyin =

4H?S/e. In addition, | Xk .| < S forall k,k,cand so | Xy .| > k can only be true for x < S. Hence,
only

Emax == 10g2 10g2 S

min

possible values for (k,¢) exists that can have | X} . ,| > . Using the union bound over all (x,¢) and
Lemma 15, we get that

(k+ 1N
P(E < aN Eyu) 2P(max By, < aN) > 1= Fyuexp (ﬁw(“;))
wminN WminT 8 X A
>1 — Emax exp (_IB‘H> =1 — Enax €xXp (—IB I{’ |>
Beml|S x Al
—1 7 P exp <_4H2S

Bounding the right hand-side by 1 — §/2 and solving for m gives

_ Bem|S x A
4H?S

4H?S 2F ax
> n
= |S x A|Be 5

1—Emaxexp( >21—5/2 S oom
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Hence, the condition

2
m> 4H n 2F max
Be )
is sufficient for the desired result to hold. By plugging in « = 6 and 8 = % = 1% > %, we obtain
the statement to show. O

3.9.4 Bound on the value function difference for episodes with Vx, ¢ : | X .,| < k

To prove Lemma 9, it is sufficient to consider a fixed phase k. To avoid notational clutter, we therefore
omit the phase indices k in this section.

For the proof, we reason about a sequence of MDPs M, which have the same transition probabilities
but different reward functions (). For d = 0, the reward function is the original reward function 7 of

M, ie. TEO) =y forallt = 1...H. The following reward functions are then defined recursively as

r§2d+2) = Jgd)’Q, where 0@’2 is the local variance of the value function w.r.t. the rewards (?). Note that

foreverydandt =1... H and s € S, we have ng) (s) € [0, H?). In complete analogy, we define My and
M.

We first prove a sequence of lemmas necessary for Lemma 9.

Lemma 16.
H-1
Vih = Vi = Z Pr—1 (P — Py)Via
t=h
Proof.

Vi(s) = Vi(s) =r(s) + PuViga(s) = r(s) = PuVisi(s) + PViga(s) = PrViga(s)
:Ph(vh+1 — Vthl) + (Ph - Ph)Vthl(S)

Since we have Vi (s) = ru(s) = Vu(s), we can recursively expand the first difference until ¢ = j and get

H-1

Vi = Vi =>_ Pur1(Pi— P)Vina
i=h

Lemma 17. Assume p,p,p € [0, 1] satisfy p € P and p € conv(P) where

In(6/0
P = {p' € 0.1] 15— of| < /2O,
n

|ﬁ _p,’ < \/213(171_]5) ln(6/51) + 3(TL7—1) 1H(6/(51),

< 21n(6/61) }

n—1

ifn>1: ‘\/p’(l—p’)— VB(1 —p)

Then

lp — P S\/Sﬁ(ln_ﬁ) In(6/01) + 3(n2ﬁl) In(6/91).
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Proof. We have P = P; NPy with

In(6/61)

on

P = {Pl € [0,1]:]p —p'| <

91 = P g + T,

2
ifn>1: (maX{O vVp(l—p 2h16/151)}> Sp’(l—p/)}.

and
. - ~ 2In(6/6
PQ—{pleRzlfn>1:\/p’(l_p/)§\/p(l_p)+ 2(_/11)}
Note that the last condition of P; is equivalent to \/p 1-p) < \/p % as p/ € [0, 1].

As an intersection of a polytope and the superlevel set of a concave functlon p (1 p’), the set Py is convex.
Hence conv(P) = conv(P; NPz2) C conv(P;) = P;. It therefore follows that p € P;. We now bound

N o 25(1 7
Ip—plélp—pﬂp—p!SZ\/p(n) In(6/d1) + 3

25—y 6/0)

14
3(n—1)

(\/17_ \/2111 6/61) )\/1 (6/61) + 3(;%1)1n(6/51)

S\/ O 0) 1 /5,) + 3(712?1) In(6/6)

B P> n(6/01) + In(6/61)

Lemma 18. Assume

Ip(s'|s,a) — pi(s']s,a)| < ei(s,a) + cz(s,a)\/ﬁi(s’]s, a)(1 —pi(s|s,a))
fora=m(s,i)andall s',s € S. Then

|(Pi = B)Vira(s)] < ex(s,a)|S(s, )| Vi lloo + c2(s,0) V1S (5, a)]4(s)

forany (s,a) € S x Awhere S(s, a) denotes the set of possible successor states of state s and action a.

Proof. Let s and a = 7(s,4) be fixed and define for this fixed s the constant function V (s') = P, Vi1 (s)
[sic] as the expected value function of the successor states of s. Note that V' (s’) is a constant function and
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so‘_/:]?’i‘_/:Pﬂ_/.

(Pi = P)Visi(s)] = |(Pi = P)Visa(s) + V(s) = V(s)]
(P, = P)(Vig1 = V)(s)]
p(s'ls,a) = Bils'ls, a)|[Visa(s) — V(s')] 3.7)

< >
s'eS(s,a)
< Y (a0 +els Va0 = p]s,0)) Vi) - V()
s'eS(s,a)

<[S(s,a)ler(s, a)[|[Vigalloo + c2(s,0) ) \/ﬁi(s’!&@)(l = 9i(s']5,0)) (Vi (s) = V(5))?
s'€S(s,a)

<[S(s, a)lex(s, a)|Visilloo + c2(s, a)\/IS(Sa a)l Y Bils]s,a)(1 = pils'|s, @) (Viea (s") = V(s))?

s'€S(s,a)
3.8)

<[S (s, a)lex(s, a)|Virilloo + c2(s, a)\/IS(& a)l Y Bils]s,a)(Viea(s) = V()2

s'eS(s,a)
=[S(s,a)ler(s, a)l[Virilloo + c2(s,a)/|S(s, a) 53 (s)

In Inequality (3.7), we wrote out the definition of P; and P; and applied the triangle inequality. We
then applied the assumed bound and bounded |V;1(s’) — V (s')| by ||Vi+1]|eo as all value functions are
nonnegative. In Inequality (3.8), we applied the Cauchy-Schwarz inequality and subsequently used the fact
that each term is the sum is nonnegative and that (1 — p;(s’|s,a)) < 1. The final equality follows from the
definition of &;. L]

Bounding the difference in value function

Lemma 19. Assume M € M. If | X,.,| < & for all (k, ). Then

VD (s0) = Vi (s0)| =t Ag < Ag + By +min{Cy, €+ C"\/Dogsa}
where
. € L BR2HIFLIK X Z|C . 6
A, = —H¢ B, = In —
d 4 ) d 3m n 51’
and

éé:\/C|ICXI| H2d+2]n56 C’d:éé\/ﬁ7 é//:\/C|ICXI|TilH(56-
1 1

32



Proof.

H-1

= Z Py (P — lf’t)f/}(ﬂ(so)
=1

H—-1
=S P | Y Hs=-a=n(st)}E - POV (s0)
t=1 s,aeESXA
H—-1
= 3 Y P (Hs=na =l 0HE - POV (s0)
s,aeSXA t=1
H-1
- Praoy (s = a = 7(s, )} (P = PV (9)1) (s0)
s,aeSXA t=1

The first equality follows from Lemma 16, the second step from the fact that V;; > 0 and P;.;_; being
non-expansive. In the third, we introduce an indicator function which does not change the value as we sum
over all (s, a) pairs. The fourth step relies on the linearity of the P;.; operators. In the fifth step, we realize

that I{s = -,a = w(s,t)}|(P; — Pt)Vt(Jr%( -) is a function that takes nonzero values only for input s. We

can therefore replace the argument of the second term with s without changing the value. The term then

becomes constant and by linearity of P;.;, we can write

VO~ T = aa s Y 3 i~ BTN Pracas = 0 = m(s. 00
5,aeSxA t=1

H-1
< S S IV e (Pr—aI{s = -,a = m(s,)})(s0)

s,a¢X t=1
H-1
+ 3 SR = POV ) (Praal{s = a = n(s,)})(s0)
s,aeX t=1
H-1
< HTY (Pry 1 I{s = - a = n(s,)})(s0)
s,a¢X t=1
H-1
+ 3 SR = POV ) (Praal{s = a = m(s,)})(s0)
s,aeX t=1
H-1
< Hd+1(P1t 1{s=-,a=m(s,1)})(s0)
s,a¢X t=1
H-1
+ 1805, @)lex (s, ) HE + ea(5,0)/[8(5, )[61” (5,0) | (Pra—1T{s = - a = (5, )})(s0)
s,aeX t=1
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H
< >0 Y HT N (Pral{s = a = n(s,0)})(s0)

s,a¢X t=1
H
+ 30 SIS @ler (s, @) HE (PraaTfs = o = (s, )} (s0)
s,aeX t=1
+ Z Z ’02 s,a)\/|S(s,a) a ‘ (Pri—1l{s =-,a=m(s,t)})(s0)
s,aeX t=1
< Y B u(s,a)+ S (S @)ler(s, ) H* (s, )
s,a¢ X s,aeX
H-1
+ Z VIS(s,a)lea(s,a Z d (s,a)(Pry—11{s =-,a =7(s,t)})(s0)
s,aceX t=1
< Z H (s, a) + Z Cei(s,a) H w(s, a)
s,a¢ X s,a€X

H-1
+ Z \/502(8, a) Z; 6,@(8, a)(Pri11{s = -,a = m(s,t)})(s0)

s,a€eX t=

In the second inequality, we split the sum over all (s, a) pairs and used the fact that P, and P, are non-
(P PYVE ()] < IV lloo- The next step follows from [[ V7] oo < Vi@ loo < HEH.
We then apply Lemma 18 and subsequently use that all terms are nonnegative and the definition of w(s, a).
Eventually, we use that |S(s, a)| < C for all s, a. Using the assumption that M € M, and M € M}, from
Lemma 12, we can apply Lemma 17 and get that

8 6 26 6
In— and ¢i(s,a) = ————In—.

3(n(s,a) —1) &

ca(s,a) =

Hence, we can bound
Ay < A(so) + B(so) + C(so)

as a sum of three terms which we will consider individually in the following. The first term is

Hd+1S .
Also) = 7 H"'w(s,a) S wuinSH < =2 = SHY = Ay
s,a¢X

as w(s,a) < wpy;y for all s, a not in the active set and that the policy is deterministic, which implies that
there are only .S nonzero w. The next term is

26 6
B(sg) = Q)H™' —— = _In—
(s0) CSQZE:X 3(n(s,a) —1) &

HdHC'ln—Z Z 25)_1)

Kyt 506Xk,

26C . 6 s,a
<H" == 3 In 72 Z S)ajl

KL san,“
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For s,a € X, ,, we have n(s,a) > mw(s, a)x (see Equation (3.5)) and so

(s, 1
< —.
n(s,a) — km

g

S
~—

3.9

Further, for all relevant (s, a)-pairs, we have n(s,a) > 1 (follows from | X, ,| < x) which implies

B(s )<Hd+15201 E X

K,L|
RM
Kyl

and since we assumed | X, ,| < K

d+1 R
Blsg) < 52 KxTiC, 6 5
3m 01

where K x Z is the set of all possible (%, ¢)-pairs. The last term is

H—-
=VC Z c2(s,a) Z t(d)(s,a))Plzt,ﬂI{s = a=m(st)}
s,aeX t=1
H-1
<VvC Z ca(s,a Z gd)(s,a))Plzt_lll{s =-,a=m(s,t)}
s,a€X t=1

T

</C Z ca(s,a) Py 1{s=-a=m(st)} Z N(d)’ (s,a))Pry—1l{s =-,a =7(s,t)}

s,a€X t=1

<\/C Z Sw(s,a 522 (s,a))Pri—1{s =-,a =7(s,t)}
=1

s,aeX n(

where we first applied the Cauchy-Schwarz inequality and then used the definition of c3(s, a) and w(s, a).

H-1
8w(s,a 6 -
C(s0) <VCY > n((s a)) In 5\ (s,a)) Pre—1I{s = -, a = (s,1)}(s0)
Kot 8,a€Xg,, ’ L=
VY | 1x S Bule) 65~ 50 (5,)) Pra_11{s = -,a = 7(s,1)}(s0)
— R,t n(s’a) 61 t 9 1:t—1 - - 9 0
Ryt s,a€Xy ., t=1
3 6 H-1 J
<SVOY | Y g 52 (s,a)) Pry11{s = -,a = (s, ) }(s0)
ENISD. W L)
6 H-1
<\ CIExZ] —In < 5,72 (s,0)) Pre—1{s = -,a = m(s,1)}(s0)
\ s,0eX t=1
6 H-1
<lcikxzZm> 3" 617%(s,0)) Preal{s = - a = m(s, ) }(s0)
\ 5,aESXA t=1




_ e 8, 6% ()2
=\|CIK x| —n 5 > P16, (s0) (3.10)
t=1

2d+3 R
g\/Cchz| 8H nl@n(6/51) _é

We first split the sum and applied the Cauchy-Schwarz inequality. Then we used again Inequality (3.9)
and | X, ,| < k. In the fourth step, we applied Cauchy-Schwarz and the final inequality follows from

H&Ed)’z lloo < H 2d+2 gnd the fact that Py, is non-expansive. Alternatively, we can rewrite the bound in
Equation (3.10) as

C(So)g C‘K:XI‘ IDEZPM 10( )2 (80)

H—
6 ~ . ~ -
=,|C|K x I\ 5* g Plt 1Ut )2 (s0) — P1;t—10§d)’2(80) + P1;t—10§d)’2(30)-
-

Lemma 10 shows that the variance \~7(d) also satisfies the Bellman equation with the local variances
&Ed) 2. This insight allows us to bound Zt P 101@ (so) = \7( )(so) < H?¥*2, Also, note that

&t(d) ? = £2d+2) which gives us

H-1
C(s0) <4|CIK x I| % In 5 <H2d+2 + Z Py 1T§2d+2)(50) - pl:tl’f't(2d+2)(80)>

t=1

:\/C 1K x Z| fnlnfl (H2d+2 + V1(2d+2)(so) _ V1(2d+2)(30)>

s\/ Ik x 1| ilnfl (2442 1 Agyy)

8 6
S\/C|]C><I| %H2d+2lna \/O|/C><I| A2d+21n 51 —Cd—l—c \/Agd_;,_g

Proof of Lemma 10 (Bellman equation of local value function variances)

Proof of Lemma 10.

- )
Vi(s) =E (Zn(st)—vi(si)> |si = s

t=1

d(

2
re(s¢) — Vig1(8it1) + Vig1(sit1) + ri(ss) — V%(&')) |si=s
(st)

H
>
t=i+1
H
-F (Z
L t=i+1

2
r(st) — Vz‘+1(8i+1)> |si =5
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+2E

H
( > s - Vz’+1(8z‘+1)) (Viga(siv1) +ri(si) = V(si)) [si = 8]

t=i+1
+E [(Vz‘+1(8z‘+1) +risi) = Vi(si)? [si = S}
=E [Vit1(si41)[si = $]
H
( > ralse) - Vi+1(8i+1)> (Vit1(siv1) +rilsi) — Vi(si)) |Si+1] |si = 5]

t=i41

+2E |E

B[ (Viea(si41) = PVia (s0))? Isi = 5|

where the final equality follows from the tower property of conditional expectations, and the fact that
Vi(s;) = PiVit1(s;) 4 ri(s;). Since by the definition of the value function

H
( Z re(se) — V2+1(si+1)> ‘3i+1] -0

t=i+1

E

the middle term vanishes and the last term is by definition o2(s) we obtain
VZ(S) = PiViJrl(S) + 0'2'2(8).

Noting that Vy(s) = (rg(s) — ru(s))? = 0, we can unroll the equation and obtain

H
Vi(s) = Z Piy_107(s).

From the definition of V; and the fact that 0 < r(-) < rpax, Wwesee that 0 <V; < H 2p2  and the final

max
statement of the lemma follows.
O

Proof of Lemma 9

Proof of Lemma 9. The recursive bound from Lemma 19

Ay < Ag+ By+ Ch+ C"/Douia

has the form Ay < Y; + Z+/As412. Expanding this form and using the triangle inequality gives

Ao <Yy + Z\/By < Yo + Z\/Ya + Z\/Dg < Yo + Z\/Ya + 220/

<Yy + 2\ Ya + 232V 4 ZTAAVE <

In H

513 |» We obtain

and by doing this up to level v = |

2d 2 2y P
AO S Z ZQ+de2+d _’_Z2+,YA$+W
deD\{v}
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where D = {0, 2,6, 14, ...~}. Note that the exponent of H compared to m is the larger in C’é than in Ed.
Therefore, for sufficiently large m, CA'ZI dominates the other term. More precisely, for

m > &C\IC x T| ln(? (3.11)
1

we have By < C’él We can therefore consider Z = C" and Yy = 26’(’1 + A,. Also, since C; > C’é, we can
bound A, < Ag + 2C. For notational simplicity, we will use the auxiliary variable

8C|IK xZ|H?_ 6
RS S S— | g

= me?2 o1
and get
7 =0C" = \/mlé and
Y, = Ad + 2@& = (1/4 + 2\/T)’L1)Hd6 and
A, <A, +2C, = (1/4+2/miH)H e.
Then
(2+d)~! (2+d)—1 (24d)~1

(ZZdeQ) - (m‘fe2d+2(1/4 + 2Fm1)2> <'m16 (1/4 + 2y/m1) )
and

29 A V27! V2742 - v ~ 2\ 2+~

(Z22A) ( (1/4 + 2y/my H) ) - (mle (1/4 + 2y/mi H) ) .

Putting these pieces together, we obtain

A 1 CE 1 iz

d + +
=0 < Z (emq)2+d <4+2m> —l—(eml)ﬁ <4—|—2 Hml>V
deD\{~}
2
d 1 da+2 +2
7+2W+ > (em) <4+2M) + (ema) v+2( +2VH )W
deD\{0,7}
1 iz 2
< +2y/m1 + Z (emq) 2+d (4) + (2y/my) 2
deD\{0,7}

2
e 1\ 7+2 _2
+ (eml)vl2 [(4) ! + (2\/ Hml) VH]
where we used the fact that (a + b)? < a® 4+ b? for a,b > 0 and 0 < ¢ < 1. We now bound the H1/(>+7)

by using the definition of ~. Since

1 2In2
2+~ T A2+ InH

< 2logg 2
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and since H > 1, we have H 1/(2+7) < 4. Therefore

Ag 1 d | (1
=0 SE +2y/m1 + Z (emq)2+a [(4

€
deD\{0,7}

t (emy) 7 [(i) +4<2¢n71>f+2]

Sprevmid Y (emi)t [(1

deD\{0}

1 logz v —i 1 27 21
<2 Y ) [(4) 42y ]

logy v 2~
1 —i 1 —i
SZ+2\/m1+ Z my [<4) +4(2y/m)? ]
i=1

In the first inequality, we used the bound for H'/(2t7) and in the second inequality we simplified the
expression by noting that all terms are nonnegative. In the next step, we re-parameterized the sum. In the
final inequality, we used the assumption that 0 < € < 1 and therefore ¢! =2~ < 1.

Ay 1 1 logy v . logs v » Yt
S SZ + 2y/m1 + 1 Z (4m1)1_2 +4 Z (m1)1_2 (4my)

i=1 =1

logs v logs v

1 1 . 1-g-it
<qF2VmE g > (4m)' 416 ) (%) .
=1 i=1

By requiring that

mp <

e

and noting that 1 — 27t > 1/2and 1 — 2=l > 3/4 for i > 1, we can bound the expression by

A 1 1 3/4
TO SZ +2y/mq + 1 logy (7)v4my + 16 logy(7) (%) .

By requiring that m; < 1/64 and m; < (2logy )2 and m; < 1/64(log,v)~*/3, we can assure that
Ay < e. Taking all assumptions on m; we made above together, we realize that

1 2 1 \?
<|{— <
= (8103;2102;2 H) B (810g27>

is sufficient for them to hold where we used log, v = log,( [% logy H]) < logylogy H. This gives the
following condition on m

, H? 6
m > 512C (logy logy H)*|KC X Z|—- ln(s—
€ 1

which is a stronger condition that the one in Equation (3.11).
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. 2 2
By construction of «(s, a), we have «(s,a) < 24— = 8SH™ Shl 5. Also, k(s a) < SmH__

5710 Wmin € MWmin
45le Therefore

452 H? 8H2S 8H?2S?

I x Z| < log, log, < log3
€ €

which let us conclude that

H2
m > 5120 5— (logy log, H)?log? (
€

8H252> 6
In
is a sufficient condition and thus, the statement to show, holds. O

3.9.5 Proof of Theorem 6

Proof of Theorem 6. By Lemma 8, we know that the number of episodes where | X, ,| > & for some &, ¢ is
bounded by 6 Epax|S % A|m with probability at least 1 — ¢ /2. For all other episodes, we have by Lemma 9
that |p; (mx) — p(7x)| < e. Since, with probability at least 1 — §/2, we have by Lemma 7 M € M;,, we
can use Lemma 12 which gives p () > p* > p(my) to conclude that with probabilty at least 1 — /2,
for all episodes with | X, ,| < x for all , ¢, we have p* — p(m1) < e. Applying the union bound, we get
the desired result, if m satisfies

H2 H2 2
m 2512072(log2 logy H)?log3 (85) 1115E and
€ € 1

6H? 2Fax

1 .
NS

m >
€

From the definitions, we get

. 2172
lnE I 6CUmax _ In 6|S x A|C'logy(SH/wmin) ln 6|S x A|Clogy(4S5°H=/¢)
o ) J )
and ) )
H 4H
Emax = 10g2 SlOg2 & < logg o
€
and
2 204772
In 2Emax _ n 2logy S'logy(4H=S/¢€) <In 2log5(4H*S/¢)
) J J
204Q2 2
SlnG]S x A|log5(4S*H /e)
)
Setting

H2 H2 2 1 2 4 2H2
m = 512(logy logy H)2 1 log? <8 S > 1, 618 X A|Clogd (452 H?/e)
€

€2 )

is therefore a valid choice for m to ensure that with probability at least 1 — § , there are at most

CH?|S
6m Emax =3072(logy logy H )2L2><A|

2 262 204G2 2
% log2 (4H S)log2 <8H S >ln6|8 XA|C]O§2(4S H=/e)
€ €

e-suboptimal episodes.
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3.10 Proof of the Lower PAC Bound

Proof of Theorem 11. We consider the class of MDPs shown in Figure 3.1. The MDPs essentially consist
of n parallel multi-armed bandits. For each bandit, there exist m + 1 = A possible instantiations, which
we denote by I; = 0. ..m. The instantiation, or hypothesis, I; = 0 corresponds to €;(a) = I{a = ap}€’/2,
that is, only action ag has a small bias. The other hypotheses I; = j for j = 1...m correspond to
eila) =I{a=aop}e /2 +1{a =a;}€e. Weuse I = (I1,...1,) to indicate the instance of the entire MDP.

We define G; = {w € Q : 7(i) = ay, }, the event that 7, the policy generated by A chooses optimally
in bandit ¢. For a given instance I, the difference between the optimal expected cumulative reward p7 and
the expected cumulative reward p;(7) of policy 7 is at least

p; —p1(m) > (H - 2) (1 - iZH{Gi}> 62/

i=1

For 7 to be e-optimal, we therefore need
St > (-2 [1- 13 ey ) <
€Z2Pr pIr\m) = n < 7 27
2¢ 1
—>1-— H{G; ,
(H—2)e’_< n;{G}>
1 2¢
— KGi} > (1 — ),
ng{ }_< (H—Z)e’)
1< 2¢(H — 2)7 n
— HGi} > |(1l—-——— | =1——
n ; (i} = ( (H — 2)16ee4> 8et
16ee?

where we chose value ¢ := =27 for ¢. We will specify the exact value of parameter 7 later. The

condition basically states that at least a fraction of ¢ := 1 — 7/(8¢*) bandits need to be solved optimally
by A for the resulting policy 7 to be e-accurate. For A to be (e, §)-correct, we therefore need

Py (:L > G} = ¢>) > Pr(pf = pr(m) 2 ) 216

=1

for each instance /. Using Markov’s inequality, we obtain

1-6<P, (; SIG > ¢> < nl¢> SORI{G] < nl¢ S Pi(G)
=1 =1

=1

All G; are independent of each other by construction of the MDP. In fact ;" ; I{G;} is Poisson-
binomial distributed as I{G;} are independent Bernoulli random variables with potentially different
mean. Therefore, upper bounds §; must exist such that §; > PI(GZ»C) for all hypotheses I and such that
1-0< 7Tl¢ > (1 —6;) or equivalently n(1 4 8¢ — ¢) > > | &;. Since all G; are independent of each
other and

, 16¢ee? o 16(H — 2)etn 1

€ = —

(H—2)np — (H —2)6de*n 4
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we can apply Theorem 1 by Mannor and Tsitsiklis (2004) in cases where

1

i <—(1—9+dp) < —(1—0p+9) <

3
S|

This result gives us the minimum expected number of times [E;[n;] we need to observe state ¢ to ensure that
PI(G ) <6

Eflni] > [cl(igl) In <§2>} I{nd; <1— ¢+ ¢d},

for appropriate constants c; and cz (e.g. ¢; = 400 and co = 4). We can find a valid lower bound for the
total number of samples for any d1, . . . d,, by considering the worst bound over all 1, . . . é,,. The following
optimization problem encodes this idea

631111 Zln —H{nd <1—¢+¢d} (3.12)

.. Z(Si <n(l+ @5 — ¢)

i=1

As shown in Lemma 20 in the supplementary material, the optimal solution of the optimization problem in
Equation (3.12)is 9y = -+ - = 6, = cif n(1 —Inc) < 1 with c = 1 + d¢ — ¢. Since the left-hand side of
this condition is decreasing in ¢, we can plug in a lower bound of ¢ > 1 — ¢ = 8% and get the sufficient
condition

(1—ln@) n(l1—Inn+4+1n8) <

It is easy to verify that = 1/10 satisfies this condition. Hence §; = - - - = d,, = c is the optimal solution
to the problem in Equation (3.12). In each episode, we only observe a single state ¢ and therefore, there
need to be at least

= ci1(A—1)n C ci(A—-1)n c
EI[nA]ZZEI[m]Zl(e’?)m<;>Z . 2 ) ln<5+284>

i=1 v

observed episodes for appropriate constants ¢; and co. Plugging in ¢ and n = S — 3, we obtain the desired
statement.

O]

Lemma 20. The optimization problem

Zlnf I{nd; < c}

P 01]
n
s.t. Zéi < nc
i=1
with ¢ € [0,1] and
n(l—1Inc) <1
has optimal solution 61 = --- = §,, = c.
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Proof. Without the indicator part in the objective, we can show that §; = --- = §,, = c is an optimal
solution by checking the KKT conditions and noting that the problem is convex. Let k£ denote the number
of ; that are set such that the indicator function is 0. Without loss of generality we can assume that their
value is p := ¢/n and the remaining ¢; take the same value d 4 (for a fixed §p and k, the problem reduces
to the one without the indicator functions). Then the problem transforms into

i —k)ln —
6A€(0,1)r,1111€r%0,1,...n}(n ) néA

(n—k)da+ kép < nc
We can rewrite the constraint as

(n—k)da+ kop < nc

(n—k)os < nc—kép = (n—k>c

n
k
n—k
dq < Te.
A_n—kc

Since the objective decreases with J 4, it is optimal to choose d 4 as large as possible. The optimization
problem then reduces to

min (n—k)ln(n_kc_1>.
ke{0,...|n/v]} n — vk

where we used for convenience v := 1/7. We want to show that the optimal solution to this problem is
k = 0. We can therefore relax the problem to the continuous domain without loss of generality

min (n—k)ln(nk 1).

ke[0,n/~] n — 'ykc

By reparameterizing the problem with o = k/n, we get

1—
min n(l —«a)ln (a> .
a€(0,1/7] c(1 —ya)
We realize that the minimizer does not depend on n (while the value does). The second derivative of the
objective function is

(v—1)
(1—7ye)?(1—a)’
which is nonnegative for « € [0,1/v]. Hence, the objective is convex in the feasible region and the
minimizer of this problem is oo = 0 if the derivative of the objective is nonnegative in 0. The derivative of
the objective in 0 is given by

n(y — 1+ 1In(c)).

A sufficient condition for o = 0 being optimal is therefore

vy>1—1Inc
or, in terms of the original problem with n = 1/, §; = ... d, = cis optimal if
n(l—1Inc) <1
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Chapter 4

Unifying PAC and Regret: Uniform-PAC
Bounds for Episodic Reinforcement
Learning

This chapter is based on the work published as:

Christoph Dann, Tor Lattimore, and Emma Brunskill. “Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning”. In: Advances in Neural Information Processing Systems. 2017,
pp. 5713-5723

4.1 Introduction

The recent empirical successes of deep reinforcement learning (RL) are tremendously exciting, but the
performance of these approaches still varies significantly across domains, each of which requires the user
to solve a new tuning problem (Francois-Lavet, Fonteneau, and Ernst, 2015). Ultimately we would like
reinforcement learning algorithms that simultaneously perform well empirically and have strong theoretical
guarantees. Such algorithms are especially important for high stakes domains like health care, education
and customer service, where non-expert users demand excellent outcomes.

In this chapter, we propose a new framework for measuring the performance of reinforcement learning
algorithms called Uniform-PAC. Briefly, an algorithm is Uniform-PAC if with high probability it simultane-
ously for all € > 0 selects an e-optimal policy on all episodes except for a number that scales polynomially
with 1/e. Algorithms that are Uniform-PAC converge to an optimal policy with high probability and
immediately yield both PAC and high probability regret bounds, which makes them superior to algorithms
that come with only PAC or regret guarantees. Indeed,

(a) Neither PAC nor regret guarantees imply convergence to optimal policies with high probability;

(b) (e, d)-PAC algorithms may be €/2-suboptimal in every episode;

(c) Algorithms with small regret may be maximally suboptimal infinitely often.
Uniform-PAC algorithms suffer none of these drawbacks. One could hope that existing algorithms with
PAC or regret guarantees might be Uniform-PAC already, with only the analysis missing. Unfortunately
this is not the case and modification is required to adapt these approaches to satisfy the new performance
metric. The key insight for obtaining Uniform-PAC guarantees is to leverage time-uniform concentration
bounds such as the finite-time versions of the law of iterated logarithm, which obviates the need for
horizon-dependent confidence levels.
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We provide a new optimistic algorithm for episodic RL called UBEV that is Uniform PAC. Unlike its
predecessors, UBEV uses confidence intervals based on the law of iterated logarithm (LIL) which hold
uniformly over time. They allow us to more tightly control the probability of failure events in which the
algorithm behaves poorly. Our analysis is nearly optimal according to the traditional metrics, with a linear
dependence on the state space for the PAC setting and square root dependence for the regret. Therefore
UBEV is a Uniform PAC algorithm with PAC bounds and high probability regret bounds that are near
optimal in the dependence on the length of the episodes (horizon) and optimal in the state and action spaces
cardinality as well as the number of episodes. To our knowledge UBEYV is the first algorithm with both
near-optimal PAC and regret guarantees.

Notation and setup. We consider episodic fixed-horizon MDPs as introduced in Chapter 2 but with one
minor difference. In this chapter, we allow dynamics to be time-dependent. This can be formalized as a
tuple M = (S, A, pr, P, po, H). The state space S and the action space A are finite sets with cardinality
S and A. The agent interacts with the MDP in episodes of H time steps each. At the beginning of each
time-step ¢t € [H] the agent observes a state s; and chooses an action a; based on a policy 7 that may
depend on the within-episode time step (a; = 7 (s, t)). The next state is sampled from the ¢th transition
kernel ;41 ~ P(:|s¢, at, t) and the initial state from s; ~ py. The agent then receives a reward drawn
from a distribution pr (s, at, t) which can depend on s;, a; and ¢ with mean r (s, a;, t) determined by the
reward function. The reward distribution pg, is supported on [0, 1].! The value function from time step ¢ for
policy 7 is defined as

H

Z T’(SZ‘, a;, Z)

i=t

Vi(s) :=E

st = s] = Z P(s|s,m(s,t), ) Vi1 (') + r(s,m(s, 1), 1).

s'eS

and the optimal value function is denoted by V;*. As a reminder, in any fixed episode, the quality of a
policy 7 is evaluated by the total expected return

H

ZT(SZ', Qi, 7‘)"“—] = pg—‘/fT )

1=t

p(m) = E

which is compared to the optimal return p* = pJ V;*. For this notation py and the value functions V*,
VT are interpreted as vectors of length S. If an algorithm follows policy 7 in episode k, then the
optimality gap in episode k is Ay := p* — p(7x) which is bounded by A = max, p* — p(7) < H.
We let N := > 72 I{A; > €} be the number of e-errors and R(7T') be the regret after 7" episodes:
R(T) := Zgzl Ay. Note that T is the number of episodes and not total time steps (which is H7 after T
episodes) and k is an episode index while ¢ usually denotes time indices within an episode. The O notation
is similar to the usual O-notation but suppresses additional polylog-factors, that is g(x) = O(f(z)) iff
there is a polynomial p such that g(z) = O(f(x)p(log(z))).

4.2 Uniform PAC and Existing Learning Frameworks

We briefly summarize the most common performance measures used in the literature.

'The reward may be allowed to depend on the next-state with no further effort in the proofs. The boundedness assumption
could be replaced by the assumption of subgaussian noise with known subgaussian parameter.
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(€,0)-PAC (mistake-style): There exists a polynomial function Fpac(S, A, H,1/€,1log(1/9)) such
that

P (N, > Fpac(S, A, H,1/e,10g(1/6))) < 4.

Expected Regret: There exists a function Fgr(S, A, H,T') such that E[R(T")] < Fgr(S, A, H,T).
High Probability Regret: There exists a function Fypr(S, A, H, T, log(1/4)) such that

P (R(T) > Fupr(S, A, H, T, log(1/68))) < 4.

Uniform High Probability Regret: There exists a function Fyppr (S, A, H,T,log(1/4)) such that
P (exists T : R(T) > Funer(S, A, H,T,1og(1/6))) < 6.

In all definitions the function F' should be polynomial in all arguments. For notational conciseness we
often omit some of the parameters of F' where the context is clear. The different performance guarantees
are widely used (e.g. PAC: (Lattimore and Hutter, 2012; Dann and Brunskill, 2015; Jiang, Krishnamurthy,
et al., 2017; Strehl and Littman, 2008), (uniform) high-probability regret: (Jaksch, Ortner, and Auer, 2010;
Agarwal, Hsu, et al., 2014; Srinivas et al., 2010); expected regret: (Audibert, Munos, and Szepesvari,
2009; Auer, 2000; Bubeck and Cesa-Bianchi, 2012; Auer and Ortner, 2005)). Due to space constraints,
we will not discuss Bayesian-style performance guarantees that only hold in expectation with respect to a
distribution over problem instances. We will shortly discuss the limitations of the frameworks listed above,
but first formally define the Uniform-PAC criteria

Definition 1 (Uniform-PAC). An algorithm is Uniform-PAC for § > 0 if

P (exists € > 0: Ne > Fypac (S, A, H,1/¢,log(1/6))) < 0,

where Fypac is polynomial in all arguments.

All the performance metrics are functions of the distribution of the sequence of errors over the episodes
(Ag)ken- Regret bounds are the integral of this sequence up to time 7', which is a random variable. The
expected regret is just the expectation of the integral, while the high-probability regret is a quantile. PAC
bounds are the quantile of the size of the superlevel set for a fixed level €. Uniform-PAC bounds are like
PAC bounds, but hold for all € simultaneously.

Limitations of regret. Since regret guarantees only bound the integral of A over k, it does not dis-
tinguish between making a few severe mistakes and many small mistakes. In fact, since regret bounds
provably grow with the number of episodes 7', an algorithm that achieves optimal regret may still make
infinitely many mistakes (of arbitrary quality, see proof of Theorem 22 below). This is highly undesirable
in high-stakes scenarios. For example in drug treatment optimization in healthcare, we would like to
distinguish between infrequent severe complications (few large Aj) and frequent minor side effects (many
small Ag). In fact, even with an optimal regret bound, we could still serve infinitely patients with the worst
possible treatment.

Limitations of PAC. PAC bounds limit the number of mistakes for a given accuracy level e, but is
otherwise non-restrictive. That means an algorithm with Ay > ¢/2 for all k& almost surely might still be
(e, 0)-PAC. Worse, many algorithms designed to be (€, §)-PAC actually exhibit this behavior because they
explicitly halt learning once an e-optimal policy has been found. The less widely used TCE (total cost of
exploration) bounds (Pazis and Parr, 2016) and KWIK guarantees (Li, Littman, and Walsh, 2008) suffer
from the same issueand for conciseness are not discussed in detail.
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Figure 4.1: Visual summary of relationship among the different learning frameworks: Expected regret (ER)
and PAC preclude each other while the other crossed arrows represent only a does-not-implies relationship.
Blue arrows represent imply relationships. For details see the theorem statements.

Advantages of Uniform-PAC. The new criterion overcomes the limitations of PAC and regret guarantees
by measuring the number of e-errors at every level simultaneously. By definition, algorithms that are
Uniform-PAC for a ¢ are (¢, §)-PAC for all ¢ > 0. We will soon see that an algorithm with a non-trivial
Uniform-PAC guarantee also has small regret with high probability. Furthermore, there is no loss in the
reduction so that an algorithm with optimal Uniform-PAC guarantees also has optimal regret, at least
in the episodic RL setting. In this sense Uniform-PAC is the missing bridge between regret and PAC.
Finally, for algorithms based on confidence bounds, Uniform-PAC guarantees are usually obtained without
much additional work by replacing standard concentration bounds with versions that hold uniformly over
episodes (e.g. using the law of the iterated logarithms). In this sense we think Uniform-PAC is the new
‘gold-standard’ of theoretical guarantees for RL algorithms.

4.2.1 Relationships between Performance Guarantees

Existing theoretical analyses usually focus exclusively on either the regret or PAC framework. Besides
occasional heuristic translations, Proposition 4 in (Strehl and Littman, 2008) and Corollary 3 in (Jaksch,
Ortner, and Auer, 2010) are the only results relating a notion of PAC and regret, we are aware of. Yet the
guarantees there are not widely used” unlike the definitions given above which we now formally relate to
each other. A simplified overview of the relations discussed below is shown in Figure 4.1.
Theorem 21. No algorithm can achieve

® a sub-linear expected regret bound for all T' and

® a finite (€,0)-PAC bound for a small enough ¢
simultaneously for all two-armed multi-armed bandits with Bernoulli reward distributions. This implies
that such guarantees also cannot be satisfied simultaneously for all episodic MDPs.

A full proof is in Section 4.6.1, but the intuition is simple. Suppose a two-armed Bernoulli bandit
has mean rewards 1/2 + € and 1/2 respectively and the second arm is chosen at most F' < oo times with
probability at least 1 — §, then one can easily show that in an alternative bandit with mean rewards 1/2 + €

The average per-step regret in (Jaksch, Ortner, and Auer, 2010) is superficially a PAC bound, but does not hold over infinitely

many time-steps and exhibits the limitations of a conventional regret bound. The translation to average loss in (Strehl and Littman,
2008) comes at additional costs due to the discounted infinite horizon setting.
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and 1/2 4 2¢ there is a non-zero probability that the second arm is played finitely often and in this bandit the
expected regret will be linear. Therefore, sub-linear expected regret is only possible if each arm is pulled
infinitely often almost surely.

Theorem 22. The following statements hold for performance guarantees in episodic MDPs:

(a) If an algorithm satisfies a (¢, 0)-PAC bound with Fpac = ©(1/€?) then it satisfies for a specific
T = O(e®) a Fypg = O(T?/3) bound. Further, there is an MDP and algorithm that satisfies
the (€,6)-PAC bound Fpac = O(1/€?) on that MDP and has regret R(T) = Q(T?%3) on that
MDP for any T. That means a (¢, §)-PAC bound with Fpac = ©(1/€?) can only be converted to a
high-probability regret bound with Fypg = Q(T?/3).

(b) For any chosen €,6 > 0 and Fpac, there is an MDP and algorithm that satisfies the (¢, §)-PAC bound
Fpac on that MDP and has regret R(T) = Q(T') on that MDP. That means a (¢€,9)-PAC bound
cannot be converted to a sub-linear uniform high-probability regret bound.

(c) For any Fyppr(T, &) with Fygpr(T, ) — oo as T — oo, there is an algorithm that satisfies that
uniform high-probability regret bound on some MDP but makes infinitely many mistakes for any
sufficiently small accuracy level € > 0 for that MDP. Therefore, a high-probability regret bound
(uniform or not) cannot be converted to a finite (e, 0)-PAC bound.

(d) For any Fyppr(T,0) there is an algorithm that satisfies that uniform high-probability regret bound
on some MDP but suffers expected regret ER(T") = Q(T') on that MDP.

For most interesting RL problems including episodic MDPs the worst-case expected regret grows
with O(\/T ). The theorem shows that establishing an optimal high probability regret bound does not
imply any finite PAC bound. While PAC bounds may be converted to regret bounds, the resulting bounds
are necessarily severely suboptimal with a rate of 72/3. The next theorem formalises the claim that
Uniform-PAC is stronger than both the PAC and high-probability regret criteria.

Theorem 23. Suppose an algorithm is Uniform-PAC for some § with Fypac = O(C1 /e 4+ Cy/€?) where
C1,Cy > 0 are constant in €, but may depend on other quantities such as S, A, H, log(1/0), then the
algorithm

(a) converges to optimal policies with high probability: P(limy_,oo A =0) > 1 — 4.
(b) is (e,0)-PAC with bound Fpac = Fypac for all e.
(¢) enjoys a high-probability regret at level § with Fygpr = O(v/CoT + max{Cy, Cs}).

Observe that stronger uniform PAC bounds lead to stronger regret bounds and for RL in episodic
MDPs, an optimal uniform-PAC bound implies a uniform regret bound. To our knowledge, there are no
existing approaches with PAC or regret guarantees that are Uniform-PAC. PAC methods such as MBIE,
MoRMax, UCRL-v, UCFH, Delayed Q-Learning or Median-PAC all depend on advance knowledge of e
and eventually stop improving their policies. Even when disabling the stopping condition, these methods
are not uniform-PAC as their confidence bounds only hold for finitely many episodes and are eventually
violated according to the law of iterated logarithms. Existing algorithms with uniform high-probability
regret bounds such as UCRL2 or UCBVI (Azar, Osband, and Munos, 2017) also do not satisfy uniform-PAC
bounds since they use upper confidence bounds with width \/log(7") /n where T is the number of observed
episodes and n is the number of observations for a specific state and action. The presence of log(7") causes
the algorithm to try each action in each state infinitely often. One might begin to wonder if uniform-PAC is
too good to be true. Can any algorithm meet the requirements? We demonstrate in Section 4.4 that the
answer is yes by showing that UBEV has meaningful Uniform-PAC bounds. A key technique that allows us
to prove these bounds is the use of finite-time law of iterated logarithm confidence bounds which decrease

at rate y/(loglogn)/n.
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4.3 The UBEV Algorithm

The pseudo-code for the proposed UBEV algorithm is given in Algorithm 3. In each episode it follows
an optimistic policy 7 that is computed by backwards induction using a carefully chosen confidence
interval on the transition probabilities in each state. In line 8 an optimistic estimate of the Q-function for
the current state-action-time triple is computed using the empirical estimates of the expected next state
value Vnext € R (given that the values at the next time are V}H) and expected immediate reward 7 plus
confidence bounds (H — t)¢ and ¢. We show in Lemma 27 later in this chapter that the policy update in
Lines 3-9 finds an optimal solution to maxps ,» v+ »» Egp, [V{(s)] subject to the constraints that for all
seS,ac Ate[H],

V/(s) = r(s,7'(s,1),t) + P'(s,7(s,t),8) V4 (Bellman Equation) 4.1
Vire1 =0, P'(s,a,t) € Ag, 1'(s,a,t) € [0,1]

[(P" = Pr)(s,a,t)] ' Vi | < é(s,a,t)(H —t)

|7 (s,a,t) — Pr(s,a,t)| < ¢(s,a,t) 4.2)

where (P’ — P;)(s, a, t) is short for P'(s,a,t) — Py(s,a,t) = P'(-|s,a,t) — Py(-|s,a,t) and

n(s,a,t) n(s,a,t)

o(s,0.1) = \/2lnlnmax{e,n(s,a,t)}+ln(18SAH/5) 0 (\/ln(SAHln(n(s,a,t))/6)>

is the width of a confidence bound with e = exp(1) and Py (s'|s,a,t) = %

transition probabilities and 7% (s, a,t) = I(s, a,t)/n(s, a,t) the empirical immediate rewards (both at the
beginning of the kth episode). Our algorithm is conceptually similar to other algorithms based on the
optimism principle such as MBIE (Strehl, Li, and Littman, 2009), UCFH (Dann and Brunskill, 2015),
UCRL?2 (Jaksch, Ortner, and Auer, 2010) or UCRL-v (Lattimore and Hutter, 2012) but there are several
key differences:

are the empirical

¢ Instead of using confidence intervals over the transition kernel by itself, we incorporate the value
function directly into the concentration analysis. Ultimately this saves a factor of S in the sample
complexity, but the price is a more difficult analysis. Previously MoRMax (Szita and Szepesvari,
2010) also used the idea of directly bounding the transition and value function, but in a very different
algorithm that required discarding data and had a less tight bound. A similar technique has been used
by Azar, Osband, and Munos (2017).

® Many algorithms update their policy less and less frequently (usually when the number of samples
doubles), and only finitely often in total. Instead, we update the policy after every episode, which
means that UBEV immediately leverages new observations.

¢ Confidence bounds in existing algorithms that keep improving the policy (e.g. Jaksch, Ortner, and
Auer (2010) and Azar, Osband, and Munos (2017)) scale at a rate /log(k)/n where k is the number
of episodes played so far and n is the number of times the specific (s, a, t) has been observed. As the
results of a brief empirical comparison in Figure 4.2 indicate, this leads to slow learning (compare
UCBVI_1 and UBEV’s performance which differ essentially only by their use of different rate
bounds). Instead the width of UBEV’s confidence bounds ¢ scales at rate /In In(max{e,n})/n ~
/(loglog n)/n which is the best achievable rate and results in significantly faster learning.
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Algorithm 3: UBEV (Upper Bounding the Expected Next State Value) Algorithm
Input : failure tolerance 6 € (0, 1]
1 n(s,a,t) =1(s,a,t) =m(s,s,a,t) =0; Vgyi1(s):=0 Vs, s €S,aec Ate[H|
2 fork=1,2,3,... do

/* Optimistic planning %/
fort = H to1do
for s € S do
for a € Ado
6 ¢ = \/2lnln(max{e’n(;ﬁ(;’?i))+1n(18SAH/5) // confidence bound
~ . Ty,

7 7= i((i’f;’;)); Vaext 1= %W // empirical estimates
8 Q(a) :==min{1,7 + ¢} + min {maXVtH,Vnext—i— (H—t)¢}
) | (s b) = argmax, Qa),  Vils) i= Q(mi(s,1))

/* Execute policy for one episode */
10 S1 ~ Pos;
11 fort =1to H do
12 a; := (s, t), e ~ pr(se,ar,t) and siqpq ~ P(sy, a,t)
13 n(se, ar, t)++;  m(Sep1, Sty ae, t) 5 1(S¢, ap,t)+=1r¢ // update statistics

4.4 Uniform PAC Analysis

We now discuss the Uniform-PAC analysis of UBEV which results in the following Uniform-PAC and regret
guarantee.

Theorem 24. Let i be the policy of UBEV in the kth episode. Then with probability at least 1 — ¢ for all
€ > 0 jointly the number of episodes k where the expected return from the start state is not e-optimal (that
is A > €) is at most

4
o) <SA§I min {1+€S/H, S}polylog<A, 3 Hl(ls» ‘
€ €

Therefore, with probability at least 1 — § UBEV converges to optimal policies and for all episodes T has
regret

R(T)=0 (HQ(\/SAT + S2AH3) polylog(S, A, H, T)) .

Here polylog(x .. .) is a function that can be bounded by a polynomial of logarithm, that is, 3k, C' :
polylog(z...) < In(z...)* + C. In Section 4.8 we provide a lower bound on the sample complexity
that shows that if e < H/S, the Uniform-PAC bound is tight up to log-factors and a factor of H. To our
knowledge, UBEV is the first algorithm with both near-tight (up to H factors) high probability regret and
(e,0) PAC bounds as well as the first algorithm with any nontrivial uniform-PAC bound.

Using Theorem 23 the convergence and regret bound follows immediately from the uniform PAC
bound. After a discussion of the different confidence bounds allowing us to prove uniform-PAC bounds,
we will provide a short proof sketch of the uniform PAC bound.
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Figure 4.2: Empirical comparison of optimism-based algorithms with frequentist regret or PAC bounds on
a randomly generated MDP with 3 actions, time horizon 10 and S = 5, 50, 200 states. All algorithms are
run with parameters that satisfy their bound requirements. A detailed description of the experimental setup
including a link to the source code can be found in Section 4.7.

4.4.1 Enabling Uniform PAC With Law-of-Iterated-Logarithm Confidence Bounds

To have a PAC bound for all € jointly, it is critical that UBEV continually make use of new experience. If
UBEV stopped leveraging new observations after some fixed number, it would not be able to distinguish
with high probability among which of the remaining possible MDPs do or do not have optimal policies that
are sufficiently optimal in the other MDPs. The algorithm therefore could potentially follow a policy that is
not at least e-optimal for infinitely many episodes for a sufficiently small e. To enable UBEV to incorporate
all new observations, the confidence bounds in UBEV must hold for an infinite number of updates. We
therefore require a proof that the total probability of all possible failure events (of the high confidence
bounds not holding) is bounded by 4§, in order to obtain high probability guarantees. In contrast to prior
(e, 0)-PAC proofs that only consider a finite number of failure events (which is enabled by requiring an RL
algorithm to stop using additional data), we must bound the probability of an infinite set of possible failure
events.

Some choices of confidence bounds will hold uniformly across all sample sizes but are not sufficiently
tight for uniform PAC results. For example, the recent work by Azar, Osband, and Munos (2017) uses
InT

pra
of samples of a (s, a) pair at a particular time step. This confidence interval will hold for all episodes,
but these intervals do not shrink sufficiently quickly and can even increase. One simple approach for
constructing confidence intervals that is sufficient for uniform PAC guarantees is to combine bounds for
fixed number of samples with a union bound allocating failure probability 6 /n? to the failure case with n
samples. This results in confidence intervals that shrink at rate y/1/nInn. Interestingly we know of no
algorithms that do such in our setting.

We follow a similarly simple but much stronger approach of using law-of-iterated logarithm (LIL)
bounds that shrink at the better rate of y/1/n In Inn. Such bounds have sparked recent interest in sequential
decision making (Jamieson et al., 2014; Balsubramani and Ramdas, 2016; Garivier, Lattimore, and
Kaufmann, 2016; Massart, 2007; Garivier and Cappé, 2011) but to the best of our knowledge we are the
first to leverage them for RL. We prove several general LIL bounds Section 4.11 and explain how we use
these results in our analysis in Section 4.10.2. These LIL bounds are both sufficient to ensure uniform PAC
bounds, and much tighter (and therefore will lead to much better performance) than y/1/n In T bounds.
Indeed, LIL have the tightest possible rate dependence on the number of samples n for a bound that holds

confidence intervals that shrink at a rate of where 1" is the number of episodes, and n is the number
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for all timesteps (though they are not tight with respect to constants).

4.4.2 Proof Sketch

We now provide a short overview of our uniform PAC bound in Theorem 24. It follows the typical scheme
for optimism based algorithms: we show that in each episode UBEV follows a policy that is optimal with
respect to the MDP M;, that yields highest expected return in a set of MDPs M}, given by the constraints
in Egs. (4.1)—(4.2) (Lemma 27 in the later sections). We then define a failure event F' (more details see
below) such that on the complement F, the true MDP is in M, for all k.

Under the event that the true MDP is in the desired set, the V" < V* < 1717”“, i.e., the value f/fr’“ of
7, in MDP M, & 1s higher than the optimal value function of the true MDP M (Lemma 45). Therefore,
the optimality gap is bounded by Ay < pOT(Vfr’“ — V™). The right hand side this expression is then
decomposed via a standard identity (Lemma 44) as

H
Z Z wtk(‘S?a)((P’C - )(S a, t V;fikl + Z Z wtk(sa a)("zk(sv aat) - T(S’avt))v

t=1 (s,a)eSxA t=1 (s,a)eSxA

where wy(s, a) is the probability that when following policy 7, in the true MDP we encounter s; = s
and a; = a. The quantities P, 7, are the model parameters of the optimistic MDP M;, For the sake of
conciseness, we ignore the second term above in the following which can be bounded by €/3 in the same
way as the first. We further decompose the first term as

Z wy(s,a)((Py — P)(s,a,t) " Vt:kl (4.3)
te[H|

(s,a)eLs,

+ Zwtk’(sa a)((pk - pk)(sv a, t))T‘;;ri-kl + Zwtk‘(sa a)((pk - P)(Sv a, t))Tf/tj-kl (44)
te[H] te[H]

(s,a)E Ly (s,a)€Lg

where L, = {(s, a) €S X A wy(s,a) > Wyin = } is the set of state-action pairs with non-

3152 n
negligible visitation probability. The value of wy,;, is chosen so that (4.3) is bounded by €/3. Since V7™* is
the optimal solution of the optimization problem in Eq. (4.1), we can bound

H2In (]n(’l’Lm(& a))/5)> , 4.5)

ntk(sa CL)

|(Pe—Pr) (s, a,) "V < dk(s,at)(H — 1) = O <\/

where ¢y (s, a,t) is the value of ¢(s,a,t) and ny(s,a) the value of n(s,a,t) right before episode k.
Further we decompose

. L . - SH? I nnk(sa)
(P = P)(s,a,)) VIR | < (B = P)(s, a, )11V oo < O b , (4.6)
nek (s, a)

where the second inequality follows from a standard concentration bound used in the definition of the
failure event F' (see below). Substituting this and (4.5) into (4.4) leads to

H
4 <O Z Z wtk(s,a)\/SH21n(1n(mk(S,a))/5) _ @7

t=1 s,a€Lyy ntk(s’ CL)
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On FC it also holds that ny(s,a) > 3>, , wu(s,a) — In % and so on nice episodes where
each (s,a) € Ly with significant probability w; (s, a) also had significant probability in the past, i.e.,
YickWei(s,a) > 41n %, it holds that ny(s,a) > 1 >, _, wi;(s, a). Substituting this into (4.7), we can
use a careful pidgeon-hole argument laid out it Lemma 35 to show that this term is bounded by €/3 on all
but O(AS?H* /e polylog(A, S, H,1/e,1/68)) nice episodes. Again using a pidgeon-hole argument, one
can show that all but at most O(S? AH?3 /e In(SAH/§)) episodes are nice. Combining both bounds, we get
that on F'C the optimality gap Ay, is at most € except for at most O(AS2H* /€? polylog(A, S, H,1/e,1/5))
episodes.

We decompose the failure event into multiple components. In addition to the events Fé\[ thata (s, a,t)
triple has been observed few times compared to its visitation probabilities in the past, i.e., ny(s,a) <
% Y ick Wi(s,a) —In % as well as a conditional version of this statement, the failure event F' contains
events where empirical estimates of the immediate rewards, the expected optimal value of the successor
states and the individual transition probabilites are far from their true expectations. For the full definition
of F see Section 4.10.2. F also contains event F'“! we used in Eq. (4.6) defined as

ntk(sza)

{Hk:,s,a,t - || Py(s,a,t) — P(s,a,t)||1 > \/L (2 llnp(n(s,a)) + In %(2572» }

It states that the L1-distance of the empirical transition probabilities to the true probabilities for any (s, a, t)
in any episode £ is too large and we show that P(F*!) < 1 — §/9 using a uniform version of the popular
bound by Weissman et al. (2003) which we prove in Section 4.11. We show in similar manner that the other
events in F" have small probability uniformly for all episodes & so that P(F') < §. Together this yields the
uniform PAC bound in Thm. 24 using the second term in the min.

With a more refined analysis that avoids the use of Holder’s inequality in (4.6) we obtain the bound
with the first term in the min. However, since a similar analysis has been recently released (Azar, Osband,
and Munos, 2017), we defer this discussion to the later sections.

4.4.3 Discussion of UBEV Bound

The (Uniform-)PAC bound for UBEV in Theorem 24 is never worse than O(S 2AH*/€%), which improves
on the similar MBIE algorithm by a factor of H? (after adapting the discounted