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Abstract
In many real world problems such as novelty de-
tection, presence/absence inference in ecology,
and fake review detection one deals with a small
sample of one class with an abundance of unla-
beled data. Our goal is to introduce a new method
that helps to train a classifier under such strong
assumptions about the available dataset for learn-
ing. The main idea is to introduce the prior
knowledge that the error encountered by the ex-
pert who annotates the data is a smooth function
of the features of an example, which as we will
discuss a natural assumption in many realistic an-
notation scenarios.

1. Introduction
For a given i.i.d. pair of features and samples
{(Xi, yi)}Ni=1, one can use many different methods to de-
rive a consistent estimator for the hypothesis class. When
the amount of labeled examples is limited, unlabeled data is
used to leverage the learning process. Such algorithms are
known as Semi-Supervised Learning (SSL) methods. In the
context of binary classification, here we are interested in a
relaxation, namely that if we have a collection of unlabeled
examples/data-points and a collection of labeled examples,
but only from one class can we still leverage the learning
process and find a reasonable h ∈ H that encounters little
loss as the number of samples that agents is exposed to in-
creases? This problem in the literature is known as Learn-
ing from Positive and Unlabeled data, or PU-Learning for
short (Li & Liu, 2005).

To better explain the nature of the problem lets consider
an example. Online reviews today play an important role
in peoples choice of products. In many cases businesses
hire people or create bots to generate fake reviews and rat-
ings. One important problem then is to identify these fake
reviews. Indeed such a problem can be phrased as an in-
stance of learning from positive and unlabeled data; in such
a case xi would be the text of the review, yi would be the
true label of data being fake (positive) or not. Despite the
fact that there is a scarcity in the amount of available la-
beled data points, i.e. detected fake reviews, autonomous
algorithms are proposed that seem promising to solve this

problem (Mukherjee et al., 2013; Jindal et al., 2010; Ott
et al., 2013).

Inspired by the seminal work of Elkan and Noto (Elkan &
Noto, 2008), in this manuscript we will consider a slightly
different (non-traditional) setting for the data-generating
process for for an available dataset of positively labeled
or otherwise unlabeled data. In this non-traditional setting
we assume data is generated according to a joint distribu-
tion p(X, y, l). Indeed our sample is generated in triplets
xi, yi, li where xi ∈ X s.t. yi is observed only if li = 1 (or
equivalently xi is annotated by the expert) and it is not ob-
served otherwise (li = 0). Moreover we assume that li = 1
only when yi = 1, which represents the fact that we only
observe positively-labeled data points. We will return to
these assumptions in a more precise manner later in section
2.

Our goal in this manuscript is to set forth a modeling for
PU-learning where we exploit the fact that the labeling pro-
cess –at least in many cases– is carried out by humans, and
this limits the set of functions/models that can represent the
labeling process itself. This latter assumption –as we will
see– will enable us to do a better classification when we are
to learn from only positive and unlabeled data.

2. Brief Literature Review
PU-learning has been discussed under two different names.
Under one branch, the problem is known as the “novelty
detection” where the task is to identify “novel” examples
while very few novel examples and an abundance of the
so called “nominal” examples are available. The general
approach in these frameworks –even when no novel data
is available– is to predict a level set that contains the sup-
port of the nominal distribution and to consider examples
lying out of this support as novel examples (Schölkopf
et al., 2001; El-Yaniv & Nisenson, 2007; Vert & Vert, 2006;
Steinwart et al., 2005; Hero, 2007). It is worthwhile to
mention that such an approach has been extended to incor-
porate unlabeled data to leverage learning (Blanchard et al.,
2010; Scott & Blanchard, 2009; Liu et al., 2003).

Another set of research relies on “selected completely at
random assumption” (or SCAR for short) which we will in-
troduce formally in the next section, but the idea is that the
expert chooses the positive examples that are going to be
annotated, completely at random and independent of their
features. This assumption –to the best knowledge of the
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authors– was first motivated in the context of text classifi-
cation when only example texts from one class are avail-
able (Denis, 1998; Denis et al., 2002). SCAR assumption
has been exploited in many PU-learning algorithms among
which (Elkan & Noto, 2008; Du Plessis & Sugiyama, 2014)
and (Ward et al., 2009) are a few.

In both of these cases additional assumptions are made, be-
cause one can show that in the general setting it is not pos-
sible to identify a unique model that generates the data (see
e.g. (Elkan & Noto, 2008; Blanchard et al., 2010)).

2.1. PU Learning and SCAR Assumption

Our focus in this work is going to be to introduce a treat-
ment of Elkan et. al’s (Elkan & Noto, 2008) method and
for that reason here we study this method more thoroughly.
The solution of Elkan et. al. (Elkan & Noto, 2008) to the
PU-learning is based upon the following assumptions:

(i) No False Positive (NFP) assumption: p(y = 1|l =
1) = 1. This condition simply means the only labeled
examples are positive examples. This is equivalent
to assuming there is no false positive labeling by an
expert when it comes to finding the positive labels.

(ii) Selected Completely At Random (SCAR) assump-
tion: By this assumption mathematically we mean
p(l = 1|y = 1, X = x) = p(l = 1|y = 1). To
put it otherwise, X is conditionally independent of l,
given y. Elkan et. al. (Elkan & Noto, 2008) named
this assumption “sampled completely at random as-
sumption”, meaning that the set of positive samples
that are revealed to the learning algorithm are chosen
randomly and identically from the set of all positive
examples.

Despite promising mathematical –and sometimes
practical– results under assumptions (i) and (ii), it is
important to note that assumption (ii) can be highly
violated in real-world problems. For example consider
that we are interested to find fake reviews on a reviewing
platform. Identifying such deceptive reviews can play a
very important role in the success of the platform. For
example one expects to find more deceptive reviews with
full (or high) rating than average or low-rated reviews. So
reviews are indeed different in their strength of fakeness
when judged by human subjects. Also humans are very
biased in types of reviews that they find to be fake (see
(Ott et al., 2013) or (Vrij, 2008) for a more explicit study).
Another example of the importance of features in labeling
process is liked posts on social network platforms. For
example a post on Instagram can be liked by a user because
there is a cute cat in the picture, or just because the post
is made by a celebrity that the user likes, regardless of the

image shared by the celebrity. So indeed the liked posts are
highly dependant on the content of the post and therefore
on the input feature (in this case the image). Therefore, we
believe that p(l = 1|y = 1, X = x) is not constant (w.r.t.
to X) –which is assumed in SCAR assumption– but rather
dependent on X , because as previously mentioned labeling
of the samples in many cases is done by human experts and
these experts will be sensitive –or said differently, biased
towards– specific features of samples.

Both of the assumptions suggested by Elkan et. al. (Elkan
& Noto, 2008) (NFP and SCAR) are about the data-
generating process. Motivated by the same approach,
namely focusing on the data-generating process, the goal
of this work is to find assumptions related to this process,
under which the learning of p(y|X) would be feasible, even
if Assumption (ii) is violated.

In what follows we will also assume Assumption (i) holds.
Then, as is shown in (Elkan & Noto, 2008) we have the
following:

p(l = 1|X = x, y = 1)p(y = 1|x) = p(l = 1|x) (1)

Note that all the three terms in (1) are functions of x.
For simplicity and as a convention we will refer to these
posteriors with the following shorthands interchangeably.
We chose s(x) for p(l = 1|X = x, y = 1) so that s
stands for the initial letter in “selection process”, which
as we will discuss represents the selection procedure of
”which examples of the positive class to be labeled by the
expert?”. Similarly we chose t(x) for p(y = 1|X = x)
where t is the initial letter of “target” function. Finally
we represent p(l = 1|X = x) with h(x). Assumption (ii)
therefore is equivalent to s(x) = c, where c is a constant
independent of the value of X .

3. PU-learning Based On Functional
Structures

As we described in section 2, labeling examples in many
cases are done by experts, and these experts will be sen-
sitive to what the inputs are, and how well such experts
can read a signal from the provided set of features for any
given example. So an important question is, under what
conditions we are still able to identify s and t in (1) and
therefore “de-bias” the labeling process that has been af-
fected by expert bias in choice of features for classification

We claim that by imposing specific structural properties on
s, t and h we can still identify s and more importantly t.
One way of encoding a difference between s and t is to
assume s(x) has a smoother structure compared to t(x).
Indeed this assumption makes sense considering that the
labeling process by an expert would be more smooth –and
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therefore sensitive to the signal to noise ratio in a given
example– than an oracle which –almost perfectly– can pre-
dict the label for a given example. Let’s see an extreme
case where such an assumption holds.

3.1. An Extreme Scenario

Let’s assume that real data generating process is determin-
istic, i.e.

Assumption 1. Assume X is a random variable belonging
to the measure space (X ,Σ,P) and there exist A ∈ Σ s.t.
A ⊆ X

∀x ∈ A, Pr(y|X = x) = 1,

and zero otherwise.

We show that under this condition and with an extra as-
sumption the classification task can be done almost per-
fectly. This second assumption roughly states that there is
a similarity between s and t, i.e. the fact that an example
is labeled as positive, makes it highly likely to be correctly
labeled by an expert.

Assumption 2. The support of s is very similar to the sup-
port of t, i.e.

Pr
(

supp(t) \ supp(s)
)
< ε,

for some given ε > 0.

Define a classifier C0 as follows:

C0(x) =

{
1 if h(x) > 0

0 otherwise

Then we can show the following:

Lemma 1. Suppose assumptions 1 and 2 hold. Then C0

has an increase of ε in risk compared to Bayes classifier.

Proof. The proof can be found in supplementary material.

Despite this interesting theoretical guarantee this case is an
extreme scenario with unrealistic assumptions. To remedy
this we will introduce a more realistic modeling assumption
in the next section.

4. Incorporating Smoothness Assumptions
As we mentioned in the previous section, Assumption 1 is
a relatively unrealistic assumptions and something that is
not typically assumed in classification problems about the
correct hypothesis. Here we replace this assumption and
also Assumption 2 in previous section with the following:

Assumption 3. The labeling process is related to the fea-
tures smoothly. More precisely we will assume that p(s =
1|X, y = 1) comes from a parametric family of func-
tions, i.e. we are seeking to find the parameter θ0 where
p(s = 1|X, y = 1, θ) is s(x) and θ captures in some way
the smoothness of these families of functions.

To justify this assumption notice that p(l = 1|X, y = 1)
somehow encodes the labeling process for positively la-
beled data. As we discussed, what Elkan et al. assume
(Elkan & Noto, 2008) is that the labeling process itself for
positive labels is independent of X and therefore, they im-
plicitly assume there is no “signal” inX that plays a role in
the labeling process of positive examples, which means the
smooth function above simply is a constant function. Our
smoothness assumption means that for an example X with
positive label, the labeling expert will be sensitive to the
features of an example through a smooth function. Hence
if the features of X are slightly changed the probability as-
sociated with X being labeled will also slightly change.

To realize this assumption in what follows we will assume
s(x) is a sigmoidal function.

4.1. Sigmoidal Product Model (SPM)

A special case to consider is when s(x) and t(x) are both
sigmoidal functions, where by sigmoidal function we mean

σ(x; a, b) =
1

e−ax+b
.

We will call such a family of models as Sigmoidal Prod-
uct Models (SPMs). We will derive an identifibaility re-
sult for this family of models, introduce an algorithm for
parameter estimation and eventually we provide empirical
examples showing that our model does better in classifi-
cation compared to PU-learning method of Elkan et. al’s
(Elkan & Noto, 2008) or compared to the case where h is
used as a classifier instead of t, which we call the naı̈ve
classifier. To this end assume Xi

i.i.d.∼ P is given s.t.
Xi ∈ Rn where P is an arbitrary distribution. Also assume
θt := (αt, βt) ∈ Rn × R and θs := (αs, βs) ∈ Rn × R
represent the parameters of t and s respectively, i.e.

pθs(l = 1|X = x, y = 1) =
1

exp(−αTs x+ βs) + 1
, and

pθt(y = 1|X = x) =
1

exp(−αTt x+ βt) + 1

Notice that –as is usually done– we can reparametrize the
expressions to include the bias as part of the feature vec-
tors by changing Xi = (xi1, ..., xin) vectors to Xi =
(xi1, ..., xin, 1). And now these conditionals take the fol-
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lowing simpler form

pθs(s = 1|X = x, y = 1) =
1

exp(−θTs x) + 1
, and

pθt(y = 1|X = x) =
1

exp(−θTt x) + 1

In what follows we first show that one advantage of SPMs
are their identifiability. This is indeed very interesting be-
cause we are dealing with a dataset where we only have
positively labeled examples. There is a caveat; the identifi-
cation of parameters is up to permutation, i.e. we can infer
the parameters of SPM but up to a permutation between the
parameters belonging to one factor and the ones belonging
to the other factor of an SPM (s(x) and t(x)).

Lemma 2. The model based on multiplication of logistics
with the conditional likelihood defined in (3) is identifiable
up to permutation of θt and θs, i.e.

L(X; θt, θs) = L(X; θ′t, θ
′
s)

if and only if θ′t = θt and θ′s = θs or, θ′t = θs and θ′s = θt.

Proof. The proof is omitted and is available in supplemen-
tary material.

Based on this lemma in the next section we introduce an
algorithm to learn the parameters of an SPM and also report
some results on synthetic and real-world datasets where the
ground truth is known about the real labels of the datasets.

5. Experiments
In this section we report the success of SPM used to learn a
classifier from positive and unlabeled data only for real-
world and synthetic datasets. For this purpose we rely
on Algorithm 1, where we minimize the conditional log-
likelihood ∏

Pr(li|Xi, θs, θt) (2)

which is derived in the appendix (See (4)).

5.1. Synthetic Data for SPMs

Based on Lemma 2, we would like to report some empir-
ical results that indeed one can recover the true classifier
when the data is generated based on an SPM model, given
an extra condition to resolve the ambiguity of permutation
of parameters of SPM as described in Lemma 2. For the
sake of this experiments two random vectors θ1 = (α1, β1)
and θ2 = (α2, β2) are chosen from a 10-dimensional Gaus-
sian distribution with mean µ = 0 and diagonal covariance
matrix 25I10, where I10 is the identity matrix of order 10.
Then we choose θt to be θi(i = 1, 2) with a larger l2 norm

Algorithm 1 SPM learning algorithm
// Estimating θs and θt

1 Use any optimization method to minimize the negative log-
likelihood L in (2) and recover θ1 and θ2, the parame-
ters of the SPM.
// Choosing the right permutation

2 Choose whether θ1 = θs or θ2 = θs based on condition
C. For example motivated by Assumption 1 the con-
dition can be ”if ‖θ1‖2 < ‖θ2‖2 then θ1 = θt”. This
is because the sigmoidal function with smaller abso-
lute value of parameters is a steeper one and more
”deterministic-like”.
// Returning the classifier

3 The sigmoidal model with θt as its parameter is used for
classification.

Figure 1. Performance of different methods for learning from pos-
itive and unlabeled data. Our proposed method SPM outperforms
all the other methods. In the above plot “naive-xx” methods
are for cases where classifier xx has been used on training data
(Xi, li) and tested on (Xi, yi).

for αi i.e. ‖αi‖2, and set θs to the other chosen random
vector. This is because we believe the true classifier as
sharper separation of the two classes compared to the se-
lection function. Figure 1 shows the average classification
error of Logistic Regression (LR), our proposed method
SPM, naı̈ve SPM where we fit the product of sigmoid func-
tions and use this model for classification (the full product),
Elkan’s method (Elkan & Noto, 2008) when Logistic Re-
gression over 1000 different trials. In general in what fol-
lows “naive xx” classifier is a classifier where we use “xx”
model to train it on (Xi, li) pairs but measure its accuracy
on (Xi, yi) pairs. As it can be seen from the plot SPM and
naı̈ve method both outperform Elkan’s method. The con-
fidence intervals are calculated using Hoeffding bound on
the classification error for each trial.

Before getting to experiments with real data we describe a
peculiar method of reporting the test error based on nested
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cross-validation which has a higher reliability than the tra-
ditional train-test split datasets used in machine learning.

5.2. Nested Cross-Validation

Although heavily addressed in other sciences (Varma &
Simon, 2006), only is recently reproduciblity becoming an
important problem in the field of machine learning up to
the point that ICML 2017 has a dedicated workshop on
reproducibility1. With this in mind reporting the success
of a learning model especially when sample sizes are
relatively small needs to be done with more care than it is
traditionally done by splitting the dataset into training and
test set. Indeed this arbitrary splitting can be a big source
of bias if the asymmetry by splitting the data in such
an arbitrary way is not compensated by an extra effort.
Nested Cross-Validation is a method that has two-fold
benefits (Varma & Simon, 2006). On one hand it helps
us to infer the hyper-parameters of the model thanks to
the essence of the algorithm which is cross-validation.
But additionally through nested folds –inside the original
folds of a cross-validation– it helps one to get an unbiased
estimate of the so-called ”out-of-sample error” or test
error. For these reasons and especially since our dataset
size and computational costs are not too high we will be
using nested cross-validation to report our test errors in the
experiments below.

5.3. Dataset I: Animal/No-Animal Detection

In recent years there is an abundance of datasets on
human perception, recognition and assessment on different
visual/auditory tasks. Such datasets in many cases can be
divided into correct, incorrect, and undecided assessment
by humans. Since the ground truth in these cases are
known these datasets seem to be a good candidate for our
experiments. (Walther et al., 2011) is an example of such
a dataset, where humans are asked to categorize drawings
that are incomplete. Another such dataset is (Serre et al.,
2007) where human object recognition is assessed under
image rotations for recognizing animal vs. non-animal
patterns. Similar datasets are introduced in (Borji & Itti,
2014).

We focus here on a dataset which is presented in (Delorme
et al., 2004)2. We briefly describe the experimental
paradigm of this dataset. 14 subjects (7 male, 7 female)
participated in a study where they are performing a go-

1https://icml.cc/Conferences/2017/
Schedule?showEvent=16

2The dataset itself can be downloaded from https:
//sccn.ucsd.edu/˜arno/fam2data/publicly_
available_EEG_data.html

nogo categorization task, which is basically equivalent to
a classification task. Each subject in the main experiment
responded to 2500 stimuli, but here we focus on a sub-task
done by the subjects where they had to decide if there is an
animal in the shown picture/stimulus or not. There were
10 trials of 100 picture each were the pictures are 50/50
balanced between animal picture and non-animal pictures.
During all this time the brain activity of the subjects was
recorded using EEG recording technique.

To turn the data collected in this experiment into a
proper dataset for our LePU setting we proceeded as
follows. For a given example (X, ysub, yreal), ysub is
the label given by the subject to X and yreal is the real
label associated with X . X here is the image (animal
or not an animal that was shown to the subjects during
experiments). Assuming that these labels are binary,
we define l = yrealysub. This in a way enforces the
condition that subjects only classify positive examples.
Unfortunately a two-alternative forced choice experi-
mental design is pretty common in psychophysics and
neuroscience and finding dataset that subjects are allowed
to be indecisive in a binary task is uncommon. Notice
that here the data relevant to EEG recordings are discarded.

Because for image classification the dataset is quite small,
we used a pretrained neural network known as VGG16 (Si-
monyan & Zisserman, 2014) as an initial feature extractor
for our task. We pass our initial images through this pre-
trained neural net and take the activation of the first fully
connected layer of this network as the feature set for all of
our examples. Then, mainly for computational efficiency,
we apply a PCA on our new featurized examples to reduce
the number of features from 4096 to 50.

After this preprocessing we have applied the SPM method
to our featurized dataset using the sample set (Xi, li) which
we described its construction previously. Then this training
set is used infer the posterior p(yi = 1|Xi = xi).

Early experiment results confirm that PeLU method pro-
posed by (Elkan & Noto, 2008) indeed fails in this case
to be effective even compared to the naı̈ve classification
where we use p(l = 1|X = x) to estimate p(y = 1|X =
x). To carry out the experiments for this dataset we chose
6 of the subjects (which here we will be referring to with 3-
letter names as it is done in the original dataset) for which
the classification error for subjects were the highest. This is
done, mainly because when human accuracy is really high
(say above %90) this implies s(x) is also really high which
bounds in it with 0.9 < s(x) < 1.0. Therefore technically
the assumption of Elkan et al. i.e. s(x) being constant
holds and their method provides a good estimation. Table
?? shows the estimation of human classification error on

https://icml.cc/Conferences/2017/Schedule?showEvent=16
https://icml.cc/Conferences/2017/Schedule?showEvent=16
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
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the dataset (ĉ), and also estimated value of c under Assump-
tion i, i.e. using c = p(l = 1|, y = 1, X) = p(l = 1|y = 1)
based on the frequency of occurences in the dataset.

ĉ ê
hth 0.888 0.072
fsa 0.814 0.097
cba 0.954 0.076
ega 0.948 0.064
mta 0.854 0.094
clm 0.922 0.073

Table 1. This table shows the empirical values of ĉ and ê for dif-
ferent subjects on available dataset.

We compare the success of SPM and Logistic Regression
and Elkan’s method based on these six datasets (for sub-
jects ’hth’, ’fsa’, ’cba’, ’ega’, ’mta’, ’clm’) that are built
using the responses of these subjects after being exposed
to the stimuli (pictures of animals and non-animals). For
regularization we have done a gridsearch over 100 equally
distanced points in log-scale between 10−4 and 104 as the
regularization coefficient with l2 norm both for Elkan and
Logistic Regression methods. For SPM method we have
used the same range but this time with only 10 equidis-
tant splits in the log-domain, mainly due to processing time
constraints. The nested CV is used with 3 inner and 3 outer
loops/folds. Tables 2, 3, 4, 5 and 6 report the results for
other subjects. These subjects are chosen based on the fact
that the estimate value for their ĉ =

∑N
i=1

h(Xi)
s(Xi)

was rela-
tively smaller than 1. Table 1 shows the error by humans.

Fold # SPM Elkan Naı̈ve Real
1 0.9743 0.9734 0.9735 0.9745
2 0.9856 0.9831 0.9852 0.9873
3 0.9600 0.9827 0.9841 0.9866
Avg. 0.9733 0.9797 0.9809 0.9828

Table 2. AUC scores for different methods based on data gener-
ated from subject cba’s perception of pictures. We had 3 outer
and 3 inner folds. Naive method outperforms both our method and
Elkans’s method on average. In the above Naı̈ve means that we
used the classifier trained using (Xi, li) to label the test dataset.
And Real means that we used the real yi’s to get a trained classi-
fier.

Although Naı̈ve method does equally good job in all the
cases compared to our method, what is interesting is that
Elkan’s method never does better than any of the two. This
in a way shows how much SCAR assumption is actually
violated in real datasets. Also it is important to empha-
size that due to speed constraints we did far less splitting of
the parameter space for SPM than we did for both Naı̈ve
and Elkan’s method (10 vs. 100). Hopefully with bet-
ter optimization we might be able to outperform the Naı̈ve

Fold # SPM Elkan Naive Real
1 0.9820 0.9825 0.9826 0.9833
2 0.9846 0.9803 0.9824 0.9859
3 0.9769 0.9778 0.9780 0.9811
Avg. 0.9812 0.9802 0.9810 0.9834

Table 3. AUC scores for different methods based on data gener-
ated from subject mta’s perception of pictures. We had 3 outer
and 3 inner folds. As one can see our method outperforms both
Elkan and Naive method on average. Also notice that on folds 1
and 3 Naive method outperforms Elkan.

Fold # SPM Elkan Naive Real
1 0.9884 0.9884 0.9889 0.9905
2 0.9802 0.9796 0.9798 0.9795
3 0.9841 0.9834 0.9843 0.9860
Avg. 0.9842 0.9838 0.9854 0.9853

Table 4. AUC scores for different methods based on data gener-
ated from subject ega’s perception of pictures. We had 3 outer
and 3 inner folds. Naive method outperforms both our method
and Elkans’s method on average.

method as well. Also again, it is important to note that for
this dataset the estimated value of c based on frequency,
i.e. the estimate of p(l = 1|y = 1, X) is around 90%
for all of the subjects and such high value already forces
p(l = 1|y = 1, X) to be a near-constant function. This
might be another reason why our method does not perform
particularly well. Still this does not explain why naı̈ve
method does better than both of these methods and this
needs a further investigation.

5.4. Datset II: Detecting Fake Reviews

Today we choose most of the products and services that we
use and/or pay for based on the online reviews that other
consumers provide for us. Exampels of this are reviews on
Amazon, Yelp, TripAdvisor, Airbnb, etc. However writ-
ing deceptive fake reviews is a common phenomenon that
all these companies need to deal with in order to keep the
authenticity of the assessment of the product by the con-
sumers. Additionally finding fake reviews, whether written
to promote a product or to devalue another product, is a
hard task for humans as it is emphasized in the deception
detection literature (Bond Jr & DePaulo, 2006). For this
reason developing algorithms for better detection of fake
and deceptive reviews is of utmost importance for these in-
dustries and also for the consumers. Moreover when a hu-
man expert finds a fake review there is enough evidence
that led them to believe that is a fake review. However
there is no easy way of “proving” that a review is authen-
tic. Therefore for humans, we do have a high precision in
finding fake reviews but a low recall.
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Fold # SPM Elkan Naive Real
1 0.9691 0.9632 0.9649 0.9729
2 0.9836 0.9750 0.9747 0.9896
3 0.9861 0.9890 0.9890 0.9835
Avg. 0.9796 0.9757 0.9762 0.9835

Table 5. AUC scores for different methods based on data gener-
ated from subject fsa’s perception of pictures. We had 3 outer and
3 inner folds. Our method outperforms both Naı̈ve and Elkans’s
method on average.

Fold # SPM Elkan Naive Real
1 0.9805 0.9784 0.9803 0.9850
2 0.9812 0.9823 0.9839 0.9872
3 0.9806 0.9804 0.9808 0.9770
Avg. 0.9808 0.9803 0.9817 0.9831

Table 6. AUC scores for different methods based on data gener-
ated from subject hth’s perception of pictures. We had 3 outer
and 3 inner folds. Naive method outperforms both our method
and Elkans’s method on average.

Suppose we were to incorporate machine learning to rem-
edy the problem of finding fake reviews using a training
set collected by annotation done by experts. Due to the
nature and hardness of the problem of detecting fake re-
views by humans (Ott et al., 2013) we are dealing with a
classification (carried out by humans) where procession is
high and therefore positively annotated examples have an
accurate annotation but since recall is low, negatively an-
notated examples are highly noisy and have am inaccurate
annotation. As a result if we take only the fake reviews
as the given initially annotated dataset (which there is a
high accuracy over it) we are indeed dealing with a case
of learning from positive and unlabeled data only. To see
if indeed our methods helps to improve human annotations
of reviews we have used the dataset from (Ott et al., 2013).
The dataset of (Ott et al., 2013) is available through http:
//myleott.com/op-spam.html3. In this dataset
400 fake reviews are generated using Amazon Mechani-
cal Turk. Also 400 5-star reviews for 20 most popular ho-
tels in Chicago are scraped and assumed to be authentically
positive reviews, since the claim is that popular places are
less prone to be attacked by spammers (Ott et al., 2013).
Then three undergraduate students are asked to label all the
800 reviews and identify the fake reviews. Here we will
use these human judgments as our input dataset and try to
build a classifier based on this dataset that is more accurate
in finding fake reviews.

3Although three human judges are employed in this study to
annotate authentic and fake reviews, their answers are not pro-
vided on Myle Ott’s website. We have received this dataset
through personal communication.

Fold # SPM Elkan Naive Real
1 0.9817 0.9813 0.9816 0.9851
2 0.9873 0.9882 0.9879 0.9897
3 0.9773 0.9769 0.9768 0.9790
Avg. 0.9822 0.9821 0.9821 0.9846

Table 7. AUC scores for different methods based on data gener-
ated from subject clm’s perception of pictures. We had 3 outer
and 3 inner folds. Our method outperforms both Naive method
and Elkans’s method on average.

To this end, similar to the neuroscience data, we have
used the human judgments over the corpus of reviews and
mixed them with the ground truth of reviews –which is
available– to create a dataset with positive and unlabeled
data only (again, notice that similar to neuroscience case
we just need to take a logical “and” (or ∧) between the
real labels and human judgment of labels to create a list of
positively or otherwise unlabeled dataset). The nested CV
is used with 5 inner and 5 outer loops/folds.

We compare the success of SPM and Logistic Regression
and Elkan’s method based on these three datasets that are
built using the responses of the three judges that anno-
tated fake reviews. For regularization we have used 1000
equally distanced points in log-scale between 10−4 and 104

both for Elkan and Logistic Regression. For SPM method
we have used the same range but this time with only 100
equidistant splits in the log-domain. The results for these
three subjects are provided in Tables 8, 9 and 10.

Fold # SPM Elkan Naive Real
1 0.4510 0.4157 0.4157 0.8745
2 0.5458 0.6375 0.5625 0.8917
3 0.5830 0.5385 0.5628 0.8988
4 0.6508 0.6429 0.5040 0.9286
5 0.8083 0.75 0.8 0.8792
Avg. 0.6078 0.5969 0.5690 0.8945

Table 8. AUC scores for different methods based on data gener-
ated from subject 1’s judgments of fake reviews. We had 5 outer
and 5 inner folds. As one can see our method outperforms both
Elkan and Naive method on 4 out 5 of folds and also on aver-
age. Also notice that on folds 3 and 5 Naive method outperforms
Elkan.

It can be seen that in for all three subjects our method
(SPM) outperforms Elkan et. al. methods and the natı̈ve
classifier in 4 out of 5 folds of nested cross-validation and
on average of all the folds. We take that as a strong signal
that paying attention to the dependence of selection func-
tion on the input, i.e. s(x) on x can contribute to the suc-
cess of the learning algorithm to learn p(y|X).

http://myleott.com/op-spam.html
http://myleott.com/op-spam.html
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Fold # SPM Elkan Naive Real
1 0.4196 0.3882 0.4157 0.8745
2 0.5625 0.4542 0.5625 0.8917
3 0.5870 0.5547 0.5628 0.8988
4 0.5952 0.5714 0.5040 0.9286
5 0.8083 0.7667 0.8 0.8792
Avg. 0.5945 0.5470 0.5689 0.8945

Table 9. AUC scores for different methods based on data gener-
ated from subject 2’s judgments of fake reviews. We had 5 outer
and 5 inner folds. As one can see our method outperforms both
Elkan and Naive method on 5 out 5 of folds and also on average.
Also notice that on 4 folds out of 5 folds, and on average, Naive
method outperforms Elkan’s method.

Fold # SPM Elkan Naive Real
1 0.4196 0.4118 0.4157 0.8745
2 0.5667 0.5333 0.5625 0.8917
3 0.6640 0.5547 0.5628 0.8988
4 0.6032 0.6071 0.5040 0.9286
5 0.8083 0.7833 0.8 0.8792
Avg. 0.6123 0.5780 0.5690 0.8945

Table 10. AUC scores for different methods based on data gener-
ated from subject 3’s judgments of fake reviews. We had 5 outer
and 5 inner folds. As one can see our method outperforms both
Elkan and Naive method on 4 out 5 of folds and also on average.
Also notice that on folds 4 out of 5 folds, Naive method outper-
forms Elkan’s method.

6. Conclusions and Outlook
In this work we proposed a novel method for learning from
a dataset that only contains positive or otherwise unlabeled
examples. Most of the previous works in this area take
the SCAR assumption for granted, but it is easy to see that
this assumption is violated in many real-world problems as
we discussed and also depicted through real-world datasets
(where the naı̈ve classifier trained by taking unlabeled data
as negative examples outperforms a successful method in
literature which relies on SCAR assumption).

We proposed to replace this assumption with structural as-
sumptions about the selection procedure of positive exam-
ples, i.e. the posterior probability p(l = 1|X = x, y = 1)
that a point is selected to be annotated by an expert given
that the point actually is a positive example.

The proposed methods were:

• Extremely discrete structure of p(y = 1|X = x)

• Sigmoidal structure for p(y = 1|X = x) and p(l =
1|X = x, y = 1)

In this work we mainly focused on the second approach and

did detailed comparisons of this method with naı̈ve method
and Elkan’s proposed method.

However we believe replacing the sigmoidal function for
selection function s(x) with the psychometric function will
be an essential part of future work, and will boost the per-
formance of our proposed parametric setting. Psychome-
tric function (Wichmann & Hill, 2001) has been studied
heavily in psychophysical and is assumed to capture well
the structure of human decision-making process in psy-
chophysical tasks. We leave the exploration of the success
of this method for future work. However optimization for
the objective function when the psychometric function is
part of the factorization of p(s = 1|X = x) is tricky and
needs some further work for a fast and efficient method.
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Supplementery Material
6.1. Derivation of Log-likelihood and its Gradient for

SPMs

Based on the conditional distributions defined in Section 4,
the likelihood function L(X, s; θt, θs) looks as follows:

L(X, l; θt, θs) =

N∏
i=1

[(
1

exp(−θTt xi) + 1

)
×
(

1

exp(−θTs xi) + 1

)]li
×

[(
1− 1

exp(−θTt xi) + 1
× 1

exp(−θTs xi) + 1

)](1−li)
(3)

Now using the notation πti = (exp(−θTt xi) + 1)−1 and
πsi = (exp(−θTs xi) + 1)−1 we get the following condi-
tional negative log-likelihood:

− log(L(X, l; θ)) =

N∑
i=1

− (log(πti) + log(πsi)) li−

(1− li) log(1− πtiπsi). (4)

Also in what follows we calculate the derivatives of log-
likelihood function of this model that has been used in gra-
dient descent algorithm for finding the optimal SPM. No-
tice the gradient of πti and πsi is as follows:

∇πti = xiπti(1− πti),∇πsi = xiπsi(1− πsi).

Based on this we get:

∂ − logL(X, l; θt, θs)

∂θt
=

N∑
i=1

−lixi(1− πti)+

1− li
1− πtiπsi

(πti(1− πti)πsi)xi =

−
N∑
i=1

(1− πti)
[
li −

πtiπsi(1− li)
1− πtiπsi

]
xi

6.2. Proof of Lemma 1

Proof. Recall that for a given joint distribution Pr(X,Y ),
the Bayes classifier is defined as follows:

CB(x) =

{
1 if fB(x) > 1/2

0 otherwise

where fB = E(Y = 1|X) = Pr(Y = 1|X). Now the risk
of any arbitrary classifier for any given X = x is:

Pr(Y 6= C(X)|X = x) = 1−
[P (Y = 1, C(X) = 1|X = x)+

Pr(Y = 0, C(X) = 0|X = x)]

= 1− [C(x)fB(x) + (1− C(x))(1− fB(x)]

= fB(x) + (1− 2fB(x))C(x).

Define RB(x) and R0(x) as the conditional risk values as-
sociated with these two classifiers, i.e. R0(x) = P (Y 6=
C0(x)|X = x) Taking the difference between the condi-
tional risk of introduced classifier C0 and CB we get:

∆R(x) := Pr(Y 6= C0(X)|X = x)−
Pr(Y 6= CB(X)|X = x) =

(2fB(x)− 1)(CB(x)− C0(x)).

Notice that if x 6∈ A, then ∆R(x) = 0. This is indeed the
case because if x 6∈ A then fB(x) = CB(x) = t(x) = 0,
which implies h(x) = 0 and therefore C0(x) = 0 and so
∆R(x) = 0. And if x ∈ A then fB(x) = CB(x) = 1 and
therefore

∆R(x) = 1− C0(x).

But note that

E[R0]− E[RB ] = EX(∆R) = Pr(x ∈ A)× 0+

Pr(x ∈ A)× (1− C0(x))

where expectations are taken with respect to random vari-
able X , and according to (2) 1− C0(x) ≤ ε which implies

E[R0]− E[RB ] ≤ Pr(x ∈ A)ε ≤ ε

Proof of Lemma 2

Proof. The “only if” direction is trivial due to symmetry
of t and s. For “if” direction, notice that for fixed θ’s these
two factors are both functions of just X. So without loss
of generality if we show that for one datapoint the above
equality implies identifiablity, the proof also follows for the
case with more datapoints. Also without loss of generality
if we can show the proof for one-dimensional case, we can
conclude it for multidimensional case as one can set x =
(x1, ...., xn, 1) to x = (1, 0, ..., 0, 1). Finally WLOG we
can assume s = 1, because the case l = 1 has a similar
likelihood to l = 0, i.e. Ł(x, l = 1; θt, θs) = 1 − Ł(x, l =
0; θt, θs). Now assume for a given θt, θs, θ′s and θ′t we have
the following:

Ł(X, l; θt, θs) = Ł(X, l; θ′t, θ
′
s).

So we have

1

exp(−atx+ bt) + 1
× 1

exp(−asx+ bs) + 1
=

1

exp(−a′tx+ bt)) + 1
× 1

exp(−a′sx+ bs) + 1
.

Therefore

(exp(−atx+ bt) + 1)× (exp(−asx+ bs) + 1) =

(exp(−a′tx+ bt)) + 1)× (exp(−a′sx+ bs) + 1).
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simplifying we get

e−(at+as)x+bs+bt + e−atx+bt + e−asx+bs = (5)

e−(a
′
t+a

′
s)x+b

′
s+b

′
t + e−a

′
tx+b

′
t + e−a

′
sx+b

′
s (6)

Take

f(x) := e−(at+as)x+bs+bt + e−atx+bt + e−asx+bs−

e−(a
′
t+a

′
s)x+b

′
s+b

′
t − e−a

′
tx+b

′
t − e−a

′
sx+b

′
s .

According to (6) we have f(x) = 0 for any x ∈ R. Also
taking derivative of f w.r.t. x we get

f ′(x) = −(at + as)e
−(at+as)x+bs+bt − ate−atx+bt − ase−asx+bs

+(a′t + a′s)e
−(a′t+a

′
s)x+b

′
s+b

′
t + a′te

−a′tx+b
′
t + a′se

−a′sx+b
′
s = 0

(7)

for any x ∈ R. We divide the proof into cases.

(i) at > 0 and as > 0: This means at + as > 0.
It follows that a′t ≥ 0 and a′s ≥ 0, as otherwise
taking the limit of x to infinity leads to a contradic-
tion as right hand side of (6) goes to infinity whereas
left hand side of it approaches to a real value. This
means a′s + a′t ≥ max{a′s, a′t}. But this implies
as + at = a′s + a′t as otherwise there will be a domi-
nating exponent in f(x) and as a result

lim
x→−∞

f(x) =∞ or lim
x→∞

f(x) = −∞

which is a contradiction since f(x) = 0. Now note
it can’t be the case that a′s = 0 or a′t = 0. Suppose
to the contrary that this is the case. WLOG assume
a′s = 0. Divide both sides of (6) with exp(at + as)x
and take the limits to −∞. From (6) we get

ebs+bt = eb
′
s+b

′
t + eb

′
t (8)

and from (7) we get

−a′te−a
′
tx+bs+bt − ate−atx+bt−

ase
−asx+bs + a′t(e

−a′tx+b
′
s+b

′
t + ea

′
tx+b

′
t) = 0

Now setting x = 0 gives

−a′tebs+bt − atebt − asebs + a′t(e
b′s+b

′
t + eb

′
t) = 0

and due to (8) we get

−atebt − asebs = 0

which leads to a contradiction. So we do have a′s +
a′t > max{a′s, a′t}. This implies bt+bs = b′t+b

′
s; this

follows by dividing both sides of (6) by e−(at+as)x

and taking the limit x→ +∞. Therefore we get

e−atx+bt + e−asx+bs = e−a
′
tx+b

′
t + e−a

′
sx+b

′
s

now if as 6= at, the dominating term on both sides
should be equal with the similar reasoning we did for
(6). As a result as = a′s and therefore at = a′t (or
as = a′t and therefore at = a′s). In either case similar
to the proof for 6 it follows that bt = b′t and therefore
bs = b′s (or bs = b′t and therefore bt = b′s). This
completes the proof for this case.

(ii) at > 0 and as = 0: Similar to what has previously
shown, it follows that a′t ≥ 0 and a′s ≥ 0. Now note
that it can’t be the case that a′t > 0 and a′s > 0,
as we argued in case (i) that this is impossible. So
a′t = 0 or a′s = 0. In either case it follows that a′s =
at and a′t = at respectively. It follows immediately
that bt = b′t and therefore bs = b′s (or bs = b′t and
therefore bt = b′s).

(iii) at = as = 0: Notice that in this case it is obvious
that rhs of (6) need also to be independent of x which
implies a′t = a′s = 0. But note that for any non-zero
element of either of θt or θs one can conclude that
bt = b′t and therefore bs = b′s (or bs = b′t and there-
fore bt = b′s). Unless all the elements of θt and θs are
zero, in which case the likelihood does not depend on
the data which is a contradiction.

(iv) at > 0 and as < 0: Multiply both sides of (6) with
eas|x| and we get

e−(at+(as+|as|))x+bs+bt + e−(at+|as|)x+bt+

e−(as+|as|)x+bs = (9)

e−(a
′
t+(a′s+|as|))x+b

′
s+b

′
t + e−(a

′
t+|as|)x+b

′
t+

e−(a
′
s+|as|)x+b

′
s (10)

but now the claim of the lemma follows by reapplying
(i), (ii) and (iii) to (10) with x exponents as as + |as|,
at + |as|, as + |as|, a′s + |as|, a′t + |as| and a′s + |as|.

(v) at < 0 and as < 0: This case follows by replacing
x with −x on both sides of (6). This completes the
proof of the lemma.


