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Abstract

Low rank approximation is arguably one of the most well-studied prob-
lems in numerical linear algebra, with diverse applications to clustering,
data mining, distance matrix completion, information retrieval, learning
mixtures of distributions, recommendation systems and web search. For-
mally, given a rank-r matrix A € R™*™, a parameter k, and a norm p,
one seeks a rank-< k matrix A’ € R™*™ that “well-approximates” A with
respect to the norm p: i.e. minimizes ||A — A’||,. When p = F (Frobenius
norm) the problem can be solved using the truncated SVD algorithm,
whereas when p = 1 (entrywise ¢; norm) the problem is NP-hard and there
exists no closed-form solution. In both cases, today’s massive datasets
prohibit the computation of A" in a reasonable amount of time. Recent
advances in numerical linear algebra (sketching) have allowed the develop-
ment of approximation algorithms that allow for a fast but approximate
solution. This data analysis project studies the empirical performance
of state-of-the-art in theory approximation algorithms for the £ and ¢;
variants of the low-rank approximation problem on a variety of synthetic
and real datasets.

1 Introduction

Low rank approximation is arguably one of the most well-studied problems in
numerical linear algebra, with diverse applications to clustering, data mining,
distance matrix completion information retrieval, learning mixtures of distribu-
tions recommendation systems and web search. In practice one often has a low
rank matrix which has been corrupted with noise of bounded norm, and low rank
approximation allows one to approximately recover the original matrix. Low rank



approximation may also help explain a dataset, revealing low dimensional struc-
ture in high dimensional data. Formally, given a rank-r matrix A € R"*™ the
£, low-rank approximation is formulated as the following optimization problem:

min A - A,

st. rank(A") <k W

When p = 2 (spectral norm) or p = F (Frobenius norm), the problem has a
closed form solution, which can be obtained through the singular value decompo-
sition of A. The runtime complexity of the SVD algorithm is O(min(n?m, m?n)),
which is theoretically polynomial (fast) but slow for todays massive datasets.
Clarkson and Woodruff [4] developed a randomized approximation algorithm for
{p low-rank approximation that runs in O(nnz(A) + (n + d)poly(k/e)) running
time, and achieves a (1 + €)-approximation factor. That is, given the optimal
solution A*, the algorithm outputs A" such that: ||A—A'||p < (1+¢€)||A— A*||F.

As for regression, using the entrywise ¢; norm (p = 1) is a more robust and
less sensitive to outliers loss function. Unfortunately, this problem not only does
not have a closed form solution, but is in fact NP-hard [2]. Song, Woodruff,
and Zhong [3] recently proposed a randomized algorithm for entrywise ¢; norm
low rank approximation, with an approximation factor of « = logn - poly(k)
and running time O(nnz(A) + m - poly(k)). This algorithm also heavily relies
on sketching, where the underlying sketching matrices are combinations of
CountSketch and Cauchy random matrices. Formally, if A* is a real minimizer,
then the algorithm outputs A’ such that: [|[A — A’||; < logm -poly(k)||A — A*|.

We implement the approximate-¢; and approximate ¢y algorithms and evalu-
ate their performance on a wide variety of both synthetic and real datasets. We
believe our empirical results provide strong evidence of the practical value of
the recent theoretical breakthroughs in sketching-based methods for low rank
approximation.

The rest of this paper is organized as follows: section 2 introduces sketching
and some important definitions and theorems, section 3 presents the approximate-
{r algorithm and analyzes its running time and approximation guarantees,
section 4 presents the approximate-f; algorithm and analyzes its running time
and approximation guarantees, section 5 presents thorough experimental results
and section 6 contains acknowledgements.

2 Preliminaries

Linear matrix sketching is a technique where given a big matrix, one first
compresses it to a much smaller matrix by multiplying it by a random matrix
with certain properties. Much of the expensive computation can then be per-
formed on the smaller matrix, thereby accelerating the solution for the original
problem. Linear sketching has been successfully used in the development of
efficient approximate algorithms for regression, low rank approximation graph
sparsification problems and many of their variants.



Definition 1 ({3-subspace embedding). A (1 + €) ¢s-subspace embedding
for the column space of a matrix A € R™*™ is a matrix S for which, for all
x € R™ the following holds:

ISAz]|3 = (1% )] Az |3 (2)

Definition 2 ((¢,d) oblivious ¢s-subspace embedding). Suppose II is a
distribution on random matrices S € R™*"™ where r = f(n,m,¢,d). Suppose
that for any fixed matrix A € R™*™  with probability at least 1 — §, a matrix S
drawn from distribution IT is a (1 + €) ¢3-subspace embedding for A. Then IT is
called an (¢, d) oblivious ¢3-subspace embedding.

Definition 3 (JLT). A random matrix S € R¥*™ forms a Johnson-Lindenstrauss
transform with parameters ¢,d, f or JLT (¢, d, f) for short, if with probability at
least 1 — 4, for any f-element subset V' C R™:

Vo,0" € V1 [[(Sv, Sv') [l < elfvllz[lv"]]2 (3)

Theorem 1. Let 0 < €,0 <1 and S = ﬁR € R¥*™ where the entries of R €

REX™ qre independent standard normal variables. Setting k = ©(Z%(m+log(3))),
for any fized matriz A € R™*™  with probability at least 1 —§, S is a (1 £¢€)
lo-subspace embedding for A:

Vo € R™: ||SAz|3 = (1 +¢)|Ax|3 (4)
Theorem 2 (Subsampled Randomized Hadamard Transform, (PHD)).
Let S = \/%P - H, - D, where D € R" ™ is a diagonal matriz with i.i.d.

diagonal entries D; ; = 1 with probability 1/2 and D;; = —1 with probability
1/2. H, € R"*" js the Hadamard matrixz of size n = 2¢, for some t > 0, with

1 log n

H,; = ﬁ(—l)zzzl i=J= where (ilogny 1) and (Jlogn, .-, j1) are the binary
representations of i and j. The matriz P € R™™ samples r coordinates of an
n-dimensional vector uniformly at random. Setting r = Q(IO;#(\/TTH- Viogn)?),
with probability at least 0.99, for any fired matrix U € R™*™ with orthonormal
columns:

| L, — UTSTSU| < € (5)
Finally for any vector x € R™, S -z can be computed in O(nlogr) time.

Definition 4 (Sparse Embedding Matrix (CountSketch)). The CountS-
ketch matrix is a sparse matrix S € R"™™", constructed in the following way.
Firstly, for each of the n columns S, ;, we (i) independently choose a uniformly
random row h(i) € {1,2,...,...,r} and (ii) choose uniformly a random element
o(i) € {—1,1}. Secondly, we set Sy = o(i) and S;; = 0 for all j # i.
Therefore S has a single non-zero entry per column.



Definition 5 (Well-conditioned basis for the 1-norm). Consider a matrix
A € R™™. A matrix U € R"™™ is an (a, §, 1)-well-conditioned basis for the
column space of A if:

IU]ls < a (6a)

Vz € R™ : ||zl < BI|IUz||x (6b)

Definition 6. A matrix S € R**" is an ¢;-subspace embedding for a matrix
A € R™™ if there exist constants ¢y, co > 0 such that:

Ve e R™ : ||Az|; < ||SAz||y < d°|| Az, (7)
and S has at most s = d°2 rows.

Theorem 3. A matriz S € R™"™ of i.i.d. Cauchy random wvariables with
r = O(dlogd) rows is an {1-subspace embedding with constant probability: with

probability at least 1%, Vo e R™:

4| S Az
r

Az, < = O(dlog d) || Ax||y (8)

Definition 7 ((e,d,¢)-JL Property). A distribution D on matrices S € R¥*™
has the (e, d, £)-JL moment property if Vo € R™, with ||x]2 = 1:
Es~oll|Szl3 — 1] < € - (9)

Definition 8 (Approximate Matrix Product Property). Fore, ¢ € (0,1/2),
let D be a distribution over matrices with m columns that satisfies the (e, d, £)-JL
moment property for some ¢ > 2. Then, for any matrices A € R™*¢ B € R™*?:

Prsp||ATSTSB — ATB||p > 3€|A||p||B||r] < 6 (10)

Theorem 4. Let S € R™*" be a sparse embedding matriz (CountSketch), with
r= Q(%) rows. Then S satisfies the (€,0,2)-JL moment property. Further,
this holds if the hash function h : [n] — [r] is only 2-wise independent and the
sign function o : [n] — {—1,1} is 4-wise independent.

Definition 9 (Affine Embeddings). Consider matrices A € R"*™ and B €
R™*™" The generalized regression problem seeks to find the matrix X € R™*m’
that minimizes ||A- X — B||r. A random matrix S is an affine embedding if,
with high probability:

|SAX — SBllp < (1+ )| AX - B|r (1)
It turns out that S is an affine embedding if it satisfies the properties:
1. S is an ¢y-subspace embedding for A

2. S satisfies approximate matrix product property



3. S preserves the Frobenius norm of a matrix, i.e. with high probability
ISA% < 1+ €)[All%

Theorem 5. Let S € R™*" be a sparse embedding matriz (CountSketch). Setting

r= O(T—;poly(log(%))) rows, we have that for any fired matriz A € R™*™ | with
probability at least 0.99, S is a (1+e€) la-subspace embedding for A. Furthermore,
S - A can be computed in O(nnz(A)) time.

3 Approximate (r Low-Rank Approximation

For the ¢ low-rank approximation problem, an approximate solution is simply
a matrix A’ such that:

1A= A5 < L+ )l A — Akl (12)

Woodruff and Clarkson [4] developed a randomized approximate algorithm
for £ low-rank approximation, that achieves a O(nnz(A) + (n + d)poly(k/e))
runtime complexity (where nnz(A) is the number of non-zero entries of A).

3.1 Existence of good solutions in the row-span of SA

Let us consider the hypothetical regression problem minx || Ax X — Al|%. Because
A, X has rank at most k and Ay is the best rank-k approximation to A, the
optimal solution to the above problem is to set X to be the identity matrix:
X = I. Hence the minimum cost of problem (5) is ||Ax — A||3.

We choose S to be an affine-embedding. We sketch problem (5) on the left
using S:

|SALX — SAIR= (1 £ 4 X - All% (13)

The minimizer of the problem minx ||SA, X —SA| % is clearly X% = (SAx) T (SA)
and lives in the row span of the matrix SA. We also observe that:

(1 6)[|Ax(SAR)T(SA) — AllF = [[SAK(SAR) T SA — SA|:
< |SAR - SA|%
= (1)) Al - All%
= (L)l Ax — All%, (14)
where the first and second equality follow from the fact that S is an affine

embedding and the inequality from the fact that X§ is the minimizer of problem
(6). Re-arranging terms, we get:

1+e
[AR(SAR)TSA - AlF < T Ak - All%
~ (1+26)] A — A7, (15)



from which we conclude that good rank-k approximations of Ay exist in the
row-span of SA.

3.2 Computing a good rank-kt approximation of A in the
row-span of SA

We have only shown that Ap(SAg)TSA is an € approximation of the optimal Ay.
Rank-k matrices in the row-span of SA are of the form XSA for some rank-k
matrix X. We observe that:

Minyank—kx | XSA — A% < || Ap(SAx)TSA — A|%
< (1£0))lA, - AlF, (16)

where the first inequality follows because we are minimizing | X SA — A||%
over rank-k matrices X and the second one from proper-scaling of the number
of rows of S (poly(k/e)).

Observe however, by the Pythagorean Theorem, that:

IXSA— Al = [[A(SA)TSA - A|lf + | XSA — A(SA)FSA| %, (17)

where the rows of A(SA)TSA are the projections of the rows of A onto the
row-span of SA. The first term of (11) does not depend on X. Hence we only
need to solve the problem min,nx—_rx || X SA — A(SA)tSA|%.

We next consider the singular value decomposition of matrix SA, let it be
SA =UXVT. We can compute this fast in m - poly(k/e) time, since SA is a
small poly(k/e) x m matrix. We then get, successively:

Minyank—kx | XSA — A(SA)TSA|% = mingane_rx | XUSVT — A(SA)TUSVT %
= MiNrank—kx || XUS — A(SA)TUR|%
= minmnk_kyHY - A(SA)+UE|‘%, (18)

where the second equality follows from the fact that V7 has orthonormal rows and
the third equality from a simple change of variables (Y = XUY). (Technically,
since A is a high-rank matrix, otherwise we would ignore S and work with the row-
span of A, UY is with constant high probability invertible and thus minimizing
over XUY with rank-k X is equivalent to minimizing over ¥ = XU with
rank-k Y'). Problem (8) can be solved if perform truncated SVD to the product
A(SA)TUX. Even though we can compute fast UY and (SA)T = VE+tUT,
multiplying on the left by A is too costly to afford.

3.3 Sketching the Sketch

From the above discussion, it is clear that the bottleneck lies in the projection
of the rows of A onto the row-span of SA. The rows of A(SA)TSA are exactly



the projections of the rows of A onto the row-span of SA. The novelty of the
algorithm lies in approximately projecting the rows of A onto the row-span of
SA.

We consider another affine embedding, R, with d rows and poly(k/e€) columns.
We know that:

IXSAR — AR||2 = (14 ¢)| XSA — A||2 (19)

By minimizing ||XSAR — AR||% we still obtain a (1 =+ €)-approximation
algorithm, as:

mingan kx| XSAR — AR|[} = (1% )minyan—ix | XSA ~ All}
< (146)?||Ax — A2
= (1 £ 0(e))mina||A — A'||% (20)

The minimizer of | XSAR — AR|% is this time given by X%, = (SAR)TAR
and by using the Pythagorean theorem one more time we get:

|XSAR — AR||% = |A(SAR)"SAR — AR||% + | XSAR — A(SAR)*SAR|%,
(21)

Again, the first term does not depend on X and thus we concern ourselves
with solving min,ank—ry ||Y — AR(SAR)TSAR||% (where Y = XSAR,

Finally, how are we guaranteed that Y takes the form XSAR? Suppose for
the sake of contradiction, that this does not hold true. Then there exists a row
of Y that does not belong to the row-span of SAR. Define Y’ = Y(SAR)TSAR.
Then:

|Y'— AR(SAR)TSAR|j% = |[Y(SAR)"SAR — AR(SAR)*SAR||
= |Y(SAR)TSAR — AR(SAR)T(SAR(SAR)"SAR)|
= (Y — AR(SAR)*SAR)(SAR)TSAR||%
<||Y — AR(SAR)"SAR|%, (22)

where the second equality follows from pseudo-inverse property AATA = A
and the inequality from applying the inequality | BP||% < ||BP||% + ||B(I —
P)||% = ||B||% for projection matrix P = (SAR)T(SAR) and B = Y —
AR(SAR)TSAR.

). Now computing the truncated SVD of AR(SAR)TSAR can be done fast
given that all the factors are small matrices (in at least one dimension). The

overall algorithm can be described as follows:



Algorithm 1 Approximate {p Low-Rank Approximation Algorithm.

1: function APPROX-RANK-K(A)

2 Generate affine embedding S.

3 Generate affine embedding R.

4: Compute SA.

5: Compute AR and SAR.

6: Solve min ank—ry ||Y — AR(SAR)TSAR||% exactly, using SVD.
7: Output Y(SAR)TSA.

8: end function

4 Approximate /; low-rank approximation

Woodruff, Song & Zhong [3] recently proposed an approximate randomized
algorithm for entrywise ¢; norm low rank approximation, with an approximation
factor of a = logm - poly(k) and runtime O(nnz(A) + m - poly(k)). Formally, if
A* is the real minimizer, the algorithm outputs A’ such that:

A= A'||p <logm - poly(k)[|A — A*||, (23)

Woodruft, Song & Zhong [3] recently proposed an approximate randomized
algorithm for entrywise ¢; norm low rank approximation, with an approxima-
tion factor of a = logn - poly(k) and runtime O(nnz(A) + m - poly(k)). This
algorithm also heavily relies on sketching, but the underlying sketching matrices
are combinations of CountSketch and Cauchy random matrices (as opposed
to CountSketch and Gaussian random matrices). Formally, if A* is the real
minimizer, the algorithm outputs A’ such that:

A= A'l|r < logm - poly(k)||A — A™[|x (24)
4.1 Sketching by a Cauchy Random Matrix

The entrywise-¢; norm of matrix A € R"*™ can be defined as:

1Al = _[14. 5] (25)
j=1

Suppose S € R™*™ is a matrix of i.i.d Cauchy random variables, scaled by
1/r. We now prove that, with constant probability:

I1SA]lx = O(log m)|[Ally (26)

From the 1-stability of the Cauchy distribution, we get that each element of
the j-th column of SA € R"™™, SA; ; is:

1
SA;; = ;”A*,jHlZiv (27)



where Z; is a Cauchy random variable.
Therefore, we have:

1 T
‘SA*JH - ;”A*jH Z‘Zi,j

=1

; (28)

and where |Z; ;| is a half-Cauchy random variable.

We define Z] ; = 1 if |Z; ;| < m? and Z] ; = 0 otherwise. Let Ej; be the
event that Z{J = 1, which happens with probability p; ;.

We then have:

E[Z;;|E; ] = E[Z] ;|E; 5]

3

/m 2z d
= — = dz
o T(1+22)pi;

= O(logm) (29)

If we call E the event that for all 4,5 € [r] x [n] the event E; ; occurs, we
have:

_ 21 1
P[E]gm o;gm: Ogm, (30)
m m

and thus:

PlE] > 1 8™

m
Furthermore:

E[Zi;|Ei | = E|Z;;|Ei;, E\P|E|E: ;] + E|Z] ;|Ei j, E|[Z; ;|Ei j, E]
> P[E|E; j, E|P[E|E; ;]

logm

) (32)

We get E[Z] ;|E] = O(logm) and therefore:

> E[Z; ;|E](1 -

15 A« jll = O(log m)[|Ax 1, (33)

with constant probability, by a simple Markov Bound.

By taking a union bound over the m events ||SA, ;|| = O(logm)|| A1, we
finally get that, with very high probability (at least 9/10 for appropriate con-
stants):

1SA]lx = O(log m) [ A1 (34)



4.2 A /klogklogm approximation in the rowspan of SA

It can also be proved for any fixed n x k matrix U, if S is an r X n matrix of
i.i.d Cauchy random variables, with r = O(klog(k)), then with probability at
least 9/10, simultaneously for all x € R™:

1Uz]ly < [[SUz[ly = O(klog(k))[|[Ux]|x (35)

Let us now consider a fixed U € R"** and let the matrices V*, V' € RF*"
be defined as V' = argminy|SUV — SA||; and V* = argminy |[UV — Al
respectively. We observe that:

|SUV' — SA|y > ||SUV' — SUV*||y — ||SUV* — SA|;

k
=D ISUWV' = V)l = |SUV* = SA||;
j=1

k
> UV = V) jlh = ISUV* = SA|L
j=1

= UV = V)l = [SUV" = SA||x
> UV = Al = UV = AllL = |SUV" = SA|l,,  (36)

where the first inequality follows directly from the triangle inequality, the
second inequality uses the property described by equation (30), and the third
inequality follows again from the triangle inequality.

After re-arranging terms in the previous inequality and using the definitions
of V*, V', we can prove, that with high probability:

UV’ — A, < O(log(m))m‘;nHUV — Al (37)

Given the problem miny ||[SUV — SA||;, consider its relaxation:

min|[SUV — A1z = mvln;n(sw — SA).ill2 (38)
It is straighforward to observe that fixing U, one can find the i-th columns of
V by solving the /5 regression miny, ,[|(SUV — SA), i||2. The solution to this
problem is V/; = (SU)*(SA).;, where SUT is the pseudo-inverse of matrix
SU € R*** and (SA).; is the i-th column of matrix SA € R™*™. Combining
the solutions for each column V*”z € R", we obtain the following expression for
V" = (SU)*SA; it lies in the rowspan of SA € R™*"™.
One can then use the definition of V’ and V", the Cauchy-Shwartz inequality
and the fact that for x € R™, ||z||2 < ||z|1 and prove that:

|SUV" = SA|x < VFminl|SUV — SA|x (39)

10



4.3 Sketch & Sketch & Replace ¢; by (r

Assume that A* = U*V* is the minimizer of the original problem min,.qnx—g4/||A—
A’||y and that we know U*. If we then consider the hypothetical regression
problem miny |U*V — Al|;, we know that if S is an (r = klogk) x n matrix of
i.i.d. Cauchy random variables, there is a matrix UV € R™*™, with the matrix
V" lying in the row-span of SA € R™*™ and for which the following inequality
holds:

[U"V" = Alls = Oy log m) min[U"V = Al .

Therefore we can write V" = XSA for some unknown matrix X € RFX",
and if X* is the minimizer of the problem minx|U*XSA — A||; then the
matrix U*X*SA would be an O(,/r log m)-approximate entrywise-¢; low rank
approximation. The ba news is that we do not know or have a way of guessing
the matrix U* € R™"*k,

The good news however is that we can sketch the problem on the right by
another matrix R € R™*" where r = kpoly(log k) and conclude that there exists
a matrix of the form ARY X SA, where Y € R™** which satisfies:

[ARY XSA — A|; < poly(klogm) r}gun A= AL (41)

We therefore focus on solving the problem miny, x || ARY X SA— Al|;. It turns
out, that we can sketch both on the left and right by two Cauchy matrices of i.i.d
random variables, Ty, € R¥™"™ and Tg € R™**. If ¢t = kpoly(log k), then for the
minimizers Y/ € R™* and X’ € R*** of the problem miny. x |7, ARY X SATr—
Tr, ATRr||1, with very high probability, it is true that:

|TLARY'X'SATR — T, ATg|1 < poly(klogn) _Inin ||A A'll1 (42)

We also note that the problem miny x || T ARY XSATr — T1, ATR|1 is very
small and does not depend on n. Also, the dimensions of matrices T, AR, SATR
and Ty, AT and the unknown matrices Y, X are all kpoly(log k).

Let instead X" € R*** and Y” € R"** be the minimizers of the prob-
lem miny x || T, ARY XSATr — T, ATR| F, for which there exists a closed-form
solution. Moreover:

ITLARY" X" SATR — Ty ATg||p < |TLARY' X' SATR — TL ATg|| ¢
< Vkpoly(log k) - kpoly(log k)| TL ARY' X'SATr — T, ATg ||
= kpoly(log k)| TLARY' X' SATg — T, ATR||1
< kpoly(log k)poly(klog m) . m1n ||A A'lly

= f3-poly(klogm) min IIA A’Ilh (43)

11



where the first inequality follows from the definition of Y/, X", the second
inequality follows from the inequality:

IM||Fr < Vs-t| M|, (44)

for any matrix M € R*** the third inequality is just equation (30) and
finally the last equality follows from setting 8 = kpoly(log k).
The overall algorithm then is:

Algorithm 2 Approximate ¢; Low-Rank Approximation Algorithm.

1: function APPROX-RANK-K(A)
2 Generate Cauchy matrix S.
3 Compute SA

4: Compute C; . = argming||zTSA — A; |1

5: Compute B=C-SA

6 Generate Cauchy sketches Tp, R, D, Tg.

7 Compute SA.

8 Compute T, BR, DBTg and T, BTg.

9: Solve minx7y||TLBRXYDBTR — TLBTRHF exactly.
10: Output BRX,Y DB.

11: end function

5 Experiments

We implemented the approximate-¢r and approximate-¢; algorithms and evalu-
ated them on both synthetic and real-world datasets. We performed 2 different
experiments on 3 synthetic datasets and 2 real-world datasets. In the first
experiment, we vary the rank k of the desired approximation, whereas in the
second experiment we fix a rank k& = 50 and vary the number of rows/columns
of the sketching matrices. For evaluating the approximate-¢r algorithm we used
s=c- % rows/columns of sketching matrices S and R with € = 0.1, whereas
for evaluating the ¢1-approximate algorithm we used s = ¢ - klogk as the small
dimension for the sketching matrices S, R, Ty, and Tg.

5.1 Datasets
5.1.1 Synthetic Datasets

We generated 3 sparse synthetic datasets: a matrix with n = 10° and m = 103
random i.i.d. normal variables, with ||M|o = nnz(M) = 0.50nm (sparse),
|M]|o = nnz(M) = 0.50nm (semi-dense) and |M ||p = nnz(M) = 0.75nm (dense)
nonzero elements, respectively.

12



5.1.2 Real Datasets

As our first real-world dataset, we use the MovieLens 1M dataset [9], which
contains 1 million ratings (0-5) from 6000 users on 4000 movies. As our second
real-world dataset, we use the NIPS dataset [§], which contains the distribution
of words in the full text of the NIPS conference papers published from 1987
to 2015. The dataset is in the form of a 11463 x 5812 matrix of word counts,
containing 11463 words and 5811 NIPS conference papers. Each column contains
the number of times each word appears in the corresponding document.

5.2 Programming Environment

The experiments were executed on a MacBook Pro with a 2.5GHz Intel Core i7
processor and 16GB 1600 MHz DDR3 memory. The implementation was done
in Python using the numpy library.

13



5.3 Results

.
5.3.1 Sparse Synthetic Dataset
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Figure 1: {p-approximate algorithm on MovieLens. Plots illustrate £ Norm &
Time vs (i) rank k and (ii) number of rows/columns s = ¢- % of sketching matrices
S and R. First experiment ((a), (b)): k € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
and ¢ = 1. Second experiment ((c),(d)): rank k = 50 and ¢ € {10, 20, 30,40, 50}.
Both experiments use € = 0.1.
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Figure 2: ¢; algorithm on MovieLens. Plots illustrate ¢; Norm & Time vs (i)
rank k and (ii) small dimension s = ¢ - klogk of Sketching matrices S, R, 11,
and Tg. First experiment ((a),(b)): k € {10,20,30,40,50} and ¢ = 1. Second
experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30,40, 50}. Both experiments
use € = 0.1.
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5.3.2 Semi-Sparse Synthetic Dataset
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Figure 3: ¢p-approximate algorithm on MovieLens. Plots illustrate ¢ Norm &
Time vs (i) rank k and (ii) number of rows/columns s = ¢- % of sketching matrices
S and R. First experiment ((a), (b)): k € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
and ¢ = 1. Second experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30, 40, 50}.
Both experiments use ¢ = 0.1.
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Figure 4: ¢; algorithm on MovieLens. Plots illustrate ¢; Norm & Time vs (i)
rank k and (ii) small dimension s = ¢ - klogk of Sketching matrices S, R, 11,
and Tg. First experiment ((a),(b)): k € {10,20,30,40,50} and ¢ = 1. Second
experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30,40, 50}. Both experiments
use € = 0.1.
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5.3.3 Dense Synthetic Dataset
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Figure 5: ¢p-approximate algorithm on MovieLens. Plots illustrate ¢ Norm &
Time vs (i) rank k and (ii) number of rows/columns s = ¢- % of sketching matrices
S and R. First experiment ((a), (b)): k € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
and ¢ = 1. Second experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30, 40, 50}.
Both experiments use ¢ = 0.1.
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Figure 6: ¢; algorithm on MovieLens. Plots illustrate ¢; Norm & Time vs (i)
rank k and (ii) small dimension s = ¢ - klogk of Sketching matrices S, R, 11,
and Tg. First experiment ((a),(b)): k € {10,20,30,40,50} and ¢ = 1. Second
experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30,40, 50}. Both experiments
use € = 0.1.
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5.3.4 NIPS Dataset
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Figure 7: ¢p-approximate algorithm on NIPS. Plots illustrate £z Norm & Time

vs (i) rank k and (ii) number of rows/columns s = ¢ - £ of sketching matrices

S and R. First experiment ((a), (b)): k € {10,20,307460,50,60,70780,90, 100}
and ¢ = 1. Second experiment ((c),(d)): rank & = 50 and ¢ € {10, 20, 30, 40, 50}.

Both experiments use ¢ = 0.1.
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Figure 8: ¢;-approximate algorithm on NIPS. Plots illustrate ¢; Norm & Time
vs (i) rank & and (ii) number of rows/columns s = ¢- klog k of sketching matrices
S, R, Tt, and Tg. First experiment ((a),(b)): k € {10, 20, 30, 40,50} and ¢ = 1.
Second experiment ((c),(d)): rank k£ = 50 and ¢ € {10, 20, 30,40,50}. Both
experiments use € = 0.1.
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5.3.5 MovieLens Dataset
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Figure 9: ¢p-approximate algorithm on MovieLens. Plots illustrate £z Norm &
Time vs (i) rank k and (ii) number of rows/columns s = ¢- % of sketching matrices
S and R. First experiment ((a), (b)): k € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
and ¢ = 1. Second experiment ((c),(d)): rank & = 50 and ¢ € {10, 20, 30, 40, 50}.
Both experiments use ¢ = 0.1.
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Figure 10: ¢; algorithm on MovieLens. Plots illustrate ¢; Norm & Time vs (i)
rank k and (ii) small dimension s = ¢ - klogk of Sketching matrices S, R, 11,
and Tg. First experiment ((a),(b)): k € {10, 20, 30,40,50} and ¢ = 1. Second
experiment ((c),(d)): rank k& = 50 and ¢ € {10, 20, 30,40, 50}. Both experiments
use € = 0.1.

5.4 Discussion

The approximate-£z algorithm succeeds as we vary k. The norm ||[A — Ap|r =
c||A— Ag||F, for c a constant in the range [10,20]. The quality of the ¢p-algorithm
approximation factor improves and its running time increases as we increase the
number s of rows of the sketching matrices.

The approximate-¢; algorithm succeeds as we vary k. The norm ||A— A =
c|A—Ag||F, for c a constant in the range [10, 108]. Observe that since computing
the optimum [|A — U*V*||; is NP-hard and requires the use of a polynomial
system solver, we compare against the Frobenius norm ||A — Ag||r. We know
that [|[A — U*V*||y < +/n-m|A—U*V*||p. Also the ¢;-approximate algorithm
does not have a constant factor approximation but rather a logm - k - poly(log k)
factor approximation. As expected, the running time of the approximate-£;
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algorithm increases as we increase the number s of rows of the sketching matrices.
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